

1

CDF

Visual Basic Reference Manual

Version 3.9.2, September 2, 2025

Space Physics Data Facility
NASA / Goddard Space Flight Center

Space Physics Data Facility
NASA/Goddard Space Flight Center
Greenbelt, Maryland 20771 (U.S.A.)

This software may be copied or redistributed as long as it is not sold for profit, but it can be incorporated into any other
substantive product with or without modifications for profit or non-profit. If the software is modified, it must include
the following notices:

- The software is not the original (for protection of the original author’s reputations from any problems introduced
by others)

- Change history (e.g. date, functionality, etc.)

This Copyright notice must be reproduced on each copy made. This software is provided as is without any express or
implied warranties whatsoever.

Internet – nasa-cdf-support@nasa.onmicrosoft.com

mailto:gsfc-cdf-support@lists.nasa.gov

Contents

1 Compiling ... 11

1.1 Namespaces..11
1.2 Base Classes ...11
1.3 Compiling with Compiler Options ..11
1.4 Sample programs ..12

2 Programming Interface ... 13

2.1 Item Referencing ..13
2.2 Compatible Types ..13
2.3 CDFConstants ..13
2.4 CDF status..13
2.5 CDF Formats ..13
2.6 CDF Data Types ...14
2.7 Data Encodings ..15
2.8 Data Decodings ..16
2.9 Variable Majorities ...17
2.10 Record/Dimension Variances ...18
2.11 Compressions ...18
2.12 Sparseness ..19

2.12.1 Sparse Records ...19
2.12.2 Sparse Arrays ...19

2.13 Attribute Scopes ...19
2.14 Read-Only Modes ..19
2.15 zModes ...19
2.16 -0.0 to 0.0 Modes..20
2.17 Operational Limits ..20
2.18 Limits of Names and Other Character Strings ...20
2.19 Backward File Compatibility with CDF 2.7 ..20
2.20 Checksum...21
2.21 Data Validation ..22
2.22 8-Byte Integer ..23
2.23 Leap Seconds ...23

3 Understanding the Application Interface ... 24

3.1 Arguments Passing ...24
3.2 Multi-Dimensional Arrays ..26
3.3 Data Type Equivalent ...26
3.4 Fixed Statement ..27
3.5 Exception Handling ..27
3.6 Dimensional Limitations ..28

4 Application Interface ... 29

4.1 Library Information ..30
4.1.1 CDFgetDataTypeSize ...30
4.1.2 CDFgetLibraryCopyright ..30
4.1.3 CDFgetLibraryVersion ...31
4.1.4 CDFgetStatusText ..31

4.2 CDF ...32

4.2.1 CDFclose ..32
4.2.2 CDFcloseCDF ..33
4.2.3 CDFcreate ..34
4.2.4 CDFcreateCDF ...35
4.2.5 CDFdelete ..36
4.2.6 CDFdeleteCDF ...36
4.2.7 CDFdoc ..37
4.2.8 CDFerror ..38
4.2.9 CDFgetCacheSize ...38
4.2.10 CDFgetChecksum ...39
4.2.11 CDFgetCompression ...40
4.2.12 CDFgetCompressionCacheSize ..41
4.2.13 CDFgetCompressionInfo ..41
4.2.14 CDFgetCopyright ...42
4.2.15 CDFgetDecoding ..43
4.2.16 CDFgetEncoding ..43
4.2.17 CDFgetFileBackward ...44
4.2.18 CDFgetFormat ..44
4.2.19 CDFgetLeapSecondLastUpdated ..45
4.2.20 CDFgetMajority ...46
4.2.21 CDFgetName ..46
4.2.22 CDFgetNegtoPosfp0Mode ..47
4.2.23 CDFgetReadOnlyMode ..48
4.2.24 CDFgetStageCacheSize ..48
4.2.25 CDFgetValidate ..49
4.2.26 CDFgetVersion ...49
4.2.27 CDFgetzMode ..50
4.2.28 CDFinquire ...51
4.2.29 CDFinquireCDF ...52
4.2.30 CDFopen ..53
4.2.31 CDFopenCDF ...54
4.2.32 CDFselect ...55
4.2.33 CDFselectCDF ...56
4.2.34 CDFsetCacheSize ...57
4.2.35 CDFsetChecksum ...57
4.2.36 CDFsetCompression ...58
4.2.37 CDFsetCompressionCacheSize ...59
4.2.38 CDFsetDecoding ..59
4.2.39 CDFsetEncoding ...60
4.2.40 CDFsetFileBackward ..61
4.2.41 CDFsetFormat ..61
4.2.42 CDFsetLeapSecondLastUpdated ...62
4.2.43 CDFsetMajority ..62
4.2.44 CDFsetNegtoPosfp0Mode ..63
4.2.45 CDFsetReadOnlyMode ...64
4.2.46 CDFsetStageCacheSize...64
4.2.47 CDFsetValidate ..65
4.2.48 CDFsetzMode ...65

4.3 Variables ..66
4.3.1 CDFcloserVar ...66
4.3.2 CDFclosezVar ..67
4.3.3 CDFconfirmrVarExistence ...68
4.3.4 CDFconfirmrVarPadValueExistence ..68
4.3.5 CDFconfirmzVarExistence ...69
4.3.6 CDFconfirmzVarPadValueExistence ..70
4.3.7 CDFcreaterVar ...71

4.3.8 CDFcreatezVar ...72
4.3.9 CDFdeleterVar ...73
4.3.10 CDFdeleterVarRecords ...74
4.3.11 CDFdeleterVarRecordsRenumber ...75
4.3.12 CDFdeletezVar ...76
4.3.13 CDFdeletezVarRecords ..76
4.3.14 CDFdeletezVarRecordsRenumber ..77
4.3.15 CDFgetMaxWrittenRecNums ...78
4.3.16 CDFgetNumrVars ...79
4.3.17 CDFgetNumzVars ..80
4.3.18 CDFgetrVarAllocRecords ...80
4.3.19 CDFgetrVarBlockingFactor ..81
4.3.20 CDFgetrVarCacheSize ..82
4.3.21 CDFgetrVarCompression..82
4.3.22 CDFgetrVarData ...83
4.3.23 CDFgetrVarDataType ...84
4.3.24 CDFgetrVarDimVariances ..85
4.3.25 CDFgetrVarInfo ...86
4.3.26 CDFgetrVarMaxAllocRecNum ...87
4.3.27 CDFgetrVarMaxWrittenRecNum ...87
4.3.28 CDFgetrVarName ...88
4.3.29 CDFgetrVarNumElements ..89
4.3.30 CDFgetrVarNumRecsWritten ...89
4.3.31 CDFgetrVarPadValue ...90
4.3.32 CDFgetrVarRecordData ...91
4.3.33 CDFgetrVarRecVariance ..92
4.3.34 CDFgetrVarReservePercent ..92
4.3.35 CDFgetrVarsDimSizes ...93
4.3.36 CDFgetrVarSeqData ...93
4.3.37 CDFgetrVarSeqPos...94
4.3.38 CDFgetrVarsMaxWrittenRecNum ..95
4.3.39 CDFgetrVarsNumDims ..96
4.3.40 CDFgetrVarSparseRecords ...96
4.3.41 CDFgetVarNum ..97
4.3.42 CDFgetzVarAllocRecords ..98
4.3.43 CDFgetzVarBlockingFactor ...99
4.3.44 CDFgetzVarCacheSize ... 100
4.3.45 CDFgetzVarCompression ... 100
4.3.46 CDFgetzVarData .. 101
4.3.47 CDFgetzVarDataType .. 102
4.3.48 CDFgetzVarDimSizes .. 103
4.3.49 CDFgetzVarDimVariances ... 104
4.3.50 CDFgetzVarInfo ... 104
4.3.51 CDFgetzVarMaxAllocRecNum .. 105
4.3.52 CDFgetzVarMaxWrittenRecNum ... 106
4.3.53 CDFgetzVarName .. 106
4.3.54 CDFgetzVarNumDims ... 107
4.3.55 CDFgetzVarNumElements ... 108
4.3.56 CDFgetzVarNumRecsWritten... 108
4.3.57 CDFgetzVarPadValue .. 109
4.3.58 CDFgetzVarRecordData ... 110
4.3.59 CDFgetzVarRecVariance.. 111
4.3.60 CDFgetzVarReservePercent.. 111
4.3.61 CDFgetzVarSeqData .. 112
4.3.62 CDFgetzVarSeqPos .. 113
4.3.63 CDFgetzVarsMaxWrittenRecNum ... 114

4.3.64 CDFgetzVarSparseRecords... 115
4.3.65 CDFhyperGetrVarData ... 115
4.3.66 CDFhyperGetzVarData... 117
4.3.67 CDFhyperPutrVarData ... 118
4.3.68 CDFhyperPutzVarData ... 120
4.3.69 CDFinquirerVar .. 122
4.3.70 CDFinquirezVar ... 123
4.3.71 CDFputrVarData .. 124
4.3.72 CDFputrVarPadValue ... 125
4.3.73 CDFputrVarRecordData ... 126
4.3.74 CDFputrVarSeqData ... 127
4.3.75 CDFputzVarData .. 128
4.3.76 CDFputzVarPadValue .. 129
4.3.77 CDFputzVarRecordData ... 130
4.3.78 CDFputzVarSeqData .. 130
4.3.79 CDFrenamerVar ... 131
4.3.80 CDFrenamezVar ... 132
4.3.81 CDFsetrVarAllocBlockRecords .. 133
4.3.82 CDFsetrVarAllocRecords ... 134
4.3.83 CDFsetrVarBlockingFactor .. 134
4.3.84 CDFsetrVarCacheSize .. 135
4.3.85 CDFsetrVarCompression .. 136
4.3.86 CDFsetrVarDataSpec.. 137
4.3.87 CDFsetrVarDimVariances .. 137
4.3.88 CDFsetrVarInitialRecs .. 138
4.3.89 CDFsetrVarRecVariance .. 139
4.3.90 CDFsetrVarReservePercent .. 140
4.3.91 CDFsetrVarsCacheSize... 140
4.3.92 CDFsetrVarSeqPos ... 141
4.3.93 CDFsetrVarSparseRecords ... 142
4.3.94 CDFsetzVarAllocBlockRecords.. 142
4.3.95 CDFsetzVarAllocRecords ... 143
4.3.96 CDFsetzVarBlockingFactor .. 144
4.3.97 CDFsetzVarCacheSize .. 145
4.3.98 CDFsetzVarCompression.. 145
4.3.99 CDFsetzVarDataSpec ... 146
4.3.100 CDFsetzVarDimVariances .. 147
4.3.101 CDFsetzVarInitialRecs ... 148
4.3.102 CDFsetzVarRecVariance .. 148
4.3.103 CDFsetzVarReservePercent .. 149
4.3.104 CDFsetzVarsCacheSize .. 150
4.3.105 CDFsetzVarSeqPos ... 151
4.3.106 CDFsetzVarSparseRecords ... 151
4.3.107 CDFvarClose .. 152
4.3.108 CDFvarCreate ... 153
4.3.109 CDFvarGet ... 154
4.3.110 CDFvarHyperGet .. 155
4.3.111 CDFvarHyperPut .. 156
4.3.112 CDFvarInquire .. 157
4.3.113 CDFvarNum ... 159
4.3.114 CDFvarPut .. 160
4.3.115 CDFvarRename .. 161

4.4 Attributes/Entries ... 161
4.4.1 CDFattrCreate .. 162
4.4.2 CDFattrEntryInquire ... 163
4.4.3 CDFattrGet ... 164

4.4.4 CDFattrInquire ... 165
4.4.5 CDFattrNum ... 166
4.4.6 CDFattrPut ... 167
4.4.7 CDFattrRename .. 168
4.4.8 CDFconfirmAttrExistence .. 169
4.4.9 CDFconfirmgEntryExistence .. 169
4.4.10 CDFconfirmrEntryExistence ... 170
4.4.11 CDFconfirmzEntryExistence .. 171
4.4.12 CDFcreateAttr .. 172
4.4.13 CDFdeleteAttr .. 172
4.4.14 CDFdeleteAttrgEntry .. 173
4.4.15 CDFdeleteAttrrEntry .. 174
4.4.16 CDFdeleteAttrzEntry .. 175
4.4.17 CDFgetAttrgEntry .. 175
4.4.18 CDFgetAttrgEntryDataType ... 176
4.4.19 CDFgetAttrgEntryNumElements .. 177
4.4.20 CDFgetAttrMaxgEntry ... 178
4.4.21 CDFgetAttrMaxrEntry .. 179
4.4.22 CDFgetAttrMaxzEntry ... 179
4.4.23 CDFgetAttrName.. 180
4.4.24 CDFgetAttrNum ... 181
4.4.25 CDFgetAttrrEntry ... 182
4.4.26 CDFgetAttrrEntryDataType .. 182
4.4.27 CDFgetAttrrEntryNumElements ... 183
4.4.28 CDFgetAttrScope ... 184
4.4.29 CDFgetAttrzEntry .. 185
4.4.30 CDFgetAttrzEntryDataType ... 186
4.4.31 CDFgetAttrzEntryNumElements .. 187
4.4.32 CDFgetNumAttrgEntries .. 188
4.4.33 CDFgetNumAttributes .. 188
4.4.34 CDFgetNumAttrrEntries ... 189
4.4.35 CDFgetNumAttrzEntries .. 190
4.4.36 CDFgetNumgAttributes .. 190
4.4.37 CDFgetNumvAttributes .. 191
4.4.38 CDFinquireAttr... 192
4.4.39 CDFinquireAttrgEntry .. 193
4.4.40 CDFinquireAttrrEntry ... 194
4.4.41 CDFinquireAttrzEntry .. 195
4.4.42 CDFputAttrgEntry .. 196
4.4.43 CDFputAttrrEntry ... 197
4.4.44 CDFputAttrzEntry .. 199
4.4.45 CDFrenameAttr .. 200
4.4.46 CDFsetAttrgEntryDataSpec .. 200
4.4.47 CDFsetAttrrEntryDataSpec... 201
4.4.48 CDFsetAttrScope .. 202
4.4.49 CDFsetAttrzEntryDataSpec .. 203

4.5 Quick Read Functions .. 204
4.5.1 ReadCDF .. 204
4.5.2 ReadCDFGlobalAttributes .. 207
4.5.3 ReadCDFInfo ... 208
4.5.4 ReadCDFVariable .. 209
4.5.5 ReadCDFVariables ... 211
4.5.6 ReadCDFVariableAttributes ... 212
4.5.7 ReadCDFVariableData ... 213
4.5.8 ReadCDFVariableInfo .. 214
4.5.9 ReadCDFVariables ... 215

4.5.10 ReadCDFVariablesData .. 217

5 Interpreting CDF Status Codes ... 219

6 EPOCH Utility Routines .. 220

6.1 computeEPOCH ... 220
6.2 EPOCHbreakdown ... 220
6.3 toEncodeEPOCH .. 221
6.4 encodeEPOCH ... 221
6.5 encodeEPOCH1 ... 221
6.6 encodeEPOCH2 ... 221
6.7 encodeEPOCH3 ... 221
6.8 encodeEPOCH4 ... 222
6.9 encodeEPOCHx ... 222
6.10 toParseEPOCH ... 223
6.11 parseEPOCH .. 223
6.12 parseEPOCH1 .. 223
6.13 parseEPOCH2 .. 223
6.14 parseEPOCH3 .. 223
6.15 parseEPOCH4 .. 223
6.16 computeEPOCH16 ... 224
6.17 EPOCH16breakdown ... 224
6.18 toEncodeEPOCH16 .. 224
6.19 encodeEPOCH16 ... 224
6.20 encodeEPOCH16_1 .. 225
6.21 encodeEPOCH16_2 .. 225
6.22 encodeEPOCH16_3 .. 225
6.23 encodeEPOCH16_4 .. 225
6.24 encodeEPOCH16_x .. 225
6.25 toParseEPOCH16 ... 226
6.26 parseEPOCH16 .. 226
6.27 parseEPOCH16_1 .. 227
6.28 parseEPOCH16_2 .. 227
6.29 parseEPOCH16_3 .. 227
6.30 parseEPOCH16_4 .. 227
6.31 EPOCHtoUnixTime ... 227
6.32 UnixTimetoEPOCH ... 227
6.33 EPOCH16toUnixTime.. 228
6.34 UnixTimetoEPOCH16.. 228

7 TT2000 Utility Routines .. 229

7.1 computeTT2000 ... 229
7.2 TT2000breakdown ... 230
7.3 toEncodeTT2000 .. 230
7.4 encodeTT2000 ... 231
7.5 toParseTT2000 ... 231
7.6 parseTT2000 .. 232
7.7 CDFgetLastDateinLeapSecondsTable .. 232
7.8 TT2000toUnixTime .. 232
7.9 UnixTimetoTT2000 .. 232

8 CDF Utility Methods .. 233

8.1 CDFFileExists .. 233
8.2 CDFgetChecksumValue ... 233

8.3 CDFgetCompressionTypeValue ... 233
8.4 CDFgetDataTypeValue .. 233
8.5 CDFgetDecodingValue .. 234
8.6 CDFgetEncodingValue ... 234
8.7 CDFgetFormatValue .. 235
8.8 CDFgetMajorityValue .. 235
8.9 CDFgetSparseRecordValue .. 235
8.10 CDFgetStringChecksum ... 235
8.11 CDFgetStringCompressionType ... 236
8.12 CDFgetStringDataType .. 236
8.13 CDFgetStringDecoding .. 236
8.14 CDFgetStringEncoding .. 236
8.15 CDFgetStringFormat .. 236
8.16 CDFgetStringMajority .. 236
8.17 CDFgetStringSparseRecord .. 236
8.18 DumpObject ... 237
8.19 PrintDictionary ... 237

9 CDF Exception Methods .. 237

9.1 CDFgetCurrentStatus ... 237
9.2 CDFgetStatusMsg .. 237

11

Chapter 1
1 Compiling
VB-CDF distribution is packaged in a self-extracting installer. Once the installer is downloaded and run, all distributed
files, i.e., APIs, test programs, batch files, help information and the document, will be placed into a directory of choice,
and environment variables, PATH and CsharpCDFDir, are automatically set. If an older version already exists in the
host machine, the installer will try to remove it before the new one is installed.

To VB, CDF library is unmanaged code distributed in the native DLL. The distributed .DLLs were built from a 32-bit
(x86) Windows and they can be run on a 32-bit Windows via the x86-compatible Common Language Runtime (CLR),
as well as a 64-bit Windows under WOW64.

1.1 Namespaces
Several classes are created for VB applications that facilitate the calls to the native CDF DLL. The CDF namespace
has been set up to include these CDF related classes: CDFConstants, CDFException, CDFAPIs. and CDFUtils.
CDFConstants provides commonly used constants that mimic to those defined in the .DLL CDFException provides the
exception handling when a failed CDF operation is detected. CDFAPIs provide all (static) public (and private) methods
that VB applications can call to interact with the similar, underlining functions provided by the CDF Standard Interface
in the .DLL. CDFUtils provides several small utility tools. These classes are distributed in the form of signed assemblies
, as .DLLs. To facilitate the access to functions in DLL, each VB application must use the “cdf” namespace in order to
call the VB-CDF APIs. The following namespaces should be included by VB applications that call CDF APIs:

imports System
imports System.Runtime.InteropServices
imports CDF

1.2 Base Classes
CDFAPIs is the main class that provides the VB-CDF APIs. Class CDFAPIs inherits from CDFConstants class, which
defines all constants referenced by the CDF. A VB application, if inheriting from the CDFAPIs class, can call all
CDFAPIs methods and refer CDFConstants’ constants directly, without specifying their class names. CDFException
class inherits from VB’s Exception class and CDFUtils class inherits from CDFConstants class as well, .

1.3 Compiling with Compiler Options
If a test application, e.g., TestCDF.vb, resides in the same directory as all distributed .dll files, the following command
can be used to create an executable

vbc /platform:x86 /r:CDFAPIs.dll,CDFException.dll,
CDFConstants.dll,CDFUtils.dll TestCDF.vb

vbc.exe, the VB compiler, can be called automatically from an IDE such as Visual Studio
.NET, or run from the command line if the PATH environment variable is set properly.
vbc.exe can be found in the Windows’s .NET Framework directory,
<windows>\Microsoft.NET\Framework\v#.# (v#.# as v3.5 or in the latest release version).

/platform:x86 option is required for the Windows running 64-bit OS as VB-CDF is built on an x86 (32-bit) platform.

12

When the VB-CDF package is installed, the PATH environment variable is automatically modified to include the
installation directory so the native CDF .DLL, dllcdfcsharp.dll , becomes available when a VB application calls CDF
functions. Once the executable, TestCDF.exe, is created, it can be run from any directory.

If the VB applications that call CDF APIs reside in the directories other than the VB-CDF
installation directory, the following compilation command can be used to create an
executable (.exe):

vbc /platform:x86
 /lib:%CsharpCDFDir%
 /r:cdfapis.dll,cdfconstants.dll,cdfexception.dll,cdfutils.dll
 TestCDF.vb

where environment variable CsharpCDFDir, the installation directory for VB-CDF package, .is set when the installer is
run.

When the executable is run, an exception of “FileNotFoundException” will be encountered
as CDFAPIs could not be loaded. It’s because the distributed CDF assemblies are considered
private in the .NET environment. The .NET Framework’s runtime, Common Language Runtime
(CLR), will not be able to locate the files if the application resides in a different
directory from the called assemblies. To make these assemblies global so CLR can locate,
they need to be placed in the Global Assembly Cache (GAC) repository. Use the following steps to do so:

gacutil /i CDFConstants.dll
gacutil /i CDFException.dll
gacutil /i CDFAPIs.dll
gacutil /i CDFUtils.dll

gacutil.exe (Global Assembly Cache utility) is a Microsoft Software Development Kits (SDKs) utility that can insert,
list and remove the assemblies to and from GAC. Gacutil.exe usually can be found at <Program Files>\Microsoft
SDKs\Windows\v#.#\bin (v#.# as v6.0A or in the latest release version). Use “gacutil /u” to remove assemblies of older
versions form GAC.

ildasm.exe is another SDKs utility that can be used to browse the assemblies for information as versions, keys, etc..

1.4 Sample programs
A couple of sample programs are included for distribution. Qst2vb.vb and Qst2vb2.vb, the quick test programs for VB.
Qst2vb.vb uses the VB value type for data read and write to a CDF file. Qst2vb2.vb passes in the base class objects for
arguments while reading the data from a CDF. Qts2cEpoch.vb , Qst2cEpoch16.vb and Qst2cTT2000.vb are three
sample programs that show how EPOCH-related functions are used. A batch file, tocompileVB.bat, is distributed along
with the sample programs. Execute it from a Command Prompt window to compile the programs into executables (.exe).
Run totestvb.bat to test the executables to make sure they all work fine.

Chapter 2

13

2 Programming Interface
2.1 Item Referencing
The following sections describe various aspects of the programming interface for VB applications.

For VB applications, all item numbers are referenced starting at zero (0). These include variable, attribute, and attribute
entry numbers, record numbers, dimensions, and dimension indices. Note that both rVariables and zVariables are
numbered starting at zero (0).

2.2 Compatible Types
As VB and CDF .DLL may have different sizes of the same data types, e.g. long, the size compatibility must be enforced
when passing the data between the two. On 32-bit Windows, 4-byte long has been used all over in the CDF .DLL.
However, long in VB is defined as 8-byte. So, to make the size compatible, 4-byte integer is used, instead, in VB for
each long type variable in the .DLL. For CDF data of type CDF_CHAR, or CDF_UCHAR, it is represented by a string
in VB. They are not size compatible, so conversion, performed in the APIs, is needed between a character array in .DLL
and string in VB.

The VB-CDF operations normally involve two variables: the operation status, status, and the CDF identifier, id:

status All VB-CDF functions, except CDFvarNum, CDFgetVarNum, CDFattrNum and
CDFgetAttrNum, return an operation status. This status is defined as an integer in
.DLL and VB. The CDFerror method can be used to inquire the meaning of any status
code. Appendix A lists the possible status codes along with their explanations.
Chapter 5 describes how to interpret status codes.

id An identifier (or handle) for a CDF that must be used when referring to a CDF. This

identifier has a type of long in VB. A new identifier is established whenever a CDF
is created or opened, establishing a connection to that CDF on disk. This long value
is used in all subsequent operations on a particular CDF. The value must not be
altered by an application.

2.3 CDFConstants
CDF defines a set of constants that are used all over the .DLL. These constants are mimicked in CDFConstants class with
compatible data types.

2.4 CDF status
These constants are of same type as the operation status, mentioned in 2.2.

CDF_OK A status code indicating the normal completion of a CDF function.

CDF_WARN Threshold constant for testing severity of non-normal CDF status codes.

Status less than CDF_OK normally indicate an error. For most cases, an exception will be thrown.

2.5 CDF Formats
SINGLE_FILE The CDF consists of only one file. This is the default file format.

MULTI_FILE The CDF consists of one header file for control and attribute data and one additional

file for each variable in the CDF.

14

2.6 CDF Data Types
One of the following constants must be used when specifying a CDF data type for an attribute entry or variable.

CDF_BYTE 1-byte, signed integer.

CDF_CHAR 1-byte, signed character.

CDF_INT1 1-byte, signed integer.

CDF_UCHAR 1-byte, unsigned character.

CDF_UINT1 1-byte, unsigned integer.

CDF_INT2 2-byte, signed integer.

CDF_UINT2 2-byte, unsigned integer.

CDF_INT4 4-byte, signed integer.

CDF_UINT4 4-byte, unsigned integer.

CDF_INT8 8-byte, signed integer.

CDF_REAL4 4-byte, floating point.

CDF_FLOAT 4-byte, floating point.

CDF_REAL8 8-byte, floating point.

CDF_DOUBLE 8-byte, floating point.

CDF_EPOCH 8-byte, floating point.

CDF_EPOCH16 two 8-byte, floating point.

CDF_TIME_TT2000 8-byte, signed integer.

The following table depicts the equivalent data type between the CDF and VB:

CDF Data Type VB Data Type
CDF_BYTE sbyte
CDF_INT1 sbyte
CDF_UINT1 byte
CDF_INT2 short
CDF_UINT2 ushort
CDF_INT4 integer
CDF_UINT4 uinteger
CDF_INT8 long
CDF_REAL4 single
CDF_FLOAT single
CDF_REAL8 double
CDF_DOUBLE double
CDF_EPOCH double
CDF_EPOCH16 double(2)1

1 CDF_EPOCH16 has two doubles, which corresponds to an array as double() in VB.

15

CDF_TIME_TT2000l long
CDF_CHAR string
CDF_UCHAR string

CDF_CHAR and CDF_UCHAR are considered character data types. These are significant because only variables of
these data types may have more than one element per value (representing the length of the string, where each element is
a character).

NOTE: Keep in mind that an long is 8 bytes and that an integer is 4 bytes. Use integer for CDF data types CDF_INT4
and CDF_UINT4, rather than long. Use long for CDF_INT8 and CDF_TIME_TT2000 data types.

2.7 Data Encodings
A CDF's data encoding affects how its attribute entry and variable data values are stored (on disk). Attribute entry and
variable values passed into the CDF library (to be written to a CDF) should always be in the host machine's native
encoding. Attribute entry and variable values read from a CDF by the CDF library and passed out to an application will
be in the currently selected decoding for that CDF (see the Concepts chapter in the CDF User's Guide).

HOST_ENCODING Indicates host machine data representation (native). This is the default
encoding, and it will provide the greatest performance when reading/writing
on a machine of the same type.

NETWORK_ENCODING Indicates network transportable data representation (XDR).

VAX_ENCODING Indicates VAX data representation. Double-precision floating-point values

are encoded in Digital's D_FLOAT representation.

ALPHAVMSd_ENCODING Indicates DEC Alpha running OpenVMS data representation. Double-

precision floating-point values are encoded in Digital's D_FLOAT
representation.

ALPHAVMSg_ENCODING Indicates DEC Alpha running OpenVMS data representation. Double-

precision floating-point values are encoded in Digital's G_FLOAT
representation.

ALPHAVMSi_ENCODING Indicates DEC Alpha running OpenVMS data representation. Double-

precision floating-point values are encoded in IEEE representation.

ALPHAOSF1_ENCODING Indicates DEC Alpha running OSF/1 data representation.

SUN_ENCODING Indicates SUN data representation.

SGi_ENCODING Indicates Silicon Graphics Iris and Power Series data representation.

DECSTATION_ENCODING
 Indicates DECstation data representation.

IBMRS_ENCODING Indicates IBMRS data representation (IBM RS6000 series).

HP_ENCODING Indicates HP data representation (HP 9000 series).

IBMPC_ENCODING Indicates PC data representation.
NeXT_ENCODING Indicates NeXT data representation.

MAC_ENCODING Indicates Macintosh data representation.

16

ARM_LITTLE_ENCODING Indicates ARM architecture running little-endian data representation.

ARM_BIG_ENCODING Indicates ARM architecture running big-endian data representation.

IA64VMSi_ENCODING Indicates Itanium 64 running OpenVMS data representation. Double-

precision floating-point values are encoded in IEEE representation.

IA64VMSd_ENCODING Indicates Itanium 64 running OpenVMS data representation. Double-

precision floating-point values are encoded in Digital’s D_FLOAT
representation.

IA64VMSg_ENCODING Indicates Itanium 64 running OpenVMS data representation. Double-

precision floating-point values are encoded in Digital’s G_FLOAT
representation.

When creating a CDF (via CDFcreate) or respecifying a CDF's encoding (via CDFsetEncoding), you may specify any
of the encodings listed above. Specifying the host machine's encoding explicitly has the same effect as specifying
HOST_ENCODING.

When inquiring the encoding of a CDF, either NETWORK_ENCODING or a specific machine encoding will be returned.
(HOST_ENCODING is never returned.)

2.8 Data Decodings
A CDF's decoding affects how its attribute entry and variable data values are passed out to a calling application. The
decoding for a CDF may be selected and reselected any number of times while the CDF is open. Selecting a decoding
does not affect how the values are stored in the CDF file(s) - only how the values are decoded by the CDF library. Any
decoding may be used with any of the supported encodings. The Concepts chapter in the CDF User's Guide describes a
CDF's decoding in more detail.

HOST_DECODING Indicates host machine data representation (native). This is the default
decoding.

NETWORK_DECODING Indicates network transportable data representation (XDR).

VAX_DECODING Indicates VAX data representation. Double-precision floating-point values

will be in Digital's D_FLOAT representation.

ALPHAVMSd_DECODING Indicates DEC Alpha running OpenVMS data representation. Double-

precision floating-point values will be in Digital's D_FLOAT
representation.

ALPHAVMSg_DECODING Indicates DEC Alpha running OpenVMS data representation. Double-

precision floating-point values will be in Digital's G_FLOAT
representation.

ALPHAVMSi_DECODING Indicates DEC Alpha running OpenVMS data representation. Double-

precision floating-point values will be in IEEE representation.

ALPHAOSF1_DECODING Indicates DEC Alpha running OSF/1 data representation.

SUN_DECODING Indicates SUN data representation.
SGi_DECODING Indicates Silicon Graphics Iris and Power Series data representation.

DECSTATION_DECODING Indicates DECstation data representation.

17

IBMRS_DECODING Indicates IBMRS data representation (IBM RS6000 series).

HP_DECODING Indicates HP data representation (HP 9000 series).

IBMPC_DECODING Indicates PC data representation.

NeXT_DECODING Indicates NeXT data representation.

MAC_DECODING Indicates Macintosh data representation.

ARM_LITTLE_DECODING Indicates ARM architecture running little-endian data representation.

ARM_BIG_DECODING Indicates ARM architecture running big-endian data representation.

IA64VMSi_DECODING Indicates Itanium 64 running OpenVMS data representation. Double-

precision floating-point values are encoded in IEEE representation.

IA64VMSd_DECODING Indicates Itanium 64 running OpenVMS data representation. Double-

precision floating-point values are encoded in Digital’s D_FLOAT
representation.

IA64VMSg_DECODING Indicates Itanium 64 running OpenVMS data representation. Double-

precision floating-point values are encoded in Digital’s G_FLOAT
representation.

The default decoding is HOST_DECODING. The other decodings may be selected via the CDFsetDecoding method.
The Concepts chapter in the CDF User's Guide describes those situations in which a decoding other than
HOST_DECODING may be desired.

2.9 Variable Majorities
A CDF's variable majority determines the order in which variable values (within the variable arrays) are stored in the
CDF file(s). The majority is the same for rVariables and zVariables.

ROW_MAJOR C-like array ordering for variable storage. The first dimension in each
variable array varies the slowest. This is the default.

COLUMN_MAJOR Fortran-like array ordering for variable storage. The first dimension in each

variable array varies the fastest.

Knowing the majority of a CDF's variables is necessary when performing hyper reads and writes. During a hyper read
the CDF library will place the variable data values into the memory buffer in the same majority as that of the variables.
The buffer must then be processed according to that majority. Likewise, during a hyper write, the CDF library will expect
to find the variable data values in the memory buffer in the same majority as that of the variables.

The majority must also be considered when performing sequential reads and writes. When sequentially reading a
variable, the values passed out by the CDF library will be ordered according to the majority. When sequentially writing
a variable, the values passed into the CDF library are assumed (by the CDF library) to be ordered according to the
majority.

As with hyper reads and writes, the majority of a CDF's variables affect multiple variable reads and writes. When
performing a multiple variable write, the full-physical records in the buffer passed to the CDF library must have the
CDF's variable majority. Likewise, the full-physical records placed in the buffer by the CDF library during a multiple
variable read will be in the CDF's variable majority.

18

For C applications the compiler-defined majority for arrays is row major. The first dimension of multi-dimensional
arrays varies the slowest in memory.

2.10 Record/Dimension Variances
Record and dimension variances affect how variable data values are physically stored.

VARY True record or dimension variance.

NOVARY False record or dimension variance.

If a variable has a record variance of VARY, then each record for that variable is physically stored. If the record variance
is NOVARY, then only one record is physically stored. (All of the other records are virtual and contain the same values.)

If a variable has a dimension variance of VARY, then each value/subarray along that dimension is physically stored. If
the dimension variance is NOVARY, then only one value/subarray along that dimension is physically stored. (All other
values/subarrays along that dimension are virtual and contain the same values.)

2.11 Compressions
The following types of compression for CDFs and variables are supported. For each, the required parameters are also
listed. The Concepts chapter in the CDF User's Guide describes how to select the best compression type/parameters for
a particular data set. Among the available types, GZIP provides the best result.

NO_COMPRESSION No compression.

RLE_COMPRESSION Run-length encoding compression. There is one parameter.

1. The style of run-length encoding. Currently, only the run-length
encoding of zeros is supported. This parameter must be set to
RLE_OF_ZEROs.

HUFF_COMPRESSION Huffman compression. There is one parameter.

1. The style of Huffman encoding. Currently, only optimal encoding trees
are supported. An optimal encoding tree is determined for each block
of bytes being compressed. This parameter must be set to
OPTIMAL_ENCODING_TREES.

AHUFF_COMPRESSION Adaptive Huffman compression. There is one parameter.

1. The style of adaptive Huffman encoding. Currently, only optimal
encoding trees are supported. An optimal encoding tree is determined
for each block of bytes being compressed. This parameter must be set
to OPTIMAL_ENCODING_TREES.

GZIP_COMPRESSION Gnu's “zip" compression.2 There is one parameter.

1. The level of compression. This may range from 1 to 9. 1 provides the

least compression and requires less execution time. 9 provide the most
compression but require the most execution time. Values in-between
provide varying compromises of these two extremes. 6 normally
provides a better balance between compression and execution.

2 Disabled for PC running 16-bit DOS/Windows 3.x.

19

2.12 Sparseness

2.12.1 Sparse Records
The following types of sparse records for variables are supported.

NO_SPARSERECORDS No sparse records.

PAD_SPARSERECORDS Sparse records - the variable's pad value is used when reading values from

a missing record.

PREV_SPARSERECORDS Sparse records - values from the previous existing record are used when
reading values from a missing record. If there is no previous existing record
the variable's pad value is used.

2.12.2 Sparse Arrays
The following types of sparse arrays for variables are supported.3

NO_SPARSEARRAYS No sparse arrays.

Note: sparse array is not supported and will not be implemented.

2.13 Attribute Scopes
Attribute scopes are simply a way to explicitly declare the intended use of an attribute by user applications (and the CDF
toolkit).

GLOBAL_SCOPE Indicates that an attribute's scope is global (applies to the CDF as a whole).

VARIABLE_SCOPE Indicates that an attribute's scope is by variable. (Each rEntry or zEntry

corresponds to an rVariable or zVariable, respectively.)

2.14 Read-Only Modes
Once a CDF has been opened, it may be placed into a read-only mode to prevent accidental modification (such as when
the CDF is simply being browsed). Read-only mode is selected via CDFsetReadOnlyMode method. When read-only
mode is set, all metadata is read into memory for future reference. This improves overall metadata access performance
but is extra overhead if metadata is not needed. Note that if the CDF is modified while not in read-only mode,
subsequently setting read-only mode in the same session will not prevent future modifications to the CDF.

READONLYon Turns on read-only mode.

READONLYoff Turns off read-only mode.

2.15 zModes
Once a CDF has been opened, it may be placed into one of two variations of zMode. zMode is fully explained in the
Concepts chapter in the CDF User's Guide. A zMode is selected via CDFsetzMode method.

zMODEoff Turns off zMode.

zMODEon1 Turns on zMode/1.

3 Obviously, sparse arrays are not yet supported.

20

zMODEon2 Turns on zMode/2.

2.16 -0.0 to 0.0 Modes
Once a CDF has been opened, the CDF library may be told to convert -0.0 to 0.0 when read from or written to that CDF.
This mode is selected via CDFsetNegtoPosfp0Mode method.

NEGtoPOSfp0on Convert -0.0 to 0.0 when read from or written to a CDF.

NEGtoPOSfp0off Do not convert -0.0 to 0.0 when read from or written to a CDF.

2.17 Operational Limits
These are limits within the CDF library. If you reach one of these limits, please contact CDF User Support.

CDF_MAX_DIMS Maximum number of dimensions for the rVariables or a zVariable.

CDF_MAX_PARMS Maximum number of compression or sparseness parameters.

The CDF library imposes no limit on the number of variables, attributes, or attribute entries that a CDF may have. on the
PC, however, the number of rVariables and zVariables will be limited to 100 of each in a multi-file CDF because of the
8.3 naming convention imposed by MS-DOS.

2.18 Limits of Names and Other
Character Strings

CDF_PATHNAME_LEN Maximum length of a CDF file name. A CDF file name may contain disk
and directory specifications that conform to the conventions of the operating
systems being used (including logical names on OpenVMS systems and
environment variables on UNIX systems).

CDF_VAR_NAME_LEN256 Maximum length of a variable name.

CDF_ATTR_NAME_LEN256 Maximum length of an attribute name.

CDF_COPYRIGHT_LEN Maximum length of the CDF Copyright text.

CDF_STATUSTEXT_LEN Maximum length of the explanation text for a status code.

2.19 Backward File Compatibility with
CDF 2.7

By default, a CDF file created by CDF V3.0 or a later release is not readable by any of the CDF releases before CDF
V3.0 (e.g. CDF 2.7.x, 2.6.x, 2.5.x, etc.). The file incompatibility is due to the 64-bit file offset used in CDF 3.0 and later
releases (to allow for files greater than 2G bytes). Note that before CDF 3.0, 32-bit file offset was used.

There are two ways to create a file that’s backward compatible with CDF 2.7 and 2.6, but not 2.5. A method,
CDFsetFileBackward, can be called to control the backward compatibility from an application before a CDF file is
created (i.e. CDFcreateCDF). This method takes an argument to control the backward file compatibility. Passing a flag
value of BACKWARDFILEon, defined in CDFConstants, to the method will cause new files being created to be
backward compatible. The created files are of version V2.7.2, not V3.*. This option is useful for those who wish to
create and share files with colleagues who still use a CDF V2.7/V2.6 library. If this option is specified, the maximum
file size is limited to 2G bytes. Passing a flag value of BACKWARDFILEoff will use the default file creation mode

21

and newly created files will not be backward compatible with older libraries. The created files are of version 3.* and
thus their file sizes can be greater than 2G bytes. Not calling this method has the same effect of calling the method with
an argument value of BACKWARDFILEoff.

The following example creates two CDF files: “MY_TEST1.cdf” is a V3.* file while “MY_TEST2.cdf” a V2.7 file.

.

.
dim id1 as long, id2 as long ‘ CDF identifier.
Dim status as integer ‘ Returned status code.

try
 status = CDFcreateCDF(“MY_TEST1”, id1)

..
 CDFsetFileBackward(BACKWARDFILEon)
 status = CDFCreateCDF(“MY_TEST2”, id2)

catch ex as Exception

 end try
.

Another method is through an environment variable and no method call is needed (and thus no code change involved in
any existing applications). The environment variable, CDF_FILEBACKWARD on Windows, is used to control the
CDF file backward compatibility. If its value is set to “TRUE”, all new CDF files are backward compatible with CDF
V2.7 and 2.6. This applies to any applications or CDF tools dealing with creation of new CDFs. If this environment
variable is not set, or its value is set to anything other than “TRUE”, any files created will be of the CDF 3.* version and
these files are not backward compatible with the CDF 2.7.2 or earlier versions .

Normally, only one method should be used to control the backward file compatibility. If both methods are used, the
method call through CDFsetFileBackward will take the precedence over the environment variable.

You can use the CDFgetFileBackward method to check the current value of the backward-file-compatibility flag. It
returns 1 if the flag is set (i.e. create files compatible with V2.7 and 2.6) or 0 otherwise.

.

.
dim flag as integer ‘ Returned status code.
.
flag = CDFgetFileBackward()

2.20 Checksum
To ensure the data integrity while transferring CDF files from/to different platforms at different locations, the checksum
feature was added in CDF V3.2 as an option for the single-file format CDF files (not for the multi-file format). By
default, the checksum feature is not turned on for new files. Once the checksum bit is turned on for a particular file, the
data integrity check of the file is performed every time it is open and a new checksum is computed and stored when it is
closed. This overhead (performance hit) may be noticeable for large files. Therefore, it is strongly encouraged to turn
off the checksum bit once the file integrity is confirmed or verified.

If the checksum bit is turned on, a 16-byte signature message (a.k.a. message digest) is computed from the entire file and
appended to the end of the file when the file is closed (after any create/write/update activities). Every time such file is
open, other than the normal steps for opening a CDF file, this signature, serving as the authentic checksum, is used for
file integrity check by comparing it to the re-computed checksum from the current file. If the checksums match, the file’s
data integrity is verified. Otherwise, an error message is issued. Currently, the valid checksum modes are:
NO_CHECKSUM and MD5_CHECKSUM, both defined in CDFConstants class. With MD5_CHECKSUM, the MD5

22

algorithm is used for the checksum computation. The checksum operation can be applied to CDF files that were created
with V2.7 or later.

There are several ways to add or remove the checksum bit. One way is to use the method call with a proper checksum
mode. Another way is through the environment variable. Finally, CDFedit and CDFconvert (CDF tools included as part
of the standard CDF distribution package) can be used for adding or removing the checksum bit. Through the Interface
call, you can set the checksum mode for both new or existing CDF files while the environment variable method only
allows to set the checksum mode for new files.

The environment variable CDF_CHECKSUM on Windows is used to control the checksum option. If its value is set to
“MD5”, all new CDF files will have their checksum bit set with a signature message produced by the MD5 algorithm. If
the environment variable is not set or its value is set to anything else, no checksum is set for the new files.

The following example set a new CDF file with the MD5 checksum and set another existing file’s checksum to none.

.

.

.
Dim id1 as long, id2 as long ‘ CDF identifier.
Dim status as integer ‘ Returned status code.
Dim checksum as integer ‘ Checksum code.
.
.
status = CDFCreateCDF(“MY_TEST1”, id1)
.
status = CDFsetChecksum (id1, MD5_CHECKSUM)
.
status = CDFclose(id1)
.
status = CDFopen(“MY_TEST2”, id2)
.
status = CDFsetChecksum (id2, NO_CHECKSUM)
.
status = CDFclose(id2)
.
.

2.21 Data Validation
To ensure the data integrity of CDF files and secure operation of CDF-based applications, a data validation feature has
been added to the CDF opening logic. This process, as the default, performs sanity checks on the data fields in the
CDF's internal data structures to make sure that the values are within valid ranges and consistent with the defined
values/types/entries. It also ensures that the variable and attribute associations within the file are valid. Any
compromised CDF files, if not validated properly, could cause applications to function unexpectedly, e.g.,
segmentation fault due to a buffer overflow. The main purpose of this feature is to safeguard the CDF operations, catch
any bad data in the file and end the application gracefully if any bad data is identified. Using this feature, in most
cases, will slow down the file opening process especially for large or very fragmented files. Therefore, it is
recommended that this feature be turned off once a file’s integrity is confirmed or verified. Or, the file in question may
need a file conversion, which will consolidate the internal data structures and eliminate the fragmentations. Check the
cdfconvert tool program in the CDF User’s Guide for further information. 4

This validation feature is controlled by setting/unsetting the environment variable CDF_VALIDATE on Windows is
not set or set to “yes”, all CDF files are subjected to the data validation process. If the environment variable is set to
“no”, then no validation is performed. The environment variable can be set at logon or through the command line,

4 The data validation during the open process will not check the variable data. It is still possible that data could be
corrupted, especially compression is involved. To fully validate a CDF file, use cdfdump tool with “-detect” switch.

23

which goes into effect during a terminal session, or within an application, which is good only while the application is
running. Setting the environment variable, using C method CDFsetValidate, at application level will overwrite the
setup from the command line. The validation is set to be on when VALIDATEFILEon is passed in as an argument.
VALIDATEFILEoff will turn off the validation. The function, CDFgetValidate,will return the validation mode, 1
(one) means data being validated, 0 (zero) otherwise. If the environment variable is not set, the default is to validate the
CDF file upon opening.

The following example sets the data validation on when the CDF file, “TEST”, is open.

.

.
dim id as long ‘ CDF identifier.
Dim status as integer ‘ Returned status code.
.
.
CDFsetValidate (VALIDATEFILEon)
status = CDFopen(“TEST”, id)
.
.

The following example turns off the data validation when the CDF file, “TEST” is open.
.
.
.
dim id as long ‘ CDF identifier.
Dim status as integer ‘ Returned status code.
.
.
CDFsetValidate (VALIDATEFILEoff)
status = CDFopen(“TEST”, id)
.

2.22 8-Byte Integer
Both data types of CDF_INT8 and CDF_TIME_TT2000 use 8-byes signed integer. VB’s “long” type is the one that
matches to these two types.

2.23 Leap Seconds
CDF’s CDF_TIME_TT2000 is the epoch value in nanoseconds since J2000 (2000-01-01T12:00:00.000000000) with
leap seconds included. The CDF uses an external or internal table for computing the leap seconds. The external table, if
present and properly pointed to by a predefined environment variable, will be used over the internal one. When the VB
package is installed, the external table and environment variables are set so it can be used. If the external table is
deleted or no longer pointed by the environment variable, the internal, hard-coded table in the library is used. When a
new leap second is added, if the external table is updated accordingly, then the software does not need to be upgraded.
Refer to CDF User’s Guide for leap seconds.

A tool program, CDFleapsecondsInfo distributed with the CDFpackage, will show how the table is referred and when
the last leap second was added. Optionally, it can dump the table contents.

Chapter 3

24

3 Understanding the Application
Interface

This chapter provides some basic information about the VB‘s Application Interfaces (APIs) to CDF, and the native
CDF .DLL The following chapter will describe each API in detail.

3.1 Arguments Passing
Each CDF API has a sequence of parameters, which define the set of arguments that must be provided for that method
in VB applications. Being a strongly typed language, VB’s APIs to CDF follow the same rules for the parameters.
Arguments for APIs that perform CDF data get, put or inquire operations are required to have the signatures of the
defined VB value/string type or basic Object classes.

The input parameters in APIs for the CDF identifier, variable number, attribute number, entry number, record
number, record counts and record indices, etc, are always of fixed types. They must be a scalar of type long for CDF
identifier, integer for variable/attribute/entry number and record number/count, or an array of integers, integer(), for
variable dimensional sizes/variances and record data indices, counts and intervals. The output parameters must be in
either of the defined type or the VB base Object class. For example, for a returned data of type integer, the passing
argument in the calling application can be either a defined integer variable, or a variable of object class. Compilation
error will occur if any one of the such arguments from the applications does not match to that defined in the API.

A CDF identifier, when a CDF is open or created, is presented as a long variable, even in the underlying C# and CDF
native library it is a pointer.

For example, CDFsetEncoding and CDFgetEncoding are used to set and get the data encoding of a CDF. Both APIs
take two parameters, the CDF identifier, always a long, and the encoding, an integer. CDFsetEncoding take both
parameters from applications for input, while CDFgetEncoding has the CDF identifier as input and the encoding for
output. The following code shows how these methods can be used.

To set a CDF’s encoding,

dim status as integer
dim id as long
dim encoding as integer
…
encoding = IBMPC_ENCODING
status = CDFsetEncoding(id, encoding)

The CDF identifier, id, is set when a CDF is open or created. The encoding is set to PC encoding, defined in
CDFConstants class.

Similarly, to get the CDF’s encoding:

status = CDFgetEncoding(id, encoding)

APIs that read or write CDF data, either variable’s data (and their pad value) or metadata, are flexible when dealing with
data of different pre-defined CDF types, e.g., CDF_INT1, CDF_UINT1, CDF_FLOAT, CDF_CHAR, CDF_EPOCH,
etc. To pass the data value(s) to the APIs, one of the following forms can be used, depending on the data type: VB
numeric type or string in a scalar or array or simply the VB base object class. String or an array of strings involves
data of CDF_CHAR or CDF_UCHAR type. As VB’s character/string has a different characteristic from the ASCII-
based code in the CDF native DLL library, some manipulations are performed by the APIs when dealing with such data.
VB objects can be used, as a general form for all data value(s), when reading/writing data from CDF. The called APIs

25

will handle the passed object and map it to its corresponding CDF data type. Type casting the objects returned by the
APIs may be needed.

For example, methods: CDFputzVarData and CDFgetzVarData are used to write and read a single data value for an
zVariable in a CDF. Both take five parameters. The first four, the CDF identifier, variable number, record number and
indices, are for input and of fixed types of: long, integer, integer and an array of integers (integer()), respectively. The
last parameter is for data value, as an input for CDFputzVarData or an output for CDFgetzVarData. To call
CDFputzVarData, the data value has to be defined to match to variable’s underlying data type and given a value. It is
passed in as is. To retrieve the data by CDFgetzVarData, just specifies the variable with a proper data type and pass in to
the API.

The following samples show how these arguments are set up to write a data value to record 1, indices (1,1) for zVariable,
“zVar1”, a 2-dimentional of CDF_INT2.

dim status as integer
dim id as long
dim varNum as integer
dim recNum as integer = 1
dim indices() as integer = {1,1}
dim value as short = 100
…
varNum = CDFvarNum (id, “zVar1”)
status = CDFputzVarData(id, varNum, recNum, indices, value)

To read the data value the same variable at the same record and indices:

dim value as short
…
status = CDFgetzVarData(id, varNum, recNum, indices, value)

Similarly, value can be defined as a VB base object:

Dim valueo as object
status = CDFgetzVarData(id, varNum, recNum, indices, valueo)

Either use such statement:

Dim value as short = valueo

Or, use a proper type casting method, such as CType or DirectCast for a scalar, to make it a value type after the object
is returned. For object of an array, just assign it to a properly type-defined, dimensional variable.

dim value as short = Ctype(valueo, short)

APIs that handle multiple data values reads and writes, e.g., CDFputzVarRecordData and CDFgetzVarRecordData
for writing and reading a full data record an zVariable, are similar. They both take four parameters: the first three, as
input, are the CDF identifier, variable number, record number of the fixed types of long, integer and integer,
respectively, and the last one is the data values, input for CDFputzVarRecordData or output for CDFgetzVarRecordData.
The data values have to be defined (and assigned for input), according to the variable’s underlying data type, and passed
in as is.

The following samples show how the arguments are set in CDFputzVarRecordData to write the full record 1 for
zVariable, “zVar1”, a 2-dim (2,3) of type short. The first one passes the data value object as is, while the second one
uses a pointer to the data values.

dim status as integer

26

dim id as long
dim varNum as integer
dim recNum as integer = 1
dim values(,) as short = {{1,2,3},{11,12,13}}
…
varNum = CDFvarNum (id, “zVar1”)
status = CDFputzVarRecordData(id, varNum, recNum, values)

For CDFgetzVarRecordData to read back the same variable’s record data, one can use the same arguments as
CDFputzVarRecordData.

dim id as long
dim varNum as integer
dim recNum as integer = 1
dim values (,) as short
…
varNum = CDFvarNum (id, “zVar1”)
status = CDFgetzVarRecordData(id, varNum, recNum, values)

Console.WriteLine(“{0},{1},{2}”+Environment.Newline+”{3},{4},{5}”,values(0.0),values(0.1), values(0.2), _
 values(1.0),values(1.1), values(1.2))

Alternatively, use a base object for the output:

dim valueso as object
…
status = CDFgetzVarRecordData(id, varNum, recNum, valueso)

dim values(,) as short = valueo

Console.WriteLine(“{0},{1},{2}”+Environment.Newline+”{3},{4},{5}”,values(0.0),values(0.1), values(0.2), _
 values(1.0),values(1.1), values(1.2))

3.2 Multi-Dimensional Arrays
For data involved multidimensional arrays, CDF’s native .DLL data structure is equivalent to the rectangular array in
VB. Multidimensional arrays of jagged type are not supported by APIs. An extra dimension is added to the retrieved
data if the operations involve multiple records. For example, to read two full records from a variable of two-dimensions,
3-by-4 by the hyper get method, the returned will be a three-dimensional, 2-by-3-by-4, object. Conversely, if the hyper
read skips certain dimension(s) from an operation, the returned object’s dimensionality will be reduced accordingly. For
example, to read a row or column from a variable’s two-dimensional record, the returned will be a single array of either
column or row count.

3.3 Data Type Equivalent
The following list shows the data types used by CDF and their corresponding types in VB:

• CDF_INT1 sbyte
• CDF_INT2 short
• CDF_INT4 int
• CDF_INT8 long
• CDF_UINT1 byte
• CDF_UINT2 ushort
• CDF_UINT4 uint
• CDF_BYTE sbyte

27

• CDF_REAL single
• CDF_FLOAT single
• CDF_DOUBLE double
• CDF_REAL8 double
• CDF_EPOCH double
• CDF_EPOCH16 double(2)
• CDF_TIME_TT2000 long
• CDF_CHAR string (with manipulation)
• CDF_UCHAR string (with manipulation)

3.4 Fixed Statement
Fixed statement is required to pin VB managed data objects, mainly arrays of numeric data, so that pointers of the objects
can be safely used and passed to the CDF APIs. By doing so, the objects’ addresses in the heap won’t be moved around
by the garbage collector during the operation.

For example, CDFhyperGetzVarData method can be called to retrieve a number of data values for a zVariable. For
instance, the following application code can be used to read the first four (4) records from a zVariable of 2-dim (2,3) of
type CDF_INT4. The declared data buffer, a 3-dimensional of int, is blocked in the fixed statement when the call is made.

dim id as long
dim status as integer
dim varNum as integer
dim recNum as integer = 0, recCount as integer = 4, recInterval as integer = 1
dim indices() as integer = {0, 0}
dim counts() as integer = {2, 3}
dim intervals() as integer = {1,1}
dim data(4,2,3) as integer ‘ Dimension: record number, row, column
…
…
status = CDFhyperGetzVarData (id, varNum, recNum, recCount, recInterval, indices, counts, intervals, data)
…
.

3.5 Exception Handling
Except a few APIs, each call to a CDF method will return an operation status. If the status is abnormal, less than CDF_OK,
an exception might be thrown. It is recommended that the code for the CDF-based application be surrounded by a try-
catch block so an exception can be caught and handled. The methods to check the existence of a CDF entity, e.g., entry,
attribute, variable, will not throw exception if that entity is not in the CDF. The returned, informational status will reflect
so. Once an exception is thrown, the thrown object, if initiated from the CDF APIs, is a CDFException class object.
There are a couple of class methods, GetCurrentStatus and GetStatusMsg ,which can be used to acquire the status
when an exception is thrown and the descriptive information about that exception.

dim id as long
dim status as integer
dim encoding as integer
try
 status = CDFopen(“TEST”, id)
 …
 status = CDFgetEncoding(id, encoding)
 …..
 status = CDFclose(id)
catch ex as Exception
 Console.WriteLine(“Exception: “+ex.toString())

28

 Or,
 dim status1 as integer = ex.GetCurrentStatus()
 Console.WriteLine(“Exception: “+ex.GetStatusMsg(status1))
 }

3.6 Dimensional Limitations
The VB to CDF APIs follow the same dimensional restriction as in the CDF native DLL: a limit of ten (10) dimensions
a CDF variable’s numeric typed data record can have. For string typed data, represented in a CDF file with CDF_CHAR
or CDF_UCHAR type, a limit of four (4) dimensions is applied.

29

Chapter 4
4 Application Interface
This chapter covers all Application Interfaces (APIs) that VB applications can call to interact with CDF. Since C# APIs
to CDF had already been developed, they are the base for all .Net Framework applications for CDF. Pointers are used
extensively for passing the data, e.g., CDF identifier as void *, between C# applications, C# APIs and CDF native DLL.
Such pointer-based functions are hard to handle in VB application. For that, a new set of APIs is added to C# APIs suite
to specifically allow VB applications to use C# functions without the use of pointers.

There are two types of variables (rVariable and zVariable) in CDF, and they can happily coexist in a CDF: Every
rVariable in a CDF must have the same number of dimensions and dimension sizes while each zVariable can have its
own dimensionality. Since all the rVariables in a CDF must have the same dimensions and dimension sizes, there'll be
a lot of disk space wasted if a few variables need big arrays and many variables need small arrays. Since zVariable is
more efficient in terms of storage and offers more functionality than rVariable, use of zVariable is strongly
recommended. As a matter of fact, there’s no reason to use rVariables at all if you are creating a CDF file from scratch.
One may wonder why there are rVariables and zVariables, not just zVariables. When CDF was first introduced, only
rVariables were available. The inefficiencies with rVariables were quickly realized and addressed with the introduction
of zVariables in later CDF releases.

The description for each API will detail its parameters: their types, for input or output and what the method returns.
APIs that handle read/write of variable data and attribute entry may use a special indicator: TYPE, to specify the
parameters that can have different signatures. The acceptable data types for such method are specified. For example,
CDFgetzVarData method, returning a single zVariable value, is described as:
integer CDFgetEncoding (‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varNum as integer, ‘ in -- Variable number.
recNum as integer, ‘ in -- Record number.
indices as integer(), ‘ in -- Dimension indices.
value as TYPE) ‘ out -- Data value.
 ‘ TYPE -- VB value/string type or object

TYPE, as specified, can be defined a VB value or string (matching to the variable’s underlying data type) or simply a
VB base Object. The following sample shows how the API is used to retrieve a data value from the zVariable
“my_var”, a 2-dimensional, CDF_INT4 type at indices of {1,1} for record 1:
 dim status as integer
 dim indices() as integer = {1, 1}
 dim id as long
 dim value as integer
 ….
 status = CDFgetEncoding(id, CDFvarNum(id, “my_var”), 1, indices, value)

Alternatively, value can be defined as object:
 dim value as object
 ….
 status = CDFgetEncoding(id, CDFvarNum(id, “my_var”), 1, indices, value)

APIs are grouped, based on the CDF entities they operate on. These groups consist of general library information, CDF
as a whole, variable and attribute/entry.

30

4.1 Library Information
The functions in this section are related to the current CDF library being used for the CDF operations, and they provide
useful information such as the current library version number and Copyright notice.

4.1.1 CDFgetDataTypeSize
integer CDFgetDataTypeSize (‘ out -- Completion status code.
dataType as integer, ‘ in -- CDF data type.
numBytes as integer) ‘ out -- # of bytes for the given type.

CDFgetDataTypeSize returns the size (in bytes) of the specified CDF data type.

The arguments to CDFgetDataTypeSize are defined as follows:

dataType The CDF supported data type.

numBytes The size of dataType.

4.1.1.1. Example(s)
The following example returns the size of the data type CDF_INT4 that is 4 bytes.

.

.

.
dim status as integer ‘ Returned status code.
Dim numBytes as integer ‘ Number of bytes.
.
.
try
 ….
 status = CDFgetDataTypeSize(CDF_INT4, &numBytes)
 …
 ...
catch ex as Exception
 …
end try

4.1.2 CDFgetLibraryCopyright
integer CDFgetLibraryCopyright (‘ out -- Completion status code.
copyright as string) ‘ out -- Library copyright.

CDFgetLibraryCopyright returns the Copyright notice of the CDF library being used.

The arguments to CDFgetLibraryCopyright are defined as follows:

copyright The Copyright notice.

4.1.2.1. Example(s)
The following example returns the Copyright of the CDF library being used.

.

.

.
dim status as integer ‘ Returned status code.
Dim copyright as string ‘ CDF library copyright.
.

31

.
try
 ….
 status = CDFgetLibraryCopyright(copyright)
 …
 ...
catch ex as Exception
 …
end try

4.1.3 CDFgetLibraryVersion
integer CDFgetLibraryVersion (‘ out -- Completion status code.
version as integer, ‘ out -- Library version.
release as integer, ‘ out -- Library release.
increment as integer, ‘ out -- Library increment.
subIncrement as string) ‘ out -- Library sub-increment.

CDFgetLibraryVersion returns the version and release information of the CDF library being used.

The arguments to CDFgetLibraryVersion are defined as follows:

version The library version number.

release The library release number.

increment The library incremental number.

subIncrement The library sub-incremental string, a single character.

4.1.3.1. Example(s)
The following example returns the version and release information of the CDF library that is being used.

.

.

.
dim status as integer ‘ Returned status code.
Dim version as integer ‘ CDF library version number.
Dim release as integer ‘ CDF library release number.
Dim increment as integer ‘ CDF library incremental number.
Dim subIncrement as string ‘ CDF library sub-incremental character.
.
.
try
 ….
 status = CDFgetLibraryVersion(version, release, increment, subIncrement)
…
 ...
catch ex as Exception
 …
end try

4.1.4 CDFgetStatusText
dim varNum as integer CDFgetStatusText(‘ out -- Completion status code.
status as integer, ‘ in -- The status code.
message as string) ‘ out -- The status text description.

32

CDFgetStatusText is identical to CDFerror, a legacy CDF function, (see section 4.2.8), and the use of this method is
strongly encouraged over CDFerror as it might not be supported in the future. This method is used to inquire the text
explanation of a given status code. Chapter 5 explains how to interpret status codes and Appendix A lists all of the
possible status codes.

The arguments to CDFgetStatusText are defined as follows:

status The status code to check.

message The explanation of the status code.

4.1.4.1. Example(s)
The following example displays the explanation text for the error code that is returned from a call to CDFopenCDF.

.

.

.
dim id as long ‘ CDF identifier.
dim status as integer ‘ Returned status code.
Dim text as string ‘ Explanation text.
.
.
try
 ….
 status = CDFopenCDF ("giss_wetl", id)
 …
 status = CDFclose(id)
.
catch ex as Exception
 text = CDFgetStatusMsg(ex.CDFgetCurrentStatus()) …
end try

4.2 CDF
The functions in this section provide CDF file-specific operations. Any operations involving variables or attributes are
described in the following sections. This CDF has to be a newly created or opened from an existing one.

4.2.1 CDFclose

Integer CDFclose(‘ out -- Completion status code.
id as long) ‘ in -- CDF identifier.

CDFclose closes the specified CDF. The CDF's cache buffers are flushed the CDF's open file is closed (or files in the
case of a multi-file CDF) and the CDF identifier is made available for reuse.

NOTE: You must close a CDF with CDFclose to guarantee that all modifications you have made will actually be written
to the CDF's file(s). If your program exits, normally or otherwise, without a successful call to CDFclose, the CDF's cache
buffers are left unflushed.

The arguments to CDFclose are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

33

4.2.1.1. Example(s)
The following example will close an open CDF.

.

.

.
dim id as long ‘ CDF identifier.
dim status as integer ‘ Returned status code.
.
.
try
 ….
 status = CDFopen(“…”, id)
 status = CDFclose (id)
catch ex as Exception
 …
end try

4.2.2 CDFcloseCDF
Integer CDFcloseCDF (‘ out -- Completion status code.
id as long) ‘ in -- CDF identifier.

CDFcloseCDF closes the specified CDF. This method is identical to CDFclose, a legacy CDF function. The use of this
method is strongly encouraged over CDFclose as it might not be supported in the future. The CDF's cache buffers are
flushed the CDF's open file is closed (or files in the case of a multi-file CDF) and the CDF identifier is made available
for reuse.

NOTE: You must close a CDF with CDFcloseCDF to guarantee that all modifications you have made will actually be
written to the CDF's file(s). If your program exits, normally or otherwise, without a successful call to CDFcloseCDF,
the CDF's cache buffers are left unflushed.

The arguments to CDFcloseCDF are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreateCDF or
CDFopenCDF.

4.2.2.1. Example(s)
The following example will close an open CDF.

.

.

.
dim id as long ‘ CDF identifier.
dim status as integer ‘ Returned status code.
.
.
try
 ….
 status = CDFopenCDF ("giss_wetl", id)
 ...
 status = CDFcloseCDF (id)
catch ex as Exception
 …
end try

34

4.2.3 CDFcreate
Integer CDFcreate(‘ out -- Completion status
CDFname as string, ‘ in -- CDF file name.
numDims as integer, ‘ in -- Number of dimensions, rVariables.
dimSizes as integer(), ‘ in -- Dimension sizes, rVariables.
encoding as integer, ‘ in -- Data encoding.
majority as integer, ‘ in -- Variable majority.
id as long) ‘ out -- CDF identifier.

CDFcreate, a legacy CDF function, creates a CDF as defined by the arguments. A CDF cannot be created if it already
exists. (The existing CDF will not be overwritten.) If you want to overwrite an existing CDF, you must first open it with
CDFopenCDF, delete it with CDFdeleteCDF, and then recreate it with CDFcreate. If the existing CDF is corrupted, the
call to CDFopen will fail. (An error code will be returned.) In this case you must delete the CDF at the command line.
Delete the dotCDF file (having an extension of .cdf), and if the CDF has the multi-file format, delete all of the variable
files (having extensions of .v0,.v1,. . . and .z0,.z1,.. .).

The arguments to CDFcreate are defined as follows:

CDFname The file name of the CDF to create. (Do not specify an extension.) This may be at most
CDF_PATHNAME_LEN characters. A CDF file name may contain disk and directory
specifications that conform to the conventions of the operating system being used (including
logical names on OpenVMS systems and environment variables on UNIX systems).

UNIX: File names are case-sensitive.

numDims Number of dimensions the rVariables in the CDF are to have. This may be as few as zero (0)

and at most CDF_MAX_DIMS.

dimSizes The size of each dimension. Each element of dimSizes specifies the corresponding dimension

size. Each size must be greater then zero (0). For 0-dimensional rVariables this argument is
ignored (but must be present).

encoding The encoding for variable data and attribute entry data. Specify one of the encodings

described in Section 2.7.

majority The majority for variable data. Specify one of the majorities described in Section 2.9.

id Identifier for the created CDF. This identifier must be used in all subsequent operations on

the CDF.

When a CDF is created, both read and write access are allowed. The default format for a CDF created with CDFcreate
is specified in the configuration file of your CDF distribution. Consult your system manager for this default.

NOTE: CDFclose must be used to close the CDF before your application exits to ensure that the CDF will be correctly
written to disk.

4.2.3.1. Example(s)
The following example creates a CDF named “test1.cdf” with network encoding and row majority.

.

.

.
dim id as long ‘ CDF identifier.
Dim status as integer ‘ Returned status code.
dim numDims as integer = 3 ‘ Number of dimensions, rVariables.
Dim dimSizes() as integer = {180,360,10} ‘ Dimension sizes, rVariables.

35

dim majority as integer = ROW_MAJOR ‘ Variable majority.
.
.
try
 status = CDFcreate ("test1", numDims, dimSizes, NETWORK_ENCODING, majority, id)
.
catch ex as Exception
 …
end try

4.2.4 CDFcreateCDF
Integer CDFcreateCDF(‘ out -- Completion status code.
cdfName as string, ‘ in -- CDF file name.
id as long) ‘ out -- CDF identifier.

CDFcreateCDF creates a CDF file. This method is a simple form of CDFcreate without the number of dimensions,
dimensional sizes, encoding and majority arguments. It is the better method if only zVariables are to be created in the
CDF. The created CDF will use the default encoding (HOST_ENCODING) and majority (ROW_MAJOR). A CDF
cannot be created if it already exists. (The existing CDF will not be overwritten.) If you want to overwrite an existing
CDF, you can either manually delete the file or open it with CDFopenCDF ,delete it with CDFdeleteCDF, and then
recreate it with CDFcreateCDF. If the existing CDF is corrupted, the call to CDFopenCDF will fail. (An error code will
be returned.) In this case you must delete the CDF at the command line. Delete the dotCDF file (having an extension of
.cdf), and if the CDF has the multi-file format, delete all of the variable files (having extensions of .v0,.v1,. . . and .z0,.z1,..
.).

Note that a CDF file created with CDFcreateCDF can only accept zVariables, not rVariables. But this is fine since
zVariables are more flexible than rVariables. See the third paragraph of Chapter 3 for the differences between rVariables
and zVariables.

The arguments to CDFcreateCDF are defined as follows:

CDFname The file name of the CDF to create. (Do not specify an extension.) This may be at most
CDF_PATHNAME_LEN characters. A CDF file name may contain disk and directory
specifications that conform to the conventions of the operating system being used (including
logical names on OpenVMS systems and environment variables on UNIX systems).

UNIX: File names are case-sensitive.

id Identifier for the created CDF. This identifier must be used in all subsequent operations on

the CDF.

When a CDF is created, both read and write access are allowed. The default format for a CDF created with
CDFcreateCDF is specified in the configuration file of your CDF distribution. Consult your system manager for this
default.

NOTE: CDFcloseCDF must be used to close the CDF before your application exits to ensure that the CDF will be
correctly written to disk.

4.2.4.1. Example(s)
The following example creates a CDF named “test1.cdf” with the default encoding and majority.

.

.

.
dim id as long ‘ CDF identifier.
dim status as integer ‘ Returned status code.

36

.

.
try
 ….
 status = CDFcreateCDF ("test1", id)
 ...
 ...
 status = CDFclose (id)
catch ex as Exception
 …
end try

4.2.5 CDFdelete
integer CDFdelete(‘ out -- Completion status code.
id as long) ‘ in -- CDF identifier.

CDFdelete, a legacy CDF function, deletes the specified CDF. The CDF files deleted include the dotCDF file (having
an extension of .cdf), and if a multi-file CDF, the variable files (having extensions of .v0,.v1,. . . and .z0,.z1,.. .).

You must open a CDF before you are allowed to delete it. If you have no privilege to delete the CDF files, they will not
be deleted. If the CDF is corrupted and cannot be opened, the CDF file(s) must be deleted at the command line.

The arguments to CDFdelete are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

4.2.5.1. Example(s)
The following example will open and then delete an existing CDF.

.

.

.
dim id as long ‘ CDF identifier.
Dim status as integer ‘ Returned status code.
.
.
try
 ….
 status = CDFopen ("test2", id)
 status = CDFdelete (id)
.
catch ex as Exception
 …
end try

4.2.6 CDFdeleteCDF
integer CDFdeleteCDF(‘ out -- Completion status code.
id as long) ‘ in -- CDF identifier.

CDFdeleteCDF deletes the specified CDF. This method is identical to CDFdelete, and the use of this method is strongly
encouraged over CDFdelete as it might not be supported in the future. The CDF files deleted include the dotCDF file
(having an extension of .cdf), and if a multi-file CDF, the variable files (having extensions of .v0,.v1,. . . and .z0,.z1,.. .
).

37

You must open a CDF before you are allowed to delete it. If you have no privilege to delete the CDF files, they will not
be deleted. If the CDF is corrupted and cannot be opened, the CDF file(s) must be deleted at the command line.

The arguments to CDFdeleteCDF are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

4.2.6.1. Example(s)
The following example will open and then delete an existing CDF.

.

.

.
dim id as long ‘ CDF identifier.
dim status as integer ‘ Returned status code.
.
.
try
 ….
 status = CDFopenCDF ("test2", id)
 …
 status = CDFdeleteCDF(id)
 ...
catch ex as Exception
 …
end try

4.2.7 CDFdoc
integer CDFdoc(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
version as integer, ‘ out -- Version number.
release as integer, ‘ out -- Release number.
copyright as string) ‘ out -- copyright.

CDFdoc is used to inquire general information about a CDF. The version/release of the CDF library that created the
CDF is provided (e.g., CDF V3.1 is version 3, release 1) along with the CDF copyright notice. The copyright notice is
formatted for printing without modification.

The arguments to CDFdoc are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

version The version number of the CDF library that created the CDF.

release The release number of the CDF library that created the CDF.

copyright The Copyright notice of the CDF library that created the CDF. This string will contain a

newline character after each line of the Copyright notice.

4.2.7.1. Example(s)
The following example returns and displays the version/release and copyright notice.

.

38

.
dim id as long ‘ CDF identifier.
dim status as integer ‘ Returned status code.
Dim version as integer ‘ CDF version number.
Dim release as integer ‘ CDF release number.
Dim copyright as string ‘ Copyright notice.
.
.
try
 ….
 status = CDFdoc (id, version, release, copyright)
.
catch ex as Exception
 …
end try

4.2.8 CDFerror5
integer CDFerror(‘ out -- Completion status code.
status as integer, ‘ in -- Status code.
message as string) ‘ out -- Explanation text.

CDFerror, a legacy CDF function, is used to inquire the explanation of a given status code (not just error codes). Chapter
5 explains how to interpret status codes and Appendix A lists all of the possible status codes.

The arguments to CDFerror are defined as follows:

status The status code to check.

message The explanation of the status code.

4.2.8.1. Example(s)
The following example displays the explanation text if an error code is returned from a call to CDFopen.

.

.

.
dim id as long ‘ CDF identifier.
Dim status as integer ‘ Returned status code.
Dim text as string ‘ Explanation text.
.
.
try
 ….
 status = CDFopen ("giss_wetl", id)
.
catch ex as Exception
 dim status as integer1 = CDFerror(ex.GetCurrentStatus(), out text) …
end try

4.2.9 CDFgetCacheSize
integer CDFgetCacheSize (‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.

5 A legacy CDF function. While it is still available in V3.1, CDFgetStatusText is the preferred function for it.

39

numBuffers as integer) ‘ out -- CDF’s cache buffers.

CDFgetCacheSize returns the number of cache buffers being used for the dotCDF file when a CDF is open. Refer to the
CDF User’s Guide for description of caching scheme used by the CDF library.

The arguments to CDFgetCacheSize are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreateCDF
(or CDFcreate) or CDFopen.

numBuffers Number of cache buffers.

4.2.9.1. Example(s)
The following example returns the cache buffers for the open CDF file.

.

.

.
dim id as long ‘ CDF identifier.
dim status as integer ‘ Returned status code.
dim numBuffers as integer ‘ CDF’s cache buffers.
.
.
try
 ….
 status = CDFgetCacheSize (id, numBuffers)
 …
 ...
catch ex as Exception
 …
end try

4.2.10 CDFgetChecksum
integer CDFgetChecksum (‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
checksum as integer) ‘ out -- CDF’s

CDFgetChecksum returns the checksum mode of a CDF. The CDF checksum mode is described in Section 2.20.
The arguments to CDFgetChecksum are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreateCDF
(or CDFcreate) or CDFopen.

checksum The checksum mode (NO_CHECKSUM or MD5_CHECKSUM).

4.2.10.1. Example(s)
The following example returns the checksum code for the open CDF file.

.

.

.
dim id as long ‘ CDF identifier.
dim status as integer ‘ Returned status code.
dim checksum as integer ‘ CDF’s checksum.
.
.

40

try
 ….

 status = CDFgetChecksum (id, checksum)
 …
 ...
catch ex as Exception
 …
end try

4.2.11 CDFgetCompression
integer CDFgetCompression (‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
compressionType as integer, ‘ out -- CDF’s compression type.
compressionParms as integer(), ‘ out -- Compression parameters.
compressionPercentage as integer) ‘ out -- Compressed percentage.

CDFgetCompression gets the compression information of the CDF. It returns the compression type (method) and, if
compressed, the compression parameters and compression rate. CDF compression types/parameters are described in
Section 2.11. The compression percentage is the result of the compressed file size divided by its original, uncompressed
file size.6

The arguments to CDFgetCompression are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

compressionType The type of the compression.

compressionParms The parameters of the compression.

compressionPercentage The compression rate.

4.2.11.1. Example(s)
The following example returns the compression information of the open CDF file.

.

.

.
dim id as long ‘ CDF identifier.
dim status as integer ‘ Returned status code.
dim compressType as integer ‘ CDF’s compression type.
Dim compressionParms() as integer ‘ Compression parameters.
dim compressionPercentage as integer ‘ Compression rate.
.
.
try
 ….
 status = CDFgetCompression (id, compression, compressionParms, compressionPercentage)
 …
 …
catch ex as Exception
 …

6 The compression ratio is (100 – compression percentage): the lower the compression percentage, the better the
compression ratio.

41

end try

4.2.12 CDFgetCompressionCacheSize
integer CDFgetCompressionCacheSize (‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
numBuffers as integer) ‘ out -- CDF’s compressed cache buffers.

CDFgetCompressionCacheSize gets the number of cache buffers used for the compression scratch CDF file. Refer to
the CDF User’s Guide for description of caching scheme used by the CDF library.

The arguments to CDFgetCompressionCacheSize are defined as follows:

Id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

numBuffers Number of cache buffers.

4.2.12.1. Example(s)
The following example returns the number of cache buffers used for the scratch file from the compressed CDF file.

.

.

.
dim id as long ‘ CDF identifier.
dim status as integer ‘ Returned status code.
dim numBuffers as integer ‘ Compression cache buffers.
.
.
try
 ….
 status = CDFgetCompressionCacheSize (id, numBuffers)
 …
 ...
catch ex as Exception
 …
end try

4.2.13 CDFgetCompressionInfo
integer CDFgetCompressionInfo (‘ out -- Completion status code.
CDFname as string, ‘ in -- CDF name.
compType as integer, ‘ out -- CDF compression type.
cParms.as integer() ‘ out -- Compression parameters.
cSize as long. ‘ out -- CDF compressed size.
uSize as long). ‘ out -- CDF uncompressed size.

CDFgetCompressionInfo returns the compression type/parameters of a CDF without having to open the CDF. This refers
to the compression of the CDF - not of any compressed variables.

The arguments to CDFgetCompressionInfo are defined as follows:

CDFname The pathname of a CDF file without the .cdf file extension.

compType The CDF compression type.

cParms The CDF compression parameters.

42

cSize The compressed CDF file size.

uSize The size of CDF when decompress the originally compressed CDF.

4.2.13.1. Example(s)
The following example returns the compression information from a “unopen” CDF named “MY_TEST.cdf”.

.

.

.
dim status as integer ‘ Returned status code.
dim compType as integer ‘ Compression type.
dim cParms as integer() ‘ Compression parameters.
Dim cSize as long ‘ Compressed file size.
Dim uSize as long ‘ Decompressed file size.
.
.
try
 ….
 status = CDFgetCompressionInfo(“MY_TEST”, compType, cParms, cSize, uSize)
 …
 ...
catch ex as Exception
 …
end try

4.2.14 CDFgetCopyright
integer CDFgetCopyright (‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
copyright as string) ‘ out -- Copyright notice.
CDFgetCopyright gets the Copyright notice in a CDF.
The arguments to CDFgetCopyright are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

copyright CDF Copyright.

4.2.14.1. Example(s)
The following example returns the Copyright in a CDF.

.

.

.
dim id as long ‘ CDF identifier.
dim status as integer ‘ Returned status code.
Dim copyright as string ‘ CDF’s copyright.
.
.
try
 ….
 status = CDFgetCopyright (id, copyright)
 …
 ...
catch ex as Exception
 …

43

end try

4.2.15 CDFgetDecoding
integer CDFgetDecoding (‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
decoding as integer) ‘ out -- CDF decoding.

CDFgetDecoding returns the decoding code for the data in a CDF. The decodings are described in Section 2.8.

The arguments to CDFgetDecoding are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

decoding The decoding of the CDF.

4.2.15.1. Example(s)
The following example returns the decoding for the CDF.

.

.

.
dim id as long ‘ CDF identifier.
dim status as integer ‘ Returned status code.
dim decoding as integer ‘ Decoding.
.
.
try
 ….
 status = CDFgetDecoding(id, decoding)
 …
 ...
catch ex as Exception
 …
end try

4.2.16 CDFgetEncoding
integer CDFgetEncoding (‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
encoding as integer) ‘ out -- CDF encoding.

CDFgetEncoding returns the data encoding used in a CDF. The encodings are described in Section 2.7.

The arguments to CDFgetEncoding are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

encoding The encoding of the CDF.

4.2.16.1. Example(s)
The following example returns the data encoding used for the given CDF.

.

.

44

.
dim id as long ‘ CDF identifier.
dim status as integer ‘ Returned status code.
dim encoding as integer ‘ Encoding.
.
.
try
 ….
 status = CDFgetEncoding(id, encoding)
 …
 ...
catch ex as Exception
 …
end try

4.2.17 CDFgetFileBackward
integer CDFgetFileBackward() ‘ out – File Backward Mode.

CDFgetFileBackward returns the backward mode information dealing with the creation of a new CDF file. A mode of
value 1 indicates when a new CDF file is created, it will be a backward version of V2.7, not the current library version.

The arguments to CDFgetFileBackward are defined as follows:

N/A

4.2.17.1. Example(s)
In the following example, the CDF’s file backward mode is acquired.

.

.

.

.
dim id as long ‘ CDF identifier.
dim status as integer ‘ Returned status code.
dim mode as integer ‘ Backward mode.
.
.
try
 ….
 mode = CDFgetFileBackward ()
 if mode = 1 then
 .
 end if

catch ex as Exception
 …
end try

4.2.18 CDFgetFormat
integer CDFgetFormat (‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
format as integer) ‘ out -- CDF format.

CDFgetFormat returns the file format, single or multi-file, of the CDF. The formats are described in Section 2.5.

45

The arguments to CDFgetFormat are defined as follows:
id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate

(or CDFcreateCDF) or CDFopenCDF.

format The format of the CDF.

4.2.18.1. Example(s)
The following example returns the file format of the CDF.

.

.

.
dim id as long ‘ CDF identifier.
dim status as integer ‘ Returned status code.
dim format as integer ‘ Format.
.
.
try
 status = CDFgetFormat(id, format)
…
 ...
catch ex as Exception
 …
end try

4.2.19 CDFgetLeapSecondLastUpdated
integer CDFgetLeapSecondLastUpdated (‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
lastUpdated as integer) ‘ out -- CDF format.

CDFgetLeapSecondLastUpdated returns the leap second last updated date from the CDF. This value indicates what/if
the leap second table this CDF is based on. It is of YYYYMMDD form. The value can also be negative 1 (-1), the field
not set (for older CDFs), or zero (0) if the leap second table is not being accessed. This field is only relevant to TT2000
data in the CDF.

The arguments to CDFgetLeapSecondLastUpdated are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

lastUpdated The date that the latest leap second was added to the leap second table.

4.2.19.1. Example(s)
The following example returns the date that the last leap second was added to the leap second table from the CDF.

.

.

.
dim id as long ‘ CDF identifier.
dim status as integer ‘ Returned status code.
dim lastUpdatedas integer ‘ Format.
.
.
try
 status = CDFgetLeapSecondLastUpdated(id, lastUpdated)
…

46

 ...
catch ex as Exception
 …
end try

4.2.20 CDFgetMajority
integer CDFgetMajority (‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
majority as integer) ‘ out -- Variable majority.

CDFgetMajority returns the variable majority, row or column-major, of the CDF. The majorities are described in Section
2.9.

The arguments to CDFgetMajority are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

majority Variable majority of the CDF.

4.2.20.1. Example(s)
The following example returns the majority of the CDF.

.

.

.
dim id as long ‘ CDF identifier.
dim status as integer ‘ Returned status code.
dim majority as integer ‘ Majority.
.
.
try
 status = CDFgetMajority (id, majority)

 …
 ...
catch ex as Exception
 …
end try

4.2.21 CDFgetName
integer CDFgetName (‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
name as string) ‘ out -- CDF name.

CDFgetName returns the file name of the specified CDF.

The arguments to CDFgetName are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

name File name of the CDF.

47

4.2.21.1. Example(s)
The following example returns the name of the CDF.

.

.

.
dim id as long ‘ CDF identifier.
dim status as integer ‘ Returned status code.
Dim name as string ‘ Name of the CDF.
.
.
try
 ….
 status = CDFgetName (id, name)
 …
 ...
catch ex as Exception
 …
end try

4.2.22 CDFgetNegtoPosfp0Mode
integer CDFgetNegtoPosfp0Mode (‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
negtoPosfp0 as integer) ‘ out -- -0.0 to 0.0 mode.
CDFgetNegtoPosfp0Mode returns the –0.0 to 0.0 mode of the CDF. You can use CDFsetNegtoPosfp0 method to set the
mode. The –0.0 to 0.0 modes are described in Section 2.16.

The arguments to CDFgetNegtoPosfp0Mode are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

negtoPosfp0 –0.0 to 0.0 mode of the CDF.

4.2.22.1. Example(s)
The following example returns the –0.0 to 0.0 mode of the CDF.

.

.

.
dim id as long ‘ CDF identifier.
dim status as integer ‘ Returned status code.
Dim negtoPosfp0 as integer ‘ -0.0 to 0.0 mode.
.
.
try
 ….
 status = CDFgetNegtoPosfp0Mode (id, negtoPosfp0)

 …
 ….
catch ex as Exception
 …
end try

48

4.2.23 CDFgetReadOnlyMode
integer CDFgetReadOnlyMode(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
readOnlyMode as integer) ‘ out -- CDF read-only mode.

CDFgetReadOnlyMode returns the read-only mode for a CDF. You can use CDFsetReadOnlyMode to set the mode of
readOnlyMode. The read-only modes are described in Section 2.14.

The arguments to CDFgetReadOnlyMode are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

readOnlyMode Read-only mode (READONLYon or READONLYoff).

4.2.23.1. Example(s)
The following example returns the read-only mode for the given CDF.

.

.

.
dim id as long ‘ CDF identifier.
Dim status as integer
dim readMode as integer ‘ CDF read-only mode.
.
.
try
 ….
 status = CDFgetReadOnlyMode (id, readMode)
…
 ...
catch ex as Exception
 …
end try

4.2.24 CDFgetStageCacheSize
integer CDFgetStageCacheSize(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
numBuffers as integer) ‘ out -- The stage cache size.

CDFgetStageCacheSize returns the number of cache buffers being used for the staging scratch file a CDF. Refer to the
CDF User’s Guide for the description of the caching scheme used by the CDF library.

The arguments to CDFgetStageCacheSize are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

numBuffers Number of cache buffers.

4.2.24.1. Example(s)
The following example returns the number of cache buffers used in a CDF.

.

.

49

.
dim id as long ‘ CDF identifier.
Dim status as integer
dim numBuffers as integer ‘ The number of cache buffers.
.
.
try
 ….
 status = CDFgetStageCacheSize (id, numBuffers)

 …
 …
.
catch ex as Exception
 …
end try

4.2.25 CDFgetValidate
integer CDFgetValidate() ‘ out – CDF validation mode.

CDFgetValidate returns the data validation mode. This information reflects whether when a CDF is open, its certain data
fields are subjected to a validation process. 1 is returned if the data validation is to be performed, 0 otherwise.
The arguments to CDFgetVersion are defined as follows:

N/A

4.2.25.1. Example(s)
In the following example, it gets the data validation mode.

.

.

.
dim id as long ‘ CDF identifier.
dim status as integer ‘ Returned status code.
dim validate as integer ‘ Data validation flag.
.
.
try
 ….
 validate = CDFgetValidate ()
 …
 ...
catch ex as Exception
 …
end try

4.2.26 CDFgetVersion
integer CDFgetVersion(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
version as integer, ‘ out -- CDF version.
release as integer, ‘ out -- CDF release.
increment as integer) ‘ out -- CDF increment.

CDFgetVersion returns the version/release information for a CDF file. This information reflects the CDF library that was
used to create the CDF file.

50

The arguments to CDFgetVersion are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

version CDF version number.

release CDF release number.

increment CDF increment number.

4.2.26.1. Example(s)
In the following example, a CDF’s version/release is acquired.

.

.

.
dim id as long ‘ CDF identifier.
dim status as integer ‘ Returned status code.
dim version as integer ‘ CDF version.
dim release as integer ‘ CDF release
dim increment as integer ‘ CDF increment.
.
.
try
 ….
 status = CDFgetVersion (id, version, release, increment)
…

catch ex as Exception
 …
end try

4.2.27 CDFgetzMode
integer CDFgetzMode(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
zMode as integer) ‘ out -- CDF zMode.

CDFgetzMode returns the zMode for a CDF file. The zModes are described in Section 2.15.

The arguments to CDFgetzMode are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

zMode CDF zMode.

4.2.27.1. Example(s)
In the following example, a CDF’s zMode is acquired.

.

.

.
dim id as long ‘ CDF identifier.
dim status as integer ‘ Returned status code.

51

dim zMode as integer ‘ CDF zMode.
.
.
try
 ….
 status = CDFgetzMode (id, zMode)

 …
 ...
catch ex as Exception
 …
end try

4.2.28 CDFinquire
integer CDFinquire(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier
numDims as integer, ‘ out -- Number of dimensions, rVariables.
dimSizes as integer(), ‘ out -- Dimension sizes, rVariables.
encoding as integer, ‘ out -- Data encoding.
majority as integer, ‘ out -- Variable majority.
maxRec as integer, ‘ out -- CDF’s maximum record number, rVariables.
numVars as integer, ‘ out -- Number of rVariables in the CDF.
numAttrs as integer) ‘ out -- Number of attributes in the CDF.

CDFinquire returns the basic characteristics of a CDF. An application needs to know the number of rVariable dimensions
and their sizes before it can access rVariable data (since all rVariables’ dimension and dimension size are the same).
Knowing the variable majority can be used to optimize performance and is necessary to properly use the variable hyper
functions (for both rVariables and zVariables).

The arguments to CDFinquire are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

numDims Number of dimensions for the rVariables in the CDF.

dimSizes Dimension sizes of the rVariables in the CDF. dimSizes is a 1-dimensional array containing

one element per dimension. Each element of dimSizes receives the corresponding
dimension size. For 0-dimensional rVariables this argument is ignored (but must be
present).

encoding Encoding of the variable data and attribute entry data. The encodings are defined in Section

2.7.

majority Majority of the variable data. The majorities are defined in Section 2.9.

maxRec Maximum record number written to an rVariable in the CDF. Note that the maximum record

number written is also kept separately for each rVariable in the CDF. The value of maxRec
is the largest of these. Some rVariables may have fewer records actually written. Use
CDFrVarMaxWrittenRecNum to inquire the maximum record written for an individual
rVariable.

numVars Number of rVariables in the CDF.

numAttrs Number of attributes in the CDF.

52

4.2.28.1. Example(s)
The following example returns the basic information about a CDF.

.

.

.
dim id as long ‘ CDF identifier.
dim status as integer ‘ Returned status code.
dim numDims as integer ‘ Number of dimensions, rVariables.

 Dim dimSizes() as integer ‘ Dimension sizes, rVariables
dim encoding as integer ‘ Data encoding.
dim majority as integer ‘ Variable majority.
dim maxRec as integer ‘ Maximum record number,

‘ rVariables.
dim numVars as integer ‘ Number of rVariables in CDF.
dim numAttrs as integer ‘ Number of attributes in CDF.
.
.
try
 ….
status = CDFinquire (id, numDims, dimSizes, encoding, majority, _
 maxRec, numVars, numAttrs)

.
catch ex as Exception
 …
end try

4.2.29 CDFinquireCDF
integer CDFinquireCDF(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier
numDims as integer, ‘ out -- Number of dimensions for rVariables.
dimSizes as integer(), ‘ out -- Dimension sizes for rVariables.
encoding as integer, ‘ out -- Data encoding.
majority as integer, ‘ out -- Variable majority.
maxrRec as integer, ‘ out -- Maximum record number among rVariables .
numrVars as integer, ‘ out -- Number of rVariables in the CDF.
maxzRec as integer, ‘ out -- Maximum record number among zVariables .
numzVars as integer, ‘ out -- Number of zVariables in the CDF.
numAttrs as integer) ‘ out -- Number of attributes in the CDF.

CDFinquireCDF returns the basic characteristics of a CDF. This method expands the method CDFinquire by acquiring
extra information regarding the zVariables. Knowing the variable majority can be used to optimize performance and is
necessary to properly use the variable hyper-get/put functions.

The arguments to CDFinquireCDF are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

numDims Number of dimensions for the rVariables in the CDF. Note that all the rVariables’

dimensionality in the same CDF file must be the same.

dimSizes Dimension sizes of the rVariables in the CDF (note that all the rVariables’ dimension sizes

in the same CDF file must be the same). dimSizes is a 1-dimensional array containing one

53

element per dimension. Each element of dimSizes receives the corresponding dimension
size. For 0-dimensional rVariables this argument is ignored (but must be present).

encoding Encoding of the variable data and attribute entry data. The encodings are defined in Section

2.7.

majority Majority of the variable data. The majorities are defined in Section 2.9.

maxrRec Maximum record number written to an rVariable in the CDF. Note that the maximum

record number written is also kept separately for each rVariable in the CDF. The value of
maxRec is the largest of these.

numrVars Number of rVariables in the CDF.

maxzRec Maximum record number written to a zVariable in the CDF. Note that the maximum record

number written is also kept separately for each zVariable in the CDF. The value of maxRec
is the largest of these. Some zVariables may have fewer records than actually written. Use
CDFgetzVarMaxWrittenRecNum to inquire the actual number of records written for an
individual zVariable.

numzVars Number of zVariables in the CDF.

numAttrs Number of attributes in the CDF.

4.2.29.1. Example(s)
The following example returns the basic information about a CDF.

.

.

.
dim id as long ‘ CDF identifier.
dim status as integer ‘ Returned status code.
dim numDims as integer ‘ Number of dimensions, rVariables.
Dim dimSizes() as integer ‘ Dimension sizes, rVariables .
dim encoding as integer ‘ Data encoding.
dim majority as integer ‘ Variable majority.
dim maxRec as integer ‘ Maximum record number, rVariables.
dim numrVars as integer ‘ Number of rVariables in CDF.
dim maxzRec as integer ‘ Maximum record number, zVariables.
dim numzVars as integer ‘ Number of zVariables in CDF.
dim numAttrs as integer ‘ Number of attributes in CDF.
.
.
try
 status = CDFinquireCDF (id, numDims, dimSizes, encoding, majority, _
 maxrRec, numrVars, maxzRec, numzVars, numAttrs)
 …
 ...
catch ex as Exception
 …
end try

4.2.30 CDFopen
integer CDFopen(‘ out -- Completion status code.
CDFname as string, ‘ in -- CDF file name.
id as long) ‘ out -- CDF identifier.

54

CDFopen, a legacy CDF function, opens an existing CDF. The CDF is initially opened with only read access. This
allows multiple applications to read the same CDF simultaneously. When an attempt to modify the CDF is made, it is
automatically closed and reopened with read/write access. (The method will fail if the application does not have or cannot
get write access to the CDF.)

The arguments to CDFopen are defined as follows:

CDFname File name of the CDF to open. (Do not specify an extension.) This may be at most
CDF_PATHNAME_LEN characters. A CDF file name may contain disk and directory
specifications that conform to the conventions of the operating system being used (including
logical names on OpenVMS systems and environment variables on UNIX systems).

UNIX: File names are case-sensitive.

id Identifier for the opened CDF. This identifier must be used in all subsequent operations on
the CDF.

NOTE: CDFclose must be used to close the CDF before your application exits to ensure that the CDF will be correctly
written to disk.

4.2.30.1. Example(s)
The following example will open a CDF named “NOAA1.cdf”.

.

.

.
dim id as long ‘ CDF identifier.
dim status as integer ‘ Returned status code.
Dim CDFname as string = "NOAA1" ‘ file name of CDF.
.
.
try
 status = CDFopen (CDFname, id)
.
catch ex as Exception
 …
end try

4.2.31 CDFopenCDF
Integer CDFopenCDF(‘ out -- Completion status code.
CDFname as string, ‘ in -- CDF file name.
id as long) ‘ out -- CDF identifier.

CDFopenCDF opens an existing CDF. This method is identical to CDFopen, and the use of this method is strongly
encouraged over CDFopen as it might not be supported in the future. The CDF is initially opened with only read access.
This allows multiple applications to read the same CDF simultaneously. When an attempt to modify the CDF is made,
it is automatically closed and reopened with read/write access. The method will fail if the application does not have or
cannot get write access to the CDF.

The arguments to CDFopenCDF are defined as follows:

CDFname File name of the CDF to open. (Do not specify an extension.) This may be at most
CDF_PATHNAME_LEN characters. A CDF file name may contain disk and directory
specifications that conform to the conventions of the operating system being used (including
logical names on OpenVMS systems and environment variables on UNIX systems).

55

UNIX: File names are case-sensitive.

id Identifier for the opened CDF. This identifier must be used in all subsequent operations on

the CDF.

NOTE: CDFcloseCDF must be used to close the CDF before your application exits to ensure that the CDF will be
correctly written to disk.

4.2.31.1. Example(s)
The following example will open a CDF named “NOAA1.cdf”.

.

.

.
dim id as long ‘ CDF identifier.
dim status as integer ‘ Returned status code.
Dim CDFname as string = "NOAA1" ‘ file name of CDF.
.
.
try
 ….
 status = CDFopenCDF (CDFname, id)
 …
 ...
catch ex as Exception
 …
end try

4.2.32 CDFselect
integer CDFselect(‘ out -- Completion status code.
id as long) ‘ in -- CDF identifier.

CDFselect selects an opened CDF as the current CDF. Only one CDF is allowed to be current. To access data from a
CDF, that CDF must be selected as the current. This method is no longer needed as the methods involved CDF operations
always need the CDF identifier, as the first argument, so it can be set as current before other operations can be applied.

The arguments to CDFselect are defined as follows:

id Identifier for the opened CDF. This identifier must be used in all subsequent operations on
the CDF.

NOTE: When a CDF is opened, it becomes the current. No CDF is current after CDFcloseCDF is called to close the
file.

4.2.32.1. Example(s)
The following example will select a CDF named “NOAA1.cdf” as the current CDF while another file “NOAA2.cdf” is
also opened.

.

.

.
dim id1 as long, id2 as long ‘ CDF identifier.
dim status as integer ‘ Returned status code.
Dim CDFname1 as string = "NOAA1" ‘ file name of CDF.
Dim CDFname2 as string = "NOAA2" ‘ file name of CDF. .

56

.
try
 ….
 status = CDFopenCDF (CDFname1, id1)

 status = CDFopenCDF (CDFname2, id2)

 status = CDFselect(id1)

 status = CDFclose(id1)
 status = CDFclose(id2)
catch ex as Exception
 …

 end try

4.2.33 CDFselectCDF
integer CDFselectCDF(‘ out -- Completion status code.
id as long) ‘ in -- CDF identifier.

CDFselectCDF selects an opened CDF as the current CDF. Only one CDF is allowed to be current. To access data from
a CDF, that CDF must be selected as the current. This method is no longer needed as the methods involved CDF
operations always need the CDF identifier, as the first argument, so it can be set as current before other operations can
be applied. This method is identical to CDFselect.

The arguments to CDFselectCDF are defined as follows:

id Identifier for the opened CDF. This identifier must be used in all subsequent operations on
the CDF.

NOTE: When a CDF is opened, it becomes the current. No CDF is current after CDFcloseCDF is called to close the
file.

4.2.33.1. Example(s)
The following example will select a CDF named “NOAA1.cdf” as the current CDF while another file “NOAA2.cdf” is
also opened.

.

.

.
dim id1 as long, i2 as long ‘ CDF identifier.
dim status as integer ‘ Returned status code.
Dim CDFname1 as string = "NOAA1" ‘ file name of CDF.
Dim CDFname2 as string = "NOAA2" ‘ file name of CDF. .
.
try
 ….
 status = CDFopenCDF (CDFname1, id1)

 status = CDFopenCDF (CDFname2, id2)

 status = CDFselectCDF(id1)

 status = CDFclose(id1)
 status = CDFclose(id2)
catch ex as Exception
 …

57

 end try

4.2.34 CDFsetCacheSize
integer CDFsetCacheSize (‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
numBuffer as integer) ‘ in -- CDF’s cache buffers.

CDFsetCacheSize specifies the number of cache buffers being used for the dotCDF file when a CDF is open. Refer to
the CDF User’s Guide for the description of the cache scheme used by the CDF library.

The arguments to CDFsetCacheSize are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

numBuffers Number of cache buffers.

4.2.34.1. Example(s)
The following example extends the number of cache buffers to 500 for the open CDF file. The default number is 300 for
a single-file format CDF on Unix systems.

.

.

.
dim id as long ‘ CDF identifier.
dim status as integer ‘ Returned status code.
dim cacheBuffers as integer ‘ CDF’s cache buffers.
.
.
cacheBuffers = 500
try
 ….
 status = CDFsetCacheSize (id, cacheBuffers)
 …
...
catch ex as Exception
 …
end try

4.2.35 CDFsetChecksum
integer CDFsetChecksum (‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
checksum as integer) ‘ in -- CDF’s checksum mode.

CDFsetChecksum specifies the checksum mode for the CDF. The CDF checksum mode is described in Section 2.20.

The arguments to CDFsetChecksum are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

checksum Checksum mode (NO_CHECKSUM or MD5_CHECKSUM).

58

4.2.35.1. Example(s)
The following example turns off the checksum flag for the open CDF file..

.

.

.
dim id as long ‘ CDF identifier.
dim status as integer ‘ Returned status code.
dim checksum as integer ‘ CDF’s checksum.
.
.
checksum= NO_CHECKSUM
try
 ….
 status = CDFsetChecksum (id, checksum)
 …
 ...
catch ex as Exception
 …
end try

4.2.36 CDFsetCompression
integer CDFsetCompression (‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
compressionType as integer, ‘ in -- CDF’s compression type.
CompressionParms as integer()) ‘ in -- CDF’s compression parameters.

CDFsetCompression specifies the compression type and parameters for a CDF. This compression refers to the CDF, not
of any variables. The compressions are described in Section 2.11.

The arguments to CDFsetCompression are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

compressionType Compression type .

compressionParms Compression parameters.

4.2.36.1. Example(s)
The following example uses GZIP.6 to compress the CDF file.

.

.

.
dim id as long ‘ CDF identifier.
dim status as integer ‘ Returned status code.
dim compressionType as integer ‘ CDF’s compression type.
Dim compressionParms(1) as integer ‘ CDF’s compression parameters.
.
.
compressionType = GZIP_COMPRESSION
compressionParms(0) = 6
try
 ….
 status = CDFsetCompression (id, compressionType, compressionParms) …

59

 ...
catch ex as Exception
 …
end try

4.2.37 CDFsetCompressionCacheSize
integer CDFsetCompressionCacheSize (‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
numBuffers as integer) ‘ in -- CDF’s compressed cache buffers.

CDFsetCompressionCacheSize specifies the number of cache buffers used for the compression scratch CDF file. Refer
to the CDF User’s Guide for the description of the cache scheme used by the CDF library.

The arguments to CDFsetCompressionCacheSize are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

compressionNumBuffers Number of cache buffers.

4.2.37.1. Example(s)
The following example extends the number of cache buffers used for the scratch file from the compressed CDF file to
100. The default cache buffers is 80 for Unix systems.

.

.

.
dim id as long ‘ CDF identifier.
dim status as integer ‘ Returned status code.
dim numBuffers as integer = 100 ‘ CDF’s compression cache buffers.
.
.
try
 ….
 status = CDFsetCompressionCacheSize (id, numBuffers)
 …
 ...
catch ex as Exception
 …
end try

4.2.38 CDFsetDecoding
integer CDFsetDecoding (‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
decoding as integer) ‘ in -- CDF decoding.

CDFsetDecoding sets the decoding of a CDF. The decodings are described in Section 2.8.

The arguments to CDFsetDecoding are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

decoding Decoding of a CDF.

60

4.2.38.1. Example(s)
The following example sets NETWORK_DECODING to be the decoding scheme in the CDF.

.

.

.
dim id as long ‘ CDF identifier.
Dim status as integer ‘ Returned status code.
Dim decoding as integer ‘ Decoding.
.
.
decoding = NETWORK_DECODING
try
 ….
 status = CDFsetDecoding (id, decoding)
 …
 ...
catch ex as Exception
 …
end try

4.2.39 CDFsetEncoding
integer CDFsetEncoding (‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
encoding as integer) ‘ in -- CDF encoding.

CDFsetEncoding specifies the data encoding of the CDF. A CDF’s encoding may not be changed after any variable
values have been written. The encodings are described in Section 2.7.

The arguments to CDFsetEncoding are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

encoding Encoding of the CDF.

4.2.39.1. Example(s)
The following example sets the encoding to HOST_ENCODING for the CDF.

.

.

.
dim id as long ‘ CDF identifier.
Dim status as integer ‘ Returned status code.
Dim encoding as integer ‘ Encoding.
.
.
encoding = HOST_ENCODING
try
 status = CDFsetEncoding(id, encoding)
 …
 ...
catch ex as Exception
 …
end try

61

4.2.40 CDFsetFileBackward
void CDFsetFileBackward(
mode as integer) ‘ in -- File backward Mode.

CDFsetFileBackward sets the backward mode. When the mode is set as FILEBACKWARDon, any new CDF files
created are of version 2.7, instead of the underlining library version. If mode FILEBACKWARDoff is used, the default
for creating new CDF files, the library version is the version of the file.

The arguments to CDFsetFileBackward are defined as follows:

mode Backward mode.

4.2.40.1. Example(s)
In the following example, it sets the file backward mode to FILEBACKWARDoff, which means that any files to be
created will be of version V3.*, the same as the library version.

.

.
try
 ….
 CDFsetFileBackward (FILEBACKWARDoff)
 …
 …
catch ex as Exception
 …
end try
.

4.2.41 CDFsetFormat
integer CDFsetFormat (‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
format as integer) ‘ in -- CDF format.
CDFsetFormat specifies the file format, either single or multi-file format, of the CDF. A CDF’s format may not be
changed after any variable values have been written. The formats are described in Section 2.5.

The arguments to CDFsetFormat are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

format File format of the CDF.

4.2.41.1. Example(s)
The following example sets the file format to MULTI_FILE for the CDF. The default is SINGLE_FILE format.

.

.

.
dim id as long ‘ CDF identifier.
Dim status as integer ‘ Returned status code.
Dim format as integer ‘ Format.
.
.
format = MULTI_FILE
try

62

 ….
 status = CDFsetFormat(id, format)
 ...
 …
catch ex as Exception
 …
end try

4.2.42 CDFsetLeapSecondLastUpdated
integer CDFsetLeapSecondLastUpdated (‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
lastUpdated as integer) ‘ in -- Leap second last updated date

CDFsetLeapSecondLastUpdated respecifies the leap second last updated date in the CDF. The value, in YYYYMMDD
form, indicates what/if the leap second table this CDF is based upon. The value is either a valid entry in the currently
used leap second table, or zero (0). Value zero means the CDF is not using any leap second table. This field is only
relevant to TT2000 data. Normally, this function is used for older CDFs that have not had the field set.

The arguments to CDFsetLeapSecondLastUpdated are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

lastUpdated Date the latest leap second was added to the leap second table.

4.2.42.1. Example(s)
The following example resets the leap second last updated date in the CDF. Likely, the file’s field was not set originally
(an older CDF).

.

.

.
dim id as long ‘ CDF identifier.
dim status as integer ‘ Returned status code.
dim lastUpdated as integer ‘ Leap second last updated.
.
.
lastUpdated = 20150701
try
 ….
 status = CDFsetLeapSecondLastUpdated (id, lastUpdated)
 ...
 …
catch ex as Exception
 …
end try

4.2.43 CDFsetMajority
integer CDFsetMajority (‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
majority as integer) ‘ in -- CDF variable majority.

CDFsetMajority specifies the variable majority, either row or column-major, of the CDF. A CDF’s majority may not be
changed after any variable values have been written. The majorities are described in Section 2.9.

63

The arguments to CDFsetMajority are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

majority Variable majority of the CDF.

4.2.43.1. Example(s)
The following example sets the majority to COLUMN_MAJOR for the CDF. The default is ROW_MAJOR.

.

.

.
dim id as long ‘ CDF identifier.
Dim status as integer ‘ Returned status code.
Dim majority as integer ‘ Majority.
.
.
majority = COLUMN_MAJOR
try
 ….
 status = CDFsetMajority (id, majority)
 …
 ...
catch ex as Exception
 …
end try

4.2.44 CDFsetNegtoPosfp0Mode
integer CDFsetNegtoPosfp0Mode (‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
negtoPosfp0 as integer) ‘ in -- -0.0 to 0.0 mode.

CDFsetNegtoPosfp0Mode specifies the –0.0 to 0.0 mode of the CDF. The –0.0 to 0.0 modes are described in Section
2.16.

The arguments to CDFsetNegtoPosfp0Mode are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

negtoPosfp0 –0.0 to 0.0 mode of the CDF.

4.2.44.1. Example(s)
The following example sets the –0.0 to 0.0 mode to ON for the CDF.

.

.

.
dim id as long ‘ CDF identifier.
Dim status as integer ‘ Returned status code.
Dim negtoPosfp0 as integer ‘ -0.0 to 0.0 mode.
.
.
negtoPosfp0 = NEGtoPOSfp0on
try

64

 ….
 status = CDFsetNegtoPosfp0Mode (id, negtoPosfp0)
 ...
catch ex as Exception
 …
end try

4.2.45 CDFsetReadOnlyMode
integer CDFsetReadOnlyMode(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
readOnlyMode as integer) ‘ in -- CDF read-only mode.

CDFsetReadOnlyMode specifies the read-only mode for a CDF. The read-only modes are described in Section 2.14.

The arguments to CDFsetReadOnlyMode are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

readOnlyMode Read-only mode.

4.2.45.1. Example(s)
The following example sets the read-only mode to OFF for the CDF.

.

.

.
dim id as long ‘ CDF identifier.
Dim readMode as integer ‘ CDF read-only mode.
Dim status as integer
.
.
readMode = READONLYoff
try
 ….
 status = CDFsetReadOnlyMode (id, readMode)
 …
 ...
catch ex as Exception
 …
end try

4.2.46 CDFsetStageCacheSize
integer CDFsetStageCacheSize(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
numBuffers as integer) ‘ in -- The stage cache size.

CDFsetStageCacheSize specifies the number of cache buffers being used for the staging scratch file a CDF. Refer to the
CDF User’s Guide for the description of the caching scheme used by the CDF library.

The arguments to CDFsetStageCacheSize are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

65

numBuffers Number of cache buffers.

4.2.46.1. Example(s)
The following example sets the number of stage cache buffers to 10 for a CDF.

.

.

.
dim id as long ‘ CDF identifier.
Dim numBufffers as integer ‘ The number of cache buffers.
Dim status as integer
.
.
numBufffers = 10
try
 ….
 status = CDFsetStageCacheSize (id, numBuffers)
 …
 ...
catch ex as Exception
 …
end try

4.2.47 CDFsetValidate
void CDFsetValidate(
mode as integer) ‘ in -- File Validation Mode.

CDFsetValidate sets the data validation mode. The validation mode dedicates whether certain data in an open CDF file
will be validated. This mode should be set before the any files are opened. Refer to Data Validation Section 2.21.

The arguments to CDFgetVersion are defined as follows:

mode Validation mode.

4.2.47.1. Example(s)
In the following example, it sets the validation mode to be on, so any following CDF files are subjected to the data
validation process when they are open.

.

.

.
try
 ….
 CDFsetValidate (VALIDATEFILEon)
 …
catch ex as Exception
 …
end try

4.2.48 CDFsetzMode
integer CDFsetzMode(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
zMode as integer) ‘ in -- CDF zMode.

66

CDFsetzMode specifies the zMode for a CDF file. The zModes are described in Section 2.15 and see the Concepts
chapter in the CDF User’s Guide for a more detailed information on zModes. zMode is used when dealing with a CDF
file that contains 1) rVariables, or 2) rVariables and zVariables. If you want to treat rVariables as zVariables, it’s highly
recommended to set the value of zMode to zMODEon2.

The arguments to CDFsetzMode are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

zMode CDF zMode.

4.2.48.1. Example(s)
In the following example, a CDF’s zMode is specified to zMODEon2: all rVariables are treated as zVariables with
NOVARY dimensions being eliminated.

.

.

.
dim id as long ‘ CDF identifier.
Dim status as integer ‘ Returned status code.
Dim zMode as integer ‘ CDF zMode.
.
.
zMode = zMODEon2
try
 ….
 status = CDFsetzMode (id, zMode)
 …
 …
catch ex as Exception
 …
end try

4.3 Variables
The methods in this section are all CDF variable-specific. A variable, either a rVariable or zVariable, is identified by
its unique name in a CDF or a variable number. Before you can perform any operation on a variable, the CDF in which
it resides in must be opened.

4.3.1 CDFcloserVar
integer CDFcloserVar(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varNum as integer) ‘ in -- rVariable number.

CDFcloserVar closes the specified rVariable file from a multi-file format CDF. Note that rVariables in a single-file CDF
don’t need to be closed. The variable's cache buffers are flushed before the variable's open file is closed. However, the
CDF file is still open.

NOTE: For the multi-file CDF, you must close all open variable files to guarantee that all modifications you have made
will actually be written to the CDF's file(s). If your program exits, normally or otherwise, without a successful call to
CDFcloseCDF, the CDF's cache buffers are left unflushed.

The arguments to CDFcloserVar are defined as follows:

67

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum Variable number for the open rVariable’s file. This identifier must have been initialized by a call to

CDFcreaterVar or CDFgetVarNum.

4.3.1.1. Example(s)
The following example will close an open rVariable file from a multi-file CDF.

.

.

.
dim id as long ‘ CDF identifier.
Dim status as integer ‘ Returned status code.
Dim varNum as integer ‘ rVariable number.
.
.
try
 ….
 varNum = CDFgetVarNum (id, “VAR_NAME1”)
 .
 status = CDFcloserVar (id, varNum)
...
catch ex as Exception
 …
end try

4.3.2 CDFclosezVar
integer CDFclosezVar(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varNum as integer) ‘ in -- zVariable number.

CDFclosezVar closes the specified zVariable file from a multi-file format CDF. Note that zVariables in a single-file
CDF don’t need to be closed. The variable's cache buffers are flushed before the variable's open file is closed. However,
the CDF file is still open.

NOTE: For the multi-file CDF, you must close all open variable files to guarantee that all modifications you have made
will actually be written to the CDF's file(s). If your program exits, normally or otherwise, without a successful call to
CDFcloseCDF, the CDF's cache buffers are left unflushed.

The arguments to CDFclosezVar are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum Variable number for the open zVariable’s file. This identifier must have been initialized by a call to

CDFcreatezVar or CDFgetVarNum.

4.3.2.1. Example(s)
The following example will close an open zVariable file from a multi-file CDF.

.

.

.
dim id as long ‘ CDF identifier.
Dim status as integer ‘ Returned status code.

68

Dim varNum as integer ‘ zVariable number.
.
.
try
 ….
 varNum = CDFgetVarNum (id, “VAR_NAME1”)
 .
 status = CDFclosezVar (id, varNum)
...
catch ex as Exception
 …
end try

4.3.3 CDFconfirmrVarExistence
integer CDFconfirmrVarExistence(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varName as string) ‘ in -- rVariable name.

CDFconfirmrVarExistence confirms the existence of a rVariable with a given name in a CDF. If the rVariable does not
exist, an error code will be returned. No exception is thrown if the variable is not found.

The arguments to CDFconfirmrEntryExistence are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varName rVariable name to check.

4.3.3.1. Example(s)
The following example checks the existence of rVariable “MY_VAR” in a CDF.

.

.

.
dim id as long ‘ CDF identifier.
Dim status as integer ‘ Returned status code.
.
.
try
 ….
 status = CDFconfirmrVarExistence (id, “MY_VAR”)
 if status <> CDF_OK then UserStatusHandler (status)
…
 ...
catch ex as Exception
 …
end try

4.3.4 CDFconfirmrVarPadValueExistence
integer CDFconfirmrVarPadValueExistence(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varNum as integer) ‘ in -- rVariable number.

69

CDFconfirmrVarPadValueExistence confirms the existence of an explicitly specified pad value for the specified
rVariable in a CDF. If an explicit pad value has not been specified, the informational status code
NO_PADVALUE_SPECIFIED will be returned. No exception is thrown if the variable’s pad value is not defined.

The arguments to CDFconfirmrVarPadValueExistence are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum rVariable number.

4.3.4.1. Example(s)
The following example checks the existence of the pad value of rVariable “MY_VAR” in a CDF.

.

.

.
dim id as long ‘ CDF identifier.
Dim status as integer ‘ Returned status code.
Dim varNum as integer ‘ rVariable number.
.
.
try
 ….
 varNum = CDFgetVarNum(id, “MY_VAR”)
 status = CDFconfirmrVarPadValueExistence (id, varNum)
 if status <> NO_PADVALUE_SPECIFIED then
.
 end if
 …
 ...
catch ex as Exception
 …
end try

4.3.5 CDFconfirmzVarExistence
integer CDFconfirmzVarExistence(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varName as string) ‘ in -- zVariable name.

CDFconfirmzVarExistence confirms the existence of a zVariable with a given name in a CDF. If the zVariable does not
exist, an error code will be returned. No exception is thrown if the variable is not found.

The arguments to CDFconfirmrEntryExistence are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varName zVariable name to check.

4.3.5.1. Example(s)
The following example checks the existence of zVariable “MY_VAR” in a CDF.

.

.

.

70

dim id as long ‘ CDF identifier.
Dim status as integer ‘ Returned status code.
.
.
try
 ….
 status = CDFconfirmzVarExistence (id, “MY_VAR”)
 if status <> CDF_OK then UserStatusHandler (status)
…
 ...
catch ex as Exception
 …
end try

4.3.6 CDFconfirmzVarPadValueExistence
integer CDFconfirmzVarPadValueExistence(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varNum as integer) ‘ in -- zVariable number.

CDFconfirmzVarPadValueExistence confirms the existence of an explicitly specified pad value for the specified
zVariable in a CDF. If an explicit pad value has not been specified, the informational status code
NO_PADVALUE_SPECIFIED will be returned. No exception is thrown if the variable’s pad value is not defined.

The arguments to CDFconfirmzVarPadValueExistence are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

4.3.6.1. Example(s)
The following example checks the existence of the pad value of zVariable “MY_VAR” in a CDF.

.

.

.
dim id as long id ‘ CDF identifier.
Dim status as integer ‘ Returned status code.
Dim varNum as integer ‘ zVariable number.
.
.
try
 ….
 varNum = CDFgetVarNum(id, “MY_VAR”)
 status = CDFconfirmzVarPadValueExistence (id, varNum)
 if status <> NO_PADVALUE_SPECIFIED then
.
 end if
 …
 ...
catch ex as Exception
 …
end try

71

4.3.7 CDFcreaterVar
integer CDFcreaterVar(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varName as string, ‘ in -- rVariable name.
dataType as integer, ‘ in -- Data type.
numElements as integer, ‘ in -- Number of elements (of the data type).
recVariance as integer, ‘ in -- Record variance.
dimVariances as integer(), ‘ in -- Dimension variances.
varNum as integer) ‘ out -- rVariable number.

CDFcreaterVar is used to create a new rVariable in a CDF. A variable (rVariable or rVariable) with the same name must
not already exist in the CDF.

The arguments to CDFcreaterVar are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varName Name of the rVariable to create. This may be at most CDF_VAR_NAME_LEN256

characters. Variable names are case-sensitive.

dataType Data type of the new rVariable. Specify one of the data types defined in Section 2.6.

numElements Number of elements of the data type at each value. For character data types (CDF_CHAR

and CDF_UCHAR), this is the number of characters in the string (each value consists of
the entire string). For all other data types this must always be one (1) - multiple elements
at each value are not allowed for non-character data types.

recVariance rVariable's record variance. Specify one of the variances defined in Section 2.10.

dimVariances rVariable's dimension variances. Each element of dimVariances specifies the

corresponding dimension variance. For each dimension specify one of the variances
defined in Section 2.10. For 0-dimensional rVariables this argument is ignored (but must
be present).

varNum Number assigned to the new rVariable. This number must be used in subsequent CDF

function calls when referring to this rVariable. An existing rVariable's number may be
determined with the CDFgetVarNum function.

4.3.7.1. Example(s)
The following example will create several rVariables in a 2-dimensional CDF.

.

.

.
dim id as long ‘ CDF identifier.
Dim status as integer ‘ Returned status code.
Dim EPOCHrecVary as integer = VARY ‘ EPOCH record variance.
Dim LATrecVary as integer = NOVARY ‘ LAT record variance.
Dim LONrecVary as integer = NOVARY ‘ LON record variance.
Dim TMPrecVary as integer = VARY ‘ TMP record variance.
Dim EPOCHdimVarys() as integer = {NOVARY,NOVARY} ‘ EPOCH dimension variances.
Dim LATdimVarys() as integer = {VARY,VARY} ‘ LAT dimension variances.
Dim LONdimVarys() as integer = {VARY,VARY} ‘ LON dimension variances.
Dim TMPdimVarys() as integer = {VARY,VARY} ‘ TMP dimension variances.
Dim EPOCHvarNum as integer ‘ EPOCH rVariable number.

72

Dim LATvarNum as integer ‘ LAT rVariable number.
Dim LONvarNum as integer ‘ LON rVariable number.
Dim TMPvarNum as integer ‘ TMP rVariable number.
.
.
try
 status = CDFcreaterVar (id, "EPOCH", CDF_EPOCH, 1, EPOCHrecVary, _
 EPOCHdimVarys, EPOCH varNum)
 status = CDFcreaterVar (id, "LATITUDE", CDF_INT2, 1, LATrecVary, LATdimVarys, LATvarNum)
 status = CDFcreaterVar (id, "INTITUDE", CDF_INT2, 1, LONrecVary, LONdimVarys, LONvarNum)
 status = CDFcreaterVar (id, "TEMPERATURE", CDF_REAL4, 1, TMPrecVary, _
 TMPdimVarys, TMPvarNum)

.
catch ex as Exception
 …
end try

4.3.8 CDFcreatezVar
integer CDFcreatezVar(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varName as string, ‘ in -- zVariable name.
dataType as integer, ‘ in -- Data type.
numElements as integer, ‘ in -- Number of elements (of the data type).
numDims as integer, ‘ in -- Number of dimensions.
dimSizes as integer(), ‘ in -- Dimension sizes
recVariance as integer, ‘ in -- Record variance.
dimVariances as integer(), ‘ in -- Dimension variances.
varNum as integer) ‘ out -- zVariable number.

CDFcreatezVar is used to create a new zVariable in a CDF. A variable (rVariable or zVariable) with the same name
must not already exist in the CDF.

The arguments to CDFcreatezVar are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varName Name of the zVariable to create. This may be at most CDF_VAR_NAME_LEN256

characters. Variable names are case-sensitive.

dataType Data type of the new zVariable. Specify one of the data types defined in Section 2.6.

numElements Number of elements of the data type at each value. For character data types (CDF_CHAR

and CDF_UCHAR), this is the number of characters in the string (each value consists of
the entire string). For all other data types this must always be one (1) - multiple elements
at each value are not allowed for non-character data types.

numDims Number of dimensions the zVariable. This may be as few as zero (0) and at most

CDF_MAX_DIMS.

dimSizes Size of each dimension. Each element of dimSizes specifies the corresponding dimension
size. Each size must be greater then zero (0). For 0-dimensional zVariables this argument is
ignored (but must be present).

73

recVariance zVariable's record variance. Specify one of the variances defined in Section 2.10.

dimVariances zVariable's dimension variances. Each element of dimVariances specifies the

corresponding dimension variance. For each dimension specify one of the variances
defined in Section 2.10. For 0-dimensional zVariables this argument is ignored (but must
be present).

varNum Number assigned to the new zVariable. This number must be used in subsequent CDF

function calls when referring to this zVariable. An existing zVariable's number may be
determined with the CDFgetVarNum function.

4.3.8.1. Example(s)
The following example will create several zVariables in a CDF. In this case EPOCH is a 0-dimensional, LAT and LON
are 2-diemnational, and TMP is a 1-dimensional.

.

.

.
dim id as long ‘ CDF identifier.
Dim status as integer ‘ Returned status code.
Dim EPOCHrecVary as integer = VARY ‘ EPOCH record variance.
Dim LATrecVary as integer = NOVARY ‘ LAT record variance.
Dim LONrecVary as integer = NOVARY ‘ LON record variance.
Dim TMPrecVary as integer = VARY ‘ TMP record variance.
Dim EPOCHdimVarys() as integer = (NOVARY} ‘ EPOCH dimension variances.
Dim LATdimVarys() as integer = {VARY,VARY} ‘ LAT dimension variances.
Dim LONdimVarys() as integer = {VARY,VARY} ‘ LON dimension variances.
Dim TMPdimVarys() as integer = {VARY,VARY} ‘ TMP dimension variances.
Dim EPOCHvarNum as integer ‘ EPOCH zVariable number.
Dim LATvarNum as integer ‘ LAT zVariable number.
Dim LONvarNum as integer ‘ LON zVariable number.
Dim TMPvarNum as integer ‘ TMP zVariable number.
Dim EPOCHdimSizes() as integer = {3} ‘ EPOCH dimension sizes.
Dim LATLONdimSizes() as integer = {2,3} ‘ LAT/LON dimension sizes.
Dim TMPdimSizes() as integer = {3} ‘ TMP dimension sizes.
.
.
try
 status = CDFcreatezVar (id, "EPOCH", CDF_EPOCH, 1, 0, EPOCHdimSizes, EPOCHrecVary, _
 EPOCHdimVarys, EPOCHvarNum)
 status = CDFcreatezVar (id, "LATITUDE", CDF_INT2, 1, 2, LATLONdimSizes,LATrecVary, _
 LATdimVarys, LATvarNum)
 status = CDFcreatezVar (id, "INTITUDE", CDF_INT2, 1, 2, LATLONdimSizes, LONrecVary, _
 LONdimVarys, LONvarNum)
 status = CDFcreatezVar (id, "TEMPERATURE", CDF_REAL4, 1, 1, TMPdimSizes, TMPrecVary, _
 TMPdimVarys, TMPvarNum)

.
catch ex as Exception
 …
end try

4.3.9 CDFdeleterVar
integer CDFdeleterVar(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.

74

varNum as integer) ‘ in -- rVariable identifier.

CDFdeleterVar deletes the specified rVariable from a CDF.

The arguments to CDFdeleterVar are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum rVariable number to be deleted.

4.3.9.1. Example(s)
The following example deletes the rVariable named MY_VAR in a CDF.

.

.

.
dim id as long ‘ CDF identifier.
Dim status as integer ‘ Returned status code.
Dim varNum as integer ‘ rVariable number.
.
.
try
 ….
 varNum = CDFgetVarNum (id, “MY_VAR”)
 status = CDFdeleterVar (id, varNum)
…
 ...
catch ex as Exception
 …
end try

4.3.10 CDFdeleterVarRecords
integer CDFdeleterVarRecords(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varNum as integer, ‘ in -- rVariable identifier.
startRec as integer, ‘ in -- Starting record number.
endRec as integer) ‘ in -- Ending record number.

CDFdeleterVarRecords deletes a range of data records from the specified rVariable in a CDF. If this is a variable with
sparse records, the remaining records after deletion will not be renumbered.7

The arguments to CDFdeleterVarRecords are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum Identifier of the rVariable.

startRec Starting record number to delete.

endRec Ending record number to delete.

7 Normal variables without sparse records have contiguous physical records. Once a section of the records get deleted,
the remaining ones automatically fill the gap.

75

4.3.10.1. Example(s)
The following example deletes 11 records (from record numbered 11 to 21) from the rVariable “MY_VAR” in a CDF.
Note: The first record is numbered as 0.

.

.

.
dim id as long ‘ CDF identifier.
Dim status as integer ‘ Returned status code.
Dim varNum as integer ‘ rVariable number.
Dim startRec as integer ‘ Starting record number.
Dim endRec as integer ‘ Ending record number.
.
.
try
 ….
 varNum = CDFgetVarNum (id, “MY_VAR”)
 startRec = 10
 endRec = 20
 status = CDFdeleterVarRecords (id, varNum, startRec, endRec)
…
 ...
catch ex as Exception
 …
end try

4.3.11 CDFdeleterVarRecordsRenumber
integer CDFdeleterVarRecordsRenumber(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varNum as integer, ‘ in -- rVariable identifier.
startRec as integer, ‘ in -- Starting record number.
endRec as integer) ‘ in -- Ending record number.

CDFdeleterVarRecordsRenumber deletes a range of data records from the specified rVariable in a CDF. If this is a
variable with sparse records, the remaining records after deletion will be renumbered, just like non-sparse variable’s
records.
The arguments to CDFdeleterVarRecordsRenumber are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum Identifier of the rVariable.

startRec Starting record number to delete.

endRec Ending record number to delete.

4.3.11.1. Example(s)
The following example deletes 11 records (from record numbered 11 to 21) from the rVariable “MY_VAR” in a CDF.
Note: The first record is numbered as 0. If the last record number is 100, then after the deletion, the record will be 89.

.

.

.
dim id as long ‘ CDF identifier.
Dim status as integer ‘ Returned status code.

76

Dim varNum as integer ‘ rVariable number.
Dim startRec as integer ‘ Starting record number.
Dim endRec as integer ‘ Ending record number.
.
.
try
 ….
 varNum = CDFgetVarNum (id, “MY_VAR”)
 startRec = 10
 endRec = 20
 status = CDFdeleterVarRecordsRenumber (id, varNum, startRec, endRec)
…
 ...
catch ex as Exception
 …
end try

4.3.12 CDFdeletezVar
integer CDFdeletezVar(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varNum as integer) ‘ in -- zVariable identifier.

CDFdeletezVar deletes the specified zVariable from a CDF.

The arguments to CDFdeletezVar are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum zVariable number to be deleted.

4.3.12.1. Example(s)
The following example deletes the zVariable named MY_VAR in a CDF.

.

.

.
dim id as long ‘ CDF identifier.
Dim status as integer ‘ Returned status code.
Dim varNum as integer ‘ zVariable number.
.
.
try
 ….
 varNum = CDFgetVarNum (id, “MY_VAR”)
 status = CDFdeletezVar (id, varNum)
…
 ...
catch ex as Exception
 …
end try

4.3.13 CDFdeletezVarRecords
integer CDFdeletezVarRecords(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.

77

varNum as integer, ‘ in -- zVariable identifier.
startRec as integer, ‘ in -- Starting record number.
endRec as integer) ‘ in -- Ending record number.

CDFdeletezVarRecords deletes a range of data records from the specified zVariable in a CDF. If this is a variable with
sparse records, the remaining records after deletion will not be renumbered.

The arguments to CDFdeletezVarRecords are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum Identifier of the zVariable.

startRec Starting record number to delete.

endRec Ending record number to delete.

4.3.13.1. Example(s)
The following example deletes 11 records (from record numbered 11 to 21) from the zVariable “MY_VAR” in a CDF.
Note: The first record is numbered as 0.

.

.

.
dim id as long ‘ CDF identifier.
Dim status as integer ‘ Returned status code.
Dim varNum as integer ‘ zVariable number.
Dim startRec as integer ‘ Starting record number.
Dim endRec as integer ‘ Ending record number.
.
.
try
 ….
 varNum = CDFgetVarNum (id, “MY_VAR”)
 startRec = 10
 endRec = 20
 status = CDFdeletezVarRecords (id, varNum, startRec, endRec)
…
 ...
catch ex as Exception
 …
end try

4.3.14 CDFdeletezVarRecordsRenumber
integer CDFdeletezVarRecordsRenumber(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varNum as integer, ‘ in -- zVariable identifier.
startRec as integer, ‘ in -- Starting record number.
endRec as integer) ‘ in -- Ending record number.

CDFdeletezVarRecordsRenumber deletes a range of data records from the specified zVariable in a CDF. If this is a
variable with sparse records, the remaining records after deletion will be renumbered, just like non-sparse variable’s
records.

The arguments to CDFdeletezVarRecordsRenumber are defined as follows:

78

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or

CDFcreateCDF) or CDFopenCDF.

varNum Identifier of the zVariable.

startRec Starting record number to delete.

endRec Ending record number to delete.

4.3.14.1. Example(s)
The following example deletes 11 records (from record numbered 11 to 21) from the zVariable “MY_VAR” in a CDF.
Note: The first record is numbered as 0. If the last record number is 100, then after the deletion, the record will be 89.

.

.

.
dim id as long ‘ CDF identifier.
Dim status as integer ‘ Returned status code.
Dim varNum as integer ‘ zVariable number.
Dim startRec as integer ‘ Starting record number.
Dim endRec as integer ‘ Ending record number.
.
.
try
 ….
 varNum = CDFgetVarNum (id, “MY_VAR”)
 startRec = 10
 endRec = 20
 status = CDFdeletezVarRecordsRenumber (id, varNum, startRec, endRec)
…
 ...
catch ex as Exception
 …
end try

4.3.15 CDFgetMaxWrittenRecNums
integer CDFgetMaxWrittenRecNums (‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
rVarsMaxNum as integer, ‘ out -- Maximum record number among all rVariables.
zVarsMaxNum as integer) ‘ out -- Maximum record number among all zVariables.

CDFgetMaxWrittenRecNums returns the maximum written record number for the rVariables and zVariables in a CDF.
The maximum record number for rVariables or zVariables is one less than the maximum number of records among all
respective variables.

The arguments to CDFgetMaxWrittenRecNums are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

rVarsMaxNum Maximum record number among all rVariables.

zVarsMaxNum Maximum record number among all zVariables.

79

4.3.15.1. Example(s)
The following example returns the maximum written record numbers among all rVariables and zVariables of the CDF.

.

.

.
dim id as long ‘ CDF identifier.
Dim status as integer ‘ Returned status code.
Dim rVarsMaxNum as integer ‘ Maximum record number among all rVariables.
Dim zVarsMaxNum as integer ‘ Maximum record number among all zVariables.
.
.
try
 ….
 status = CDFgetMaxWrittenRecNums (id, rVarsMaxNum, zVarsMaxNum)
…
 ...
catch ex as Exception
 …
end try

4.3.16 CDFgetNumrVars
integer CDFgetNumrVars (‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
numVars as integer) ‘ out -- Total number of rVariables.

CDFgetNumrVars returns the total number of rVariables in a CDF.

The arguments to CDFgetNumrVars are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

numVars Number of rVariables.

4.3.16.1. Example(s)
The following example returns the total number of rVariables in a CDF.

.

.

dim status as integer ‘ Returned status code.
dim id as long ‘ CDF identifier.
Dim numVars as integer ‘ Number of zVariables.

.
.
try
 ….
 status = CDFgetNumrVars (id, numVars)
…
 ...
catch ex as Exception
 …
end try

80

4.3.17 CDFgetNumzVars
integer CDFgetNumzVars (‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
numVars as integer) ‘ out -- Total number of zVariables.

CDFgetNumzVars returns the total number of zVariables in a CDF.

The arguments to CDFgetNumzVars are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

numVars Number of zVariables.

4.3.17.1. Example(s)
The following example returns the total number of zVariables in a CDF.

.

.

.
dim status as integer ‘ Returned status code.
dim id as long ‘ CDF identifier.
Dim numVars as integer ‘ Number of zVariables.

.
.
try
 ….
 status = CDFgetNumzVars (id, numVars)

…
 ...
catch ex as Exception
 …
end try

4.3.18 CDFgetrVarAllocRecords
integer CDFgetrVarAllocRecords(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varNum as integer, ‘ in -- Variable number.
numRecs as integer) ‘ out -- Allocated number of records.
CDFgetrVarAllocRecords returns the number of records allocated for the specified rVariable in a CDF. Refer to the
CDF User’s Guide for a description of allocating variable records in a single-file CDF.

The arguments to CDFgetrVarAllocRecords are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum rVariable number.

numRecs Number of allocated records.

81

4.3.18.1. Example(s)
The following example returns the number of allocated records for rVariable “MY_VAR” in a CDF.

.

.

.
dim id as long ‘ CDF identifier.
Dim varNum as integer ‘ rVariable number.
Dim numRecs as integer ‘ The allocated records.
Dim status as integer
.
try
 ….
 varNum = CDFgetVarNum (id, “MY_VAR”)
.
 status = CDFgetrVarAllocRecords (id, varNum, numRecs)
…
 ...
catch ex as Exception
 …
end try

4.3.19 CDFgetrVarBlockingFactor
integer CDFgetrVarBlockingFactor(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varNum as integer, ‘ in -- Variable number.
bf as integer) ‘ out -- Blocking factor.

CDFgetrVarBlockingFactor returns the blocking factor for the specified rVariable in a CDF. Refer to the CDF User’s
Guide for a description of the blocking factor.

The arguments to CDFgetrVarBlockingFactor are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum rVariable number.

bf Blocking factor. A value of zero (o) indicates that the default blocking factor will be used.

4.3.19.1. Example(s)
The following example returns the blocking factor for the rVariable “MY_VAR” in a CDF.

.

.

.
dim id as long ‘ CDF identifier.
Dim varNum as integer ‘ rVariable number.
Dim bf as integer ‘ The blocking factor.
Dim status as integer.
.
try
 ….
 varNum = CDFgetVarNum (id, “MY_VAR”)

 status = CDFgetrVarBlockingFactor (id, varNum, bf) .

82

catch ex as Exception
 …
end try

4.3.20 CDFgetrVarCacheSize
integer CDFgetrVarCacheSize(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varNum as integer, ‘ in -- Variable number.
numBuffers as integer) ‘ out -- Number of cache buffers.

CDFgetrVarCacheSize returns the number of cache buffers being for the specified rVariable in a CDF. This operation
is not applicable to a single-file CDF. Refer to the CDF User’s Guide for a description of caching scheme used by the
CDF library.

The arguments to CDFgetrVarCacheSize are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum rVariable number.

numBuffers Number of cache buffers.

4.3.20.1. Example(s)
The following example returns the number of cache buffers for rVariable “MY_VAR” in a CDF.

.

.

.
dim id as long ‘ CDF identifier.
Dim varNum as integer ‘ rVariable number.
Dim numBuffers as integer ‘ The number of cache buffers.
dim status as integer
.
try
 ….
 varNum = CDFgetVarNum (id, “MY_VAR”)
.
 status = CDFgetrVarCacheSize (id, varNum, numBuffers)
…
 ...
catch ex as Exception
 …
end try

4.3.21 CDFgetrVarCompression
integer CDFgetrVarCompression(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varNum as integer, ‘ in -- Variable number.
compType as integer, ‘ out -- Compression type.
cParms as integer(), ‘ out -- Compression parameters.
cPct as integer) ‘ out -- Compression percentage.

CDFgetrVarCompression returns the compression type/parameters and compression percentage of the specified
rVariable in a CDF. Refer to Section 2.11 for a description of the CDF supported compression types/parameters. The

83

compression percentage is the result of the compressed size from all variable records divided by its original,
uncompressed variable size.

The arguments to CDFgetrVarCompression are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum rVariable number.

compType Compression type.

cParms Compression parameters.

cPct Percentage of the uncompressed size of rVariable’s data values needed to store the compressed

values.

4.3.21.1. Example(s)
The following example returns the compression information for rVariable “MY_VAR” in a CDF.

.

.

.
dim id as long ‘ CDF identifier.
Dim varNum as integer ‘ rVariable number.
Dim compType as integer ‘ The compression type.
Dim cParms(1) as integer ‘ The compression parameters.
Dim cPct as integer ‘ The compression percentage.
.
.
try
 ….
 varNum = CDFgetVarNum (id, “MY_VAR”)
 status = CDFgetrVarCompression (id, varNum, compType, cParms, cPct)
…
 ...
catch ex as Exception
 …
end try

4.3.22 CDFgetrVarData
integer CDFgetrVarData(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varNum as integer, ‘ in -- Variable number.
recNum as integer, ‘ in -- Record number.
indices as integer(), ‘ in -- Dimension indices.
value as TYPE) ‘ out -- Data value.
 ‘ TYPE -- VB value/string type or object.
CDFgetrVarData returns a data value from the specified indices, the location of the element, in the given record of the
specified rVariable in a CDF.

The arguments to CDFgetrVarData are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

84

varNum rVariable number.

recNum Record number.

indices Dimension indices within the record.

value Data value.

4.3.22.1. Example(s)
The following example returns two data values, the first and the fifth element, in Record 0 from rVariable “MY_VAR”,
a 2-dimensional (2 by 3) CDF_DOUBLE type variable, in a row-major CDF.

.

.

.
dim id as long ‘ CDF identifier.
Dim varNum as integer ‘ rVariable number.
Dim recNum as integer ‘ The record number.
Dim indices(2) as integer ‘ The dimension indices.
Dim value1 as double, value2 as double ‘ The data values.
.
.
try
 ….
 varNum = CDFgetVarNum (id, “MY_VAR”)
 recNum = 0
 indices(0) = 0
 indices(1) = 0
 status = CDFgetrVarData (id, varNum, recNum, indices, value1)
 indices(0) = 1
 indices(1) = 1
 object value2o
 status = CDFgetrVarData (id, varNum, recNum, indices, value2o)
 value2 = value2o
…
 ...
catch ex as Exception
 …
end try

4.3.23 CDFgetrVarDataType
integer CDFgetrVarDataType(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varNum as integer, ‘ in -- Variable number.
dataType as integer) ‘ out -- Data type.

CDFgetrVarDataType returns the data type of the specified rVariable in a CDF. Refer to Section 2.6 for a description of
the CDF data types.

The arguments to CDFgetrVarDataType are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum rVariable number.

85

dataType Data type.

4.3.23.1. Example(s)
The following example returns the data type of rVariable “MY_VAR” in a CDF.

.

.

.
dim id as long ‘ CDF identifier.
Dim varNum as integer ‘ rVariable number.
Dim dataType as integer ‘ The data type.
dim status as integer
.
try
 ….
 varNum = CDFgetVarNum (id, “MY_VAR”)
 status = CDFgetrVarDataType (id, varNum, dataType)
…
 ...
catch ex as Exception
 …
end try

4.3.24 CDFgetrVarDimVariances
integer CDFgetrVarDimVariances(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varNum as integer, ‘ in -- Variable number.
dimVarys as integer()) ‘ out -- Dimension variances.

CDFgetrVarDimVariances returns the dimension variances of the specified rVariable in a CDF. For 0-dimensional
rVariable, this operation is not applicable. The dimension variances are described in section 2.10.

The arguments to CDFgetrVarDimVariances are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum rVariable number.

dimVarys Dimension variances.

4.3.24.1. Example(s)
The following example returns the dimension variances of the 2-dimensional rVariable “MY_VAR” in a CDF.

.

.

.
dim id as long ‘ CDF identifier.
Dim dimVarys(2) as integer ‘ The dimension variances.
.
.
try
 ….

 status = CDFgetrVarDimVariances (id, CDFgetVarNum (id, “MY_VAR”), dimVarys)

86

 ...
catch ex as Exception
 …
end try

4.3.25 CDFgetrVarInfo
integer CDFgetrVarInfo(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varNum as integer, ‘ in -- Variable number.
dataType as integer, ‘ out -- Data type.
numElems as integer, ‘ out -- Number of elements.
numDims as integer, ‘ out -- Number of dimensions.
dimSizes as integer()) ‘ out -- Dimension sizes.

CDFgetrVarInfo returns the basic information about the specified rVariable in a CDF.

The arguments to CDFgetrVarInfo are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum rVariable number.

dataType Data type of the variable.

numElems Number of elements for the data type of the variable.

numDims Number of dimensions.

dimSizes Dimension sizes.

4.3.25.1. Example(s)
The following example returns the basic information of rVariable “MY_VAR” in a CDF.

.

.

.
dim id as long ‘ CDF identifier.
Dim dataType as integer ‘ The data type.
Dim numElems as integer ‘ The number of elements.
Dim numDims as integer ‘ The number of dimensions.
Dim dimSizes() as integer ‘ The dimension sizes.
dim status as integer
.
try
 ….

 status = CDFgetrVarInfo (id, CDFgetVarNum (id, “MY_VAR”), dataType, numElems, _
 numDims, dimVarys)

 ...
catch ex as Exception
 …
end try

87

4.3.26 CDFgetrVarMaxAllocRecNum
integer CDFgetrVarMaxAllocRecNum(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varNum as integer, ‘ in -- Variable number.
maxRec as integer) ‘ out -- Maximum allocated record #.

CDFgetrVarMaxAllocRecNum returns the number of records allocated for the specified rVariable in a CDF.

The arguments to CDFgetrVarMaxAllocRecNum are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum rVariable number.

maxRec Number of records allocated.

4.3.26.1. Example(s)
The following example returns the maximum allocated record number for the rVariable “MY_VAR” in a CDF.

.

.

.
dim id as long ‘ CDF identifier.
Dim maxRec as integer ‘ The maximum record number.
Dim status as integer.
.
try
 ….
 status = CDFgetrVarMaxAllocRecNum (id, CDFgetVarNum (id, “MY_VAR”), maxRec)
…
 ...
catch ex as Exception
 …
end try

4.3.27 CDFgetrVarMaxWrittenRecNum
integer CDFgetrVarMaxWrittenRecNum (‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varNum as integer, ‘ in -- Variable number.
maxRec as integer) ‘ out -- Maximum written record number.

CDFgetrVarMaxWrittenRecNum returns the maximum record number written for the specified rVariable in a CDF.

The arguments to CDFgetrVarMaxWrittenRecNum are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum rVariable number.

maxRec Maximum written record number.

88

4.3.27.1. Example(s)
The following example returns the maximum record number written for the rVariable “MY_VAR” in a CDF.

.

.

.
dim id as long ‘ CDF identifier.
Dim maxRec as integer ‘ The maximum record number.
Dim status as integer.
.
try
 ….
 status = CDFgetrVarMaxWrittenRecNum (id, CDFgetVarNum (id, “MY_VAR”), maxRec)
…
 ...
catch ex as Exception
 …
end try

4.3.28 CDFgetrVarName
integer CDFgetrVarName(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varNum as integer, ‘ in -- Variable number.
varName as string) ‘ out -- Variable name.

CDFgetrVarName returns the name of the specified rVariable, by its number, in a CDF.

The arguments to CDFgetrVarName are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum rVariable number.

varName Name of the variable.

4.3.28.1. Example(s)
The following example returns the name of the rVariable whose variable number is 1.

.

.

.
dim id as long ‘ CDF identifier.
Dim varNum as integer ‘ rVariable number.
Dim varName as string ‘ The name of the variable.
Dim status as integer.
.
varNum = 1
try
 ….
 status = CDFgetrVarName (id, varNum, varName)
…
 ...
catch ex as Exception
 …
end try

89

4.3.29 CDFgetrVarNumElements
integer CDFgetrVarNumElements(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varNum as integer, ‘ in -- Variable number.
numElems as integer) ‘ out -- Number of elements.

CDFgetrVarNumElements returns the number of elements for each data value of the specified rVariable in a CDF. For
character data type (CDF_CHAR and CDF_UCHAR), the number of elements is the number of characters in the string.
For other data types, the number of elements will always be one (1).

The arguments to CDFgetrVarNumElements are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum rVariable number.

numElems Number of elements.

4.3.29.1. Example(s)
The following example returns the number of elements for the data type from rVariable “MY_VAR” in a CDF.

.

.

.
dim id as long ‘ CDF identifier.
Dim numElems as integer ‘ The number of elements.
Dim status as integer.
.
try
 ….
 status = CDFgetrVarNumElements (id, CDFgetVarNum (id, “MY_VAR”), numElems) …
 ...
catch ex as Exception
 …
end try

4.3.30 CDFgetrVarNumRecsWritten
integer CDFgetrVarNumRecsWritten(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varNum as integer, ‘ in -- Variable number.
numRecs as integer) ‘ out -- Number of written records.

CDFgetrVarNumRecsWritten returns the number of records written for the specified rVariable in a CDF. This number
may not correspond to the maximum record written if the rVariable has sparse records.

The arguments to CDFgetrVarNumRecsWritten are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum rVariable number.

numRecs Number of written records.

90

4.3.30.1. Example(s)
The following example returns the number of written records from rVariable “MY_VAR” in a CDF.

.

.

.
dim id as long ‘ CDF identifier.
Dim numRecs as integer ‘ The number of written records.
Dim status as integer.
.
try
 ….
 status = CDFgetrVarNumRecsWritten (id, CDFgetVarNum (id, “MY_VAR”), numRecs)
…
 ...
catch ex as Exception
 …
end try

4.3.31 CDFgetrVarPadValue
integer CDFgetrVarPadValue(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varNum as integer, ‘ in -- Variable number.
value as TYPE) ‘ out -- Pad value.
 ‘ TYPE -- VB value/string type or object.
CDFgetrVarPadValue returns the pad value of the specified rVariable in a CDF. If a pad value has not been explicitly
specified for the rVariable through CDFsetrVarPadValue, the informational status code NO_PADVALUE_SPECIFIED
will be returned. Since a variable’s pad value is an optional, no exception is thrown while trying to get its value if its
value is not set. It’s recommended to check the returned status after the method is called.

The arguments to CDFgetrVarPadValue are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum rVariable number.

value Pad value.

4.3.31.1. Example(s)
The following example returns the pad value from rVariable “MY_VAR”, a CDF_INT4 type variable, in a CDF.

.

.

.
dim id as long ‘ CDF identifier.
Dim padValue as integer ‘ The pad value.
Dim status as integer.
.
try
 ….
 object padValueo
 status = CDFgetrVarPadValue (id, CDFgetVarNum (id, “MY_VAR”), padValueo)
 if status <> NO_PADVALUE_SPECIFIED then
 . padValue = Ctype(padValueo, integer)
 end if

91

 .
...
catch ex as Exception
 …
end try

4.3.32 CDFgetrVarRecordData
integer CDFgetrVarRecordData(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varNum as integer, ‘ in -- Variable number.
dim recNum as integer, ‘ in -- Record number.
buffer as TYPE) ‘ out -- Record data.
 ‘ TYPE -- VB value/string type (likely

‘ an array) or object.

CDFgetrVarRecordData returns an entire record at a given record number for the specified rVariable in a CDF. The
buffer should be large enough to hold the entire data values form the variable.

The arguments to CDFgetrVarRecordData are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum rVariable number.

recNum Record number.

buffer The buffer holding the entire record data.

4.3.32.1. Example(s)
The following example will read two full records (record numbers 2 and 5) from rVariable “MY_VAR”, a 2-dimension
(2 by 3), CDF_INT4 type variable, in a CDF. The variable’s dimension variances are all VARY.

.

.

.
dim id as long ‘ CDF identifier.
Dim varNum ‘ rVariable number.
Dim buffer1(,) as integer ‘ The data holding buffer – pre-allocation.
Dim buffer2(,) as integer ‘ The data holding buffer – API allocation.
Dim status as integer.
.
try
 ….
 varNum = CDFgetVarNum (id, “MY_VAR”)
 status = CDFgetrVarRecordData (id, varNum, 2, buffer1)
 dim buffer2o as object
 status = CDFgetrVarRecordData (id, varNum, 5, buffer2o)
 buffer2 = buffer2o
 …
 ...
catch ex as Exception
 …
end try

92

4.3.33 CDFgetrVarRecVariance
integer CDFgetrVarRecVariance(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varNum as integer, ‘ in -- Variable number.
recVary as integer) ‘ out -- Record variance.

CDFgetrVarRecVariance returns the record variance of the specified rVariable in a CDF. The record variances are
described in Section 2.10.

The arguments to CDFgetrVarRecVariance are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum rVariable number.

recVary Record variance.

4.3.33.1. Example(s)
The following example returns the record variance for the rVariable “MY_VAR” in a CDF.

.

.

.
dim id as long ‘ CDF identifier.
Dim recVary as integer ‘ The record variance.
.Dim status as integer
.
try
 ….
 status = CDFgetrVarRecVariance (id, CDFgetVarNum (id, “MY_VAR”), recVary) …
 ...
catch ex as Exception
 …
end try

4.3.34 CDFgetrVarReservePercent
integer CDFgetrVarReservePercent(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varNum as integer, ‘ in -- Variable number.
percent as integer) ‘ out -- Reserve percentage.

CDFgetrVarReservePercent returns the compression reserve percentage being used for the specified rVariable in a CDF.
This operation only applies to compressed rVariables. Refer to the CDF User’s Guide for a description of the reserve
scheme used by the CDF library.

The arguments to CDFgetrVarReservePercent are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum rVariable number.

percent Reserve percentage.

93

4.3.34.1. Example(s)
The following example returns the compression reserve percentage from the compressed rVariable “MY_VAR” in a
CDF.

.

.

.
dim id as long ‘ CDF identifier.
Dim percent as integer ‘ The compression reserve percentage.
dim status as integer
.
try
 ….
 status = CDFgetrVarReservePercent (id, CDFgetVarNum (id, “MY_VAR”), percent)
…
 ...
catch ex as Exception
 …
end try

4.3.35 CDFgetrVarsDimSizes
integer CDFgetrVarsDimSizes(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
dimSizes as integer()) ‘ out -- Dimension sizes.

CDFgetrVarsDimSizes returns the size of each dimension for the rVariables in a CDF. (all rVariables have the same
dimensional sizes.) For 0-dimensional rVariables, this operation is not applicable.

The arguments to CDFgetrVarsDimSizes are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

dimSizes Dimension sizes. Each element of dimSizes receives the corresponding dimension size.

4.3.35.1. Example(s)
The following example returns the dimension sizes for rVariables in a CDF.

.

.

.
dim id as long ‘ CDF identifier.
dim dimSizes() as integer ‘ Dimensional sizes.
Dim status as integer
.try
 ….
 status = CDFgetrVarsDimSizes (id, dimSizes)
…
 ...
catch ex as Exception
 …
end try

4.3.36 CDFgetrVarSeqData
integer CDFgetrVarSeqData(‘ out -- Completion status code.

94

id as long, ‘ in -- CDF identifier.
varNum as integer, ‘ in -- Variable number.
value as TYPE) ‘ out -- Data value.
 ‘ TYPE -- VB value/string type or object.

CDFgetrVarSeqData reads one value from the specified rVariable in a CDF at the current sequential value (position).
After the read, the current sequential value is automatically incremented to the next value. An error is returned if the
current sequential value is past the last record of the rVariable. Use CDFsetrVarSeqPos method to set the current
sequential value (position).

The arguments to CDFgetrVarSeqData are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum rVariable number from which to read data.

value The buffer to store the value.

4.3.36.1. Example(s)
The following example will read the first two data values from the beginning of record number 2 (from a 2-dimensional
rVariable whose data type is CDF_INT4) in a CDF.

.

.

.
dim id as long ‘ CDF identifier.
Dim varNum as integer ‘ The variable number from which to read data
Dim value1 as integer, value2 as integer ‘ The data value.
Dim indices(2) as integer ‘ The indices in a record.
Dim recNum as integer ‘ The record number.
Dim status as integer.
.
recNum = 2
indices(0) = 0
indices(1) = 0
try
 ….
 status = CDFsetrVarSeqPos (id, varNum, recNum, indices)
 status = CDFgetrVarSeqData (id, varNum, value1)
 object value2o
 status = CDFgetrVarSeqData (id, varNum, value2o)
 value2 = value2o
…
 ...
catch ex as Exception
 …
end try

4.3.37 CDFgetrVarSeqPos
integer CDFgetrVarSeqPos(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varNum as integer, ‘ in -- Variable number.
recNum as integer, ‘ out -- Record number.
indices as integer()) ‘ out -- Indices in a record.

95

CDFgetrVarSeqPos returns the current sequential value (position) for sequential access for the specified rVariable in a
CDF. Note that a current sequential value is maintained for each rVariable individually. Use CDFsetrVarSeqPos method
to set the current sequential value.

The arguments to CDFgetrVarSeqPos are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum rVariable number.

recNum rVariable record number.

indices Dimension indices. Each element of indices receives the corresponding dimension index. For

0-dimensional rVariable, this argument is ignored, but must be presented.

4.3.37.1. Example(s)
The following example returns the location for the current sequential value (position), the record number and indices
within it, from a 2-dimensional rVariable named MY_VAR in a CDF.

.

.

.
dim id as long ‘ CDF identifier.
Dim recNum as integer ‘ The record number.
Dim indices() as integer ‘ The indices.
dim status as integer
.
try
 ….
 status = CDFgetrVarSeqPos (id, CDFgetVarNum (id, “MY_VAR”), recNum, indices)
...
catch ex as Exception
 …
end try

4.3.38 CDFgetrVarsMaxWrittenRecNum
integer CDFgetrVarsMaxWrittenRecNum(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
recNum as integer) ‘ out -- Maximum record number.

CDFgetrVarsMaxWrittenRecNum returns the maximum record number among all of the rVariables in a CDF. Note that
this is not the number of written records but rather the maximum written record number (that is one less than the number
of records). A value of negative one (-1) indicates that rVariables contain no records. The maximum record number for
an individual rVariable may be acquired using the CDFgetrVarMaxWrittenRecNum method call.

Suppose there are three rVariables in a CDF:Var1, Var2, and Var3. If Var1 contains 15 records, Var2 contains 10 records,
and Var3 contains 95 records, then the value returned from CDFgetrVarsMaxWrittenRecNum would be 95.

The arguments to CDFgetrVarsMaxWrittenRecNum are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

recNum Maximum written record number.

96

4.3.38.1. Example(s)
The following example returns the maximum record number for all of the rVariables in a CDF.

.

.
dim id as long ‘ CDF identifier.
Dim recNum as integer ‘ The maximum record number.
Dim status as integer.
.
try
 ….
 status = CDFgetrVarsMaxWrittenRecNum (id, recNum)
…
 ...
catch ex as Exception
 …
end try

4.3.39 CDFgetrVarsNumDims
integer CDFgetrVarsNumDims(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
numDims as integer) ‘ out -- Number of dimensions.

CDFgetrVarsNumDims returns the number of dimensions (dimensionality) for the rVariables in a CDF.

The arguments to CDFgetrVarsNumDims are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

numDims Number of dimensions.

4.3.39.1. Example(s)
The following example returns the number of dimensions for rVariables in a CDF.

.

.

.
dim id as long ‘ CDF identifier.
Dim numDims as integer ‘ The dimensionality of the variable.
Dim status as integer.
.
try
 ….
 status = CDFgetrVarsNumDims (id, numDims)
…
 ...
catch ex as Exception
 …
end try

4.3.40 CDFgetrVarSparseRecords
integer CDFgetrVarSparseRecords(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varNum as integer, ‘ in -- The variable number.

97

sRecordsType as integer) ‘ out -- The sparse records type.
CDFgetrVarSparseRecords returns the sparse records type of the rVariable in a CDF. Refer to Section 2.12.1 for the
description of sparse records.

The arguments to CDFgetrVarSparseRecords are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum Variable number.

sRecordsType Sparse records type.

4.3.40.1. Example(s)
The following example returns the sparse records type of the rVariable “MY_VAR” in a CDF.

.

.

.
dim id as long ‘ CDF identifier.
Dim sRecordsType as integer ‘ The sparse records type.
Dim status as integer.
.
try
 ….
 status = CDFgetrVarSparseRecords (id, CDFgetVarNum (id, “MY_VAR”), sRecordsType) …
 ...
catch ex as Exception
 …
end try

4.3.41 CDFgetVarNum 8
integer CDFgetVarNum(‘ out -- Variable number.
id as long, ‘ in -- CDF identifier.
varName as string) ‘ in -- Variable name.

CDFgetVarNum returns the variable number for the given variable name (rVariable or zVariable). If the variable is
found, CDFgetVarNum returns its variable number - which will be equal to or greater than zero (0). If an error occurs
(e.g., the variable does not exist in the CDF), an error code (of type int) is returned, and an exception is thrown. Error
codes are less than zero (0). The returned variable number should be used in the functions of the same variable type,
rVariable or zVariable. If it is an rVariable, functions dealing with rVariables should be used. Similarly, functions for
zVariables should be used for zVariables.

The arguments to CDFgetVarNum are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varName Name of the variable to search. This may be at most CDF_VAR_NAME_LEN256 characters.

Variable names are case-sensitive.

CDFgetVarNum may be used as an embedded function call where an rVariable or zVariable number is needed.

8 Since no two variables, either rVariable or zVariable, can have the same name, this function now returns the variable
number for the given rVariable or zVariable name (if the variable name exists in a CDF).

98

4.3.41.1. Example(s)
In the following example CDFgetVarNum is used as an embedded function call when inquiring about a zVariable

.

.

.
dim id as long id ‘ CDF identifier.
Dim status as integer ‘ Returned status code.
Dim varName as string ‘ Variable name.
Dim dataType as integer ‘ Data type of the zVariable.
Dim numElements as integer ‘ Number of elements (of the data type).
Dim numDims as integer ‘ Number of dimensions.
Dim dimSizes() as integer ‘ Dimension sizes.
Dim recVariance as integer ‘ Record variance.
Dim dimVariances() as integer ‘ Dimension variances.
.
.
try
 ….
 status = CDFinquirezVar (id, CDFgetVarNum (id,"LATITUDE"), varName, dataType, _
 numElements, numDims, dimSizes , recVariance, dimVariances)
…
 ...
catch ex as Exception
 …
end try

In this example the zVariable named LATITUDE was inquired. Note that if LATITUDE did not exist in the CDF, the
call to CDFgetVarNum would have returned an error code. Passing that error code to CDFinquirezVar as a zVariable
number would have resulted in CDFinquirezVar also returning an error code. Also note that the name written into
varName is already known (LATITUDE). In some cases the zVariable names will be unknown - CDFinquirezVar would
be used to determine them. CDFinquirezVar is described in Section 4.3.66.

4.3.42 CDFgetzVarAllocRecords
integer CDFgetzVarAllocRecords(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varNum as integer, ‘ in -- Variable number.
numRecs as integer) ‘ out -- Allocated number of records.

CDFgetzVarAllocRecords returns the number of records allocated for the specified zVariable in a CDF. Refer to the
CDF User’s Guide for a description of allocating variable records in a single-file CDF.

The arguments to CDFgetzVarAllocRecords are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

numRecs Number of allocated records.

4.3.42.1. Example(s)
The following example returns the number of allocated records for zVariable “MY_VAR” in a CDF.

.

.

99

.
dim id as long ‘ CDF identifier.
Dim varNum as integer ‘ zVariable number.
Dim numRecs as integer ‘ The allocated records.
Dim status as integer.
.
try
 ….
 varNum = CDFgetVarNum (id, “MY_VAR”)
 status = CDFgetzVarAllocRecords (id, varNum, numRecs)
…
 ...
catch ex as Exception
 …
end try

4.3.43 CDFgetzVarBlockingFactor
integer CDFgetzVarBlockingFactor(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varNum as integer, ‘ in -- Variable number.
bf as integer) ‘ out -- Blocking factor.

CDFgetzVarBlockingFactor returns the blocking factor for the specified zVariable in a CDF. Refer to the CDF User’s
Guide for a description of the blocking factor.

The arguments to CDFgetzVarBlockingFactor are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

bf Blocking factor. A value of zero (o) indicates that the default blocking factor will be used.

4.3.43.1. Example(s)
The following example returns the blocking factor for the zVariable “MY_VAR” in a CDF.

.

.

.
dim id as long ‘ CDF identifier.
Dim varNum as integer ‘ zVariable number.
Dim bf as integer ‘ The blocking factor.
dim status as integer
.
try
 ….
 varNum = CDFgetVarNum (id, “MY_VAR”)

 status = CDFgetzVarBlockingFactor (id, varNum, bf) .
catch ex as Exception
 …
end try

100

4.3.44 CDFgetzVarCacheSize
integer CDFgetzVarCacheSize(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varNum as integer, ‘ in -- Variable number.
numBuffers as integer) ‘ out -- Number of cache
CDFgetzVarCacheSize returns the number of cache buffers being for the specified zVariable in a CDF. This operation
is not applicable to a single-file CDF. Refer to the CDF User’s Guide for a description of caching scheme used by the
CDF library.

The arguments to CDFgetzVarCacheSize are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

numBuffers Number of cache buffers.

4.3.44.1. Example(s)
The following example returns the number of cache buffers for zVariable “MY_VAR” in a CDF.

.

.

.
dim id as long ‘ CDF identifier.
Dim varNum as integer ‘ zVariable number.
Dim numBuffers as integer ‘ The number of cache buffers.
Dim status as integer.
.
try
 ….
 varNum = CDFgetVarNum (id, “MY_VAR”)
.
 status = CDFgetzVarCacheSize (id, varNum, numBuffers)
…
 ...
catch ex as Exception
 …
end try

4.3.45 CDFgetzVarCompression
integer CDFgetzVarCompression(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varNum as integer, ‘ in -- Variable number.
compType as integer, ‘ out -- Compression type.
cParms as integer(), ‘ out -- Compression parameters.
cPct as integer) ‘ out -- Compression percentage.

CDFgetzVarCompression returns the compression type/parameters and compression percentage of the specified
zVariable in a CDF. Refer to Section 2.11 for a description of the CDF supported compression types/parameters. The
compression percentage is the result of the compressed size from all variable records divided by its original,
uncompressed variable size.

The arguments to CDFgetzVarCompression are defined as follows:

101

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

compType Compression type.

cParms Compression parameters.

cPct Percentage of the uncompressed size of zVariable’s data values needed to store the

compressed values.

4.3.45.1. Example(s)
The following example returns the compression information for zVariable “MY_VAR” in a CDF.

.

.

.
dim id as long ‘ CDF identifier.
Dim varNum as integer ‘ zVariable number.
Dim compType as integer ‘ The compression type.
Dim cParms() as integer ‘ The compression parameters.
Dim cPct as integer ‘ The compression percentage.
Dim status as integer.
.
try
 ….
 varNum = CDFgetVarNum (id, “MY_VAR”)
 status = CDFgetzVarCompression (id, varNum, compType, cParms, cPct)
…
 ...
catch ex as Exception
 …
end try

4.3.46 CDFgetzVarData
integer CDFgetzVarData(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varNum as integer, ‘ in -- Variable number.
dim recNum as integer, ‘ in -- Record number.
indices as integer(), ‘ in -- Dimension indices.
value as TYPE) ‘ out -- Data value.
 ‘ TYPE -- VB value/string type or object.

CDFgetzVarData returns a data value from the specified indices, the location of the element, in the given record of the
specified zVariable in a CDF.

The arguments to CDFgetzVarData are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

recNum Record number.

102

indices Dimension indices within the record.

value Data value.

4.3.46.1. Example(s)
The following example returns two data values, the first and the fifth element, in Record 0 from zVariable “MY_VAR”,
a 2-dimensional (2 by 3) CDF_DOUBLE type variable, in a row-major CDF.

.

.

.
dim id as long ‘ CDF identifier.
Dim varNum as integer ‘ zVariable number.
Dim recNum as integer ‘ The record number.
Dim indices(2) as integer ‘ The dimension indices.
Dim value1 as double, value2 as double ‘ The data values.
.
.
try
 ….
 varNum = CDFgetVarNum (id, “MY_VAR”)
 recNum = 0
 indices(0) = 0
 indices(1) = 0
 status = CDFgetzVarData (id, varNum, recNum, indices, value1)
 indices(0) = 1
 indices(1) = 1
 object value2o
 status = CDFgetzVarData (id, varNum, recNum, indices, value2o)
 value2 = value2o
…
 ...
catch ex as Exception
 …
end try

4.3.47 CDFgetzVarDataType
integer CDFgetzVarDataType(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varNum as integer, ‘ in -- Variable number.
dataType as integer) ‘ out -- Data type.

CDFgetzVarDataType returns the data type of the specified zVariable in a CDF. Refer to Section 2.6 for a description
of the CDF data types.

The arguments to CDFgetzVarDataType are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

dataType Data type.

103

4.3.47.1. Example(s)
The following example returns the data type of zVariable “MY_VAR” in a CDF.

.

.

.
dim id as long ‘ CDF identifier.
Dim varNum as integer ‘ zVariable number.
Dim dataType as integer ‘ The data type.
Dim status as integer.
.
try
 ….
 varNum = CDFgetVarNum (id, “MY_VAR”)
 status = CDFgetzVarDataType (id, varNum, dataType)
…
 ...
catch ex as Exception
 …
end try

4.3.48 CDFgetzVarDimSizes
integer CDFgetzVarDimSizes(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varNum as integer, ‘ in -- Variable number.
dimSizes as integer) ‘ out -- Dimension sizes.

CDFgetzVarDimSizes returns the size of each dimension for the specified zVariable in a CDF. For 0-dimensional
zVariables, this operation is not applicable.

The arguments to CDFgetzVarDimSizes are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number

dimSizes Dimension sizes. Each element of dimSizes receives the corresponding dimension size.

4.3.48.1. Example(s)
The following example returns the dimension sizes for zVariable “MY_VAR” in a CDF.

.

.

.
dim id as long ‘ CDF identifier.
dim dimSizes() as integer ‘ Dimensional sizes.
Dim status as integer

.try
 ….
 status = CDFgetzVarDimSizes (id, CDFgetVarNum (id, “MY_VAR”), dimSizes)
…
 ...
catch ex as Exception
 …

104

end try

4.3.49 CDFgetzVarDimVariances
integer CDFgetzVarDimVariances(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varNum as integer, ‘ in -- Variable number.
dimVarys as integer()) ‘ out -- Dimension variances.

CDFgetzVarDimVariances returns the dimension variances of the specified zVariable in a CDF. For 0-dimensional
zVariable, this operation is not applicable. The dimension variances are described in section 2.10.

The arguments to CDFgetzVarDimVariances are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

dimVarys Dimension variances.

4.3.49.1. Example(s)
The following example returns the dimension variances of the 2-dimensional zVariable “MY_VAR” in a CDF.

.

.

.
dim id as long ‘ CDF identifier.
Dim dimVarys() as integer ‘ The dimension variances.
Dim status as integer.
.
try
 ….

 status = CDFgetzVarDimVariances (id, CDFgetVarNum (id, “MY_VAR”), dimVarys)

 ...
catch ex as Exception
 …
end try

4.3.50 CDFgetzVarInfo
integer CDFgetzVarInfo(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varNum as integer, ‘ in -- Variable number.
dataType as integer, ‘ out -- Data type.
numElems as integer, ‘ out -- Number of elements.
numDims as integer, ‘ out -- Number of dimensions.
dimSizes as integer()) ‘ out -- Dimension sizes.

CDFgetzVarInfo returns the basic information about the specified zVariable in a CDF.

The arguments to CDFgetzVarInfo are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

105

varNum zVariable number.

dataType Data type of the variable.

numElems Number of elements for the data type of the variable.

numDims Number of dimensions.

dimSizes Dimension sizes.

4.3.50.1. Example(s)
The following example returns the basic information of zVariable “MY_VAR” in a CDF.

.

.

.
dim id as long ‘ CDF identifier.
Dim dataType as integer ‘ The data type.
Dim numElems as integer ‘ The number of elements.
Dim numDims as integer ‘ The number of dimensions.
Dim dimSizes() as integer ‘ The dimension sizes.
Dim status as integer.
.
try
 ….

 status = CDFgetzVarInfo (id, CDFgetVarNum (id, “MY_VAR”), dataType, numElems, _
 numDims, dimVarys)

 ...
catch ex as Exception
 …
end try

4.3.51 CDFgetzVarMaxAllocRecNum
integer CDFgetzVarMaxAllocRecNum(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varNum as integer, ‘ in -- Variable number.
maxRec as integer) ‘ out -- Maximum allocated record #.

CDFgetzVarMaxAllocRecNum returns the number of records allocated for the specified zVariable in a CDF.

The arguments to CDFgetzVarMaxAllocRecNum are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

maxRec Number of records allocated.

4.3.51.1. Example(s)
The following example returns the maximum allocated record number for the zVariable “MY_VAR” in a CDF.

.

106

.

.
dim id as long ‘ CDF identifier.
Dim maxRec as integer ‘ The maximum record number.
dim status as integer
.
try
 ….
 status = CDFgetzVarMaxAllocRecNum (id, CDFgetVarNum (id, “MY_VAR”), maxRec)
…
 ...
catch ex as Exception
 …
end try

4.3.52 CDFgetzVarMaxWrittenRecNum
integer CDFgetzVarMaxWrittenRecNum (‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varNum as integer, ‘ in -- Variable number.
maxRec as integer) ‘ out -- Maximum written record number.

CDFgetzVarMaxWrittenRecNum returns the maximum record number written for the specified zVariable in a CDF.

The arguments to CDFgetzVarMaxWrittenRecNum are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

maxRec Maximum written record number.

4.3.52.1. Example(s)
The following example returns the maximum record number written for the zVariable “MY_VAR” in a CDF.

.

.

.
dim id as long ‘ CDF identifier.
Dim maxRec as integer ‘ The maximum record number.
Dim status as integer
.
.
try
 ….
 status = CDFgetzVarMaxWrittenRecNum (id, CDFgetVarNum (id, “MY_VAR”), maxRec)
…
 ...
catch ex as Exception
 …
end try

4.3.53 CDFgetzVarName
integer CDFgetzVarName(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.

107

varNum as integer, ‘ in -- Variable number.
varName as string) ‘ out -- Variable name.

CDFgetzVarName returns the name of the specified zVariable, by its number, in a CDF.

The arguments to CDFgetzVarName are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

varName Name of the variable.

4.3.53.1. Example(s)
The following example returns the name of the zVariable whose variable number is 1.

.

.

.
dim id as long ‘ CDF identifier.
Dim varNum as integer ‘ zVariable number.
Dim varName as string ‘ The name of the variable.
Dim status as integer.
.
varNum = 1
try
 ….
 status = CDFgetzVarName (id, varNum, varName)
…
 ...
catch ex as Exception
 …
end try

4.3.54 CDFgetzVarNumDims
integer CDFgetzVarNumDims(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varNum as integer, ‘ in -- Variable number.
numDims as integer) ‘ out -- Number of dimensions.

CDFgetzVarNumDims returns the number of dimensions (dimensionality) for the specified zVariable in a CDF.

The arguments to CDFgetzVarNumDims are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number

numDims Number of dimensions.

4.3.54.1. Example(s)
The following example returns the number of dimensions for zVariable “MY_VAR” in a CDF.

.

108

.

.
dim id as long ‘ CDF identifier.
Dim numDims as integer ‘ The dimensionality of the variable.
Dim status as integer.
.
try
 ….
 status = CDFgetzVarNumDims (id, CDFgetVarNum (id, “MY_VAR”), numDims)
…
 ...
catch ex as Exception
 …
end try

4.3.55 CDFgetzVarNumElements
integer CDFgetzVarNumElements(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varNum as integer, ‘ in -- Variable number.
numElems as integer) ‘ out -- Number of elements.

CDFgetzVarNumElements returns the number of elements for each data value of the specified zVariable in a CDF. For
character data type (CDF_CHAR and CDF_UCHAR), the number of elements is the number of characters in the string.
For other data types, the number of elements will always be one (1).

The arguments to CDFgetzVarNumElements are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

numElems Number of elements.

4.3.55.1. Example(s)
The following example returns the number of elements for the data type from zVariable “MY_VAR” in a CDF.

.

.

.
dim id as long ‘ CDF identifier.
dim numElems as integer ‘ The number of elements.
Dim status as integer.
.
try
 ….
 status = CDFgetzVarNumElements (id, CDFgetVarNum (id, “MY_VAR”), numElems) …
 ...
catch ex as Exception
 …
end try

4.3.56 CDFgetzVarNumRecsWritten
integer CDFgetzVarNumRecsWritten(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.

109

varNum as integer, ‘ in -- Variable number.
numRecs as integer) ‘ out -- Number of written records.

CDFgetzVarNumRecsWritten returns the number of records written for the specified zVariable in a CDF. This number
may not correspond to the maximum record written if the zVariable has sparse records.

The arguments to CDFgetzVarNumRecsWritten are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

numRecs Number of written records.

4.3.56.1. Example(s)
The following example returns the number of written records from zVariable “MY_VAR” in a CDF.

.

.

.
dim id as long ‘ CDF identifier.
Dim numRecs as integer ‘ The number of written records.
Dim status as integer.
.
try
 ….
 status = CDFgetzVarNumRecsWritten (id, CDFgetVarNum (id, “MY_VAR”), numRecs)
…
 ...
catch ex as Exception
 …
end try

4.3.57 CDFgetzVarPadValue
integer CDFgetzVarPadValue(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varNum as integer, ‘ in -- Variable number.
value as TYPE) ‘ out -- Pad value.
 ‘ TYPE -- VB value/string type or object
CDFgetzVarPadValue returns the pad value of the specified zVariable in a CDF. If a pad value has not been explicitly
specified for the zVariable through CDFsetzVarPadValue, the informational status code
NO_PADVALUE_SPECIFIED will be returned. Since a variable’s pad value is an optional, no exception is thrown
while trying to get its value if its value is not set. It’s recommended to check the returned status after the method is called.

The arguments to CDFgetzVarPadValue are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

value Pad value.

110

4.3.57.1. Example(s)
The following example returns the pad value from zVariable “MY_VAR”, a CDF_INT4 type variable, in a CDF.

.

.

.
dim id as long ‘ CDF identifier.
Dim padValue as integer ‘ The pad value.
Dim status as integer.
.
try
 ….
 dim padValueo as object
 status = CDFgetzVarPadValue (id, CDFgetVarNum (id, “MY_VAR”), padValueo)
 if status <> NO_PADVALUE_SPECIFIED then
 . padValue = Ctype(padValueo, integer)
 end if
 .
. …
 ...
catch ex as Exception
 …
end try

4.3.58 CDFgetzVarRecordData
integer CDFgetzVarRecordData(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varNum as integer, ‘ in -- Variable number.
dim recNum as integer, ‘ in -- Record number.
buffer as TYPE) ‘ out -- Record data.
 ‘ TYPE -- VB value/string type (likely an

‘ array) or object
CDFgetzVarRecordData returns an entire record at a given record number for the specified zVariable in a CDF. The
buffer should be large enough to hold the entire data values form the variable.

The arguments to CDFgetzVarRecordData are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

recNum Record number.

buffer The buffer holding the entire record data.

4.3.58.1. Example(s)
The following example will read two full records (record numbers 2 and 5) from zVariable “MY_VAR”, a 2-dimension
(2 by 3), CDF_INT4 type variable, in a CDF. The variable’s dimension variances are all VARY.

.

.

.
dim id as long ‘ CDF identifier.
Dim varNum as integer ‘ zVariable number.
Dim buffer1(2,3) as integer ‘ The data holding buffer – pre-allocation.

111

Dim buffer2 as object ‘ The data holding buffer – API allocation.
Dim status as integer.
.
try
 ….
 varNum = CDFgetVarNum (id, “MY_VAR”)
 status = CDFgetzVarRecordData (id, varNum, 2, buffer1)
 status = CDFgetzVarRecordData (id, varNum, 5, buffer2)
 …
 ...
catch ex as Exception
 …
end try

4.3.59 CDFgetzVarRecVariance
integer CDFgetzVarRecVariance(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varNum as integer, ‘ in -- Variable number.
recVary as integer) ‘ out -- Record variance.

CDFgetzVarRecVariance returns the record variance of the specified zVariable in a CDF. The record variances are
described in Section 2.10.
The arguments to CDFgetzVarRecVariance are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

recVary Record variance.

4.3.59.1. Example(s)
The following example returns the record variance for the zVariable “MY_VAR” in a CDF.

.

.

.
dim id as long ‘ CDF identifier.
Dim recVary as integer ‘ The record variance.
dim status as integer
.
try
 ….
 status = CDFgetzVarRecVariance (id, CDFgetVarNum (id, “MY_VAR”), recVary) …
 ...
catch ex as Exception
 …
end try

4.3.60 CDFgetzVarReservePercent
integer CDFgetzVarReservePercent(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varNum as integer, ‘ in -- Variable number.
percent as integer) ‘ out -- Reserved percentage.

112

CDFgetzVarReservePercent returns the compression reserved percentage being used for the specified zVariable in a
CDF. This operation only applies to compressed zVariables. Refer to the CDF User’s Guide for a description of the
reserve scheme used by the CDF library.

The arguments to CDFgetzVarReservePercent are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

percent Reserved percentage.

4.3.60.1. Example(s)
The following example returns the compression reserved percentage from the compressed zVariable “MY_VAR” in a
CDF.

.

.

.
dim id as long ‘ CDF identifier.
Dim percent as integer ‘ The compression reserved percentage.
Dim status as integer.
.
try
 ….
 status = CDFgetzVarReservePercent (id, CDFgetVarNum (id, “MY_VAR”), percent)
…
 ...
catch ex as Exception
 …
end try

4.3.61 CDFgetzVarSeqData
integer CDFgetzVarSeqData(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varNum as integer, ‘ in -- Variable number.
value as TYPE) ‘ out -- Data value.
 ‘ TYPE -- VB value/string type or object

CDFgetzVarSeqData reads one value from the specified zVariable in a CDF at the current sequential value (position).
After the read, the current sequential value is automatically incremented to the next value. An error is returned if the
current sequential value is past the last record of the zVariable. Use CDFsetzVarSeqPos method to set the current
sequential value (position).

The arguments to CDFgetzVarSeqData are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number from which to read data.

value The buffer to store the value.

113

4.3.61.1. Example(s)
The following example will read the first two data values from the beginning of record number 2 (from a 2-dimensional
zVariable whose data type is CDF_INT4) in a CDF.

.

.

.
dim id as long ‘ CDF identifier.
Dim varNum as integer ‘ The variable number from which to read data
Dim value1 as integer, value2 as integer ‘ The data value.
Dim indices(2) as integer ‘ The indices in a record.
Dim recNum as integer ‘ The record number.
Dim status as integer.
.
recNum = 2
indices(0) = 0
indices(1) = 0
try
 ….
 status = CDFsetzVarSeqPos (id, varNum, recNum, indices)
 status = CDFgetzVarSeqData (id, varNum, value1)
 dim value2o as object
 status = CDFgetzVarSeqData (id, varNum, value2o)
 value2 = value2o
…
 ...
catch ex as Exception
 …
end try

4.3.62 CDFgetzVarSeqPos
integer CDFgetzVarSeqPos(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varNum as integer, ‘ in -- Variable number.
recNum as integer, ‘ out -- Record number.
indices as integer()) ‘ out -- Indices in a record.

CDFgetzVarSeqPos returns the current sequential value (position) for sequential access for the specified zVariable in a
CDF. Note that a current sequential value is maintained for each zVariable individually. Use CDFsetzVarSeqPos method
to set the current sequential value.

The arguments to CDFgetzVarSeqPos are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

recNum zVariable record number.

indices Dimension indices. Each element of indices receives the corresponding dimension index. For

0-dimensional zVariable, this argument is ignored, but must be presented.

114

4.3.62.1. Example(s)
The following example returns the location for the current sequential value (position), the record number and indices
within it, from a 2-dimensional zVariable named MY_VAR in a CDF.

.

.

.
dim id as long ‘ CDF identifier.
Dim recNum as integer ‘ The record number.
Dim indices() as integer ‘ The indices.
Dim status as integer.
.
try
 ….
 status = CDFgetzVarSeqPos (id, CDFgetVarNum (id, “MY_VAR”), recNum, indices)
...
catch ex as Exception
 …
end try

4.3.63 CDFgetzVarsMaxWrittenRecNum
integer CDFgetzVarsMaxWrittenRecNum(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
recNum as integer) ‘ out -- Maximum record number.

CDFgetzVarsMaxWrittenRecNum returns the maximum record number among all of the zVariables in a CDF. Note that
this is not the number of written records but rather the maximum written record number (that is one less than the number
of records). A value of negative one (-1) indicates that zVariables contain no records. The maximum record number for
an individual zVariable may be acquired using the CDFgetzVarMaxWrittenRecNum method call.

Suppose there are three zVariables in a CDF:Var1, Var2, and Var3. If Var1 contains 15 records, Var2 contains 10
records, and Var3 contains 95 records, then the value returned from CDFgetzVarsMaxWrittenRecNum would be 95.

The arguments to CDFgetzVarsMaxWrittenRecNum are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

recNum Maximum written record number.

4.3.63.1. Example(s)
The following example returns the maximum record number for all of the zVariables in a CDF.

.

.
dim id as long ‘ CDF identifier.
Dim recNum as integer ‘ The maximum record number.
dim status as integer
.
try
 ….
 status = CDFgetzVarsMaxWrittenRecNum (id, recNum)
…
 ...
catch ex as Exception
 …

115

end try

4.3.64 CDFgetzVarSparseRecords
integer CDFgetzVarSparseRecords(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varNum as integer, ‘ in -- The variable number.
sRecordsType as integer) ‘ out -- The sparse records type.

CDFgetzVarSparseRecords returns the sparse records type of the zVariable in a CDF. Refer to Section 2.12.1 for the
description of sparse records.

The arguments to CDFgetzVarSparseRecords are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum Variable number.

sRecordsType Sparse records type.

4.3.64.1. Example(s)
The following example returns the sparse records type of the zVariable “MY_VAR” in a CDF.

.

.

.
dim id as long ‘ CDF identifier.
Dim sRecordsType as integer ‘ The sparse records type.
dim status as integer
.
try
 ….
 status = CDFgetzVarSparseRecords (id, CDFgetVarNum (id, “MY_VAR”), sRecordsType) …
 ...
catch ex as Exception
 …
end try

4.3.65 CDFhyperGetrVarData
integer CDFhyperGetrVarData(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varNum as integer, ‘ in -- rVariable number.
recStart as integer, ‘ in -- Starting record number.
recCount as integer, ‘ in -- Number of records.
recInterval as integer, ‘ in -- Reading interval between records.
indices as integer(), ‘ in -- Dimension indices of starting value.
counts as integer(), ‘ in -- Number of values along each dimension.
intervals as integer(), ‘ in -- Reading intervals along each dimension.
buffer as TYPE) ‘ out -- Buffer of values.
 ‘ TYPE -- VB value/string type (likely an array)

‘ or object

CDFhyperGetrVarData is used to read one or more values for the specified rVariable. It is important to know the variable
majority of the CDF before using this method because the values placed into the data buffer will be in that majority.

116

CDFinquireCDF can be used to determine the default variable majority of a CDF distribution. The Concepts chapter in
the CDF User's Guide describes the variable majorities.

The record number starts at 0, not 1. For example, if you want to read the first 5 records, the starting record number
(recStart), the number of records to read (recCount), and the record interval (recInterval) should be 0, 5, and 1,
respectively. Note: you need to provide dummy arrays, with at least one (1) element, for indices, counts and intervals
for scalar variables.

The arguments to CDFhyperGetrVarData are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum rVariable number from which to read data. This number may be determined with a call to

CDFgetVarNum.

recStart Record number at which to start reading.

recCount Number of records to read.

recInterval The reading interval between records (e.g., an interval of 2 means read every other record).

indices Dimension indices (within each record) at which to start reading. Each element of indices specifies

the corresponding dimension index. For 0-dimensional rVariable, this argument is ignored (but
must be present).

counts Number of values along each dimension to read. Each element of counts specifies the

corresponding dimension count. For 0-dimensional rVariable, this argument is ignored (but must
be present).

intervals For each dimension, the dimension interval between reading (e.g., an interval of 2 means read

every other value). Each element of intervals specifies the corresponding dimension interval. For
0-dimensional rVariable, this argument is ignored (but must be present).

buffer The data holding buffer for the read values. The majority of the values in this buffer will be the

same as that of the CDF. This buffer must be large to hold the values. CDFinquirerVar can be
used to determine the rVariable's data type and number of elements (of that data type) at each
value. If a dimensional array of strings is expected, then use object type.

4.3.65.1. Example(s)
The following example will read 3 records of data, starting at record number 13 (14th record), from a rVariable named
Temperature The variable is a 3-dimensional array with sizes (180,91,10) and the CDF’s variable majority is
ROW_MAJOR. The record variance is VARY, the dimension variances are (VARY,VARY,VARY), and the data type
is CDF_REAL4. This example is similar to the CDFgetrVarData example except that it uses a single call to
CDFhyperGetrVarData (rather than numerous calls to. CDFgetrVarData).

.

.

.
dim id as long ‘ CDF identifier.
Dim status as integer ‘ Returned status code.
Dim tmp(,,,) as single ‘ Temperature values.
Dim varN as integer ‘ rVariable number.
Dim recStart as integer = 13 ‘ Start record number.
Dim recCount as integer = 3 ‘ Number of records to read
Dim recInterval as integer = 1 ‘ Record interval – read every record

117

Dim indices() as integer = {0,0,0} ‘ Dimension indices.
Dim counts() as integer = {180,91,10} ‘ Dimension counts.
Dim intervals() as integer = {1,1,1} ‘ Dimension intervals – read all
.
.
try
 status = CDFhyperGetrVarData (id, varN, recStart, recCount, recInterval, indices, counts, intervals, _
 tmp)
…
 ...
catch ex as Exception
 …
end try

Note that if the CDF's variable majority had been COLUMN_MAJOR, the tmp array would have been declared float
tmp(10,91,180,3) for proper indexing.

4.3.66 CDFhyperGetzVarData
integer CDFhyperGetzVarData(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varNum as integer, ‘ in -- zVariable number.
recStart as integer, ‘ in -- Starting record number.
recCount as integer, ‘ in -- Number of records.
recInterval as integer, ‘ in -- Reading interval between records.
indices as integer(), ‘ in -- Dimension indices of starting value.
counts as integer(), ‘ in -- Number of values along each dimension.
intervals as integer(), ‘ in -- Reading intervals along each dimension.
buffer as TYPE) ‘ out -- Buffer of values.
 ‘ TYPE -- VB value/string type (likely an array)

‘ or object.

CDFhyperGetzVarData is used to read one or more values for the specified zVariable. It is important to know the variable
majority of the CDF before using this method because the values placed into the data buffer will be in that majority.
CDFinquireCDF can be used to determine the default variable majority of a CDF distribution. The Concepts chapter in
the CDF User's Guide describes the variable majorities.

The record number starts at 0, not 1. For example, if you want to read the first 5 records, the starting record number
(recStart), the number of records to read (recCount), and the record interval (recInterval) should be 0, 5, and 1,
respectively. Note: you need to provide dummy arrays, with at least one (1) element, for indices, counts and intervals
for scalar variables.

The arguments to CDFhyperGetzVarData are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum zVariable number from which to read data. This number may be determined with a call to

CDFgetVarNum.

recStart Record number at which to start reading.

recCount Number of records to read.

recInterval Reading interval between records (e.g., an interval of 2 means read every other record).

118

indices Dimension indices (within each record) at which to start reading. Each element of indices specifies
the corresponding dimension index. For 0-dimensional zVariable, this argument is ignored (but
must be present).

counts Number of values along each dimension to read. Each element of counts specifies the

corresponding dimension count. For 0-dimensional zVariable, this argument is ignored (but must
be present).

intervals For each dimension, the dimension interval between reading (e.g., an interval of 2 means read

every other value). Each element of intervals specifies the corresponding dimension interval. For
0-dimensional zVariable, this argument is ignored (but must be present).

buffer The data holding buffer for the read values. The majority of the values in this buffer will be the

same as that of the CDF. This buffer must be large to hold the values. CDFinquirezVar can be
used to determine the zVariable's data type and number of elements (of that data type) at each
value. If a dimensional array of strings is expected, then use object type.

4.3.66.1. Example(s)
The following example will read 3 records of data, starting at record number 13 (14th record), from a zVariable named
Temperature The variable is a 3-dimensional array with sizes (180,91,10) and the CDF’s variable majority is
ROW_MAJOR. The record variance is VARY, the dimension variances are {VARY,VARY,VARY}, and the data type
is CDF_REAL4. This example is similar to the CDFgetzVarData example except that it uses a single call to
CDFhyperGetzVarData (rather than numerous calls to. CDFgetzVarData).

.

.

.
dim id as long ‘ CDF identifier.
Dim status as integer ‘ Returned status code.
Dim tmp(,,,) as single ‘ Temperature values.
Dim varN as integer ‘ zVariable number.
Dim recStart as integer = 13 ‘ Start record number.
Dim recCount as integer = 3 ‘ Number of records to read
Dim recInterval as integer = 1 ‘ Record interval – read every record
Dim indices() as integer = {0,0,0} ‘ Dimension indices.
Dim counts() as integer = {180,91,10} ‘ Dimension counts.
Dim intervals() as integer = {1,1,1} ‘ Dimension intervals – read all
.
.
try
 varN = CDFgetVarNum (id, "Temperature")

 status = CDFhyperGetzVarData (id, varN, recStart, recCount, recInterval, indices, counts, intervals, _
 tmp)
…
 ...
catch ex as Exception
 …
end try

Note that if the CDF's variable majority had been COLUMN_MAJOR, the tmp array would have been declared float
tmp(10,91,180,3) for proper indexing.

4.3.67 CDFhyperPutrVarData
integer CDFhyperPutrVarData(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.

119

varNum as integer, ‘ in -- rVariable number.
recStart as integer, ‘ in -- Starting record number.
recCount as integer, ‘ in -- Number of records.
recInterval as integer, ‘ in -- Writing interval between records.
indices as integer(), ‘ in -- Dimension indices of starting value.
counts as integer(), ‘ in -- Number of values along each dimension.
intervals as integer(), ‘ in -- Writing intervals along each dimension.
buffer as TYPE) ‘ in -- Buffer of values.
 ‘ TYPE -- VB value/string type (likely an array)

CDFhyperPutrVarData is used to write one or more values from the data holding buffer to the specified rVariable. It is
important to know the variable majority of the CDF before using this method because the values in the data buffer will
be written using that majority. CDFinquireCDF can be used to determine the default variable majority of a CDF
distribution. The Concepts chapter in the CDF User's Guide describes the variable majorities.

The record number starts at 0, not 1. For example, if you want to write 2 records (10th and 11th record), the starting record
number (recStart), the number of records to write (recCount), and the record interval (recInterval) should be 9, 2, and 1,
respectively. Note: you need to provide dummy arrays, with at least one (1) element, for indices, counts and intervals
for scalar variables.

The arguments to CDFhyperPutrVarData are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum rVariable number to which write data. This number may be determined with a call to

CDFgetVarNum.

recStart Record number at which to start writing.

recCount Number of records to write.

recInterval Interval between records for writing (e.g., an interval of 2 means write every other record).

indices Indices (within each record) at which to start writing. Each element of indices specifies the

corresponding dimension index. For 0-dimensional rVariable this argument is ignored (but must
be present).

counts Number of values along each dimension to write. Each element of counts specifies the

corresponding dimension count. For 0-dimensional rVariable this argument is ignored (but must
be present).

intervals For each dimension, the interval between values for writing (e.g., an interval of 2 means write

every other value). Each element of intervals specifies the corresponding dimension interval. For
0-dimensional rVariable this argument is ignored (but must be present).

buffer The data holding buffer of values to write. The majority of the values in this buffer must be the

same as that of the CDF. The values starting at memory address buffer are written to the CDF.

4.3.67.1. Example(s)
The following example writes 2 records to a rVariable named LATITUDE that is a 1-dimensional array with dimension
sizes (181). The dimension variances are {VARY}, and the data type is CDF_INT2. This example is similar to the
CDFputrVarData example except that it uses a single call to CDFhyperPutrVarData rather than numerous calls to
CDFputrVarData.

.

120

.

.
dim id as long ‘ CDF identifier.
Dim status as integer ‘ Returned status code.
Dim i as integer, j as integer ‘ Latitude value.
Dim lats(2,181) as short ‘ Buffer of latitude values.
Dim varN as integer ‘ rVariable number.
Dim recStart as integer = 0 ‘ Record number.
Dim recCount as integer = 2 ‘ Record counts.
Dim recInterval as integer = 1 ‘ Record interval.
Dim indices() as integer = {0} ‘ Dimension indices.
Dim counts() as integer = {181} ‘ Dimension counts.
Dim intervals() as integer = {1} ‘ Dimension intervals.
.
.
try
 ….
 varN = CDFgetVarNum (id, "LATITUDE")
 for i = 0 to 1
 for j = -90 to 90
 lats(i,90+lat) = Ctype(j, short)
 next j
 next i

…status = CDFhyperPutrVarData (id, varN, recStart, recCount, recInterval, indices, counts, intervals, lats)

 ...
catch ex as Exception
 …
end try

4.3.68 CDFhyperPutzVarData
integer CDFhyperPutzVarData(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varNum as integer, ‘ in -- zVariable number.
recStart as integer, ‘ in -- Starting record number.
recCount as integer, ‘ in -- Number of records.
recInterval as integer, ‘ in -- Writing interval between records.
indices as integer(), ‘ in -- Dimension indices of starting value.
counts as integer(), ‘ in -- Number of values along each dimension.
intervals as integer(), ‘ in -- Writing intervals along each dimension.
buffer as TYPE) ‘ in -- Buffer of values.
 ‘ TYPE -- VB value/string type (likely an array).

CDFhyperPutzVarData is used to write one or more values from the data holding buffer to the specified zVariable. It is
important to know the variable majority of the CDF before using this method because the values in the data buffer will
be written using that majority. CDFinquireCDF can be used to determine the default variable majority of a CDF
distribution. The Concepts chapter in the CDF User's Guide describes the variable majorities.

The record number starts at 0, not 1. For example, if you want to write 2 records (10th and 11th record), the starting record
number (recStart), the number of records to write (recCount), and the record interval (recInterval) should be 9, 2, and 1,
respectively. Note: you need to provide dummy arrays, with at least one (1) element, for indices, counts and intervals
for scalar variables.

The arguments to CDFhyperPutzVarData are defined as follows:

121

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or

CDFcreateCDF) or CDFopenCDF.

varNum zVariable number to which write data. This number may be determined with a call to

CDFgetVarNum.

recStart Record number at which to start writing.

recCount Number of records to write.

recInterval Interval between records for writing (e.g., an interval of 2 means write every other record).

indices Indices (within each record) at which to start writing. Each element of indices specifies the

corresponding dimension index. For 0-dimensional zVariable this argument is ignored (but must
be present).

counts Number of values along each dimension to write. Each element of counts specifies the

corresponding dimension count. For 0-dimensional zVariable this argument is ignored (but must
be present).

intervals For each dimension, the interval between values for writing (e.g., an interval of 2 means write

every other value). Each element of intervals specifies the corresponding dimension interval. For
0-dimensional zVariable this argument is ignored (but must be present).

buffer The data holding buffer of values to write. The majority of the values in this buffer must be the

same as that of the CDF. The values starting at memory address buffer are written to the CDF.

4.3.68.1. Example(s)
The following example writes 2 records to a zVariable named LATITUDE that is a 1-dimensional array with dimension
sizes (181). The dimension variances are {VARY}, and the data type is CDF_INT2. This example is similar to the
CDFputzVarData example except that it uses a single call to CDFhyperPutzVarData rather than numerous calls to
CDFputzVarData.

.

.

.
dim id as long ‘ CDF identifier.
Dim status as integer ‘ Returned status code.
Dim i as integer, j as integer ‘ Latitude value.
Dim lats(2,181) as short ‘ Buffer of latitude values.
Dim varN as integer ‘ zVariable number.
Dim recStart as integer = 0 ‘ Record number.
Dim recCount as integer = 2 ‘ Record counts.
Dim recInterval as integer = 1 ‘ Record interval.
Dim indices() as integer = {0} ‘ Dimension indices.
Dim counts() as integer = {181} ‘ Dimension counts.
Dim intervals() as integer = {1} ‘ Dimension intervals.
.
.
try
 ….
 varN = CDFgetVarNum (id, "LATITUDE")
 for i= 0 to 1
 for j = -90 to 90
 lats(i,90+lat) = Ctype(j, short)

122

 next j
 next i
…status = CDFhyperPutzVarData (id, varN, recStart, recCount, recInterval, indices, counts, intervals, lats)

 ...
catch ex as Exception
 …
end try

4.3.69 CDFinquirerVar
integer CDFinquirezVar(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varNum as integer, ‘ in -- rVariable number.
varName as string, ‘ out -- rVariable name.
dataType as integer, ‘ out -- Data type.
numElements as integer, ‘ out -- Number of elements (of the data type).
numDims as integer, ‘ out -- Number of dimensions.
dimSizes as integer(), ‘ out -- Dimension sizes
recVariance as integer, ‘ out -- Record variance.
dimVariances as integer()) ‘ out -- Dimension variances.

CDFinquirerVar is used to inquire about the specified rVariable. This method would normally be used before reading
rVariable values (with CDFgetrVarData or CDFhyperGetrVarData) to determine the data type and number of elements
of that data type.

The arguments to CDFinquirezVar are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum Number of the rVariable to inquire. This number may be determined with a call to

CDFgetVarNum (see Section 4.3.41).

varName rVariable's name.

dataType Data type of the rVariable. The data types are defined in Section 2.6.
numElements Number of elements of the data type at each rVariable value. For character data types

(CDF_CHAR and CDF_UCHAR), this is the number of characters in the string. (Each
value consists of the entire string.) For all other data types, this will always be one (1) -
multiple elements at each value are not allowed for non-character data types.

numDims Number of dimensions.

dimSizes Dimension sizes. It is a 1-dimensional array, containing one element per dimension. Each

element of dimSizes receives the corresponding dimension size. For 0-dimensional
zVariables this argument is ignored (but must be present).

recVariance Record variance. The record variances are defined in Section 2.10.

dimVariances Dimension variances. Each element of dimVariances receives the corresponding dimension

variance. The dimension variances are described in Section 2.10. For 0-dimensional
zVariables this argument is ignored (but a placeholder is necessary).

4.3.69.1. Example(s)
The following example returns information about a rVariable named HEAT_FLUX in a CDF.

123

.

.

.
dim id as long ‘ CDF identifier.
Dim status as integer ‘ Returned status code.
Dim varName as string ‘ rVariable name.
Dim dataType as integer ‘ Data type of the rVariable.
Dim numElems as integer ‘ Number of elements (of data type).
Dim recVary as integer ‘ Record variance.
Dim numDims as integer ‘ Number of dimensions.
Dim dimSizes() as integer ‘ Dimension sizes
Dim dimVarys() as integer ‘ Dimension variances
.
.
try
 ….
 status = CDFinquirerVar(id, CDFgetVarNum (id,"HEAT_FLUX"), varName, dataType, _
 numElems, numDims, dimSizes, recVary, dimVarys)
…
 ...
catch ex as Exception
 …
end try

4.3.70 CDFinquirezVar
integer CDFinquirezVar(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varNum as integer, ‘ in -- zVariable number.
varName as string, ‘ out -- zVariable name.
dataType as integer, ‘ out -- Data type.
numElements as integer, ‘ out -- Number of elements (of the data type).
numDims as integer, ‘ out -- Number of dimensions.
dimSizes as integer(), ‘ out -- Dimension sizes
recVariance as integer, ‘ out -- Record variance.
dimVariances as integer()) ‘ out -- Dimension variances.

CDFinquirezVar is used to inquire about the specified zVariable. This method would normally be used before reading
zVariable values (with CDFgetzVarData or CDFhyperGetzVarData) to determine the data type and number of elements
of that data type.

The arguments to CDFinquirezVar are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum Number of the zVariable to inquire. This number may be determined with a call to

CDFgetVarNum (see Section 4.3.41).

varName zVariable's name.

dataType Data type of the zVariable. The data types are defined in Section 2.6.

numElements Number of elements of the data type at each zVariable value. For character data types

(CDF_CHAR and CDF_UCHAR), this is the number of characters in the string. (Each

124

value consists of the entire string.) For all other data types, this will always be one (1) -
multiple elements at each value are not allowed for non-character data types.

numDims Number of dimensions.

dimSizes Dimension sizes. It is a 1-dimensional array, containing one element per dimension. Each

element of dimSizes receives the corresponding dimension size. For 0-dimensional
zVariables this argument is ignored (but must be present).

recVariance Record variance. The record variances are defined in Section 2.10.

dimVariances Dimension variances. Each element of dimVariances receives the corresponding dimension

variance. The dimension variances are described in Section 2.10. For 0-dimensional
zVariables this argument is ignored (but a placeholder is necessary).

4.3.70.1. Example(s)
The following example returns information about an zVariable named HEAT_FLUX in a CDF.

.

.

.
dim id as long ‘ CDF identifier.
Dim status as integer ‘ Returned status code.
Dim varName as string ‘ zVariable name.
Dim dataType as integer ‘ Data type of the zVariable.
Dim numElems as integer ‘ Number of elements (of data type).
Dim recVary as integer ‘ Record variance.
Dim numDims as integer ‘ Number of dimensions.
Dim dimSizes() as integer ‘ Dimension sizes
Dim dimVarys() as integer ‘ Dimension variances
.
.
try
 ….
 status = CDFinquirezVar(id, CDFgetVarNum (id,"HEAT_FLUX"), varName, dataType,
 numElems, numDims, dimSizes, recVary, dimVarys)
…
 ...
catch ex as Exception
 …
end try

4.3.71 CDFputrVarData
integer CDFputrVarData(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varNum as integer, ‘ in -- Variable number.
recNum as integer, ‘ in -- Record number.
indices as integer(), ‘ in -- Dimension indices.
value as TYPE) ‘ in -- Data value.

‘ TYPE -- VB value/string type

CDFputrVarData writes a single data value to the specified index, the location of the element, in the given record of the
specified rVariable in a CDF.

The arguments to CDFputrVarData are defined as follows:

125

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum rVariable number.

recNum Record number.

indices Dimension indices within the record.

value Data value.

4.3.71.1. Example(s)
The following example will write two data values, the first and the fifth element, in Record 0 from rVariable “MY_VAR”,
a 2-dimensional (2 by 3), CDF_DOUBLE type variable, in a row-major CDF. The first put operation passes the pointer
of the data value, while the second operation passes the data value as an object.

.

.

.
dim id as long ‘ CDF identifier.
Dim varNum as integer ‘ rVariable number.
Dim recNum as integer ‘ The record number.
Dim indices(2) as integer ‘ The dimension indices.
Dim value1 as double, value2 as double ‘ The data values.
Dim status as integer.
.
try
 ….
 varNum = CDFgetVarNum (id, “MY_VAR”)
 recNum = 0
 indices(0) = 0
 indices(1) = 0
 value1 = 10.1
 status = CDFputrVarData (id, varNum, recNum, indices, value1)
 indices(0) = 1
 indices(1) = 1
 value2 = 20.2
 status = CDFputrVarData (id, varNum, recNum, indices, value2)
 …
 ...
catch ex as Exception
 …
end try

4.3.72 CDFputrVarPadValue
integer CDFputrVarPadValue(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varNum as integer, ‘ in -- Variable number.
value as TYPE) ‘ in -- Pad value.
 ‘ TYPE – VB value/string type

CDFputrVarPadValue specifies the pad value for the specified rVariable in a CDF. A rVariable's pad value may be
specified (or respecified) at any time without affecting already written values (including where pad values were used).
The Concepts chapter in the CDF User's Guide describes variable pad values.

126

The arguments to CDFputrVarPadValue are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum rVariable number.

value Pad value.

4.3.72.1. Example(s)
The following example sets the pad value to –9999 for rVariable “MY_VAR”, a CDF_INT4 type variable, and “*****”
for another rVariable “MY_VAR2”, a CDF_CHAR type with a number of elements of five (5), in a CDF.

.

.

.
dim id as long ‘ CDF identifier.
Dim padValue1 as integer = -9999 ‘ An integer pad value.
Dim padValue2 as string = “*****” ‘ A string pad value. `
.
.
try
 ….
 status = CDFputrVarPadValue (id, CDFgetVarNum (id, “MY_VAR”), padValue1)

 status = CDFputrVarPadValue (id, CDFgetVarNum (id, “MY_VAR2”), padValue2)
 …
 ...
catch ex as Exception
 …
end try

4.3.73 CDFputrVarRecordData
integer CDFputrVarRecordData(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varNum as integer, ‘ in -- Variable number.
recNum as integer, ‘ in -- Record number.
buffer as TYPE) ‘ in -- Record data.

‘ TYPE -- VB value/string type (likely an
‘ array)

CDFputrVarRecordData writes an entire record at a given record number for the specified rVariable in a CDF. The
buffer should hold the entire data values for the variable. The data values in the buffer should be in the order that
corresponds to the variable majority defined for the CDF.

The arguments to CDFputrVarRecordData are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum rVariable number.

recNum Record number.

buffer The buffer holding the entire record values.

127

4.3.73.1. Example(s)
The following example will write one full record (numbered 2) from rVariable “MY_VAR”, a 2-dimension (2 by 3),
CDF_INT4 type variable, in a CDF. The variable’s dimension variances are all VARY.

.

.

.
dim id as long ‘ CDF identifier.
Dim varNum as integer ‘ rVariable number.
Dim buffer(2,3) as integer = {{1,2,3},{4,5,6}} ‘ The data holding buffer.
.
.
try
 ….
 varNum = CDFvarNum (id,”MY_VAR”)
 status = CDFputrVarRecordData (id, varNum, 2, buffer)
…
 ...
catch ex as Exception
 …
end try

4.3.74 CDFputrVarSeqData
integer CDFputrVarSeqData(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varNum as integer, ‘ in -- Variable number.
value as TYPE) ‘ in -- Data value.
 ‘ TYPE -- VB value/string type

CDFputrVarSeqData writes one value to the specified rVariable in a CDF at the current sequential value (position) for
that variable. After the write, the current sequential value is automatically incremented to the next value. Use
CDFsetrVarSeqPos method to set the current sequential value (position).

The arguments to CDFputrVarSeqData are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum rVariable number.

value The buffer holding the data value.

4.3.74.1. Example(s)
The following example will write two data values starting at record number 2 from a 2-dimensional rVariable whose data
type is CDF_INT4. The first write will pass in a pointer from the data value, while the second write will pass in the data
value object directly.

.

.

.
dim id as long ‘ CDF identifier.
Dim varNum as integer ‘ The variable number.
Dim value1 as integer, value2 as integer ‘ The data value.
Dim indices(2) as integer ‘ The indices in a record.
Dim recNum as integer ‘ The record number.

128

dim status as integer
.
recNum = 2
indices(0) = 1
indices(1) = 2
try
 ….
 value1 = 10
 value2 = -20.
 status = CDFsetrVarSeqPos (id, varNum, recNum, indices)
 status = CDFputrVarSeqData (id, varNum, value1)
 status = CDFputrVarSeqData (id, varNum, value2)
…
 ...
catch ex as Exception
 …
end try

4.3.75 CDFputzVarData
integer CDFputzVarData(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varNum as integer, ‘ in -- Variable number.
recNum as integer, ‘ in -- Record number.
indices as integer(), ‘ in -- Dimension indices.
value as TYPE) ‘ in -- Data value.

‘ TYPE -- VB value/string type

CDFputzVarData writes a single data value to the specified index, the location of the element, in the given record of the
specified zVariable in a CDF.

The arguments to CDFputzVarData are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

recNum Record number.

indices Dimension indices within the record.

value Data value.

4.3.75.1. Example(s)
The following example will write two data values, the first and the fifth element, in Record 0 from zVariable “MY_VAR”,
a 2-dimensional (2 by 3), CDF_DOUBLE type variable, in a row-major CDF. The first put operation passes the pointer
of the data value, while the second operation passes the data value as an object.

.

.

.
dim id as long ‘ CDF identifier.
dim varNum as integer ‘ zVariable number.
dim recNum as integer ‘ The record number.
Dim indices(2) as integer ‘ The dimension indices.
Dim value1 as double, value2 as double ‘ The data values.

129

Dim status as integer.
.
try
 ….
 varNum = CDFgetVarNum (id, “MY_VAR”)
 recNum = 0
 indices(0) = 0
 indices(1) = 0
 value1 = 10.1
 status = CDFputzVarData (id, varNum, recNum, indices, value1)
 indices(0) = 1
 indices(1) = 1
 value2 = 20.2
 status = CDFputzVarData (id, varNum, recNum, indices, value2)
 …
 ...
catch ex as Exception
 …
end try

4.3.76 CDFputzVarPadValue
integer CDFputzVarPadValue(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varNum as integer, ‘ in -- Variable number.
value as TYPE) ‘ in -- Pad value.
 ‘ TYPE -- VB value/string type

CDFputzVarPadValue specifies the pad value for the specified zVariable in a CDF. A zVariable's pad value may be
specified (or respecified) at any time without affecting already written values (including where pad values were used).
The Concepts chapter in the CDF User's Guide describes variable pad values.

The arguments to CDFputzVarPadValue are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

value Pad value.

4.3.76.1. Example(s)
The following example sets the pad value to –9999 for zVariable “MY_VAR”, a CDF_INT4 type variable, and “*****”
for another zVariable “MY_VAR2”, a CDF_CHAR type with a number of elements of five (5), in a CDF.

.

.

.
dim id as long ‘ CDF identifier.
dim padValue1 as integer = -9999 ‘ An integer pad value.
Dim padValue2 as string = “*****” ‘ A string pad value. `
Dim status as integer.
.
try
 ….
 status = CDFputzVarPadValue (id, CDFgetVarNum (id, “MY_VAR”), padValue1)

130

 status = CDFputzVarPadValue (id, CDFgetVarNum (id, “MY_VAR2”), padValue2)
 …
 ...
catch ex as Exception
 …
end try

4.3.77 CDFputzVarRecordData
integer CDFputzVarRecordData(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varNum as integer, ‘ in -- Variable number.
recNum as integer, ‘ in -- Record number.
buffer as TYPE) ‘ in -- Record data.

‘ TYPE -- VB value/string type (likely an
‘ array)

CDFputzVarRecordData writes an entire record at a given record number for the specified zVariable in a CDF. The
buffer should hold the entire data values for the variable. The data values in the buffer should be in the order that
corresponds to the variable majority defined for the CDF.

The arguments to CDFputzVarRecordData are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

recNum Record number.

buffer The buffer holding the entire record values.

4.3.77.1. Example(s)
The following example will write one full record (numbered 2) from zVariable “MY_VAR”, a 2-dimension (2 by 3),
CDF_INT4 type variable, in a CDF. The variable’s dimension variances are all VARY.

.

.

.
dim id as long ‘ CDF identifier.
dim varNum as integer ‘ zVariable number.
Dim buffer(,)as integer = {{1,2,3},{4,5,6}} ‘ The data holding buffer.
Dim status as integer
.
try
 ….
 varNum = CDFvarNum (id,”MY_VAR”)
 status = CDFputzVarRecordData (id, varNum, 2, buffer)
…
 ...
catch ex as Exception
 …
end try

4.3.78 CDFputzVarSeqData
integer CDFputzVarSeqData(‘ out -- Completion status code.

131

id as long, ‘ in -- CDF identifier.
varNum as integer, ‘ in -- Variable number.
value as TYPE) ‘ in -- Data value.
 ‘ TYPE -- VB value/string type

CDFputzVarSeqData writes one value to the specified zVariable in a CDF at the current sequential value (position) for
that variable. After the write, the current sequential value is automatically incremented to the next value. Use
CDFsetzVarSeqPos method to set the current sequential value (position).

The arguments to CDFputzVarSeqData are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

value The buffer holding the data value.

4.3.78.1. Example(s)
The following example will write two data values starting at record number 2 from a 2-dimensional zVariable whose
data type is CDF_INT4. The first write will pass in a pointer from the data value, while the second write will pass in the
data value object directly.

.

.

.
dim id as long ‘ CDF identifier.
dim varNum as integer ‘ The variable number.
dim value1 as integer, value2 as integer ‘ The data value.
Dim indices(2) as integer ‘ The indices in a record.
dim recNum as integer ‘ The record number.
Dim status as integer
.
recNum = 2
indices(0) = 1
indices(1) = 2
try
 ….
 value1 = 10
 value2 = -20.
 status = CDFsetzVarSeqPos (id, varNum, recNum, indices)
 status = CDFputzVarSeqData (id, varNum, value1)
 status = CDFputzVarSeqData (id, varNum, value2)
…
 ...
catch ex as Exception
 …
end try

4.3.79 CDFrenamerVar
integer CDFrenamerVar(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varNum as integer, ‘ in -- rVariable number.
varName as string) ‘ in -- New name.

CDFrenamerVar is used to rename an existing rVariable. A variable (rVariable or zVariable) with the same name must
not already exist in the CDF.

132

The arguments to CDFrenamerVar are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum Number of the rVariable to rename. This number may be determined with a call to

CDFgetVarNum.

varName The new rVariable name. This may be at most CDF_VAR_NAME_LEN256 characters.

Variable names are case-sensitive.

4.3.79.1. Example(s)
In the following example the rVariable named TEMPERATURE is renamed to TMP (if it exists). Note that if
CDFgetVarNum returns a value less than zero (0) then that value is not an rVariable number but rather an error code.

.

.

.
dim id as long ‘ CDF identifier.
dim status as integer ‘ Returned status code.
dim varNum as integer ‘ zVariable number.
.
.
try
 ….
 varNum = CDFgetVarNum (id, "TEMPERATURE")
 status = CDFrenamerVar (id, varNum, "TMP")
 …
 ...
catch ex as Exception
 …
end try

4.3.80 CDFrenamezVar
integer CDFrenamezVar(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varNum as integer, ‘ in -- zVariable number.
varName as string) ‘ in -- New name.

CDFrenamezVar is used to rename an existing zVariable. A variable (rVariable or zVariable) with the same name must
not already exist in the CDF.

The arguments to CDFrenamezVar are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum Number of the zVariable to rename. This number may be determined with a call to

CDFgetVarNum.

varName The new zVariable name. This may be at most CDF_VAR_NAME_LEN256 characters.

Variable names are case-sensitive.

133

4.3.80.1. Example(s)
In the following example the zVariable named TEMPERATURE is renamed to TMP (if it exists). Note that if
CDFgetVarNum returns a value less than zero (0) then that value is not an zVariable number but rather an error code.

.

.

.
dim id as long ‘ CDF identifier.
dim status as integer ‘ Returned status code.
dim varNum as integer ‘ zVariable number.
.
.
try
 ….
 varNum = CDFgetVarNum (id, "TEMPERATURE")
 status = CDFrenamezVar (id, varNum, "TMP")
 …
 ...
catch ex as Exception
 …
end try

4.3.81 CDFsetrVarAllocBlockRecords
integer CDFsetrVarAllocBlockRecords(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varNum as integer, ‘ in -- Variable number.
firstRec as integer, ‘ in -- First record number.
lastRec as integer) ‘ in -- Last record number.

CDFsetrVarAllocBlockRecords specifies a range of records to be allocated (not written) for the specified rVariable in a
CDF. This operation is only applicable to uncompressed rVariable in single-file CDFs. Refer to the CDF User’s Guide
for the descriptions of allocating variable records.

The arguments to CDFsetrVarAllocBlockRecords are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum rVariable number.

firstRec The first record number to allocate.

lastRec The last record number to allocate.

4.3.81.1. Example(s)
The following example allocates 10 records, from record numbered 10 to 19, for rVariable “MY_VAR” in a CDF.

.

.

.
dim id as long ‘ CDF identifier.
dim firstRec as integer, lastRec as integer ‘ The first/last record numbers.
Dim status as integer.
.
firstRec = 10
lastRec = 19

134

try
 ….
 status = CDFsetrVarAllocBlockRecords (id, CDFgetVarNum (id, “MY_VAR”), firstRec, lastRec)
 …
 ...
catch ex as Exception
 …
end try

4.3.82 CDFsetrVarAllocRecords
integer CDFsetrVarAllocRecords(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varNum as integer, ‘ in -- Variable number.
numRecs as integer) ‘ in -- Number of records.

CDFsetrVarAllocRecords specifies a number of records to be allocated (not written) for the specified rVariable in a CDF.
The records are allocated beginning at record number zero (0). This operation is only applicable to uncompressed
rVariable in single-file CDFs. Refer to the CDF User’s Guide for the descriptions of allocating variable records.

The arguments to CDFsetrVarAllocRecords are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum rVariable number.

numRecs Number of records to allocate.

4.3.82.1. Example(s)
The following example allocates 100 records, from record numbered 0 to 99, for rVariable “MY_VAR” in a CDF.

.

.

.
dim id as long ‘ CDF identifier.
dim numRecs as integer ‘ The number of records.
dim status as integer
.
numRecs = 100
try
 ….
 status = CDFsetrVarAllocRecords (id, CDFgetVarNum (id, “MY_VAR”), numRecs)
 …
 ...
catch ex as Exception
 …
end try

4.3.83 CDFsetrVarBlockingFactor
integer CDFsetrVarBlockingFactor(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varNum as integer, ‘ in -- Variable number.
bf as integer) ‘ in -- Blocking factor.

135

CDFsetrVarBlockingFactor specifies the blocking factor (number of records allocated) for the specified rVariable in a
CDF. Refer to the CDF User’s Guide for a description of the blocking factor.

The arguments to CDFsetrVarBlockingFactor are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum rVariable number.

bf The blocking factor. A value of zero (0) indicates that the default blocking factor is being

used.

4.3.83.1. Example(s)
The following example sets the blocking factor to 100 records for rVariable “MY_VAR” in a CDF.

.

.

.
dim id as long ‘ CDF identifier.
Dim bf as integer ‘ The blocking factor.
dim status as integer
.
bf = 100
try
 ….
 status = CDFsetrVarBlockingFactor (id, CDFgetVarNum (id, “MY_VAR”), bf)
 …
 ...
catch ex as Exception
 …
end try

4.3.84 CDFsetrVarCacheSize
integer CDFsetrVarCacheSize(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varNum as integer, ‘ in -- Variable number.
numBuffers as integer) ‘ in -- Number of cache buffers.

CDFsetrVarCacheSize specifies the number of cache buffers being for the rVariable in a CDF. This operation is not
applicable to a single-file CDF. Refer to the CDF User’s Guide for description about caching scheme used by the CDF
library.

The arguments to CDFsetrVarCacheSize are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum rVariable number.

numBuffers Number of cache buffers.

4.3.84.1. Example(s)
The following example sets the number of cache buffers to 10 for rVariable “MY_VAR” in a CDF.

.

136

.

.
dim id as long ‘ CDF identifier.
Dim numBuffers as integer ‘ The number of cache buffers.
dim status as integer
.
numBuffers = 10
try
 ….
 status = CDFsetrVarCacheSize (id, CDFgetVarNum (id, “MY_VAR”), numBuffers)
 …
 ...
catch ex as Exception
 …
end try

4.3.85 CDFsetrVarCompression
integer CDFsetrVarCompression(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varNum as integer, ‘ in -- Variable number.
compType as integer, ‘ in -- Compression type.
cParms as integer()) ‘ in -- Compression parameters.

CDFsetrVarCompression specifies the compression type/parameters for the specified rVariable in a CDF. Refer to
Section 2.11 for a description of the CDF supported compression types/parameters.

The arguments to CDFsetrVarCompression are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum rVariable number.

compType The compression type.

cParms The compression parameters.

4.3.85.1. Example(s)
The following example sets the compression to GZIP.6 for rVariable “MY_VAR” in a CDF.

.

.

.
dim id as long ‘ CDF identifier.
Dim compType as integer ‘ The compression type.
Dim cParms(1) as integer ‘ The compression parameters.
dim status as integer

.
compType = GZIP_COMPRESSION
cParms(0) = 6
try
 ….
 status = CDFsetrVarCompression (id, CDFgetVarNum (id, “MY_VAR”), compType, cParms)
 …

137

 ...
catch ex as Exception
 …
end try

4.3.86 CDFsetrVarDataSpec
integer CDFsetrVarDataSpec(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varNum as integer, ‘ in -- Variable number.
dataType as integer) ‘ in -- Data type.

CDFsetrVarDataSpec respecifies the data type of the specified rVariable in a CDF. The variable’s data type cannot be
changed if the new data type is not equivalent (type having a different data size) to the old data type and any values
(including the pad value) have been written. Data specifications are considered equivalent if the data types are equivalent.
Refer to the CDF User’s Guide for equivalent data types.

The arguments to CDFsetrVarDataSpec are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum rVariable number.

dataType The new data type.

4.3.86.1. Example(s)
The following example respecifies the data type to CDF_INT2 (from its original CDF_UINT2) for rVariable “MY_VAR”
in a CDF.

.

.

.
dim id as long ‘ CDF identifier.
Dim dataType as integer ‘ The data type.
Dim status as integer.
.
dataType = CDF_INT2
try
 ….
 status = CDFsetrVarDataSpec (id, CDFgetVarNum (id, “MY_VAR”), dataType)
 …
 ...
catch ex as Exception
 …
end try

4.3.87 CDFsetrVarDimVariances
integer CDFsetrVarDimVariances(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varNum as integer, ‘ in -- Variable number.
dimVarys as integer()) ‘ in -- Dimension variances.

CDFsetrVarDimVariances respecifies the dimension variances of the specified rVariable in a CDF. For 0-dimensional
rVariable, this operation is not applicable. The dimension variances are described in Section 2.10.

138

The arguments to CDFsetrVarDimVariances are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum rVariable number.

dimVarys Dimension variances.

4.3.87.1. Example(s)
The following example resets the dimension variances to true (VARY) and true (VARY) for rVariable “MY_VAR”, a
2-dimensional variable, in a CDF.

.

.

.
dim id as long ‘ CDF identifier.
dim varNum as integer ‘ rVariable number.
Dim dimVarys() as integer = {VARY, VARY} ‘ The dimension variances.
dim status as integer
.
try
 ….
 varNum = CDFgetVarNum (id, “MY_VAR”)
 status = CDFsetrVarDimVariances (id, varNum, dimVarys)
 …
 ...
catch ex as Exception
 …
end try

4.3.88 CDFsetrVarInitialRecs
integer CDFsetrVarInitialRecs(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varNum as integer, ‘ in -- Variable number.
numRecs as integer) ‘ in -- Number of records.

CDFsetrVarInitialRecs specifies a number of records to initially write to the specified rVariable in a CDF. The records
are written beginning at record number 0 (zero). This may be specified only once per rVariable and before any other
records have been written to that rVariable. If a pad value has not yet been specified, the default is used (see the Concepts
chapter in the CDF User’s Guide). If a pad value has been explicitly specified, that value is written to the records. The
Concepts chapter in the CDF User's Guide describes initial records.

The arguments to CDFsetrVarInitialRecs are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum rVariable number.

numRecs Initially written records.

4.3.88.1. Example(s)
The following example writes the initial 100 records to rVariable “MY_VAR” in a CDF.

.

139

.

..
dim id as long ‘ CDF identifier.
dim varNum as integer ‘ rVariable number.
dim numRecs as integer ‘ The number of records.
Dim status as integer.
.
try
 …
 varNum = CDFgetVarNum (id, “MY_VAR”)
 numRecs = 100
 status = CDFsetrVarInitialRecs (id, varNum, numRecs)
 …
 ...
catch ex as Exception
 …
end try

4.3.89 CDFsetrVarRecVariance
integer CDFsetrVarRecVariance(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varNum as integer, ‘ in -- Variable number.
recVary as integer) ‘ in -- Record variance.

CDFsetrVarRecVariance specifies the record variance of the specified rVariable in a CDF. The record variances are
described in Section 2.10.

The arguments to CDFsetrVarRecVariance are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum rVariable number.

recVary Record variance.

4.3.89.1. Example(s)
The following example sets the record variance to VARY (from NOVARY) for rVariable “MY_VAR” in a CDF.

.

.

.
dim id as long ‘ CDF identifier.
dim recVary as integer ‘ The record variance.
Dim status as integer.
.
recVary = VARY
try
 ….
 status = CDFsetrVarRecVariance (id, CDFgetVarNum (id, “MY_VAR”), recVary)
 …
 ...
catch ex as Exception
 …
end try

140

4.3.90 CDFsetrVarReservePercent
integer CDFsetrVarReservePercent(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varNum as integer, ‘ in -- Variable number.
percent as integer) ‘ in -- Reserve percentage.

CDFsetrVarReservePercent specifies the compression reserve percentage being used for the specified rVariable in a CDF.
This operation only applies to compressed rVariables. Refer to the CDF User’s Guide for a description of the reserve
scheme used by the CDF library.

The arguments to CDFsetrVarReservePercent are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum rVariable number.

percent The reserve percentage.

4.3.90.1. Example(s)
The following example sets the reserve percentage to 10 for rVariable “MY_VAR” in a CDF.

.

.

.
dim id as long ‘ CDF identifier.
dim percent as integer ‘ The reserve percentage.
Dim status as integer.
.
percent = 10
try
 ….
 status = CDFsetrVarReservePercent (id, CDFgetVarNum (id, “MY_VAR”), percent)
 …
 ...
catch ex as Exception
 …
end try
.

4.3.91 CDFsetrVarsCacheSize
integer CDFsetrVarsCacheSize(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
numBuffers as integer) ‘ in -- Number of cache buffers.

CDFsetrVarsCacheSize specifies the number of cache buffers to be used for all of the rVariable files in a CDF. This
operation is not applicable to a single-file CDF. The Concepts chapter in the CDF User's Guide describes the caching
scheme used by the CDF library.

The arguments to CDFsetrVarsCacheSize are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

141

numBuffers Number of buffers.

4.3.91.1. Example(s)
The following example sets the number of cache buffers to 10 for all rVariables in a CDF.

.

.

.
dim id as long ‘ CDF identifier.
dim numBuffers as integer ‘ The number of cache buffers.
Dim status as integer.
.
numBuffers = 10
try
 ….
 status = CDFsetrVarsCacheSize (id, numBuffers)
 …
 ...
catch ex as Exception
 …
end try

4.3.92 CDFsetrVarSeqPos
integer CDFsetrVarSeqPos(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varNum as integer, ‘ in -- Variable number.
dim recNum as integer, ‘ in -- Record number.
indices as integer()) ‘ in -- Indices in a record.

CDFsetrVarSeqPos specifies the current sequential value (position) for sequential access for the specified rVariable in a
CDF. Note that a current sequential value is maintained for each rVariable individually. Use CDFgetrVarSeqPos method
to get the current sequential value.

The arguments to CDFsetrVarSeqPos are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum rVariable number.

recNum rVariable record number.

indices Dimension indices. Each element of indices receives the corresponding dimension index. For

0-dimensional rVariable, this argument is ignored, but must be presented.

4.3.92.1. Example(s)
The following example sets the current sequential value to the first value element in record number 2 for a rVariable, a
2-dimensional variable, in a CDF.

.

.

.
dim id as long ‘ CDF identifier.
Dim varNum as integer ‘ The variable number.

142

dim recNum as integer ‘ The record number.
Dim indices(2) as integer ‘ The indices.
.
.
recNum = 2
indices(0) = 0
indices(1) = 0
try
 status = CDFsetrVarSeqPos (id, varNum, recNum, indices)
…
 ...
catch ex as Exception
 …
end try

4.3.93 CDFsetrVarSparseRecords
integer CDFsetrVarSparseRecords(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varNum as integer, ‘ in -- The variable number.
sRecordsType as integer) ‘ in -- The sparse records type.

CDFsetrVarSparseRecords specifies the sparse records type of the specified rVariable in a CDF. Refer to Section 2.12.1
for the description of sparse records.

The arguments to CDFsetrVarSparseRecords are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum rVariable number.

sRecordsType The sparse records type.

4.3.93.1. Example(s)
The following example sets the sparse records type to PAD_SPARSERECORDS from its original type for rVariable
“MY_VAR” in a CDF.

.

.

.
dim id as long ‘ CDF identifier.
dim sRecordsType as integer ‘ The sparse records type.
Dim status as integer.
.
sRecordsType = PAD_ SPARSERECORDS
try
 status = CDFsetrVarSparseRecords (id, CDFgetVarNum (id, “MY_VAR”), sRecordsType)
 …
 ...
catch ex as Exception
 …
end try

4.3.94 CDFsetzVarAllocBlockRecords
integer CDFsetzVarAllocBlockRecords(‘ out -- Completion status code.

143

id as long, ‘ in -- CDF identifier.
varNum as integer, ‘ in -- Variable number.
firstRec as integer, ‘ in -- First record number.
lastRec as integer) ‘ in -- Last record number.
CDFsetzVarAllocBlockRecords specifies a range of records to be allocated (not written) for the specified zVariable in a
CDF. This operation is only applicable to uncompressed zVariable in single-file CDFs. Refer to the CDF User’s Guide
for the descriptions of allocating variable records.

The arguments to CDFsetzVarAllocBlockRecords are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

firstRec The first record number to allocate.

lastRec The last record number to allocate.

4.3.94.1. Example(s)
The following example allocates 10 records, from record numbered 10 to 19, for zVariable “MY_VAR” in a CDF.

.

.

.
dim id as long ‘ CDF identifier.
dim firstRec as integer, lastRec as integer ‘ The first/last record numbers.
dim status as integer
.
firstRec = 10
lastRec = 19
try
 ….
 status = CDFsetzVarAllocBlockRecords (id, CDFgetVarNum (id, “MY_VAR”), firstRec, lastRec)
 …
 ...
catch ex as Exception
 …
end try

4.3.95 CDFsetzVarAllocRecords
integer CDFsetzVarAllocRecords(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varNum as integer, ‘ in -- Variable number.
numRecs as integer) ‘ in -- Number of records.

CDFsetzVarAllocRecords specifies a number of records to be allocated (not written) for the specified zVariable in a
CDF. The records are allocated beginning at record number zero (0). This operation is only applicable to uncompressed
zVariable in single-file CDFs. Refer to the CDF User’s Guide for the descriptions of allocating variable records.

The arguments to CDFsetzVarAllocRecords are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

144

numRecs Number of records to allocate.

4.3.95.1. Example(s)
The following example allocates 100 records, from record numbered 0 to 99, for zVariable “MY_VAR” in a CDF.

.

.

.
dim id as long ‘ CDF identifier.
Dim numRecs as integer ‘ The number of records.
Dim status as integer.
.
numRecs = 100
try
 ….
 status = CDFsetzVarAllocRecords (id, CDFgetVarNum (id, “MY_VAR”), numRecs)
 …
 ...
catch ex as Exception
 …
end try

4.3.96 CDFsetzVarBlockingFactor
integer CDFsetzVarBlockingFactor(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varNum as integer, ‘ in -- Variable number.
bf as integer) ‘ in -- Blocking factor.

CDFsetzVarBlockingFactor specifies the blocking factor (number of records allocated) for the specified zVariable in a
CDF. Refer to the CDF User’s Guide for a description of the blocking factor.

The arguments to CDFsetzVarBlockingFactor are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

bf The blocking factor. A value of zero (0) indicates that the default blocking factor is being

used.

4.3.96.1. Example(s)
The following example sets the blocking factor to 100 records for zVariable “MY_VAR” in a CDF.

.

.

.
dim id as long ‘ CDF identifier.
Dim bf as integer ‘ The blocking factor.
Dim status as integer.
.
bf = 100
try
 ….
 status = CDFsetzVarBlockingFactor (id, CDFgetVarNum (id, “MY_VAR”), bf)

145

 …
 ...
catch ex as Exception
 …
end try

4.3.97 CDFsetzVarCacheSize
integer CDFsetzVarCacheSize(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varNum as integer, ‘ in -- Variable number.
numBuffers as integer) ‘ in -- Number of cache buffers.

CDFsetzVarCacheSize specifies the number of cache buffers being for the zVariable in a CDF. This operation is not
applicable to a single-file CDF. Refer to the CDF User’s Guide for description about caching scheme used by the CDF
library.

The arguments to CDFsetzVarCacheSize are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

numBuffers Number of cache buffers.

4.3.97.1. Example(s)
The following example sets the number of cache buffers to 10 for zVariable “MY_VAR” in a CDF.

.

.

.
dim id as long ‘ CDF identifier.
Dim numBuffers as integer ‘ The number of cache buffers.
Dim status as integer.
.
numBuffers = 10
try
 ….
 status = CDFsetzVarCacheSize (id, CDFgetVarNum (id, “MY_VAR”), numBuffers)
 …
 ...
catch ex as Exception
 …
end try

4.3.98 CDFsetzVarCompression
integer CDFsetzVarCompression(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varNum as integer, ‘ in -- Variable number.
compType as integer, ‘ in -- Compression type.
cParms as integer()) ‘ in -- Compression parameters.

CDFsetzVarCompression specifies the compression type/parameters for the specified zVariable in a CDF. Refer to
Section 2.11 for a description of the CDF supported compression types/parameters.

146

The arguments to CDFsetzVarCompression are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

compType The compression type.
cParms The compression parameters.

4.3.98.1. Example(s)
The following example sets the compression to GZIP.6 for zVariable “MY_VAR” in a CDF.

.

.

.
dim id as long ‘ CDF identifier.
Dim compType as integer ‘ The compression type.
Dim cParms(1) as integer ‘ The compression parameters.
.
.
compType = GZIP_COMPRESSION
cParms(0) = 6
try
 ….
 status = CDFsetzVarCompression (id, CDFgetVarNum (id, “MY_VAR”), compType, cParms)
 …
 ...
catch ex as Exception
 …
end try

4.3.99 CDFsetzVarDataSpec
integer CDFsetzVarDataSpec(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varNum as integer, ‘ in -- Variable number.
dataType as integer) ‘ in -- Data type.

CDFsetzVarDataSpec respecifies the data type of the specified zVariable in a CDF. The variable’s data type cannot be
changed if the new data type is not equivalent (type having a different data size) to the old data type and any values
(including the pad value) have been written. Data specifications are considered equivalent if the data types are equivalent.
Refer to the CDF User’s Guide for equivalent data types.

The arguments to CDFsetzVarDataSpec are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

dataType The new data type.

147

4.3.99.1. Example(s)
The following example respecifies the data type to CDF_INT2 (from its original CDF_UINT2) for zVariable
“MY_VAR” in a CDF.

.

.

.
dim id as long ‘ CDF identifier.
Dim dataType as integer ‘ The data type.
Dim status. as integer
.
dataType = CDF_INT2
try
 ….
 status = CDFsetzVarDataSpec (id, CDFgetVarNum (id, “MY_VAR”), dataType)
 …
 ...
catch ex as Exception
 …
end try

4.3.100 CDFsetzVarDimVariances
integer CDFsetzVarDimVariances(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varNum as integer, ‘ in -- Variable number.
dimVarys as integer()) ‘ in -- Dimension variances.

CDFsetzVarDimVariances respecifies the dimension variances of the specified zVariable in a CDF. For 0-dimensional
zVariable, this operation is not applicable. The dimension variances are described in Section 2.10.

The arguments to CDFsetzVarDimVariances are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

dimVarys Dimension variances.

4.3.100.1. Example(s)
The following example resets the dimension variances to true (VARY) and true (VARY) for zVariable “MY_VAR”, a
2-dimensional variable, in a CDF.

.

.

.
dim id as long ‘ CDF identifier.
dim varNum as integer ‘ zVariable number.
Dim dimVarys()as integer = {VARY, VARY} ‘ The dimension variances.
Dim status as integer
.
.
try
 ….
 varNum = CDFgetVarNum (id, “MY_VAR”)
 status = CDFsetzVarDimVariances (id, varNum, dimVarys)

148

 …
 ...
catch ex as Exception
 …
end try

4.3.101 CDFsetzVarInitialRecs
integer CDFsetzVarInitialRecs(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varNum as integer, ‘ in -- Variable number.
numRecs as integer) ‘ in -- Number of records.

CDFsetzVarInitialRecs specifies a number of records to initially write to the specified zVariable in a CDF. The records
are written beginning at record number 0 (zero). This may be specified only once per zVariable and before any other
records have been written to that zVariable. If a pad value has not yet been specified, the default is used (see the Concepts
chapter in the CDF User’s Guide). If a pad value has been explicitly specified, that value is written to the records. The
Concepts chapter in the CDF User's Guide describes initial records.

The arguments to CDFsetzVarInitialRecs are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

numRecs Initially written records.

4.3.101.1. Example(s)
The following example writes the initial 100 records to zVariable “MY_VAR” in a CDF.

.

.

..
dim id as long ‘ CDF identifier.
dim varNum as integer ‘ zVariable number.
Dim numRecs as integer ‘ The number of records.
dim status as integer
.
try
 …
 varNum = CDFgetVarNum (id, “MY_VAR”)
 numRecs = 100
 status = CDFsetzVarInitialRecs (id, varNum, numRecs)
 …
 ...
catch ex as Exception
 …
end try

4.3.102 CDFsetzVarRecVariance
integer CDFsetzVarRecVariance(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varNum as integer, ‘ in -- Variable number.
recVary as integer) ‘ in -- Record variance.

149

CDFsetzVarRecVariance specifies the record variance of the specified zVariable in a CDF. The record variances are
described in Section 2.10.

The arguments to CDFsetzVarRecVariance are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

recVary Record variance.

4.3.102.1. Example(s)
The following example sets the record variance to VARY (from NOVARY) for zVariable “MY_VAR” in a CDF.

.

.

.
dim id as long ‘ CDF identifier.
Dim recVary as integer ‘ The record variance.
Dim status as integer
.
recVary = VARY
try
 ….
 status = CDFsetzVarRecVariance (id, CDFgetVarNum (id, “MY_VAR”), recVary)
 …
 ...
catch ex as Exception
 …
end try

4.3.103 CDFsetzVarReservePercent
integer CDFsetzVarReservePercent(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varNum as integer, ‘ in -- Variable number.
percent as integer) ‘ in -- Reserve percentage.

CDFsetzVarReservePercent specifies the compression reserve percentage being used for the specified zVariable in a
CDF. This operation only applies to compressed zVariables. Refer to the CDF User’s Guide for a description of the
reserve scheme used by the CDF library.

The arguments to CDFsetzVarReservePercent are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

percent The reserve percentage.

150

4.3.103.1. Example(s)
The following example sets the reserve percentage to 10 for zVariable “MY_VAR” in a CDF.

.

.

.
dim id as long ‘ CDF identifier.
Dim percent as integer ‘ The reserve percentage.
Dim status as integer
.
percent = 10
try
 ….
 status = CDFsetzVarReservePercent (id, CDFgetVarNum (id, “MY_VAR”), percent)
 …
 ...
catch ex as Exception
 …
end try
.

4.3.104 CDFsetzVarsCacheSize
integer CDFsetzVarsCacheSize(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
numBuffers as integer) ‘ in -- Number of cache buffers.

CDFsetzVarsCacheSize specifies the number of cache buffers to be used for all of the zVariable files in a CDF. This
operation is not applicable to a single-file CDF. The Concepts chapter in the CDF User's Guide describes the caching
scheme used by the CDF library.

The arguments to CDFsetzVarsCacheSize are defined :

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

numBuffers Number of buffers.

4.3.104.1. Example(s)
The following example sets the number of cache buffers to 10 for all zVariables in a CDF.

.

.

.
dim id as long ‘ CDF identifier.
Dim numBuffers as integer ‘ The number of cache buffers.
.dim status as integer
.
numBuffers = 10
try
 ….
 status = CDFsetzVarsCacheSize (id, numBuffers)
 …
 ...
catch ex as Exception
 …

151

end try

4.3.105 CDFsetzVarSeqPos
integer CDFsetzVarSeqPos(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varNum as integer, ‘ in -- Variable number.
dim recNum as integer, ‘ in -- Record number.
indices as integer as integer()) ‘ in -- Indices in a record.

CDFsetzVarSeqPos specifies the current sequential value (position) for sequential access for the specified zVariable in a
CDF. Note that a current sequential value is maintained for each zVariable individually. Use CDFgetzVarSeqPos method
to get the current sequential value.

The arguments to CDFsetzVarSeqPos are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.
recNum zVariable record number.

indices Dimension indices. Each element of indices receives the corresponding dimension index. For

0-dimensional zVariable, this argument is ignored, but must be presented.

4.3.105.1. Example(s)
The following example sets the current sequential value to the first value element in record number 2 for a zVariable, a
2-dimensional variable, in a CDF.

.

.

.
dim id as long ‘ CDF identifier.
dim varNum as integer ‘ The variable number.
Dim recNum as integer ‘ The record number.
Dim indices(2) as integer ‘ The indices.
.
.
recNum = 2
indices(0) = 0
indices(1) = 0
try
 status = CDFsetzVarSeqPos (id, varNum, recNum, indices)
…
 ...
catch ex as Exception
 …
end try

4.3.106 CDFsetzVarSparseRecords
integer CDFsetzVarSparseRecords(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varNum as integer, ‘ in -- The variable number.
sRecordsType as integer) ‘ in -- The sparse records type.

152

CDFsetzVarSparseRecords specifies the sparse records type of the specified zVariable in a CDF. Refer to Section 2.12.1
for the description of sparse records.

The arguments to CDFsetzVarSparseRecords are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

sRecordsType The sparse records type.

4.3.106.1. Example(s)
The following example sets the sparse records type to PAD_SPARSERECORDS from its original type for zVariable
“MY_VAR” in a CDF.

.

.

.
dim id as long ‘ CDF identifier.
dim sRecordsType as integer ‘ The sparse records type.
Dim status as integer.
.
sRecordsType = PAD_ SPARSERECORDS
try
 status = CDFsetzVarSparseRecords (id, CDFgetVarNum (id, “MY_VAR”), sRecordsType)
 …
 ...
catch ex as Exception
 …
end try

4.3.107 CDFvarClose9
integer CDFvarClose(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varNum as integer) ‘ in -- rVariable number.

CDFvarClose closes the specified rVariable file from a multi-file format CDF. The variable's cache buffers are flushed
before the variable's open file is closed. However, the CDF file is still open.

NOTE: You must close all open variable files to guarantee that all modifications you have made will actually be written
to the CDF's file(s). If your program exits, normally or otherwise, without a successful call to CDFclose, the CDF's cache
buffers are left unflushed.

The arguments to CDFclose are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

varNum Variable number for the open rVariable’s file. This identifier must have been initialized by a call to

CDFgetVarNum.

9 A legacy CDF function, handling rVariables only. While it is still available in V3.1, CDFcloserVar is the preferred
function for it.

153

4.3.107.1. Example(s)
The following example will close an open rVariable in a multi-file CDF.

.

.

.
dim id as long ‘ CDF identifier.
dim status as integer ‘ Returned status code.
.
.
try

 status = CDFvarClose (id, CDFvarNum (id, “Flux”))

catch ex as Exception
 …
end try

4.3.108 CDFvarCreate10
integer CDFvarCreate(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varName as string, ‘ in -- rVariable name.
dataType as integer, ‘ in -- Data type.
numElements as integer, ‘ in -- Number of elements (of the data type).
recVariance as integer, ‘ in -- Record variance.
dimVariances as integer(), ‘ in -- Dimension variances.
varNum as integer) ‘ out -- rVariable number.

CDFvarCreate is used to create a new rVariable in a CDF. A variable (rVariable or zVariable) with the same name must
not already exist in the CDF.

The arguments to CDFvarCreate are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

varName Name of the rVariable to create. This may be at most CDF_VAR_NAME_LEN256

characters. Variable names are case-sensitive.

dataType Data type of the new rVariable. Specify one of the data types defined in Section 2.6.

numElements Number of elements of the data type at each value. For character data types (CDF_CHAR

and CDF_UCHAR), this is the number of characters in the string (each value consists of
the entire string). For all other data types this must always be one (1) - multiple elements
at each value are not allowed for non-character data types.

recVariance rVariable's record variance. Specify one of the variances defined in Section 2.10.

dimVariances rVariable's dimension variances. Each element of dimVariances specifies the

corresponding dimension variance. For each dimension specify one of the variances
defined in Section 2.10. For 0-dimensional rVariables this argument is ignored (but must
be present).

10 A legacy CDF function, handling rVariables only. While it is still available in V3.1, CDFcreaterVar is the preferred
function for it.

154

varNum Number assigned to the new rVariable. This number must be used in subsequent CDF
function calls when referring to this rVariable. An existing rVariable's number may be
determined with the CDFvarNum or CDFgetVarNum function.

4.3.108.1. Example(s)
The following example will create several rVariables in a 2-dimensional CDF.

.

.

.
dim id as long ‘ CDF identifier.
dim stats as integer ‘ Returned status code.
dim EPOCHrecVary as integer = VARY ‘ EPOCH record variance.
Dim LATrecVary as integer = NOVARY ‘ LAT record variance.
Dim LONrecVary as integer = NOVARY ‘ LON record variance.
Dim TMPrecVary as integer = VARY ‘ TMP record variance.
Dim EPOCHdimVarys() as integer = {NOVARY,NOVARY} ‘ EPOCH dimension variances.
Dim LATdimVarys() as integer = {VARY,VARY} ‘ LAT dimension variances.
Dim LONdimVarys() as integer = {VARY,VARY} ‘ LON dimension variances.
Dim TMPdimVarys() as integer = {VARY,VARY} ‘ TMP dimension variances.
Dim EPOCHvarNum as integer ‘ EPOCH zVariable number.
Dim LATvarNum as integer ‘ LAT zVariable number.
Dim LONvarNum as integer ‘ LON zVariable number.
Dim TMPvarNum as integer ‘ TMP zVariable number.
.
.
try
 status = CDFvarCreate (id, "EPOCH", CDF_EPOCH, 1, _
 EPOCHrecVary, EPOCHdimVarys, EPOCHvarNum)

 status = CDFvarCreate (id, "LATITUDE", CDF_INT2, 1, _
 LATrecVary, LATdimVarys, LATvarNum)

 status = CDFvarCreate (id, "INTITUDE", CDF_INT2, 1, _
 LONrecVary, LONdimVarys, LONvarNum)

 status = CDFvarCreate (id, "TEMPERATURE", CDF_REAL4, 1, _
 TMPrecVary, TMPdimVarys, TMPvarNum)

.
catch ex as Exception
 …
end try

4.3.109 CDFvarGet11
integer CDFvarGet(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varNum as integer, ‘ in -- rVariable number.
dim recNum as integer, ‘ in -- Record number.
indices as integer(), ‘ in -- Dimension indices.
value as TYPE) ‘ out -- Value.
 ‘ TYPE -- VB value/string type or object
CDFvarGet is used to read a single value from an rVariable.

11 A legacy CDF function, handling rVariables only. While it is still available in V3.1, CDFgetrVarData is the preferred
function for it.

155

The arguments to CDFvarGet are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopen.

varNum rVariable number from which to read data.

recNum Record number at which to read.

indices Dimension indices within the record.

value Data value read. This buffer must be large enough to hold the value.

4.3.109.1. Example(s)
The following example returns two data values, the first and the fifth element, in Record 0 from an rVariable named
MY_VAR, a 2-dimensional (2 by 3) CDF_DOUBLE type variable, in a row-major CDF. The first get operation passes
the value pointer, while the second operation uses “out” argument modifier.

.

.

.
dim id as long ‘ CDF identifier.
dim recNum as integer ‘ The record number.
dim varNum as integer ‘ The variable number.
Dim indices(2) as integer ‘ The dimension indices.
Dim value1 as double, value2 as double ‘ The data values.
Dim status as integer.
.
try
 ….
 varNum = CDFvarNum (id, “MY_VAR”)
 recNum = 0
 indices(0) = 0
 indices(1) = 0
 status = CDFvarGet (id, varNum, recNum, indices, value1)
 indices(0) = 1
 indices(1) = 1
 object value2o
 status = CDFvarGet (id, varNum, recNum, indices, value2o)
 value2 = value2o
catch ex as Exception
 …
end try

4.3.110 CDFvarHyperGet12
integer CDFvarHyperGet(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varNum as integer, ‘ in -- rVariable number.
recStart as integer, ‘ in -- Starting record number.
recCount as integer, ‘ in -- Number of records.
recInterval as integer, ‘ in -- Subsampling interval between records.
indices as integer(), ‘ in -- Dimension indices of starting value.

12 A legacy CDF function, handling rVariables only. While it is still available in V3.1, CDFhyperGetrVarData is the
preferred function for it.

156

counts as integer(), ‘ in -- Number of values along each dimension.
intervals as integer(), ‘ in -- Subsampling intervals along each dimension.
values as TYPE) ‘ out -- Values.
 ‘ TYPE -- VB value/string type or object

CDFvarHyperGet is used to fill a buffer of one or more values from the specified rVariable. It is important to know the
variable majority of the CDF before using CDFvarHyperGet because the values placed into the buffer will be in that
majority. CDFinquire can be used to determine the default variable majority of a CDF distribution. The Concepts chapter
in the CDF User's Guide describes the variable majorities. Note: you need to provide dummy arrays, with at least one
(1) element, for indices, counts and intervals for scalar variables.

4.3.110.1. Example(s)
The following example will read an entire record of data from an rVariable. The CDF’s rVariables are 3-dimensional
with sizes (180,91,10) and CDF’s variable majority is ROW_MAJOR. For the rVariable the record variance is VARY,
the dimension variances are {VARY,VARY,VARY}, and the data type is CDF_REAL4. This example is similar to the
example provided for CDFvarGet except that it uses a single call to CDFvarHyperGet rather than numerous calls to
CDFvarGet.

.

.

.
dim id as long ‘ CDF identifier.
Dim status as integer ‘ Returned status code.
Dim tmp(,,) as single ‘ Temperature values.
Dim varN as integer ‘ rVariable number.
Dim recStart as integer = 13 ‘ Record number.
Dim recCount as integer = 1 ‘ Record counts.
Dim recInterval as integer = 1 ‘ Record interval.
Dim indices() as integer = {0,0,0} ‘ Dimension indices.
Dim counts() as integer = {180,91,10} ‘ Dimension counts.
Dim intervals() as integer = {1,1,1} ‘ Dimension intervals.
.
.
try
 varN = CDFgetVarNum (id, "Temperature")
 …

 status = CDFvarHyperGet (id, varN, recStart, recCount, recInterval, indices, counts, intervals, tmp)
.
catch ex as Exception
 …
end try

Note that if the CDF's variable majority had been COLUMN_MAJOR, the tmp array would have been declared simple
type of tmp(10,91,180) for proper indexing.

4.3.111 CDFvarHyperPut13
integer CDFvarHyperPut(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varNum as integer, ‘ in -- rVariable number.
recStart as integer, ‘ in -- Starting record number.
recCount as integer, ‘ in -- Number of records.
recInterval as integer, ‘ in -- Interval between records.

13 A legacy CDF function, handling rVariables only. While it is still available in V3.1, CDFhyperPutrVarData is the
preferred function for it.

157

indices as integer(), ‘ in -- Dimension indices of starting value.
counts as integer(), ‘ in -- Number of values along each dimension.
intervals as integer(), ‘ in -- Interval between values along each dimension.
buffer as TYPE) ‘ in -- Buffer of values.
 ‘ TYPE -- VB value/string type (likely an array)

CDFvarHyperPut is used to write one or more values from the data holding buffer to the specified rVariable. It is
important to know the variable majority of the CDF before using this routine because the values in the buffer to be written
must be in the same majority. CDFinquire can be used to determine the default variable majority of a CDF distribution.
The Concepts chapter in the CDF User's Guide describes the variable majorities. Note: you need to provide dummy
arrays, with at least one (1) element, for indices, counts and intervals for scalar variables.

4.3.111.1. Example(s)
The following example writes values to the rVariable LATITUDE of a CDF that is an 2-dimensional array with dimension
sizes (360,181). For LATITUDE the record variance is NOVARY, the dimension variances are {NOVARY,VARY},
and the data type is CDF_INT2. This example is similar to the CDFvarPut example except that it uses a single call to
CDFvarHyperPut rather than numerous calls to CDFvarPut.

.

.

.
dim id as long ‘ CDF identifier.
Dim status as integer ‘ Returned status code.
Dim i as integer ‘ Latitude value.
Dim lats(181) as short ‘ Buffer of latitude values.
Dim varN as integer ‘ rVariable number.
Dim recStart as integer = 0 ‘ Record number.
Dim recCount as integer = 1 ‘ Record counts.
Dim recInterval as integer = 1 ‘ Record interval.
Dim indices()as integer = {0,0} ‘ Dimension indices.
Dim counts() as integer = {1,181} ‘ Dimension counts.
Dim intervals() as integer = {1,1} ‘ Dimension intervals.

.
.
try
 ….
 varN = CDFvarNum (id, "LATITUDE")
 for i = -90 to 90
 lats(90+i) = CType(i, short)
 next lat
 status = CDFvarHyperPut (id, varN, recStart, recCount, recInterval, indices, counts, intervals, lats)
…..
catch ex as Exception
 …
end try

4.3.112 CDFvarInquire
integer CDFvarInquire(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varNum as integer, ‘ in -- rVariable number.
varName as string, ‘ out -- rVariable name.
dataType as integer , ‘ out -- Data type.
numElements as integer, ‘ out -- Number of elements (of the data type).
recVariance as integer, ‘ out -- Record variance.
dimVariances as integer()) ‘ out -- Dimension variances.

158

CDFvarInquire is used to inquire about the specified rVariable. This method would normally be used before reading
rVariable values (with CDFvarGet or CDFvarHyperGet) to determine the data type and number of elements (of that data
type).

The arguments to CDFvarInquire are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

varNum Number of the rVariable to inquire. This number may be determined with a call to

CDFvarNum (see Section 4.3.113).

varName rVariable's name.

dataType Data type of the rVariable. The data types are defined in Section 2.6.

numElements Number of elements of the data type at each rVariable value. For character data types

(CDF_CHAR and CDF_UCHAR), this is the number of characters in the string. (Each
value consists of the entire string.) For all other data types, this will always be one (1) -
multiple elements at each value are not allowed for non-character data types.

recVariance The record variance. The record variances are defined in Section 2.10.

dimVariances Dimension variances. Each element of dimVariances receives the corresponding dimension

variance. The dimension variances are defined in Section 2.10. For 0-dimensional
rVariables this argument is ignored (but a placeholder is necessary).

4.3.112.1. Example(s)
The following example returns about an rVariable named HEAT_FLUX in a CDF. Note that the rVariable name returned
by CDFvarInquire will be the same as that passed in to CDFgetVarNum.

.

.

.
dim id as long ‘ CDF identifier.
Dim status as integer ‘ Returned status code.
Dim varName as string ‘ rVariable name.
Dim dataType as integer ‘ Data type of the rVariable.
Dim numElems as integer ‘ Number of elements (of data type).
Dim recVary as integer ‘ Record variance.
Dim dimVarys(CDF_MAX_DIMS) as integer ‘ Dimension variances (allocate to allow the

‘ maximum number of dimensions).
.
.
try
 ….
 status = CDFvarInquire (id, CDFgetVarNum (id,"HEAT_FLUX"), varName, dataType, _
 numElems, recVary, dimVarys)
 …
catch ex as Exception
 …
end try

159

4.3.113 CDFvarNum14
integer CDFvarNum(‘ out -- Variable number.
id as long, ‘ in -- CDF identifier.
varName as string) ‘ in -- Variable name.

CDFvarNum is used to determine the number associated with a given variable name. If the variable is found,
CDFvarNum returns its variable number - which will be equal to or greater than zero (0). If an error occurs (e.g., the
variable does not exist in the CDF), an error code (of type Int) is returned. Error codes are less than zero (0). The returned
variable number should be used in the functions of the same variable type, rVariable or zVariable. If it is an rVariable,
functions dealing with rVariables should be used. Similarly, functions for zVariables should be used for zVariables.

The arguments to CDFvarNum are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

varName Name of the variable to search. This may be at most CDF_VAR_NAME_LEN256 characters.

Variable names are case-sensitive.

4.3.113.1. Example(s)
In the following example CDFvarNum is used as an embedded function call when inquiring about an rVariable.

.

.

.
dim id as long ‘ CDF identifier.
dim status as integer ‘ Returned status code.
dim varName as string ‘ Variable name.
dim dataType as integer ‘ Data type of the rVariable.
dim numElements integer ‘ Number of elements (of the data type).
dim recVariance as integer ‘ Record variance.
dim dimVariances(CDF_MAX_DIMS) as integer ‘ Dimension variances.
.
.
try
 ….

 status = CDFvarInquire (id, CDFvarNum (id,"LATITUDE"), varName, dataType, _
 numElements, recVariance, dimVariances)
 .
catch ex as Exception
 …
end try

In this example the rVariable named LATITUDE was inquired. Note that if LATITUDE did not exist in the CDF, the
call to CDFgetVarNum would have returned an error code. Passing that error code to CDFvarInquire as an rVariable
number would have resulted in CDFvarInquire also returning an error code. Also note that the name written into varName
is already known (LATITUDE). In some cases the rVariable names will be unknown - CDFvarInquire would be used to
determine them. CDFvarInquire is described in Section 4.3.112.

14 A legacy CDF function. It used to handle only rVariables. It has been extended to include zVariables. While it is still
available in V3.1, CDFgetVarNum is the preferred function for it.

160

4.3.114 CDFvarPut15
integer CDFvarPut(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varNum as integer, ‘ in -- rVariable number.
recNum as integer, ‘ in -- Record number.
indices as integer(), ‘ in -- Dimension indices.
value as TYPE) ‘ in -- Value.
 ‘ TYPE -- VB value/string type

CDFvarPut writes a single data value to an rVariable. CDFvarPut may be used to write more than one value with a single
call.

The arguments to CDFvarPut are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopen.

varNum rVariable number to which to write. This number may be determined with a call to

CDFvarNum.

recNum Record number at which to write.

indices Dimension indices within the specified record at which to write. Each element of indices

specifies the corresponding dimension index. For 0-dimensional variables, this argument is
ignored (but must be present).

value Data value to write.

4.3.114.1. Example(s)
The following example will write two data values (1st and 5th elements) of a 2-dimensional rVariable (2 by 3) named
MY_VAR to record number 0.

.

.

.
dim id as long ‘ CDF identifier.
dim varNum as integer ‘ rVariable number.
dim recNum as integer ‘ The record number.
Dim indices(2) as integer ‘ The dimension indices.
Dim value1 as double, value2 as double ‘ The data values.
.
.
try
….
 varNum = CDFgetVarNum (id, “MY_VAR”)
 recNum = 0
 indices(0) = 0
 indices(1) = 0
 value1 = 10.1
 status = CDFvarPut (id, varNum, recNum, indices, value1)
 indices(0) = 1
 indices(1) = 1
 value2 = 20.2
 status = CDFvarPut (id, varNum, recNum, indices, value2)

15 A legacy CDF function, handling rVariables only. While it is still available in V3.1, CDFputrVarData is the preferred
function for it.

161

.
catch ex as Exception
 …
end try

4.3.115 CDFvarRename16
integer CDFvarRename(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
varNum as integer, ‘ in -- rVariable number.
varName as string) ‘ in -- New name.

CDFvarRename is used to rename an existing rVariable. A variable (rVariable or zVariable) name must be unique.

The arguments to CDFvarRename are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopen.

varNum rVariable number to rename. This number may be determined with a call to CDFvarNum.

varName The new rVariable name. The maximum length of the new name is

CDF_VAR_NAME_LEN256 characters. Variable names are case-sensitive.

4.3.115.1. Example(s)
In the following example the rVariable named TEMPERATURE is renamed to TMP (if it exists). Note that if
CDFvarNum returns a value less than zero (0) then that value is not an rVariable number but rather a warning/error code.

.

.

.
dim id as long ‘ CDF identifier.
Dim status as integer ‘ Returned status code.
Dim varNum as integer ‘ rVariable number.
.
.
try
….
 varNum = CDFvarNum (id, "TEMPERATURE")
…

}
.
catch ex as Exception
 …
end try

4.4 Attributes/Entries
This section provides functions that are related to CDF attributes or attribute entries. An attribute is identified by its
name or an number in the CDF. Before you can perform any operation on an attribute or attribute entry, the CDF in
which it resides must be opened.

16 A legacy CDF function, handling rVariables only. While it is still available in V3.1, CDFrenamerVar is the preferred
function for it.

162

4.4.1 CDFattrCreate17
integer CDFattrCreate(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
attrName as string, ‘ in -- Attribute name.
attrScope as integer, ‘ in -- Scope of attribute.
attrNum as integer) ‘ out -- Attribute number.

CDFattrCreate creates an attribute in the specified CDF. An attribute with the same name must not already exist in the
CDF.

The arguments to CDFattrCreate are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

attrName Name of the attribute to create. This may be at most CDF_ATTR_NAME_LEN256

characters. Attribute names are case-sensitive.

attrScope Scope of the new attribute. Specify one of the scopes described in Section 2.13.

attrNum Number assigned to the new attribute. This number must be used in subsequent CDF

function calls when referring to this attribute. An existing attribute's number may be
determined with the CDFgetAttrNum function.

4.4.1.1. Example(s)
The following example creates two attributes. The TITLE attribute is created with global scope - it applies to the entire
CDF (most likely the title of the data set stored in the CDF). The Units attribute is created with variable scope - each
entry describes some property of the corresponding variable (in this case the units for the data).

.

.

.
dim id as long ‘ CDF identifier.
Dim status as integer ‘ Returned status code.
Dim UNITSattrName as string = "Units" ‘ Name of "Units" attribute.
Dim UNITSattrNum as integer ‘ "Units" attribute number.
Dim TITLEattrNum as integer ‘ "TITLE" attribute number.
Dim TITLEattrScope as integer = GLOBAL_SCOPE ‘ "TITLE" attribute scope.
.
.
try
 …
 status = CDFattrCreate (id, "TITLE", TITLEattrScope, TITLEattrNum)
 status = CDFattrCreate (id, UNITSattrName, VARIABLE_SCOPE, UNITSattrnum)
 …
 …
catch ex as Exception
 …
end try
.
.

17 Same as CDFcreateAttr.

163

4.4.2 CDFattrEntryInquire
integer CDFattrEntryInquire(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
attrNum as integer, ‘ in -- Attribute number.
entryNum as integer, ‘ in -- Entry number.
dataType as integer, ‘ out -- Data type.
numElements as integer) ‘ out -- Number of elements (of the data type).

CDFattrEntryInquire is used to inquire about a specific attribute entry. To inquire about the attribute in general, use
CDFattrInquire. CDFattrEntryInquire would normally be called before calling CDFattrGet in order to determine the data
type and number of elements (of that data type) for an entry. This would be necessary to correctly allocate enough
memory to receive the value read by CDFattrGet.

The arguments to CDFattrEntryInquire are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

attrNum Attribute number for which to inquire an entry. This number may be determined with a

call to CDFattrNum (see Section 4.4.5).

entryNum Entry number to inquire. If the attribute is global in scope, this is simply the gEntry number

and has meaning only to the application. If the attribute is variable in scope, this is the
number of the associated rVariable (the rVariable being described in some way by the
rEntry).

dataType Data type of the specified entry. The data types are defined in Section 2.6.

NumElements Number of elements of the data type. For character data types (CDF_CHAR and

CDF_UCHAR), this is the number of characters in the string (An array of characters). For
all other data types this is the number of elements in an array of that data type.

4.4.2.1. Example(s)
The following example returns each entry for an attribute. Note that entry numbers need not be consecutive - not every
entry number between zero (0) and the maximum entry number must exist. For this reason NO_SUCH_ENTRY is an
expected error code. Note also that if the attribute has variable scope, the entry numbers are actually rVariable numbers.

.

.

.
dim id as long ‘ CDF identifier.
Dim status as integer ‘ Returned status code.
Dim attrN as integer ‘ attribute number.
Dim entryN as integer ‘ Entry number.
Dim attrName as string ‘ attribute name.
Dim attrScope as integer ‘ attribute scope.
Dim maxEntry as integer ‘ Maximum entry number used.
Dim dataType as integer ‘ Data type.
Dim numElems as integer ‘ Number of elements (of the data type).
.
.
try
 …
 attrN = CDFgetAttrNum (id, "TMP")
 status = CDFattrInquire (id, attrN, attrName, attrScope, maxEntry)

164

 for entryN = 0 to maxEntry
 status = CDFattrEntryInquire (id, attrN, entryN, dataType, numElems)

 next entryN
.
 .
 }
…
catch ex as Exception
 …
end try

4.4.3 CDFattrGet18
integer CDFattrGet(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
integer attrNum, ‘ in -- Attribute number.
integer entryNum, ‘ in -- Entry number.
value as TYPE) ‘ out -- Attribute entry value.
 ‘ TYPE -- VB value/string type or object

CDFattrGet is used to read an attribute entry from a CDF. In most cases it will be necessary to call CDFattrEntryInquire
before calling CDFattrGet in order to determine the data type and number of elements (of that data type) for the entry.

The arguments to CDFattrGet are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

attrNum Attribute number. This number may be determined with a call to CDFattrNum (Section 4.4.5).

entryNum Entry number. If the attribute is global in scope, this is simply the gEntry number and has

meaning only to the application. If the attribute is variable in scope, this is the number of the
associated rVariable (the rVariable being described in some way by the rEntry).

value The value read. This buffer must be large enough to hold the value. The method

CDFattrEntryInquire would be used to determine the entry data type and number of elements
(of that data type). The value is read from the CDF and placed into memory at address value.

4.4.3.1. Example(s)
The following example displays the value of the UNITS attribute for the rEntry corresponding to the PRES_LVL
rVariable (but only if the data type is CDF_CHAR).

.

.

.
dim id as long ‘ CDF identifier.
dim status as integer ‘ Returned status code.
Dim attrN as integer ‘ Attribute number.
Dim entryN as integer ‘ Entry number.
Dim dataType as integer ‘ Data type.
Dim numElems as integer ‘ Number of elements (of data type).
.
.

18 A legacy CDF function. While it is still available in V3.1, CDFgetAttrgEntry or CDFgetAttrrEntry is the preferred
function for it.

165

try
 …
 attrN = CDFattrNum (id, "UNITS")
 entryN = CDFvarNum (id, "PRES_LVL") ‘ The rEntry number is the rVariable number.

 status = CDFattrEntryInquire (id, attrN, entryN, dataType, numElems)

 if dataType = CDF_CHAR then
 dim buffer as string
 status = CDFattrGet (id, attrN, entryN, buffer)
 end if
catch ex as Exception
 …
end try
.

4.4.4 CDFattrInquire19
integer CDFattrInquire(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
attrNum as integer, ‘ in -- Attribute number.
attrName as string, ‘ out -- Attribute name.
attrScope as integer, ‘ out -- Attribute scope.
maxEntry as integer) ‘ out -- Maximum gEntry/rEntry number.

CDFattrInquire is used to inquire about the specified attribute. To inquire about a specific attribute entry, use
CDFattrEntryInquire.

The arguments to CDFattrInquire are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

attrNum Number of the attribute to inquire. This number may be determined with a call to

CDFattrNum (see Section 4.4.5).

attrName Attribute's name. This string length is limited to CDF_ATTR_NAME_LEN256.

attrScope Scope of the attribute. Attribute scopes are defined in Section 2.13.

maxEntry For gAttributes this is the maximum gEntry number used. For vAttributes this is the

maximum rEntry number used. In either case this may not correspond with the number of
entries (if some entry numbers were not used). If no entries exist for the attribute, then a
value of -1 will be passed back.

4.4.4.1. Example(s)
The following example displays the name of each attribute in a CDF. The number of attributes in the CDF is first
determined using the method CDFinquire. Note that attribute numbers start at zero (0) and are consecutive.

.

.

.
dim id as long ‘ CDF identifier.
Dim status as integer ‘ Returned status code.

19 A legacy function. While it is still available in V3.1, CDFinquireAttr is the preferred function for it.

166

Dim numDims as integer ‘ Number of dimensions.
Dim dimSizes() as integer ‘ Dimension sizes (allocate to allow the

‘ maximum number of dimensions).
Dim encoding as integer ‘ Data encoding.
Dim majority as integer ‘ Variable majority.
Dim maxRec as integer ‘ Maximum record number in CDF.
Dim numVars as integer ‘ Number of variables in CDF.
Dim numAttrs as integer ‘ Number of attributes in CDF.
Dim attrN as integer ‘ attribute number.
Dim attrName as string ‘ attribute name.
Dim attrScope as integer ‘ attribute scope.
Dim maxEntry as integer ‘ Maximum entry number.
.
.
try
 ….
 status = CDFinquire (id, numDims, dimSizes, encoding, majority, maxRec, numVars,
 numAttrs)
 for attrN = 0 to (numAttrs-1)
 status = CDFattrInquire (id, attrN, attrName, attrScope, maxEntry)

 next attrN
catch ex as Exception
 …
end try
.

4.4.5 CDFattrNum20
integer CDFattrNum(‘ out -- attribute number.
id as long, ‘ in -- CDF id
attrName as string) ‘ in -- Attribute name

CDFattrNum is used to determine the attribute number associated with a given attribute name. If the attribute is found,
CDFattrNum returns its number - which will be equal to or greater than zero (0). If an error occurs (e.g., the attribute
name does not exist in the CDF), an error code (of type Int) is returned. Error codes are less than zero (0).

The arguments to CDFattrNum are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

attrName Name of the attribute for which to search. This may be at most CDF_ATTR_NAME_LEN256

characters. Attribute names are case-sensitive.

CDFattrNum may be used as an embedded function call when an attribute number is needed.

4.4.5.1. Example(s)
In the following example the attribute named pressure will be renamed to PRESSURE with CDFattrNum being used as
an embedded function call. Note that if the attribute pressure did not exist in the CDF, the call to CDFattrNum would
have returned an error code. Passing that error code to CDFattrRename as an attribute number would have resulted in
CDFattrRename also returning an error code.

.

.

20 A legacy CDF function. While it is still available in V3.1, CDFgetAttrNum is the preferred function for it.

167

.
dim id as long ‘ CDF identifier.
Dim status as integer ‘ Returned status code.
.
.
try
 ….
 status = CDFattrRename (id, CDFattrNum (id,"pressure"), "PRESSURE")
 ….
catch ex as Exception
 …
end try

4.4.6 CDFattrPut
integer CDFattrPut(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
integer attrNum, ‘ in -- Attribute number.
integer entryNum, ‘ in -- Entry number.
integer dataType, ‘ in -- Data type of this entry.
integer numElements, ‘ in -- Number of elements (of the data type).
value as TYPE) ‘ in -- Attribute entry value.
 ‘ TYPE -- VB value/string type

CDFattrPut is used to write an entry to a global or rVariable attribute in a CDF. The entry may or may not already exist.
If it does exist, it is overwritten. The data type and number of elements (of that data type) may be changed when
overwriting an existing entry.

The arguments to CDFattrPut are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopen.

attrNum Attribute number. This number may be determined with a call to CDFgetAttrNum.

entryNum Entry number. If the attribute is global in scope, this is simply the gEntry number and

has meaning only to the application. If the attribute is variable in scope, this is the
number of the associated rVariable (the rVariable being described in some way by the
rEntry).

dataType Data type of the specified entry. Specify one of the data types defined in Section 2.6.

numElements Number of elements of the data type. For character data types (CDF_CHAR and

CDF_UCHAR), this is the number of characters in the string (an array of characters).
For all other data types this is the number of elements in an array of that data type.

value The value(s) to write. The entry value is written to the CDF from memory address value.

4.4.6.1. Example(s)
The following example writes two attribute entries. The first is to gEntry number zero (0) of the gAttribute TITLE. The
second is to the variable scope attribute VALIDs for the rEntry that corresponds to the rVariable TMP.

.

.

.
dim id as long ‘ CDF identifier.
Dim status as integer ‘ Returned status code.

168

Dim TITLE_LEN as integer = 10 ‘ Entry string length.
Dim entryNum as integer ‘ Entry number.
Dim numElements as integer ‘ Number of elements (of data type).
Dim title as string = "CDF title." ‘ Value of TITLE attribute, entry number 0.
Dim TMPvalids() as short = {15,30} ‘ Value(s) of VALIDs attribute,

‘ rEntry for rVariable TMP.
.
.
entryNum = 0
try
 status = CDFattrPut (id, CDFgetAttrNum (id,"TITLE"), entryNum, CDF_CHAR, TITLE_LEN, title)
.
 numElements = 2
 status = CDFattrPut (id, CDFgetAttrNum (id,"VALIDs"), CDFgetVarNum (id,"TMP"), _
 CDF_INT2, numElements, TMPvalids)

catch ex as Exception
 …
end try
.

4.4.7 CDFattrRename21
integer CDFattrRename(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
attrNum as integer, ‘ in -- Attribute number.
attrName as string) ‘ in -- New attribute name.

CDFattrRename is used to rename an existing attribute. An attribute with the new name must not already exist in the
CDF.

The arguments to CDFattrRename are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

attrNum Number of the attribute to rename. This number may be determined with a call to

CDFattrNum (see Section 4.4.5).

attrName The new attribute name. This may be at most CDF_ATTR_NAME_LEN256 characters.

Attribute names are case-sensitive.

4.4.7.1. Example(s)
In the following example the attribute named LAT is renamed to LATITUDE.

.

.

.
dim id as long ‘ CDF identifier.
Dim status as integer ‘ Returned status code.
.
.
try
 status = CDFattrRename (id, CDFgetAttrNum (id,"LAT"), "LATITUDE")

21 A legacy CDF function. While it is still available in V3.1, CDFrenameAttr is the preferred function for it.

169

.
catch ex as Exception
 …
end try

4.4.8 CDFconfirmAttrExistence
integer CDFconfirmAttrExistence(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
attrName as string) ‘ in -- Attribute name.

CDFconfirmAttrExistence confirms whether an attribute exists for the given attribute name in a CDF. If the attribute
doesn’t exist, the informational status code, NO_SUCH_ATTR, is returned and no exception is thrown.

The arguments to CDFconfirmAttrExistence are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrName Attribute name to check.

4.4.8.1. Example(s)
The following example checks whether an attribute by the name of “ATTR_NAME1” is in a CDF.

.

.

.
dim id as long ‘ CDF identifier.
Dim status as integer ‘ Returned status code.
.
.
try
 ….
 status = CDFconfirmAttrExistence (id, “ATTR_NAME1”)
 if status = NO_SUCH_ATTR then
 ….
 end if
.
catch ex as Exception
 …
end try

4.4.9 CDFconfirmgEntryExistence
integer CDFconfirmgEntryExistence(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
attrNum as integer, ‘ in -- Attribute number.
entryNum as integer) ‘ in -- gEntry number.

CDFconfirmgEntryExistence confirms the existence of the specified entry (gEentry), in a global attribute from a CDF.
If the gEntry does not exist, the informational status code NO_SUCH_ENTRY will be returned and no exception is
thrown.

The arguments to CDFconfirmgEntryExistence are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

170

attrNum Global attribute number.

entryNum Global entry number.

4.4.9.1. Example(s)
The following example checks the existence of a gEntry numbered 1 for attribute “MY_ATTR” in a CDF.

.

.

.
dim id as long ‘ CDF identifier.
Dim status as integer ‘ Returned status code.
dim attrNum as integer ‘ Attribute number.
Dim entryNum as integer ‘ gEntry number.
.
.
try
 ….
 attrNum = CDFgetAttrNum (id, “MY_ATTR”)
 entryNum = 1
 status = CDFconfirmgEntryExistence (id, attrNum, entryNum)
 if status = NO_SUCH_ENTRY then UserStatusHandler (status)
.
.

4.4.10 CDFconfirmrEntryExistence
integer CDFconfirmrEntryExistence(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
attrNum as integer, ‘ in -- Attribute number.
entryNum as integer) ‘ in -- rEntry number.

CDFconfirmrEntryExistence confirms the existence of the specified entry (rEntry), corresponding to an rVariable, in a
variable attribute from a CDF. If the rEntry does not exist, the informational status code NO_SUCH_ENTRY will be
returned and no exception is thrown.

The arguments to CDFconfirmrEntryExistence are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Variable attribute number.

entryNum rEntry number.

4.4.10.1. Example(s)
The following example checks the existence of an rEntry, corresponding to rVariable “MY_VAR”, for attribute
“MY_ATTR” in a CDF.

.

.

.
dim id as long ‘ CDF identifier.
dim status as integer ‘ Returned status code.
dim attrNum as integer ‘ Attribute number.
dim entryNum as integer ‘ rEntry number.

171

.

.
try
 ….
 attrNum = CDFgetAttrNum (id, “MY_ATTR”)
 entryNum = CDFgetVarNum (id, “MY_VAR”)
 status = CDFconfirmrEntryExistence (id, attrNum, entryNum)
 if status = NO_SUCH_ENTRY then UserStatusHandler (status)
.
catch ex as Exception
 …
end try

4.4.11 CDFconfirmzEntryExistence
integer CDFconfirmzEntryExistence(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
attrNum as integer, ‘ in -- Attribute number.
entryNum as integer) ‘ in -- zEntry number.

CDFconfirmzEntryExistence confirms the existence of the specified entry (zEntry), corresponding to a zVariable, in a
variable attribute from a CDF. If the zEntry does not exist, the informational status code NO_SUCH_ENTRY will be
returned and no exception is thrown.

The arguments to CDFconfirmzEntryExistence are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Variable attribute number.

entryNum zVariable number.

4.4.11.1. Example(s)
The following example checks the existence of the zEntry corresponding to zVariable “MY_VAR” for the variable
attribute “MY_ATTR” in a CDF.

.

.

.
dim id as long ‘ CDF identifier.
Dim status as integer ‘ Returned status code.
dim varNum as integer ‘ Attribute number.
dim entryNum as integer ‘ zEntry number.
.
.
try
 ….
 attrNum = CDFgetAttrNum (id, “MY_ATTR”)
 entryNum = CDFgetVarNum (id, “MY_VAR”)
 status = CDFconfirmzEntryExistence (id, attrNum, entryNum)
 if status = NO_SUCH_ENTRY then UserStatusHandler (status)
.
catch ex as Exception
 …
end try
.

172

4.4.12 CDFcreateAttr
integer CDFcreateAttr(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
attrName as string, ‘ in -- Attribute name.
attrScope as integer, ‘ in -- Scope of attribute.
attrNum as integer) ‘ out -- Attribute number.

CDFcreateAttr creates an attribute with the specified scope in a CDF. It is identical to the method CDFattrCreate. An
attribute with the same name must not already exist in the CDF.

The arguments to CDFcreateAttr are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrName Name of the attribute to create. This may be at most CDF_ATTR_NAME_LEN256

characters. Attribute names are case-sensitive.

attrScope Scope of the new attribute. Specify one of the scopes described in Section 2.13.

attrNum Number assigned to the new attribute. This number must be used in subsequent CDF

function calls when referring to this attribute. An existing attribute's number may be
determined with the CDFgetAttrNum function.

4.4.12.1. Example(s)
The following example creates two attributes. The TITLE attribute is created with global scope - it applies to the entire
CDF (most likely the title of the data set stored in the CDF). The Units attribute is created with variable scope - each
entry describes some property of the corresponding variable (in this case the units for the data).

.

.

.
dim id as long id ‘ CDF identifier.
Dim status as integer ‘ Returned status code.
Dim UNITSattrName as string = "Units" ‘ Name of "Units" attribute.
Dim UNITSattrNum as integer ‘ "Units" attribute number.
Dim TITLEattrNum as integer ‘ "TITLE" attribute number.
Dim TITLEattrScope as integer = GLOBAL_SCOPE ‘ "TITLE" attribute scope.
.
.
try
 ….
 status = CDFcreateAttr (id, "TITLE", TITLEattrScope, TITLEattrNum)
 status = CDFcreateAttr (id, UNITSattrName, VARIABLE_SCOPE, UNITSattrnum)
.
catch ex as Exception
 …
end try
.

4.4.13 CDFdeleteAttr
integer CDFdeleteAttr(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
attrNum as integer) ‘ in -- Attribute identifier.

173

CDFdeleteAttr deletes the specified attribute from a CDF.

The arguments to CDFdeleteAttr are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Attribute number to be deleted.

4.4.13.1. Example(s)
The following example deletes an existing attribute named MY_ATTR from a CDF.

.

.

.
dim id as long ‘ CDF identifier.
Dim status as integer ‘ Returned status code.
dim attrNum as integer ‘ Attribute number.
.
.
try
 ….
 attrNum = CDFgetAttrNum (id, “MY_ATTR”)
 status = CDFdeleteAttr (id, attrNum)
.
catch ex as Exception
 …
end try
.

4.4.14 CDFdeleteAttrgEntry
integer CDFdeleteAttrgEntry(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
attrNum as integer, ‘ in -- Attribute identifier.
entryNum as integer) ‘ in -- gEntry identifier.

CDFdeleteAttrgEntry deletes the specified entry (gEntry) in a global attribute from a CDF.

The arguments to CDFdeleteAttrgEntry are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Global attribute number from which to delete an attribute entry.

entryNum gEntry number to delete.

4.4.14.1. Example(s)
The following example deletes the entry number 5 from an existing global attribute MY_ATTR in a CDF.

.

.

.
dim id as long ‘ CDF identifier.
Dim status as integer ‘ Returned status code.
dim varNum as integer ‘ Attribute number.
dim entryNum as integer ‘ gEntry number.

174

.

.
try
 ….
 attrNum = CDFgetAttrNum (id, “MY_ATTR”)
 entryNum = 5
 status = CDFdeleteAttrgEntry (id, attrNum, entryNum)

.
catch ex as Exception
 …
end try
.

4.4.15 CDFdeleteAttrrEntry
integer CDFdeleteAttrrEntry(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
attrNum as integer, ‘ in -- Attribute identifier.
entryNum as integer) ‘ in -- rEntry identifier.

CDFdeleteAttrrEntry deletes the specified entry (rEntry), corresponding to an rVariable, in an (variable) attribute from
a CDF.

The arguments to CDFdeleteAttrrEntry are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Variable attribute number.

entryNum rVariable number.

4.4.15.1. Example(s)
The following example deletes the entry corresponding to rVariable “MY_VAR1” from the variable attribute
“MY_ATTR” in a CDF.

.

.

.
dim id as long ‘ CDF identifier.
Dim status as integer ‘ Returned status code.
dim varNum as integer ‘ Attribute number.
dim entryNum as integer ‘ rEntry number.
.
.
try
 ….
 attrNum = CDFgetAttrNum (id, “MY_ATTR”)
 entryNum = CDFgetVarNum (id, “MY_VAR1”)
 status = CDFdeleteAttrrEntry (id, attrNum, entryNum)
.
catch ex as Exception
 …
end try
.

175

4.4.16 CDFdeleteAttrzEntry
integer CDFdeleteAttrzEntry(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
attrNum as integer, ‘ in -- Attribute identifier.
entryNum as integer) ‘ in -- zEntry identifier.

CDFdeleteAttrzEntry deletes the specified entry (zEntry), corresponding to a zVariable, in an (variable) attribute from a
CDF.

The arguments to CDFdeleteAttrzEntry are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Identifier of the variable attribute.

entryNum zEntry number to be deleted that is the zVariable number.

4.4.16.1. Example(s)
The following example deletes the variable attribute entry named MY_ATTR that is attached to the zVariable
MY_VAR1.

.

.

.
dim id as long ‘ CDF identifier.
Dim status as integer ‘ Returned status code.
dim attrNum as integer ‘ Attribute number.
dim entryNum as integer ‘ zEntry number.
.
.
try
 ….
 attrNum = CDFgetAttrNum (id, “MY_ATTR”)
 entryNum = CDFgetVarNum (id, “MY_VAR1”)
 status = CDFdeleteAttrzEntry (id, attrNum, entryNum)
.
catch ex as Exception
 …
end try
.

4.4.17 CDFgetAttrgEntry
integer CDFgetAttrgEntry (‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
attrNum as integer, ‘ in -- Attribute identifier.
entryNum as integer, ‘ in -- gEntry number.
value as TYPE) ‘ out -- gEntry data.
 ‘ TYPE -- VB value/string type or object

This method is identical to the method CDFattrGet. CDFgetAttrgEntry is used to read a global attribute entry from a
CDF. In most cases it will be necessary to call CDFinquireAttrgEntry before calling CDFgetAttrgEntry in order to
determine the data type and number of elements (of that data type) for the entry.

The arguments to CDFgetAttrgEntry are defined as follows:

176

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or

CDFcreateCDF) or CDFopenCDF.

attrNum Attribute number. This number may be determined with a call to CDFgetAttrNum.

entryNum Global attribute entry number.

value The value read.

4.4.17.1. Example(s)
The following example displays the value of the global attribute called HISTORY.

.

.

.
dim id as long ‘ CDF identifier.
Dim status as integer ‘ Returned status code.
Dim attrN as integer ‘ Attribute number.
Dim entryN as integer ‘ Entry number.
Dim dataType as integer ‘ Data type.
Dim numElems as integer ‘ Number of elements (of data type).
Dim buffer as Object ‘ Buffer to receive value.
.
.
try
 ….
 attrN = CDFattrNum (id, "HISTORY")
 entryN = 0
 status = CDFinquireAttrgEntry (id, attrN, entryN, dataType, numElems)
 status = CDFgetAttrgEntry (id, attrN, entryN, buffer)
 if dataType = CDF_CHAR then
 ‘ buffer is a string

 end if
.
catch ex as Exception
 …
end try
.

4.4.18 CDFgetAttrgEntryDataType
integer CDFgetAttrgEntryDataType (‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
attrNum as integer, ‘ in -- Attribute identifier.
entryNum as integer, ‘ in -- gEntry number.
dataType as integer) ‘ out -- gEntry data type.

CDFgetAttrgEntryDataType returns the data type of the specified global attribute and gEntry number in a CDF. The
data types are described in Section 2.6.

The arguments to CDFgetAttrgEntryDataType are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

177

attrNum Global attribute number.

entryNum gEntry number.

dataType Data type of the gEntry.

4.4.18.1. Example(s)
The following example gets the data type for the gEntry numbered 2 from the global attribute “MY_ATTR” in a CDF.

.

.

.
dim id as long ‘ CDF identifier.
Dim status as integer ‘ Returned status code.
Dim attrNum as integer ‘ Attribute number.
dim entryNum as integer ‘ gEntry number.
dim dataType as integer ‘ gEntry data type.
.
.
try
 ….
 attrNum = CDFgetAttrNum (id, “MY_ATTR”)
 entryNum = 2
 status = CDFgetAttrgEntryDataType (id, attrNum, entryNum, dataType)
.
catch ex as Exception
 …
end try
.

4.4.19 CDFgetAttrgEntryNumElements
integer CDFgetAttrgEntryNumElements (‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
attrNum as integer, ‘ in -- Attribute identifier.
entryNum as integer, ‘ in -- gEntry number.
numElems as integer) ‘ out -- gEntry’s number of elements.

CDFgetAttrgEntryNumElements returns the number of elements of the specified global attribute and gentry number in a
CDF.

The arguments to CDFgetAttrgEntryNumElements are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Identifier of the global attribute.

entryNum gEntry number.

numElems Number of elements of the gEntry.

4.4.19.1. Example(s)
The following example gets the number of elements from the gEntry numbered 2 from the global attribute “MY_ATTR”
in a CDF.

.

178

.

.
dim id as long ‘ CDF identifier.
Dim status as integer ‘ Returned status code.
dim attrNum as integer ‘ Attribute number.
dim entryNum as integer ‘ gEntry number.
dim numElements as integer ‘ gEntry’s number of elements.
.
.
try
 ….
 attrNum = CDFgetAttrNum (id, “MY_ATTR”)
 entryNum = 2
 status = CDFgetAttrgEntryNumElements (id, attrNum, entryNum, numElements)
.
catch ex as Exception
 …
end try
.

4.4.20 CDFgetAttrMaxgEntry
integer CDFgetAttrMaxgEntry (‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
attrNum as integer, ‘ in -- Attribute identifier.
maxEntry as integer) ‘ out -- The last gEntry number.

CDFgetAttrMaxgEntry returns the last entry number of the specified global attribute in a CDF.

The arguments to CDFgetAttrMaxgEntry are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Identifier of the global attribute.

maxEntry Last gEntry number.

4.4.20.1. Example(s)
The following example gets the last entry number from the global attribute “MY_ATTR” in a CDF.

.

.

.
dim id as long ‘ CDF identifier.
Dim attrNum as integer ‘ Attribute number.
dim maxEntry as integer ‘ The last gEntry number.
.
.
try
 ….
 attrNum = CDFgetAttrNum (id, “MY_ATTR”)
 status = CDFgetAttrMaxgEntry (id, attrNum, maxEntry)

.
catch ex as Exception

179

 …
end try
.

4.4.21 CDFgetAttrMaxrEntry
integer CDFgetAttrMaxrEntry (‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
attrNum as integer, ‘ in -- Attribute identifier.
maxEntry as integer) ‘ out -- The maximum rEntry number.

CDFgetAttrMaxrEntry returns the last rEntry number (rVariable number) to which the given variable attribute is attached.

The arguments to CDFgetAttrMaxrEntry are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Identifier of the variable attribute.

maxEntry Last rEntry number (rVariable number) to which attrNum is attached..

4.4.21.1. Example(s)
The following example gets the last entry, corresponding to the last rVariable number, from the variable attribute
“MY_ATTR” in a CDF.

.

.

.
dim id as long ‘ CDF identifier.
Dim status as integer ‘ Returned status code.
dim attrNum as integer ‘ Attribute number.
dim maxEntry as integer ‘ The last rEntry number.
.
.
try
 ….
 attrNum = CDFgetAttrNum (id, “MY_ATTR”)
 status = CDFgetAttrMaxrEntry (id, attrNum, maxEntry)
catch ex as Exception
 …
end try
.

4.4.22 CDFgetAttrMaxzEntry
integer CDFgetAttrMaxzEntry (‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
attrNum as integer, ‘ in -- Attribute identifier.
maxEntry as integer) ‘ out -- The maximum zEntry number.

CDFgetAttrMaxzEntry returns the last entry number, corresponding to the last zVariable number, to which the given
variable attribute is attached.

The arguments to CDFgetAttrMaxzEntry are defined as follows:

180

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Identifier of the variable attribute.

maxEntry Last zEntry number (zVariable number) to which attrNum is attached..

4.4.22.1. Example(s)
The following example gets the last entry, corresponding to the last zVariable number, attached to the variable attribute
MY_ATTR in a CDF.

.

.

.
dim id as long ‘ CDF identifier.
Dim status as integer ‘ Returned status code.
dim attrNum as integer ‘ Attribute number.
dim maxEntry as integer ‘ The last zEntry number
.
.
try
 ….
 attrNum = CDFgetAttrNum (id, “MY_ATTR”)
 status = CDFgetAttrMaxzEntry (id, attrNum, maxEntry)

catch ex as Exception
 …
end try
.

4.4.23 CDFgetAttrName
integer CDFgetAttrName (‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
attrNum as integer, ‘ in -- Attribute identifier.
attrName as string) ‘ out -- The attribute name.

CDFgetAttrName gets the name of the specified attribute (by its number) in a CDF.

The arguments to CDFgetAttrName are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Identifier of the attribute.

attrName Name of the attribute.

4.4.23.1. Example(s)
The following example retrieves the name of the attribute number 2, if it exists, in a CDF.

.

.

.
dim id as long ‘ CDF identifier.
Dim status as integer ‘ Returned status code.

181

dim attrNum as integer ‘ Attribute number.
Dim attrName as string ‘ The attribute name.
.
.
attrNum = 2
try
 ….
 status = CDFgetAttrName (id, attrNum, attrName)
.
catch ex as Exception
 …
end try
.

4.4.24 CDFgetAttrNum
integer CDFgetAttrNum (‘ out -- Attribute number.
id as long, ‘ in -- CDF identifier.
attrName as string) ‘ in -- The attribute name.

CDFgetAttrNum is used to determine the attribute number associated with a given attribute name. If the attribute is
found, CDFgetAttrNum returns its number - which will be equal to or greater than zero (0). If an error occurs (e.g., the
attribute name does not exist in the CDF), an error code (of type Int) is returned. Error codes are less than zero (0).

The arguments to CDFgetAttrNum are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrName Name of the attribute for which to search. This may be at most CDF_ATTR_NAME_LEN256

characters. Attribute names are case-sensitive.

CDFgetAttrNum may be used as an embedded function call when an attribute number is needed.

4.4.24.1. Example(s)
In the following example the attribute named pressure will be renamed to PRESSURE with CDFgetAttrNum being used
as an embedded function call. Note that if the attribute pressure did not exist in the CDF, the call to CDFgetAttrNum
would have returned an error code. Passing that error code to CDFattrRename as an attribute number would have resulted
in CDFattrRename also returning an error code.

.

.

.
dim id as long ‘ CDF identifier.
Dim status as integer ‘ Returned status code.
.
.
try
 ….
 status = CDFrenameAttr (id, CDFgetAttrNum (id,"pressure"), "PRESSURE")

catch ex as Exception
 …
end try

182

4.4.25 CDFgetAttrrEntry
integer CDFgetAttrrEntry (‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
attrNum as integer, ‘ in -- Attribute identifier.
entryNum as integer, ‘ in -- Entry number.
value as TYPE) ‘ out -- Entry data.
 ‘ TYPE -- VB value/string type or object
This method is identical to the method CDFattrGet. CDFgetAttrrEntry is used to read an rVariable attribute entry from
a CDF. In most cases it will be necessary to call CDFinquireAttrrEntry before calling CDFgetAttrrEntry in order to
determine the data type and number of elements (of that data type) for the entry.

The arguments to CDFgetAttrrEntry are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Attribute number. This number may be determined with a call to CDFgetAttrNum.

entryNum rVariable attribute entry number that is the rVariable number from which the attribute is read.

value Entry value read.

4.4.25.1. Example(s)
The following example displays the value of the UNITS attribute for the rEntry corresponding to the PRES_LVL
rVariable (but only if the data type is CDF_CHAR).

.

.

.
dim id as long id ‘ CDF identifier.
Dim status as integer ‘ Returned status code.
Dim attrN as integer ‘ Attribute number.
Dim entryN as integer ‘ Entry number.
Dim dataType as integer ‘ Data type.
Dim numElems as integer ‘ Number of elements (of data type).
.
.
try
 ….
 attrN = CDFattrNum (id, "UNITS")
 entryN = CDFvarNum (id, "PRES_LVL") ‘ The rEntry number is the rVariable number.
 status = CDFinquireAttrrEntry (id, attrN, entryN, out dataType, out numElems)
 if dataType = CDF_CHAR then
 Dim buffer as string
 status = CDFgetAttrrEntry (id, attrN, entryN, buffer)

 end if .
catch ex as Exception
 …
end try
.

4.4.26 CDFgetAttrrEntryDataType
integer CDFgetAttrrEntryDataType (‘ out -- Completion status code.

183

id as long, ‘ in -- CDF identifier.
attrNum as integer, ‘ in -- Attribute identifier.
entryNum as integer, ‘ in -- rEntry number.
dataType as integer) ‘ out -- rEntry data type.

CDFgetAttrrEntryDataType returns the data type of the rEntry from an (variable) attribute in a CDF. The data types are
described in Section 2.6.

The arguments to CDFgetAttrrEntryDataType are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Identifier of the variable attribute.

entryNum rEntry number.

dataType Data type of the rEntry.

4.4.26.1. Example(s)
The following example gets the data type for the entry of rVariable “MY_VAR1” in the (variable) attribute “MY_ATTR”
in a CDF.

.

.

.
dim id as long ‘ CDF identifier.
Dim status as integer ‘ Returned status code.
dim attrNum as integer ‘ Attribute number.
dim entryNum as integer ‘ rEntry number.
dim dataType as integer ‘ rEntry data type.
.
.
try
 ….
 attrNum = CDFgetAttrNum (id, “MY_ATTR”)
 entryNum = CDFgetVarNum (id, “MY_VAR1”)
 status = CDFgetAttrrEntryDataType (id, attrNum, entryNum, dataType)
.
catch ex as Exception
 …
end try
.

4.4.27 CDFgetAttrrEntryNumElements
integer CDFgetAttrrEntryNumElements (‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
attrNum as integer, ‘ in -- Attribute identifier.
startRec as integer, ‘ in -- rEntry number.
numElems as integer) ‘ out -- rEntry’s number of elements.

CDFgetAttrrEntryNumElements returns the number of elements of the rEntry from an (variable) attribute in a CDF.

The arguments to CDFgetAttrrEntryNumElements are defined as follows:

184

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Identifier of the variable attribute.

entryNum rEntry number.

numElems Number of elements of the rEntry.

4.4.27.1. Example(s)
The following example gets the number of elements for the entry of rVariable “MY_VAR1” in the (variable) attribute
“MY_ATTR” in a CDF.

.

.

.
dim id as long ‘ CDF identifier.
Dim status as integer ‘ Returned status code.
dim attrNum as integer ‘ Attribute number.
dim entryNum as integer ‘ rEntry number.
dim numElements as integer ‘ rEntry’s number of elements.
.
.
try
 ….
 attrNum = CDFgetAttrNum (id, “MY_ATTR”)
 entryNum = CDFgetVarNum (id, “MY_VAR1”)
 status = CDFgetAttrrEntryNumElements (id, attrNum, entryNum, numElements)

.
catch ex as Exception
 …
end try
.

4.4.28 CDFgetAttrScope
integer CDFgetAttrScope (‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
attrNum as integer, ‘ in -- Attribute number.
attrScope as integer) ‘ out -- Attribute scope.

CDFgetAttrScope returns the attribute scope (GLOBAL_SCOPE or VARIABLE_SCOPE) of the specified attribute in a
CDF. Refer to Section 2.13 for the description of the attribute scopes.

The arguments to CDFgetAttrScope are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Attribute number.

attrScope Scope of the attribute.

4.4.28.1. Example(s)
The following example gets the scope of the attribute “MY_ATTR” in a CDF.

185

.

.

.
dim id as long ‘ CDF identifier.
Dim status as integer ‘ Returned status code.
dim attrNum as integer ‘ Attribute number.
dim attrScope as integer ‘ Attribute scope.
.
.
try
 ….
 attrNum = CDFgetAttrNum (id, “MY_ATTR”)
 status = CDFgetAttrScope (id, attrNum, attrScope)

.
catch ex as Exception
 …
end try
.

4.4.29 CDFgetAttrzEntry
integer CDFgetAttrzEntry(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
attrNum as integer, ‘ in -- Variable attribute number.
entryNum as integer, ‘ in -- Entry number.
value as TYPE) ‘ out -- Entry value.
 ‘ TYPE -- VB value/string type or object

CDFgetAttrzEntry is used to read zVariable’s attribute entry.. In most cases it will be necessary to call
CDFinquireAttrzEntry before calling this method in order to determine the data type and number of elements (of that
data type) for the entry.

The arguments to CDFgetAttrzEntry are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Variable attribute number. This number may be determined with a call to CDFgetAttrNum.

entryNum Variable attribute entry number that is the zVariable number from which the attribute entry is

read

value Entry value read.

4.4.29.1. Example(s)
The following example displays the value of the UNITS attribute for the PRES_LVL zVariable (but only if the data type
is CDF_CHAR).

.

.

.
dim id as long ‘ CDF identifier.
Dim status as integer ‘ Returned status code.
Dim attrN as integer ‘ Attribute number.
Dim entryN as integer ‘ Entry number.
Dim dataType as integer ‘ Data type.

186

Dim numElems as integer ‘ Number of elements (of data type).
.
try
 ….
 attrN = CDFgetAttrNum (id, "UNITS")
 entryN = CDFgetVarNum (id, "PRES_LVL") ‘ The zEntry number is the zVariable number.
 status = CDFinquireAttrzEntry (id, attrN, entryN, dataType, numElems)
 if dataType = CDF_CHAR then
 dim buffer as string
 status = CDFgetAttrzEntry (id, attrN, entryN, buffer)
 end if
.
catch ex as Exception
 …
end try
.

4.4.30 CDFgetAttrzEntryDataType
integer CDFgetAttrzEntryDataType (‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
attrNum as integer, ‘ in -- Attribute identifier.
entryNum as integer, ‘ in -- zEntry number.
dataType as integer) ‘ out -- zEntry data type.

CDFgetAttrzEntryDataType returns the data type of the zEntry for the specified variable attribute in a CDF. The data
types are described in Section 2.6.

The arguments to CDFgetAttrzEntryDataType are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Identifier of the variable attribute.

entryNum zEntry number that is the zVariable number.

dataType Data type of the zEntry.

4.4.30.1. Example(s)
The following example gets the data type of the attribute named MY_ATTR for the zVariable MY_VAR1 in a CDF.

.

.

.
dim id as long ‘ CDF identifier.
Dim status as integer ‘ Returned status code.
dim attrNum as integer ‘ Attribute number.
dim entryNum as integer ‘ zEntry number.
dim dataType as integer ‘ zEntry data type.
.
.
try
 ….
 attrNum = CDFgetAttrNum (id, “MY_ATTR”)
 entryNum = CDFgetVarNum (id, “MY_VAR1”)

187

 status = CDFgetAttrzEntryDataType (id, attrNum, entryNum, dataType)

.
catch ex as Exception
 …
end try
.

4.4.31 CDFgetAttrzEntryNumElements
integer CDFgetAttrzEntryNumElements (‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
attrNum as integer, ‘ in -- Attribute identifier.
entryNum as integer , ‘ in -- zEntry number.
numElems as integer) ‘ out -- zEntry’s number of elements.

CDFgetAttrzEntryNumElements returns the number of elements of the zEntry for the specified variable attribute in a
CDF.

The arguments to CDFgetAttrzEntryNumElements are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Identifier of the variable attribute.

entryNum zEntry number that is the zVariable number.

numElems Number of elements of the zEntry.

4.4.31.1. Example(s)
The following example returns the number of elements for attribute named MY_ATTR for the zVariable MY_VAR1 in
a CDF

.

.

.
dim id as long ‘ CDF identifier.
Dim status as integer ‘ Returned status code.
dim attrNum as integer ‘ Attribute number.
dim entryNum as integer ‘ zEntry number.
dim numElements as integer ‘ zEntry’s number of elements.
.
.
try
 ….
 attrNum = CDFgetAttrNum (id, “MY_ATTR”)
 entryNum = CDFgetVarNum (id, “MY_VAR1”)
 status = CDFgetAttrzEntryNumElements (id, attrNum, entryNum, out numElements)

catch ex as Exception
 …
end try
.

188

4.4.32 CDFgetNumAttrgEntries
integer CDFgetNumAttrgEntries (‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
attrNum as integer, ‘ in -- Attribute number.
entries as integer) ‘ out -- Total gEntries.

CDFgetNumAttrgEntries returns the total number of entries (gEntries) written for the specified global attribute in a CDF.

The arguments to CDFgetNumAttrgEntries are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

attrNum Attribute number.

entries Number of gEntries for attrNum.

4.4.32.1. Example(s)
The following example retrieves the total number of gEntries for the global attribute MY_ATTR in a CDF.

.

.

.
dim status as integer ‘ Returned status code.
dim id as long ‘ CDF identifier.
Dim attrNum as integer ‘ Attribute number.
Dim numEntries as integer ‘ Number of entries.
Dim i as integer
.
.
try
 ….
 attrNum = CDFgetAttrNum (id, “MUY_ATTR”)
 status = CDFgetNumAttrgEntries (id, attrNum, numEntries)
 for i=0 to (numEntries-1)
 .
 ‘ process an entry
 .
 next i
.
catch ex as Exception
 …
end try
.

4.4.33 CDFgetNumAttributes
integer CDFgetNumAttributes (‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
numAttrs as integer) ‘ out -- Total number of attributes.

CDFgetNumAttributes returns the total number of global and variable attributes in a CDF.

The arguments to CDFgetNumAttributes are defined as follows:

189

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

numAttrs Total number of global and variable attributes.

4.4.33.1. Example(s)
The following example returns the total number of global and variable attributes in a CDF.

.

.

dim status as integer ‘ Returned status code.
dim id as long ‘ CDF identifier.
dim numAttrs as integer ‘ Number of attributes.

.
.
try
 ….
 status = CDFgetNumAttributes (id, out numAttrs)

.
catch ex as Exception
 …
end try
.

4.4.34 CDFgetNumAttrrEntries
integer CDFgetNumAttrrEntries (‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
attrNum as integer , ‘ in -- Attribute number.
entries as integer) ‘ out -- Total rEntries.

CDFgetNumAttrrEntries returns the total number of entries (rEntries) written for the rVariables in the specified (variable)
attribute of a CDF.

The arguments to CDFgetNumAttrrEntries are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

attrNum Attribute number.

entries Total rEntries.

4.4.34.1. Example(s)
The following example returns the total number of rEntries from the variable attribute “MY_ATTR” in a CDF.

.

.

.
dim status as integer ‘ Returned status code.
dim id as long
dim attrNum as integer ‘ Attribute number.
dim entries as integer ‘ Number of entries.
.

190

.
try
 ….
 attrNum = CDFgetAttrNum (id, “MY_ATTR”)
 status = CDFgetNumAttrrEntries (id, attrNum, entries)

.
catch ex as Exception
 …
end try
.

4.4.35 CDFgetNumAttrzEntries
integer CDFgetNumAttrzEntries (‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
attrNum as integer, ‘ in -- Attribute number.
entries as integer) ‘ out -- Total zEntries.

CDFgetNumAttrzEntries returns the total number of entries (zEntries) written for the zVariables in the specified variable
attribute in a CDF.

The arguments to CDFgetNumAttrzEntries are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

attrNum Attribute number.

entries Total zEntries.

4.4.35.1. Example(s)
The following example returns the total number of zEntries for the variable attribute MY_ATTR in a CDF.

.

.

.
dim status as integer ‘ Returned status code.
dim id as long ‘ CDF identifier.
dim attrNum as integer ‘ Attribute number.
dim entries as integer ‘ Number of entries.
.
.
try
 ….
 attrNum = CDFgetAttrNum (id, “MY_ATTR”)
 status = CDFgetNumAttrzEntries (id, attrNum, entries)
.
catch ex as Exception
 …
end try
.

4.4.36 CDFgetNumgAttributes
integer CDFgetNumgAttributes (‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.

191

numAttrs as integer) ‘ out -- Total number of global attributes.

CDFgetNumgAttributes returns the total number of global attributes in a CDF.

The arguments to CDFgetNumgAttributes are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

numAttrs Number of global attributes.

4.4.36.1. Example(s)
The following example returns the total number of global attributes in a CDF.

.

.

.
dim status as integer ‘ Returned status code.
dim id as long ‘ CDF identifier.
dim numAttrs as integer ‘ Number of global attributes.
.
.
try
 ….
 status = CDFgetNumgAttributes (id, numAttrs)

catch ex as Exception
 …
end try
.

4.4.37 CDFgetNumvAttributes
integer CDFgetNumvAttributes (‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
numAttrs as integer) ‘ out -- Total number of variable attributes.

CDFgetNumvAttributes returns the total number of variable attributes in a CDF.

The arguments to CDFgetNumvAttributes are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

numAttrs Number of variable attributes.

4.4.37.1. Example(s)
The following example returns the total number of variable attributes of a CDF.

.

.

.
dim status as integer ‘ Returned status code.
dim id as long ‘ CDF identifier.
dim numAttrs as integer ‘ Number of variable attributes.
.
.

192

try
 ….
 status = CDFgetNumvAttributes (id, numAttrs)

catch ex as Exception
 …
end try
.

4.4.38 CDFinquireAttr
integer CDFinquireAttr(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
attrNum as integer, ‘ in -- Attribute number.
attrName as string, ‘ out -- Attribute name.
attrScope as integer, ‘ out -- Attribute scope.
maxgEntry as integer, ‘ out -- Maximum gEntry number.
maxrEntry as integer, ‘ out -- Maximum rEntry number.
maxzEntry as integer) ‘ out -- Maximum zEntry number.

CDFinquireAttr is used to inquire information about the specified attribute. This method expands the method
CDFattrInquire to provide an extra information about zEntry if the attribute has a variable scope.

The arguments to CDFinquireAttr are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Attribute number to inquire. This number may be determined with a call to CDFgetAttrNum.

attrName Attribute's name that corresponds to attrNum. This string length is limited to

CDF_ATTR_NAME_LEN256.

attrScope Scope of the attribute (GLOBAL_SCOPE or VARIABLE_SCOPE). Attribute scopes are

defined in Section 2.13.

maxgEntry For vAttributes, this value of this field is -1 as it doesn’t apply to global attribute entry

(gEntry). For gAttributes, this is the maximum entry (gentry) number used. This number
may not correspond with the number of entries (if some entry numbers were not used). If no
entries exist for the attribute, then the value of -1 is returned.

maxrEntry For gAttributes, this value of this field is -1 as it doesn’t apply to rVariable attribute entry

(rEntry). For vAttributes, this is the maximum rVariable attribute entry (rEntry) number
used. This number may not correspond with the number of entries (if some entry numbers
were not used). If no entries exist for the attribute, then the value of -1 is returned.

maxzEntry For gAttributes, this value of this field is -1 as it doesn’t apply to zVariable attribute entry

(zEntry). For vAttributes, this is the maximum zVariable attribute entry (zEntry) number
used. This may not correspond with the number of entries (if some entry numbers were not
used). If no entries exist for the attribute, then the value of -1 is returned.

4.4.38.1. Example(s)
The following example displays the name of each attribute in a CDF. The number of attributes in the CDF is first
determined by calling the method CDFinquireCDF. Note that attribute numbers start at zero (0) and are consecutive.

193

.

.

.
dim id as long ‘ CDF identifier.
Dim status as integer ‘ Returned status code.
Dim numDims as integer ‘ Number of dimensions.
Dim dimSizes() as integer ‘ Dimension sizes (allocate to allow the

‘ maximum number of dimensions).
Dim encoding as integer ‘ Data encoding.
Dim majority as integer ‘ Variable majority.
Dim maxRec as integer ‘ Maximum record number in CDF.
Dim numVars as integer ‘ Number of variables in CDF.
Dim numAttrs as integer ‘ Number of attributes in CDF.
Dim attrN as integer ‘ attribute number.
Dim attrName as string ‘ attribute name.
Dim attrScope as integer ‘ attribute scope.
Dim maxgEntry as integer
Dim maxrEntry as integer
Dim maxzEntry as integer ‘ Maximum entry numbers.
.
.
try
 ….
 status = CDFinquireCDF (id, numDims, dimSizes, encoding, majority, maxRec, numVars, numAttrs)
 for attrN = 0 to (numAttrs-1)
 status = CDFinquireAttr (id, attrN, attrName, attrScope, maxgEntry, maxrEntry, maxzEntry)

 next attrN
.
catch ex as Exception
 …
end try
.

4.4.39 CDFinquireAttrgEntry
integer CDFinquireAttrgEntry (‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
attrNum as integer, ‘ in -- attribute number.
entryNum as integer, ‘ in -- Entry number.
dataType as integer, ‘ out -- Data type.
numElements as integer) ‘ out -- Number of elements (of the data type).

This method is identical to CDFattrEntryInquire. CDFinquireAttrgEntry is used to inquire information about a global
attribute entry.

The arguments to CDFinquireAttrgEntry are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Attribute number to inquire. This number may be determined with a call to

CDFgetAttrNum.

entryNum Entry number to inquire.

194

dataType Data type of the specified entry. The data types are defined in Section 2.6.

numElements Number of elements of the data type. For character data types (CDF_CHAR and

CDF_UCHAR), this is the number of characters in the string. For all other data types this
is the number of elements in an array of that data type.

4.4.39.1. Example(s)
The following example returns each entry for a global attribute named TITLE. Note that entry numbers need not be
consecutive - not every entry number between zero (0) and the maximum entry number must exist. For this reason
NO_SUCH_ENTRY is an expected error code.

.

.

.
dim id as long ‘ CDF identifier.
Dim status as integer ‘ Returned status code.
Dim attrN as integer ‘ attribute number.
Dim entryN as integer ‘ Entry number.
Dim attrName as string ‘ attribute name.
Dim attrScope as integer ‘ attribute scope.
Dim maxEntry as integer ‘ Maximum entry number used.
Dim dataType as integer ‘ Data type.
Dim numElems as integer ‘ Number of elements
.
.
try
 ….
 attrN = CDFgetAttrNum (id, "TITLE")
 status = CDFattrInquire (id, attrN, attrName, attrScope, maxEntry)
 for entryN = 0 to maxEntry
 status = CDFinquireAttrgEntry (id, attrN, entryN, dataType, numElems)

 ‘ process entries
 .
 .
 next entryN
catch ex as Exception
 …
end try

4.4.40 CDFinquireAttrrEntry
integer CDFinquireAttrrEntry (‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
attrNum as integer, ‘ in -- Attribute number.
entryNum as integer, ‘ in -- Entry number.
dataType as integer, ‘ out -- Data type.
numElements as integer) ‘ out -- Number of elements

This method is identical to the method CDFattrEntryInquire. CDFinquireAttrrEntry is used to inquire about an
rVariable’s attribute entry.

The arguments to CDFinquireAttrrEntry are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

195

attrNum Attribute number to inquire. This number may be determined with a call to
CDFgetAttrNum.

entryNum Entry number to inquire. This is the rVariable number (the rVariable being described in

some way by the rEntry).

dataType Data type of the specified entry. The data types are defined in Section 2.6.

numElements Number of elements of the data type. For character data types (CDF_CHAR and

CDF_UCHAR), this is the number of characters in the string. For all other data types this
is the number of elements in an array of that data type.

4.4.40.1. Example(s)
The following example determines the data type of the “UNITS” attribute for the rVariable “Temperature”, then retrieves
and displays the value of the UNITS attribute.

.

.

.
dim id as long ‘ CDF identifier.
Dim status as integer ‘ Returned status code.
Dim attrN as integer ‘ Attribute number.
Dim entryN as integer ‘ Entry number.
Dim dataType as integer ‘ Data type.
Dim numElems as integer ‘ Number of elements.
.
.
try
 ….
 attrN = CDFgetAttrNum (id, "UNITS")
 entryN = CDFgetVarNum (id, "Temperature")
 status = CDFinquireAttrrEntry (id, attrN, entryN, dataType, numElems)
 if dataType = CDF_CHAR then
 dim buffer as string
 status = CDFgetAttrrEntry (id, attrN, entryN, buffer)

 end if

 .
catch ex as Exception
 …
end try

 .

4.4.41 CDFinquireAttrzEntry
integer CDFinquireAttrzEntry (‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
attrNum as integer, ‘ in -- (Variable) Attribute number.
entryNum as integer, ‘ in -- zEntry number.
dataType as integer, ‘ out -- Data type.
numElements as integer) ‘ out -- Number of elements (of the data type).

CDFinquireAttrzEntry is used to inquire about a zVariable’s attribute entry.

The arguments to CDFinquireAttrzEntry are defined as follows:

196

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Variable attribute number for which to inquire an entry. This number may be determined

with a call to CDFgetAttrNum (see Section 4.4.24).

entryNum Entry number to inquire. This is the zVariable number (the zVariable being described in

some way by the zEntry).

dataType Data type of the specified entry. The data types are defined in Section 2.6.

numElements Number of elements of the data type. For character data types (CDF_CHAR and

CDF_UCHAR), this is the number of characters in the string. For all other data types this
is the number of elements in an array of that data type.

4.4.41.1. Example(s)
The following example determines the data type of the UNITS attribute for the zVariable Temperature, then retrieves
and displays the value of the UNITS attribute.

.

.

.
dim id as long ‘ CDF identifier.
Dim status as integer ‘ Returned status code.
Dim attrN as integer ‘ attribute number.
Dim entryN as integer ‘ Entry number.
Dim dataType as integer ‘ Data type.
Dim numElems as integer ‘ Number of elements .
.
.
try
 ….
 attrN = CDFgetAttrNum (id, "UNITS")
 entryN = CDFgetVarNum (id, "Temperature")

 status = CDFinquireAttrzEntry (id, attrN, entryN, dataType, numElems)
 if dataType = CDF_CHAR then
 dim buffer as string
 status = CDFgetAttrzEntry (id, attrN, entryN, buffer)

. end if
catch ex as Exception
 …
end try

.

4.4.42 CDFputAttrgEntry
integer CDFputAttrgEntry(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
attrNum as integer, ‘ in -- Attribute number.
entryNum as integer, ‘ in -- Attribute entry number.
value as string) ‘ in -- Attribute entry value in string.

integer CDFputAttrgEntry(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
attrNum as integer, ‘ in -- Attribute number.
entryNum as integer, ‘ in -- Attribute entry number.

197

dataType as integer, ‘ in -- Data type of this entry.
numElements as integer, ‘ in -- Number of elements in the entry (of the data type).
value as TYPE) ‘ in -- Attribute entry value.
 ‘ TYPE -- VB value/string type.

CDFputAttrgEntry is used to write global attribute entry. The entry may or may not already exist. If it does exist, it is
overwritten. The data type and number of elements (of that data type) may be changed when overwriting an existing
entry.

The arguments to CDFputAttrrEntry are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

attrNum Global attribute number.

entryNum Global attribute entry number.

dataType Data type of the specified entry. Specify one of the data types defined in Section 2.6.

numElements Number of elements of the data type. For character data types (CDF_CHAR and

CDF_UCHAR), this is the number of characters in the string (An array of characters).
For all other data types this is the number of elements in an array of that data type.

value The value(s) to write. Entry value is written to the CDF from memory address value.

4.4.42.1. Example(s)
The following example writes a global attribute entry to the global attribute called TITLE.

.

.

.
dim id as long ‘ CDF identifier.
Dim status as integer ‘ Returned status code.
Dim entryNum as integer ‘ Attribute entry number.
Dim title as string = "CDF title." ‘ Value of TITLE attribute.

.
.
entryNum = 0
try
 ….
 status = CDFputAttrgEntry (id, CDFgetAttrNum (id,"TITLE"), entryNum, CDF_CHAR, title.Length, title)
.
catch ex as Exception
 …
end try
.

4.4.43 CDFputAttrrEntry
integer CDFputAttrrEntry(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
attrNum as integer, ‘ in -- Attribute number.
entryNum as integer, ‘ in – Attribute entry number.
value as string) ‘ in -- tribute entry value in string.

198

integer CDFputAttrrEntry(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
attrNum as integer, ‘ in -- Attribute number.
entryNum as integer, ‘ in – Attribute entry number.
dataType as integer, ‘ in -- Data type.
numElems as integer, ‘ in -- Number of elements.
value as TYPE) ‘ in -- tribute entry value.
 ‘ TYPE -- VB value/string type.

This method is identical to the method CDFattrPut. CDFputAttrrEntry is used to write rVariable’s attribute entry. The
entry may or may not already exist. If it does exist, it is overwritten. The data type and number of elements (of that data
type) may be changed when overwriting an existing entry.

The arguments to CDFputAttrrEntry are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

attrNum Attribute number. This number may be determined with a call to CDFgetAttrNum.

entryNum Attribute entry number that is the rVariable number to which this attribute entry belongs.

dataType Data type of the specified entry. Specify one of the data types defined in Section 2.6.

numElements Number of elements of the data type. For character data types (CDF_CHAR and

CDF_UCHAR), this is the number of characters in the string (An array of characters).
For all other data types this is the number of elements in an array of that data type.

value The value(s) to write. Entry value is written to the CDF from memory address value.

4.4.43.1. Example(s)
The following example writes to the variable scope attribute VALIDs for the entry, of two elements, that corresponds to
the rVariable TMP.

.

.

.
dim id as long ‘ CDF identifier.
Dim status as integer ‘ Returned status code.
Dim entryNum as integer ‘ Entry number.
Dim numElements as integer ‘ Number of elements (of data type).
Dim TMPvalids() as short = {15,30} ‘ Value(s) of VALIDs attribute,

‘ rEntry for rVariable TMP.
.
numElements = 2
try
 ….
 status = CDFputAttrrEntry (id, CDFgetAttrNum (id,"VALIDs"), CDFgetVarNum (id,"TMP"), _
 CDF_INT2, numElements, TMPvalids)
}

.
catch ex as Exception
 …
end try

199

.

4.4.44 CDFputAttrzEntry
integer CDFputAttrzEntry(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
attrNum as integer, ‘ in -- Attribute number.
entryNum as integer, ‘ in -- Attribute entry number.
value as string) ‘ in -- Attribute entry value in string.

integer CDFputAttrzEntry(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
attrNum as integer, ‘ in -- Attribute number.
entryNum as integer, ‘ in -- Attribute entry number.
dataType as integer, ‘ in -- Data type of this entry.
numElements as integer, ‘ in -- Number of elements in the entry (of the data type)
value as TYPE) ‘ in -- Attribute entry value.
 ‘ TYPE -- VB value/string type.

CDFputAttrzEntry is used to write zVariable’s attribute entry. The entry may or may not already exist. If it does exist,
it is overwritten. The data type and number of elements (of that data type) may be changed when overwriting an existing
entry.

The arguments to CDFputAttrzEntry are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

attrNum Variable attribute number. This number may be determined with a call to

CDFgetAttrNum (see Section 4.4.24).

entryNum Entry number that is the zVariable number to which this attribute entry belongs.

dataType Data type of the specified entry. Specify one of the data types defined in Section 2.6.

numElements Number of elements of the data type. For character data types (CDF_CHAR and

CDF_UCHAR), this is the number of characters in the string (An array of characters).
For all other data types this is the number of elements in an array of that data type.

value The value(s) to write. The entry value is written to the CDF from memory address value.

4.4.44.1. Example(s)
The following example writes a zVariable’s attribute entry. The entry has two elements (that is two values for non-
CDF_CHAR type). The zEntry in the variable scope attribute VALIDs corresponds to the zVariable TMP.

.

.

.
dim id as long ‘ CDF identifier.
Dim status as integer ‘ Returned status code.
Dim numElements as integer ‘ Number of elements (of data type).
Dim TMPvalids() as short = {15,30} ‘ Value(s) of VALIDs attribute,

‘ zEntry for zVariable TMP.
.
.
numElements = 2
try

200

 ….
 status = CDFputAttrzEntry (id, CDFgetAttrNum (id,"VALIDs"), CDFgetVarNum (id,"TMP"), _
 CDF_INT2, numElements, TMPvalids)
.
catch ex as Exception
 …
end try
.

4.4.45 CDFrenameAttr
integer CDFrenameAttr(‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
attrNum as integer, ‘ in -- Attribute number.
attrName as string) ‘ in -- New attribute name.

This method is identical to method CDFattrRename. CDFrenameAttr renames an existing attribute.

4.4.45.1. Example(s)
In the following example the attribute named LAT is renamed to LATITUDE.

.

.

.
dim id as long ‘ CDF identifier.
Dim status as integer ‘ Returned status code.
.
.
try
 ….
 status = CDFrenameAttr (id, CDFgetAttrNum (id,"LAT"), "LATITUDE")
.
catch ex as Exception
 …
end try
.

4.4.46 CDFsetAttrgEntryDataSpec
integer CDFsetAttrgEntryDataSpec (‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
attrNum as integer, ‘ in -- Attribute number.
entryNum as integer, ‘ in -- gEntry number.
dataType as integer) ‘ in -- Data type.

CDFsetAttrgEntryDataSpec respecifies the data type of a gEntry of a global attribute in a CDF. The new and old data
type must be equivalent. Refer to the CDF User’s Guide for descriptions of equivalent data types.

The arguments to CDFsetAttrgEntryDataSpec are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

attrNum Global attribute number.

entryNum gEntry number.

201

dataType The new data type.

4.4.46.1. Example(s)
The following example modifies the third entry’s (entry number 2) data type of the global attribute MY_ATTR in a CDF.
It will change its original data type from CDF_INT2 to CDF_UINT2.

.

.

.
dim id as long ‘ CDF identifier.
Dim status as integer ‘ Returned status code.
Dim entryNum as integer ‘ gEntry number.
Dim dataType as integer ‘ The new data type
.
.
entryNum = 2
dataType = CDF_UINT2
numElems = 1
try
 ….
 status = CDFsetAttrgEntryDataSpec (id, CDFgetAttrNum (id, “MY_ATTR”), entryNum, dataType)
.
catch ex as Exception
 …
end try
.

4.4.47 CDFsetAttrrEntryDataSpec
integer CDFsetAttrrEntryDataSpec (‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
attrNum as integer, ‘ in -- Attribute number.
entryNum as integer, ‘ in -- rEntry number.
dataType as integer, ‘ in -- Data type.
numElements as integer) ‘ in -- Number of elements.

CDFsetAttrrEntryDataSpec respecifies the data specification (data type and number of elements) of an rEntry of a
variable attribute in a CDF. The new and old data type must be equivalent, and the number of elements must not be
changed. Refer to the CDF User’s Guide for descriptions of equivalent data types.

The arguments to CDFsetAttrrEntryDataSpec are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

attrNum Variable attribute number.

entryNum rEntry number.

dataType The new data type.

numElements The new number of elements.

202

4.4.47.1. Example(s)
The following example modifies the data specification for an rEntry, corresponding to rVariable “MY_VAR”, in the
variable attribute “MY_ATTR” in a CDF. It will change its original data type from CDF_INT2 to CDF_UINT2.

.

.

.
dim id as long ‘ CDF identifier.
Dim status as integer ‘ Returned status code.
Dim dataType as integer
Dim numElements as integer ‘ Data type and number of elements.
.
.
dataType = CDF_UINT2
numElems = 1
try
 ….
 status = CDFsetAttrrEntryDataSpec (id, CDFgetAttrNum (id, “MY_ATTR”), _
 CDFgetVarNum (id, “MY_VAR”), dataType, numElems)
.
catch ex as Exception
 …
end try
.

4.4.48 CDFsetAttrScope
integer CDFsetAttrScope (‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
attrNum as integer, ‘ in -- Attribute number.
scope as integer) ‘ in -- Attribute scope.

CDFsetAttrScope respecifies the scope of an attribute in a CDF. Specify one of the scopes described in Section 2.13.
Global-scoped attributes will contain only gEntries, while variable-scoped attributes can hold rEntries and zEntries.

The arguments to CDFsetAttrScope are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

attrNum Attribute number.

scope The new attribute scope. The value should be either VARIABLE_SCOPE or

GLOBAL_SCOPE.

4.4.48.1. Example(s)
The following example changes the scope of the global attribute named MY_ATTR to a variable attribute
(VARIABLE_SCOPE).

.

.

.
dim id as long ‘ CDF identifier.
Dim status as integer ‘ Returned status code.
Dim scope as integer ‘ New attribute scope.
.
.

203

scope = VARIABLE_SCOPE
try
 ….
 status = CDFsetAttrScope (id, CDFgetAttrNum (id, “MY_ATTR”), scope)
.
catch ex as Exception
 …
end try
.

4.4.49 CDFsetAttrzEntryDataSpec
integer CDFsetAttrzEntryDataSpec (‘ out -- Completion status code.
id as long, ‘ in -- CDF identifier.
attrNum as integer, ‘ in -- Attribute number.
entryNum as integer, ‘ in -- zEntry number.
dataType as integer) ‘ in -- Data type.

CDFsetAttrzEntryDataSpec modifies the data type of a zEntry of a variable attribute in a CDF. The new and old data
type must be equivalent. Refer to the CDF User’s Guide for the description of equivalent data types.
The arguments to CDFsetAttrzEntryDataSpec are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

attrNum Variable attribute number.

entryNum zEntry number that is the zVariable number.

dataType The new data type.

4.4.49.1. Example(s)
The following example respecifies the data type of the attribute entry of the attribute named MY_ATTR that is associated
with the zVariable MY_VAR. It will change its original data type from CDF_INT2 to CDF_UINT2.

.

.

.
dim id as long ‘ CDF identifier.
Dim status as integer ‘ Returned status code.
dim dataType as integer ‘ Data type
.
.
try
 ….
 dataType = CDF_UINT2
 numElems = 1
 status = CDFsetAttrzEntryDataSpec (id, CDFgetAttrNum (id, “MY_ATTR”),
 CDFgetVarNum (id, “MY_VAR”), dataType)
.
. catch ex as Exception
 …
end try

204

4.5 Quick Read Functions
This section provides a set of easy-to-use read functions that each will return an object of C#’s Dictionary, a set of
key/value pairs. The key is either a string or an integer. The value can be a generic scalar or array of value of integer,
floating value, or string, or another dictionary (of dictionaries). The returned information covers CDF basic
information, global attributes, and variables’ specification, metadat and data. Each functions is made of calls from other
lower-level functions.

4.5.1 ReadCDF
Dictionary (Of string,object) ReadCDF (‘ out – A dictionary .
id as long) ‘ in -- CDF identifier.

Dictionary (Of string,object) ReadCDF (‘ out – A dictionary .
id as long, ‘ in -- CDF identifier.
encoding as bool) ‘ in -- Whether to encode CDF epoch type

Dictionary (Of string,object) ReadCDF (‘ out – A dictionary .
id as long, ‘ in -- CDF identifier.
encoding as bool, ‘ in -- Whether to encode CDF epoch type
basic as bool, ‘ in -- Whether to get CDF basic information
global as bool, ‘ in -- Whether to get global metadata
varall as bool) ‘ in -- Whether to get all variables’ information

Dictionary (Of string,object) ReadCDF (‘ out – A dictionary .
id as long, ‘ in -- CDF identifier.
encoding as bool, ‘ in -- Whether to encode CDF epoch type
basic as bool, ‘ in -- Whether to get CDF basic information
global as bool, ‘ in -- Whether to get global metadata
varspec as bool, ‘ in -- Whether to get all variables’ specifications
varmeta as bool, ‘ in -- Whether to get all variables’ metadata
vardata as bool) ‘ in -- Whether to get all variables’ data

Dictionary (Of string,object) ReadCDF (‘ out – A dictionary .
id as long, ‘ in -- CDF identifier.
encoding as bool, ‘ in -- Whether to encode CDF epoch type
basic as bool, ‘ in -- Whether to get CDF basic information
global as bool, ‘ in -- Whether to get global metadata
varspec as bool, ‘ in -- Whether to get all variables’ specifications
varmeta as bool, ‘ in -- Whether to get all variables’ metadata
vardata as bool, ‘ in -- Whether to get all variables’ data
noentry as bool) ‘ in -- Whether to show attributes without entry

Dictionary (Of string,object) ReadCDF (‘ out – A dictionary .
id as long, ‘ in -- CDF identifier.
encoding as bool, ‘ in -- Whether to encode CDF epoch type
basic as bool, ‘ in -- Whether to get CDF basic information
global as bool, ‘ in -- Whether to get global metadata
varspec as bool, ‘ in -- Whether to get all variables’ specifications
varmeta as bool, ‘ in -- Whether to get all variables’ metadata
vardata as bool, ‘ in -- Whether to get all variables’ data
noentry as bool, ‘ in -- Whether to show attributes without entry
varshead as bool) ‘ in -- Whether to add an extra level for variables

205

ReadCDF reads all CDF information or just the specific elements. There are three main key/value elements in the top of
retrieved dictionary. The keys are “CDFInfo”, “GlobalAttributes” and “Variables”. Each of the values is also a
dictionary itself. There may be another key/value element: “NoEntryAttributes” in the top dictionary.

The argument(s) to ReadCDF is defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

Optionally,

encoding Whether to encode any CDF epoch data type in global or variable metadata into date/time
string.

basic Whether to read the CDF basic specification information.
global Whether to read the global attributes.
varall Whether to read variables.
varspec Whether to read all variables’ specificationa.
varmeta Whether to read all variables’ metadata.
vardata Whether to read all variables’ data
noentry Whether to collect the attribute names that don’t have any entry data
varshead Whether to place an extra dictionary level for variables informsation. The default is true.

4.5.1.1. Example(s)
The following example reads the whole information from the CDF, test.cdf and displays it.

.

.

.
Dim id as long ‘ CDF identifier.
Dim status as integer ‘ Returned status code.
Dim cdf as Dictionary (Of string, object) ‘ Retrieved information.
.
.
try
 …
 status = CDFopen (“test”, id)
 cdf = ReadCDF (id)
 CDFUtils.PrintDictionary (cdf)
…
 …

catch ex as CDFException
 …
End try
.
.

The output of the dictionary dump from the CDF looks as follows.

The four keys are CDFInfo, GlobalAttributes, Variables and NoEntryAttributes. The value for CDFinfo is a
dictionary, which contains the basic information about the CDF. The value for GlobalAttributes is a dictionary of
dictionaries. Each element in the dictionary has the attribute name as the key with its value being another dictionary (with
entry number being the key and value being the entry). The value for Variables is a dictionary of dictionaries. Each
element in the dictionary is for information from a variable. The variable name is then the key for its specification,
metadata and data, each of which is also a dictionary. If there is any attribute(s), global or variable, that has no entry data,
its name will be collected in a list as a “GlobalAttributes” or “VariableAttributes” key element in the
“NoEntryAttributes” dictionary.

206

CDFInfo =>
 Version => "3.7.0"
 Majority => 1
 Format => 1
 Encoding => 6
 …
 …
GlobalAttritbues =>
 Project
 0 => "…”
 PI =>
 0 => "Mr.Smith"
 Text =>
 0 => “Line 1”
 1 => “Line 2”
 …
 …
Variables =>
 Var1 =>
 VarInfo
 DataType => 2
 NumElements => 1
 NumDims => 1
 …
 …
 …
 Key:VarMetaData =>
 VALIDMIN => 20
 VALIDMAX => 90
 …
 …
 VarData => 1 2 3
 Var2 =>
 VarInfo =>
 DataType => 4”
 NumElements => 1
 NumDims => 0
 …
 …
 …
 VarMetaData =>
 VALIDMIN => 2000
 VALIDMAX => 9000
 …
 …
 VarData => 1
 2
 3
 Var3 =>
 VarInfo =>
 DataType => 45
 NumElements => 1
 NumDims => 1
 …
 …

207

 …
 VarMetaData =>
 VALIDMIN => 20.0
 VALIDMAX => 90.0
 …
 …
 VarData => 1.1 2.2 3.3
 …
 …
NoEntryAttributes =>
 GlobalAttributes => "g1"
 VariableAttributes => "a1"

4.5.2 ReadCDFGlobalAttributes
Dictionary (Of string,object) ReadCDFGlobalAttributes (‘ out – A dictionary .
id as long) ‘ in -- CDF identifier.

Dictionary (Of string,object> ReadCDFGlobalAttributes (‘ out – A dictionary .
id as long, ‘ in -- CDF identifier.
encoding as bool) ‘ in -- Whether to encode CDF epoch type

ReadCDFGlobalAttributes reads the global attributes for a given CDF. The value(s) in the key/value pair(s) from the
returned dictionary can be a dictionary itself.

The argument to ReadCDFGlobalAttributes is defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

Optionally,

encoding Whether to encode any CDF epoch data type in global or variable metadat.

4.5.2.1. Example(s)
The following example reads the global attributes from the CDF, test.cdf and displays it.

.

.

.
Dim id as long ‘ CDF identifier.
Dim status as integer ‘ Returned status code.
Dim meta as Dictionary(Of string, object) ‘ Retrieved information.
.
.
try
 …
 status = CDFopen (“test”, id)
 meta = ReadCDFGlobalAttributes (id)
 CDFUtils.PrintDictionary (meta)
…
 …

 catch (ex as CDFException)
 …
 End try
.
.

208

The output of the dictionary dump from the global attributes in the CDF looks as follows:

 Each key field represents a global attribute name, and its value, which is another diectionary of <integer, object>
type pair(s). The number represents the entry number and the object can be a scalar or array of an entry type.

Project =>
 0 => "Using the CDFJava API "
PI
 3 => "Ernie Els"
Test =>
 0 => 5.3432
 2 => 5.5
 3 => 5.5 10.2
 4 => 1
 5 => 1 2 3
 6 => -32768
 7 => 1 2
 8 => 3
 9 => 4 5
 10 => "This is a string"
 11 => 4294967295
 12 => 4294967295 2147483648
 13 => 65535
 14 => 65535 65534
 15 => 255
 16 => 255 254
TestDate =>
 1 => "2002-04-25T00:00:00.000"
 2 => "2008-02-04T06:08:10.012014016"
epTestDate =>
 0 => "2004-05-13T15:08:11.022033044055"

4.5.3 ReadCDFInfo
Dictionary (Of string,object) ReadCDFInfo (‘ out – A dictionary .
id as long) ‘ in -- CDF identifier.

ReadCDFInfo reads the basic information about a CDF.

The argument to ReadCDFInfo is defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

4.5.3.1. Example(s)
The following example reads the whole information from the CDF, test.cdf and displays it.

.

.

.
Dim id as long ‘ CDF identifier.
Dim status as integer ‘ Returned status code.
Dim cdf as Dictionary (Of string, object) ‘ Retrieved information.
.
.
try

209

 …
 status = CDFopen (“test”, id)
 cdf = ReadCDFInfo (id)
 CDFUtils.PrintDictionary (cdf)
…
 …

 catch ex as CDFException
 …
 End try
.
.

The output of the basic CDF information looks as follows (first field as the key and second field as the value):

Version => "3.7.0"
Majority => "ROW"
Format => "SINGLE"
Encoding => "IBMPC"
NumGlobalAttrs => 5
NumNumVarAttrs => 5
NumVars => 21
LastLeapSecond => 20150701

4.5.4 ReadCDFVariable
Dictionary (Of string,object) ReadCDFVariable(‘ out – A dictionary .
id as long, ‘ in -- CDF identifier.
varid as integer) ‘ in -- variable identifier.

Dictionary<string,object> ReadCDFVariable(‘ out – A dictionary .
id as long, ‘ in -- CDF identifier.
varid as long, ‘ in -- variable identifier.
encoding as bool) ‘ in -- Whether to encode CDF epoch type.

ReadCDFVariable reads the information from a specified variable in a CDF into a dictionary. The variable information
includes the variable specification with key: “VarInfo”, its metadata with key: “VarMetaData” and all data with key:
“VarData”, if they exist. The retrieved information consists of the information from these three functions:
ReadCDFVariableInfo, ReadCDFVariableAttributes and ReadCDFVariableData.

The argument to ReadCDFVariable is defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

varid Variable identifier in the CDF. This identifier is based on the CDF open with zMODEon2

(all variables are being handled as zVariables) if there are rVariables and zVariables in a
CDF. The variable identifier reflects the variable after renumbered.

Optionally,

encoding Whether to encode the CDF epoch data type into date/time string.

4.5.4.1. Example(s)
The following example collects the information from a variable ‘Var1’ in the CDF, test.cdf and displays it.

.

210

.

.
Dim id as long ‘ CDF identifier.
Dim status as integer ‘ Returned status code.
Dim varid as integer ‘ Variable identifier.
Dim var as Dictionary (Of string, object) ‘ Retrieved information.
.
.
try
 …
 status = CDFopen (“test”, id)
 status = CDFsetzMode (id, zMODEon2)
 varid = CDFgetVarNum (id, “Var1”)
 var = ReadCDFVariable (id, varid)
…
 …

catch ex as CDFException
 …
End try
.
.

The output of the variable dictionary dump looks as follows. Basically, there are three key/value pairs at the top level for
variable’s specification, metadata and data, identified by the Key name. For specifiction and metadata, its value is another
dictionary.

VarInfo =>
 DataType => 2
 NumElements => 1
 NumDims => 1
 DimSizes => 3
 NumWrittenRecs => 20
 PadValue => -32767
VarMetaData =>
 VALIDMIN => -100
 VALIDMAX => 180
 FILLVAL => -999
 …
 …
VarData => 100 200 300
 -32767 -32767 -32767
 10 20 30
 40 32767 -32768
 -32767 -32767 -32767
 -32767 -32767 -32767
 -32767 -32767 -32767
 -32767 -32767 -32767
 -32767 -32767 -32767
 -32767 -32767 -32767
 11 22 33
 -32767 -32767 -32767
 -32767 -32767 -32767
 -32767 -32767 -32767
 -32767 -32767 -32767
 -32767 -32767 -32767

211

4.5.5 ReadCDFVariables
Dictionary (Of string,object) ReadCDFVariables(‘ out – A dictionary .
id as long) ‘ in -- CDF identifier.

Dictionary (Of string,object) ReadCDFVariables(‘ out – A dictionary .
id as long, ‘ in -- CDF identifier.
encoding as bool) ‘ in -- Whether to encode CDF epoch type.

ReadCDFVariables reads the information from all variables in a CDF into a dictionary. Each element in the dictionary
has the variable name as the key and its information as the value, which is a diectionary itself. The variable information
includes the variable specification (with key: “VarInfo”), its metadata (with key: “VarMetaData”) and all data (with
key: “VarData”), if they exist.

The argument to ReadCDFVariables is defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

Optionally,

encoding Whether to encode the CDF epoch data type into date/time string for metadata.

4.5.5.1. Example(s)
The following example collects the information from a variable ‘Var1’ in the CDF, test.cdf and displays it.

.

.

.
Dim id as long ‘ CDF identifier.
Dim status as integer ‘ Returned status code.
Dim varid as integer ‘ Variable identifier.
Dim cdf as Dictionary (Of string, object) ‘ Retrieved information.
.
.
try
 …
 status = CDFopen (“test”, id)
 cdf = ReadCDFVariables (id)
 …
 CDFUtils.PrintDirectionary (cdf)
catch ex as CDFException
 …
End try
.
.

The output of the variable dictionary dump looks as follows. Basically, there are three key/value pairs at the top level for
variable’s specification, metadata and data, identified by the Key name. For specifiction and metadata, its value is another
dictionary.

Var1 =>
 VarInfo =>
 DataType => 1
 NumElements => 1
 NumDims => 1

212

 DimSizes => 3
 NumWrittenRecs => 1
 PadValue => -127
 VarMetaData =>
 VALIDMIN => 20
 VALIDMAX => 90
 VarData => 1 2 3
Var2 =>
 VarInfo =>
 DataType => 11
 NumElements => 1
 NumDims => 1
 DimSizes => 3
 NumWrittenRecs => 3
 PadValue => 254
 VarData => 254 254 5
 15 25 35
 100 128 255
Var3 =>
 VarInfo =>
 DataType => 2
 NumElements => 1
 NumDims => 1
 DimSizes => 3
 NumWrittenRecs => 20
 PadValue => -32767
 VarMetaData =>
 VALIDMIN => -100
 VALIDMAX => 180
 …
 …
 VarData => 100 200 300
 -32767 -32767 -32767
 10 20 30
 40 32767 -32768
 -32767 -32767 -32767
 -32767 -32767 -32767
 -32767 -32767 -32767
 -32767 -32767 -32767
 -32767 -32767 -32767
 -32767 -32767 -32767

4.5.6 ReadCDFVariableAttributes
Dictionary (Of string,object) ReadCDFVariableAttributes(‘ out – A dictionary .
id as long, ‘ in -- CDF identifier.
varid as integer) ‘ in -- variable identifier.

Dictionary<string,object> ReadCDFVariableAttributes(‘ out – A dictionary .
id as long, ‘ in -- CDF identifier.
varid as integer, ‘ in -- variable identifier.
encoding as bool) ‘ in -- Whether to encode CDF epoch type.

ReadCDFVariableAttributes reads the specified variable’s metadata in a CDF into a dictionary. The key for the key/value
pair(s) in the dictionary is the variable attribute name.

213

The argument to ReadCDFVariableAttributes is defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

varid Variable identifier in the CDF. This identifier is based on the CDF open with zMODEon2

(all variables are being handled as zVariables) if there are rVariables and zVariables in a
CDF. The variable identifier reflects the variable after renumbered.

Optionally,

encoding Whether to encode the CDF epoch data type into date/time string.

4.5.6.1. Example(s)
The following example collects the metadat from a variable ‘Var1’ in the CDF, test.cdf and displays it.

.

.

.
Dim id as long ‘ CDF identifier.
Dim status as integer ‘ Returned status code.
Dim varid as integer ‘ Variable identifier.
Dim attrs as Dictionary (Of string, object) ‘ Retrieved information.
.
.
try
 …
 status = CDFopen (“test”, id)
 status = CDFsetzMode (id, zMODEon2)
 varid = CDFgetVarNum (id, “Var1”)
 attrs = ReadCDFVariableAttributes (id, varid)
 CDFUtils.PrintDictionary (attrs)
…
 …
Catch ex as CDFException
 …
End try
.
.

The output of the variable attributes dictionary dump looks as follows (the key is variable attribute name):

VALIDMIN => -100
VALIDMAX => 180
FILLVAL => -999
…
…

4.5.7 ReadCDFVariableData
object ReadCDFVariableData(‘ out – A dictionary .
id as long, ‘ in -- CDF identifier.
varid as integer) ‘ in -- variable identifier.

ReadCDFVariableData reads the specified variable’s data in a CDF into an object.

214

The argument to ReadCDFVariableData is defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

varid Variable identifier in the CDF. This identifier is based on the CDF open with zMODEon2

(all variables are being handled as zVariables) if there are rVariables and zVariables in a
CDF. The variable identifier reflects the variable after renumbered.

4.5.7.1. Example(s)
The following example reads the full data from a variable ‘Var1’ in the CDF, test.cdf.

 Dim id as long ‘ CDF identifier.

Dim status as integer ‘ Returned status code.
Dim varid as integer ‘ Variable identifier.
Dim data as object ‘ Retrieved data.
.
.
try
 …
 status = CDFopen (“test”, id)
 status = CDFsetzMode (id, zMODEon2)
 varid = CDFgetVarNum (id, “Var1”)
 data = ReadCDFVariableData (id, varid)
 …
 …

Catch ex as CDFException
 …
End try
.
.

4.5.8 ReadCDFVariableInfo
Dictionary (Of string,object) ReadCDFVariableInfo(‘ out – A dictionary .
id as long, ‘ in -- CDF identifier.
varid as integer) ‘ in -- variable identifier.

Dictionary (Of string,object) ReadCDFVariableInfo(‘ out – A dictionary .
id as long, ‘ in -- CDF identifier.
varid as integer, ‘ in -- variable identifier.
encoding as bool) ‘ in -- Whether to encode CDF epoch type.

ReadCDFVariableInfo reads the specified variable’s specification in a CDF into a dictionary.

The argument to ReadCDFVariableInfo is defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

varid Variable identifier in the CDF. This identifier is based on the CDF open with zMODEon2
(all variables are being handled as zVariables) if there are rVariables and zVariables in a
CDF. The variable identifier reflects the variable after renumbered.

Optionally,

encoding Whether to encode the CDF epoch data type into date/time string.

215

4.5.8.1. Example(s)
The following example collects the basic information from a variable ‘Var1’ in the CDF, test.cdf and displays it.

.

.

.
Dim id as long ‘ CDF identifier.
Dim status as integer ‘ Returned status code.
Dim varid as integer ‘ Variable identifier.
Dim info as Dictionary (Of string, object) ‘ Retrieved information.
.
.
try
 …
 status = CDFopen (“test”, id)
 status = CDFsetzMode (id, zMODEon2)
 varid = CDFgetVarNum (id, “Var1”)
 info = ReadCDFVariableInfo (id, varid)
 CDFUtils.PrintDictionary (info)
…
 …

 catch ex as CDFException
 …
End try
.
.

The output of the dictionary dump for the specification of the variable looks as follows (first field as the key and second
field as the value):

DataType => 2
NumElements => 1
NumDims => 1
DimSizes => 3
NumWrittenRecs => 20
PadValue => -32767

4.5.9 ReadCDFVariables
Dictionary (Of string,object) ReadCDFVariables(‘ out – A dictionary .
id as long) ‘ in -- CDF identifier.

Dictionary (Of string,object) ReadCDFVariables(‘ out – A dictionary .
id as long, ‘ in -- CDF identifier.
encoding as bool) ‘ in -- Whether to encode CDF epoch type.

ReadCDFVariables reads the information from all variables in a CDF into a dictionary. Each element in the dictionary
has the variable name as the key and its information as the value, which is a diectionary itself. The variable information
includes the variable specification (with key: “VarInfo”), its metadata (with key: “VarMetaData”) and all data (with
key: “VarData”), if they exist.

The argument to ReadCDFVariables is defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

Optionally,

216

encoding Whether to encode the CDF epoch data type into date/time string for metadata.

4.5.9.1. Example(s)
The following example collects the information from a variable ‘Var1’ in the CDF, test.cdf and displays it.

.

.

.
Dim id as long ‘ CDF identifier.
Dim status as integer ‘ Returned status code.
Dim varid as integer ‘ Variable identifier.
Dim cdf as Dictionary (Of string, object) ‘ Retrieved information.
.
.
try
 …
 status = CDFopen (“test”, id)
 cdf = ReadCDFVariables (id)
 …
 CDFUtils.PrintDirectionary (cdf)
catch ex as CDFException
 …
End try
.
.

The output of the variable dictionary dump looks as follows. Basically, there are three key/value pairs at the top level for
variable’s specification, metadata and data, identified by the Key name. For specifiction and metadata, its value is another
dictionary.

Var1 =>
 VarInfo =>
 DataType => 1
 NumElements => 1
 NumDims => 1
 DimSizes => 3
 NumWrittenRecs => 1
 PadValue => -127
 VarMetaData =>
 VALIDMIN => 20
 VALIDMAX => 90
 VarData => 1 2 3
Var2 =>
 VarInfo =>
 DataType => 11
 NumElements => 1
 NumDims => 1
 DimSizes => 3
 NumWrittenRecs => 3
 PadValue => 254
 VarData => 254 254 5
 15 25 35
 100 128 255
Var3 =>
 VarInfo =>
 DataType => 2

217

 NumElements => 1
 NumDims => 1
 DimSizes => 3
 NumWrittenRecs => 20
 PadValue => -32767
 VarMetaData =>
 VALIDMIN => -100
 VALIDMAX => 180
 …
 …
 VarData => 100 200 300
 -32767 -32767 -32767
 10 20 30
 40 32767 -32768
 -32767 -32767 -32767
 -32767 -32767 -32767
 -32767 -32767 -32767
 -32767 -32767 -32767
 -32767 -32767 -32767
 -32767 -32767 -32767

4.5.10 ReadCDFVariablesData
Dictionary (Of string,object) ReadCDFVariableAttributesData(‘ out – A dictionary .
id as long) ‘ in -- CDF identifier.

Dictionary<string,object> ReadCDFVariableAttributesData(‘ out – A dictionary .
id as long, ‘ in -- CDF identifier.
encoding as bool) ‘ in -- Whether to encode CDF epoch type.

ReadCDFVariableAttributesData reads all variables data in a CDF into a dictionary. The key for the key/value pair(s) in
the dictionary is the variable name and data.

The argument to ReadCDFVariableAttributes is defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

Optionally,

encoding Whether to encode the CDF epoch data type into date/time string.

4.5.10.1. Example(s)
The following example collects all data from the CDF, test.cdf and displays it.

.

.

.
Dim id as long ‘ CDF identifier.
Dim status as integer ‘ Returned status code.
Dim varid as integer ‘ Variable identifier.
Dim data as Dictionary (Of string, object) ‘ Retrieved information.
.
.
try
 …
 status = CDFopen (“test”, id)
 data = ReadCDFVariablesData (id)

218

 CDFUtils.PrintDictionary (attrs)
…
 …

Catch ex as CDFException
 …
End try
.
.

The output of the variable attributes dictionary dump looks as follows (the key is variable attribute name):

VALIDMIN => -100
VALIDMAX => 180
FILLVAL => -999
…
…

219

Chapter 5

5 Interpreting CDF Status Codes
Most CDF APIs return a status code of type int. The symbolic names for these codes are defined in CDFException.cs
and should be used in your applications rather than using the true numeric values. Appendix A explains each status code.
When the status code returned from a CDF API is tested, the following rules apply.

status > CDF_OK Indicates successful completion but some additional information is
provided. These are informational codes.

status = CDF_OK Indicates successful completion.

CDF_WARN < status < CDF_OK Indicates that the function completed but probably not as expected.

These are warning codes.

status < CDF_WARN Indicates that the function did not complete. These for most cases

are error codes, thus an exception might be thrown.

The following example shows how you could check the status code returned from CDF functions.

dim status as integer

.
try
.
I status = CDFfunction (...) ‘ any CDF function returning integer
.
catch ex as Exception
 ….
end try

In your own status handler you can take whatever action is appropriate to the application. An example status handler
follows. Note that no action is taken in the status handler if the status is CDF_OK.

dim status as integer = ex.GetCurrentStatus()
dim errorMsg as string = ex.GetStatusMsg(status)

Explanations for all CDF status codes are available to your applications through the method CDFerror. CDFerror encodes
in a text string an explanation of a given status code.

220

Chapter 6

6 EPOCH Utility Routines
Several functions exist that compute, decompose, parse, and encode CDF_EPOCH and CDF_EPOCH16 values. These
functions may be called by applications using the CDF_EPOCH and CDF_EPOCH16 data types and are included in the
CDF library. The Concepts chapter in the CDF User's Guide describes EPOCH values. All these APIs are defined as
static methods in CDFAPIs class. The date/time components for CDF_EPOCH and CDF_EPOCH16 are UTC-based,
without leap seconds.

The CDF_EPOCH and CDF_EPOCH16 data types are used to store time values referenced from a particular epoch. For
CDF that epoch values for CDF_EPOCH and CDF_EPOCH16 are 01-Jan-0000 00:00:00.000 and 01-Jan-0000
00:00:00.000.000.000.000, respectively.

6.1 computeEPOCH
double computeEPOCH(‘ out -- CDF_EPOCH value returned.
year as integer, ‘ in -- Year (AD, e.g., 1994).
month as integer, ‘ in -- Month (1-12).
day as integer, ‘ in -- Day (1-31).
hour as integer, ‘ in -- Hour (0-23).
minute as integer, ‘ in -- Minute (0-59).
second as integer, ‘ in -- Second (0-59).
msec as integer) ‘ in -- Millisecond (0-999).

computeEPOCH calculates a CDF_EPOCH value given the individual components. If an illegal component is detected,
the value returned will be ILLEGAL_EPOCH_VALUE.

NOTE: There are two variations on how computeEPOCH may be used. If the month argument is 0 (zero), then the day
argument is assumed to be the day of the year (DOY) having a range of 1 through 366. Also, if the hour, minute, and
second arguments are all 0 (zero), then the msec argument is assumed to be the millisecond of the day having a range of
0 through 86400000.

6.2 EPOCHbreakdown
void EPOCHbreakdown(
epoch as double, ‘ in -- The CDF_EPOCH value.
year as integer, ‘ out -- Year (AD, e.g., 1994).
month as integer, ‘ out -- Month (1-12).
day as integer, ‘ out -- Day (1-31).
hour as integer, ‘ out -- Hour (0-23).
minute as integer, ‘ out -- Minute (0-59).
second as integer, ‘ out -- Second (0-59).
msec as integer) ‘ out -- Millisecond (0-999).

EPOCHbreakdown decomposes a CDF_EPOCH value into the individual components.

221

6.3 toEncodeEPOCH
string toEncodeEPOCH(‘ out -- Encode date/time string.
epoch as double) ‘ in -- The CDF_EPOCH value.

string toEncodeEPOCH(‘ out -- Encode date/time string.
epoch as double, ‘ in -- The CDF_EPOCH value.
style as int) ‘ in -- The encoding style.

string[] toEncodeEPOCH(‘ out -- Encode date/time strings.
epochs as double[]) ‘ in -- The CDF_EPOCH values.

string[] toEncodeEPOCH(‘ out -- Encode date/time strings.
epochs as double[], ‘ in -- The CDF_EPOCH values.
style as int) ‘ in -- The encoding style.

toEncodeEPOCH encodes a CDF_EPOCH value(s) into a date/time character string(s) in one of the standard forms. The
style is between the value 0 and 4. With style 0, it is similar to calling encodeEPOCH. With style 1, 2 3 and 4, it is similar
to calling encodeEPOCH1, encodeEPOCH2, encodeEPOCH3 and encodeEPOCH4, respectively. Without style, the
default style, 4, is used. Refer the following sections to see what a standard date/time string looks like for each style.

6.4 encodeEPOCH
void encodeEPOCH(
epoch as double ‘ in -- The CDF_EPOCH value.
epString as string) ‘ out -- The standard date/time string.

encodeEPOCH encodes a CDF_EPOCH value into the standard date/time character string. The format of the string is
dd-mmm-yyyy hh:mm:ss.ccc where dd is the day of the month (1-31), mmm is the month (Jan, Feb, Mar, Apr, May,
Jun, Jul, Aug, Sep, Oct, Nov, or Dec), yyyy is the year, hh is the hour (0-23), mm is the minute (0-59), ss is the second
(0-59), and ccc is the millisecond (0-999).

6.5 encodeEPOCH1
void encodeEPOCH1(
epoch as double ‘ in -- The CDF_EPOCH value.
epString as string) ‘ out -- The alternate date/time string.

encodeEPOCH1 encodes a CDF_EPOCH value into an alternate date/time character string. The format of the string is
yyyymmdd.ttttttt, where yyyy is the year, mm is the month (1-12), dd is the day of the month (1-31), and ttttttt is the
fraction of the day (e.g., 5000000 is 12 o'clock noon).

6.6 encodeEPOCH2
void encodeEPOCH2(
epoch as double ‘ in -- The CDF_EPOCH value.
epString as string) ‘ out -- The alternate date/time string.

encodeEPOCH2 encodes a CDF_EPOCH value into an alternate date/time character string. The format of the string is
yyyymoddhhmmss where yyyy is the year, mo is the month (1-12), dd is the day of the month (1-31), hh is the hour (0-
23), mm is the minute (0-59), and ss is the second (0-59).

6.7 encodeEPOCH3
void encodeEPOCH3(
epoch as double ‘ in -- The CDF_EPOCH value.

222

epString as string) ‘ out -- The alternate date/time string.

encodeEPOCH3 encodes a CDF_EPOCH value into an alternate date/time character string. The format of the string is
yyyy-mo-ddThh:mm:ss.cccZ where yyyy is the year, mo is the month (1-12), dd is the day of the month (1-31), hh is the
hour (0-23), mm is the minute (0-59), ss is the second (0-59), and ccc is the millisecond (0-999).

6.8 encodeEPOCH4
void encodeEPOCH4(
epoch as double ‘ in -- The CDF_EPOCH value.
epString as string) ‘ out -- The ISO 8601 date/time string.

encodeEPOCH3 encodes a CDF_EPOCH value into an alternate, ISO 8601 date/time character string. The format of the
string is yyyy-mo-ddThh:mm:ss.ccc where yyyy is the year, mo is the month (1-12), dd is the day of the month (1-31),
hh is the hour (0-23), mm is the minute (0-59), ss is the second (0-59), and ccc is the millisecond (0-999).

6.9 encodeEPOCHx
void encodeEPOCHx(
epoch as double ‘ in -- The CDF_EPOCH value.
format as string ‘ in -- The format string.
encoded as string) ‘ out -- The custom date/time string.

encodeEPOCHx encodes a CDF_EPOCH value into a custom date/time character string. The format of the encoded
string is specified by a format string.

The format string consists of EPOCH components, which are encoded, and text that is simply copied to the encoded
custom string. Components are enclosed in angle brackets and consist of a component token and an optional width. The
syntax of a component is: <token[.width]>. If the optional width contains a leading zero, then the component will be
encoded with leading zeroes (rather than leading blanks).

The supported component tokens and their default widths are as follows. . .

Token Meaning Default
dom Day of month (1-31) <dom.0>
doy Day of year (001-366) <doy.03>
month Month (`Jan',`Feb',...,`Dec') <month>
mm Month (1,2,...,12) <mm.0>
year Year (4-digit) <year.04>
yr Year (2-digit) <yr.02>
hour Hour (00-23) <hour.02>
min Minute (00-59) <min.02>
sec Second (00-59) <sec.02>
fos Fraction of second. <fos.3>
fod Fraction of day. <fod.8>

Note that a width of zero indicates that as many digits as necessary should be used to encoded the component. The
<month> component is always encoded with three characters. The <fos> and <fod> components are always encoded
with leading zeroes.

If a left angle bracket is desired in the encoded string, then simply specify two left angle brackets (<<) in the format string
(character stuffing).

For example, the format string used to encode the standard EPOCH date/time character string (see Section 6.3) would
be. . .

<dom.02>-<month>-<year> <hour>:<min>:<sec>.<fos>

223

6.10 toParseEPOCH
double toParseEPOCH(‘ out -- The CDF_EPOCH value.
epString as string) ‘ in -- The date/time string.

double[] toParseEPOCH(‘ out -- The CDF_EPOCH values.
epStrings as string[]) ‘ in -- The date/time strings.

toParseEPOCH parses an encoded, standard date/time character string(s) and returns a CDF_EPOCH value(s). The
format of the string is that produced by one of the encoding functions, e.g., toEncodeEPOCH, encodeEPOCH,
encodeEPOCH1, etc. If an illegal field is detected in the string, the value returned will be ILLEGAL_EPOCH_VALUE.

6.11 parseEPOCH
double parseEPOCH(‘ out -- CDF_EPOCH value.
epString as string) ‘ in -- The standard date/time string.

parseEPOCH parses a standard date/time character string and returns a CDF_EPOCH value. The format of the string is
that produced by the encodeEPOCH method described in Section 6.3. If an illegal field is detected in the string the value
returned will be ILLEGAL_EPOCH_VALUE.

6.12 parseEPOCH1
double parseEPOCH1(‘ out -- CDF_EPOCH value.
epString as string) ‘ in -- The alternate date/time string.

parseEPOCH1 parses an alternate date/time character string and returns a CDF_EPOCH value. The format of the string
is that produced by the encodeEPOCH1 method described in Section 6.5. If an illegal field is detected in the string the
value returned will be ILLEGAL_EPOCH_VALUE.

6.13 parseEPOCH2
double parseEPOCH2(‘ out -- CDF_EPOCH value.
epString as string) ‘ in -- The alternate date/time string.

parseEPOCH2 parses an alternate date/time character string and returns a CDF_EPOCH value. The format of the string
is that produced by the encodeEPOCH2 method described in Section 6.6. If an illegal field is detected in the string the
value returned will be ILLEGAL_EPOCH_VALUE.

6.14 parseEPOCH3
double parseEPOCH3(‘ out -- CDF_EPOCH value.
epString as string) ‘ in -- The alternate date/time string.

parseEPOCH3 parses an alternate date/time character string and returns a CDF_EPOCH value. The format of the string
is that produced by the encodeEPOCH3 method described in Section 6.7. If an illegal field is detected in the string the
value returned will be ILLEGAL_EPOCH_VALUE.

6.15 parseEPOCH4
double parseEPOCH4(‘ out -- CDF_EPOCH value.
epString as string) ‘ in -- The alternate date/time string.

parseEPOCH3 parses an alternate, ISO 8601 date/time character string and returns a CDF_EPOCH value. The format
of the string is that produced by the encodeEPOCH3 method described in Section 6.8. If an illegal field is detected in
the string the value returned will be ILLEGAL_EPOCH_VALUE.

224

6.16 computeEPOCH16
double computeEPOCH16(‘ out -- status code returned.
year as integer, ‘ in -- Year (AD, e.g., 1994).
month as integer, ‘ in -- Month (1-12).
day as integer, ‘ in -- Day (1-31).
hour as integer, ‘ in -- Hour (0-23).
minute as integer, ‘ in -- Minute (0-59).
second as integer, ‘ in -- Second (0-59).
msec as integer, ‘ in -- Millisecond (0-999).
microsec as integer, ‘ in -- Microsecond (0-999).
nanosec as integer, ‘ in -- Nanosecond (0-999).
picosec as integer, ‘ in -- Picosecond (0-999).
epoch as double()) ‘ out -- CDF_EPOCH16 value

computeEPOCH16 calculates a CDF_EPOCH16 value given the individual components. If an illegal component is
detected, the value returned will be ILLEGAL_EPOCH_VALUE.

6.17 EPOCH16breakdown
void EPOCH16breakdown(
epoch as double(), ‘ in -- The CDF_EPOCH16 value.
year as integer, ‘ out -- Year (AD, e.g., 1994).
month as integer, ‘ out -- Month (1-12).
day as integer, ‘ out -- Day (1-31).
hour as integer, ‘ out -- Hour (0-23).
minute as integer, ‘ out -- Minute (0-59).
second as integer, ‘ out -- Second (0-59).
msec as integer, ‘ out -- Millisecond (0-999).
microsec as integer, ‘ out -- Microsecond (0-999).
nanosec as integer, ‘ out -- Nanosecond (0-999).
picosec as integer) ‘ out -- Picosecond (0-999).

EPOCH16breakdown decomposes a CDF_EPOCH16 value into the individual components.

6.18 toEncodeEPOCH16
string toEncodeEPOCH16(‘ out -- Encode date/time string.
epoch as double[]) ‘ in -- The CDF_EPOCH value.

string toEncodeEPOCH16(‘ out -- Encode date/time string.
epoch as double[], ‘ in -- The CDF_EPOCH value.
style as int) ‘ in -- The encoding style.

toEncodeEPOCH16 encodes a CDF_EPOCH16 value, a two-double array, into a date/time character string in one of the
standard forms. The style is between the value 0 and 4. With style 0, it is similar to calling encodeEPOCH16. With style
1, 2 3 and 4, it is similar to calling encodeEPOCH16_1, encodeEPOCH16_2, encodeEPOCH16_3 and
encodeEPOCH16_4, respectively. Without style, the default style, 4, is used. Refer the following sections to see what a
date/time string looks like for each style.

6.19 encodeEPOCH16
void encodeEPOCH16(
epoch as double(), ‘ in -- The CDF_EPOCH16 value.
epString as string) ‘ out -- The date/time string.

225

encodeEPOCH16 encodes a CDF_EPOCH16 value into the standard date/time character string. The format of the string
is dd-mmm-yyyy hh:mm:ss.mmm:uuu:nnn:ppp where dd is the day of the month (1-31), mmm is the month (Jan,
Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, or Dec), yyyy is the year, hh is the hour (0-23), mm is the minute (0-
59), ss is the second (0-59), mmm is the millisecond (0-999), uuu is the microsecond (0-999), nnn is the nanosecond (0-
999), and ppp is the picosecond (0-999).

6.20 encodeEPOCH16_1
void encodeEPOCH16_1(
epoch as double(), ‘ in -- The CDF_EPOCH16 value.
epString as string) ‘ out -- The date/time string.

encodeEPOCH16_1 encodes a CDF_EPOCH16 value into an alternate date/time character string. The format of the
string is yyyymmdd.ttttttttttttttt, where yyyy is the year, mm is the month (1-12), dd is the day of the month (1-31), and
ttttttttttttttt is the fraction of the day (e.g., 500000000000000 is 12 o'clock noon).

6.21 encodeEPOCH16_2
void encodeEPOCH16_2(
epoch as double(), ‘ in -- The CDF_EPOCH16 value.
epString as string) ‘ out -- The date/time string.

encodeEPOCH16_2 encodes a CDF_EPOCH16 value into an alternate date/time character string. The format of the
string is yyyymoddhhmmss where yyyy is the year, mo is the month (1-12), dd is the day of the month (1-31), hh is the
hour (0-23), mm is the minute (0-59), and ss is the second (0-59).

6.22 encodeEPOCH16_3
void encodeEPOCH16_3(
epoch as double(), ‘ in -- The CDF_EPOCH16 value.
epString as string) ‘ out -- The alternate date/time string.

encodeEPOCH16_3 encodes a CDF_EPOCH16 value into an alternate date/time character string. The format of the
string is yyyy-mo-ddThh:mm:ss.mmm:uuu:nnn:pppZ where yyyy is the year, mo is the month (1-12), dd is the day of
the month (1-31), hh is the hour (0-23), mm is the minute (0-59), ss is the second (0-59), mmm is the millisecond (0-
999), uuu is the microsecond (0-999), nnn is the nanosecond (0-999), and ppp is the picosecond (0-999).

6.23 encodeEPOCH16_4
void encodeEPOCH16_4(
epoch as double(), ‘ in -- The CDF_EPOCH16 value.
epString as string) ‘ out -- The alternate date/time string.

encodeEPOCH16_3 encodes a CDF_EPOCH16 value into an alternate, ISO 8601 date/time character string. The format
of the string is yyyy-mo-ddThh:mm:ss.mmmuuunnnppp where yyyy is the year, mo is the month (1-12), dd is the day of
the month (1-31), hh is the hour (0-23), mm is the minute (0-59), ss is the second (0-59), mmm is the millisecond (0-
999), uuu is the microsecond (0-999), nnn is the nanosecond (0-999), and ppp is the picosecond (0-999).

6.24 encodeEPOCH16_x
void encodeEPOCH16_x(
epoch as double(), ‘ in -- The CDF_EPOCH16 value.
format as string ‘ in -- The format string.
encoded as string) ‘ out -- The date/time string.

226

encodeEPOCH16_x encodes a CDF_EPOCH16 value into a custom date/time character string. The format of the
encoded string is specified by a format string.

The format string consists of EPOCH components, which are encoded, and text that is simply copied to the encoded
custom string. Components are enclosed in angle brackets and consist of a component token and an optional width. The
syntax of a component is: <token[.width]>. If the optional width contains a leading zero, then the component will be
encoded with leading zeroes (rather than leading blanks).

The supported component tokens and their default widths are as follows. . .

Token Meaning Default
dom Day of month (1-31) <dom.0>
doy Day of year (001-366) <doy.03>
month Month (`Jan',`Feb',...,`Dec') <month>
mm Month (1,2,...,12) <mm.0>
year Year (4-digit) <year.04>
yr Year (2-digit) <yr.02>
hour Hour (00-23) <hour.02>
min Minute (00-59) <min.02>
sec Second (00-59) <sec.02>
msc Millisecond (000-999) <msc.3>
usc Microsecond (000-999) <usc.3>
nsc Nanosecond (000-999) <nsc.3>
psc Picosecond (000-999) <psc.3>
fos Fraction of second. <fos.12>
fod Fraction of day. <fod.8>

Note that a width of zero indicates that as many digits as necessary should be used to encoded the component. The
<month> component is always encoded with three characters. The <fos> and <fod> components are always encoded
with leading zeroes.

If a left angle bracket is desired in the encoded string, then simply specify two left angle brackets (<<) in the format string
(character stuffing).

For example, the format string used to encode the standard EPOCH date/time character string would be. . .

<dom.02>-<month>-<year> <hour>:<min>:<sec>.<msc>.<usc>.<nsc>.<psc>.<fos>

6.25 toParseEPOCH16
double[] toParseEPOCH16(‘ out -- The CDF_EPOCH16 value.
epString as string) ‘ in -- The date/time string.

toParseEPOCH16 parses a encoded, standard date/time character string and returns a CDF_EPOCH16 value, a two-
double array. The format of the string is that produced by one of the encoding functions, e.g., toEncodeEPOCH16,
encodeEPOCH16, encodeEPOCH16_1, etc. If an illegal field is detected in the string, the value returned will be
ILLEGAL_EPOCH_VALUE.

6.26 parseEPOCH16
double parseEPOCH16(‘ out -- The status code returned.
epString as string, ‘ in -- The date/time string.
epoch as double()) ‘ out -- The CDF_EPOCH16 value returned

parseEPOCH16 parses a standard date/time character string and returns a CDF_EPOCH16 value. The format of the
string is that produced by the encodeEPOCH16 function. If an illegal field is detected in the string the value returned
will be ILLEGAL_EPOCH_VALUE.

227

6.27 parseEPOCH16_1
double parseEPOCH16_1(‘ out -- The status code returned.
epString as string, ‘ in -- The date/time string.
epoch as double()) ‘ out -- The CDF_EPOCH16 value returned

parseEPOCH16_1 parses an alternate date/time character string and returns a CDF_EPOCH16 value. The format of
the string is that produced by the encodeEPOCH16_1 function. If an illegal field is detected in the string the value
returned will be ILLEGAL_EPOCH_VALUE.

6.28 parseEPOCH16_2
double parseEPOCH16_2(‘ out -- The status code returned.
epString as string, ‘ in -- The date/time string.
epoch as double()) ‘ out -- The CDF_EPOCH16 value returned

parseEPOCH16_2 parses an alternate date/time character string and returns a CDF_EPOCH16 value. The format of
the string is that produced by the encodeEPOCH16_2 function. If an illegal field is detected in the string the value
returned will be ILLEGAL_EPOCH_VALUE.

6.29 parseEPOCH16_3
double parseEPOCH16_3(‘ out -- The status code returned.
epString as string, ‘ in -- The date/time string.
epoch as double()) ‘ out -- The CDF_EPOCH16 value returned

parseEPOCH16_3 parses an alternate date/time character string and returns a CDF_EPOCH16 value. The format of
the string is that produced by the encodeEPOCH16_3 function. If an illegal field is detected in the string the value
returned will be ILLEGAL_EPOCH_VALUE.

6.30 parseEPOCH16_4
double parseEPOCH16_4(‘ out -- The status code returned.
epString as string, ‘ in -- The ISO 8601 date/time string.
epoch as double()) ‘ out -- The CDF_EPOCH16 value returned

parseEPOCH16_4 parses an alternate date/time character string and returns a CDF_EPOCH16 value. The format of
the string is that produced by the encodeEPOCH16_3 function. If an illegal field is detected in the string the value
returned will be ILLEGAL_EPOCH_VALUE.

6.31 EPOCHtoUnixTime
double EPOCHtoUnixTime(‘ out -- The Unix time returned.
epoch as double) ‘ in -- The CDF_EPOCH value

double() EPOCHtoUnixTime(‘ out -- The Unix times returned.
epochs as double()) ‘ in -- The CDF_EPOCH values
EPOCHtoUnixTime converts an epoch time(s) in CDF_EPOCH type into a Unix time(s). A CDF_EPOCH epoch, a
double, is milliseconds from 0000-01-01T00:00:00.000 while Unix time, also a double, is seconds from 1970-01-
01T00:00:00.000. The Unix time can have sub-second, with a time resolution of microseconds, in its fractional part.

6.32 UnixTimetoEPOCH
double UnixTimetoEPOCH (‘ out -- The CDF_EPOCH epoch value.
unixTime as double) ‘ in -- The Unix time value

228

double() UnixTimetoEPOCH (‘ out -- The CDF_EPOCH epoch values.
unixTimes as double()) ‘ in -- The Unix time values

UnixTimetoEPOCH converts a Unix time(s) to an epoch time(s) in CDF_EPOCH. A CDF_EPOCH epoch, a double, is
milliseconds from 0000-01-01T00:00:00.000 while Unix time, also a double, is seconds from 1970-01-01T00:00:00.000.
The Unix time can have sub-second, with a time resolution of microseconds, in its fractional part. Converting the Unix
time to EPOCH will only keep the resolution to milliseconds.

6.33 EPOCH16toUnixTime
double EPOCH16toUnixTime(‘ out -- The Unix time returned.
epoch as double()) ‘ in -- The CDF_EPOCH16 value

EPOCH16toUnixTime converts an epoch time in CDF_EPOCH16 type, a two-double array, to a Unix time. A
CDF_EPOCH16 epoch is picoseconds from 0000-01-01T00:00:00.000.000.000.000, while Unix time, a double, is
seconds from 1970-01-01T00:00:00.000. The Unix time can have sub-second, with a time resolution of microseconds,
in its fractional part. Note: As CDF_EPOCH16 has much higher time resolution, sub-microseconds portion of its time
might get lost during the conversion.

6.34 UnixTimetoEPOCH16

double() UnixTimetoEPOCH16 (‘ out -- The CDF_EPOCH16 epoch value.
unixTimes as double) ‘ in -- The Unix time value

UnixTimetoEPOCH16 converts a Unix time to an epoch time in CDF_EPOCH16. A CDF_EPOCH16 epoch, a two-
double array, is picoseconds from 0000-01-01T00:00:00.000.000.000.000, while Unix time, also a double, is seconds
from 1970-01-01T00:00:00.000. The Unix time can have sub-second, with a time resolution of microseconds, in its
fractional part. Sub-microseconds will be filled with 0’s when converting from Unix time to EPOCH16.

229

7 TT2000 Utility Routines
Several functions exist that compute, decompose, parse, and encode CDF_TIME_TT2000 values. These functions may
be called by applications using the CDF_TIME_TT2000 data type and is included in the CDF library. The Concepts
chapter in the CDF User's Guide describes TT2000 values. All these APIs are defined as static methods in CDFAPIs
class. The date/time components for CDF_TIME_TT2000 are UTC-based, with leap seconds.

The CDF_TIME_TT2000 data type is used to store time values referenced from J2000 (2000-01-
01T12:00:00.000000000). For CDF, values in CDF_TIME_TT2000 are nanoseconds from J2000 with leap seconds
included. TT2000 data can cover years between 1707 and 2292.

7.1 computeTT2000
compueTT2000 is a overloaded function.

long computeTT2000(‘ out -- CDF_TIME_TT2000 value.
year as double, ‘ in -- Year (AD, e.g., 1994).
month as double, ‘ in -- Month (1-12).
day as double) ‘ in -- Day (1-31).

long computeTT2000(‘ out -- CDF_TIME_TT2000 value.
year as double, ‘ in -- Year (AD, e.g., 1994).
month as double, ‘ in -- Month (1-12).
day as double, ‘ in -- Day (1-31).
hour as double) ‘ in -- Hour (0-23).

long computeTT2000(‘ out -- CDF_TIME_TT2000 value.
year as double, ‘ in -- Year (AD, e.g., 1994).
month as double, ‘ in -- Month (1-12).
day as double, ‘ in -- Day (1-31).
hour as double, ‘ in -- Hour (0-23).
minute as double) ‘ in -- Minute (0-59).

long computeTT2000(‘ out -- CDF_TIME_TT2000 value.
year as double, ‘ in -- Year (AD, e.g., 1994).
month as double, ‘ in -- Month (1-12).
day as double, ‘ in -- Day (1-31).
hour as double, ‘ in -- Hour (0-23).
minute as double, ‘ in -- Minute (0-59).
second as double) ‘ in -- Second (0-59 or 0-60 if leap second).

long computeTT2000(‘ out -- CDF_TIME_TT2000 value.
year as double, ‘ in -- Year (AD, e.g., 1994).
month as double, ‘ in -- Month (1-12).
day as double, ‘ in -- Day (1-31).
hour as double, ‘ in -- Hour (0-23).
minute as double, ‘ in -- Minute (0-59).
second as double, ‘ in -- Second (0-59 or 0-60 if leap second).
msec as double) ‘ in -- Millisecond (0-999).

long computeTT2000(‘ out -- CDF_TIME_TT2000 value.
year as double, ‘ in -- Year (AD, e.g., 1994).
month as double, ‘ in -- Month (1-12).
day as double, ‘ in -- Day (1-31).

230

hour as double, ‘ in -- Hour (0-23).
minute as double, ‘ in -- Minute (0-59).
second as double, ‘ in -- Second (0-59 or 0-60 if leap second).
msec as double, ‘ in -- Millisecond (0-999).
usec as double) ‘ in -- Microsecond (0-999).

long computeTT2000(‘ out -- CDF_TIME_TT2000 value.
year as double, ‘ in -- Year (AD, e.g., 1994).
month as double, ‘ in -- Month (1-12).
day as double, ‘ in -- Day (1-31).
hour as double, ‘ in -- Hour (0-23).
minute as double, ‘ in -- Minute (0-59).
second as double, ‘ in -- Second (0-59 or 0-60 if leap second).
msec as double, ‘ in -- Millisecond (0-999).
usec as double, ‘ in -- Microsecond (0-999).
nsec as double) ‘ in -- Nanosecond (0-999).

computeTT2000 calculates a CDF_TIME_TT2000 value given the individual, UTC-based date/time components. If an
illegal component is detected, the value returned will be ILLEGAL_TT2000_VALUE. The day componment can be
presented in day of the month or day of the year (DOY). If DOY form is used, the month componment must have a
value(s) of one (1).

NOTE: Even though this overloaded function uses double for all its parameter fields, all but the very last parameter can
not have a non-zero fractional part for simplifying the computation. An exception will be thrown if the rule is not
followed. For example, this call is allowed:

dm tt2000 as long = computeTT2000(2010.0, 10.0, 10.5)

But, this call will fail:

dim tt2000 as long = computeTT2000(2010.0, 10.0, 10.5, 12.5)

7.2 TT2000breakdown
void TT2000breakdown(
tt2000 as long, ‘ in -- The CDF_TIME_TT2000.
year as double, ‘ out -- Year (AD, e.g., 1994).
month as double, ‘ out -- Month (1-12).
day as double, ‘ out -- Day (1-31).
hour as double, ‘ out -- Hour (0-23).
minute as double, ‘ out -- Minute (0-59).
second as double, ‘ out -- Second (0-59 or 0-60 if leap second).
msec as double, ‘ out -- Millisecond (0-999).
usec as double, ‘ out -- Microsecond (0-999).
nsec as double) ‘ out -- Nanosecond (0-999).

TT2000breakdown decomposes a CDF_TIME_TT2000 value into the individual components.

7.3 toEncodeTT2000
string toEncodeTT2000(‘ out -- Encode date/time string.
epoch as long) ‘ in -- The TT2000 value.

string toEncodeTT2000(‘ out -- Encode date/time string.
epoch as long, ‘ in -- The TT2000 value.
style as int) ‘ in -- The encoding style.

231

string() toEncodeTT2000(‘ out -- Encode date/time strings.
epochs as long()) ‘ in -- The TT2000 values.

string() toEncodeTT2000(‘ out -- Encode date/time strings.
epochs as long(), ‘ in -- The TT2000 values.
style as int) ‘ in -- The encoding style.

toEncodeTT2000 encodes a CDF_TIME_TT2000 value(s) into a date/time character string(s) in one of the standard
forms. The style is between the value 0 and 4. Without style, the default style is used, which is style 3. Refer the following
section to see what a date/time string looks like for each style.

7.4 encodeTT2000
encodeTT2000 is a overloaded function.

void encodeTT2000(
tt2000 as long ‘ in -- The CDF_TIME_TT2000.
EpString as string) ‘ out -- The standard date/time string.

void encodeTT2000(
tt2000 as long ‘ in -- The CDF_TIME_TT2000.
epString as string. ‘ out -- The standard date/time string.
style as int) ‘ in -- The encoded string style.

encodeTT2000 encodes a CDF_TIME_TT2000 value into one of the standard date/time UTC character strings. Without
the style, the default style of 3 is used, which makes the string in ISO 8601 format: yyyy-mm-ddT
hh:mm:ss.mmmuuunnn where yyyy is the year (1707-2292), mm is the month (01-12), dd is the day of the month (1-
31), hh is the hour (0-23), mm is the minute (0-59), ss is the second (0-59 or 0-60 if leap second), mmm is the millisecond
(0-999), uuu is the microsecond (0-999) and nnn is the nanosecond (0-999).

For a style of value 0, the encoded UTC string is DD-Mon-YYYY hh:mm:ss.mmmuuunnn, where DD is the day of
the month (1-31), Mon is the month (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, or Dec), YYYY is the
year, hh is the hour (0-23), mm is the minute (0-59 or 0-60 if leap second), ss is the second (0-59), mmm is the
millisecond (0-999), uuu is the microsecond (0-999), and nnn is the nanosecond (0-999). The encoded string has a
length of TT2000_0_STRING_LEN (30).

For a style of value 1, the encoded UTC string is YYYYMMDD.ttttttttt, where YYYY is the year, MM is the month
(1-12) DD is the day of the month (1-31), and ttttttttt is sub-day.(0-999999999). The encoded string has a length of
TT2000_1_STRING_LEN (19).

For a style of value 2, the encoded UTC string is YYYYMMDDhhmmss, where YYYY is the year, MM is the month
(1-12) DD is the day of the month (1-31), hh is the hour (0-23), mm is the minute (0-59),and ss is the second (0-59 or
0-60 if leap second). The encoded string has a length of TT2000_2_STRING_LEN (14).

For a style of value 3, the encoded UTC string is YYYY-MM-DDThh:mm:ss.mmmuuunnn, where YYYY is the
year, MM is the month (1-12), DD is the day of the month (1-31), hh is the hour (0-23), mm is the minute (0-59 or 0-60
if leap second), ss is the second (0-59), mmm is the millisecond (0-999), uuu is the microsecond (0-999), and nnn is the
nanosecond (0-999). The encoded string has a length of TT2000_3_STRING_LEN (29).

For a style of value 4, the encoded UTC string is similar to style 3, with an addition of “Z” appended to the end. The
encoded string has a length of TT2000_4_STRING_LEN (30).

7.5 toParseTT2000
long toParseTT2000(‘ out -- CDF_TIME_TT2000 value.

232

epString as string) ‘ in -- The standard date/time string.

long() toParseTT2000(‘ out -- CDF_TIME_TT2000 values.
epString as string()) ‘ in -- The encoded date/time strings.

toParseTT2000 parses a encoded date/time character string(s) and returns a CDF_TIME_TT2000 value(s). The format
of the string is that produced by the toEncodeTT2000 or encodeTT2000 method described in Section 6.3 or 7.4. If an
illegal field is detected in the string, the value(s) returned will be ILLEGAL_TT2000_VALUE.

7.6 parseTT2000
long parseTT2000(‘ out -- CDF_TIME_TT2000 value.
epString as string) ‘ in -- The encoded date/time string.

parseTT2000 parses an encoded date/time character string and returns a CDF_TIME_TT2000 value. The format of the
string is that produced by the encodeTT2000 method described in Section 7.3 or 7.4. If an illegal field is detected in the
string the value returned will be ILLEGAL_TT2000_VALUE.

7.7 CDFgetLastDateinLeapSecondsTab
le

void CDFgetLastDateinLeapSecondsTable(
year as integer ‘ out -- The year.
month as integer ‘ out -- The month.
day as integer) ‘ out -- The day.

CDFgetLastDateinLeapSecondsTable returns the last entry in the leap second table used by the CDF processing. This
date comes from the leap second table, either through an external text file, or the hard-coded table in the library code.
This information can tell whether the leap second table is up-to-date.

7.8 TT2000toUnixTime
double TT2000toUnixTime(‘ in -- The Unix time value.
epoch as long) ‘ in -- The TT2000 epoch value.

double() TT2000toUnixTime(‘ in -- The Unix time values.
epochs as long()) ‘ in -- The TT2000 epoch values.

TT2000toUnixTime converts epoch time(s) in CDF_TIME_TT2000 (TT2000) type into Unix time(s). A
CDF_TIME_TT2000 epoch, a 8-byte integer, is nanoseconds from J2000 with leap seconds, while Unix time, a double,
is seconds from 1970-01-01T00:00:00.000. The Unix time can have sub-second, with a time resolution of microseconds,
in its fractional part. Note: As CDF_TIME_TT2000 has much higher time resolution, sub-microseconds portion of its
time might get lost during the conversion. Also, TT2000’s leap seconds will get lost during conversion.

7.9 UnixTimetoTT2000
long UnixTimetoTT2000 (‘ in -- The TT2000 epoch value.
epoch as double) ‘ in -- The Unix time value.

long() UnixTimetoTT2000 (‘ in -- The TT2000 epoch values.
epochs as double()) ‘ in -- The Unix time values.

UnixTimetoTT2000 converts Unix time(s) into epoch time(s) in CDF_TIME_TT2000 (TT2000) type. A Unix time, a
double, is seconds from 1970-01-01T00:00:00.000 while a CDF_TIME_TT2000 epoch, a 8-byte integer, is nanoseconds
from J2000 with leap seconds. The Unix time can have sub-second, with a time resolution of microseconds, in its
fractional part. Sub-microseconds will be filled with 0’s when converting from Unix time to TT2000.

233

8 CDF Utility Methods
Several methods are created that are mainly used to decipher the strings and their corresponding constant values or vice
verse. All these APIs are defined as static methods in CDFUtils class. The constant values are defined in CDFConstants
class.

8.1 CDFFileExists
boolean CDFFileExists(‘ out -- The file existence flag.
filename as string) ‘ in -- The file name.

CDFFileExists method checks whether a CDF file by the given file name, with or without the .cdf extension, exists. Even
the file exists, CDFFileExists will not be able to verify whether it is a valid one. (Use CDFopen to validate it).

8.2 CDFgetChecksumValue
integer CDFgetChecksumValue(‘ out -- The checksum value.
checksum as string) ‘ in -- The file checksum type string.

CDFgetChecksumValue method returns the corresponding file checksum type value, based on the passed string. The
file checksum types and their values are as follows:

 Type Value

NONE NO_CHECKSUM (0)
MD5 MD5_CHECKSUM (1)
OTHER OTHER_CHECKSUM

8.3 CDFgetCompressionTypeValue
integer CDFgetCompressionTypeValue(‘ out -- The compression type.
compressionType as string) ‘ in -- The compression type string.

CDFgetCompressionTypeValue method returns the corresponding compression type value, based on the passed string.
The compression types and values are as follows:

 Type Value

NONE NO_COMPRESSION (0)
RLE RLE_COMPRESSION (1)
Huffman HUFF_COMPRESSION (2)
Adaptive Huffman AHUFF_COMPRESSION (3)
GZIP GZIP_COMPRESSION (5)

8.4 CDFgetDataTypeValue
integer CDFgetDataTypeValue(‘ out -- The data type.
dataType as string) ‘ in -- The data type string.

CDFgetDataTypeValue method returns the corresponding data type value, based on the passed string. The data types
and their values are as follows:

 Type Value

CDF_BYTE CDF_BYTE (41)
CDF_CHAR CDF_CHAR (51)
CDF_UCHAR CDF_UCHAR (52)

234

CDF_INT1 CDF_INT1 (1)
CDF_UINT1 CDF_UINT1 (11)
CDF_INT2 CDF_INT2 (2)
CDF_UINT2 CDF_UINT2 (12)
CDF_INT4 CDF_INT4 (4)
CDF_UINT4 CDF_UINT4 (14)
CDF_INT8 CDF_INT8 (8)
CDF_REAL4 CDF_REAL4 (21)
CDF_FLOAT CDF_FLOAT (44)
CDF_REAL8 CDF_REAL8 (22)
CDF_DOUBLE CDF_DOUBLE (45)
CDF_EPOCH CDF_EPOCH (31)
CDF_EPOCH16 CDF_EPOCH16 (32)
CDF_TIME_TT2000 CDF_TIME_TT2000 (33)

8.5 CDFgetDecodingValue
integer CDFgetDecodingValue(‘ out -- The decoding value.
decoding as string) ‘ in -- The data decoding string.

CDFgetDecodingValue method returns the corresponding data decoding value, based on the passed string. The data
decodings and their values are as follows:

 Type Value

NETWORK NETWORK_DECODING (1)
SUN SUN_DECODING (2)
VAX VAX_DECODING (3)
DECSTATION DECSTATION_DECODING (4)
SGi SGi_DECODING (5)
IBMPC IBMPC_DECODING (6)
IBMRS IBMRS_DECODING (7)
HOST HOST_DECODING (8)
PPC PPC_DECODING (9)
HP HP_DECODING (11)
NeXT NeXT_DECODING (12)
ALPHAOSF1 ALPHAOSF1_DECODING (13)
ALPHAVMSd ALPHAVMSd_DECODING (14)
ALPHAVMSg ALPHAVMSg_DECODING (15)
ALPHAVMSi ALPHAVMSi_DECODING (16)

8.6 CDFgetEncodingValue
integer CDFgetEncodingValue(‘ out -- The encoding value.
encoding as string) ‘ in -- The data encoding string.

CDFgetEncodingValue method returns the corresponding data encoding value, based on the passed string. The data
encodings and their values are as follows:

 Type Value

NETWORK NETWORK_ENCODING (1)
SUN SUN_ENCODING (2)
VAX VAX_ENCODING (3)
DECSTATION DECSTATION_ENCODING (4)
SGi SGi_ENCODING (5)
IBMPC IBMPC_ENCODING (6)

235

IBMRS IBMRS_ENCODING (7)
HOST HOST_ENCODING (8)
PPC PPC_ENCODING (9)
HP HP_ENCODING (11)
NeXT NeXT_ENCODING (12)
ALPHAOSF1 ALPHAOSF1_ENCODING (13)
ALPHAVMSd ALPHAVMSd_ENCODING (14)
ALPHAVMSg ALPHAVMSg_ENCODING (15)
ALPHAVMSi ALPHAVMSi_ENCODING (16)

8.7 CDFgetFormatValue
integer CDFgetFormatValue(‘ out -- The format value.
format as string) ‘ in -- The file format string.

CDFgetFormatValue method returns the corresponding file format value, based on the passed string. The file formats
and their values are as follows:

 Type Value

SINGLE` SINGLE_FILE (1)
MULTI MULTI_FILE (2)

8.8 CDFgetMajorityValue
integer CDFgetMajorityValue(‘ out -- The majority value.
majority as string) ‘ in -- The data majority string.

CDFgetMajorityValue method returns the corresponding file majority value, based on the passed string. The file
majorities and their values are as follows:

 Type Value

ROW ROW_MAJOR (1)
COLUMN COLUMN_MAJOR (2)

8.9 CDFgetSparseRecordValue
integer CDFgetSparseRecordValue(‘ out -- The sparse record value.
sparseRecord as string) ‘ in -- The sparse record string.

CDFgetSparseRecordValue method returns the corresponding sparse record value, based on the passed string. The
sparse records types and their values are as follows:

 Type Value

NONE NO_SPARSERECORDS (0)
PAD PAD_SPARSERECORDS (1)
PREV PREV_SPARSERECORDS (2)

8.10 CDFgetStringChecksum
string CDFgetStringChecksum(‘ out -- The checksum string.
checksum as integer) ‘ in -- The file checksum type.

CDFgetStringChecksum method returns the corresponding file checksum string, based on the passed type. The file
checksum types and their values are the same as those defined in CDFgetChecksumValue method.

236

8.11 CDFgetStringCompressionType
string CDFgetStringCompressionType(‘ out -- The compression string.
compressionType as integer) ‘ in -- The compression type.

CDFgetStringCompressionType method returns the corresponding compression type string, based on the passed type.
The file checksum types and their values are the same as those defined in CDFgetCompressionTypeValue method.

8.12 CDFgetStringDataType
string CDFgetStringDataType(‘ out -- The data type string.
dataType as integer) ‘ in -- The data type.

CDFgetStringDataType method returns the corresponding data type string, based on the passed type. The data types
and their values are the same as those in CDFgetDataTypeValue method:

8.13 CDFgetStringDecoding
string CDFgetStringDecoding(‘ out -- The decoding string.
decoding as integer) ‘ in -- The data decoding type.

CDFgetStringDecoding method returns the corresponding data decoding string, based on the passed type. The data
decodings and their values are as same as those defined in CDFgetDecodingValue:

8.14 CDFgetStringEncoding
string CDFgetStringEncoding(‘ out -- The encoding string.
encoding as integer) ‘ in -- The data encoding type.

CDFgetStringEncoding method returns the corresponding data encoding string, based on the passed type. The data
encodings and their values are the same as those defined in CDFgetEncodingValue method.

8.15 CDFgetStringFormat
string CDFgetStringFormat(‘ out -- The format string.
format as integer) ‘ in -- The file format type.

CDFgetStringFormat method returns the corresponding file format string, based on the passed type. The file formats
and their values are the same as those defined in CDFgetFormatValue method.:

8.16 CDFgetStringMajority
string CDFgetStringMajority(‘ out -- The majority string.
majority as integer) ‘ in -- The data majority type.

CDFgetStringMajority method returns the corresponding file majority string, based on the passed type. The file
majorities and their values are the same as those defined in CDFgetMajorityValue method.

8.17 CDFgetStringSparseRecord
string CDFgetStringSparseRecord(‘ out -- The sparse record string.
sparseRecord as integer) ‘ in -- The sparse record type.

CDFgetStringSparseRecord method returns the corresponding sparse record string, based on the passed type. The sparse
records types and their values are the same as those defined in CDFgetSparseRecordValue method.

237

8.18 DumpObject
void DumpObject (
data as object) ‘ in -- The object to be dumped.

void DumpObject (
dataType as integer ‘ in -- The object’s data type.
data as object) ‘ in -- The object to be dumped.
DumpObject method dumps the data contents of an object retrieved from a CDF. For CDF epoch data, this method will
not encode it into date/time form.

8.19 PrintDictionary
void PrintDictionary (
data as Dictionary (Of string, data) ‘ in -- The data dictionary.

void PrintDictionary (
data as Dictionary (Of integer, data)) ‘ in -- The data dictionary.

void PrintDictionary (
data as Dictionary (Of string, data), ‘ in -- The data dictionary.
indent as integer) ‘ in -- The indentation at output

void PrintDictionary (
data as Dictionary (Of integer, data), ‘ in -- The data dictionary.
indent as integer) ‘ in -- The indentation at output

PrintDictionary method prints out the data retrieved from a CDF in a dictionary form. The CDF epoch data will not be
encoded into date/time form.

9 CDF Exception Methods
Several methods in the CDFexception class can be used to check what happens when an exception is thrown by the
CDFAPIs, and react to it if necessary. All these APIs are defined as static methods. CDFException inherits from VB’s
Exception class.

9.1 CDFgetCurrentStatus
integer CDFgetCurrentStatus() ‘ out -- The status.

CDFgetCurrentStatus method returns the status when an exception is detected. The status value should be a negative
value. Chapter 5 covers all possible status codes. Use the following CDFgetStatusMsg method to decipher what the status
means.

9.2 CDFgetStatusMsg
string CDFgetStatusMsg(‘ out -- The descriptive message.
status as integer) ‘ in -- The exception status.

CDFgetStatusMsg method returns the descriptive information of the passed status.

239

Appendix A
A.1 Introduction
A status code is returned from most CDF functions. The CDFConstants class contains the numerical values (constants)
for each of the status codes (and for any other constants referred to in the explanations). The method CDFerror can be
used within a program to inquire the explanation text for a given status code.

There are three classes of status codes: informational, warning, and error. The purpose of each is as follows:

Informational Indicates success but provides some additional information that may be of interest to an
application.

Warning Indicates that the method completed but possibly not as expected.

Error Indicates that a fatal error occurred and the function aborted.

Status codes fall into classes as follows:

Error codes < CDF_WARN < Warning codes < CDF_OK < Informational codes

CDF_OK indicates an unqualified success (it should be the most commonly returned status code). CDF_WARN is
simply used to distinguish between warning and error status codes.

A.2 Status Codes and Messages
The following list contains an explanation for each possible status code. Whether a particular status code is considered
informational, a warning, or an error is also indicated.

ATTR_EXISTS Named attribute already exists - cannot create or rename. Each
attribute in a CDF must have a unique name. Note that trailing
blanks are ignored by the CDF library when comparing attribute
names. [Error]

ATTR_NAME_TRUNC Attribute name truncated to CDF_ATTR_NAME_LEN256

characters. The attribute was created but with a truncated name.
[Warning]

BAD_ALLOCATE_RECS An illegal number of records to allocate for a variable was

specified. For RV variables the number must be one or greater.
For NRV variables the number must be exactly one. [Error]

BAD_ARGUMENT An illegal/undefined argument was passed. Check that all

arguments are properly declared and initialized. [Error]

BAD_ATTR_NAME Illegal attribute name specified. Attribute names must contain at

least one character, and each character must be printable. [Error]

BAD_ATTR_NUM Illegal attribute number specified. Attribute numbers must be zero

(0) or greater for C applications and one (1) or greater for Fortran
applications. [Error]

240

BAD_BLOCKING_FACTOR22 An illegal blocking factor was specified. Blocking factors must be
at least zero (0). [Error]

BAD_CACHESIZE An illegal number of cache buffers was specified. The value must

be at least zero (0). [Error]

BAD_CDF_EXTENSION An illegal file extension was specified for a CDF. In general, do

not specify an extension except possibly for a single-file CDF that
has been renamed with a different file extension or no file
extension. [Error]

BAD_CDF_ID CDF identifier is unknown or invalid. The CDF identifier

specified is not for a currently open CDF. [Error]

BAD_CDF_NAME Illegal CDF name specified. CDF names must contain at least one

character, and each character must be printable. Trailing blanks
are allowed but will be ignored. [Error]

BAD_INT Unknown CDF status code received. The CDF library does not

use the status code specified. [Error]

BAD_CHECKSUM An illegal checksum mode received. It is invalid or currently not

supported. [Error]

BAD_COMPRESSION_PARM An illegal compression parameter was specified. [Error]

BAD_DATA_TYPE An unknown data type was specified or encountered. The CDF

data types are defined in CDFConstants class for VB applications.
[Error]

BAD_DECODING An unknown decoding was specified. The CDF decodings are

defined in CDFConstants class for VB applications. [Error]

BAD_DIM_COUNT Illegal dimension count specified. A dimension count must be at

least one (1) and not greater than the size of the dimension. [Error]

BAD_DIM_INDEX One or more dimension index is out of range. A valid value must

be specified regardless of the dimension variance. Note also that
the combination of dimension index, count, and interval must not
specify an element beyond the end of the dimension. [Error]

BAD_DIM_INTERVAL Illegal dimension interval specified. Dimension intervals must be

at least one (1). [Error]

BAD_DIM_SIZE Illegal dimension size specified. A dimension size must be at least

one (1). [Error]

BAD_ENCODING Unknown data encoding specified. The CDF encodings are

defined in CDFConstants class for VB applications. [Error]

BAD_ENTRY_NUM Illegal attribute entry number specified. Entry numbers must be at

least zero (0) for VB applications. [Error]

22 The status code BAD_BLOCKING_FACTOR was previously named BAD_EXTEND_RECS.

241

BAD_FNC_OR_ITEM The specified function or item is illegal. Check that the proper
number of arguments are specified for each operation being
performed. [Error]

BAD_FORMAT Unknown format specified. The CDF formats are defined in

CDFConstants class for VB applications. [Error]

BAD_INITIAL_RECS An illegal number of records to initially write has been specified.

The number of initial records must be at least one (1). [Error]

BAD_MAJORITY Unknown variable majority specified. The CDF variable

majorities are defined in CDFConstants class for VB applications.
[Error]

BAD_MALLOC Unable to allocate dynamic memory - system limit reached.

Contact CDF User Support if this error occurs. [Error]

BAD_NEGtoPOSfp0_MODE An illegal -0.0 to 0.0 mode was specified. The -0.0 to 0.0 modes

are defined in CDFConstants class for VB applications. [Error]

BAD_NUM_DIMS The number of dimensions specified is out of the allowed range.

Zero (0) through CDF_MAX_DIMS dimensions are allowed. If
more are needed, contact CDF User Support. [Error]

BAD_NUM_ELEMS The number of elements of the data type is illegal. The number of

elements must be at least one (1). For variables with a non-
character data type, the number of elements must always be one
(1). [Error]

BAD_NUM_VARS Illegal number of variables in a record access operation. [Error]

BAD_READONLY_MODE Illegal read-only mode specified. The CDF read-only modes are

defined in CDFConstants class for VB applications. [Error]

BAD_REC_COUNT Illegal record count specified. A record count must be at least one

(1). [Error]

BAD_REC_INTERVAL Illegal record interval specified. A record interval must be at least

one (1). [Error]

BAD_REC_NUM Record number is out of range. Record numbers must be at least

zero (0) for C applications and at least one (1) for Fortran
applications. Note that a valid value must be specified regardless
of the record variance. [Error]

BAD_SCOPE Unknown attribute scope specified. The attribute scopes are

defined in CDFConstants class for VB applications. [Error]

BAD_SCRATCH_DIR An illegal scratch directory was specified. The scratch directory

must be writeable and accessible (if a relative path was specified)
from the directory in which the application has been executed.
[Error]

BAD_SPARSEARRAYS_PARM An illegal sparse arrays parameter was specified. [Error]

242

BAD_VAR_NAME Illegal variable name specified. Variable names must contain at
least one character and each character must be printable. [Error]

BAD_VAR_NUM Illegal variable number specified. Variable numbers must be zero

(0) or greater for VB applications. [Error]

BAD_zMODE Illegal zMode specified. The CDF zModes are defined in

CDFConstants class for VB applications. [Error]

CANNOT_ALLOCATE_RECORDS Records cannot be allocated for the given type of variable (e.g., a

compressed variable). [Error]

CANNOT_CHANGE Because of dependencies on the value, it cannot be changed. Some
possible causes of this error follow:

1. Changing a CDF's data encoding after a variable value

(including a pad value) or an attribute entry has been
written.

2. Changing a CDF's format after a variable has been created

or if a compressed single-file CDF.

3. Changing a CDF's variable majority after a variable value

(excluding a pad value) has been written.

4. Changing a variable's data specification after a value

(including the pad value) has been written to that variable
or after records have been allocated for that variable.

5. Changing a variable's record variance after a value

(excluding the pad value) has been written to that variable
or after records have been allocated for that variable.

6. Changing a variable's dimension variances after a value

(excluding the pad value) has been written to that variable
or after records have been allocated for that variable.

7. Writing “initial” records to a variable after a value

(excluding the pad value) has already been written to that
variable.

8. Changing a variable's blocking factor when a compressed

variable and a value (excluding the pad value) has been
written or when a variable with sparse records and a value
has been accessed.

9. Changing an attribute entry's data specification where the

new specification is not equivalent to the old specification.

CANNOT_COMPRESS The CDF or variable cannot be compressed. For CDFs, this occurs
if the CDF has the multi-file format. For variables, this occurs if
the variable is in a multi-file CDF, values have been written to the
variable, or if sparse arrays have already been specified for the
variable. [Error]

CANNOT_SPARSEARRAYS Sparse arrays cannot be specified for the variable. This occurs if
the variable is in a multi-file CDF, values have been written to the

243

variable, records have been allocated for the variable, or if
compression has already been specified for the variable. [Error]

CANNOT_SPARSERECORDS Sparse records cannot be specified for the variable. This occurs if

the variable is in a multi-file CDF, values have been written to the
variable, or records have been allocated for the variable. [Error]

CDF_CLOSE_ERROR Error detected while trying to close CDF. Check that sufficient

disk space exists for the dotCDF file and that it has not been
corrupted. [Error]

CDF_CREATE_ERROR Cannot create the CDF specified - error from file system. Make

sure that sufficient privilege exists to create the dotCDF file in the
disk/directory location specified and that an open file quota has not
already been reached. [Error]

CDF_DELETE_ERROR Cannot delete the CDF specified - error from file system.

Insufficient privileges exist the delete the CDF file(s). [Error]

CDF_EXISTS The CDF named already exists - cannot create it. The CDF library

will not overwrite an existing CDF. [Error]

CDF_INTERNAL_ERROR An unexpected condition has occurred in the CDF library. Report

this error to CDFsupport. [Error]

CDF_NAME_TRUNC CDF file name truncated to CDF_PATHNAME_LEN characters.

The CDF was created but with a truncated name. [Warning]

CDF_OK Function completed successfully.

CDF OPEN_ERROR Cannot open the CDF specified - error from file system. Check

that the dotCDF file is not corrupted and that sufficient privilege
exists to open it. Also check that an open file quota has not already
been reached. [Error]

CDF_READ_ERROR Failed to read the CDF file - error from file system. Check that the

dotCDF file is not corrupted. [Error]

CDF_WRITE_ERROR Failed to write the CDF file - error from file system. Check that

the dotCDF file is not corrupted. [Error]

CHECKSUM_ERROR The data integrity verification through the checksum failed.

[Error]

CHECKSUM_NOT_ALLOWED The checksum is not allowed for old versioned files. [Error]

COMPRESSION_ERROR An error occurred while compressing a CDF or block of variable

records. This is an internal error in the CDF library. Contact CDF
User Support. [Error]

CORRUPTED_V2_CDF This Version 2 CDF is corrupted. An error has been detected in

the CDF's control information. If the CDF file(s) are known to be
valid, please contact CDF User Support. [Error]

DECOMPRESSION_ERROR An error occurred while decompressing a CDF or block of variable
records. The most likely cause is a corrupted dotCDF file. [Error]

244

DID_NOT_COMPRESS For a compressed variable, a block of records did not compress to
smaller than their uncompressed size. They have been stored
uncompressed. This can result If the blocking factor is set too
low or if the characteristics of the data are such that the
compression algorithm chosen is unsuitable. [Informational]

EMPTY_COMPRESSED_CDF The compressed CDF being opened is empty. This will result if a

program, which was creating/modifying, the CDF abnormally
terminated. [Error]

END_OF_VAR The sequential access current value is at the end of the variable.

Reading beyond the end of the last physical value for a variable is
not allowed (when performing sequential access). [Error]

FORCED_PARAMETER A specified parameter was forced to an acceptable value (rather

than an error being returned). [Warning]

IBM_PC_OVERFLOW An operation involving a buffer greater than 64k bytes in size has

been specified for PCs running 16-bit DOS/Windows 3.*. [Error]

ILLEGAL_EPOCH_VALUE Illegal component is detected in computing an epoch value or an

illegal epoch value is provided in decomposing an epoch value.
[Error]

ILLEGAL_FOR_SCOPE The operation is illegal for the attribute's scope. For example, only

gEntries may be written for gAttributes - not rEntries or zEntries.
[Error]

ILLEGAL_IN_zMODE The attempted operation is illegal while in zMode. Most

operations involving rVariables or rEntries will be illegal. [Error]

ILLEGAL_ON_V1_CDF The specified operation (i.e., opening) is not allowed on Version 1

CDFs. [Error]

MULTI_FILE_FORMAT The specified operation is not applicable to CDFs with the multi-

file format. For example, it does not make sense to inquire
indexing statistics for a variable in a multi-file CDF (indexing is
only used in single-file CDFs). [Informational]

NA_FOR_VARIABLE The attempted operation is not applicable to the given variable.

[Warning]

NEGATIVE_FP_ZERO One or more of the values read/written are -0.0 (An illegal value

on VAXes and DEC Alphas running OpenVMS). [Warning]

NO_ATTR_SELECTED An attribute has not yet been selected. First select the attribute on

which to perform the operation. [Error]

NO_CDF_SELECTED A CDF has not yet been selected. First select the CDF on which

to perform the operation. [Error]
NO_DELETE_ACCESS Deleting is not allowed (read-only access). Make sure that delete

access is allowed on the CDF file(s). [Error]

NO_ENTRY_SELECTED An attribute entry has not yet been selected. First select the entry

number on which to perform the operation. [Error]

245

NO_MORE_ACCESS Further access to the CDF is not allowed because of a severe error.
If the CDF was being modified, an attempt was made to save the
changes made prior to the severe error. in any event, the CDF
should still be closed. [Error]

NO_PADVALUE_SPECIFIED A pad value has not yet been specified. The default pad value is

currently being used for the variable. The default pad value was
returned. [Informational]

NO_STATUS SELECTED A CDF status code has not yet been selected. First select the status

code on which to perform the operation. [Error]

NO_SUCH_ATTR The named attribute was not found. Note that attribute names are

case-sensitive. [Error]

NO_SUCH_CDF The specified CDF does not exist. Check that the file name

specified is correct. [Error]

NO_SUCH_ENTRY No such entry for specified attribute. [Error]

NO_SUCH_RECORD The specified record does not exist for the given variable. [Error]

NO_SUCH_VAR The named variable was not found. Note that variable names are

case-sensitive. [Error]

NO_VAR_SELECTED A variable has not yet been selected. First select the variable on

which to perform the operation. [Error]

NO_VARS_IN_CDF This CDF contains no rVariables. The operation performed is not

applicable to a CDF with no rVariables. [Informational]

NO_WRITE_ACCESS Write access is not allowed on the CDF file(s). Make sure that the

CDF file(s) have the proper file system privileges and ownership.
[Error]

NOT_A_CDF Named CDF is corrupted or not actually a CDF. Contact CDF

User Support if you are sure that the specified file is a CDF that
should be readable by the CDF distribution being used. [Error]

NOT_A_CDF_OR_NOT_SUPPORTED This can occur if an older CDF distribution is being used to read a

CDF created by a more recent CDF distribution. Contact CDF
User Support if you are sure that the specified file is a CDF that
should be readable by the CDF distribution being used. CDF is
backward compatible but not forward compatible. [Error]

PRECEEDING_RECORDS_ALLOCATED Because of the type of variable, records preceding the range of

records being allocated were automatically allocated as well.
[Informational]

READ_ONLY_DISTRIBUTION Your CDF distribution has been built to allow only read access to

CDFs. Check with your system manager if you require write
access. [Error]

READ_ONLY_MODE The CDF is in read-only mode - modifications are not allowed.

[Error]

246

SCRATCH_CREATE_ERROR Cannot create a scratch file - error from file system. If a scratch
directory has been specified, ensure that it is writeable. [Error]

SCRATCH_DELETE_ERROR Cannot delete a scratch file - error from file system. [Error]

SCRATCH_READ_ERROR Cannot read from a scratch file - error from file system. [Error]

SCRATCH_WRITE_ERROR Cannot write to a scratch file - error from file system. [Error]

SINGLE_FILE_FORMAT The specified operation is not applicable to CDFs with the single-

file format. For example, it does not make sense to close a variable
in a single-file CDF. [Informational]

SOME_ALREADY_ALLOCATED Some of the records being allocated were already allocated.

[Informational]

TOO_MANY_PARMS A type of sparse arrays or compression was encountered having

too many parameters. This could be causes by a corrupted CDF or
if the CDF was created/modified by a CDF distribution more
recent than the one being used. [Error]

TOO_MANY_VARS A multi-file CDF on a PC may contain only a limited number of

variables because of the 8.3 file naming convention of MS-DOS.
This consists of 100 rVariables and 100 zVariables. [Error]

UNKNOWN_COMPRESSION An unknown type of compression was specified or encountered.

[Error]

UNKNOWN_SPARSENESS An unknown type of sparseness was specified or encountered.

[Error]

UNSUPPORTED_OPERATION The attempted operation is not supported at this time. [Error]

VAR_ALREADY_CLOSED The specified variable is already closed. [Informational]

VAR_CLOSE_ERROR Error detected while trying to close variable file. Check that

sufficient disk space exists for the variable file and that it has not
been corrupted. [Error]

VAR_CREATE_ERROR An error occurred while creating a variable file in a multi-file CDF.

Check that a file quota has not been reached. [Error]

VAR_DELETE_ERROR An error occurred while deleting a variable file in a multi-file CDF.

Check that sufficient privilege exist to delete the CDF files.
[Error]

VAR_EXISTS Named variable already exists - cannot create or rename. Each

variable in a CDF must have a unique name (rVariables and
zVariables can not share names). Note that the CDF library when
comparing variable names ignores trailing blanks. [Error]

VAR_NAME_TRUNC Variable name truncated to CDF_VAR_NAME_LEN256

characters. The variable was created but with a truncated name.
[Warning]

247

VAR_OPEN_ERROR An error occurred while opening variable file. Check that
sufficient privilege exists to open the variable file. Also make sure
that the associated variable file exists. [Error]

VAR_READ_ERROR Failed to read variable as requested - error from file system. Check

that the associated file is not corrupted. [Error]

VAR_WRITE_ERROR Failed to write variable as requested - error from file system.

Check that the associated file is not corrupted. [Error]

VIRTUAL_RECORD_DATA One or more of the records are virtual (never actually written to

the CDF). Virtual records do not physically exist in the CDF file(s)
but are part of the conceptual view of the data provided by the CDF
library. Virtual records are described in the Concepts chapter in
the CDF User's Guide. [Informational

249

Appendix B
B.1 VB-CDF APIs
The APIs that have the TYPE symbol use a general form for dealing with data, either variable value(s) or attribute entry,
in various data type for input and output. TYPE can be specified either in VB basic value or string type (scalar or array)
for writing out and reading from a CDF. The VB base Object class can also be used to represent a data object reading
from a CDF, which will be a scalar or array of value or string type

integer CDFattrCreate (id, attrName, attrScope, attrNum)
id as long ‘ in
attrName as string ‘ in
attrScope as integer ‘ in
attrNum as integer ‘ out

integer CDFattrEntryInquire (id, attrNum, entryNum, dataType, numElements)
id as long ‘ in
attrNum as integer ‘ in
entryNum as integer ‘ in
dataType as integer ‘ out
numElements as integer ‘ out

integer CDFattrGet (id, attrNum, entryNum, value)
id as long ‘ in
attrNum as integer ‘ in
entryNum as integer ‘ in
value as TYPE ‘ out

integer CDFattrInquire (id, attrNum, attrName, attrScope, maxEntry)
id as long ‘ in
attrNum as integer ‘ in
attrName as string ‘ out
attrScope as integer ‘ out
maxEntry as integer ‘ out

integer CDFattrNum (id, attrName)
id as long ‘ in
attrName as string ‘ in

integer CDFattrPut (id, attrNum, entryNum, dataType, numElements, value)
id as long ‘ in
attrNum as integer ‘ in
entryNum as integer ‘ in
dataType as integer ‘ in
numElements as integer ‘ in
value as TYPE ‘ in

integer CDFattrRename (id, attrNum, attrName)
id as long ‘ in
attrNum as integer ‘ in
attrName as string ‘ in

integer CDFclose (id)

250

id as long ‘ in

integer CDFcloseCDF (id)
id as long ‘ in

integer CDFcloserVar (id, varNum)
id as long ‘ in
varNum as integer ‘ in

integer CDFclosezVar (id, varNum)
id as long ‘ in
varNum as integer ‘ in

integer CDFconfirmAttrExistence (id, attrName)
id as long ‘ in
attrName as string ‘ in

integer CDFconfirmgEntryExistence (id, attrNum, entryNum)
id as long ‘ in
attrNum as integer ‘ in
entryNum as integer ‘ in

integer CDFconfirmrEntryExistence (id, attrNum, entryNum)
id as long ‘ in
attrNum as integer ‘ in
entryNum as integer ‘ in

integer CDFconfirmrVarExistence (id, varNum)
id as long ‘ in
varNum as integer ‘ in

integer CDFconfirmrVarPadValueExistence (id, varNum)
id as long ‘ in
varNum as integer ‘ in

integer CDFconfirmzEntryExistence (id, attrNum, entryNum)
id as long ‘ in
attrNum as integer ‘ in
entryNum as integer ‘ in

integer CDFconfirmzVarExistence (id, varNum)
id as long ‘ in
varNum as integer ‘ in

integer CDFconfirmzVarPadValueExistence (id, varNum)
id as long ‘ in
varNum as integer ‘ in

integer CDFcreate (CDFname, numDims, dimSizes, encoding, majority, id)
CDFname as string ‘ in
numDims as integer ‘ in
dimSizes as integer() ‘ in
encoding as integer ‘ in
majority as integer ‘ in
id as long ‘ out

251

integer CDFcreateAttr (id, attrName, scope, attrNum)
id as long ‘ in
attrName as string ‘ in
scope as integer ‘ in
attrNum as integer ‘ out

integer CDFcreateCDF (CDFname, id)
CDFname as string ‘ in
id as long ‘ out

integer CDFcreaterVar (id, varName, dataType, numElements, recVary, dimVarys, varNum)
id as long ‘ in
varName as string ‘ in
dataType as integer ‘ in
numElements as integer ‘ in
recVary as integer ‘ in
dimVarys as integer() ‘ in
varNum as integer ‘ out

integer CDFcreatezVar (id, varName, dataType, numElements, numDims, dimSizes, recVary, dimVarys, varNum)
id as long ‘ in
varName as string ‘ in
dataType as integer ‘ in
numElements as integer ‘ in
numDims as integer ‘ in
dimSizes as integer() ‘ in
recVary as integer ‘ in
dimVarys as integer() ‘ in
varNum as integer ‘ out

integer CDFdelete (id)
id as long ‘ in

integer CDFdeleteAttr (id, attrNum)
id as long ‘ in
attrNum as integer ‘ in

integer CDFdeleteAttrgEntry (id, attrNum, entryNum)
id as long ‘ in
attrNum as integer ‘ in
entryNum as integer ‘ in

integer CDFdeleteAttrrEntry (id, attrNum, entryNum)
id as long ‘ in
attrNum as integer ‘ in
entryNum as integer ‘ in

integer CDFdeleteAttrzEntry (id, attrNum, entryNum)
id as long ‘ in
attrNum as integer ‘ in
entryNum as integer ‘ in

integer CDFdeleteCDF (id)
id as long ‘ in

integer CDFdeleterVar (id, varNum)

252

id as long ‘ in
varNum as integer ‘ in

integer CDFdeleterVarRecords (id, varNum, startRec, endRec)
id as long ‘ in
varNum as integer ‘ in
startRec as integer ‘ in
endRec as integer ‘ in

integer CDFdeleterVarRecordsRenumber (id, varNum, startRec, endRec)
id as long ‘ in
varNum as integer ‘ in
startRec as integer ‘ in
endRec as integer ‘ in

integer CDFdeletezVar (id, varNum)
id as long ‘ in
varNum as integer ‘ in

integer CDFdeletezVarRecords (id, varNum, startRec, endRec)
id as long ‘ in
varNum as integer ‘ in
startRec as integer ‘ in
endRec as integer ‘ in

integer CDFdeletezVarRecordsRenumber (id, varNum, startRec, endRec)
id as long ‘ in
varNum as integer ‘ in
startRec as integer ‘ in
endRec as integer ‘ in

integer CDFdoc (id, version, release, text)
id as long ‘ in
version as integer ‘ out
release as integer ‘ out
text as string ‘ out

integer CDFerror (status, message)
status as integer ‘ in
message as string ‘ out

integer CDFgetAttrgEntry (id, attrNum, entryNum, value)
id as long ‘ in
attrNum as integer ‘ in
entryNum as integer ‘ in
value as TYPE ‘ out

integer CDFgetAttrgEntryDataType (id, attrNum, entryNum, dataType)
id as long ‘ in
attrNum as integer ‘ in
entryNum as integer ‘ in
dataType as integer ‘ out

integer CDFgetAttrgEntryNumElements (id, attrNum, entryNum, numElems)
id as long ‘ in
attrNum as integer ‘ in

253

entryNum as integer ‘ in
numElems as integer ‘ out

integer CDFgetAttrMaxgEntry (id, attrNum, entryNum)
id as long ‘ in
attrNum as integer ‘ in
entryNum as integer ‘ out

integer CDFgetAttrMaxrEntry (id, attrNum, entryNum)
id as long ‘ in
attrNum as integer ‘ in
entryNum as integer ‘ out

integer CDFgetAttrMaxzEntry (id, attrNum, entryNum)
id as long ‘ in
attrNum as integer ‘ in
entryNum as integer ‘ out

integer CDFgetAttrName (id, attrNum, attrName)
id as long ‘ in
attrNum as integer ‘ in
attrName as string ‘ out

integer CDFgetAttrNum (id, attrName)
id as long ‘ in
attrName as string ‘ in

integer CDFgetAttrrEntry (id, attrNum, entryNum, value)
id as long ‘ in
attrNum as integer ‘ in
entryNum as integer ‘ in
value as TYPE ‘ out

integer CDFgetAttrrEntryDataType (id, attrNum, entryNum, dataType)
id as long ‘ in
attrNum as integer ‘ in
entryNum as integer ‘ in
dataType as integer ‘ out

integer CDFgetAttrrEntryNumElements (id, attrNum, entryNum, numElems)
id as long ‘ in
attrNum as integer ‘ in
entryNum as integer ‘ in
numElems as integer ‘ out

integer CDFgetAttrScope (id, attrNum, scope)
id as long ‘ in
attrNum as integer ‘ in
scope as integer ‘ out

integer CDFgetAttrzEntry (id, attrNum, entryNum, value)
id as long ‘ in
attrNum as integer ‘ in
entryNum as integer ‘ in
value as TYPE ‘ out

254

integer CDFgetAttrzEntryDataType (id, attrNum, entryNum, dataType)
id as long ‘ in
attrNum as integer ‘ in
entryNum as integer ‘ in
dataType as integer ‘ out

integer CDFgetAttrzEntryNumElements (id, attrNum, entryNum, numElems)
id as long ‘ in
attrNum as integer ‘ in
entryNum as integer ‘ in
numElems as integer ‘ out

integer CDFgetCacheSize (id, numBuffers)
id as long ‘ in
numBuffers as integer ‘ out

integer CDFgetChecksum (id, checksum)
id as long ‘ in
checksum as integer ‘ out

integer CDFgetCompression (id, compType, compParms, compPercent)
id as long ‘ in
compType as integer ‘ out
compParms as integer ‘ out
compPercent as integer ‘ out

integer CDFgetCompressionCacheSize (id, numBuffers)
id as long ‘ in
numBuffers as integer ‘ out

integer CDFgetCompressionInfo (cdfName, compType, compParms, compSize, uncompSize)
cdfName as string ‘ in
compType as integer ‘ out
compParms as integer() ‘ out
compSize as long ‘ out
uncompSize as long ‘ out

integer CDFgetCopyright (id, copyright)
id as long ‘ in
copyright as string ‘ out

integer CDFgetDataTypeSize (dataType, numBytes)
dataType as integer ‘ in
numBytes as integer ‘ out

integer CDFgetDecoding (id, decoding)
id as long ‘ in
decoding as integer ‘ out

integer CDFgetEncoding (id, encoding)
id as long ‘ in
encoding as integer ‘ out

integer CDFgetFileBackward ()

integer CDFgetFormat (id, format)

255

id as long ‘ in
format as integer ‘ out

integer CDFgetLibraryCopyright (copyright)
copyright as string ‘ out

integer CDFgetLibraryVersion (version, release, increment, subIncrement)
version as integer ‘ out
release as integer ‘ out
increment as integer ‘ out
subIncrement as string ‘ out

integer CDFgetLeapSecondLastUpdated (id, lastUpdated)
id as long ‘ in
lastUpdate as integer ‘ out

integer CDFgetMajority (id, majority)
id as long ‘ in
majority as integer ‘ out

integer CDFgetMaxWrittenRecNums (id, maxRecrVars, maxReczVars)
id as long ‘ in
maxRecrVars as integer ‘ out
maxReczVars as integer ‘ out

integer CDFgetName (id, name)
id as long ‘ in
name as string ‘ out

integer CDFgetNegtoPosfp0Mode (id, negtoPosfp0)
id as long ‘ in
negtoPosfp0 as integer ‘ out

integer CDFgetNumAttrgEntries (id, attrNum, entries)
id as long ‘ in
attrNum as integer ‘ in
entries as integer ‘ out

integer CDFgetNumAttributes (id, numAttrs)
id as long ‘ in
numAttrs as integer ‘ out

integer CDFgetNumAttrrEntries (id, attrNum, entries)
id as long ‘ in
attrNum as integer ‘ in
entries as integer ‘ out

integer CDFgetNumAttrzEntries (id, attrNum, entries)
id as long ‘ in
attrNum as integer ‘ in
entries as integer ‘ out

integer CDFgetNumgAttributes (id, numAttrs)
id as long ‘ in
numAttrs as integer ‘ out

256

integer CDFgetNumrVars (id, numVars)
id as long ‘ in
numrVars as integer ‘ out

integer CDFgetNumvAttributes (id, numAttrs)
id as long ‘ in
numAttrs as integer ‘ out

integer CDFgetNumzVars (id, numVars)
id as long ‘ in
numzVars as integer ‘ out

integer CDFgetReadOnlyMode (id, mode)
id as long ‘ in
mode as integer ‘ out

integer CDFgetrVarAllocRecords (id, varNum, allocRecs)
id as long ‘ in
varNum as integer ‘ in
allocRecs as integer ‘ out

integer CDFgetrVarBlockingFactor (id, varNum, bf)
id as long ‘ in
varNum as integer ‘ in
bf as integer ‘ out

integer CDFgetrVarCacheSize (id, varNum, numBuffers)
id as long ‘ in
varNum as integer ‘ in
numBuffers as integer ‘ out

integer CDFgetrVarCompression (id, varNum, cType, cParms, cPercent)
id as long ‘ in
varNum as integer ‘ in
compType as integer ‘ out
cParms as integer() ‘ out
cPercent as integer ‘ out

integer CDFgetrVarData (id, varNum, recNum, indices, value)
id as long ‘ in
varNum as integer ‘ in
recNum as integer ‘ in
indices as integer() ‘ in
value as TYPE ‘ out

integer CDFgetrVarDataType (id, varNum, dataType)
id as long ‘ in
varNum as integer ‘ in
dataType as integer ‘ out

integer CDFgetrVarsDimSizes (id, varNum, dimSizes)
id as long ‘ in
varNum as integer ‘ in
dimSizes as integer() ‘ out

integer CDFgetrVarDimVariances (id, varNum, dimVarys)

257

id as long ‘ in
varNum as integer ‘ in
dimVarys as integer() ‘ out

integer CDFgetrVarInfo (id, varNum, dataType, numElems, numDims, dimSizes)
id as long ‘ in
varNum as integer ‘ in
dataType as integer ‘ out
numElems as integer ‘ out
numDims as integer ‘ out
dimSizes as integer() ‘ out

integer CDFgetrVarMaxAllocRecNum (id, varNum, maxRec)
id as long ‘ in
varNum as integer ‘ in
maxRec as integer ‘ out

integer CDFgetrVarMaxWrittenRecNum (id, varNum, maxRec)
id as long ‘ in
varNum as integer ‘ in
maxRec as integer ‘ out

integer CDFgetrVarName (id, varNum, varName)
id as long ‘ in
varNum as integer ‘ in
varName as string ‘ out

integer CDFgetrVarsNumDims (id, varNum, numDims)
id as long ‘ in
varNum as integer ‘ in
numDims as integer ‘ out

integer CDFgetrVarNumElements (id, varNum, numElems)
id as long ‘ in
varNum as integer ‘ in
numElems as integer ‘ out

integer CDFgetrVarNumRecsWritten (id, varNum, numRecs)
id as long ‘ in
varNum as integer ‘ in
numRecs as integer ‘ out

integer CDFgetrVarPadValue (id, varNum, padValue)
id as long ‘ in
varNum as integer ‘ in
padValue as TYPE ‘ out

integer CDFgetrVarRecordData (id, varNum, recNum, buffer)
id as long ‘ in
varNum as integer ‘ in
recNum as integer ‘ in
buffer as TYPE ‘ out

integer CDFgetrVarRecVariance (id, varNum, recVary)
id as long ‘ in
varNum as integer ‘ in

258

recVary as integer ‘ out

integer CDFgetrVarReservePercent (id, varNum, percent)
id as long ‘ in
varNum as integer ‘ in
percent as integer ‘ out

integer CDFgetrVarsDimSizes (id, dimSizes)
id as long ‘ in
dimSizes as integer() ‘ out

integer CDFgetrVarSeqData (id, varNum, value)
id as long ‘ in
varNum as integer ‘ in
value as TYPE ‘ out

integer CDFgetrVarSeqPos (id, varNum, recNum, indices)
id as long ‘ in
varNum as integer ‘ in
recNum as integer ‘ out
indices as integer() ‘ out

integer CDFgetrVarsMaxWrittenRecNum (id, recNum)
id as long ‘ in
recNum as integer ‘ out

integer CDFgetrVarsNumDims (id, numDims)
id as long ‘ in
numDims as integer ‘ out

integer CDFgetrVarSparseRecords (id, varNum, sRecords)
id as long ‘ in
varNum as integer ‘ in
sRecords as integer ‘ out

integer CDFgetStageCacheSize (id, numBuffers)
id as long ‘ in
numBuffers as integer ‘ out

integer CDFgetStatusText (status, text)
status as integer ‘ in
text as string ‘ out

integer CDFgetValidate ()

integer CDFgetVarNum (id, varName)
id as long ‘ in
varName as string ‘ in

integer CDFgetVersion (id, version, release, increment)
id as long ‘ in
version as integer ‘ out
release as integer ‘ out
increment as integer ‘ out

integer CDFgetzMode (id, zMode)

259

id as long ‘ in
zMode as integer ‘ out

integer CDFgetzVarAllocRecords (id, varNum, allocRecs)
id as long ‘ in
varNum as integer ‘ in
allocRecs as integer ‘ out

integer CDFgetzVarBlockingFactor (id, varNum, bf)
id as long ‘ in
varNum as integer ‘ in
bf as integer ‘ out

integer CDFgetzVarCacheSize (id, varNum, numBuffers)
id as long ‘ in
varNum as integer ‘ in
numBuffers as integer ‘ out

integer CDFgetzVarCompression (id, varNum, cType, cParms, cPercent)
id as long ‘ in
varNum as integer ‘ in
compType as integer ‘ out
cParms as integer() ‘ out
cPercent as integer ‘ out

integer CDFgetzVarData (id, varNum, recNum, indices, value)
id as long ‘ in
varNum as integer ‘ in
recNum as integer ‘ in
indices as integer() ‘ in
value as TYPE ‘ out

integer CDFgetzVarDataType (id, varNum, dataType)
id as long ‘ in
varNum as integer ‘ in
dataType as integer ‘ out

integer CDFgetzVarDimSizes (id, varNum, dimSizes)
id as long ‘ in
varNum as integer ‘ in
dimSizes as integer() ‘ out

integer CDFgetzVarDimVariances (id, varNum, dimVarys)
id as long ‘ in
varNum as integer ‘ in
dimVarys as integer() ‘ out

integer CDFgetzVarInfo (id, varNum, dataType, numElems, numDims, dimSizes)
id as long ‘ in
varNum as integer ‘ in
dataType as integer ‘ out
numElems as integer ‘ out
numDims as integer ‘ out
dimSizes as integer() ‘ out

integer CDFgetzVarMaxAllocRecNum (id, varNum, maxRec)

260

id as long ‘ in
varNum as integer ‘ in
maxRec as integer ‘ out

integer CDFgetzVarMaxWrittenRecNum (id, varNum, maxRec)
id as long ‘ in
varNum as integer ‘ in
maxRec as integer ‘ out

integer CDFgetzVarName (id, varNum, varName)
id as long ‘ in
varNum as integer ‘ in
varName as string ‘ out

integer CDFgetzVarNumDims (id, varNum, numDims)
id as long ‘ in
varNum as integer ‘ in
numDims as integer ‘ out

integer CDFgetzVarNumElements (id, varNum, numElems)
id as long ‘ in
varNum as integer ‘ in
numElems as integer ‘ out

integer CDFgetzVarNumRecsWritten (id, varNum, numRecs)
id as long ‘ in
varNum as integer ‘ in
numRecs as integer ‘ out

integer CDFgetzVarPadValue (id, varNum, padValue)
id as long ‘ in
varNum as integer ‘ in
padValue as TYPE ‘ out

integer CDFgetzVarRecordData (id, varNum, recNum, data)
id as long ‘ in
varNum as integer ‘ in
recNum as integer ‘ in
data as TYPE ‘ out

integer CDFgetzVarRecVariance (id, varNum, recVary)
id as long ‘ in
varNum as integer ‘ in
recVary as integer ‘ out

integer CDFgetzVarReservePercent (id, varNum, percent)
id as long ‘ in
varNum as integer ‘ in
percent as integer ‘ out

integer CDFgetzVarSeqData (id, varNum, value)
id as long ‘ in
varNum as integer ‘ in
value as TYPE ‘ out

integer CDFgetzVarSeqPos (id, varNum, recNum, indices)

261

id as long ‘ in
varNum as integer ‘ in
recNum as integer ‘ out
indices as integer() ‘ out

integer CDFgetzVarsMaxWrittenRecNum (id, recNum)
id as long ‘ in
recNum as integer ‘ out

integer CDFgetzVarSparseRecords (id, varNum, sRecords)
id as long ‘ in
varNum as integer ‘ in
sRecords as integer ‘ out

integer CDFhyperGetrVarData (id, varNum, recNum, recCount, recInterval, indices, counts, intervals, buffer)
id as long ‘ in
varNum as integer ‘ in
recNum as integer ‘ in
recCount as integer ‘ in
recInterval as integer ‘ in
indices as integer() ‘ in
counts as integer() ‘ in
intervals as integer() ‘ in
buffer as TYPE ‘ out

integer CDFhyperGetzVarData (id, varNum, recNum, recCount, recInterval, indices, counts, intervals, buffer)
id as long ‘ in
varNum as integer ‘ in
recNum as integer ‘ in
recCount as integer ‘ in
recInterval as integer ‘ in
indices as integer() ‘ in
counts as integer() ‘ in
intervals as integer() ‘ in
buffer as TYPE ‘ out

integer CDFhyperPutrVarData (id, varNum, recNum, recCount, recInterval, indices, counts, intervals, buffer)
id as long ‘ in
varNum as integer ‘ in
recNum as integer ‘ in
recCount as integer ‘ in
recInterval as integer ‘ in
indices as integer() ‘ in
counts as integer() ‘ in
intervals as integer() ‘ in
buffer as TYPE ‘ in

integer CDFhyperPutzVarData (id, varNum, recNum, recCount, recInterval, indices, counts, intervals, data)
id as long ‘ in
varNum as integer ‘ in
recNum as integer ‘ in
recCount as integer ‘ in
recInterval as integer ‘ in
indices as integer() ‘ in
counts as integer() ‘ in
intervals as integer() ‘ in

262

data as TYPE ‘ in

integer CDFinquire (id, numDims, dimSizes, encoding, majority, maxRec, numVars, numAttrs)
id as long ‘ in
numDims as integer ‘ out
dimSizes as integer() ‘ out
encoding as integer ‘ out
majority as integer ‘ out
maxRec as integer ‘ out
numVars as integer ‘ out
numAttrs as integer ‘ out

integer CDFinquireAttr (id, attrNum, attrName, attrScope, maxgEntry, maxrEntry, maxzEntry)
id as long ‘ in
attrNum as integer ‘ in
attrName as string ‘ out
attrScope as integer ‘ out
maxgEntry as integer ‘ out
maxrEntry as integer ‘ out
maxzEntry as integer ‘ out

integer CDFinquireAttrgEntry (id, attrNum, entryNum, dataType, numElems)
id as long ‘ in
attrNum as integer ‘ in
entryNum as integer ‘ in
dataType as integer ‘ out
numElems as integer ‘ out

integer CDFinquireAttrrEntry (id, attrNum, entryNum, dataType, numElems)
id as long ‘ in
attrNum as integer ‘ in
entryNum as integer ‘ in
dataType as integer ‘ out
numElems as integer ‘ out

integer CDFinquireAttrzEntry (id, attrNum, entryNum, dataType, numElems)
id as long ‘ in
attrNum as integer ‘ in
entryNum as integer ‘ in
dataType as integer ‘ out
numElems as integer ‘ out

integer CDFinquireCDF (id, numDims, dimSizes, encoding, majority, maxrRec, numrVars, maxzRec,
 numzVars, numAttrs)
id as long ‘ in
numDims as integer ‘ out
dimSizes as integer () ‘ out
encoding as integer ‘ out
majority as integer ‘ out
maxrRec as integer ‘ out
numrVars as integer ‘ out
maxzRec as integer ‘ out
numzVars as integer ‘ out
numAttrs as integer ‘ out

integer CDFinquirerVar (id, varNum, varName, dataType, numElems, numDims, dimSizes, recVary, dimVarys)

263

id as long ‘ in
varNum as integer ‘ in
varName as string ‘ out
dataType as integer ‘ out
numElems as integer ‘ out
numDims as integer ‘ out
dimSizes as integer() ‘ out
recVary as integer ‘ out
dimVarys as integer() ‘ out

integer CDFinquirezVar (id, varNum, varName, dataType, numElems, numDims, dimSizes, recVary, dimVarys)
id as long ‘ in
varNum as integer ‘ in
varName as string ‘ out
dataType as integer ‘ out
numElems as integer ‘ out
numDims as integer ‘ out
dimSizes as integer() ‘ out
recVary as integer ‘ out
dimVarys as integer() ‘ out

integer CDFopen (CDFname, id)
CDFname as string ‘ in
id as long ‘ out

integer CDFopenCDF (CDFname, id)
CDFname as string ‘ in
id as long ‘ out

integer CDFselectCDF (id)
id as long ‘ in

integer CDFputAttrgEntry (id, attrNum, entryNum, value)
id as long ‘ in
attrNum as integer ‘ in
entryNum as integer ‘ in
value as string ‘ in

integer CDFputAttrgEntry (id, attrNum, entryNum, dataType, numElems, value)
id as long ‘ in
attrNum as integer ‘ in
entryNum as integer ‘ in
dataType as integer ‘ in
numElems as integer ‘ in
value as TYPE ‘ in

integer CDFputAttrrEntry (id, attrNum, entryNum, value)
id as long ‘ in
attrNum as integer ‘ in
entryNum as integer ‘ in
value as string ‘ in

integer CDFputAttrrEntry (id, attrNum, entryNum, dataType, numElems, value)
id as long ‘ in
attrNum as integer ‘ in
entryNum as integer ‘ in

264

dataType as integer ‘ in
numElems as integer ‘ in
value as TYPE ‘ in

integer CDFputAttrzEntry (id, attrNum, entryNum, value)
id as long ‘ in
attrNum as integer ‘ in
entryNum as integer ‘ in
value as string ‘ in

integer CDFputAttrzEntry (id, attrNum, entryNum, dataType, numElems, value)
id as long ‘ in
attrNum as integer ‘ in
entryNum as integer ‘ in
dataType as integer ‘ in
numElems as integer ‘ in
value as TYPE

integer CDFputrVarData (id, varNum, recNum, indices, value)
id as long ‘ in
varNum as integer ‘ in
recNum as integer ‘ in
indices as integer() ‘ in
value as TYPE ‘ in

integer CDFputrVarPadValue (id, varNum, padValue)
id as long ‘ in
varNum as integer ‘ in
padValue as TYPE ‘ in

integer CDFputrVarRecordData (id, varNum, recNum, values)
id as long ‘ in
varNum as integer ‘ in
recNum as integer ‘ in
values as TYPE ‘ in

integer CDFputrVarSeqData (id, varNum, value)
id as long ‘ in
varNum as integer ‘ in
value as TYPE ‘ in

integer CDFputzVarData (id, varNum, recNum, indices, value)
id as long ‘ in
varNum as integer ‘ in
recNum as integer ‘ in
indices as integer() ‘ in
value as TYPE ‘ in

integer CDFputzVarPadValue (id, varNum, padValue)
id as long ‘ in
varNum as integer ‘ in
padValue as TYPE ‘ in

integer CDFputzVarRecordData (id, varNum, recNum, values)
id as long ‘ in
varNum as integer ‘ in

265

recNum as integer ‘ in
values as TYPE ‘ in

integer CDFputzVarSeqData (id, varNum, value)
id as long ‘ in
varNum as integer ‘ in
value as TYPE ‘ in

Dictionary(Of string, object) ReadCDF (id)
id as long ‘ in
Dictionary(Of string, object) ReadCDF (id, encoding)
id as long ‘ in
encoding as bool ‘ in

Dictionary(Of string, object) ReadCDF (id, encoding, basic, globals, varall, noentry)
id as long ‘ in
encoding as bool ‘ in
basic as bool ‘ in
globals as bool ‘ in
varall as bool ‘ in
noentry as bool ‘ in

Dictionary(Of string, object) ReadCDF (id, encoding, basic, globals, varinfo, varmeta, vardata, noentry)
id as long ‘ in
encoding as bool ‘ in
basic as bool ‘ in
globals as bool ‘ in
varinfo as bool ‘ in
varmeta as bool ‘ in
vardata as bool ‘ in
noentry as bool ‘ in

Dictionary(Of string, object) ReadCDF (id, encoding, basic, globals, varinfo, varmeta, vardata, noentry, head)
id as long ‘ in
encoding as bool ‘ in
basic as bool ‘ in
globals as bool ‘ in
varinfo as bool ‘ in
varmeta as bool ‘ in
vardata as bool ‘ in
noentry as bool ‘ in
head as bool ‘ in

Dictionary(Of string, object) ReadCDFInfo (id)
id as long ‘ in

Dictionary(Of string, object) ReadCDFGlobalAttributes (id)
id as long ‘ in

Dictionary(Of string, object) ReadCDFGlobalAttributes (id, encoding)
id as long ‘ in
encoding as bool ‘ in

Dictionary(Of string, object) ReadCDFNoEntryAttributes (id)
id as long ‘ in

266

Dictionary(Of string, object) ReadCDFVariable (id, varid)
id as long ‘ in
varid as integer ‘ in

Dictionary(Of string, object) ReadCDFVariable (id, varid, encoding, basic, varmeta, vardata)
id as long ‘ in
varid as integer ‘ in
encoding as bool ‘ in
basic as bool ‘ in
varmeta as bool ‘ in
vardata as bool ‘ in

object ReadCDFVariableData (id, varid)
id as long ‘ in
varid as integer ‘ in

Dictionary(Of string, object) ReadCDFVariables (id)
id as long ‘ in
Dictionary(Of string, object) ReadCDFVariables (id, encoding)
id as long ‘ in
encoding as bool ‘ in

Dictionary(Of string, object) ReadCDFVariablesData (id)
id as long ‘ in

Dictionary(Of string, object) ReadCDFVariablesData (id, encoding)
id as long ‘ in
encoding as bool ‘ in

Dictionary(Of string, object) ReadCDFVariablesMetaData (id)
id as long ‘ in

Dictionary(Of string, object) ReadCDFVariablesMetaData (id, encoding)
id as long ‘ in
encoding as bool ‘ in

Dictionary(Of string, object) ReadCDFVariablesSpec (id)
id as long ‘ in

Dictionary(Of string, object) ReadCDFVariablesSpec (id, encoding)
id as long ‘ in
encoding as bool ‘ in

integer CDFrenameAttr (id, attrNum, attrName)
id as long ‘ in
attrNum as integer ‘ in
attrName as string ‘ in

integer CDFrenamerVar (id, varNum, varName)
id as long ‘ in
varNum as integer ‘ in
varName as string ‘ in

integer CDFrenamezVar (id, varNum, varName)
id as long ‘ in
varNum as integer ‘ in

267

varName as string ‘ in

integer CDFselect (id)
id as long ‘ in

integer CDFselectCDF (id)
id as long ‘ in

integer CDFsetAttrgEntryDataSpec (id, attrNum, entryNum, dataType)
id as long ‘ in
attrNum as integer ‘ in
entryNum as integer ‘ in
dataType as integer ‘ in

integer CDFsetAttrrEntryDataSpec (id, attrNum, entryNum, dataType)
id as long ‘ in
attrNum as integer ‘ in
entryNum as integer ‘ in
dataType as integer ‘ in

integer CDFsetAttrScope (id, attrNum, scope)
id as long ‘ in
attrNum as integer ‘ in
scope as integer ‘ in

integer CDFsetAttrzEntryDataSpec (id, attrNum, entryNum, dataType)
id as long ‘ in
attrNum as integer ‘ in
entryNum as integer ‘ in
dataType as integer ‘ in

integer CDFsetCacheSize (id, numBuffers)
id as long ‘ in
numBuffers as integer ‘ in

integer CDFsetChecksum (id, checksum)
id as long ‘ in
checksum as integer ‘ in

integer CDFsetCompression (id, compressionType, compressionParms)
id as long ‘ in
compressionType as integer ‘ in
compressionParms as integer() ‘ in

integer CDFsetCompressionCacheSize (id, numBuffers)
id as long ‘ in
numBuffers as integer ‘ in

integer CDFsetDecoding (id, decoding)
id as long ‘ in
decoding as integer ‘ in

integer CDFsetEncoding (id, encoding)
id as long ‘ in
encoding as integer ‘ in

268

void CDFsetFileBackward (mode)
mode as integer ‘ in

integer CDFsetFormat (id, format)
id as long ‘ in
format as integer ‘ in

integer CDFsetLeapSecondLastUpdated (id, lastUpdated)
id as long ‘ in
lastUpdated as integer ‘ in

integer CDFsetMajority (id, majority)
id as long ‘ in
majority as integer ‘ in

integer CDFsetNegtoPosfp0Mode (id, negtoPosfp0)
id as long ‘ in
negtoPosfp0 as integer ‘ in
integer CDFsetReadOnlyMode (id, readOnly)
id as long ‘ in
readOnly as integer ‘ in

integer CDFsetrVarAllocBlockRecords (id, varNum, firstRec, lastRec)
id as long ‘ in
varNum as integer ‘ in
firstRec as integer ‘ in
lastRec as integer ‘ in

integer CDFsetrVarAllocRecords (id, varNum, numRecs)
id as long ‘ in
varNum as integer ‘ in
numRecs as integer ‘ in

integer CDFsetrVarBlockingFactor (id, varNum, bf)
id as long ‘ in
varNum as integer ‘ in
bf as integer ‘ in

integer CDFsetrVarCacheSize (id, varNum, numBuffers)
id as long ‘ in
varNum as integer ‘ in
numBuffers as integer ‘ in

integer CDFsetrVarCompression (id, varNum, compressionType, compressionParms)
id as long ‘ in
varNum as integer ‘ in
compressionType as integer ‘ in
compressionParms as integer() ‘ in

integer CDFsetrVarDataSpec (id, varNum, dataType)
id as long ‘ in
varNum as integer ‘ in
dataType as integer ‘ in

integer CDFsetrVarDimVariances (id, varNum, dimVarys)
id as long ‘ in

269

varNum as integer ‘ in
dimVarys as integer() ‘ in

integer CDFsetrVarInitialRecs (id, varNum, initialRecs)
id as long ‘ in
varNum as integer ‘ in
initialRecs as integer ‘ in

integer CDFsetrVarRecVariance (id, varNum, recVary)
id as long ‘ in
varNum as integer ‘ in
recVary as integer ‘ in

integer CDFsetrVarReservePercent (id, varNum, reservePercent)
id as long ‘ in
varNum as integer ‘ in
reservePercent as integer ‘ in
integer CDFsetrVarsCacheSize (id, numBuffers)
id as long ‘ in
numBuffers as integer ‘ in

integer CDFsetrVarSeqPos (id, varNum, recNum, indices)
id as long ‘ in
varNum as integer ‘ in
recNum as integer ‘ in
indices as integer() ‘ in

integer CDFsetrVarSparseRecords (id, varNum, sRecords)
id as long ‘ in
varNum as integer ‘ in
sRecords as integer ‘ in

integer CDFsetStageCacheSize (id, numBuffers)
id as long ‘ in
numBuffers as integer ‘ in

void CDFsetValidate (mode)
mode as integer ‘ in

integer CDFsetzMode (id, zMode)
id as long ‘ in
zMode as integer ‘ in

integer CDFsetzVarAllocBlockRecords (id, varNum, firstRec, lastRec)
id as long ‘ in
varNum as integer ‘ in
firstRec as integer ‘ in
lastRec as integer ‘ in

integer CDFsetzVarAllocRecords (id, varNum, numRecs)
id as long ‘ in
varNum as integer ‘ in
numRecs as integer ‘ in

integer CDFsetzVarBlockingFactor (id, varNum, bf)
id as long ‘ in

270

varNum as integer ‘ in
bf as integer ‘ in

integer CDFsetzVarCacheSize (id, varNum, numBuffers)
id as long ‘ in
varNum as integer ‘ in
numBuffers as integer ‘ in

integer CDFsetzVarCompression (id, varNum, compressionType, compressionParms)
id as long ‘ in
varNum as integer ‘ in
compressionType as integer ‘ in
compressionParms as integer() ‘ in

integer CDFsetzVarDataSpec (id, varNum, dataType)
id as long ‘ in
varNum as integer ‘ in
dataType as integer ‘ in
integer CDFsetzVarDimVariances (id, varNum, dimVarys)
id as long ‘ in
varNum as integer ‘ in
dimVarys as integer() ‘ in

integer CDFsetzVarInitialRecs (id, varNum, initialRecs)
id as long ‘ in
varNum as integer ‘ in
initialRecs as integer ‘ in

integer CDFsetzVarRecVariance (id, varNum, recVary)
id as long ‘ in
varNum as integer ‘ in
recVary as integer ‘ in

integer CDFsetzVarReservePercent (id, varNum, reservePercent)
id as long ‘ in
varNum as integer ‘ in
reservePercent as integer ‘ in

integer CDFsetzVarsCacheSize (id, numBuffers)
id as long ‘ in
numBuffers as integer ‘ in

integer CDFsetzVarSeqPos (id, varNum, recNum, indices)
id as long ‘ in
varNum as integer ‘ in
recNum as integer ‘ in
indices as integer() ‘ in

integer CDFsetzVarSparseRecords (id, varNum, sRecords)
id as long ‘ in
varNum as integer ‘ in
sRecords as integer ‘ in

integer CDFvarClose (id, varNum)
id as long ‘ in
varNum as integer ‘ in

271

integer CDFvarCreate (id, varName, dataType, numElements, recVariance, dimVariances, varNum)
id as long ‘ in
varName as string ‘ in
dataType as integer ‘ in
numElements as integer ‘ in
recVariance as integer ‘ in
dimVariances as integer() ‘ in
varNum as integer ‘ out

integer CDFvarGet (id, varNum, recNum, indices, value)
id as long ‘ in
varNum as integer ‘ in
recNum as integer ‘ in
indices as integer() ‘ in
value as TYPE ‘ out

integer CDFvarHyperGet (id, varNum, recStart, recCount, recInterval, indices, counts, intervals, buffer)
id as long ‘ in
varNum as integer ‘ in
recStart as integer ‘ in
recCount as integer ‘ in
recInterval as integer ‘ in
indices as integer() ‘ in
counts as integer() ‘ in
intervals as integer() ‘ in
buffer as TYPE ‘ out

integer CDFvarHyperPut (id, varNum, recStart, recCount, recInterval, indices, counts, intervals, buffer)
id as long ‘ in
varNum as integer ‘ in
recStart as integer ‘ in
recCount as integer ‘ in
recInterval as integer ‘ in
indices as integer() ‘ in
counts as integer() ‘ in
intervals as integer() ‘ in
buffer as TYPE ‘ in

integer CDFvarInquire (id, varNum, varName, dataType, numElements, recVariance, dimVariances)
id as long ‘ in
varNum as integer ‘ in
varName as string ‘ out
dataType as integer ‘ out
numElements as integer ‘ out
recVariance as integer ‘ out
dimVariances as integer() ‘ out

integer CDFvarNum (id, varName)
id as long ‘ in
varName as string ‘ in

integer CDFvarPut (id, varNum, recNum, indices, value)
id as long ‘ in
varNum as integer ‘ in
recNum as integer ‘ in

272

indices as integer() ‘ in
value as TYPE ‘ in

integer CDFvarRename (id, varNum, varName)
id as long ‘ in
varNum as integer ‘ in
varName as string ‘ in

273

B.2 EPOCH Utility Methods
double computeEPOCH (year, month, day, hour, minute, second, msec)
year as integer ‘ in
month as integer ‘ in
day as integer ‘ in
hour as integer ‘ in
minute as integer ‘ in
second as integer ‘ in
msec as integer ‘ in

void EPOCHbreakdown (epoch, year, month, day, hour, minute, second, msec)
epoch as double ‘ in
year as integer ‘ out
month as integer ‘ out
day as integer ‘ out
hour as integer ‘ out
minute as integer ‘ out
second as integer ‘ out
msec as integer ‘ out

string toEncodeEPOCH (epoch)
epoch as double ‘ in

string toEncodeEPOCH (epoch, style)
epoch as double ‘ in
style as integer ‘ in

string() toEncodeEPOCH (epoch)
epoch as double() ‘ in

string() toEncodeEPOCH (epoch, style)
epoch as double() ‘ in
style as integer ‘ in

void encodeEPOCH (epoch, epString)
epoch as double ‘ in
epString as string ‘ out

void encodeEPOCH1 (epoch, epString)
epoch as double ‘ in
epString as string ‘ out

void encodeEPOCH2 (epoch, epString)
epoch as double ‘ in
epString as string ‘ out

void encodeEPOCH3 (epoch, epString)
epoch as double ‘ in
epString as string ‘ out

void encodeEPOCH4 (epoch, epString)
epoch as double ‘ in
epString as string ‘ out

274

void encodeEPOCHx (epoch, format, epString)
epoch as double ‘ in
format as string ‘ in
epString as string ‘ out

double toParseEPOCH (epString)
epString as string ‘ in

double() toParseEPOCH (epString)
epString as string() ‘ in

double parseEPOCH (epString)
epString as string ‘ in

double parseEPOCH1 (epString)
epString as string ‘ in

double parseEPOCH2 (epString)
epString as string ‘ in

double parseEPOCH3 (epString)
epString as string ‘ in

double parseEPOCH4 (epString)
epString as string ‘ in

double computeEPOCH16 (year, month, day, hour, minute, second, msec, microsec, nanosec, picosec)
year as integer ‘ in
month as integer ‘ in
day as integer ‘ in
hour as integer ‘ in
minute as integer ‘ in
second as integer ‘ in
msec as integer ‘ in
microsec as integer ‘ in
nanosec as integer ‘ in
picosec as integer ‘ in
epoch as double() ‘ out

void EPOCH16breakdown (epoch, year, month, day, hour, minute, second, msec, microsec, nanosec, picosec)
epoch as double() ‘ in
year as integer ‘ out
month as integer ‘ out
day as integer ‘ out
hour as integer ‘ out
minute as integer ‘ out
second as integer ‘ out
msec as integer ‘ out
microsec as integer ‘ out
nanosec as integer ‘ out
picosec as integer ‘ out

string toEncodeEPOCH16 (epoch)
epoch as double() ‘ in

string toEncodeEPOCH16 (epoch, style)

275

epoch as double() ‘ in
style as integer ‘ in

void encodeEPOCH16 (epoch, epString)
epoch as double() ‘ in
epString as string ‘ out

void encodeEPOCH16_1 (epoch, epString)
epoch as double() ‘ in
epString as string ‘ out

void encodeEPOCH16_2 (epoch, epString)
epoch as double() ‘ in
epString as string ‘ out

void encodeEPOCH16_3 (epoch, epString)
epoch as double() ‘ in
epString as string ‘ out

void encodeEPOCH16_4 (epoch, epString)
epoch as double() ‘ in
epString as string ‘ out

void encodeEPOCH16_x (epoch, format, epString)
epoch as double() ‘ in
format as string ‘ in
epString as string ‘ out

double() toParseEPOCH16 (epString)
epString as string ‘ in

double parseEPOCH16 (epString, epoch)
epString as string ‘ in
epoch as double() ‘ out

double parseEPOCH16_1 (epString)
epString as string ‘ in
epoch as double() ‘ out

double parseEPOCH16_2 (epString)
epString as string ‘ in
epoch as double() ‘ out

double parseEPOCH16_3 (epString)
epString as string ‘ in
epoch as double() ‘ out

double parseEPOCH16_4 (epString)
epString as string ‘ in
epoch as double() ‘ out

long computeTT2000 (year, month, day)
year as double ‘ in
month as double ‘ in
day as double ‘ in

276

long computeTT2000 (year, month, day, hour)
year as double ‘ in
month as double ‘ in
day as double ‘ in
hour as double ‘ in

long computeTT2000 (year, month, day, hour, minute)
year as double ‘ in
month as double ‘ in
day as double ‘ in
hour as double ‘ in
minute as double ‘ in

long computeTT2000 (year, month, day, hour, minute, second)
year as double ‘ in
month as double ‘ in
day as double ‘ in
hour as double ‘ in
minute as double ‘ in
second as double ‘ in

long computeTT2000 (year, month, day, hour, minute, second, msec)
year as double ‘ in
month as double ‘ in
day as double ‘ in
hour as double ‘ in
minute as double ‘ in
second as double ‘ in
msec as double ‘ in

long computeTT2000 (year, month, day, hour, minute, second, msec, usec)
year as double ‘ in
month as double ‘ in
day as double ‘ in
hour as double ‘ in
minute as double ‘ in
second as double ‘ in
msec as double ‘ in
usec as double ‘ in

long computeTT2000 (year, month, day, hour, minute, second, msec, usec, nsec)
year as double ‘ in
month as double ‘ in
day as double ‘ in
hour as double ‘ in
minute as double ‘ in
second as double ‘ in
msec as double ‘ in
usec as double ‘ in
nsec as double ‘ in

void TT2000breakdown (epoch, year, month, day, hour, minute, second, msec, usec, nsec)
epoch as long ‘ in
year as double ‘ out
month as double ‘ out
day as double ‘ out

277

hour as double ‘ out
minute as double ‘ out
second as double ‘ out
msec as double ‘ out
usec as double ‘ out
nsec as double ‘ out

string toEncodeTT2000 (epoch)
epoch as long ‘ in

string toEncodeTT2000 (epoch, style)
epoch as long ‘ in
style as integer ‘ in

string() toEncodeTT2000 (epoch)
epoch as long() ‘ in

string() toEncodeTT2000 (epoch, style)
epoch as long() ‘ in
style as integer ‘ in

void encodeTT2000 (epoch, epString, style)
epoch as long ‘ in
epString as string ‘ out
style as string ‘ in

long toParseTT2000 (epString)
epString as string ‘ in

long() toParseTT2000 (epString)
epString as string() ‘ in

long parseTT2000 (epString)
epString as string ‘ in

void CDFgetLastDateinLeapSecondsTable (year, month, day)
year as integer ‘ out
month as integer ‘ out
day as integer ‘ out

double EPOCHtoUnixTime (epoch)
epoch as double ‘ in

double() EPOCHtoUnixTime (epoch)
epoch as double() ‘ in

double UnixTimetoEPOCH (unixTime)
unixTime as double ‘ in

double() UnixTimetoEPOCH (unixTime)
unixTime as double() ‘ in

double EPOCH16toUnixTime (epoch)
epoch as double() ‘ in

double() UnixTimetoEPOCH16 (unixTime)

278

unixTime as double ‘ in

double TT2000toUnixTime (epoch)
epoch as long ‘ in

double() TT2000toUnixTime (epoch)
epoch as long() ‘ in

long UnixTimetoTT2000 (unixTime)
unixTime as double ‘ in

long() UnixTimetoTT2000 (unixTime)
unixTime as double() ‘ in

279

B.3 CDF Utility Methods
boolean CDFFileExists (fileName)
filename as string ‘ in

integer CDFgetChecksumValue(checksum)
fileName as string ‘ in

integer CDFgetCompressionTypeValue(compressionType)
compressionType as string ‘ in

integer CDFgetDataTypeValue(dataType)
dataType as string ‘ in

integer CDFgetDecodingValue(decoding)
decoding as string ‘ in

integer CDFgetEncodingValue(encoding)
encoding as string ‘ in

integer CDFgetFormatValue(format)
format as string ‘ in

integer CDFgetMajorityValue(majority)
majority as string ‘ in

integer CDFgetSparseRecordValue(sparseRecord)
sparseRecord as string ‘ in

string CDFgetStringChecksum(checksum)
checksum as integer ‘ in

string CDFgetStringCompressionType(compressionType)
compressionType as integer ‘ in

string CDFgetStringDataType(dataType)
dataType as integer ‘ in

string CDFgetStringDecoding(decoding)
decoding as integer ‘ in

string CDFgetStringEncoding(encoding)
encoding as integer ‘ in

string CDFgetStringFormat(format)
format as integer ‘ in

string CDFgetStringMajority(majority)
majority as integer ‘ in

string CDFgetStringSparseRecord(sparseRecord)
sparseRecord as integer ‘ in

280

B.4 CDF Exception Methods
integer CDFgetCurrentStatus ()

string CDFgetStatusMsg(status)
status as integer

281

Index
ALPHAOSF1_DECODING 16
ALPHAOSF1_ENCODING 15
ALPHAVMSd_DECODING 16
ALPHAVMSd_ENCODING 15
ALPHAVMSg_DECODING 16
ALPHAVMSg_ENCODING 15
ALPHAVMSi_DECODING 16
ALPHAVMSi_ENCODING 15
ARM_BIG_DECODING 17
ARM_BIG_ENCODING 16
ARM_LITTLE_DECODING 17
ARM_LITTLE_ENCODING 16
attribute

inquiring 165
number

inquiring 166
renaming 168

attributes
checking existence 169
creation 162, 172, 204, 207, 208, 209, 211, 212, 213, 214,

215, 217
entries

global entry
checking existence 169

inquiring 163
reading 164
writing 167

naming 20, 162, 172
inquiring 165

number of
inquiring 51

scopes
constants 19

GLOBAL_SCOPE 19
VARIABLE_SCOPE 19

inquiring 165, 192
Attributes

entries
global entry

deleting 173
reading 175

Attributes
deleting 173
entries

rVariable entry
checking existence 170

zVariable entry
checking existence 171

Attributes
entries

rVariable entry
deleting 174

Attributes
entries

zVariable entry
deleting 175

Attributes
entries

global entry
data type

inquiring 176
Attributes

entries
global entry

number of elements
inquiring 177

Attributes
entries

global entry
last entry number

inquiring 178
Attributes

entries
rVariable entry

last entry number
inquiring 179

Attributes
entries

zVariable entry
last entry number

inquiring 179
Attributes

name
inquiring 180

Attributes
number

inquiring 181
Attributes

entries
rVariable entry

reading 182
Attributes

entries
global entry

data type
inquiring 183

Attributes
entries

global entry
number of elements

inquiring 183
Attributes

scope
inquiring 184

Attributes
entries

zVariable entry
reading 185

Attributes
entries

zVariable entry
data type

282

inquiring 186
Attributes

entries
zVariable entry

number of elements
inquiring 187

Attributes
entries

global entries
number of

inquiring 188
Attributes

number of
inquiring 188

Attributes
entries

rEntries
number of

inquiring 189
Attributes

entries
zEntries

number of
inquiring 190

Attributes
inquiring 192

Attributes
entries

global entry
inquiring 193

Attributes
entries

rVariable entry
inquiring 194

Attributes
entries

zVariable entry
inquiring 195

Attributes
entries

global entry
writing 196

Attributes
entries

rVariable entry
writing 197

Attributes
entries

zVariable entry
writing 199

Attributes
renaming 200

Attributes
entries

global entry
data specification

resetting 200
Attributes

entries
rVariable entry

data specification
resetting 201

Attributes
scope

resetting 202
Attributes

entries
zVariable entry

data specification
resetting 203

CDF
backward file 20
backward file flag

getting 21
setting 20

cache size
compression

resetting 59
Checksum 21
closing 32
Copyright

inquiring 42
creation 34
deleting 36
exception methods 237
Long Integer 23
opening 53, 54
selecting 55, 56
set

majority 62
utility methods 233
Validation 22

CDF getNegtoPosfp0Mode 47
CDF library

copy right notice
max length 20

modes
-0.0 to 0.0

constants
NEGtoPOSfp0off 20
NEGtoPOSfp0on 20

decoding
constants

ALPHAOSF1_DECODING 16
ALPHAVMSd_DECODING 16
ALPHAVMSg_DECODING 16
ALPHAVMSi_DECODING 16
DECSTATION_DECODING 17
HOST_DECODING 16
HP_DECODING 17
IBMPC_DECODING 17
IBMRS_DECODING 17
MAC_DECODING 17
NETWORK_DECODING 16
NeXT_DECODING 17
SGi_DECODING 17
SUN_DECODING 16
VAX_DECODING 16

MegToPosFp0Mode
selecting 20

read-only
constants

READONLYoff 19
READONLYon 19

283

selecting 19
zMode

constants
zMODEoff 20
zMODEon1 20
zMODEon2 20

selecting 20
CDF setNegtoPosfp0Mode 63
CDF_ATTR_NAME_LEN256 20
CDF_BYTE 14
CDF_CHAR 14
CDF_COPYRIGHT_LEN 20
CDF_DOUBLE 14
CDF_EPOCH 14
CDF_EPOCH16 14
CDF_FLOAT 14
CDF_INT1 14
CDF_INT2 14
CDF_INT4 14
CDF_INT8 14
CDF_MAX_DIMS 20
CDF_MAX_PARMS 20
CDF_OK 13
CDF_PATHNAME_LEN 20
CDF_REAL4 14
CDF_REAL8 14
CDF_STATUSTEXT_LEN 20
CDF_TIME_TT2000 14
CDF_UCHAR 14
CDF_UINT1 14
CDF_UINT2 14
CDF_UINT4 14
CDF_VAR_NAME_LEN256 20
CDF_WARN 13
CDFattrCreate 162, 204, 207, 208, 209, 211, 212, 213, 214,

215, 217
CDFattrEntryInquire 163
CDFattrGet 164
CDFattrInquire 165
CDFattrNum 166
CDFattrPut 167
CDFattrRename 168
CDFclose 32
CDFcloseCDF 33
CDFcloserVar 66
CDFclosezVar 67
CDFconfirmAttrExistence 169
CDFconfirmgEntryExistence 169
CDFconfirmrEntryExistence 170
CDFconfirmrVarExistence 68
CDFconfirmrVarPadValueExistence 68
CDFconfirmzEntryExistence 171
CDFconfirmzVarExistence 69
CDFconfirmzVarPadValueExistence 70
CDFcreate 34
CDFcreateAttr 172
CDFcreateCDF 35
CDFcreaterVar 71
CDFcreatezVar 72
CDFdelete 36
CDFdeleteAttr 173
CDFdeleteAttrgEntry 173

CDFdeleteAttrrEntry 174
CDFdeleteAttrzEntry 175
CDFdeleteCDF 36
CDFdeleterVar 73
CDFdeleterVarRecords 74, 75
CDFdeletezVar 76
CDFdeletezVarRecords 76, 77
CDFdoc 37
CDFerror 239
CDFerror 38
CDFException

CDFgetCurrentStatus 237
CDFgetStatusMsg 237
utility methods

CDFgetCurrentStatus 237
CDFgetStatusMsg 237

CDFFileExists 233
CDFgetAttrgEntry 175
CDFgetAttrgEntryDataType 176
CDFgetAttrMaxrEntry 179
CDFgetAttrMaxzEntry 179
CDFgetAttrName 180
CDFgetAttrNum 181
CDFgetAttrrEntry 182
CDFgetAttrrEntryDataType 183
CDFgetAttrrEntryNumElements 183
CDFgetAttrScope 184
CDFgetAttrzEntry 185
CDFgetAttrzEntryDataType 186
CDFgetAttrzEntryNumElements 187
CDFgetCacheSize 38
CDFgetChecksumValue 233
CDFgetCkecksum 39
CDFgetCompression 40
CDFgetCompressionCacheSize 41
CDFgetCompressionInfo 41
CDFgetCompressionTypeValue 233
CDFgetCopyright 42
CDFgetCurrentStatus 237
CDFgetDataTypeSize 30
CDFgetDataTypeValue 233
CDFgetDecoding 43
CDFgetDecodingValue 234
CDFgetEncoding 43
CDFgetEncodingValue 234
CDFgetFileBackward 44
CDFgetFormat 44, 45
CDFgetFormatValue 235
CDFgetLastDateinLeapSecondsTable 232
CDFgetLibraryCopyright 30
CDFgetLibraryVersion 31
CDFgetMajority 46
CDFgetMajorityValue 235
CDFgetMaxWrittenRecNums 78
CDFgetName 46
CDFgetNumAttrgEntries 188
CDFgetNumAttributes 188
CDFgetNumAttrrEntries 189
CDFgetNumAttrzEntries 190
CDFgetNumgAttributes 190
CDFgetNumrVars 79
CDFgetNumvAttributes 191

284

CDFgetNumzVars 80
CDFgetReadOnlyMode 48
CDFgetrVarAllocRecords 80
CDFgetrVarBlockingFactor 81
CDFgetrVarCacheSize 82
CDFgetrVarCompression 82
CDFgetrVarData 83
CDFgetrVarDataType 84
CDFgetrVarDimVariances 85
CDFgetrVarInfo 86
CDFgetrVarMaxAllocRecNum 87
CDFgetrVarMaxWrittenRecNum 87
CDFgetrVarName 88
CDFgetrVarNumElements 89
CDFgetrVarNumRecsWritten 89
CDFgetrVarPadValue 90
CDFgetrVarRecordData 91
CDFgetrVarRecVariance 92
CDFgetrVarReservePercent 92
CDFgetrVarsDimSizes 93
CDFgetrVarSeqData 93
CDFgetrVarSeqPos 94
CDFgetrVarsMaxWrittenRecNum 95
CDFgetrVarsNumDims 96
CDFgetrVarSparseRecords 96
CDFgetSparseRecordValue 235
CDFgetStageCacheSize 48
CDFgetStatusMsg 237
CDFgetStatusText 31
CDFgetStringChecksum 235
CDFgetStringCompressionType 236
CDFgetStringDataType 236
CDFgetStringDecoding 236
CDFgetStringEncoding 236
CDFgetStringFormat 236
CDFgetStringMajority 236
CDFgetStringSparseRecord 236, 237
CDFgetValidae 49
CDFgetVarNum 97
CDFgetVersion 49
CDFgetzMode 50
CDFgetzVarAllocRecords 98
CDFgetzVarBlockingFactor 99
CDFgetzVarCacheSize 100
CDFgetzVarCompression 100
CDFgetzVarData 101
CDFgetzVarDataType 102
CDFgetzVarDimSizes 103
CDFgetzVarDimVariances 104
CDFgetzVarInfo 104
CDFgetzVarMaxAllocRecNum 105
CDFgetzVarMaxWrittenRecNum 106
CDFgetzVarName 106
CDFgetzVarNumDims 107
CDFgetzVarNumElements 108
CDFgetzVarNumRecsWritten 108
CDFgetzVarPadValue 109
CDFgetzVarRecordData 110
CDFgetzVarRecVariance 111
CDFgetzVarReservePercent 111
CDFgetzVarSeqData 112
CDFgetzVarSeqPos 113

CDFgetzVarsMaxWrittenRecNum 114
CDFgetzVarSparseRecords 115
CDFhyperGetrVarData 115
CDFhyperGetzVarData 117
CDFhyperPutrVarData 118
CDFhyperPutzVarData 120
CDFinquire 51
CDFinquireAttr 192
CDFinquireAttrgEntry 193
CDFinquireAttrrEntry 194
CDFinquireAttrzEntry 195
CDFinquireCDF 52
CDFinquirerVar 122
CDFinquirezVar 123
CDFopen 53
CDFopenCDF 54
CDFputAttrgEntry 196
CDFputAttrrEntry 197
CDFputAttrzEntry 199
CDFputrVarData 124
CDFputrVarPadValue 125
CDFputrVarRecordData 126
CDFputrVarSeqData 127
CDFputzVarData 128
CDFputzVarPadValue 129
CDFputzVarRecordData 130
CDFputzVarSeqData 130
CDFrenameAttr 200
CDFrenamerVar 131
CDFrenamezVar 132
CDFs

compression
inquiring 40, 41

CDFs
browsing 19
cache size

inquiring 38
checksum

inquiring 39
closing 33
compression types/parameters 18
copy right notice

max length 20
reading 37

corrupted 34, 35
creation 35
decoding

constants
ARM_BIG_DECODING 17
ARM_LITTLE_DECODING 17
IA64VMSd_DECODING 17
IA64VMSg_DECODING 17
IA64VMSi_DECODING 17

encoding
constants 15

ALPHAOSF1_ENCODING 15
ALPHAVMSd_ENCODING 15
ALPHAVMSg_ENCODING 15
ALPHAVMSi_ENCODING 15
ARM_BIG_ENCODING 16
ARM_LITTLE_ENCODING 16
DECSTATION_ENCODING 15

285

HOST_ENCODING 15
HP_ENCODING 15
IA64VMSd_ENCODING 16
IA64VMSg_ENCODING 16
IA64VMSi_ENCODING 16
IBMPC_ENCODING 15
IBMRS_ENCODING 15
MAC_ENCODING 16
NETWORK_ENCODING 15
NeXT_ENCODING 16
SGi_ENCODING 15
SUN_ENCODING 15
VAX_ENCODING 15

default 15
format

constants
MULTI_FILE 14
SINGLE_FILE 13

default 13
naming 20, 34, 35
overwriting 34, 35
version

inquiring 37
CDFs

cache size
compression

inquiring 41
CDFs

decoding
inquiring 43

CDFs
decoding

inquiring 43
CDFs

file backard
inquiring 44

CDFs
format

inquiring 44
CDFs

format
inquiring 45

CDFs
majority

inquiring 46
CDFs

name
inquiring 46

CDFs
-0.0 to 0.0 mode

inquiring 47
CDFs

read-only mode
inquiring 48

CDFs
cache size

stage
inquiring 48

CDFs
validation

inquiring 49
CDFs

version
inquiring 49

CDFs
zMode

inquiring 50
CDFs

encoding
inquiring 51

CDFs
inquiring 52

CDFs
naming 54

CDFs
naming 54

CDFs
cache size

resetting 57
CDFs

checksum
resetting 57

CDFs
compression

resetting 58
CDFs

decoding
resetting 59

CDFs
encoding

resetting 60
CDFs

File Backward
resetting 61

CDFs
format

resetting 61
CDFs

format
resetting 62

CDFs
-0.0 to 0.0 Mode

resetting 63
CDFs

read-only mode
resetting 64

CDFs
cache size

stage
resetting 64

CDFs
validation

resetting 65
CDFs

zMode
resetting 65

CDFs
record numbers

maximum written
zVariables and rVariables 78

CDFs
rVariables

number of rVariables
inquiring 79

286

CDFs
zVariables

number of zVariables
inquiring 80

CDFs
global attributes

number of
inquiring 190

CDFs
variable attributes

number of
inquiring 191

CDFselect 55
CDFselectCDF 56
CDFsetAttrgEntryDataSpec 200
CDFsetAttrrEntryDataSpec 201
CDFsetAttrScope 202
CDFsetAttrzEntryDataSpec 203
CDFsetCacheSize 57
CDFsetChecksum 57
CDFsetCompression 58
CDFsetCompressionCacheSize 59
CDFsetDecoding 59
CDFsetEncoding 60
CDFsetFileBackward 61
CDFsetFormat 61, 62
CDFsetMajority 62
CDFsetReadOnlyMode 64
CDFsetrVarAllocBlockRecords 133
CDFsetrVarAllocRecords 134
CDFsetrVarBlockingFactor 134
CDFsetrVarCacheSize 135
CDFsetrVarCompression 136
CDFsetrVarDataSpec 137
CDFsetrVarDimVariances 137
CDFsetrVarInitialRecs 138
CDFsetrVarRecVariance 139
CDFsetrVarReservePercent 140
CDFsetrVarsCacheSize 140
CDFsetrVarSeqPos 141
CDFsetrVarSparseRecords 142
CDFsetStageCacheSize 64
CDFsetValidate 65
CDFsetzMode 65
CDFsetzVarAllocBlockRecords 142
CDFsetzVarAllocRecords 143
CDFsetzVarBlockingFactor 144
CDFsetzVarCacheSize 145
CDFsetzVarCompression 145
CDFsetzVarDataSpec 146
CDFsetzVarDimVariances 147
CDFsetzVarInitialRecs 148
CDFsetzVarRecVariance 148
CDFsetzVarReservePercent 149
CDFsetzVarsCacheSize 150
CDFsetzVarSeqPos 151
CDFsetzVarSparseRecords 151
CDFUtils

CDFFileExists 233
CDFgetChecksumValue 233
CDFgetCompressionTypeValue 233
CDFgetDataTypeValue 233

CDFgetDecodingValue 234
CDFgetEncodingValue 234
CDFgetFormatValue 235
CDFgetMajorityValue 235
CDFgetSparseRecordValue 235
CDFgetStringChecksum 235
CDFgetStringCompressionType 236
CDFgetStringDataType 236
CDFgetStringDecoding 236
CDFgetStringEncoding 236
CDFgetStringFormat 236
CDFgetStringMajority 236
CDFgetStringSparseRecord 236, 237
utility methods

CDFFileExists 233
CDFgetChecksumValue 233
CDFgetCompressionTypeValue 233
CDFgetDataTypeValue 233
CDFgetDecodingValue 234
CDFgetEncodingValue 234
CDFgetFormatValue 235
CDFgetMajorityValue 235
CDFgetSparseRecordValue 235
CDFgetStringChecksum 235
CDFgetStringCompressionType 236
CDFgetStringDataType 236
CDFgetStringDecoding 236
CDFgetStringEncoding 236
CDFgetStringFormat 236
CDFgetStringMajority 236
CDFgetStringSparseRecord 236, 237

CDFvarClose 152
CDFvarCreate 153
CDFvarGet 154
CDFvarHyperGet 155
CDFvarHyperPut 156
CDFvarInquire 157
CDFvarNum 159
CDFvarPut 160
CDFvarRename 161
Ckecksum 39, 57
Classes 11
closing

rVar in a multi-file CDF 66
zVar in a multi-file CDF 67

COLUMN_MAJOR 17
compiling 11
Compiling 11
compression

types/parameters 18
computeEPOCH 220
computeEPOCH16 224
computeTT2000 229
Data type

size
inquiring 30

data types
constants 14

CDF_BYTE 14
CDF_CHAR 14
CDF_DOUBLE 14
CDF_EPOCH 14

287

CDF_EPOCH16 14
CDF_FLOAT 14
CDF_INT1 14
CDF_INT2 14
CDF_INT4 14
CDF_INT8 14
CDF_REAL4 14
CDF_REAL8 14
CDF_TIME_TT2000 14
CDF_UCHAR 14
CDF_UINT1 14
CDF_UINT2 14
CDF_UINT4 14

DECSTATION_DECODING 17
DECSTATION_ENCODING 15
dimensions

limit 20
encodeEPOCH 221, 224, 230
encodeEPOCH1 221
encodeEPOCH16 225
encodeEPOCH16_1 225
encodeEPOCH16_2 225
encodeEPOCH16_3 225
encodeEPOCH16_4 225
encodeEPOCH16_x 226
encodeEPOCH2 221
encodeEPOCH3 221
encodeEPOCH4 222
encodeEPOCHx 222
encodeTT2000 231
EPOCH

computing 220, 224
decomposing 220, 224
encoding 221, 222, 224, 225, 226, 230
parsing 223, 226, 227, 228
utility routines 220

computeEPOCH 220
computeEPOCH16 224
encodeEPOCH 221, 224, 230
encodeEPOCH1 221
encodeEPOCH16 225
encodeEPOCH16_1 225
encodeEPOCH16_2 225
encodeEPOCH16_3 225
encodeEPOCH16_4 225
encodeEPOCH16_x 226
encodeEPOCH2 221
encodeEPOCH3 221
encodeEPOCH4 222
encodeEPOCHx 222
EPOCH16breakdown 224
EPOCHbreakdown 220
parseEPOCH 223
parseEPOCH1 223
parseEPOCH16 223, 226
parseEPOCH16_1 227
parseEPOCH16_2 227
parseEPOCH16_3 227
parseEPOCH16_4 227, 228
parseEPOCH2 223
parseEPOCH3 223
parseEPOCH4 223

EPOCH16breakdown 224
EPOCHbreakdown 220
Equivalent data types 26
examples

CDF
-0.0 to 0.0 mode

set63
attribute

name
get 180

scope
get 185

checksum
set58

compression
get 40

compression cache size
set59

Copyright
get 42

decoding
get 43

encoding
set60

file backward
set61

global attribute
entry

data type
get 177

get 176
entry

number of elements
get 178

number of entries
get 188

inquiring 53
number of attributes

get 189
read-only mode

set64
rVariable attribute

entry
get 182

entry
data type

get 183
stage cache size

set65
validate

set65
validation

get 49
version

get 50
zMode

get 50
set66

CDF
cache size

get 39
checksum

288

get 39
close 33
create 35
delete 37

CDF
compression cache size

get 41
CDF

compression information
get 42

CDF
file backward

get 44
CDF

format
get 45

CDF
format

get 45
CDF

majority
get 46

CDF
name

get 47
CDF

-0.0 to 0.0 mode
get 47

CDF
read-only mode

get 48
CDF

cache buffer size
get 48

CDF
open 55

CDF
select 55

CDF
select 56

CDF
cache size

set57
CDF

compression
set58

CDF
decoding

set60
CDF

format
set61

CDF
format

set62
CDF

majority
set63

CDF
rVar

close 67
CDF

zVar
close 67

CDF
rVariable

existence
confirm 68

CDF
rVariable

pad value existence
confirm 69

CDF
zVariable

existence
confirm 69

CDF
zVariable

pad value existence
confirm 70

CDF
rVariable

create 71
CDF

zVariable
create 73

CDF
rVariable

delete 74
CDF

rVariable
data records

delete 75
CDF

rVariable
data records

delete 75
CDF

zVariable
delete 76

CDF
zVariable

data records
delete 77

CDF
zVariable

data records
delete 78

CDF
max record numbers

zVariables and rVariables
get 79

CDF
number of rVariables

get 79
CDF

number of zVariables
get 80

CDF
rVariable

number of records allocated
get 81

CDF
rVariable

289

blocking factor
get 81

CDF
rVariable

cache size
get 82

CDF
rVariable

compression
get 83

CDF
rVariable

variable data
get 84

CDF
rVariable

data type
get 85

CDF
rVariable

dimension variances
get 85

CDF
rVariable

information
get 86

CDF
rVariable

maximum number of records allocated
get 87

CDF
rVariable

maximum record number
get 88

CDF
rVariable

name
get 88

CDF
rVariable

number of elements
get 89

CDF
rVariable

number of records written
get 90

CDF
rVariable

pad value
get 90

CDF
rVariable

record data
get 91

CDF
rVariable

record variance
get 92

CDF
rVariable

compression reserve percentage
get 93

CDF
rVariable

dimension sizes
get 93

CDF
rVariable

data value
get 94

CDF
rVariable

read position
get 95

CDF
rVariables

maximum record number
get 96

CDF
rVariable

dimensionality
get 96

CDF
rVariable

sparse record type
get 97

CDF
Variable number

get 98
CDF

zVariable
number of records allocated

get 98
CDF

zVariable
blocking factor

get 99
CDF

zVariable
cache size

get 100
CDF

zVariable
compression

get 101
CDF

zVariable
variable data

get 102
CDF

zVariable
data type

get 103
CDF

zVariable
dimension sizes

get 103
CDF

zVariable
dimension variances

get 104
CDF

rVariable
information

290

get 105
CDF

zVariable
maximum number of records allocated

get 105
CDF

zVariable
maximum record number

get 106
CDF

zVariable
name

get 107
CDF

zVariable
dimensionality

get 107
CDF

zVariable
number of elements

get 108
CDF

zVariable
number of records written

get 109
CDF

zVariable
pad value

get 110
CDF

zVariable
record data

get 110
CDF

zVariable
record variance

get 111
CDF

zVariable
compression reserve percentage

get 112
CDF

zVariable
data value

get 113
CDF

zVariable
read position

get 114
CDF

zVariables
maximum record number

get 114
CDF

zVariable
sparse record type

get 115
CDF

rVariable
multiple values or records

get 116
CDF

zVariable
multiple values or records

get 118
CDF

rVariable
data values

write 119
CDF

zVariable
data values

write 121
CDF

rVariable
inquire 122

CDF
zVariable

inquire 124
CDF

rVariable
data value

write 125
CDF

rVariable
pad value

set126
CDF

rVariable
record data

write 127
CDF

rVariable
data value

sequential write 127
CDF

zVariable
data value

write 128
CDF

zVariable
pad value

set129
CDF

zVariable
record data

write 130
CDF

zVariable
data value

sequential write 131
CDF

zVariable
rename 132

CDF
zVariable

rename 133
CDF

rVariable
data records

block
allocate 133

CDF
rVariable

291

data records
sequential

allocate 134
CDF

rVariable
blocking factor

set135
CDF

rVariable
cache size

set135
CDF

rVariable
compression

set136
CDF

rVariable
data type

set137
CDF

rVariable
dimension variances

set138
CDF

rVariable
number of initial records

set138
CDF

rVariable
record variance

set139
CDF

rVariable
compression reserve percentage

set140
CDF

rVariable
cache size

set141
CDF

rVariable
sequential location

set141
CDF

rVariable
sparse record flag

set142
CDF

zVariable
data records

block
allocate 143

CDF
zVariable

data records
sequential

allocate 144
CDF

zVariable
blocking factor

set144
CDF

zVariable
cache size

set145
CDF

zVariable
compression

set146
CDF

zVariable
data type

set147
CDF

zVariable
dimension variances

set147
CDF

zVariable
number of initial records

set148
CDF

zVariable
record variance

set149
CDF

zVariable
compression reserve percentage

set150
CDF

zVariable
cache size

set150
CDF

zVariable
sequential location

set151
CDF

zVariable
sparse record flag

set152
CDF

attribute
existence

confirm 169
CDF

gentry
existence

confirm 170
CDF

rEntry
existence

confirm 170
CDF

zEntry
existence

confirm 171
CDF

attribute
create 172

CDF
attribute

delete 173
CDF

292

global attribute
entry

delete 173
CDF

rVariable attribute
entry

delete 174
CDF

zVariable attribute
entry

delete 175
CDF

global attribute
last Entry number

get 178
CDF

rVariable attribute
last Entry number

get 179
CDF

zVariable attribute
last entry number

get 180
CDF

attribute
number

get 181
CDF

rVariable attribute
entry

number of elements
get 184

CDF
zVariable attribute

entry
get 185

CDF
zVariable attribute

entry
data type

get 186
CDF

zVariable attribute
entry

number of elements
get 187

CDF
rVariable attribute

number of entries
get 189

CDF
zVariable attribute

number of entries
get 190

CDF
number of global attributes

get 191
CDF

number of variable attributes
get 191

CDF
attribute

information
get 193

CDF
global attribute

entry
information

get 194
CDF

rVariable attribute
entry

information
get 195

CDF
zVariable attribute

entry
information

get 196
CDF

global attribute
entry

write 197
CDF

rVariable attribute
entry

write 198
CDF

zVariable attribute
entry

write 199
CDF

attribute
rename 200

CDF
global attribute

entry
specification

set201
CDF

rVariable attribute
entry

specification
set202

CDF
attribute

data scope
set202

CDF
zVariable attribute

entry
specification

set203
closing

CDF 33
rVariable 153

creating
attribute 162, 205, 207, 208, 209, 211, 213, 214, 215,

216, 217
CDF 34
rVariable 154

deleting
CDF 36

get

293

CDF
Copyright 30
library version 31

data type size 30
rVariable

data 155
inquiring

attribute 165
entry 163

attribute number 166
CDF 37, 52
error code explanation text 32, 38
rVariable 158
variable number 159

interpreting
status codes 219

opening
CDF 54

reading
attribute entry 164
rVariable values

hyper 156
renaming

attribute 168
rVariable 161

status handler 219
writing

attribute
gEntry 167
rEntry 167

rVariable
multiple records/values 157

rVariable 160
Exception handling 27
Fixed statement 27
getAttrgEntryNumElements 177
getAttrMaxgEntry 178
GLOBAL_SCOPE 19
HOST_DECODING 16
HOST_ENCODING 15
HP_DECODING 17
HP_ENCODING 15
IA64VMSd_DECODING 17
IA64VMSd_ENCODING 16
IA64VMSg_DECODING 17
IA64VMSg_ENCODING 16
IA64VMSi_DECODING 17
IA64VMSi_ENCODING 16
IBMPC_DECODING 17
IBMPC_ENCODING 15
IBMRS_DECODING 17
IBMRS_ENCODING 15
id 13
inquiring

CDF information 37
Interface 24, 29
Leap Seconds 23
Library

error text
inquiring 31

Library
Copyright

inquiring 30
version

inquiring 31
Limitation

dimensions 28
limits

attribute name 20
Copyright text 20
dimensions 20
explanation/status text 20
file name 20
parameters 20
variable name 20

Limits of names 20
MAC_DECODING 17
MAC_ENCODING 16
MULTI_FILE 14
multidimensional arrays 26
namespace 11
NEGtoPOSfp0off 20
NEGtoPOSfp0on 20
NETWORK_DECODING 16
NETWORK_ENCODING 15
NeXT_DECODING 17
NeXT_ENCODING 16
NO_COMPRESSION 18
NO_SPARSEARRAYS 19
NO_SPARSERECORDS 19
NOVARY 18
PAD_SPARSERECORDS 19
parseEPOCH 223
parseEPOCH1 223
parseEPOCH16 223, 226
parseEPOCH16_1 227
parseEPOCH16_2 227
parseEPOCH16_3 227
parseEPOCH16_4 227, 228
parseEPOCH2 223
parseEPOCH3 223
parseEPOCH4 223
parseTT2000 231, 232
Passing arguments 24
PREV_SPARSERECORDS 19
programming interface

CDF id 13
CDF status 13

READONLYoff 19
READONLYon 19
ROW_MAJOR 17
rVariables

data records
deleting 74, 75

rVariables
check existence 68
creation 71
deleting 73
pad value

checking existence 68
rVariables

record numbers
allocated records

inquiring 80

294

rVariables
blocking factor

inquiring 81
rVariables

cache size
inquiring 82

rVariables
compression

inquiring 82
rVariables

reading
single value 83

rVariables
data type

inquiring 84
rVariables

dimension variances
inquiring 85

rVariables
information

inquiring 86
rVariables

record numbers
maximum allocated records

inquiring 87
rVariables

record numbers
maximum written record

inquiring 87
rVariables

name
inquiring 88

rVariables
number of elements

inquiring 89
rVariables

written records
inquiring 89

rVariables
pad value

inquiring 90
rVariables

reading
one record 91

rVariables
record variance

inquiring 92
rVariables

compression
reserve percentage

inquiring 92
rVariables

dimension sizes
inquiring 93

rVariables
reading

sequential data 93
rVariables

sequential position
inquiring 94

rVariables
maximum written record

rVariables 95
rVariables

dimensionality
inquiring 96

rVariables
sparse records type

inquiring 96
rVariables

reading
multiple values or records 115

rVariables
writing

multiple values or records 118
rVariables

inquiring 122
rVariables

writing
single data 124

rVariables
pad value

resetting 125
rVariables

writing
record data 126

rVariables
writing

sequential data 127
rVariables

renaming 131
rVariables

records
allocation 133

rVariables
records

allocation 134
rVariables

blocking factor
resetting 134

rVariables
cache size

resetting 135
rVariables

compression
resetting 136

rVariables
data specification

resetting 137
rVariables

dimension variances
resetting 137

rVariables
records

writing initially 138
rVariables

record variance
resetting 139

rVariables
compression

reserve percentage
resetting 140

rVariables
cache size

295

resetting 140
rVariables

sequential position
resetting 141

rVariables
sparse records type

resetting 142
rVariables

close 152
rVariables

creation 153
rVariables

reading
single value 154

rVariables
hyper read

multiple values or records 155
rVariables

hyper put
multiple values or records 156

rVariables
writing

single value 160
rVariables

renaming 161
sample programs 12
SGi_DECODING 17
SGi_ENCODING 15
SINGLE_FILE 13
sparse arrays

types 19
sparse records

types 19
status 13
status codes

constants 13, 219
CDF_OK 13
CDF_WARN 13

error 239
explanation text

inquiring 38
max length 20

informational 239
interpreting 219
warning 239

SUN_DECODING 16
SUN_ENCODING 15
TT2000

computing 229
decomposing 230
encoding 231
info 232
parsing 231, 232
utility routines 229

CDFgetLastDateinLeapSecondsTable 232
computeTT2000 229
encodeTT2000 231
parseTT2000 231, 232
TT2000breakdown 230

TT2000breakdown 230
VARIABLE_SCOPE 19
variables

compression
types/parameters 18

data specification
data type

inquiring 157
number of elements

inquiring 157
dimensionality

inquiring 51
inquiring 51
majority

considering 17
constants 17

COLUMN_MAJOR 17
ROW_MAJOR 17

maximum records
inquiring 51

name
inquiring 157

naming 71, 72, 153
max length 20

records
sparse 19

sparse arrays
types 19

variable number
inquiring 159

variances
constants 18

NOVARY 18
VARY 18

Variables
variable number

inquiring 97
VARY 18
VAX_DECODING 16
VAX_ENCODING 15
VB-CDF Interface 24, 29
zMODEoff 20
zMODEon1 20
zMODEon2 20
zVariables

data records
deleting 76, 77

zVariables
check existence 69
creation 72
deleting 76
pad value

checking existence 70
zVariables

record numbers
allocated records

inquiring 98
zVariables

blocking factor
inquiring 99

zVariables
cache size

inquiring 100
zVariables

compression

296

inquiring 100
zVariables

reading data 101
zVariables

data type
inquiring 102

zVariables
dimension sizes

inquiring 103
zVariables

dimension variances
inquiring 104

zVariables
information

inquiring 104
zVariables

record numbers
maximum allocated record

inquiring 105
zVariables

record numbers
maximum written record

inquiring 106
zVariables

name
inquiring 106

zVariables
dimensionality

inquiring 107
zVariables

number of elements
inquiring 108

zVariables
record numbers

written records
inquiring 108

zVariables
pad value

inquiring 109
zVariables

reading
one record 110

zVariables
record variance

inquiring 111
zVariables

compression
reserve percentage

inquiring 111
zVariables

sequential data
reading one value 112

zVariables
sequential position

inquiring 113
zVariables

record numbers
written records

maximum
rVariables and zVariables 114

zVariables
sparse records type

inquiring 115
zVariables

reading
multiple values or records 117

zVariables
writing

multiple values or records 120
zVariables

inquiring 123
zVariables

writing
single data 128

zVariables
pad value

resetting 129
zVariables

writing
record data 130

zVariables
writing

sequential data 130
zVariables

renaming 132
zVariables

records
allocation 142

zVariables
records

allocation 143
zVariables

blocking factor
resetting 144

zVariables
cache size

resetting 145
zVariables

compression
resetting 145

zVariables
data specification

resetting 146
zVariables

dimension variances
resetting 147

zVariables
records

writing initially 148
zVariables

record variance
resetting 148

zVariables
compression

reserve percentage
resetting 149

zVariables
cache size

resetting 150
zVariables

sequential position
resetting 151

zVariables
sparse records type

297

resetting 151

	CDF
	Visual Basic Reference Manual
	NASA / Goddard Space Flight Center
	1 Compiling
	1.1 Namespaces
	1.2 Base Classes
	1.3 Compiling with Compiler Options
	1.4 Sample programs

	2 Programming Interface
	2.1 Item Referencing
	2.2 Compatible Types
	2.3 CDFConstants

	CDF defines a set of constants that are used all over the .DLL. These constants are mimicked in CDFConstants class with compatible data types.
	2.4 CDF status

	These constants are of same type as the operation status, mentioned in 2.2.
	2.5 CDF Formats
	2.6 CDF Data Types

	One of the following constants must be used when specifying a CDF data type for an attribute entry or variable.
	2.7 Data Encodings

	DECSTATION_ENCODING
	2.8 Data Decodings
	2.9 Variable Majorities
	2.10 Record/Dimension Variances

	Record and dimension variances affect how variable data values are physically stored.
	2.11 Compressions
	2.12 Sparseness
	2.12.1 Sparse Records

	The following types of sparse records for variables are supported.
	2.12.2 Sparse Arrays

	The following types of sparse arrays for variables are supported.2F
	2.13 Attribute Scopes
	2.14 Read-Only Modes
	2.15 zModes
	2.16 -0.0 to 0.0 Modes
	2.17 Operational Limits

	These are limits within the CDF library. If you reach one of these limits, please contact CDF User Support.
	2.18 Limits of Names and Other Character Strings
	2.19 Backward File Compatibility with CDF 2.7

	By default, a CDF file created by CDF V3.0 or a later release is not readable by any of the CDF releases before CDF V3.0 (e.g. CDF 2.7.x, 2.6.x, 2.5.x, etc.). The file incompatibility is due to the 64-bit file offset used in CDF 3.0 and later release...
	There are two ways to create a file that’s backward compatible with CDF 2.7 and 2.6, but not 2.5. A method, CDFsetFileBackward, can be called to control the backward compatibility from an application before a CDF file is created (i.e. CDFcreateCDF). ...
	The following example creates two CDF files: “MY_TEST1.cdf” is a V3.* file while “MY_TEST2.cdf” a V2.7 file.
	Another method is through an environment variable and no method call is needed (and thus no code change involved in any existing applications). The environment variable, CDF_FILEBACKWARD on Windows, is used to control the CDF file backward compatibil...
	2.20 Checksum

	To ensure the data integrity while transferring CDF files from/to different platforms at different locations, the checksum feature was added in CDF V3.2 as an option for the single-file format CDF files (not for the multi-file format). By default, th...
	If the checksum bit is turned on, a 16-byte signature message (a.k.a. message digest) is computed from the entire file and appended to the end of the file when the file is closed (after any create/write/update activities). Every time such file is ope...
	There are several ways to add or remove the checksum bit. One way is to use the method call with a proper checksum mode. Another way is through the environment variable. Finally, CDFedit and CDFconvert (CDF tools included as part of the standard CD...
	The environment variable CDF_CHECKSUM on Windows is used to control the checksum option. If its value is set to “MD5”, all new CDF files will have their checksum bit set with a signature message produced by the MD5 algorithm. If the environment varia...
	The following example set a new CDF file with the MD5 checksum and set another existing file’s checksum to none.
	2.21 Data Validation

	The following example sets the data validation on when the CDF file, “TEST”, is open.
	The following example turns off the data validation when the CDF file, “TEST” is open.
	2.22 8-Byte Integer
	2.23 Leap Seconds

	3 Understanding the Application Interface
	3.1 Arguments Passing
	3.2 Multi-Dimensional Arrays
	3.3 Data Type Equivalent
	3.4 Fixed Statement
	3.5 Exception Handling
	3.6 Dimensional Limitations

	4 Application Interface
	4.1 Library Information
	4.1.1 CDFgetDataTypeSize
	4.1.1.1. Example(s)

	The following example returns the size of the data type CDF_INT4 that is 4 bytes.
	4.1.2 CDFgetLibraryCopyright
	4.1.2.1. Example(s)

	The following example returns the Copyright of the CDF library being used.
	4.1.3 CDFgetLibraryVersion
	4.1.3.1. Example(s)

	The following example returns the version and release information of the CDF library that is being used.
	4.1.4 CDFgetStatusText
	4.1.4.1. Example(s)

	The following example displays the explanation text for the error code that is returned from a call to CDFopenCDF.
	4.2 CDF
	4.2.1 CDFclose
	4.2.1.1. Example(s)

	The following example will close an open CDF.
	4.2.2 CDFcloseCDF
	4.2.2.1. Example(s)

	The following example will close an open CDF.
	4.2.3 CDFcreate

	UNIX: File names are case-sensitive.
	NOTE: CDFclose must be used to close the CDF before your application exits to ensure that the CDF will be correctly written to disk.
	4.2.3.1. Example(s)

	The following example creates a CDF named “test1.cdf” with network encoding and row majority.
	4.2.4 CDFcreateCDF

	UNIX: File names are case-sensitive.
	NOTE: CDFcloseCDF must be used to close the CDF before your application exits to ensure that the CDF will be correctly written to disk.
	4.2.4.1. Example(s)

	The following example creates a CDF named “test1.cdf” with the default encoding and majority.
	4.2.5 CDFdelete
	4.2.5.1. Example(s)

	The following example will open and then delete an existing CDF.
	4.2.6 CDFdeleteCDF
	4.2.6.1. Example(s)

	The following example will open and then delete an existing CDF.
	4.2.7 CDFdoc
	4.2.7.1. Example(s)

	The following example returns and displays the version/release and copyright notice.
	4.2.8 CDFerror4F
	4.2.8.1. Example(s)

	The following example displays the explanation text if an error code is returned from a call to CDFopen.
	4.2.9 CDFgetCacheSize
	4.2.9.1. Example(s)

	The following example returns the cache buffers for the open CDF file.
	4.2.10 CDFgetChecksum
	4.2.10.1. Example(s)

	The following example returns the checksum code for the open CDF file.
	4.2.11 CDFgetCompression
	4.2.11.1. Example(s)

	The following example returns the compression information of the open CDF file.
	4.2.12 CDFgetCompressionCacheSize
	4.2.12.1. Example(s)

	The following example returns the number of cache buffers used for the scratch file from the compressed CDF file.
	4.2.13 CDFgetCompressionInfo
	4.2.13.1. Example(s)

	The following example returns the compression information from a “unopen” CDF named “MY_TEST.cdf”.
	4.2.14 CDFgetCopyright
	4.2.14.1. Example(s)

	The following example returns the Copyright in a CDF.
	4.2.15 CDFgetDecoding
	4.2.15.1. Example(s)

	The following example returns the decoding for the CDF.
	4.2.16 CDFgetEncoding
	4.2.16.1. Example(s)

	The following example returns the data encoding used for the given CDF.
	4.2.17 CDFgetFileBackward
	4.2.17.1. Example(s)

	In the following example, the CDF’s file backward mode is acquired.
	4.2.18 CDFgetFormat
	4.2.18.1. Example(s)

	The following example returns the file format of the CDF.
	4.2.19 CDFgetLeapSecondLastUpdated
	4.2.19.1. Example(s)

	The following example returns the date that the last leap second was added to the leap second table from the CDF.
	4.2.20 CDFgetMajority
	4.2.20.1. Example(s)

	The following example returns the majority of the CDF.
	4.2.21 CDFgetName
	4.2.21.1. Example(s)

	The following example returns the name of the CDF.
	4.2.22 CDFgetNegtoPosfp0Mode
	4.2.22.1. Example(s)

	The following example returns the –0.0 to 0.0 mode of the CDF.
	4.2.23 CDFgetReadOnlyMode
	4.2.23.1. Example(s)

	The following example returns the read-only mode for the given CDF.
	4.2.24 CDFgetStageCacheSize
	4.2.24.1. Example(s)

	The following example returns the number of cache buffers used in a CDF.
	4.2.25 CDFgetValidate
	4.2.25.1. Example(s)

	In the following example, it gets the data validation mode.
	4.2.26 CDFgetVersion
	4.2.26.1. Example(s)

	In the following example, a CDF’s version/release is acquired.
	4.2.27 CDFgetzMode
	4.2.27.1. Example(s)

	In the following example, a CDF’s zMode is acquired.
	4.2.28 CDFinquire
	4.2.28.1. Example(s)

	The following example returns the basic information about a CDF.
	4.2.29 CDFinquireCDF
	4.2.29.1. Example(s)

	The following example returns the basic information about a CDF.
	4.2.30 CDFopen

	UNIX: File names are case-sensitive.
	4.2.30.1. Example(s)

	The following example will open a CDF named “NOAA1.cdf”.
	4.2.31 CDFopenCDF

	UNIX: File names are case-sensitive.
	4.2.31.1. Example(s)

	The following example will open a CDF named “NOAA1.cdf”.
	4.2.32 CDFselect
	4.2.32.1. Example(s)

	The following example will select a CDF named “NOAA1.cdf” as the current CDF while another file “NOAA2.cdf” is also opened.
	4.2.33 CDFselectCDF
	4.2.33.1. Example(s)

	The following example will select a CDF named “NOAA1.cdf” as the current CDF while another file “NOAA2.cdf” is also opened.
	4.2.34 CDFsetCacheSize
	4.2.34.1. Example(s)

	The following example extends the number of cache buffers to 500 for the open CDF file. The default number is 300 for a single-file format CDF on Unix systems.
	4.2.35 CDFsetChecksum
	4.2.35.1. Example(s)

	The following example turns off the checksum flag for the open CDF file..
	4.2.36 CDFsetCompression
	4.2.36.1. Example(s)

	The following example uses GZIP.6 to compress the CDF file.
	4.2.37 CDFsetCompressionCacheSize
	4.2.37.1. Example(s)

	The following example extends the number of cache buffers used for the scratch file from the compressed CDF file to 100. The default cache buffers is 80 for Unix systems.
	4.2.38 CDFsetDecoding
	4.2.38.1. Example(s)

	The following example sets NETWORK_DECODING to be the decoding scheme in the CDF.
	4.2.39 CDFsetEncoding
	4.2.39.1. Example(s)

	The following example sets the encoding to HOST_ENCODING for the CDF.
	4.2.40 CDFsetFileBackward
	4.2.40.1. Example(s)

	In the following example, it sets the file backward mode to FILEBACKWARDoff, which means that any files to be created will be of version V3.*, the same as the library version.
	4.2.41 CDFsetFormat
	4.2.41.1. Example(s)

	The following example sets the file format to MULTI_FILE for the CDF. The default is SINGLE_FILE format.
	4.2.42 CDFsetLeapSecondLastUpdated
	4.2.42.1. Example(s)

	The following example resets the leap second last updated date in the CDF. Likely, the file’s field was not set originally (an older CDF).
	4.2.43 CDFsetMajority
	4.2.43.1. Example(s)

	The following example sets the majority to COLUMN_MAJOR for the CDF. The default is ROW_MAJOR.
	4.2.44 CDFsetNegtoPosfp0Mode
	4.2.44.1. Example(s)

	The following example sets the –0.0 to 0.0 mode to ON for the CDF.
	4.2.45 CDFsetReadOnlyMode
	4.2.45.1. Example(s)

	The following example sets the read-only mode to OFF for the CDF.
	4.2.46 CDFsetStageCacheSize
	4.2.46.1. Example(s)

	The following example sets the number of stage cache buffers to 10 for a CDF.
	4.2.47 CDFsetValidate
	4.2.47.1. Example(s)

	In the following example, it sets the validation mode to be on, so any following CDF files are subjected to the data validation process when they are open.
	4.2.48 CDFsetzMode
	4.2.48.1. Example(s)

	In the following example, a CDF’s zMode is specified to zMODEon2: all rVariables are treated as zVariables with NOVARY dimensions being eliminated.
	4.3 Variables
	4.3.1 CDFcloserVar
	4.3.1.1. Example(s)

	The following example will close an open rVariable file from a multi-file CDF.
	4.3.2 CDFclosezVar
	4.3.2.1. Example(s)

	The following example will close an open zVariable file from a multi-file CDF.
	4.3.3 CDFconfirmrVarExistence
	4.3.3.1. Example(s)

	The following example checks the existence of rVariable “MY_VAR” in a CDF.
	4.3.4 CDFconfirmrVarPadValueExistence
	4.3.4.1. Example(s)

	The following example checks the existence of the pad value of rVariable “MY_VAR” in a CDF.
	4.3.5 CDFconfirmzVarExistence
	4.3.5.1. Example(s)

	The following example checks the existence of zVariable “MY_VAR” in a CDF.
	4.3.6 CDFconfirmzVarPadValueExistence
	4.3.6.1. Example(s)

	The following example checks the existence of the pad value of zVariable “MY_VAR” in a CDF.
	4.3.7 CDFcreaterVar
	4.3.7.1. Example(s)

	4.3.8 CDFcreatezVar
	4.3.8.1. Example(s)

	4.3.9 CDFdeleterVar
	4.3.9.1. Example(s)

	The following example deletes the rVariable named MY_VAR in a CDF.
	4.3.10 CDFdeleterVarRecords
	4.3.10.1. Example(s)

	The following example deletes 11 records (from record numbered 11 to 21) from the rVariable “MY_VAR” in a CDF. Note: The first record is numbered as 0.
	4.3.11 CDFdeleterVarRecordsRenumber
	4.3.11.1. Example(s)

	The following example deletes 11 records (from record numbered 11 to 21) from the rVariable “MY_VAR” in a CDF. Note: The first record is numbered as 0. If the last record number is 100, then after the deletion, the record will be 89.
	4.3.12 CDFdeletezVar
	4.3.12.1. Example(s)

	The following example deletes the zVariable named MY_VAR in a CDF.
	4.3.13 CDFdeletezVarRecords
	4.3.13.1. Example(s)

	The following example deletes 11 records (from record numbered 11 to 21) from the zVariable “MY_VAR” in a CDF. Note: The first record is numbered as 0.
	4.3.14 CDFdeletezVarRecordsRenumber
	4.3.14.1. Example(s)

	The following example deletes 11 records (from record numbered 11 to 21) from the zVariable “MY_VAR” in a CDF. Note: The first record is numbered as 0. If the last record number is 100, then after the deletion, the record will be 89.
	4.3.15 CDFgetMaxWrittenRecNums
	4.3.15.1. Example(s)

	The following example returns the maximum written record numbers among all rVariables and zVariables of the CDF.
	4.3.16 CDFgetNumrVars
	4.3.16.1. Example(s)

	The following example returns the total number of rVariables in a CDF.
	4.3.17 CDFgetNumzVars
	4.3.17.1. Example(s)

	The following example returns the total number of zVariables in a CDF.
	4.3.18 CDFgetrVarAllocRecords
	4.3.18.1. Example(s)

	The following example returns the number of allocated records for rVariable “MY_VAR” in a CDF.
	4.3.19 CDFgetrVarBlockingFactor
	4.3.19.1. Example(s)

	The following example returns the blocking factor for the rVariable “MY_VAR” in a CDF.
	4.3.20 CDFgetrVarCacheSize
	4.3.20.1. Example(s)

	The following example returns the number of cache buffers for rVariable “MY_VAR” in a CDF.
	4.3.21 CDFgetrVarCompression
	4.3.21.1. Example(s)

	The following example returns the compression information for rVariable “MY_VAR” in a CDF.
	4.3.22 CDFgetrVarData
	4.3.22.1. Example(s)

	The following example returns two data values, the first and the fifth element, in Record 0 from rVariable “MY_VAR”, a 2-dimensional (2 by 3) CDF_DOUBLE type variable, in a row-major CDF.
	4.3.23 CDFgetrVarDataType
	4.3.23.1. Example(s)

	The following example returns the data type of rVariable “MY_VAR” in a CDF.
	4.3.24 CDFgetrVarDimVariances
	4.3.24.1. Example(s)

	The following example returns the dimension variances of the 2-dimensional rVariable “MY_VAR” in a CDF.
	4.3.25 CDFgetrVarInfo
	4.3.25.1. Example(s)

	The following example returns the basic information of rVariable “MY_VAR” in a CDF.
	4.3.26 CDFgetrVarMaxAllocRecNum
	4.3.26.1. Example(s)

	The following example returns the maximum allocated record number for the rVariable “MY_VAR” in a CDF.
	4.3.27 CDFgetrVarMaxWrittenRecNum
	4.3.27.1. Example(s)

	The following example returns the maximum record number written for the rVariable “MY_VAR” in a CDF.
	4.3.28 CDFgetrVarName
	4.3.28.1. Example(s)

	The following example returns the name of the rVariable whose variable number is 1.
	4.3.29 CDFgetrVarNumElements
	4.3.29.1. Example(s)

	The following example returns the number of elements for the data type from rVariable “MY_VAR” in a CDF.
	4.3.30 CDFgetrVarNumRecsWritten
	4.3.30.1. Example(s)

	The following example returns the number of written records from rVariable “MY_VAR” in a CDF.
	4.3.31 CDFgetrVarPadValue
	4.3.31.1. Example(s)

	The following example returns the pad value from rVariable “MY_VAR”, a CDF_INT4 type variable, in a CDF.
	4.3.32 CDFgetrVarRecordData
	4.3.32.1. Example(s)

	The following example will read two full records (record numbers 2 and 5) from rVariable “MY_VAR”, a 2-dimension (2 by 3), CDF_INT4 type variable, in a CDF. The variable’s dimension variances are all VARY.
	4.3.33 CDFgetrVarRecVariance
	4.3.33.1. Example(s)

	The following example returns the record variance for the rVariable “MY_VAR” in a CDF.
	4.3.34 CDFgetrVarReservePercent
	4.3.34.1. Example(s)

	The following example returns the compression reserve percentage from the compressed rVariable “MY_VAR” in a CDF.
	4.3.35 CDFgetrVarsDimSizes
	4.3.35.1. Example(s)

	The following example returns the dimension sizes for rVariables in a CDF.
	4.3.36 CDFgetrVarSeqData
	4.3.36.1. Example(s)

	The following example will read the first two data values from the beginning of record number 2 (from a 2-dimensional rVariable whose data type is CDF_INT4) in a CDF.
	4.3.37 CDFgetrVarSeqPos
	4.3.37.1. Example(s)

	The following example returns the location for the current sequential value (position), the record number and indices within it, from a 2-dimensional rVariable named MY_VAR in a CDF.
	4.3.38 CDFgetrVarsMaxWrittenRecNum
	4.3.38.1. Example(s)

	The following example returns the maximum record number for all of the rVariables in a CDF.
	4.3.39 CDFgetrVarsNumDims
	4.3.39.1. Example(s)

	The following example returns the number of dimensions for rVariables in a CDF.
	4.3.40 CDFgetrVarSparseRecords
	4.3.40.1. Example(s)

	The following example returns the sparse records type of the rVariable “MY_VAR” in a CDF.
	4.3.41 CDFgetVarNum 7F

	CDFgetVarNum may be used as an embedded function call where an rVariable or zVariable number is needed.
	4.3.41.1. Example(s)

	In the following example CDFgetVarNum is used as an embedded function call when inquiring about a zVariable
	4.3.42 CDFgetzVarAllocRecords
	4.3.42.1. Example(s)

	The following example returns the number of allocated records for zVariable “MY_VAR” in a CDF.
	4.3.43 CDFgetzVarBlockingFactor
	4.3.43.1. Example(s)

	The following example returns the blocking factor for the zVariable “MY_VAR” in a CDF.
	4.3.44 CDFgetzVarCacheSize
	4.3.44.1. Example(s)

	The following example returns the number of cache buffers for zVariable “MY_VAR” in a CDF.
	4.3.45 CDFgetzVarCompression
	4.3.45.1. Example(s)

	The following example returns the compression information for zVariable “MY_VAR” in a CDF.
	4.3.46 CDFgetzVarData
	4.3.46.1. Example(s)

	The following example returns two data values, the first and the fifth element, in Record 0 from zVariable “MY_VAR”, a 2-dimensional (2 by 3) CDF_DOUBLE type variable, in a row-major CDF.
	4.3.47 CDFgetzVarDataType
	4.3.47.1. Example(s)

	The following example returns the data type of zVariable “MY_VAR” in a CDF.
	4.3.48 CDFgetzVarDimSizes
	4.3.48.1. Example(s)

	The following example returns the dimension sizes for zVariable “MY_VAR” in a CDF.
	4.3.49 CDFgetzVarDimVariances
	4.3.49.1. Example(s)

	The following example returns the dimension variances of the 2-dimensional zVariable “MY_VAR” in a CDF.
	4.3.50 CDFgetzVarInfo
	4.3.50.1. Example(s)

	The following example returns the basic information of zVariable “MY_VAR” in a CDF.
	4.3.51 CDFgetzVarMaxAllocRecNum
	4.3.51.1. Example(s)

	The following example returns the maximum allocated record number for the zVariable “MY_VAR” in a CDF.
	4.3.52 CDFgetzVarMaxWrittenRecNum
	4.3.52.1. Example(s)

	The following example returns the maximum record number written for the zVariable “MY_VAR” in a CDF.
	4.3.53 CDFgetzVarName
	4.3.53.1. Example(s)

	The following example returns the name of the zVariable whose variable number is 1.
	4.3.54 CDFgetzVarNumDims
	4.3.54.1. Example(s)

	The following example returns the number of dimensions for zVariable “MY_VAR” in a CDF.
	4.3.55 CDFgetzVarNumElements
	4.3.55.1. Example(s)

	The following example returns the number of elements for the data type from zVariable “MY_VAR” in a CDF.
	4.3.56 CDFgetzVarNumRecsWritten
	4.3.56.1. Example(s)

	The following example returns the number of written records from zVariable “MY_VAR” in a CDF.
	4.3.57 CDFgetzVarPadValue
	4.3.57.1. Example(s)

	The following example returns the pad value from zVariable “MY_VAR”, a CDF_INT4 type variable, in a CDF.
	4.3.58 CDFgetzVarRecordData
	4.3.58.1. Example(s)

	The following example will read two full records (record numbers 2 and 5) from zVariable “MY_VAR”, a 2-dimension (2 by 3), CDF_INT4 type variable, in a CDF. The variable’s dimension variances are all VARY.
	4.3.59 CDFgetzVarRecVariance
	4.3.59.1. Example(s)

	The following example returns the record variance for the zVariable “MY_VAR” in a CDF.
	4.3.60 CDFgetzVarReservePercent
	4.3.60.1. Example(s)

	The following example returns the compression reserved percentage from the compressed zVariable “MY_VAR” in a CDF.
	4.3.61 CDFgetzVarSeqData
	4.3.61.1. Example(s)

	The following example will read the first two data values from the beginning of record number 2 (from a 2-dimensional zVariable whose data type is CDF_INT4) in a CDF.
	4.3.62 CDFgetzVarSeqPos
	4.3.62.1. Example(s)

	The following example returns the location for the current sequential value (position), the record number and indices within it, from a 2-dimensional zVariable named MY_VAR in a CDF.
	4.3.63 CDFgetzVarsMaxWrittenRecNum
	4.3.63.1. Example(s)

	The following example returns the maximum record number for all of the zVariables in a CDF.
	4.3.64 CDFgetzVarSparseRecords
	4.3.64.1. Example(s)

	The following example returns the sparse records type of the zVariable “MY_VAR” in a CDF.
	4.3.65 CDFhyperGetrVarData
	4.3.65.1. Example(s)

	4.3.66 CDFhyperGetzVarData
	4.3.66.1. Example(s)

	4.3.67 CDFhyperPutrVarData
	4.3.67.1. Example(s)

	4.3.68 CDFhyperPutzVarData
	4.3.68.1. Example(s)

	4.3.69 CDFinquirerVar
	4.3.69.1. Example(s)

	4.3.70 CDFinquirezVar
	4.3.70.1. Example(s)

	4.3.71 CDFputrVarData
	4.3.71.1. Example(s)

	The following example will write two data values, the first and the fifth element, in Record 0 from rVariable “MY_VAR”, a 2-dimensional (2 by 3), CDF_DOUBLE type variable, in a row-major CDF. The first put operation passes the pointer of the data val...
	4.3.72 CDFputrVarPadValue
	4.3.72.1. Example(s)

	The following example sets the pad value to –9999 for rVariable “MY_VAR”, a CDF_INT4 type variable, and “*****” for another rVariable “MY_VAR2”, a CDF_CHAR type with a number of elements of five (5), in a CDF.
	4.3.73 CDFputrVarRecordData
	4.3.73.1. Example(s)

	The following example will write one full record (numbered 2) from rVariable “MY_VAR”, a 2-dimension (2 by 3), CDF_INT4 type variable, in a CDF. The variable’s dimension variances are all VARY.
	4.3.74 CDFputrVarSeqData
	4.3.74.1. Example(s)

	The following example will write two data values starting at record number 2 from a 2-dimensional rVariable whose data type is CDF_INT4. The first write will pass in a pointer from the data value, while the second write will pass in the data value obj...
	4.3.75 CDFputzVarData
	4.3.75.1. Example(s)

	The following example will write two data values, the first and the fifth element, in Record 0 from zVariable “MY_VAR”, a 2-dimensional (2 by 3), CDF_DOUBLE type variable, in a row-major CDF. The first put operation passes the pointer of the data val...
	4.3.76 CDFputzVarPadValue
	4.3.76.1. Example(s)

	The following example sets the pad value to –9999 for zVariable “MY_VAR”, a CDF_INT4 type variable, and “*****” for another zVariable “MY_VAR2”, a CDF_CHAR type with a number of elements of five (5), in a CDF.
	4.3.77 CDFputzVarRecordData
	4.3.77.1. Example(s)

	The following example will write one full record (numbered 2) from zVariable “MY_VAR”, a 2-dimension (2 by 3), CDF_INT4 type variable, in a CDF. The variable’s dimension variances are all VARY.
	4.3.78 CDFputzVarSeqData
	4.3.78.1. Example(s)

	The following example will write two data values starting at record number 2 from a 2-dimensional zVariable whose data type is CDF_INT4. The first write will pass in a pointer from the data value, while the second write will pass in the data value obj...
	4.3.79 CDFrenamerVar
	4.3.79.1. Example(s)

	4.3.80 CDFrenamezVar
	4.3.80.1. Example(s)

	4.3.81 CDFsetrVarAllocBlockRecords
	4.3.81.1. Example(s)

	The following example allocates 10 records, from record numbered 10 to 19, for rVariable “MY_VAR” in a CDF.
	4.3.82 CDFsetrVarAllocRecords
	4.3.82.1. Example(s)

	The following example allocates 100 records, from record numbered 0 to 99, for rVariable “MY_VAR” in a CDF.
	4.3.83 CDFsetrVarBlockingFactor
	4.3.83.1. Example(s)

	The following example sets the blocking factor to 100 records for rVariable “MY_VAR” in a CDF.
	4.3.84 CDFsetrVarCacheSize
	4.3.84.1. Example(s)

	The following example sets the number of cache buffers to 10 for rVariable “MY_VAR” in a CDF.
	4.3.85 CDFsetrVarCompression
	4.3.85.1. Example(s)

	The following example sets the compression to GZIP.6 for rVariable “MY_VAR” in a CDF.
	4.3.86 CDFsetrVarDataSpec
	4.3.86.1. Example(s)

	The following example respecifies the data type to CDF_INT2 (from its original CDF_UINT2) for rVariable “MY_VAR” in a CDF.
	4.3.87 CDFsetrVarDimVariances
	4.3.87.1. Example(s)

	The following example resets the dimension variances to true (VARY) and true (VARY) for rVariable “MY_VAR”, a 2-dimensional variable, in a CDF.
	4.3.88 CDFsetrVarInitialRecs
	4.3.88.1. Example(s)

	The following example writes the initial 100 records to rVariable “MY_VAR” in a CDF.
	4.3.89 CDFsetrVarRecVariance
	4.3.89.1. Example(s)

	The following example sets the record variance to VARY (from NOVARY) for rVariable “MY_VAR” in a CDF.
	4.3.90 CDFsetrVarReservePercent
	4.3.90.1. Example(s)

	The following example sets the reserve percentage to 10 for rVariable “MY_VAR” in a CDF.
	4.3.91 CDFsetrVarsCacheSize
	4.3.91.1. Example(s)

	The following example sets the number of cache buffers to 10 for all rVariables in a CDF.
	4.3.92 CDFsetrVarSeqPos
	4.3.92.1. Example(s)

	The following example sets the current sequential value to the first value element in record number 2 for a rVariable, a 2-dimensional variable, in a CDF.
	4.3.93 CDFsetrVarSparseRecords
	4.3.93.1. Example(s)

	The following example sets the sparse records type to PAD_SPARSERECORDS from its original type for rVariable “MY_VAR” in a CDF.
	4.3.94 CDFsetzVarAllocBlockRecords
	4.3.94.1. Example(s)

	The following example allocates 10 records, from record numbered 10 to 19, for zVariable “MY_VAR” in a CDF.
	4.3.95 CDFsetzVarAllocRecords
	4.3.95.1. Example(s)

	The following example allocates 100 records, from record numbered 0 to 99, for zVariable “MY_VAR” in a CDF.
	4.3.96 CDFsetzVarBlockingFactor
	4.3.96.1. Example(s)

	The following example sets the blocking factor to 100 records for zVariable “MY_VAR” in a CDF.
	4.3.97 CDFsetzVarCacheSize
	4.3.97.1. Example(s)

	The following example sets the number of cache buffers to 10 for zVariable “MY_VAR” in a CDF.
	4.3.98 CDFsetzVarCompression
	4.3.98.1. Example(s)

	The following example sets the compression to GZIP.6 for zVariable “MY_VAR” in a CDF.
	4.3.99 CDFsetzVarDataSpec
	4.3.99.1. Example(s)

	The following example respecifies the data type to CDF_INT2 (from its original CDF_UINT2) for zVariable “MY_VAR” in a CDF.
	4.3.100 CDFsetzVarDimVariances
	4.3.100.1. Example(s)

	The following example resets the dimension variances to true (VARY) and true (VARY) for zVariable “MY_VAR”, a 2-dimensional variable, in a CDF.
	4.3.101 CDFsetzVarInitialRecs
	4.3.101.1. Example(s)

	The following example writes the initial 100 records to zVariable “MY_VAR” in a CDF.
	4.3.102 CDFsetzVarRecVariance
	4.3.102.1. Example(s)

	The following example sets the record variance to VARY (from NOVARY) for zVariable “MY_VAR” in a CDF.
	4.3.103 CDFsetzVarReservePercent
	4.3.103.1. Example(s)

	The following example sets the reserve percentage to 10 for zVariable “MY_VAR” in a CDF.
	4.3.104 CDFsetzVarsCacheSize
	4.3.104.1. Example(s)

	The following example sets the number of cache buffers to 10 for all zVariables in a CDF.
	4.3.105 CDFsetzVarSeqPos
	4.3.105.1. Example(s)

	The following example sets the current sequential value to the first value element in record number 2 for a zVariable, a 2-dimensional variable, in a CDF.
	4.3.106 CDFsetzVarSparseRecords
	4.3.106.1. Example(s)

	The following example sets the sparse records type to PAD_SPARSERECORDS from its original type for zVariable “MY_VAR” in a CDF.
	4.3.107 CDFvarClose8F
	4.3.107.1. Example(s)

	The following example will close an open rVariable in a multi-file CDF.
	4.3.108 CDFvarCreate9F
	4.3.108.1. Example(s)

	4.3.109 CDFvarGet10F
	4.3.109.1. Example(s)

	The following example returns two data values, the first and the fifth element, in Record 0 from an rVariable named MY_VAR, a 2-dimensional (2 by 3) CDF_DOUBLE type variable, in a row-major CDF. The first get operation passes the value pointer, while ...
	4.3.110 CDFvarHyperGet11F
	4.3.110.1. Example(s)

	4.3.111 CDFvarHyperPut12F
	4.3.111.1. Example(s)

	4.3.112 CDFvarInquire
	4.3.112.1. Example(s)

	4.3.113 CDFvarNum13F
	4.3.113.1. Example(s)

	In the following example CDFvarNum is used as an embedded function call when inquiring about an rVariable.
	4.3.114 CDFvarPut14F
	4.3.114.1. Example(s)

	The following example will write two data values (1st and 5th elements) of a 2-dimensional rVariable (2 by 3) named MY_VAR to record number 0.
	4.3.115 CDFvarRename15F
	4.3.115.1. Example(s)

	4.4 Attributes/Entries
	4.4.1 CDFattrCreate16F
	4.4.1.1. Example(s)

	4.4.2 CDFattrEntryInquire
	4.4.2.1. Example(s)

	4.4.3 CDFattrGet17F
	4.4.3.1. Example(s)

	4.4.4 CDFattrInquire18F
	4.4.4.1. Example(s)

	4.4.5 CDFattrNum19F

	CDFattrNum may be used as an embedded function call when an attribute number is needed.
	4.4.5.1. Example(s)
	4.4.6 CDFattrPut
	4.4.6.1. Example(s)

	4.4.7 CDFattrRename20F
	4.4.7.1. Example(s)

	In the following example the attribute named LAT is renamed to LATITUDE.
	4.4.8 CDFconfirmAttrExistence
	4.4.8.1. Example(s)

	The following example checks whether an attribute by the name of “ATTR_NAME1” is in a CDF.
	4.4.9 CDFconfirmgEntryExistence
	4.4.9.1. Example(s)

	The following example checks the existence of a gEntry numbered 1 for attribute “MY_ATTR” in a CDF.
	4.4.10 CDFconfirmrEntryExistence
	4.4.10.1. Example(s)

	The following example checks the existence of an rEntry, corresponding to rVariable “MY_VAR”, for attribute “MY_ATTR” in a CDF.
	4.4.11 CDFconfirmzEntryExistence
	4.4.11.1. Example(s)

	The following example checks the existence of the zEntry corresponding to zVariable “MY_VAR” for the variable attribute “MY_ATTR” in a CDF.
	4.4.12 CDFcreateAttr
	4.4.12.1. Example(s)

	4.4.13 CDFdeleteAttr
	4.4.13.1. Example(s)

	The following example deletes an existing attribute named MY_ATTR from a CDF.
	4.4.14 CDFdeleteAttrgEntry
	4.4.14.1. Example(s)

	The following example deletes the entry number 5 from an existing global attribute MY_ATTR in a CDF.
	4.4.15 CDFdeleteAttrrEntry
	4.4.15.1. Example(s)

	The following example deletes the entry corresponding to rVariable “MY_VAR1” from the variable attribute “MY_ATTR” in a CDF.
	4.4.16 CDFdeleteAttrzEntry
	4.4.16.1. Example(s)

	The following example deletes the variable attribute entry named MY_ATTR that is attached to the zVariable MY_VAR1.
	4.4.17 CDFgetAttrgEntry
	4.4.17.1. Example(s)

	4.4.18 CDFgetAttrgEntryDataType
	4.4.18.1. Example(s)

	The following example gets the data type for the gEntry numbered 2 from the global attribute “MY_ATTR” in a CDF.
	4.4.19 CDFgetAttrgEntryNumElements
	4.4.19.1. Example(s)

	The following example gets the number of elements from the gEntry numbered 2 from the global attribute “MY_ATTR” in a CDF.
	4.4.20 CDFgetAttrMaxgEntry
	4.4.20.1. Example(s)

	The following example gets the last entry number from the global attribute “MY_ATTR” in a CDF.
	4.4.21 CDFgetAttrMaxrEntry
	4.4.21.1. Example(s)

	The following example gets the last entry, corresponding to the last rVariable number, from the variable attribute “MY_ATTR” in a CDF.
	4.4.22 CDFgetAttrMaxzEntry
	4.4.22.1. Example(s)

	The following example gets the last entry, corresponding to the last zVariable number, attached to the variable attribute MY_ATTR in a CDF.
	4.4.23 CDFgetAttrName
	4.4.23.1. Example(s)

	The following example retrieves the name of the attribute number 2, if it exists, in a CDF.
	4.4.24 CDFgetAttrNum

	CDFgetAttrNum may be used as an embedded function call when an attribute number is needed.
	4.4.24.1. Example(s)
	4.4.25 CDFgetAttrrEntry
	4.4.25.1. Example(s)

	4.4.26 CDFgetAttrrEntryDataType
	4.4.26.1. Example(s)

	The following example gets the data type for the entry of rVariable “MY_VAR1” in the (variable) attribute “MY_ATTR” in a CDF.
	4.4.27 CDFgetAttrrEntryNumElements
	4.4.27.1. Example(s)

	The following example gets the number of elements for the entry of rVariable “MY_VAR1” in the (variable) attribute “MY_ATTR” in a CDF.
	4.4.28 CDFgetAttrScope
	4.4.28.1. Example(s)

	The following example gets the scope of the attribute “MY_ATTR” in a CDF.
	4.4.29 CDFgetAttrzEntry
	4.4.29.1. Example(s)

	4.4.30 CDFgetAttrzEntryDataType
	4.4.30.1. Example(s)

	The following example gets the data type of the attribute named MY_ATTR for the zVariable MY_VAR1 in a CDF.
	4.4.31 CDFgetAttrzEntryNumElements
	4.4.31.1. Example(s)

	The following example returns the number of elements for attribute named MY_ATTR for the zVariable MY_VAR1 in a CDF
	4.4.32 CDFgetNumAttrgEntries
	4.4.32.1. Example(s)

	The following example retrieves the total number of gEntries for the global attribute MY_ATTR in a CDF.
	4.4.33 CDFgetNumAttributes
	4.4.33.1. Example(s)

	The following example returns the total number of global and variable attributes in a CDF.
	4.4.34 CDFgetNumAttrrEntries
	4.4.34.1. Example(s)

	The following example returns the total number of rEntries from the variable attribute “MY_ATTR” in a CDF.
	4.4.35 CDFgetNumAttrzEntries
	4.4.35.1. Example(s)

	The following example returns the total number of zEntries for the variable attribute MY_ATTR in a CDF.
	4.4.36 CDFgetNumgAttributes
	4.4.36.1. Example(s)

	The following example returns the total number of global attributes in a CDF.
	4.4.37 CDFgetNumvAttributes
	4.4.37.1. Example(s)

	The following example returns the total number of variable attributes of a CDF.
	4.4.38 CDFinquireAttr
	4.4.38.1. Example(s)

	4.4.39 CDFinquireAttrgEntry
	4.4.39.1. Example(s)

	4.4.40 CDFinquireAttrrEntry
	4.4.40.1. Example(s)

	4.4.41 CDFinquireAttrzEntry
	4.4.41.1. Example(s)

	4.4.42 CDFputAttrgEntry
	4.4.42.1. Example(s)

	4.4.43 CDFputAttrrEntry
	4.4.43.1. Example(s)

	4.4.44 CDFputAttrzEntry
	4.4.44.1. Example(s)

	4.4.45 CDFrenameAttr
	4.4.45.1. Example(s)

	In the following example the attribute named LAT is renamed to LATITUDE.
	4.4.46 CDFsetAttrgEntryDataSpec
	4.4.46.1. Example(s)

	The following example modifies the third entry’s (entry number 2) data type of the global attribute MY_ATTR in a CDF. It will change its original data type from CDF_INT2 to CDF_UINT2.
	4.4.47 CDFsetAttrrEntryDataSpec
	4.4.47.1. Example(s)

	The following example modifies the data specification for an rEntry, corresponding to rVariable “MY_VAR”, in the variable attribute “MY_ATTR” in a CDF. It will change its original data type from CDF_INT2 to CDF_UINT2.
	4.4.48 CDFsetAttrScope
	4.4.48.1. Example(s)

	The following example changes the scope of the global attribute named MY_ATTR to a variable attribute (VARIABLE_SCOPE).
	4.4.49 CDFsetAttrzEntryDataSpec
	4.4.49.1. Example(s)

	The following example respecifies the data type of the attribute entry of the attribute named MY_ATTR that is associated with the zVariable MY_VAR. It will change its original data type from CDF_INT2 to CDF_UINT2.
	4.5 Quick Read Functions
	4.5.1 ReadCDF
	4.5.1.1. Example(s)

	4.5.2 ReadCDFGlobalAttributes
	4.5.2.1. Example(s)

	4.5.3 ReadCDFInfo
	4.5.3.1. Example(s)

	4.5.4 ReadCDFVariable
	4.5.4.1. Example(s)

	4.5.5 ReadCDFVariables
	4.5.5.1. Example(s)

	4.5.6 ReadCDFVariableAttributes
	4.5.6.1. Example(s)

	4.5.7 ReadCDFVariableData
	4.5.7.1. Example(s)

	4.5.8 ReadCDFVariableInfo
	4.5.8.1. Example(s)

	4.5.9 ReadCDFVariables
	4.5.9.1. Example(s)

	4.5.10 ReadCDFVariablesData
	4.5.10.1. Example(s)

	5 Interpreting CDF Status Codes
	The following example shows how you could check the status code returned from CDF functions.
	dim status as integer
	6 EPOCH Utility Routines
	6.1 computeEPOCH
	6.2 EPOCHbreakdown

	EPOCHbreakdown decomposes a CDF_EPOCH value into the individual components.
	6.3 toEncodeEPOCH
	6.4 encodeEPOCH
	6.5 encodeEPOCH1
	6.6 encodeEPOCH2
	6.7 encodeEPOCH3
	6.8 encodeEPOCH4
	6.9 encodeEPOCHx

	The supported component tokens and their default widths are as follows. . .
	6.10 toParseEPOCH
	6.11 parseEPOCH
	6.12 parseEPOCH1
	6.13 parseEPOCH2
	6.14 parseEPOCH3
	6.15 parseEPOCH4
	6.16 computeEPOCH16
	6.17 EPOCH16breakdown

	EPOCH16breakdown decomposes a CDF_EPOCH16 value into the individual components.
	6.18 toEncodeEPOCH16
	6.19 encodeEPOCH16
	6.20 encodeEPOCH16_1
	6.21 encodeEPOCH16_2
	6.22 encodeEPOCH16_3
	6.23 encodeEPOCH16_4
	6.24 encodeEPOCH16_x

	The supported component tokens and their default widths are as follows. . .
	6.25 toParseEPOCH16
	6.26 parseEPOCH16
	6.27 parseEPOCH16_1
	6.28 parseEPOCH16_2
	6.29 parseEPOCH16_3
	6.30 parseEPOCH16_4
	6.31 EPOCHtoUnixTime
	6.32 UnixTimetoEPOCH
	6.33 EPOCH16toUnixTime
	6.34 UnixTimetoEPOCH16

	7 TT2000 Utility Routines
	7.1 computeTT2000
	7.2 TT2000breakdown

	TT2000breakdown decomposes a CDF_TIME_TT2000 value into the individual components.
	7.3 toEncodeTT2000
	7.4 encodeTT2000
	7.5 toParseTT2000
	7.6 parseTT2000
	7.7 CDFgetLastDateinLeapSecondsTable
	7.8 TT2000toUnixTime
	7.9 UnixTimetoTT2000

	8 CDF Utility Methods
	8.1 CDFFileExists
	8.2 CDFgetChecksumValue
	8.3 CDFgetCompressionTypeValue
	8.4 CDFgetDataTypeValue
	8.5 CDFgetDecodingValue
	8.6 CDFgetEncodingValue
	8.7 CDFgetFormatValue
	8.8 CDFgetMajorityValue
	8.9 CDFgetSparseRecordValue
	8.10 CDFgetStringChecksum
	8.11 CDFgetStringCompressionType
	8.12 CDFgetStringDataType
	8.13 CDFgetStringDecoding
	8.14 CDFgetStringEncoding
	8.15 CDFgetStringFormat
	8.16 CDFgetStringMajority
	8.17 CDFgetStringSparseRecord
	8.18 DumpObject
	8.19 PrintDictionary

	9 CDF Exception Methods
	9.1 CDFgetCurrentStatus
	9.2 CDFgetStatusMsg
	Appendix A
	A.1 Introduction

	Error codes < CDF_WARN < Warning codes < CDF_OK < Informational codes
	A.2 Status Codes and Messages
	Appendix B
	B.1 VB-CDF APIs
	B.2 EPOCH Utility Methods
	B.3 CDF Utility Methods
	B.4 CDF Exception Methods

	Index

