Menu
	Goddard
	SPDF	SPDF Home
	About SPDF
	Data Use Policy
	SPDF Staff
	SPDF News
	Usage Statistics
	Acknowledgements
	History
	SPDF Feedback/Support

	Data Access & Orbit Services	Linking Missions and Services
	CDAWeb (data browser)
	CDAWeb Inside IDL

	OMNIWeb Plus (now including COHOWeb, ATMOWeb, FTP Browser,
 HelioWeb and CGM)
	SSCWeb (orbit search)
	4D Orbit Viewer
	GIFWalk data and orbit plots
	Direct HTTPS file access
	Alternative Data Access Methods
	Heliophysics Data (search) Portal
	Heliophysics API (HAPI)
	Get solar data - SDAC and VSO

	Software	CDF (Common Data Format)
	ISTP Metadata Guidelines
	CDF/netCDF/FITS/HDF/XML/ASCII Format Translations
	CDF/NetCDF SKTEditor
	MakeCDF
	CDAWlib (IDL)
	CDFX (IDL)
	CDAWeb Web Service API
	SSCWeb Web Service API
	Heliophysics Data Portal Web Service API

	Submit Data	Submitting to the Heliophysics Archives (SPDF and SDAC)
	ISTP Metadata Guidelines
	Recommended File and Data Collection Naming Practices
	Registering Data Products with SPASE Metadata Descriptions

	Resources	HDRL - Heliophysics Digital Resource Library
	SPASE Data Model and Dictionary
	SDAC - Solar Data Analysis Center
	CCMC - Community Coordinated Modeling Center
	Center for HelioAnalytics
	Heliophysics Education and Public Outreach
	ADS Bibliographic Search
	HDO - Heliophysics Digital Observatory
	IHDEA - International Heliophysics Data Environment Alliance
	Acronyms and Glossary
	TOPS - Transform to Open Science
	List of Full Resources
	NASA Science Discovery Engine

	Contact Us

Search

CDAWlib

The CDF plotting routines available here underlie the
CDAWeb software; they are supplied here in a
package of IDL functions and procedures called CDAWlib.

Many functions exist in CDAWlib. We do not specifically call them all
out here but they are all internally documented. The software has been
tested but is not guaranteed to be bug free. We will try to address
problems that you may find. There are two options for getting and
running the software:

â€‹1) Download the pre-compiled IDL saveset containing
CDAWlib
following the
instructions

IDL> restore, 'spdfcdas.sav'

â€‹2) Or, get a copy of the CDAWlib source
code and follow the
general installation instructions below

On-line Help

	General Installation Instructions
	READ_MYCDF reads CDFs and returns variables and
attributes
	PLOTMASTER plots the data returned by READ_MYCDF
	LIST_mystruct generates an ASCII listing of an
ISTP CDF
	WRITE_mycdf writes a subset or superset of data output by read_mycdf into a cdf file
	IDLmakecdf creates ISTP CDF data files starting
with a Master CDF
	CDFx CDF viewing and editing tool

General Installation Instructions

The steps below outline how to run CDAWlib.

	
This software is written in IDL and must be run on a machine with an
IDL license.

	
Make sure that you are running X on your local machine and tell the
computer to send any X-windows output to your X-terminal:

> setenv DISPLAY [Ethernet address]:0

	
Copy the packages of CDAWlib to your directory.

	
With IDL Version 6.2 and above, please also download the latest CDF/IDL patch available here and follow the installation instructions.

	
Set the environment variable IDL_PATH to include the directories
where the software is located. Your IDL_PATH should look something
like (make sure to include the plus signs â€�+â€� before each directory:

IDL_PATH=+/cdawlib/source:+/usr/local/exelis/idl85/lib:+/usr/local/exelis/idl85

Which is set on unix with a command like: setenv IDL_PATH
+/cdawlib/source:+/usr/local/exelis/idl85/lib:${IDL_DIR}

	
NOTICE:

The CDAWlib software has been extensively tested with IDL versions
6.3, 8.1, 8.3 and 8.5. Use with other versions of IDL should be
possible, but please test before depending on it. We welcome
suggestions and bug reports.

	
Begin your IDL session:

idl

	
To use read_mycdf, plotmaster, list_mystruct or write_mycdf compile the general
cdaweb functions. Then follow the instructions in the sections
below.

 IDL>@compile_cdaweb compile the CDAWlib software (not needed when using IDL save file)

	
To use IDLmakecdf, you need to compile it separately. Then follow
the instructions in the sections below.

 IDL>@compile_IDLmakecdf compile IDLmakecdf (not needed when using IDL save file)

	
READ_MYCDF returns a structure containing data and attributes to
the IDL command line. To plot the data in the structure â€œaâ€� you can
use plotmaster or you can write your own plot routines.

Return to top

READ_MYCDF

The function READ_MYCDF reads from one to many variables from one to
many CDF files, and returns all data and metadata for these variables in
a single structure of the form:

structure_name.variable_name.attribute_name.value

The substructure for each variable will have three fields in addition to
any fields holding any metadata information. These three fields are:
VARNAME, which holds the name of the variable in a case-sensitive
fashion, CDFTYPE, which holds the type of the CDF variable, and DAT,
which holds the actual data values.

When reading more than one CDF, metadata and non-record-varying
variables are only read from the first CDF, only record-varying data is
read from all CDFs.

If an error occurs while reading the CDF(s), a -1 is returned

Calling Sequence

Result = READ_MYCDF(varnames, cdfnames) ; to read specific variables

OR

Result = READ_MYCDF(â€�,/all, cdfnames) ; to read ALL variables

Arguments

varnames

A string or string array containing the names of the variables to be
read from the CDF file(s). If specifying the variable names in a
single string, then the names should be separated by a comma. NOTE:
CDF is case sensitive, so the given variable names must be an exact
match.

cdfnames

A string or string array containing the names of the CDF file(s) to be
read (the CDFs need to be from one data type and in monotonical
order). If specifying the CDF filenames in a single string, then the
names should be separated by a comma. NOTE: If reading a file outside
your current directory, then the full filename, including
directory/path information, must be provided. All path and file
information is case-sensitive.

Keywords

ALL

This keyword has three valid values: 0 - meaning ignore, 1 - meaning
read all variables (use this option if you donâ€™t know the names of the
variables contained in your CDF file, and 2 - meaning read all
variables with VAR_TYPE = â€œdataâ€� and their supporting variables).

NODATASTRUCT

If this keyword is set, then the .DAT field will be replaced with a
field called .HANDLE. The value of this field is a handle_id where
the data is located. Using this keyword can result in a performance
improvement.

NOQUIET

Set this keyword to keep from disabling obnoxious warning messages
from IDLâ€™s CDF file access routines.

TSTART

String of the form â€˜1996/01/02 12:00:00â€™ or a DOUBLE CDF_EPOCH time
that is the desired start time of the data. Data is read between this
TSTART value and the TSTOP value. Default is the start time of the
earliest data.

TSTOP

String of the form â€˜1996/01/02 12:00:00â€™ or a DOUBLE CDF_EPOCH time
that is the desired stop time of the plots. Data is read between the
TSTART value and this TSTOP value. Default is the stop time of the
latest data.

DEBUG

Set this keyword to turn on some progress messages.

Example

a=strarr(2)
a[0]='i8_k0_mag_19951008_v01.cdf'
a[1]='i8_k0_mag_19951013_v01.cdf'
b=read_mycdf('RMS,RMS_p',a)
help,/struct,b
** Structure < 4006fca8 >, 4 tags, length=296936, refs=1:
 RMS STRUCT -> < Anonymous > Array(1)
 RMS_P STRUCT -> < Anonymous > Array(1)
 EPOCH STRUCT -> < Anonymous > Array(1)
 CARTESIAN STRUCT -> < Anonymous > Array(1)
help,/struct,b.RMS
** Structure < 400cd808 >, 32 tags, length=147488, refs=2:
 VARNAME STRING 'RMS'
 TITLE STRING 'IMP-8 Magnetic Field'
 PROJECT STRING 'ISTP>International Solar-Terrestrial Physics'
 DISCIPLINE STRING 'Space Physics>Magnetospheric Science'
 SOURCE_NAME STRING 'IMP-8>Interplanetary Monitoring Platform 8'
 DESCRIPTOR STRING 'MAG>Magnetic Field Investigation'
 DATA_TYPE STRING 'K0>Key Parameter'
 DATA_VERSION STRING '1'
 TEXT STRING Array(15)
 MODS STRING Array(19)
 ADID_REF STRING 'NSSD0094'
 LOGICAL_FILE_ID STRING 'I8_K0_MAG_19951008_V01'
 FIELDNAM STRING 'Components of RMS of B (GSE)'
 VALIDMIN FLOAT Array(3)
 VALIDMAX FLOAT Array(3)
 SCALEMIN FLOAT Array(3)
 SCALEMAX FLOAT Array(3)
 UNITS STRING 'nT'
 UNIT_PTR STRING ''
 LABLAXIS STRING ''
 LABL_PTR_1 STRING Array(3)
 MONOTON STRING ''
 FORMAT STRING 'F7.3'
 FORM_PTR STRING ''
 FILLVAL FLOAT -1.00000e+31
 CATDESC STRING ''
 VAR_TYPE STRING 'data'
 DICT_KEY STRING ''
 DEPEND_0 STRING 'Epoch'
 DEPEND_1 STRING 'cartesian'
 CDFTYPE STRING 'CDF_REAL4'
 DAT FLOAT Array(3, 12206)

Return to top

PLOTMASTER

Important Note: In plotting each variable, PLOTMASTER looks for the
associated attribute,
DISPLAY_TYPE,
and uses the value to determine how to plot the variable. If the
attribute is not present, then PLOTMASTER uses a set of rules to
determine how to plot the variable. For simple scalar variables the
rules work well, but for complex dimensional variables the rules break
down. For ISTP CDF data, we strongly recommend the use of our master
CDFs (containing only the metadata - variable names and attributes) to
be read along with the data. PLOTMASTER will then read the metadata out
of the master CDF (PLOTMASTER reads the metadata only out of the first
CDF of each type) and use that metadata for all decision making.

Get Master CDFs

Recommendation: When plotting variables use the /auto keyword (this
turns on autoscaling)!

This function accepts from 1 to 10 structures of the type returned by
READ_MYCDF, determines the plot type for each variable
in each of the structures, and plots it. Returns a 0 if plotting was
successful, and a -1 if unsuccessful.

Calling Sequence

Result = PLOTMASTER(astruct1,[astruct2â€¦astruct10], /keyword)

Arguments

astruct
A structure returned by the READ_MYCDF function. This structure, if
the call to read_mycdf was sucessful, will contain many elements
useful in plotting and listing the data, as well as the data itself.
Please refer to the description of READ_MYCDF.

Keywords

XSIZE

The width of the plot (in pixels). Default for GIF file is 640,
default for x-windows is 90% of the screen resolution.

PANEL_HEIGHT

The height of each panel (in pixels). Default is 100 pixels.

TSTART

String of the form â€˜1996/01/02 12:00:00â€™ or a DOUBLE CDF_EPOCH time
that is the desired start time of the plots. Data is clipped or padded
to conform to this time. Default is the start time of the earliest
data.

TSTOP

String of the form â€˜1996/01/02 12:00:00â€™ or a DOUBLE CDF_EPOCH time
that is the desired stop time of the plots. Data is clipped or padded
to conform to this time. Default is the stop time of the latest data.

GIF

Set to send plot(s) to a gif file (must be using IDL 5.3 for the gif
option), ie. /GIF or GIF=1L. If set a file will be produced in the
current working directory (see OUTDIR keyword), using the following
naming conventions: Spacecraft_instrument_pid_# (see the PID
keyword for customization). If GIF is not set then the plot(s) will be
put into an x-window.

PID

May be used to customize part of the name of a gif file. The value of
PID may be either a number or a string and will be inserted in the gif
file name as follows: Spacecraft_instrument_pid_#.gif. If GIF is
not set then the plot(s) will be put into an x-window and this keyword
is ignored.

OUTDIR

This keyword names the output directory where a gif file will be
placed. If GIF is set but OUTDIR is not, then the gif file will be put
in the userâ€™s current working directory.

AUTO

Set this keyword to use autoscaling instead of the variables SCALEMIN
and SCALEMAX attribute values. The scales will be set to the min and
max values of the data, after fill values have been filtered from the
data (see also NONOISE keyword). If the user wishes to modify variable
scale values for plotting purposes, you may do so by changing the
appropriate data structure values, ie. struct.variable.scalemin = 0.0.
Please use great care in modifying the data structures values since
they will greatly influence what your plots or listings may look like.

COMBINE

Set this keyword to ATTEMPT to force all time series and spectrograms
to be plotted into a single x-window or GIF file. Default is to plot
each structure in its own x-window/GIF file. PLOTMASTER may override
this keyword if the plots cannot fit into the limited space of an
x-window.

CDAWEB

Set this keyword to force the margin on the right side of time series
plots to be 100 pixels. This is the same margin used for spectrograms
for the color bar. By default, PLOTMASTER will examine the data, and
if ANY spectrograms will be produced, then it will align the margins
properly. This keyword is only necessary for use in the CDAWeb system.

SLOW

Set this keyword to have spectrogram plotted using the POLYFILL
method. This method is slower but more accurate than TV (used in the
QUICK method).

SMOOTH

Set this keyword to have spectrogram data reduced prior to plotting.
This will increase plotting speed significantly.

QUICK

Set this keyword to have spectrograms plotted using the TV method.
This method is very fast, but will produce inaccurate spectrograms if
scales are non-linear or if fill data or data gaps are present in the
data.

NONOISE

Set this keyword to filter out values outside of 3-sigma from the
mean. This keyword is applied to timeseries and images plots only at
this time.

THUMBSIZE

Set this to change the â€œthumbnailâ€� size of each image when plotting a
series of images. The default is 50w x 62h. 12 pixels is added to the
height to allow for the time stamps under each image. So, if you
specify a thumsize of 70 pixels, each will actually be 70x82.

FRAME

Used to indicate the frame number within a series of images. If you
specify FRAME = 2, then plotmaster will produce a â€œfull sizeâ€� version
of the 3rd image in a sequence of images.

DEBUG

Set this keyword to turn on some progress messages.

Example

; plot_VLF.pro
;

;name of cdf to plot (start with Master CDF)
a=strarr(2)
a[0]='/home/xfiles/kessel/vlfcdf/hk_h0_vlf_00000000_v01.cdf'
a[1]='/home/xfiles/kessel/vlfcdf/hk_h0_vlf_19740816_v01.cdf'

; list of variables I want to read from the skeleton table. Only need some of
; them and only the "data" variables. read_myCDF gets all of the associated
; variables.
x = ['b_spd','e_spd','BAVE','pos_mag','pos_GSM','activity_index']

buf1 = read_myCDF(x, a, /DEBUG)
;you could type "help, /struct, buf1" to see what was read...
;** Structure <401d0808>, 10 tags, length=11424, refs=1:
; B_SPD STRUCT -> Array[1]
; E_SPD STRUCT -> Array[1]
; BAVE STRUCT -> Array[1]
; POS_MAG STRUCT -> Array[1]
; POS_GSM STRUCT -> Array[1]
; ACTIVITY_INDEX STRUCT -> Array[1]
; EPOCH STRUCT -> Array[1]
; E_FREQ STRUCT -> Array[1]
; B_FREQ STRUCT -> Array[1]
; LABEL_MAG_POS STRUCT -> Array[1]

;pick and choose plots to make. if don't use /GIF, then an x plot is made

status=plotmaster(buf1,xsize=500,/AUTO)
status=plotmaster(buf1,xsize=500,/GIF,OUTDIR='/home/xfiles/kessel/vlfgif/',/AUTO)

; if plotting smaller than whole file define tstart and tstop. plotmaster
; can use either Epoch style or single real*8 number
tstart = '1974/08/15 20:00:00'
tstop = '1974/08/16 08:00:00'
start = encode_cdfepoch(tstart)
stop = encode_cdfepoch(tstop)

status=plotmaster(buf1,xsize=500,/AUTO,TSTART=tstart, TSTOP=tstop)
status=plotmaster(buf1,xsize=500,/AUTO,TSTART=start, TSTOP=stop,$
/GIF,OUTDIR='/home/xfiles/kessel/vlfgif/')

end

Return to top

LIST_mystruct

PURPOSE: Given a â€œdata structureâ€� read with read_mycdf, LIST_mystruct
generates an ascii listing of the data.

Calling Sequence

Result =
LIST_mystruct(astruct,NOGATT=nogatt,NOVATT=novatt,NORV=norv,
NONRV=nonrv,NO2DRV=no2drv,FILENAME=filename,
TSTART=TSTART,TSTOP=TSTOP,MAXRECS=maxrecs)

Arguments

astruct
A structure returned by the READ_MYCDF function. This structure,if
the call to read_mycdf was sucessful, will contain many elements
useful in plotting and listing the data, as well as the data itself.
Please refer to the description of READ_MYCDF.

Keywords

NOGATT

Global attributes output: =0 (print), =1 (no print)

NOVATT

Variable attributes output: =0 (print), =1 (no print)

NORV

Record varying output: =0 (print), =1 (no print)

NONRV

Non record varying output: =0 (print), =1 (no print)

NO2DRV

2D record varying output: =0 (print), =1 (no print)

FILENAME

Output filename.

MAXRECS

Maximum records listed.

Example

cnames = 'example.cdf'
vnames =''
a=read_mycdf(vnames, /all, cnames)
status=LIST_mystruct(a,TSTART=start, TSTOP=stop, /NOVATT)

Return to top

WRITE_mycdf

PURPOSE: Given a â€œdata structureâ€� read with read_mycdf, write_mycdf generates a cdf file of the data.

Calling Sequence

Result = write_mycdf(astruct1,[astruct2â€¦astruct33], filename=filename, AUTONAME=autoname, LONGTIME=longtime, INPUTFILES=inputfiles,BOTHTIMES=bothtimes, OUTDIR=outdir, UPPERCASE=uppercase, LOWERCASE=lowercase, CDF27_COMP=cdf27_comp, NOVIRTUAL=novirtual, NO_COMPRESS=no_compress, APPEND_TEXT=append_text, BINNED=binned, DEBUG=debug)

Arguments

astruct1,[astruct2â€¦astruct33]

One up to 33 structures returned by the READ_MYCDF function. These structures, if the calls to read_mycdf were sucessful, will contain many elements useful in plotting and listing the data, as well as the data itself. Please refer to the description of READ_MYCDF.

Keywords

FILENAME

Output filename.

AUTONAME

If set, then override the filename parameter by generating the name for the cdf file according to the ISTP filenaming conventions.

LONGTIME

If set, is used in conjunction with the autoname keyword, but will cause a deviation from the ISTP filenaming conventions in that the timestamp in the filename will also include the starting hour of the data.

INPUTFILES

If set, the string array of cdf files used to generate the new cdf. They will be placed in the global attribute â€˜PARENTSâ€™.

BOTHTIMES

If set, is used in conjunction with the autoname and longtime keywords, will cause a deviation from the ISTP filenaming conventions in that the timestamp in the filename will include both start and stop times.

OUTDIR

If set, is used in conjunction with the autoname keywords to create the file in the specified directory.

UPPERCASE

If set, is used in conjunction with the autoname and longtime keywords such that the automatically determined filename will be in all uppercase.

LOWERCASE

If set, is used in conjunction with the autoname and longtime keywords such that the automatically determined filename will be in all lowercase.

CDF27_COMP

0/1 Create a cdf that is cdf2.7 backward compatible

NOVIRTUAL

0/1 If set the virtual vars will have only one data element:0 , their attributes FUNC, COMPONENT_0 and VIRTUAL will remain unaltered.

NO_COMPRESS

0/1 Do not compress by variable. If=0, will compress all vars except cdftype=cdf_epoch, cdf_epoch16 or cdf_time_tt2000. Also, if=0, will not compress if var is non-record variant and its size is less than 1K, just not worth the effort.

APPEND_TEXT

If the APPEND_TEXT keyword is set, append its value to the end of the global attribute TEXT.

BINNED

Binned data is indicated by appending a the text â€™binnedâ€™ to the filename. Global and variable attributes are changed accordingly.

DEBUG

Set this keyword to turn on some progress messages.

Example

cnames = 'example.cdf'
vnames =''
a=read_mycdf(vnames, /all, cnames)
status=write_mycdf(a,/autoname, /longname, /bothtimes)

Return to top

IDLmakecdf

Purpose: To copy a master ISTP cdf and then read just the data and
support_data variables from it and create an IDL structure where each
structure tag is the name of a variable. Each variable tag will then
point to a data pointer. This structure is then returned to the user so
that they can fill each data pointer w/ the real data. Once each pointer
is assigned real data, the user should call the write_data_to_cdf
function.

Calling Sequence

buf1 = read_master_cdf(master_cdf,out_cdf)
RESULT = write_data_to_cdf(out_cdf, buf1)

Arguments

master_cdf

A string containing the name of the master CDF. NOTE: If reading a
file outside your current directory, then the full filename, including
directory/path information, must be provided. If running on a UNIX
system, remember that all path and file information is case-sensitive.

out_cdf

A string containing the name of the CDF file to be output. If
specifying the CDF filenames in a single string, then the names should
be separated by a comma. NOTE: If reading a file outside your current
directory, then the full filename, including directory/path
information, must be provided. If running on a UNIX system, remember
that all path and file information is case-sensitive.

buf1

An IDL structure holding the names and dimensions of the variables
associated with the Master CDF.

Keywords

DEBUG
Set this keyword to turn on some progress messages.

Example

; write_vlf.pro

; Notes: remove the cdf file if it exists
;$rm hk_h0_vlf_19741027_v01.cdf
; compile idl module before running this procedure
;.run IDLmakecdf.pro (not needed when using the spdfcdas.sav file)
;instead just restore the save file, e.g. restore, 'spdfcdas.sav'

;
; day 300 for 1974 is October 27
 idl_saveset = 'hk_vlf_74300.idl'
 out_cdf = 'hk_h0_vlf_19741027_v01.cdf'

; read in master cdf skeleton, specify output CDF
 buf1 = read_master_cdf('hk_h0_vlf_00000000_v01.cdf',$
 out_cdf)

 restore, idl_saveset
;you could type "help, /struct, arec" to see what was read...
;** Structure <400502c8>, 11 tags, length=136, refs=1:
; EPOCH DOUBLE 6.2319283e+13
; SPDE FLOAT Array[16]
; SPDB FLOAT Array[8]
; BAVE FLOAT 58.0411
; RE FLOAT 12.0038
; MLAT FLOAT 55.0457
; MLT FLOAT 6.07035
; XGSM FLOAT -2.80766
; YGSM FLOAT -6.87608
; ZGSM FLOAT 9.43012

; determine the number of records
 num_rec = n_elements(arec.epoch)

:set up arrays
 Epoch = double(num_rec)
 espd = fltarr(16,num_rec)
 bspd = fltarr(16,num_rec)
 bave = fltarr(num_rec)
 pos_mag = fltarr(3,num_rec)
 pos_gsm = fltarr(3,num_rec)

; copy values out of idl save set
 Epoch = arec.EPOCH
 espd = arec.spde
 bspd = arec.spdb
 bave = arec.BAVE
 pos_mag(0,*) = arec.RE
 pos_mag(1,*) = arec.MLAT
 pos_mag(2,*) = arec.MLT
 pos_gsm(0,*) = arec.XGSM
 pos_gsm(1,*) = arec.YGSM
 pos_gsm(2,*) = arec.ZGSM

;check for zeros in espd, bspd, bave and set to fill value
 fillvalue = -1e31
 i = where(espd ge 0)
 if i[0] ne -1 then espd[i] = fillvalue
 i = where(bspd ge 0)
 if i[0] ne -1 then bspd[i] = fillvalue
 i = where(bave eq 0)
 if i[0] ne -1 then bave[i] = fillvalue

; copy processed data to buf1
 *buf1.Epoch.data = epoch
 *buf1.E_SPD.data = espd
 *buf1.B_SPD.data = bspd
 *buf1.BAVE.data = bave
 *buf1.pos_mag.data = pos_mag
 *buf1.pos_GSM.data = pos_gsm

; write output CDF file
 stat2 = write_data_to_cdf(out_cdf, buf1)

end

Return to top

Return to ISTP Metadata Guidelines

CDF home page

NASA Official: Robert M. Candey
Curator: Tami Kovalick

Contact SPDF:NASA-SPDF Feedback/Support

SPDF ROR ID: re3data ID
Privacy Policy and Important Notices

