CDF

Visual Basic Reference Manual

Version 3.9.2, September 2, 2025

Space Physics Data Facility
NASA / Goddard Space Flight Center

Space Physics Data Facility
NASA/Goddard Space Flight Center
Greenbelt, Maryland 20771 (U.S.A.)

This software may be copied or redistributed as long as it is not sold for profit, but it can be incorporated into any other
substantive product with or without modifications for profit or non-profit. If the software is modified, it must include
the following notices:

- The software is not the original (for protection of the original author’s reputations from any problems introduced
by others)

- Change history (e.g. date, functionality, etc.)

This Copyright notice must be reproduced on each copy made. This software is provided as is without any express or
implied warranties whatsoever.

Internet — nasa-cdf-support@nasa.onmicrosoft.com

mailto:gsfc-cdf-support@lists.nasa.gov

Contents

DA G711 111 1)1 1117 § |

1.1
1.2
1.3
1.4

INAITIESPACES. ... eeeeuuvvteeeeititeeeeritteeesauttteeesattteeeeuttteessaasaeeeeassteeeesanstseeeeaasbaaeesanssaeeeaansbaaessanssaeeesnnssseessansseeesannes 11
BaSE ClaASSESeeeutiteitie ettt ettt ettt ettt e ea e bt e e bt e et et e bt e e e bt e e e bt e e neb et e bteeebeeeenaes 11
Compiling With COmMPIIEr OPHIONS.......eeiiiieiiiieiiieeetieeeteeeieeesieeesteeestteestaeestaeessseeessaeesnseeessseeensseessseennnes 11
SAMPIE PIOGIAIMS. ...e.vvvieierieeirieeiteeeetieeeteeeereeetbeeebaeeasseeestseeassseeasseeesssesassseaassseessseeesseesssseessseeessseesssseessees 12

2 Programming INterfacecccceeevvvuunnmeniiiiiiiiiisissnnnnneniccccssssssnnnnsenencccssssssnnes 13

2.1 T RETETEICINGeiiviiiiiiii ettt et e et e et e e st e e etbeesataeeesbeeestbeeessseesssaeeassaeensseeensseensnes 13
2.2 COMPAIDIE TYPES -.eeerieurietieiiieite ettt ettt ettt ettt ettt st et et sht e sttt e sbe e sab e ettt nhe e sate et nteenane e 13
23 CDF CONSTANTS ...cenettieiiit ettt ettt ettt ettt ettt e sttt e bt e st e e sat et enat e e st e sabaeesat et eaneeeabaeesabeeenebeeenbneeenbeeenanes 13
24 (03] ! 113 LSRR 13
2.5 CDF FOTTNALS.ceiuitieiiiteiite ettt ettt ettt sat e st e et e et e st esat et eaneeeabaeesabeeeneneeennneeeaneeenanes 13
B I O D) O D 1 ;T By o1 OO UPUP PRSP UR 14
0 A D ;B 25 4 1ol Ta 31 V£ PRSP 15
2.8 DAta DIECOAINESeeevvieeiiieiiieeeiieeeieeeriteeeteeeeteeeetbeeetaeeesteeeasseeaeseeessseeesseeeasseeassseeesssaesnsseessseeesssaessseesnseens 16
R Y Z Vo T 1o) (S B 100 o U (PR SPUPSP SR 17
2.10 Record/DimenSioN VATTANCESccoueerteeriteiieentieniienite et enttesitesiteeabeesbeestaesabeebeesaeesebeeabeebeesteesaneenbeenseesanesane 18
211 COMMPIESSIONS ..veieeeiiieeeeiirteeeestteeeeastreeeeasessaeeeaassseeesasssaeessassseeesassssessssssssessassssesssssssssessnsssseesssnsseeeensssseees 18
2,12 SPATSEIIESS c.uueiteeeiiitee e ettt e e ettt e e ettt e e ettt e e s at et e e e ettt e e e eab b et e e aab bt e e e e e abt e e e e e b bt e e e e e abteeeeeabbbeeesanbteeeenabtaeee s 19

2.12.1 SPAISE RECOTASviieiiiiiiiiiiiie ettt ettt e e ettt e et e e sstbeessteeesebaeessbeeeasseeessaeesssaeensseeessseensens 19

2.12.2 SPATSE ATTAYS ..uvvveeeeiuiiieeeeeiiteeeeettttee e ettt e aaabteeeseae et eeeabbbeeesaaaateeeeeasbateessaabateeeesbbeeeesanbbteeeeaabbaeeesanseeas 19
2,13 AUTIDULE SCOPES .vvieiiieiiiieiitee ettt eetteertee ettt e steeesebeeetaeesstseeasseeaasseeassseessseeeasseeasseeensseessseesnseesssseesssseesseens 19
2,14 ReAA-ONLY MOAESeeeiiiieiiiieie ettt ettt e ettt e et e e et e e bt e e e bt e e s m bt e emte e e st e e sbeeeambeeeaneeeeaneeeeneeas 19
2UL5 ZIMOAES...cneiiiieette et h et h e sh e ettt he e sh bt ea bt e bt bbbttt e nbeenhee e 19
2,16 =0.0 10 0.0 IMOAES......ueeeinitie ittt ettt ettt ettt ettt e e ettt e b e et e et e e ettt e b bt e e bt e e bt e e et et e eateesbeeesneean 20
2,17 OPerationNal LAMIIES.eorutertiiriiiieeieeiterte ettt ettt st ettt sbte st et e sbeesueesabeebeesaeeseteemteenbeenanesane 20
2.18 Limits of Names and Other Character SIrINES.........c.ececvieeiuiieeiiiieeieeeseee ettt eereeesreeesereessreeesseeesaseesssseessseeas 20
2.19 Backward File Compatibility With CDF 2.7coiiiiiiiiiiie ettt e 20
2200 CRECKSUITL. ...ttt et ettt sttt e s bt s et e bt e bt e sh bt eabeembeesbeeshb e eabe e bt e sbeesabeembeenbeenaneeane 21
0 G D 1 v B VA1 1 15 o) KOOSO OPPPSPSRO 22
2.22 B-BYLE INLEZET ..eeiieuiiiiieiiiiiie ettt et e ettt e ettt e e e ettt e e et e e e e ab bt e e e eabb b e e e s aatteeeenabbaeee s 23
223 LeAP SECOMNMS ..eevviiiiiieiiiee ettt e etee et ee et e e et e e ettt eestbeeetaeeesteeeesbeeaebeeestaeeesteeeasbee e tbeeetseeeneeeanbeeesnraeerreeesaeas 23

3 Understanding the Application Interface........ccccoouueeeeeriiiciisisinnnneneecccccceeees 24

3.1
3.2
33
34
35
3.6

ATGUIMENES PASSINEcuvviiiiiiieiie ettt ettt et e ettt e sttt e sbeeeetbeeesaseesssseesssaeesaseeesssaeassseessseeessseeasseeassseens 24
MUlti-DImMENSIONAL ATTAYSccuuiteitieeiieeeieeeeiie e et e e st e ettt e st eeeeaeeeasneeesseeesnseeeanseesanseesseeesnseeeanseeennseesseeens 26
Data TyPe EQUIVAIEIE.......c.oiiiiiiiiiiie ettt eee et e et e e st e e st ee e tbeesstaeeesbaeessseeessaeeessaeensseeensseeensseennnes 26
FAXEA SEALEIMGIL. ...ttt ettt ettt e et e et e ettt e s bt e e st e eeeateeeaeeesateeeamteeeanteeenteesnneeenns 27
EXCeption HanAIING..........ccviiiiiieiiiieee ettt e et e et e e et e e st e e steeensaeesnsaeeenseeenneeennneeennes 27
Dimensional LIMITATIONSccouuieiuiiiiiieiiie ittt ettt ettt e ettt e et e e st e e bt e eabteesabeeesebeeebteeenbeeeenns 28

4 Application INterfaceeeeeeiiiiiiiiisinnnnniiiicciiisisssnnnnnieecccsssssssnssssnesecsssssscss 29

4.1

4.1.1
4.1.2
4.13
4.1.4

4.2

510221 o 2 DN {0) wunE:1 5 () o DO OSSOSO PRRPS 30
(01D 3o A D 1 I 1o /< USRS 30
CDFetLibraryCopyTiZht.....cccuviieiiiiiiieeie ettt ettt ettt e st e e st e et e e s beeesabee e tbaeessaeesssaeesssaeensseesnsaaens 30
(O3] 32011 B3 a) AV 15 ()4 SO UURRRUPSRPR 31
CDFGESTATUSTEXL ..eeeiiiiiiiieeiitee ettt ee ettt e e ettt e e sttt e e ettt e e e s saabteeeenabbaeeesansbeeesessbaaeesansseeeennnns 31

4.2.1 CDFCIOSE. ...ttt ettt ettt et ettt e ettt e et et e eh e e eh bt et e e bt e sht e eab e e bt e bt e eabeenbeenneenheeeene 32
4.2.2 CDFCIOSECDIF ...ttt ettt ettt et e et e e e st esebeesbeaseesaaesebeanseessaesabeanseanseessaessseanseesaessnennns 33
423 CDFCICALE ...ttt ettt ettt ettt ettt ettt e e sttt e bt e et e sttt e sat e e bt e e sabaeesataeenabeeembneesabaeenan 34
424 (01 3o (< 11103 B) SO RURRSPSRUPR 35
4.2.5 CDEFRIETE ..ottt ettt sa ettt e sbt e sat e et e bt sht e ettt e bt et eabe e b e 36
4.2.6 (D)2 1) 517101 B S USSP 36
4.2.7 (D)2 1o TP 37
4.2.8 CDFOITOT ...ttt et ettt et e e e ettt e bt e e bt e sttt e s bt e e bt e e sabaeesataeenbbeeembaeesabaeenan 38
429 (01D 3 (5 { @ Te] 1 TS /< SO USRRRSPSRRR 38
4.2.10 CDFZEtCNECKSUMLeciiiiiiiieiciieeiieesiteeetee ettt e st e e steeestbaeetbeesssaeessseeeasseeesssaesnsseesssaeensseeesseennsseennses 39
4211 CDF ZEtCOMPIESSION. ... utteeitieieteeaiteeatteeattteeatteesteeesateeeaateeetteesabaeesabeeeaabeeeabteesabeeesabeeensbeeebeeeenbeeennnes 40
4.2.12 CDFgetCompresSiONCACNESIZEeeiiieeiiieiiiieeiiieeeieeeeiieeeieesiaeesteeesetae e eseessaeesnsaeensseeensseesnsneennnes 41
4.2.13 CDFgetCompresSiONINTOcciiiiiiiieiiieeiiieesiee et eeiee et eeeeireeetbeesteeesebeeetseessaaeeessaeessseeesseesssseensnes 41
4.2.14 CDFZEtCOPYIIZIE ..eouiiiiiiiiiiiieiiite ettt ettt et ettt st et e bt st et e e e saeesereeabeenaees 42
4215 CDFZEtDECOINGeeeiiiieiiieeeiieeite et e et ee et e et e e st e e stbeeetbeesstbeessseeeasseeesssaesnsseesssaeensseessseennsseensses 43
4216 CDFZEENCOMING ...cueeieiiiieitie ettt ettt e ettt e et e e eat e e st eeebeeeembeeeenbeeeneeeenneeeennes 43
4.2.17 CDFEtFIleBaCKWAardcc.oeiiiiiiiiieiiie ettt et e st e s et e et esataeeensaeeesseeenseeensneennnes 44
4.2.18 CDFZEFOIMIAL......ceiiiiiiiiiiite ettt et ettt e sttt e et e ettt e sabe e e st e e e et e e ebeeeenbeeennnes 44
4.2.19 CDFgetLeapSecondLastUpdatedcccueiueeiiiiiiiiiiiieiieeeneee ettt e 45
4.2.20 CDFZEIMAJOTIILY ..veeevrieiiiieiiieeiieeesiteesoteeesseeestseeastseesssaeesssaeasseesssseesssesesssesasseeasseesssseesssesessseesssseenssns 46
L B O B) 0 {11\ F: v s <SPS 46
4222 CDFgetNegtoPOSIPOMOUE.......ccciieiiiieiiieeciieeiee ettt ee et e e te e st eeeebeeetbaesataeeensaeensseeensseennsseennnes 47
4.2.23 CDFZetReadOnlyMOdEooiiiiiiiiiiiiiieeiie ettt ettt ettt et e et eebeeeenbee e e 48
4224 CDFZetStagElaCheSiZeccuvieiiiieiiiie it etie ettt et e et te et ee st e e s ateeesatee e sseeensaeesnseeensseeesseeensneennnes 48
4.2.25 CDFZEtVAlIAAte.....ccouviiiiiieiiii ettt ettt e e st e e tb e e sstbe e ssbeeesabaeessbeeeasseeessaeessseeesseesssseensees 49
4.2.20 CDFEEVEISION.utiiiiiiiiiiteieeiite ettt sttt ettt st et be e st et et e s be e sat e et e bt e sabeeabe e beesaeeseneeareenees 49
4.2.27 CDFZEZIMOMEoeieeiieiiie ettt ctte et te et e st e e st e e stbee e tbeesstaeesssaeensseeesssaesnsseesssaeensseeensseennsseensses 50
2 O B) 0§ T¢ |11 (< F USRS 51
4.2.29 CDFINQUITECDEoiiiiiiiieiiie ettt ettt e ettt e et e e sttt e et e e sstaeesasaeesnseeensseesnsseesnsaeennseeenseesnsneennnes 52
L T I O D) 3103 0 1<) WSRO PR 53
4.2.31 CDFOPENCDE ..ottt ettt ettt et e st e bt asseassbesabeasseenseesaseasseanseaseesaseanseenseesnsesnseanseaseas 54
N A O B) X1 1C) (=T TS PR PSP 55
e K T O B) 20 (<17 { G D) USRS 56
4.2.34 CDFSELCACNESIZE ..c...eeiieiiiieiieiie ettt ettt ettt st ebe e 57
4.2.35 CDFSECHECKSUIT ...ttt ettt ettt e sttt e s ettt e et e et e e sttt e sab e e e et eeebeeeenbeeennnes 57
4.2.360 CDFSCCOMPIESSION ...e.utvreirieeitieeieeestteeseteeassseeseseesseeesssaeassseesnsseesssaeassseeassseesnsseesnseeessseesnsseesnsseenses 58
4.2.37 CDFsetCompresSioNCACHESIZEveeiiieeiiieiiieeiiieeeiee et ee et eeiae e e teeesebeeetbeeestaeeesbaeessseeesseesnsseensnes 59
4.2.38 CDFSEtDECOMING ...coveiitiiiiiiiiiiie ittt ettt sttt et st ettt sbt e st et e bt e saae et ebeesaeesebeeabeenaees 59
4.2.39 CDFSCLENCOUING.c.uiiiiiiieiiieeciieeitestte e et ee et e et e e st e e etbeeetbeesstaeesssaeessseeesssaesnsseesssaeensseeesseenssseensses 60
4.2.40 CDFSetFIleBaCkWard.........ccc.oiiiiiiiiieiie ettt et e ettt e et e e et e et e e s e e eneeeenees 61
4241 CDFSELFOIMALeiiiiiiiiiiiiiiie e et et e st et e et e st e st e e e et e eabeeenanes 61
4.2.42 CDFsetLeapSecondLastUpdated.cccuuiiiiiiiiieeiiiiiiieeeiiieee et e e eiieee e e star e e e esitaeeeessneaeeesesnssaeessnnsnes 62
4.2.43 CDFSEIMAJOTILY ...ueeiiiiiieeieeieerite ettt ettt ettt ettt et et esbe e st et e bt e sbeesab e et e bt e sateeabeebeesaeesareeaneeaees 62
4.2.44 CDFsetNegtoOPOSIPOMOUEocccviiiiiiieiiieeciie ettt et e e e e et eeb e e et e e estbeeessaeessseeessseesssseensnes 63
4.2.45 CDFsetReadONIYMOME.c..eiiiiiieiiiie ittt ettt ettt e ettt e et e e et eeenteeeaseeeenneeeenees 64
42,46 CDFSetStagelaChESiZe. . .ccoviiiieiieiiiie it e cteeeeiee et e et e e et e e b eesstaeeestaeessseeessseesnsseesssaeessseeensseennsseensses 64
4247 CDFSEVAIIAALEeeiueiieiiieiiiie ettt ettt ettt e sttt e st e e et e ettt e eabeeesabee e et eeebeeeenbeeennees 65
4.2.48 CDFSEIZIMOTE. ...c..eeiiiiiiiiiieeieee ettt et ettt et e b e st et be e shb e et b e bt st enaees 65
o B V4 -1) (< SO UTSUUPRPSRPRUTRPRO 66
43.1 (010 203 (0 11< V| PSR RPURUUPUPRPRNS 66
432 CDFCIOSEZVAT ...ttt ettt et h e sh et b e sh e et e e nbeesabeeabeenbee e e 67
433 CDFconfirmrVarEXISTEICEceouuiieiiiieeiieeeiie ettt e ettt ettt e st e e et e e et e e et eesmteeesnteeeneeesneeenns 68
43.4 CDFconfirmrVarPadValUGEXISIENCEeeeuiieiiiiiiiieiiiee ettt site et see e st essae e naaeesaeesnnaee e 68
435 CDFconfirmzVarEXISTEIICEceeutiiiiiieiiieeiiie ettt ettt et e et e st e st e e sab e ebeeesabeeeas 69
4.3.6 CDFconfirmzVarPadValUCEXISTENCEuvvieiiiiiiiieeciiiee e eciieeeeeeitte e e ettt eeesiveeeeeeareeeeesaeraeeeeennseeaeenns 70
4.3.7 CDFCIEAEI VAT ..ttt ettt ettt ettt ettt et e s e e s et e e bt e st e e sabaeenabeeebaeesabaee e 71

4.3.8

4.3.9

4.3.10
4.3.11
4.3.12
4.3.13
4.3.14
4.3.15
4.3.16
4.3.17
4.3.18
4.3.19
4.3.20
4.3.21
4.3.22
4.3.23
4.3.24
4.3.25
4.3.26
4.3.27
4.3.28
4.3.29
4.3.30
4.3.31
4.3.32
4.3.33
4.3.34
4.3.35
4.3.36
4.3.37
4.3.38
4.3.39
4.3.40
4.3.41
4.3.42
4.3.43
4.3.44
4.3.45
4.3.46
4.3.47
4.3.48
4.3.49
4.3.50
4.3.51
4.3.52
4.3.53
4.3.54
4.3.55
4.3.56
4.3.57
4.3.58
4.3.59
4.3.60
4.3.61
4.3.62
4.3.63

CDFCIEAIEZVAT ...ttt ettt ettt ettt et e sttt e s ettt e bt e st e satae e st e e ebaeesabaeenas 72
(01 314153 (1< A4 USRS 73
CDFdeleter VArRECOTASc.uveiiieiiieiieiiie ettt ettt ettt et sttt et sb e st et e e saee e 74
CDFdeleterVarRecordSREMUMDETc.eiiiiiiiiiiiiiie ettt e e 75
CDEFARIBIEZ VAT ...ttt et ettt st et e b e st sttt e b sat e et enaee e e e 76
CDFdeleteZVarRECOTAScc.uuiiiiiiiiiiieeie ettt ettt st e sttt e bt esbeee et 76
CDFdeletezVarRecordSRENUMDETcc.eieiiiiiiiiieiiie ettt et e e e neeeeneeesneeens 77
CDFetMaxWIitteNRECNUINISvviiiiiieiiieeieeeeiee et e ettt e st e e sireeetaeesteeessbeeessbeeessaeesssaeesssesesseeasaeens 78
CDFZEENUIMI VLS. ...ttt ettt ettt ettt et e e et e ettt e e bt eeaat e e e seeesaeeeemteeeasbeeensaeesmseeeanseeeasteesneeanns 79
CDEFGEINUIMZVATS ...eeiiiiiiiieeiiiieeeeeittte e ettt e e s sttt e e e btteeessaabeeeeeaatbseessanabteeseasbtaeessansbeeesansssaaessasseeeesnnns 80
CDFgetrVarAIIOCRECOTAS ... ittt ettt e st e st esab e ebteesbeee e 80
CDFgetrVarBIoCKINGFACLOTcc.uiiiiiieeiiieeiie ettt te ettt e s tee e st e et eestaeesntaeeensaeesneesnsneenns 81
CDFEEtrVarCaChESiZe.veeeuviieeiiiieeiiieeiieeeite et e ettt e ettt e st eestbee e taeesbeeessseeesssaeessseesssaeesssesensseennssaees 82
CDFZEtrVarCOmPIESSION.eeuvtettetieriteettenteentte ettt e st sttt et e bt e sbeeseteeateenteesatesettembeenaeesaseeaneenaeenaneeane 82
CDFGETVArDALA.ceiiiiiiiiieiiiiee ettt e e e e sttt e e et ee e s sttt e e e esabbaeessansbeeeeenbbaaeesannseeeesnnes 83
CDFetrVarDataTYPe. ...ccuueeeeutieeeiiie ettt ettt ettt e e et e ettt e et e e et e e eabeesseeesmteeeenteeeaneeesneeenns 84
CDFZetrVarDIMVarianCes.ccevieeruvieeiiieeiieesiieesteesseteessteesteesssseesseeesseesasseessseesssaeessseeessseesnsseenns 85
CDFZEITVATINTO ..ottt ettt ettt ettt e st e e st e e sabeeebaeesabeee e 86
CDFgetrVarMax AIIOCRECINUINLcc..eiiiiiiiiiiiiic ettt ettt ettt ettt 87
CDFgetrVarMaxWIitteNRECNUIcooouiiiiiiiiiiiieiie ettt ee et e st e sveeesebeestaeessraeessbaeensseeennaaens 87
CDFZEIIVAINGINIC.eieeitiie ettt ettt ettt e ettt e et e e e teeeat e e e st e e sbeeeemteeeasteeemsaeesmteeeanteeeaneeesneeenns 88
CDFetrVarNUMELCIMENLSeeiiiieriiieeiiieeiie et e eriteeiteesteeestee e taeessaeesssaeessseesssseesssaeesssasensseensseens 89
CDFgetrVarNUMRECSWITEEEIeiiiiiiiiiieiiie ettt ettt e sttt e e e sbaee et 89
CDFZetrVarPadValUeooouiiiiiieieeeee ettt ettt et e et essaeesstaeesnsaeenaeesnnaeens 90
CDFZetrVarReCOTADALAc..eiieiiiiiiieeiii et eetee et ettt e et e e sttt e et e e staeessbaeesssaeessaeesssaeesssaeesseessaeens 91
CDFEEtrVarRECVATIANCEcc.ueeiiiiiiiiiiiiieite sttt ettt et sttt e st et e naee s 92
CDFetrVarReESEIVEPETICENLcciiiiiiiiiiiiiie ettt ettt e e ettt e e ettt e e e s st e e e e esabbaeeessnnaeeeeenns 92
CDFZEtrVarsDIMSIZESeeeeutiiiiiiieitiie ettt ettt te e et e ettt e st e e et e e esbeesteeesmteeeenteeeaneeesneeenas 93
CDFZEtrVarSeqData........coiiiuiiiiieiiiiee ettt e e sttt e e et e e e sttt e e esabbaeeesennbeeeeeaans 93
CDF RV arSEPOS. ..ottt ettt ettt e et e st teesat e e sab e ebteesbeee e 94
CDFgetrVarsMax WItteNRECINUINc..eeiiiiiiiiiiiit ettt 95
CDFZEtrVarsINUIMDIIIScocviiiiiiieiiieeitieeieeesreeestteeeteeesseeessseeasseesseaessseeesssessssseesssseesssesensseesssseenns 96
CDFgetrVarSPpars€RECOTASooouuiiiiiieeiii ettt ettt et e et e st e et e e neeeeneeeas 96
CDFZEEVATINUITL ...ooiiiiiiiiiieiiiiiee ettt e e sttt e e ettt e e e sttt e e eab bt eesssaabeeeeenabbaeessansseeeesnnssaaeesansseeeesnnss 97
CDFEetZVarAlIOCRECOTASviiiiiiiiiiieeiit ettt ettt et e et e st e st e e sab e ebteesareeeas 98
CDFgetzZVarBIOCKINGFACLOTuviiiiiiieiiieeiie ettt te et e st e e st e et eesnsaeesseaeeessaeennseesnsneenns 99
CDFEEtZVArCaChESIZEveieiiieeciiie ettt ettt et e st e e st e e e sabeeeaaeesasaeesaseeesseesnnseennneas 100
CDFZEtZVarCOMPIESSION «...ccuvieuiieiieriieettentee st ettt e st sttt e bt saee st e bt e sbeesaaesabeenbeesaeesaneenneenaeesanens 100
CDFZEIZVATDALAeeeiiiiiiieieiiiee ettt ettt e e et e e e st eeeesbbeeessabbeeeeennbbeeeeenbaeeeens 101
(@10 30 v AV U D 1 g T USRS 102
CDFZEtZVAIDIMSIZES ...eeuvvieeuiiieeiiteeiteesiee ettt e ettt e s tteesesteesaeeesseeesseeeanseessnseessseesnsseesnseesasseesnsseesnses 103
CDFZetZVarDIMVAITANCESveeruviieniiiieiiieeitee ettt e et te ettt e ettt e st te e st e e siteesaeeesbeeesateeesateesnbteesneeesaeees 104
CDFZRLZVATINTO ...ttt ettt sttt ettt et enbee s e 104
CDFgetzVarMaxAIIOCRECNUINccviiiiiiieiiieeiieeeieeesireeesreeetteesreeessbeessaseesssaeessseeessseeessseesnseesnsens 105
CDFgetzVarMax WIitteNRECINUINiiiiiiiiiiieeiie ettt st e et e e ene e s eeee s 106
CDFZEIZVATINAINIE ...eeeiuiiiiieeeiiiiee ettt ettt e e ettt e e e sttt e e ettt e e s sabteeeesasbbeeeseasbeeesansbaeeessnsseeeanns 106
CDFZEtZVarNUMDIIISu.iiiiiiiieiiiiieiiiee ettt ettt ettt e st e et e st e st e e st e e sateeebteesbeeesaeeas 107
CDFgetzZVarNUMELSINENLSccocuiieriiieiiieeiie e et e eiteestteesteesteeesseeesaeessnseesnneesnsaeesnseesssseessseesnsnns 108
CDFgetzZVarNUMRECSWITIEN.eiieiiieiiieeiiiecieeeeieeesiteeerte e st e e sbeeesbeessaseesssaeessseeessseeessseesnsseesnsens 108
CDFEEtZVarPadValUec...cocuiiiiiiiiiiiiiiiieec ettt et ettt e 109
CDFZetzZVarRECOIADALAc..veeeiiieeiiieiie et ettt eie e et e esteesteeesteeessbeessaseesssaeesssaeesnseeesseesnsseennsens 110
CDFEetZVarRECVATTANCE.uueieeiiiieiiii ettt ettt ettt et e et e e et e e s et e e st e e emeeeeaneeeeneeeeneees 111
CDFZEtZVarRESEIVEPEICENL.cciiiiiiiiiiiiiieee ittt ettt e et e e s et e e s et e e s sabreeeeas 111
(01) o0 v AV N TTe] D 1 - RSP SUPRPP 112
CDFEEtZVArSEAPOS ... e 113

CDFgetzVarsMaxWrittenNRECNUINoooviviiiiiiiiiiicciie ettt sree ettt e e e sabaesnaeesnreas 114

4.3.64 CDFZetzVarSParsCRECOTAS.uiiiiiiiiiiiiiiie et e ctee et ee ettt e et e et e e stbeeetseesstaeesabaeessseeessseeensseessneeans 115

4.3.65 CDFhyperGetrVarDatac.cccocuiiiieiiiiieiieeieeiteite ettt ettt sttt et st ebeesbeesenesneebeeae 115
4.3.66 CDFhypPerGetZVarData...........ccccuiiiiiieiiiieiiiee sttt e ctteesteesiteesteeestteeestbaessbeesstaeesssaeenssesesseeansseensseeens 117
4.3.67 CDFhyperPutrVarDatacooouiiiiiiiiiieiie ettt ettt ettt e e e et e e et e e ebeeeenneeeas 118
4.3.68 CDFhyperPUtZVarDatacccviiiiiiiiiieiiee ettt ettt et e s ebeeseteesstaeesnsaeeenseeasseesnsaeannsneans 120
4.3.69 CDFINQUITETI VAT .. ccceiiiiiieeeiiieeeesiteeeeeittteeesitaeeeesataeaeessasaeeesasssseeeesssaeeesanssseeesanssseessanssseeesssssseeesannses 122
4.3.70 CDFINQUITEZVALeeuiiiiiieiieiteiite ettt sttt ettt ettt ettt et e bt e s eee et e e bt e beesebeeabeenbeesaneeaneenbeenne 123
4371 CDFPUITVAIDALA ...ocueeiiieieiiiieeeciiee ettt e e ettt e e e ettt e e e esete e e e esatbaeeesensbaaeesanssseeesannsseessanssseessannses 124
4.3.72 CDFputrVarPadValUe..........c.oooiiiiiiiiiiee ettt ettt et e et e e bt e e ebeeeenneeens 125
4.3.73 CDFputrVarReCOTADAAccccuiieiiiieiiiieiiiie sttt e eteeeseteesiteesteeessteeeseseestseesssaeesssaeensseeesseeansseensseeans 126
4.3.74 CDFPUIVArSEIDALA.ccceeiriiieeiiiiee e ettt e et ee e e ettt e e e ettt e e eeeteeeeestbaeeesasssseeseassseeesanssseeesassseeesannses 127
4.3.75 CDFPUIZVAIDALAeiiiiiiiiiiieee ettt et e e sttt e e ettt e e s et e e e e ebbbee e s et 128
4.3.76 CDFPULZVArPAAVAlUCccccviiiiiiiiciiie ettt et e e et e e esta e e sabaeessbeeessbeeensseensneeans 129
4.3.77 CDFputzVarRecordData.ccouiiiieriiiriiiiiiieeitenie ettt et ettt ettt et et esbe e seeesneeneeae 130
4.3.78 CDFPUIZVAISEADALAceeeiiiiiieiiiiiee ettt e e sttt e e e ettt e e s etbbeeeesnabbeeeseataeeesnnsbaeeesaanes 130
4.3.79 CDFTCNAMEI VAT ...ccoiiiiiii ettt e et e e ettt e e e sitaeeeeeebaeaeessataeeeessasaeeeessssaeeesanssseaeeasssseaesanssseeessssseeesannses 131
4.3.80 CDFTCNAMEZVAT ...cccuiiiiiiiiiiiiee ettt ettt ettt ettt e e sttt e e e sttt e e e s bbbt e e s e bttt e e sensbbeeeseataeeesnnsbneeesannes 132
4.3.81 CDFsetrVarAlloCBIOCKRECOTASccecuiiiiieiiiiiee ettt eeitee ettt e e ettt e e s e tae e e e etaeeeseasaaeesensnneeesannnes 133
4.3.82 CDFSetrVarAlIOCRECOTAScccoiuriiieeiiiiieeeciiiee e e ettt e e e ettt e e eevteeeestbaeeeesasseeeeesssaeesenssseseesssseeeesnnnes 134
4.3.83 CDFsetrVarBIOCKINZFACIOLuiiiiiiiiiiiiiiie ettt et e et e e st e e sabaeesebeeessseeensseessneeens 134
4.3.84 CDFSEtrVarCacheSiZec.uvviiieiiiiiieeciiie e ecciee e ettt e e e ette e e e eetaeeeestbaeeeeessaeeeeessseeesensssaeeessssseeesansses 135
4.3.85 CDFSCtrVarCOmPreSSIONuveeiuvrrererieerireertreesetreessseesssseeassseesssseesssesasssessssseesssseesssseesssesesssesassseenssseens 136
4.3.80 CDFSEIVarDataSPeC. .. ccceeuriiieiiiiiieeeeiiiieeeeiiteeeeeietteeeestaeeeseataeeeesssaeeesassseeeeassseassanssseeessnssseeesannnns 137
4.3.87 CDFSetrVarDIMVAIIANCESccueeerrieiriiieiiieesitieeetteesettessteeesseeessseesssseessseesssseessseeesssesessseesssseessseeans 137
4.3.88 CDFSetrVarInitialRECS.......cccuviiiiiiiiiiieiiiie ettt ciee ettt ee st e et e e st eestbeeetseeestaeesasaeessseeessseeensseensneeans 138
4.3.89 CDFSetrVarRECVATIANCEcccoiiuriiiiiiiiiiiieeciiiee e e eitee e e ettt e e e ettt e e e sibaeeeesasbeeeseessaeesensssesessssseeseannses 139
4.3.90 CDFSetrVarReSETVEPEICENLcccuuviiiiiiiiiieeeiiiiie e sttt ettt e ettt e e e ettt e e s ettt e e s eebeeeeseabaeeessnsraeesssnnes 140
4.3.91 CDFSetrVarsCaCheSiZe.uuiiiiiuiiiieeeiiiieeeeciieeeeeeite e e e sttee e e eetaeeeestbaeeeesssseeeeesssseeesanssseeessssseeeeansses 140
4.3.92 CDFSEIVarSEqPOSveteeiiiiiieeeit ettt ettt ettt e ettt e e s st e e e s e bbbt e e s e abteeeeeabbbeeeeeanee 141
4.3.93 CDFSetrVarSPars€RECOTASccccuuriieiriuiiieeeiiiieeeeeiiieeeeeiteeeeeiteeeeesstbaeessessaeeeeessseeesenssseessssssseeesansnes 142
4.3.94 CDFsetzVarAlloCBIOCKRECOTAS.ccccouiiiiiiiiiiiie ettt e et e e e et e e e e eta e e e e earaeeeesnsrnaeeeennnns 142
4.3.95 CDFSetZVarAllOCRECOTAScccviiiieiieiiiie ittt ettt e ettt e e stb e e e tbeeestaeesabaeessbeeessseeensseessneeans 143
4.3.96 CDFsetzVarBlOCKINGFACIOLcu.iiiiiiiiiiiie ittt et et e e e et e e et e e ebeeeenneeeas 144
4.3.97 CDFSEtZVArCaChESiZe.eccuiieiiieeeiieeeiee ettt e sttt e e tee et ee st e e steeessteeesebeestseesssseesssaeensseeesseennsseensseeans 145
4.3.98 CDFSEtZVarCOmPIESSION.ueeeeiurreeeeriurreeeeiirreeeeanerreeeessssaeessasssseeeessssseessssssssesssssseessssssssesssssseesssnses 145
4.3.99 CDFSEtZVarDataSPeC ...cceeuuiiiiiiiiiiiie ittt ettt ettt e e ettt e e s sttt e e s e bbb e e e s eabaeeeesbbaeeeeeanee 146
4.3.100 CDFSetZVarDIMVarIQnCES......c.uveeeviieeriieiirieeiteeeieeesateestteeesseeesseeessseeessseesssseessseesssesessseesssseesssens 147
4.3.101 CDFSetZVarInitialRECSueiiieiiiiieiiiiiiee ettt e et e e et e e e e stba e e e s s abbeeeesserseeeesnssseaaenns 148
4.3.102 CDFSEtZVarRECVAIIANCEcccvvieeiiiieciiieeiiie et e ettt e etteesae e et e e st e e ssbeeeaseessaeesssaeesssaeensseesnsseesnsens 148
4.3.103 CDFSetZVarReESEIVEPEICENTvviieieiiiiiieceiieee et et e et e e et eeesttae e e e s abbeeeesnsbaeeeessnsseaanans 149
4.3.104 (010) B e A] O Te] 1 TSI /PSS 150
4.3.105 (010) B i AVE:) (1T | oo TSP 151
4.3.106 CDFsetzVarSparseRECOTASc..eoviiiiiiniiiniieitet ettt ettt sttt ettt et 151
4.3.107 (01D 71] 1oL PP SURRRP 152
4.3.108 CDFVATCTEALEeeeeeiiiieeeeiieeeeeetite e e ettt e e eetbeeeeesstaeeeeessaaeeeesasssaeaeassssseeeeanssasaseanssseeeaansssaeesanssseeannns 153
4.3.109 CDEFVATGEL ...ttt ettt e e ettt e e ettt e e e s sabbteee e atbaeeeeantbaeessensbbeeesansbbeeessnnsaeeeens 154
4.3.110 (01D 2214 5 4 01 (€ A PSPPSRI 155
4.3.111 CDEFVATHYPEIPULeiiiiiiiiiie et et e ettt e e s sttt e e e ssibbee e s sabeeeeens 156
4.3.112 CDFVAIINQUITE.eeeiviieiiie ettt et ettt e ettt e e be e e beeestaeeessaeessseeesssaeesssaessssaesssseessseeessseessseensses 157
4.3.113 CDEFVAINUIN ..cceiiiiieect e e ettt e e e e e e e e s eaaaaaeeeeeaeeeeesssnsssssasaaaeaaeesssassnsssssseeeaaaeeeensnnnnes 159
43.114 CDEFVATPUL ...ttt e ettt e e e sttt e e sttt eeeeaatbaeeesensbaeeesansbbeeessnnsneeeens 160
4.3.115 CDFVArRENAMEeviiiiiiiiiiieeeciieee ettt e ettt e ettt e e e ettt e e e s sstateeeeestbaeeeessssaaeesanssseeeasssssaeeesssseaenns 161
4.4 AHTIDULES/ENLIIES ...eoiiiieiiiieeieieeeiiee et ette et e sttt e et e ettt e eseaeeesteeessseeessseesssaeansseeesseeansaeasnseeeanseeennseesnneennns 161
4.4.1 (@10 1 15 { O < | £ T USSR 162
4.42 CDFattrENtryINQUITE. ...ccveiiiiiiiiiiiieiec ettt ettt st ettt sttt st ebeenaeesane e 163

443 CDFAIIGET ..ottt sttt st ettt st ettt et s 164

4.4.4 (@3] 3 1334 11 e |11 (<O RUR PSR PR 165
4.4.5 (@10) 1 15 30|11 0 D PP PSP UPPPPPON 166
4.4.6 CDFAIPUL ..ttt et ettt ettt et e et e s e st e e st e e baeesbneenanaes 167
4.4.7 (03] 2 1130 2 1 : 111 USSP 168
4.4.8 CDFCONfITMAMIEXISIETICE «...c..veiutiiiieiiie ettt ettt st sttt st e be e 169
4.49 CDFconfirm@ENIryEXISIENCEccuviiiiiiiiiieieiiee ettt et e st e s 169
4.4.10 CDFconfirmrEntry EXISTEIICE. ...c..veiutteiiiriiiiieeieeieente ettt sttt ettt et ettt st ebeesbeesaeeseneebeenae 170
4.4.11 CDFconfirmzENIryEXISIENCE . .evvviiieiiiiiiieiiiie et e cteeestee ettt e et e e sibeeestbeeeebeessaaeesssaeessseeessseeansseensseeens 171
B B O] B) 0 (<. 1 Y 2\ i » GO USSR 172
4413 CDFAEIBtEALLL ...ttt ettt ettt sttt e bt e s bt st e bt e s bt e st e bt e bt e nabeeabeebee e 172
4.4.14 CDFAelet@AIZENIIY ..ottt ettt ettt e bt e sttt e sab e e sebeeebteeebeeesnreeens 173
T N R O B) 2 (<) 1] e N ' 25 413y RSP S 174
4.4.16 CDFAEletCANIZENIIY ..ocoviiiiiiieciie ettt ettt e et e et e e et e e stbeeestbaeessseesssseesssaeensseeansseeensseensseeens 175
4.4.17 CDFZEtAIGENIIY ..o e ettt e e e et eebneesaneeea 175
4.4.18 CDFgetAttr@ENtIyDataTyPe . .cceeiueriiieiiiiiiee ettt ettt e et e e e ettt e e s sttt e e eeebbeeeseataeeessnsraeeessnnnes 176
4.4.19 CDFgetAttrgEntryNUMEICIMENLSoeiiiiiiiiieiii ettt e et e et eeenneeeas 177
4,420 CDFEtAtIMAXZENLITY .oeooiiiiiiiiiiieee ettt ettt e ettt e e s sttt e e s eabbbeeessateeeessabbbeeesannes 178
4421 CDFZEtAIMAXTENIIYeeiiiiiiiiiie ettt et e sttt e st e e et e et e e ebeeesnbeeens 179
4.422 CDFZEtAIMAaXZENITYoooiiiiiiiiiiiie e s e e 179
4,423 CDFEAIINGAINE. ..ec.uivieeeeeiiiieeeeiiiee e et te e et ee e e ettt eeeesstbaeeeessateeeeeassbaeessanssseeesanssseeesanssaeesssssseessnnnsns 180
B S O] B) o (<1 7N 13 0 121 F USROS 181
4425 CDFGEtAITENIIY cooeuiiiiiie ettt ettt e e e ettt e e e sttt e e e s sasbbeeesennbbeeeseasaeeeensnsaeeesannnes 182
4.426 CDFetAtTENIYDAataATYPC. . coeiuiiiiiiieiiiie ittt ettt ettt e st e st e e et eebteeenbeeesnreeens 182
4.427 CDFgetAttrrEntryNUMELCIMENLSoiiiiiiiiiieiiiee ettt etee e etee et e seaeesetae e s e e eeseesnsaeeenneeens 183
4428 CDFZELALISCOPE coeeuvivieeeeeiiitee ettt e eeiit e e e ttee e e sttt e e e essataeeeessataeeseassbaeessanssaeeeeanssseeesannsseeessssseeesannses 184
4.4.29 CDFZEtAIZENLIIY ..oeeiiiiiieiiii e et et et sa e e e e e et eeeaneeea 185
4430 CDFgetAttrZENIYDAtaATYPE .oeeeeueiiieeiiiiiee ettt ettt ettt e ett e e e ettt e e s ettt e e s eebaeeeseabaeeeesnsbaeeessnnes 186
4.431 CDFgetAttrzEntryNUMEICINENTSooiiiiiiiiiieiiiieeie ettt et e e e e eeenneeeas 187
4,432 CDFZEtNUMAMIZENLIICS ..oeoutiieiiiieeiieeeiie ettt ee et ee sttt e st eesiteeestbeessaeesssaeesnsaeesnseeensseesnsseannnneans 188
4.4.33 CDFZEtNUMAIIDULESeeeiiiieiiie ittt ettt e st e st e e et e e ebteeebeeesnneeens 188
4.4.34 CDFetNUMAITENIIIES ... eeteiiiiiiiieieeriteite ettt ettt et ettt eb et sete et e enbeeseeeeaneebeenae 189
4.4.35 CDFZEtNUMAIZENIIIES ...ccuvviiiiiieciiieieiee ettt e steeesteeeseteestteesteeessbeeessbaeesseesssaeessseeesssesessessssseessseeens 190
4436 CDFEtNUMZAIIDULESeeoutiieiiiieiiiieeeiee ettt ettt ee ettt e ettt e st e e sat e e e eateeebeeesabeeeembeeeenteeeseeeebeeeanneeans 190
4.4.37 CDFGEtNUMVALIIDULESeecviieiiieeiiieieieeeteesteeesteeeseteestaeesstaeessseeesssaessseesssseessseeenssesensseeansseesseeens 191
E G T T O D) 33 1o | 111 4= AN 13 S SPUSUPPRRIOt 192
4,439 CDFINQUITCATIZENIIYoiiiiiiieiiie ettt ettt tte et e et e e st e e sateeessbeessaeesssaeesnsaeennseeensseesnsseennseeans 193
4,440 CDFINQUITEATITENIIY . ..cuiiiiiiiiiiie ettt e et e e et e e et e e e stbeeetbeeestaeessbaeessseeensseeansseensseeans 194
4441 CDFINQUITEATIZENITY «..eeeutiiiiiiiiiiiteieerte ettt ettt sttt et et se e et e s bt e sete et e enbeesaneenneenneenae 195
4442 CDFPULAMIZENITY ..ottt ettt e e sttt e e e ettt e e e s ettt e e e sesabbeeesenataeeeennsbaeeesannnes 196
N S B O B) 0o 11 72N 3 0 25113 oy 2RSS 197
4444 CDFPULAIIZENIIY oottt ettt e e e ettt e e s s bttt e e eenbbbeeeseatbeeessnbbaeeesannee 199
R S B O] B) 0 (<) 21 11 1< N o (RSSO UP PR UUPPR 200
4.4.46 CDFsetAttrgEntryDataSPec.......c.coiiiiiiiiiiiiiee e e 200
4.4.47 CDFSetAMTENIYDAtASPEC. .. eeeeiiiiiieiiiiiiee ettt ee ettt e e e s ibree e s eetbeeeeeebeeeesensaeeesnssseeesannnes 201
R O] B) T N s (N 1103 oL USSR 202
4.4.49 CDFSetAtIZENtIYDAtASPEC . eeeieiiiiiieiiiiiiee ettt ettt et e et e e s st e e e ebbeeeseataeeeesnnbaeeeseanee 203
4.5 QUICK REAA FUNCLIONSvvviiiiiiiiieieiiiee e eiitiee ettt e ettt e e ettt e e e ettt eeeeenebaeeeeassabeeesanssseeeesnssaaeesassseeesnssneens 204
4.5.1 REAACDIF ...ttt ettt st et e ae e st ettt e sate st e be e b e sane s 204
452 ReadCDFGIODALAIIDULES . ..c..eeutieiie ittt ettt ettt et et e ettt ebeesbeesane s 207
453 REAACDEFINTOiiiie ettt ettt ettt et et e st e e bt e stesaaeeabeesseeesaessbeanseanseesssesnseenseessaesanens 208
4.5.4 REAACDEFVATIIADIEeiiiiiiiiiii ettt st ettt et e s e s s 209
455 | Te (010 TN 1S -1 o) LTRSS 211
4.5.6 ReadCDFVariable AIDULESc.corutiriiiiiiiieiiie ettt ettt st ettt ettt e 212
4.5.7 ReadCDFVariableDataccocuuiiiiiieiiii ettt ettt e st e st e et e e bt e sbeeesaeeas 213
4.5.8 ReadCDFVariableINgoccocuuiiiiiieeiie ettt e st e st e e et e e et eesneeesneees 214
459 REAACDEFVAITADIES ...ttt ettt et ettt sat e et e bt e saee st ebeesaeesanean 215

4.5.10 ReadCDEVaAriableSData.oooiiiiiiiiiiiiiiieeeeee ettt e e e e e e e e e e e e e e e e ee e aareeeeeeeeeseaanans 217

5 Interpreting CDF Status Codes.......eeeiieiiiiiissssnnnnnnineicccssssssnnssseneenecssseee 219

6 EPOCH Utility ROULINES.......ccoeeviiiiiiiiiiiiiiiissrssirisssssssssssssssssseneeesseseessssssssssses 220)

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24
6.25
6.26
6.27
6.28
6.29
6.30
6.31
6.32
6.33
6.34

COMPUIEEPOCHcoiiiiiiiiiii ettt e e ettt e e ettt e e s sabbe e e e e sabbbeeessabbeeeseanbaeeas 220
EPOCHDICAKAOWveiiiviieiiieeiiee ettt ettt et e st e e st e e e stbeeestaeessbaeeesbaeesbaesnsbaeassaeesssasenssesessseensseeens 220
TOENCOAEEPOCH.......coiiiiiiiieeee ettt et e e e et e e e ettt e e e e e atbeeeeestbeeeessaaeeeeesssaeeesssseeeesnssseens 221
ENCOACEPOCH ..ottt ettt et e e st e e st e e e abeesstaeesssaeessbaeesbaesnsseeassseesssaeenssaennsseennsaeens 221
11701 53 23 O 1O = 1 PRSP 221
ENCOACEPOCHY ..ottt ettt e st e e sttt e et e e s taeesataeeesseeensseesnsaeesnsaeennseeensseesnsaeennsaeans 221
11701 151 23 o O 1O 51X T PRSP 221
ENCOACEPOCHY ...ttt e e et e e e ettt e e e e eatbeeeeeeatbaeaeeassaaeaeeanssaeeeessssaeeeeessseaesanssnaens 222
ENCOACEPOCHXuviiiiiiiiiiie ettt ettt e et e e tt e e st e e e s ttee e tbeesstaeesabaeeessaeessbeeansseeassaeeassaeensseenssseensseeens 222
170) 5 1 1<) 2 o0 1) = PRSP 223
PATSEEPOCHcoiiniiiiiiie ettt e e sttt e e ettt e e s abt et e e eabbeee e e abb e e e e e nbbaeeseabteeeeenraeeas 223
Jo R 1T 2 o O O] I PSPPSR 223
PATSEEPOCHZ ...ttt e e ettt e e sttt e e e it e e s s abb et e e eabbaee e sabteeesennbaaeas 223
PATSEEPOCHI ...ttt ettt ettt e e s ettt e e e bt aee s s abaeeeeestbeee s e nabeeeeenbbaeeeenbteeeeenraaeas 223
PArSEEPOCHA ... ettt et e ettt e st e s eesaneee 223
18] 10101011 21 o O 1 O 5 B Y PRSP UPRPTRPP 224
EPOCHITODICAKAOWNvviieiiiiiieeeiiiee ettt eeiie e e ettt e e ettt e e e ettt eeeeeaebaeeeeasssaeaeessssseeeessssseaessssseaesanssseens 224
L10) 2 1ot 4 51 21 o0 11 = TS 224
11701 51 23 O 1O & B L YR UPSPRP 224
ENCOAEEPOCHLO L....eiiiiiiiiiiiieeeee ettt et ettt et e be e st et ebeenbeesane e 225
ENCOACEPOCHIO 2......iiiiiiieiiiieiee ettt st e e st e et e e s ta e e e sbaeessbeeesbeeessseesssaeesssaeensseeessseensseeens 225
ENCOACEPOCHIO 3. .. ittt et e ettt e e et e e eat e e e bt e e et e e entee e nteeenbeeeenneeens 225
ENCOACEPOCHIO 4......ooiiiiiiiiieeiee ettt ettt e e st e et e e st e e sstaeessbeeessbaesasseennsaeesssaeensseeensseennsaeans 225
ENCOACEPOCH IO K.ttt ettt ettt e sttt e ea e e bt e st eesab e e e eebeeebbeeenbaeesabeeens 225
TOPATSEEPOCHLOcciiiiiiiiieeee ettt e e sttt e e ettt e e s sttt eeeabbtee s satteeesenebaeeas 226
PATSEEPOCHLO ...ttt et e e s sttt e e et e e e e s abbeeeeensbbeaeeasaaeeeeenssbaaesansseeesanssaeens 226
PArSEEPOCHILO 1 ..ottt et et et e st st e e e e s neeesannee 227
PATSEEPOCHTLO 2 ..oiiiiiiiiiiiie ettt e e ettt e e ettt e e e s bttt e e eatbbeee s s sbaeeeeennbbaeesensaeeesnnnsaeeas 227
J o <1 2 o0 [0 & B Y T PSSP 227
PATSEEPOCHTLO 4 ...oeiiiiiee ettt e e sttt e e et e e e s bttt e s eabbteessabteeeseanbaaeas 227
EPOCHIOUNTXTIIMEuvvviieeeiiiieeeeciiieeeeeitteeeeeitteeeeesttteeeesstteeeeesssseaeesasssseassasssseessssssseesessssseeessnsssseessnssseens 227
UnNIXTIMEIOEPOCHeiiiiiiiiiiee ettt e e et e e e e tb e e e e esbaaeeessaaeeaeesbaaeeeessseeeeenssseeas 227
EPOCH I OtOUNIXTIIME.eviieiiiieiiie et e cieeeetee et ee it eesteeestveeetbaesstaeesssaeesssaeessassnsseesssaeesssesessesessseensseeens 228
UNIXTIMELOEPOCHLO........oiiiiiiiieecieie ettt ettt e e eete e e e s ave e e e estbeee e s saaeeaeesssaeeeessseeeeanssaeeas 228

7 TT2000 Utility ROULINES ..cceereriiiiiiiiiisssnnnnniiecccssssssssnnsssssssscssssssssssssssssssssssssse 229

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9

COMPULETT2000 ...ttt ettt e et e e sttt e e at e e e bee e et e e e ea bt e e asteesaseeeemteeeenteeeneeeensaeeenreeens 229
TT2000DIEAKAOWILeeeiiieiiiieiteeeeeeeee et e e e ettt e e e e e e e e e et eeeeeeeeeeeseeaaaraeeeeeeeeeeseannnns 230
TOENCOAETT2000.. ... o ittt e et e ettt eeeeeaeesaeaeaeeeeeeeeeearsaaaesasasnnnnnnnnaes 230
ENCOAETT2000 ...t e e e e e e et et e e e e e e e e e e et aeeeeeeaeeeeeeeerannsaeereeeeeeeeeannnns 231
TOPATSETT 2000o iiiiiiiiiieieeeee ettt ettt e e et e ettt eeeeeeeeeeaeeaeaeeeeeereeeareaa et araaannnnnnes 231
PATSETTZ2000ciiiniiiiiieiie ettt e e sttt e e e e bt ee e s abt et e e eaeb bt e e e s sbteeeeesbbaeeseabteeeeeanbaeeas 232
CDFgetLastDateinLeapSecondSTabIeccicviiiiiiiiiiieiiie ettt ereestae et aeesebeeessreeestaeesnsaeeas 232
TT2000t0UNIXTIINIE. . eiieeieieeeeeeeeeeeeeee e e et e e e e e e e e e e et e e ettt e e e et eeeseeeeeeeaeeeeseeeeeesssssssasssnnnnnnnnnes 232
UniXTImMEtOTT2000..... . eeeeeiiiie oottt e e e e e e e et e e e e e e e e e e e e eeeeeeeeeeeeenannnnneeeeeeeens 232

8 CDF Utility MethodsS....ccccceerririirsiss 233

8.1
8.2

CDEFFIIEEXISES ...ttt ettt ettt et a e ettt e b e bttt e bt e bt e s bt e ea bt eab e e bt e sbbeeabeenbeenbaenane s 233
CDFZetCheckSUMVAIUEcooiiiiiiiieiie ettt et a e sttt e st e e sab e ebbeeeabeeesabeeens 233

8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13
8.14
8.15
8.16
8.17
8.18
8.19

CDFgetCompressioNTYPEVAIUEcccuviiiiiiiiiie ettt et e e s ve e e stb e e estbeessbaeesesaeesbeeessaeesnseeens 233
CDFEetDataTyPEVALUEc..eieutiiiieiiiieiiiete ettt ettt ettt ettt sttt et e s bt st et e beesasesabeenbeenbeesane s 233
CDFZEtDECOMINZVAIUEeeeiiiieiiiecieie ettt ettt e et e et ee st eesstaeessbaeesbaesnsaeesnsaeessseeessesensseennsaeens 234
CDFZEtENCOAINZVAIUC.ciiiiiiiiiie ettt et et et e ettt e et e e eabee e enteeenbeeebeeesaneeens 234
CDFEEtFOrMAtVAURoociiieiiieeiiie ettt et e et e et e st e e st eessteeesbeesasaeesnsaeeenseeensseesnsneennsaeens 235
(010 3 S0\ 30 01 A 11 [O RTPROPRR PP 235
CDFgetSparseRECOTAVALUEcocueiiuiiiiiiiiiieeieet ettt ettt ettt s ebeenbaesane e 235
CDFetStrINZCRECKSUMoiiiiiiiiiie ettt e et e e et e e sbeeessbeeetbeeeasseesssaeessseeensseeessseensseeens 235
CDFgetStringCompPreSSIONTYPEoeieiieieieiieie ettt eee ettt et e et e e st e e eatee et eesmteeeenteeeasteeenneeesaneeens 236
(010) 3 (SN 1 Yo DT Y 1) o TSRS USRI PPR 236
CDFetStringDECOAINGceeiiieiiiteiiie ettt ettt st ettt et e e bt e sttt e sttt e sabeeebteeeabaeesabeeens 236
CDFEtStINGENCOMINGviieiiieeiiie ettt et e st e e st te et eestaeesataeesssaeensseesnsaeesasaeesnseeesseesnsaeennsaeens 236
CDFEtSIINZFOIMALcuviieiiieeiiieeiteecteeesree ettt eetteesbeeestbeeesabeeestaeesssaeesssaeesseesnssaesssaeesssasesssesessseensseeens 236
CDFZEtSHIINEMAJOTILY ...veevtieitieiteetteeett ettt ettt ettt et ettt st e bt e bt e s bt e sateeabeenbeesaaeeaneenbeenbaenane s 236
CDFgetStringSparsCRECOTM.ccuviiiiiieiiii ettt e e e et e e st ee et eesstbeesntaeesssaeesseesnsseennsaeens 236
I 103101010] [T SRS 237
PrINEDICHIONATYeeevit et eitee ettt ettt ettt e ettt e ettt e et e esabte e aseeesaeessseeesnseeeanseesanseesnsseesnsaeesnseeennseesssassnsseesnsens 237

9 CDF Exception Methods.......cccceererrrriisss 237

9.1
9.2

CDFZELCUITENESTATUSvvteeiiiiiiieeeeiitiee e ettt e e ettt e e ettt e e sttt e e ettt ee e s sttt e e e saabbbeeesaabbeeeesaanbbeeessnnteeesannraeeas 237
(010 3 SN 721 R] S PR T PRSP 237

Chapter 1
1 Compiling

VB-CDF distribution is packaged in a self-extracting installer. Once the installer is downloaded and run, all distributed
files, i.e., APIs, test programs, batch files, help information and the document, will be placed into a directory of choice,

and environment variables, PATH and CsharpCDFDir, are automatically set. If an older version already exists in the
host machine, the installer will try to remove it before the new one is installed.

To VB, CDF library is unmanaged code distributed in the native DLL. The distributed .DLLs were built from a 32-bit
(x86) Windows and they can be run on a 32-bit Windows via the x86-compatible Common Language Runtime (CLR),
as well as a 64-bit Windows under WOW64.

1.1 Namespaces

Several classes are created for VB applications that facilitate the calls to the native CDF DLL. The CDF namespace
has been set up to include these CDF related classes: CDFConstants, CDFException, CDFAPIs. and CDFUtils.
CDFConstants provides commonly used constants that mimic to those defined in the .DLL CDFException provides the
exception handling when a failed CDF operation is detected. CDFAPIs provide all (static) public (and private) methods
that VB applications can call to interact with the similar, underlining functions provided by the CDF Standard Interface
in the .DLL. CDFUTils provides several small utility tools. These classes are distributed in the form of signed assemblies
, as .DLLs. To facilitate the access to functions in DLL, each VB application must use the “cdf” namespace in order to
call the VB-CDF APIs. The following namespaces should be included by VB applications that call CDF APIs:

imports System

imports System.Runtime.InteropServices

imports CDF

1.2 Base Classes

CDFAPIs is the main class that provides the VB-CDF APIs. Class CDFAPIs inherits from CDFConstants class, which
defines all constants referenced by the CDF. A VB application, if inheriting from the CDFAPIs class, can call all
CDFAPIs methods and refer CDFConstants’ constants directly, without specifying their class names. CDFException
class inherits from VB’s Exception class and CDFUftils class inherits from CDFConstants class as well, .

1.3 Compiling with Compiler Options
If a test application, e.g., TestCDF.vb, resides in the same directory as all distributed .dll files, the following command
can be used to create an executable

vbc /platform:x86 /r:CDFAPIs.dll,CDFException.dll,
CDFConstants.dll,CDFUtils.dll TestCDF.vb

vbc.exe, the VB compiler, can be called automatically from an IDE such as Visual Studio
.NET, or run from the command line if the PATH environment variable is set properly.
vbc.exe can be found in the Windows'’s .NET Framework directory,
<windows>\Microsoft.NET\Framework\v#.# (v#.# as v3.5 or in the latest release version).

/platform:x86 option is required for the Windows running 64-bit OS as VB-CDF is built on an x86 (32-bit) platform.

11

When the VB-CDF package is installed, the PATH environment variable is automatically modified to include the
installation directory so the native CDF .DLL, dlledfesharp.dll , becomes available when a VB application calls CDF
functions. Once the executable, TestCDF.exe, is created, it can be run from any directory.

If the VB applications that call CDF APIs reside in the directories other than the VB-CDF
installation directory, the following compilation command can be used to create an
executable (.exe):

vbc /platform:x86
/1ib:%CsharpCDFDir%
/r:cdfapis.dll, cdfconstants.dll, cdfexception.dll,cdfutils.dll
TestCDF.vb

where environment variable CsharpCDFDir, the installation directory for VB-CDF package, .is set when the installer is
run.

When the executable is run, an exception of “FileNotFoundException” will be encountered
as CDFAPIs could not be loaded. It’s because the distributed CDF assemblies are considered
private in the .NET environment. The .NET Framework’s runtime, Common Language Runtime
(CLR), will not be able to locate the files if the application resides in a different
directory from the called assemblies. To make these assemblies global so CLR can locate,
they need to be placed in the Global Assembly Cache (GAC) repository. Use the following steps to do so:

gacutil /i CDFConstants.dll

gacutil /i CDFException.dll

gacutil /i CDFAPIs.dll

gacutil /i CDFUtils.dll

gacutil.exe (Global Assembly Cache utility) is a Microsoft Software Development Kits (SDKs) utility that can insert,
list and remove the assemblies to and from GAC. Gacutil.exe usually can be found at <Program Files>\Microsoft
SDKs\Windows\v#.#\bin (v#.# as v6.0A or in the latest release version). Use “gacutil /u” to remove assemblies of older
versions form GAC.

ildasm.exe is another SDKs utility that can be used to browse the assemblies for information as versions, keys, etc..

1.4 Sample programs

A couple of sample programs are included for distribution. Qst2vb.vb and Qst2vb2.vb, the quick test programs for VB.
Qst2vb.vb uses the VB value type for data read and write to a CDF file. Qst2vb2.vb passes in the base class objects for
arguments while reading the data from a CDF. Qts2cEpoch.vb , Qst2cEpoch16.vb and Qst2¢TT2000.vb are three
sample programs that show how EPOCH-related functions are used. A batch file, tocompileVB.bat, is distributed along
with the sample programs. Execute it from a Command Prompt window to compile the programs into executables (.exe).
Run totestvb.bat to test the executables to make sure they all work fine.

Chapter 2

12

2 Programming Interface

2.1 Item Referencing

The following sections describe various aspects of the programming interface for VB applications.

For VB applications, all item numbers are referenced starting at zero (0). These include variable, attribute, and attribute
entry numbers, record numbers, dimensions, and dimension indices. Note that both rVariables and zVariables are
numbered starting at zero (0).

2.2 Compatible Types

As VB and CDF .DLL may have different sizes of the same data types, e.g. long, the size compatibility must be enforced
when passing the data between the two. On 32-bit Windows, 4-byte long has been used all over in the CDF .DLL.
However, long in VB is defined as 8-byte. So, to make the size compatible, 4-byte integer is used, instead, in VB for
each long type variable in the .DLL. For CDF data of type CDF_CHAR, or CDF_UCHAR, it is represented by a string
in VB. They are not size compatible, so conversion, performed in the APIs, is needed between a character array in .DLL
and string in VB.

The VB-CDF operations normally involve two variables: the operation status, status, and the CDF identifier, id:
status All VB-CDF functions, except CDFvarNum, CDFgetVarNum, CDFattrNum and
CDFgetAttrNum, return an operation status. This status is defined as an integer in
.DLL and VB. The CDFerror method can be used to inquire the meaning of any status
code. Appendix A lists the possible status codes along with their explanations.
Chapter 5 describes how to interpret status codes.

id An identifier (or handle) for a CDF that must be used when referring to a CDF. This
identifier has a type of long in VB. A new identifier is established whenever a CDF
is created or opened, establishing a connection to that CDF on disk. This long value

is used in all subsequent operations on a particular CDF. The value must not be
altered by an application.

2.3 CDFConstants

CDF defines a set of constants that are used all over the .DLL. These constants are mimicked in CDFConstants class with
compatible data types.

2.4 CDF status
These constants are of same type as the operation status, mentioned in 2.2.
CDF_OK A status code indicating the normal completion of a CDF function.

CDF_WARN Threshold constant for testing severity of non-normal CDF status codes.

Status less than CDF_OK normally indicate an error. For most cases, an exception will be thrown.

2.5 CDF Formats

SINGLE_FILE The CDF consists of only one file. This is the default file format.

MULTI FILE The CDF consists of one header file for control and attribute data and one additional
file for each variable in the CDF.

13

2.6

CDF_BYTE
CDF_CHAR
CDF_INTI1
CDF_UCHAR
CDF_UINTI
CDF_INT2
CDF_UINT2
CDF_INT4
CDF_UINT4
CDF_INT8
CDF_REAL4
CDF_FLOAT
CDF_REALS
CDF_DOUBLE
CDF_EPOCH

CDF_EPOCHI16

CDF_TIME_TT2000

CDF Data Types

One of the following constants must be used when specifying a CDF data type for an attribute entry or variable.

1-byte, signed integer.

1-byte, signed character.

1-byte, signed integer.

1-byte, unsigned character.

1-byte, unsigned integer.

2-byte, signed integer.

2-byte, unsigned integer.

4-byte, signed integer.

4-byte, unsigned integer.

8-byte, signed integer.

4-byte, floating point.

4-byte, floating point.

8-byte, floating point.

8-byte, floating point.

8-byte, floating point.

two 8-byte, floating point.

8-byte, signed integer.

The following table depicts the equivalent data type between the CDF and VB:

CDF Data Type VB Data Type
CDF BYTE sbyte
CDF INTI sbyte

CDF _UINT1 byte

CDF INT2 short
CDF_UINT2 ushort
CDF INT4 integer
CDF_UINT4 uinteger
CDF_INTS long
CDF_REAL4 single
CDF_FLOAT single
CDF REALS double
CDF_DOUBLE double
CDF_EPOCH double
CDF_EPOCH16 double(2)!

! CDF_EPOCH]16 has two doubles, which corresponds to an array as double() in VB.

14

CDF TIME TT20001 long
CDF_CHAR string
CDF _UCHAR string

CDF _CHAR and CDF _UCHAR are considered character data types. These are significant because only variables of
these data types may have more than one element per value (representing the length of the string, where each element is
a character).

NOTE: Keep in mind that an long is 8 bytes and that an integer is 4 bytes. Use integer for CDF data types CDF_INT4
and CDF_UINT4, rather than long. Use long for CDF_INT8 and CDF_TIME_TT2000 data types.

2.7 Data Encodings

A CDF's data encoding affects how its attribute entry and variable data values are stored (on disk). Attribute entry and
variable values passed into the CDF library (to be written to a CDF) should always be in the host machine's native
encoding. Attribute entry and variable values read from a CDF by the CDF library and passed out to an application will
be in the currently selected decoding for that CDF (see the Concepts chapter in the CDF User's Guide).

HOST_ENCODING Indicates host machine data representation (native). This is the default
encoding, and it will provide the greatest performance when reading/writing
on a machine of the same type.

NETWORK ENCODING Indicates network transportable data representation (XDR).

VAX ENCODING Indicates VAX data representation. Double-precision floating-point values
are encoded in Digital's D_FLOAT representation.

ALPHAVMSd ENCODING Indicates DEC Alpha running OpenVMS data representation. Double-
precision floating-point values are encoded in Digital's D FLOAT
representation.

ALPHAVMSg ENCODING Indicates DEC Alpha running OpenVMS data representation. Double-
precision floating-point values are encoded in Digital's G _FLOAT
representation.

ALPHAVMSi ENCODING Indicates DEC Alpha running OpenVMS data representation. Double-
precision floating-point values are encoded in IEEE representation.

ALPHAOSF1_ENCODING Indicates DEC Alpha running OSF/1 data representation.

SUN_ENCODING Indicates SUN data representation.

SGi_ ENCODING Indicates Silicon Graphics Iris and Power Series data representation.

DECSTATION ENCODING
Indicates DECstation data representation.

IBMRS ENCODING Indicates IBMRS data representation (IBM RS6000 series).
HP_ENCODING Indicates HP data representation (HP 9000 series).
IBMPC_ENCODING Indicates PC data representation.

NeXT ENCODING Indicates NeXT data representation.

MAC _ENCODING Indicates Macintosh data representation.

15

ARM_LITTLE ENCODING Indicates ARM architecture running little-endian data representation.

ARM _BIG_ENCODING Indicates ARM architecture running big-endian data representation.

[A64VMSi ENCODING Indicates Itanium 64 running OpenVMS data representation. Double-
precision floating-point values are encoded in IEEE representation.
IA64VMSd _ENCODING Indicates Itanium 64 running OpenVMS data representation. Double-
precision floating-point values are encoded in Digital’s D _FLOAT
representation.

[A64VMSg ENCODING Indicates Itanium 64 running OpenVMS data representation. Double-
precision floating-point values are encoded in Digital’s G_FLOAT
representation.

When creating a CDF (via CDFcreate) or respecifying a CDF's encoding (via CDFsetEncoding), you may specify any
of the encodings listed above. Specifying the host machine's encoding explicitly has the same effect as specifying
HOST_ENCODING.

When inquiring the encoding of a CDF, either NETWORK ENCODING or a specific machine encoding will be returned.
(HOST_ENCODING is never returned.)

2.8 Data Decodings

A CDF's decoding affects how its attribute entry and variable data values are passed out to a calling application. The
decoding for a CDF may be selected and reselected any number of times while the CDF is open. Selecting a decoding
does not affect how the values are stored in the CDF file(s) - only how the values are decoded by the CDF library. Any
decoding may be used with any of the supported encodings. The Concepts chapter in the CDF User's Guide describes a
CDF's decoding in more detail.

HOST_DECODING

NETWORK DECODING

VAX DECODING

ALPHAVMSd DECODING

ALPHAVMSg DECODING

ALPHAVMSi_DECODING

ALPHAOSF1 DECODING

SUN_DECODING
SGi_DECODING

DECSTATION_DECODING

Indicates host machine data representation (native). This is the default
decoding.

Indicates network transportable data representation (XDR).

Indicates VAX data representation. Double-precision floating-point values
will be in Digital's D FLOAT representation.

Indicates DEC Alpha running OpenVMS data representation. Double-
precision floating-point values will be in Digital's D _FLOAT
representation.

Indicates DEC Alpha running OpenVMS data representation. Double-
precision floating-point values will be in Digital's G_FLOAT

representation.

Indicates DEC Alpha running OpenVMS data representation. Double-
precision floating-point values will be in IEEE representation.

Indicates DEC Alpha running OSF/1 data representation.

Indicates SUN data representation.
Indicates Silicon Graphics Iris and Power Series data representation.

Indicates DECstation data representation.

16

IBMRS DECODING Indicates IBMRS data representation (IBM RS6000 series).

HP DECODING Indicates HP data representation (HP 9000 series).

IBMPC DECODING Indicates PC data representation.

NeXT DECODING Indicates NeXT data representation.

MAC DECODING Indicates Macintosh data representation.

ARM LITTLE DECODING Indicates ARM architecture running little-endian data representation.

ARM_BIG DECODING Indicates ARM architecture running big-endian data representation.

1A64VMSi DECODING Indicates Itanium 64 running OpenVMS data representation. Double-
precision floating-point values are encoded in IEEE representation.

[A64VMSd DECODING Indicates Itanium 64 running OpenVMS data representation. Double-
precision floating-point values are encoded in Digital’s D FLOAT
representation.

1A64VMSg DECODING Indicates Itanium 64 running OpenVMS data representation. Double-
precision floating-point values are encoded in Digital’s G_FLOAT
representation.

The default decoding is HOST DECODING. The other decodings may be selected via the CDFsetDecoding method.
The Concepts chapter in the CDF User's Guide describes those situations in which a decoding other than
HOST DECODING may be desired.

2.9 Variable Majorities

A CDF's variable majority determines the order in which variable values (within the variable arrays) are stored in the
CDF file(s). The majority is the same for rVariables and zVariables.

ROW_MAJOR C-like array ordering for variable storage. The first dimension in each
variable array varies the slowest. This is the default.

COLUMN_MAIJOR Fortran-like array ordering for variable storage. The first dimension in each
variable array varies the fastest.

Knowing the majority of a CDF's variables is necessary when performing hyper reads and writes. During a hyper read
the CDF library will place the variable data values into the memory buffer in the same majority as that of the variables.
The buffer must then be processed according to that majority. Likewise, during a hyper write, the CDF library will expect
to find the variable data values in the memory buffer in the same majority as that of the variables.

The majority must also be considered when performing sequential reads and writes. When sequentially reading a
variable, the values passed out by the CDF library will be ordered according to the majority. When sequentially writing
a variable, the values passed into the CDF library are assumed (by the CDF library) to be ordered according to the
majority.

As with hyper reads and writes, the majority of a CDF's variables affect multiple variable reads and writes. When
performing a multiple variable write, the full-physical records in the buffer passed to the CDF library must have the
CDF's variable majority. Likewise, the full-physical records placed in the buffer by the CDF library during a multiple
variable read will be in the CDF's variable majority.

17

For C applications the compiler-defined majority for arrays is row major. The first dimension of multi-dimensional

arrays varies the slowest in memory.

2.10

Record/Dimension Variances

Record and dimension variances affect how variable data values are physically stored.

VARY

NOVARY

True record or dimension variance.

False record or dimension variance.

If a variable has a record variance of VARY, then each record for that variable is physically stored. If the record variance
is NOVARY, then only one record is physically stored. (All of the other records are virtual and contain the same values.)

If a variable has a dimension variance of VARY, then each value/subarray along that dimension is physically stored. If
the dimension variance is NOVARY, then only one value/subarray along that dimension is physically stored. (All other
values/subarrays along that dimension are virtual and contain the same values.)

2.11

Compressions

The following types of compression for CDFs and variables are supported. For each, the required parameters are also
listed. The Concepts chapter in the CDF User's Guide describes how to select the best compression type/parameters for
a particular data set. Among the available types, GZIP provides the best result.

NO_COMPRESSION

RLE COMPRESSION

HUFF_COMPRESSION

AHUFF_COMPRESSION

GZIP_COMPRESSION

No compression.
Run-length encoding compression. There is one parameter.

1. The style of run-length encoding. Currently, only the run-length
encoding of zeros is supported. This parameter must be set to
RLE_OF ZEROs.

Huffman compression. There is one parameter.

1. The style of Huffman encoding. Currently, only optimal encoding trees
are supported. An optimal encoding tree is determined for each block
of bytes being compressed. This parameter must be set to
OPTIMAL ENCODING TREES.

Adaptive Huffman compression. There is one parameter.

1. The style of adaptive Huffman encoding. Currently, only optimal
encoding trees are supported. An optimal encoding tree is determined
for each block of bytes being compressed. This parameter must be set
to OPTIMAL ENCODING TREES.

Gnu's “zip" compression.? There is one parameter.

1. The level of compression. This may range from 1 to 9. 1 provides the
least compression and requires less execution time. 9 provide the most
compression but require the most execution time. Values in-between
provide varying compromises of these two extremes. 6 normally
provides a better balance between compression and execution.

2 Disabled for PC running 16-bit DOS/Windows 3.x.

18

2.12 Sparseness

2.12.1 Sparse Records

The following types of sparse records for variables are supported.
NO_SPARSERECORDS No sparse records.

PAD SPARSERECORDS Sparse records - the variable's pad value is used when reading values from
a missing record.

PREV_SPARSERECORDS Sparse records - values from the previous existing record are used when

reading values from a missing record. If there is no previous existing record
the variable's pad value is used.

2.12.2 Sparse Arrays

The following types of sparse arrays for variables are supported.>

NO_SPARSEARRAYS No sparse arrays.

Note: sparse array is not supported and will not be implemented.

2.13 Attribute Scopes

Attribute scopes are simply a way to explicitly declare the intended use of an attribute by user applications (and the CDF
toolkit).

GLOBAL SCOPE Indicates that an attribute's scope is global (applies to the CDF as a whole).

VARIABLE SCOPE Indicates that an attribute's scope is by variable. (Each rEntry or zEntry
corresponds to an rVariable or zVariable, respectively.)

2.14 Read-Only Modes

Once a CDF has been opened, it may be placed into a read-only mode to prevent accidental modification (such as when
the CDF is simply being browsed). Read-only mode is selected via CDFsetReadOnlyMode method. When read-only
mode is set, all metadata is read into memory for future reference. This improves overall metadata access performance
but is extra overhead if metadata is not needed. Note that if the CDF is modified while not in read-only mode,
subsequently setting read-only mode in the same session will not prevent future modifications to the CDF.

READONLYon Turns on read-only mode.
READONLY off Turns off read-only mode.

2.15 zModes

Once a CDF has been opened, it may be placed into one of two variations of zMode. zMode is fully explained in the
Concepts chapter in the CDF User's Guide. A zMode is selected via CDFsetzMode method.

zMODEoff Turns off zMode.

zMODEonl1 Turns on zMode/1.

3 Obviously, sparse arrays are not yet supported.

19

zMODEon2 Turns on zMode/2.

2.16 -0.0 to 0.0 Modes

Once a CDF has been opened, the CDF library may be told to convert -0.0 to 0.0 when read from or written to that CDF.
This mode is selected via CDFsetNegtoPosfpOMode method.

NEGtoPOSfpOon Convert -0.0 to 0.0 when read from or written to a CDF.

NEGtoPOSfpOoff Do not convert -0.0 to 0.0 when read from or written to a CDF.

2.17 Operational Limits

These are limits within the CDF library. If you reach one of these limits, please contact CDF User Support.
CDF_MAX DIMS Maximum number of dimensions for the rVariables or a zVariable.
CDF_MAX PARMS Maximum number of compression or sparseness parameters.

The CDF library imposes no limit on the number of variables, attributes, or attribute entries that a CDF may have. on the
PC, however, the number of rVariables and zVariables will be limited to 100 of each in a multi-file CDF because of the
8.3 naming convention imposed by MS-DOS.

2.18 Limits of Names and Other

Character Strings

CDF_PATHNAME LEN Maximum length of a CDF file name. A CDF file name may contain disk
and directory specifications that conform to the conventions of the operating
systems being used (including logical names on OpenVMS systems and
environment variables on UNIX systems).

CDF VAR NAME LEN256 Maximum length of a variable name.

CDF_ATTR NAME LEN256 Maximum length of an attribute name.
CDF_COPYRIGHT LEN Maximum length of the CDF Copyright text.
CDF_STATUSTEXT LEN Maximum length of the explanation text for a status code.

2.19 Backward File Compatibility with
CDF 2.7

By default, a CDF file created by CDF V3.0 or a later release is not readable by any of the CDF releases before CDF
V3.0 (e.g. CDF 2.7.x, 2.6.x, 2.5.x, etc.). The file incompatibility is due to the 64-bit file offset used in CDF 3.0 and later
releases (to allow for files greater than 2G bytes). Note that before CDF 3.0, 32-bit file offset was used.

There are two ways to create a file that’s backward compatible with CDF 2.7 and 2.6, but not 2.5. A method,
CDFsetFileBackward, can be called to control the backward compatibility from an application before a CDF file is
created (i.e. CDFcreateCDF). This method takes an argument to control the backward file compatibility. Passing a flag
value of BACKWARDFILEon, defined in CDFConstants, to the method will cause new files being created to be
backward compatible. The created files are of version V2.7.2, not V3.*. This option is useful for those who wish to
create and share files with colleagues who still use a CDF V2.7/V2.6 library. If this option is specified, the maximum
file size is limited to 2G bytes. Passing a flag value of BACKWARDFILEoff will use the default file creation mode

20

and newly created files will not be backward compatible with older libraries. The created files are of version 3.* and
thus their file sizes can be greater than 2G bytes. Not calling this method has the same effect of calling the method with
an argument value of BACKWARDFILEoff.

The following example creates two CDF files: “MY TEST1.cdf” is a V3.* file while “MY_TEST2.cdf” a V2.7 file.

dim id1 as long, id2 as long * CDF identifier.
Dim status as integer ¢ Returned status code.
try

status = CDFcreateCDF(“MY_TEST1”, id1)

CDFsetFileBackward(BACKWARDFILEon)
status = CDFCreateCDF(“MY_TEST2”, id2)

catch ex as Exception

end try

Another method is through an environment variable and no method call is needed (and thus no code change involved in
any existing applications). The environment variable, CDF_FILEBACKWARD on Windows, is used to control the
CDF file backward compatibility. If its value is set to “TRUE”, all new CDF files are backward compatible with CDF
V2.7 and 2.6. This applies to any applications or CDF tools dealing with creation of new CDFs. If this environment
variable is not set, or its value is set to anything other than “TRUE”, any files created will be of the CDF 3.* version and
these files are not backward compatible with the CDF 2.7.2 or earlier versions .

Normally, only one method should be used to control the backward file compatibility. If both methods are used, the
method call through CDFsetFileBackward will take the precedence over the environment variable.

You can use the CDFgetFileBackward method to check the current value of the backward-file-compatibility flag. It
returns 1 if the flag is set (i.e. create files compatible with V2.7 and 2.6) or 0 otherwise.

dim flag as integer ¢ Returned status code.

flag = CDFgetFileBackward()

2.20 Checksum

To ensure the data integrity while transferring CDF files from/to different platforms at different locations, the checksum
feature was added in CDF V3.2 as an option for the single-file format CDF files (not for the multi-file format). By
default, the checksum feature is not turned on for new files. Once the checksum bit is turned on for a particular file, the
data integrity check of the file is performed every time it is open and a new checksum is computed and stored when it is
closed. This overhead (performance hit) may be noticeable for large files. Therefore, it is strongly encouraged to turn
off the checksum bit once the file integrity is confirmed or verified.

If the checksum bit is turned on, a 16-byte signature message (a.k.a. message digest) is computed from the entire file and
appended to the end of the file when the file is closed (after any create/write/update activities). Every time such file is
open, other than the normal steps for opening a CDF file, this signature, serving as the authentic checksum, is used for
file integrity check by comparing it to the re-computed checksum from the current file. If the checksums match, the file’s
data integrity is verified. Otherwise, an error message is issued. Currently, the valid checksum modes are:
NO_CHECKSUM and MD5_CHECKSUM, both defined in CDFConstants class. With MD5 CHECKSUM, the MD5

21

algorithm is used for the checksum computation. The checksum operation can be applied to CDF files that were created
with V2.7 or later.

There are several ways to add or remove the checksum bit. One way is to use the method call with a proper checksum
mode. Another way is through the environment variable. Finally, CDFedit and CDFconvert (CDF tools included as part
of the standard CDF distribution package) can be used for adding or removing the checksum bit. Through the Interface
call, you can set the checksum mode for both new or existing CDF files while the environment variable method only
allows to set the checksum mode for new files.

The environment variable CDF_CHECKSUM on Windows is used to control the checksum option. If its value is set to
“MDS5”, all new CDF files will have their checksum bit set with a signature message produced by the MDS5 algorithm. If

the environment variable is not set or its value is set to anything else, no checksum is set for the new files.

The following example set a new CDF file with the MD5 checksum and set another existing file’s checksum to none.

Dim id1 as long, id2 as long ¢ CDF identifier.
Dim status as integer ¢ Returned status code.
Dim checksum as integer ¢ Checksum code.

.status = CDFCreateCDF(“MY_TEST1”, id1)

'status = CDFsetChecksum (id1, MD5 CHECKSUM)
-status = CDFclose(id1)

.status = CDFopen(“MY_TEST2”, id2)

'status = CDFsetChecksum (id2, NO_CHECKSUM)

status = CDFclose(id2)

2.21 Data Validation

To ensure the data integrity of CDF files and secure operation of CDF-based applications, a data validation feature has
been added to the CDF opening logic. This process, as the default, performs sanity checks on the data fields in the
CDF's internal data structures to make sure that the values are within valid ranges and consistent with the defined
values/types/entries. It also ensures that the variable and attribute associations within the file are valid. Any
compromised CDF files, if not validated properly, could cause applications to function unexpectedly, e.g.,
segmentation fault due to a buffer overflow. The main purpose of this feature is to safeguard the CDF operations, catch
any bad data in the file and end the application gracefully if any bad data is identified. Using this feature, in most
cases, will slow down the file opening process especially for large or very fragmented files. Therefore, it is
recommended that this feature be turned off once a file’s integrity is confirmed or verified. Or, the file in question may
need a file conversion, which will consolidate the internal data structures and eliminate the fragmentations. Check the
cdfconvert tool program in the CDF User’s Guide for further information. *

This validation feature is controlled by setting/unsetting the environment variable CDF_VALIDATE on Windows is
not set or set to “yes”, all CDF files are subjected to the data validation process. If the environment variable is set to
“no”, then no validation is performed. The environment variable can be set at logon or through the command line,

4 The data validation during the open process will not check the variable data. It is still possible that data could be
corrupted, especially compression is involved. To fully validate a CDF file, use cdfdump tool with “-detect” switch.

22

which goes into effect during a terminal session, or within an application, which is good only while the application is
running. Setting the environment variable, using C method CDFsetValidate, at application level will overwrite the
setup from the command line. The validation is set to be on when VALIDATEFILEon is passed in as an argument.
VALIDATEFILEoff will turn off the validation. The function, CDFgetValidate,will return the validation mode, 1
(one) means data being validated, 0 (zero) otherwise. If the environment variable is not set, the default is to validate the
CDF file upon opening.

The following example sets the data validation on when the CDF file, “TEST”, is open.

dim id as long ¢ CDF identifier.
Dim status as integer ¢ Returned status code.

CDFsetValidate (VALIDATEFILEon)
status = CDFopen(“TEST”, id)

The following example turns off the data validation when the CDF file, “TEST” is open.

dim id as long ¢ CDF identifier.
Dim status as integer ¢ Returned status code.

CDFsetValidate (VALIDATEFILEoff)
status = CDFopen(“TEST”, id)

2.22 8-Byte Integer

Both data types of CDF_INT8 and CDF_TIME TT2000 use 8-byes signed integer. VB’s “long” type is the one that
matches to these two types.

2.23 Leap Seconds

CDF’s CDF_TIME_TT2000 is the epoch value in nanoseconds since J2000 (2000-01-01T12:00:00.000000000) with
leap seconds included. The CDF uses an external or internal table for computing the leap seconds. The external table, if
present and properly pointed to by a predefined environment variable, will be used over the internal one. When the VB
package is installed, the external table and environment variables are set so it can be used. If the external table is
deleted or no longer pointed by the environment variable, the internal, hard-coded table in the library is used. When a
new leap second is added, if the external table is updated accordingly, then the software does not need to be upgraded.
Refer to CDF User’s Guide for leap seconds.

A tool program, CDFleapsecondsInfo distributed with the CDFpackage, will show how the table is referred and when
the last leap second was added. Optionally, it can dump the table contents.

Chapter 3

23

3 Understanding the Application
Interface

This chapter provides some basic information about the VB‘s Application Interfaces (APIs) to CDF, and the native
CDF .DLL The following chapter will describe each API in detail.

3.1 Arguments Passing

Each CDF API has a sequence of parameters, which define the set of arguments that must be provided for that method
in VB applications. Being a strongly typed language, VB’s APIs to CDF follow the same rules for the parameters.
Arguments for APIs that perform CDF data get, put or inquire operations are required to have the signatures of the
defined VB value/string type or basic Object classes.

The input parameters in APIs for the CDF identifier, variable number, attribute number, entry number, record
number, record counts and record indices, etc, are always of fixed types. They must be a scalar of type long for CDF
identifier, integer for variable/attribute/entry number and record number/count, or an array of integers, integer(), for
variable dimensional sizes/variances and record data indices, counts and intervals. The output parameters must be in
either of the defined type or the VB base Object class. For example, for a returned data of type integer, the passing
argument in the calling application can be either a defined integer variable, or a variable of object class. Compilation
error will occur if any one of the such arguments from the applications does not match to that defined in the APL

A CDF identifier, when a CDF is open or created, is presented as a long variable, even in the underlying C# and CDF
native library it is a pointer.

For example, CDFsetEncoding and CDFgetEncoding are used to set and get the data encoding of a CDF. Both APIs
take two parameters, the CDF identifier, always a long, and the encoding, an integer. CDFsetEncoding take both
parameters from applications for input, while CDFgetEncoding has the CDF identifier as input and the encoding for
output. The following code shows how these methods can be used.

To set a CDF’s encoding,

dim status as integer
dim id as long
dim encoding as integer

encoding = IBMPC_ENCODING
status = CDFsetEncoding(id, encoding)

The CDF identifier, id, is set when a CDF is open or created. The encoding is set to PC encoding, defined in
CDFConstants class.

Similarly, to get the CDF’s encoding:
status = CDFgetEncoding(id, encoding)

APIs that read or write CDF data, either variable’s data (and their pad value) or metadata, are flexible when dealing with
data of different pre-defined CDF types, e.g., CDF _INT1, CDF UINT1, CDF FLOAT, CDF CHAR, CDF EPOCH,
etc. To pass the data value(s) to the APIs, one of the following forms can be used, depending on the data type: VB
numeric type or string in a scalar or array or simply the VB base object class. String or an array of strings involves
data of CDF_CHAR or CDF_UCHAR type. As VB’s character/string has a different characteristic from the ASCII-
based code in the CDF native DLL library, some manipulations are performed by the APIs when dealing with such data.
VB objects can be used, as a general form for all data value(s), when reading/writing data from CDF. The called APIs

24

will handle the passed object and map it to its corresponding CDF data type. Type casting the objects returned by the
APIs may be needed.

For example, methods: CDFputzVarData and CDFgetzVarData are used to write and read a single data value for an
zVariable in a CDF. Both take five parameters. The first four, the CDF identifier, variable number, record number and
indices, are for input and of fixed types of: long, integer, integer and an array of integers (integer()), respectively. The
last parameter is for data value, as an input for CDFputzVarData or an output for CDFgetzVarData. To call
CDFputzVarData, the data value has to be defined to match to variable’s underlying data type and given a value. It is
passed in as is. To retrieve the data by CDFgetzVarData, just specifies the variable with a proper data type and pass in to
the API.

The following samples show how these arguments are set up to write a data value to record 1, indices (1,1) for zVariable,
“zVarl”, a 2-dimentional of CDF_INT2.

dim status as integer

dim id as long

dim varNum as integer

dim recNum as integer = 1

dim indices() as integer = {1,1}
dim value as short =100

varNum = CDFvarNum (id, “zVarl”)
status = CDFputzVarData(id, varNum, recNum, indices, value)

To read the data value the same variable at the same record and indices:
dim value as short

.s"[a.ltus = CDFgetzVarData(id, varNum, recNum, indices, value)
Similarly, value can be defined as a VB base object:

Dim valueo as object
status = CDFgetzVarData(id, varNum, recNum, indices, valueo)

Either use such statement:
Dim value as short = valueo

Or, use a proper type casting method, such as CType or DirectCast for a scalar, to make it a value type after the object
is returned. For object of an array, just assign it to a properly type-defined, dimensional variable.

dim value as short = Ctype(valueo, short)

APIs that handle multiple data values reads and writes, e.g., CDFputzVarRecordData and CDFgetzVarRecordData
for writing and reading a full data record an zVariable, are similar. They both take four parameters: the first three, as
input, are the CDF identifier, variable number, record number of the fixed types of long, integer and integer,
respectively, and the last one is the data values, input for CDFputzVarRecordData or output for CDFgetzVarRecordData.
The data values have to be defined (and assigned for input), according to the variable’s underlying data type, and passed
in as is.

The following samples show how the arguments are set in CDFputzVarRecordData to write the full record 1 for
zVariable, “zVarl”, a 2-dim (2,3) of type short. The first one passes the data value object as is, while the second one

uses a pointer to the data values.

dim status as integer

25

dim id as long

dim varNum as integer

dim recNum as integer = 1

dim values(,) as short = {{1,2,3},{11,12,13}}

varNum = CDFvarNum (id, “zVarl”)
status = CDFputzVarRecordData(id, varNum, recNum, values)

For CDFgetzVarRecordData to read back the same variable’s record data, one can use the same arguments as
CDFputzVarRecordData.

dim id as long

dim varNum as integer
dim recNum as integer = 1
dim values (,) as short

varNum = CDFvarNum (id, “zVarl1”)
status = CDFgetzVarRecordData(id, varNum, recNum, values)

Console.WriteLine(“{0},{1},{2}”+Environment.Newline+”{3},{4},{5}”,values(0.0),values(0.1), values(0.2),
values(1.0),values(1.1), values(1.2))

Alternatively, use a base object for the output:
dim valueso as object

status = CDFgetzVarRecordData(id, varNum, recNum, valueso)

dim values(,) as short = valueo

Console.WriteLine(“{0},{1},{2}”+Environment.Newline+”{3},{4},{5}”,values(0.0),values(0.1), values(0.2), _
values(1.0),values(1.1), values(1.2))

3.2 Multi-Dimensional Arrays

For data involved multidimensional arrays, CDF’s native .DLL data structure is equivalent to the rectangular array in
VB. Multidimensional arrays of jagged type are not supported by APIs. An extra dimension is added to the retrieved
data if the operations involve multiple records. For example, to read two full records from a variable of two-dimensions,
3-by-4 by the hyper get method, the returned will be a three-dimensional, 2-by-3-by-4, object. Conversely, if the hyper
read skips certain dimension(s) from an operation, the returned object’s dimensionality will be reduced accordingly. For
example, to read a row or column from a variable’s two-dimensional record, the returned will be a single array of either
column or row count.

3.3 Data Type Equivalent

The following list shows the data types used by CDF and their corresponding types in VB:
e CDF INTI1 sbyte

CDF_INT2 short

CDF_INT4 int

CDF_INTS long

CDF UINTI byte

CDF UINT2 ushort

CDF _UINT4 uint

CDF BYTE sbyte

26

e CDF REAL single
e CDF FLOAT single
e CDF DOUBLE double
e CDF REAL8 double
e CDF EPOCH double
e CDF EPOCHI16 double(2)
e CDF _TIME TT2000 long
e CDF CHAR string (with manipulation)
e CDF UCHAR string (with manipulation)
3.4 Fixed Statement

Fixed statement is required to pin VB managed data objects, mainly arrays of numeric data, so that pointers of the objects
can be safely used and passed to the CDF APIs. By doing so, the objects’ addresses in the heap won’t be moved around
by the garbage collector during the operation.

For example, CDFhyperGetzVarData method can be called to retrieve a number of data values for a zVariable. For
instance, the following application code can be used to read the first four (4) records from a zVariable of 2-dim (2,3) of
type CDF_INT4. The declared data buffer, a 3-dimensional of int, is blocked in the fixed statement when the call is made.

dim id as long

dim status as integer

dim varNum as integer

dim recNum as integer = 0, recCount as integer = 4, recInterval as integer = 1

dim indices() as integer = {0, 0}

dim counts() as integer = {2, 3}

dim intervals() as integer = {1,1}

dim data(4,2,3) as integer ¢ Dimension: record number, row, column

status = CDFhyperGetzVarData (id, varNum, recNum, recCount, recInterval, indices, counts, intervals, data)

3.5 Exception Handling

Except a few APIs, each call to a CDF method will return an operation status. If the status is abnormal, less than CDF_OK,
an exception might be thrown. It is recommended that the code for the CDF-based application be surrounded by a try-
catch block so an exception can be caught and handled. The methods to check the existence of a CDF entity, e.g., entry,
attribute, variable, will not throw exception if that entity is not in the CDF. The returned, informational status will reflect
s0. Once an exception is thrown, the thrown object, if initiated from the CDF APIs, is a CDFException class object.
There are a couple of class methods, GetCurrentStatus and GetStatusMsg ,which can be used to acquire the status
when an exception is thrown and the descriptive information about that exception.

dim id as long
dim status as integer
dim encoding as integer
try
status = CDFopen(“TEST?”, id)

status = CDFgetEncoding(id, encoding)
status = CDFclose(id)

catch ex as Exception
Console. WriteLine(“Exception: “+ex.toString())

27

Or,
dim statusl as integer = ex.GetCurrentStatus()
Console.WriteLine(“Exception: “+ex.GetStatusMsg(status1))

}

3.6 Dimensional Limitations

The VB to CDF APIs follow the same dimensional restriction as in the CDF native DLL: a limit of ten (10) dimensions
a CDF variable’s numeric typed data record can have. For string typed data, represented in a CDF file with CDF_CHAR
or CDF_UCHAR type, a limit of four (4) dimensions is applied.

28

Chapter 4
4 Application Interface

This chapter covers all Application Interfaces (APIs) that VB applications can call to interact with CDF. Since C# APIs
to CDF had already been developed, they are the base for all .Net Framework applications for CDF. Pointers are used
extensively for passing the data, e.g., CDF identifier as void *, between C# applications, C# APIs and CDF native DLL.
Such pointer-based functions are hard to handle in VB application. For that, a new set of APIs is added to C# APIs suite
to specifically allow VB applications to use C# functions without the use of pointers.

There are two types of variables (rVariable and zVariable) in CDF, and they can happily coexist in a CDF: Every
rVariable in a CDF must have the same number of dimensions and dimension sizes while each zVariable can have its
own dimensionality. Since all the rVariables in a CDF must have the same dimensions and dimension sizes, there'll be
a lot of disk space wasted if a few variables need big arrays and many variables need small arrays. Since zVariable is
more efficient in terms of storage and offers more functionality than rVariable, use of zZVariable is strongly
recommended. As a matter of fact, there’s no reason to use rVariables at all if you are creating a CDF file from scratch.
One may wonder why there are rVariables and zVariables, not just zVariables. When CDF was first introduced, only
rVariables were available. The inefficiencies with rVariables were quickly realized and addressed with the introduction
of zVariables in later CDF releases.

The description for each API will detail its parameters: their types, for input or output and what the method returns.
APIs that handle read/write of variable data and attribute entry may use a special indicator: TYPE, to specify the
parameters that can have different signatures. The acceptable data types for such method are specified. For example,
CDFgetzVarData method, returning a single zVariable value, is described as:
integer CDFgetEncoding (out -- Completion status code.
id as long, ‘ in-- CDF identifier.
varNum as integer, in -- Variable number.
recNum as integer, in -- Record number.
indices as integer(), in -- Dimension indices.
value as TYPE) ¢ out -- Data value.
‘ TYPE -- VB value/string type or object

TYPE, as specified, can be defined a VB value or string (matching to the variable’s underlying data type) or simply a
VB base Object. The following sample shows how the API is used to retrieve a data value from the zVariable
“my_var”, a 2-dimensional, CDF_INT4 type at indices of {1,1} for record 1:

dim status as integer

dim indices() as integer = {1, 1}

dim id as long

dim value as integer

status = CDFgetEncoding(id, CDFvarNum(id, “my_var”), 1, indices, value)

Alternatively, value can be defined as object:
dim value as object

status = CDFgetEncoding(id, CDFvarNum(id, “my_var”), 1, indices, value)

APIs are grouped, based on the CDF entities they operate on. These groups consist of general library information, CDF
as a whole, variable and attribute/entry.

29

4.1 Library Information

The functions in this section are related to the current CDF library being used for the CDF operations, and they provide
useful information such as the current library version number and Copyright notice.

4.1.1 CDFgetDataTypeSize

integer CDFgetDataTypeSize (out -- Completion status code.
dataType as integer, ‘ in-- CDF data type.
numBytes as integer) ¢ out -- # of bytes for the given type.

3

CDFgetDataTypeSize returns the size (in bytes) of the specified CDF data type.
The arguments to CDFgetDataTypeSize are defined as follows:
dataType The CDF supported data type.

numBytes The size of dataType.

4.1.1.1. Example(s)
The following example returns the size of the data type CDF INT4 that is 4 bytes.

dim status as integer ¢ Returned status code.
Dim numBytes as integer ¢ Number of bytes.
try

status = CDFgetDataTypeSize(CDF_INT4, &numBytes)

catch ex as Exception
end try

4.1.2 CDFgetLibraryCopyright

integer CDFgetLibraryCopyright (
copyright as string)

3

out -- Completion status code.
out -- Library copyright.

CDFgetLibraryCopyright returns the Copyright notice of the CDF library being used.
The arguments to CDFgetLibraryCopyright are defined as follows:

copyright The Copyright notice.

4.1.2.1. Example(s)
The following example returns the Copyright of the CDF library being used.

dim status as integer ¢ Returned status code.
Dim copyright as string * CDF library copyright.

30

try

status = CDFgetLibraryCopyright(copyright)

catch ex as Exception
end try

4.1.3 CDFgetLibraryVersion

integer CDFgetLibraryVersion (
version as integer,

release as integer,

increment as integer,
subIncrement as string)

out -- Completion status code.
out -- Library version.

out -- Library release.

out -- Library increment.

out -- Library sub-increment.

CDFgetLibraryVersion returns the version and release information of the CDF library being used.

The arguments to CDFgetLibraryVersion are defined as follows:

version The library version number.

release The library release number.

increment The library incremental number.

subIncrement The library sub-incremental string, a single character.

4.1.3.1. Example(s)

The following example returns the version and release information of the CDF library that is being used.

3

Returned status code.

CDF library version number.

CDF library release number.

CDF library incremental number.

CDF library sub-incremental character.

dim status as integer

Dim version as integer
Dim release as integer

Dim increment as integer
Dim sublncrement as string

3
3
3

3

try

status = CDFgetLibraryVersion(version, release, increment, sublncrement)
catch ex as Exception
end try

4.14 CDFgetStatusText

dim varNum as integer CDF getStatusText(out -- Completion status code.
status as integer, ¢ in -- The status code.
message as string) ¢ out -- The status text description.

3

31

CDFgetStatusText is identical to CDFerror, a legacy CDF function, (see section 4.2.8), and the use of this method is
strongly encouraged over CDFerror as it might not be supported in the future. This method is used to inquire the text
explanation of a given status code. Chapter 5 explains how to interpret status codes and Appendix A lists all of the
possible status codes.
The arguments to CDFgetStatusText are defined as follows:

status The status code to check.

message The explanation of the status code.

4.1.4.1. Example(s)

The following example displays the explanation text for the error code that is returned from a call to CDFopenCDF.

dim id as long ¢ CDF identifier.

dim status as integer ¢ Returned status code.
Dim text as string ¢ Explanation text.

try

status = CDFopenCDF ("giss wetl", id)
status = CDFclose(id)
catch ex as Exception

text = CDFgetStatusMsg(ex.CDFgetCurrentStatus()) ...
end try

4.2 CDF

The functions in this section provide CDF file-specific operations. Any operations involving variables or attributes are
described in the following sections. This CDF has to be a newly created or opened from an existing one.

4.2.1 CDFclose

3

Integer CDFclose(out -- Completion status code.
id as long) ¢ in-- CDF identifier.

CDFeclose closes the specified CDF. The CDF's cache buffers are flushed the CDF's open file is closed (or files in the
case of a multi-file CDF) and the CDF identifier is made available for reuse.

NOTE: You must close a CDF with CDFclose to guarantee that all modifications you have made will actually be written
to the CDF's file(s). If your program exits, normally or otherwise, without a successful call to CDFclose, the CDF's cache
buffers are left unflushed.

The arguments to CDFclose are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

32

4.2.1.1. Example(s)

The following example will close an open CDF.

dim id as long ¢ CDF identifier.
dim status as integer ¢ Returned status code.
try

status = CDFopen(“...”, id)
status = CDFclose (id)
catch ex as Exception

end try

4.2.2 CDFcloseCDF

Integer CDFcloseCDF (¢ out -- Completion status code.
id as long) ‘ in-- CDF identifier.

CDFcloseCDF closes the specified CDF. This method is identical to CDFclose, a legacy CDF function. The use of this
method is strongly encouraged over CDFclose as it might not be supported in the future. The CDF's cache buffers are
flushed the CDF's open file is closed (or files in the case of a multi-file CDF) and the CDF identifier is made available
for reuse.

NOTE: You must close a CDF with CDFcloseCDF to guarantee that all modifications you have made will actually be
written to the CDF's file(s). If your program exits, normally or otherwise, without a successful call to CDFcloseCDF,
the CDF's cache buffers are left unflushed.

The arguments to CDFcloseCDF are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreateCDF or
CDFopenCDF.

4.2.2.1. Example(s)

The following example will close an open CDF.

dim id as long ¢ CDF identifier.
dim status as integer ¢ Returned status code.
try

status = CDFopenCDF ("giss wetl", id)

status = CDFcloseCDF (id)
catch ex as Exception

end try

33

4.2.3 CDFcreate

Integer CDFcreate(
CDFname as string,
numDims as integer,
dimSizes as integer(),
encoding as integer,
majority as integer,

id as long)

out -- Completion status

¢ in -- CDF file name.

in -- Number of dimensions, rVariables.
in -- Dimension sizes, rVariables.

in -- Data encoding.

in -- Variable majority.

¢ out -- CDF identifier.

CDFcreate, a legacy CDF function, creates a CDF as defined by the arguments. A CDF cannot be created if it already
exists. (The existing CDF will not be overwritten.) If you want to overwrite an existing CDF, you must first open it with
CDFopenCDF, delete it with CDFdeleteCDF, and then recreate it with CDFcreate. If the existing CDF is corrupted, the
call to CDFopen will fail. (An error code will be returned.) In this case you must delete the CDF at the command line.
Delete the dotCDF file (having an extension of .cdf), and if the CDF has the multi-file format, delete all of the variable
files (having extensions of .v0,.v1,. . . and .z0,.z1,.. .).

The arguments to CDFcreate are defined as follows:

CDFname

numDims

dimSizes

encoding

majority

id

The file name of the CDF to create. (Do not specify an extension.) This may be at most
CDF PATHNAME LEN characters. A CDF file name may contain disk and directory
specifications that conform to the conventions of the operating system being used (including
logical names on OpenVMS systems and environment variables on UNIX systems).

UNIX: File names are case-sensitive.

Number of dimensions the rVariables in the CDF are to have. This may be as few as zero (0)
and at most CDF_ MAX DIMS.

The size of each dimension. Each element of dimSizes specifies the corresponding dimension
size. Each size must be greater then zero (0). For 0-dimensional rVariables this argument is

ignored (but must be present).

The encoding for variable data and attribute entry data. Specify one of the encodings
described in Section 2.7.

The majority for variable data. Specify one of the majorities described in Section 2.9.

Identifier for the created CDF. This identifier must be used in all subsequent operations on
the CDF.

When a CDF is created, both read and write access are allowed. The default format for a CDF created with CDFcreate
is specified in the configuration file of your CDF distribution. Consult your system manager for this default.

NOTE: CDFclose must be used to close the CDF before your application exits to ensure that the CDF will be correctly

written to disk.

4.2.3.1. Example(s)

The following example creates a CDF named “test].cdf” with network encoding and row majority.

dim id as long
Dim status as integer
dim numDims as integer = 3

¢ CDF identifier.
¢ Returned status code.
Number of dimensions, rVariables.

3

Dim dimSizes() as integer = {180,360,10} ¢ Dimension sizes, rVariables.

34

dim majority as integer = ROW_MAJOR ¢ Variable majority.
try

status = CDFcreate ("testl", numDims, dimSizes, NETWORK ENCODING, majority, id)
catch ex as Exception
end try

4.2.4 CDFcreateCDF

Integer CDFcreateCDF(¢ out -- Completion status code.
cdfName as string, ¢ in -- CDF file name.
id as long) ¢ out-- CDF identifier.

CDFcreateCDF creates a CDF file. This method is a simple form of CDFcreate without the number of dimensions,
dimensional sizes, encoding and majority arguments. It is the better method if only zVariables are to be created in the
CDF. The created CDF will use the default encoding (HOST ENCODING) and majority (ROW_MAJOR). A CDF
cannot be created if it already exists. (The existing CDF will not be overwritten.) If you want to overwrite an existing
CDF, you can either manually delete the file or open it with CDFopenCDF ,delete it with CDFdeleteCDF, and then
recreate it with CDFcreateCDF. If the existing CDF is corrupted, the call to CDFopenCDF will fail. (An error code will
be returned.) In this case you must delete the CDF at the command line. Delete the dotCDF file (having an extension of
.cdf), and if the CDF has the multi-file format, delete all of the variable files (having extensions of .v0,.v1,. . . and .z0,.z1,..

)

Note that a CDF file created with CDFcreateCDF can only accept zVariables, not rVariables. But this is fine since
zVariables are more flexible than rVariables. See the third paragraph of Chapter 3 for the differences between rVariables
and zVariables.

The arguments to CDFcreateCDF are defined as follows:

CDFname The file name of the CDF to create. (Do not specify an extension.) This may be at most
CDF PATHNAME LEN characters. A CDF file name may contain disk and directory
specifications that conform to the conventions of the operating system being used (including
logical names on OpenVMS systems and environment variables on UNIX systems).

UNIX: File names are case-sensitive.

id Identifier for the created CDF. This identifier must be used in all subsequent operations on
the CDF.

When a CDF is created, both read and write access are allowed. The default format for a CDF created with
CDFcreateCDF is specified in the configuration file of your CDF distribution. Consult your system manager for this

default.

NOTE: CDFcloseCDF must be used to close the CDF before your application exits to ensure that the CDF will be
correctly written to disk.

4.2.4.1. Example(s)

The following example creates a CDF named “testl.cdf” with the default encoding and majority.

dim id as long ¢ CDF identifier.
dim status as integer ¢ Returned status code.

35

try
status = CDFcreateCDF ("testl", id)
status = CDFclose (id)

catch ex as Exception

end try

4.2.5 CDFdelete

integer CDFdelete(¢ out -- Completion status code.
id as long) ¢ in-- CDF identifier.

CDFdelete, a legacy CDF function, deletes the specified CDF. The CDF files deleted include the dotCDF file (having
an extension of .cdf), and if a multi-file CDF, the variable files (having extensions of .v0,.v1,. . . and .z0,.z1,.. .).

You must open a CDF before you are allowed to delete it. If you have no privilege to delete the CDF files, they will not
be deleted. If the CDF is corrupted and cannot be opened, the CDF file(s) must be deleted at the command line.

The arguments to CDFdelete are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

4.2.5.1. Example(s)

The following example will open and then delete an existing CDF.

dim id as long * CDF identifier.
Dim status as integer ¢ Returned status code.
try

status = CDFopen ("test2", id)
status = CDFdelete (id)

catch ex as Exception
end try

4.2.6 CDFdeleteCDF

integer CDFdeleteCDF(¢ out -- Completion status code.
id as long) ¢ in-- CDF identifier.

CDFdeleteCDF deletes the specified CDF. This method is identical to CDFdelete, and the use of this method is strongly
encouraged over CDFdelete as it might not be supported in the future. The CDF files deleted include the dotCDF file
(having an extension of .cdf), and if a multi-file CDF, the variable files (having extensions of .v0,.v1,. . . and .z0,.z1,.. .

).

36

You must open a CDF before you are allowed to delete it. If you have no privilege to delete the CDF files, they will not
be deleted. If the CDF is corrupted and cannot be opened, the CDF file(s) must be deleted at the command line.

The arguments to CDFdeleteCDF are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

4.2.6.1. Example(s)

The following example will open and then delete an existing CDF.

dim id as long ¢ CDF identifier.
dim status as integer ¢ Returned status code.
try

status = CDFopenCDF ("test2", id)
status = CDFdeleteCDF(id)
catch ex as Exception

end try

4.2.7 CDFdoc

integer CDFdoc(¢ out-- Completion status code.
id as long, ‘ in-- CDF identifier.

version as integer, ¢ out -- Version number.
release as integer, out -- Release number.
copyright as string) out -- copyright.

CDFdoc is used to inquire general information about a CDF. The version/release of the CDF library that created the
CDF is provided (e.g., CDF V3.1 is version 3, release 1) along with the CDF copyright notice. The copyright notice is

formatted for printing without modification.

The arguments to CDFdoc are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

version The version number of the CDF library that created the CDF.

release The release number of the CDF library that created the CDF.

copyright The Copyright notice of the CDF library that created the CDF. This string will contain a

newline character after each line of the Copyright notice.

4.2.7.1. Example(s)

The following example returns and displays the version/release and copyright notice.

37

dim id as long * CDF identifier.

dim status as integer ¢ Returned status code.

Dim version as integer * CDF version number.
Dim release as integer CDF release number.
Dim copyright as string ¢ Copyright notice.

3

iry

s.t'a't.us = CDFdoc (id, version, release, copyright)
;:atch ex as Exception
en.(.l.try

4.2.8 CDFerror?®

integer CDFerror(¢ out -- Completion status code.
status as integer, ¢ in-- Status code.
message as string) out -- Explanation text.

3

CDFerror, a legacy CDF function, is used to inquire the explanation of a given status code (not just error codes). Chapter
5 explains how to interpret status codes and Appendix A lists all of the possible status codes.

The arguments to CDFerror are defined as follows:
status The status code to check.

message The explanation of the status code.

4.2.8.1. Example(s)

The following example displays the explanation text if an error code is returned from a call to CDFopen.

dim id as long ¢ CDF identifier.

Dim status as integer ¢ Returned status code.
Dim text as string ¢ Explanation text.

try

status = CDFopen ("giss_wetl", id)

catch ex as Exception
dim status as integer] = CDFerror(ex.GetCurrentStatus(), out text) ...
end try

4.2.9 CDFgetCacheSize

integer CDFgetCacheSize (¢ out-- Completion status code.
id as long, ‘ in-- CDF identifier.

5 A legacy CDF function. While it is still available in V3.1, CDFgetStatusText is the preferred function for it.

38

numBuffers as integer) ¢ out-- CDEF’s cache buffers.

CDFgetCacheSize returns the number of cache buffers being used for the dotCDF file when a CDF is open. Refer to the
CDF User’s Guide for description of caching scheme used by the CDF library.

The arguments to CDFgetCacheSize are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreateCDF
(or CDFcreate) or CDFopen.

numBuffers Number of cache buffers.

4.2.9.1. Example(s)
The following example returns the cache buffers for the open CDF file.

dim id as long ¢ CDF identifier.

dim status as integer ¢ Returned status code.
dim numBuffers as integer ¢ CDF’s cache buffers.
try

status = CDFgetCacheSize (id, numBuffers)

catch ex as Exception
end try

4.2.10 CDFgetChecksum

integer CDFgetChecksum (¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.
checksum as integer) ¢ out-- CDF’s

CDFgetChecksum returns the checksum mode of a CDF. The CDF checksum mode is described in Section 2.20.
The arguments to CDFgetChecksum are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreateCDF
(or CDFcreate) or CDFopen.

checksum The checksum mode (NO_CHECKSUM or MD5 CHECKSUM).

4.2.10.1. Example(s)
The following example returns the checksum code for the open CDF file.

dim id as long * CDF identifier.
dim status as integer ¢ Returned status code.
dim checksum as integer ¢ CDF’s checksum.

39

try

status = CDFgetChecksum (id, checksum)

catch ex as Exception
end try

4.2.11 CDFgetCompression

integer CDFgetCompression (out -- Completion status code.
id as long, ¢ in-- CDF identifier.
compressionType as integer, out -- CDF’s compression type.
compressionParms as integer(), out -- Compression parameters.
compressionPercentage as integer) out -- Compressed percentage.

CDFgetCompression gets the compression information of the CDF. It returns the compression type (method) and, if
compressed, the compression parameters and compression rate. CDF compression types/parameters are described in
Section 2.11. The compression percentage is the result of the compressed file size divided by its original, uncompressed
file size.®

The arguments to CDFgetCompression are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

compressionType The type of the compression.
compressionParms The parameters of the compression.

compressionPercentage The compression rate.

4.2.11.1. Example(s)

The following example returns the compression information of the open CDF file.

dim id as long ¢ CDF identifier.

dim status as integer ¢ Returned status code.
dim compressType as integer CDF’s compression type.
Dim compressionParms() as integer Compression parameters.
dim compressionPercentage as integer Compression rate.

3

try
status = CDFgetCompression (id, compression, compressionParms, compressionPercentage)

catch ex as Exception

¢ The compression ratio is (100 — compression percentage): the lower the compression percentage, the better the
compression ratio.

40

end try

4.2.12 CDFgetCompressionCacheSize

integer CDFgetCompressionCacheSize (out -- Completion status code.
id as long, ‘ in-- CDF identifier.
numBuffers as integer) ¢ out -- CDF’s compressed cache buffers.

3

CDFgetCompressionCacheSize gets the number of cache buffers used for the compression scratch CDF file. Refer to
the CDF User’s Guide for description of caching scheme used by the CDF library.

The arguments to CDFgetCompressionCacheSize are defined as follows:

Id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.
numBuffers Number of cache buffers.

4.2.12.1. Example(s)

The following example returns the number of cache buffers used for the scratch file from the compressed CDF file.

dim id as long ¢ CDF identifier.

dim status as integer ¢ Returned status code.

dim numBuffers as integer ¢ Compression cache buffers.
try

status = CDFgetCompressionCacheSize (id, numBuffers)

catch ex as Exception
end try

4.2.13 CDFgetCompressionInfo

integer CDFgetCompressionInfo (
CDFname as string,

compType as integer,

cParms.as integer()

cSize as long.

uSize as long).

out -- Completion status code.
in-- CDF name.

out -- CDF compression type.
out -- Compression parameters.
out -- CDF compressed size.
out -- CDF uncompressed size.

CDFgetCompressionlnfo returns the compression type/parameters of a CDF without having to open the CDF. This refers
to the compression of the CDF - not of any compressed variables.

The arguments to CDFgetCompressionInfo are defined as follows:

CDFname The pathname of a CDF file without the .cdf file extension.
compType The CDF compression type.
cParms The CDF compression parameters.

41

cSize The compressed CDF file size.

uSize The size of CDF when decompress the originally compressed CDF.

4.2.13.1. Example(s)

The following example returns the compression information from a “unopen” CDF named “MY_TEST.cdf”.

3

Returned status code.
Compression type.
Compression parameters.

dim status as integer
dim compType as integer
dim cParms as integer()

3

3

Dim cSize as long ¢ Compressed file size.
Dim uSize as long ¢ Decompressed file size.
try

status = CDFgetCompressionlnfo(“MY_TEST”, compType, cParms, cSize, uSize)

catch ex as Exception
end try

4.2.14 CDFgetCopyright

integer CDFgetCopyright (out -- Completion status code.
id as long, ‘ in-- CDF identifier.
copyright as string) ¢ out -- Copyright notice.
CDFgetCopyright gets the Copyright notice in a CDF.

The arguments to CDFgetCopyright are defined as follows:

3

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

copyright CDF Copyright.

4.2.14.1. Example(s)
The following example returns the Copyright in a CDF.

dim id as long ¢ CDF identifier.

dim status as integer ¢ Returned status code.
Dim copyright as string ¢ CDF’s copyright.

try

status = CDFgetCopyright (id, copyright)

catch ex as Exception

4

end try

4.2.15 CDFgetDecoding

integer CDFgetDecoding (out -- Completion status code.
id as long, ‘ in-- CDF identifier.
decoding as integer) ¢ out -- CDF decoding.

3

CDFgetDecoding returns the decoding code for the data in a CDF. The decodings are described in Section 2.8.
The arguments to CDFgetDecoding are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

decoding The decoding of the CDF.

4.2.15.1. Example(s)
The following example returns the decoding for the CDF.

dim id as long ¢ CDF identifier.

dim status as integer ¢ Returned status code.
dim decoding as integer Decoding.

try

status = CDFgetDecoding(id, decoding)

catch ex as Exception
end try

4.2.16 CDFgetEncoding

integer CDFgetEncoding (out -- Completion status code.
id as long, ¢ in-- CDF identifier.
encoding as integer) ¢ out-- CDF encoding.

3

CDFgetEncoding returns the data encoding used in a CDF. The encodings are described in Section 2.7.
The arguments to CDFgetEncoding are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

encoding The encoding of the CDF.

4.2.16.1. Example(s)

The following example returns the data encoding used for the given CDF.

43

dim id as long ¢ CDF identifier.

dim status as integer Returned status code.
dim encoding as integer ¢ Encoding.
try

status = CDFgetEncoding(id, encoding)

catch ex as Exception
end try
4.2.17 CDFgetFileBackward
integer CDFgetFileBackward() ‘ out — File Backward Mode.

CDFgetFileBackward returns the backward mode information dealing with the creation of a new CDF file. A mode of
value 1 indicates when a new CDF file is created, it will be a backward version of V2.7, not the current library version.

The arguments to CDFgetFileBackward are defined as follows:

N/A

4.2.17.1. Example(s)

In the following example, the CDF’s file backward mode is acquired.

dim id as long ¢ CDF identifier.

dim status as integer Returned status code.
dim mode as integer ¢ Backward mode.

try

mode = CDFgetFileBackward ()
if mode = 1 then

end if
catch ex as Exception
end try

4.2.18 CDFgetFormat

integer CDFgetFormat (¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.
format as integer) ¢ out-- CDF format.

CDFgetFormat returns the file format, single or multi-file, of the CDF. The formats are described in Section 2.5.

44

The arguments to CDFgetFormat are defined as follows:
id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

format The format of the CDF.

4.2.18.1. Example(s)
The following example returns the file format of the CDF.

dim id as long * CDF identifier.

dim status as integer ¢ Returned status code.
dim format as integer ¢ Format.

try

status = CDFgetFormat(id, format)

catch ex as Exception
end try

4.2.19 CDFgetLeapSecondLastUpdated

integer CDFgetLeapSecondLastUpdated (out -- Completion status code.
id as long, ¢ in-- CDF identifier.

lastUpdated as integer) ¢ out-- CDF format.

3

CDFgetLeapSecondLastUpdated returns the leap second last updated date from the CDF. This value indicates what/if
the leap second table this CDF is based on. It is of YYYYMMDD form. The value can also be negative 1 (-1), the field
not set (for older CDFs), or zero (0) if the leap second table is not being accessed. This field is only relevant to TT2000
data in the CDF.

The arguments to CDFgetLeapSecondLastUpdated are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

lastUpdated The date that the latest leap second was added to the leap second table.

4.2.19.1. Example(s)
The following example returns the date that the last leap second was added to the leap second table from the CDF.

dim id as long CDF identifier.

dim status as integer ¢ Returned status code.
dim lastUpdatedas integer ¢ Format.

try

status = CDFgetLeapSecondLastUpdated(id, lastUpdated)

45

catch ex as Exception
end try

4.2.20 CDFgetMajority

integer CDFgetMajority (out -- Completion status code.
id as long, ¢ in-- CDF identifier.
majority as integer) ¢ out-- Variable majority.

3

CDFgetMajority returns the variable majority, row or column-major, of the CDF. The majorities are described in Section
2.9.

The arguments to CDFgetMajority are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

majority Variable majority of the CDF.

4.2.20.1. Example(s)
The following example returns the majority of the CDF.

dim id as long CDF identifier.

dim status as integer ¢ Returned status code.
dim majority as integer ¢ Majority.

try

status = CDFgetMajority (id, majority)

catch ex as Exception
end try

4.2.21 CDFgetName

integer CDFgetName (out -- Completion status code.
id as long, ¢ in-- CDF identifier.
name as string) ¢ out -- CDF name.

3

CDFgetName returns the file name of the specified CDF.
The arguments to CDFgetName are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

name File name of the CDF.

46

4.2.21.1. Example(s)

The following example returns the name of the CDF.

dim id as long ¢ CDF identifier.

dim status as integer ¢ Returned status code.
Dim name as string ¢ Name of the CDF.
try

status = CDFgetName (id, name)

catch ex as Exception
end try

4.2.22 CDFgetNegtoPosfp0Mode

integer CDFgetNegtoPosfpOMode (¢ out -- Completion status code.
id as long, ‘ in-- CDF identifier.
negtoPosfp0 as integer) ¢ out-- -0.0 to 0.0 mode.

CDFgetNegtoPosfpOMode returns the —0.0 to 0.0 mode of the CDF. You can use CDFsetNegtoPosfp0 method to set the
mode. The —0.0 to 0.0 modes are described in Section 2.16.

The arguments to CDFgetNegtoPosfpOMode are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

negtoPosfp0 —0.0 to 0.0 mode of the CDF.

4.2.22.1. Example(s)
The following example returns the —0.0 to 0.0 mode of the CDF.

dim id as long ¢ CDF identifier.

dim status as integer ¢ Returned status code.
Dim negtoPosfp0 as integer ¢ -0.0 to 0.0 mode.

try

status = CDFgetNegtoPosfpOMode (id, negtoPosfp0)

catch ex as Exception

end try

47

4.2.23 CDFgetReadOnlyMode

integer CDFgetReadOnlyMode(¢ out -- Completion status code.
id as long, ‘ in-- CDF identifier.
readOnlyMode as integer) ¢ out-- CDF read-only mode.

CDFgetReadOnlyMode returns the read-only mode for a CDF. You can use CDFsetReadOnlyMode to set the mode of
readOnlyMode. The read-only modes are described in Section 2.14.

The arguments to CDFgetReadOnlyMode are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

readOnlyMode Read-only mode (READONLYon or READONLY off).

4.2.23.1. Example(s)

The following example returns the read-only mode for the given CDF.

dim id as long ¢ CDF identifier.

Dim status as integer

dim readMode as integer ¢ CDF read-only mode.
try

status = CDFgetReadOnlyMode (id, readMode)

catch ex as Exception
end try

4.2.24 CDFgetStageCacheSize

integer CDFgetStageCacheSize(out -- Completion status code.
id as long, ¢ in-- CDF identifier.
numBuffers as integer) ¢ out -- The stage cache size.

3

CDFgetStageCacheSize returns the number of cache buffers being used for the staging scratch file a CDF. Refer to the
CDF User’s Guide for the description of the caching scheme used by the CDF library.

The arguments to CDFgetStageCacheSize are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

numBuffers Number of cache buffers.

4.2.24.1. Example(s)

The following example returns the number of cache buffers used in a CDF.

48

dim id as long ¢ CDF identifier.
Dim status as integer
dim numBuffers as integer ¢ The number of cache buffers.

try

status = CDFgetStageCacheSize (id, numBuffers)

catch ex as Exception
end try
4.2.25 CDFgetValidate
integer CDFgetValidate() ‘ out — CDF validation mode.
CDFgetValidate returns the data validation mode. This information reflects whether when a CDF is open, its certain data
fields are subjected to a validation process. 1 is returned if the data validation is to be performed, 0 otherwise.

The arguments to CDFgetVersion are defined as follows:

N/A

4.2.25.1. Example(s)

In the following example, it gets the data validation mode.

dim id as long ¢ CDF identifier.

dim status as integer Returned status code.
dim validate as integer ¢ Data validation flag.
try

validate = CDFgetValidate ()

catch ex as Exception
end try

4.2.26 CDFgetVersion

integer CDFgetVersion(¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.

version as integer, ¢ out -- CDF version.

release as integer, ¢ out -- CDF release.

increment as integer) out -- CDF increment.

CDFgetVersion returns the version/release information for a CDF file. This information reflects the CDF library that was
used to create the CDF file.

49

The arguments to CDFgetVersion are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

version CDF version number.
release CDF release number.
increment CDF increment number.

4.2.26.1. Example(s)

In the following example, a CDF’s version/release is acquired.

dim id as long ¢ CDF identifier.

dim status as integer ¢ Returned status code.
dim version as integer CDF version.

dim release as integer ¢ CDF release

dim increment as integer ¢ CDF increment.

3

try

status = CDFgetVersion (id, version, release, increment)

catch ex as Exception
end try

4.2.27 CDFgetzMode

integer CDFgetzMode(¢ out -- Completion status code.
id as long, ‘ in-- CDF identifier.
zMode as integer) ¢ out-- CDF zMode.

CDFgetzMode returns the zMode for a CDF file. The zModes are described in Section 2.15.
The arguments to CDFgetzMode are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

zMode CDF zMode.

4.2.27.1. Example(s)

In the following example, a CDF’s zMode is acquired.

dim id as long ¢ CDF identifier.
dim status as integer ¢ Returned status code.

50

dim zMode as integer

try

¢ CDF zMode.

status = CDFgetzMode (id, zMode)

catch ex as Exception

end try

4.2.28 CDFinquire

integer CDFinquire(
id as long,

numDims as integer,
dimSizes as integer(),
encoding as integer,
majority as integer,
maxRec as integer,
numVars as integer,
numALttrs as integer)

out -- Completion status code.

¢ in -- CDF identifier

out -- Number of dimensions, rVariables.

out -- Dimension sizes, rVariables.

out -- Data encoding.

out -- Variable majority.

out -- CDF’s maximum record number, rVariables.
out -- Number of rVariables in the CDF.

out -- Number of attributes in the CDF.

CDFinquire returns the basic characteristics of a CDF. An application needs to know the number of rVariable dimensions
and their sizes before it can access rVariable data (since all rVariables’ dimension and dimension size are the same).
Knowing the variable majority can be used to optimize performance and is necessary to properly use the variable hyper
functions (for both rVariables and zVariables).

The arguments to CDFinquire are defined as follows:

id

numDims

dimSizes

encoding

majority

maxRec

numVars

numAttrs

Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

Number of dimensions for the rVariables in the CDF.

Dimension sizes of the rVariables in the CDF. dimSizes is a 1 -dimensional array containing
one element per dimension. Each element of dimSizes receives the corresponding
dimension size. For 0-dimensional rVariables this argument is ignored (but must be

present).

Encoding of the variable data and attribute entry data. The encodings are defined in Section
2.7.

Majority of the variable data. The majorities are defined in Section 2.9.

Maximum record number written to an rVariable in the CDF. Note that the maximum record
number written is also kept separately for each rVariable in the CDF. The value of maxRec
is the largest of these. Some rVariables may have fewer records actually written. Use
CDFrVarMaxWrittenRecNum to inquire the maximum record written for an individual
rVariable.

Number of rVariables in the CDF.

Number of attributes in the CDF.

51

4.2.28.1. Example(s)

The following example returns the basic information about a CDF.

dim id as long ¢ CDF identifier.

dim status as integer Returned status code.

dim numDims as integer Number of dimensions, rVariables.
Dim dimSizes() as integer Dimension sizes, rVariables

dim encoding as integer Data encoding.

dim majority as integer Variable majority.

dim maxRec as integer Maximum record number,

¢ rVariables.
dim numVars as integer ¢ Number of rVariables in CDF.
dim numAttrs as integer ¢ Number of attributes in CDF.
try
status = CDFinquire (id, numDims, dimSizes, encoding, majority,
maxRec, numVars, numAttrs)
catch ex as Exception
end try
4.2.29 CDFinquireCDF
integer CDFinquireCDF(¢ out-- Completion status code.
id as long, ‘ in-- CDF identifier

out -- Number of dimensions for rVariables.

out -- Dimension sizes for rVariables.

out -- Data encoding.

out -- Variable majority.

out -- Maximum record number among rVariables .
out -- Number of rVariables in the CDF.

out -- Maximum record number among zVariables .
¢ out -- Number of zVariables in the CDF.

out -- Number of attributes in the CDF.

numDims as integer,
dimSizes as integer(),
encoding as integer,
majority as integer,
maxrRec as integer,
numrVars as integer,
maxzRec as integer,
numzVars as integer,
numAttrs as integer)

CDFinquireCDF returns the basic characteristics of a CDF. This method expands the method CDFinquire by acquiring
extra information regarding the zVariables. Knowing the variable majority can be used to optimize performance and is
necessary to properly use the variable hyper-get/put functions.

The arguments to CDFinquireCDF are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

numDims Number of dimensions for the rVariables in the CDF. Note that all the rVariables’
dimensionality in the same CDF file must be the same.

dimSizes Dimension sizes of the rVariables in the CDF (note that all the rVariables’ dimension sizes
in the same CDF file must be the same). dimSizes is a 1-dimensional array containing one

52

encoding

majority

maxrRec

numrVvars

maxzRec

numzVars

numAttrs

4.2.29.1. Example(s)

element per dimension. Each element of dimSizes receives the corresponding dimension
size. For 0-dimensional rVariables this argument is ignored (but must be present).

Encoding of the variable data and attribute entry data. The encodings are defined in Section
2.7.

Majority of the variable data. The majorities are defined in Section 2.9.

Maximum record number written to an rVariable in the CDF. Note that the maximum
record number written is also kept separately for each rVariable in the CDF. The value of
maxRec is the largest of these.

Number of rVariables in the CDF.

Maximum record number written to a zVariable in the CDF. Note that the maximum record
number written is also kept separately for each zVariable in the CDF. The value of maxRec
is the largest of these. Some zVariables may have fewer records than actually written. Use
CDFgetzVarMaxWrittenRecNum to inquire the actual number of records written for an
individual zVariable.

Number of zVariables in the CDF.

Number of attributes in the CDF.

The following example returns the basic information about a CDF.

dim id as long
dim status as integer
dim numDims as integer

Dim dimSizes() as integer

dim encoding as integer
dim majority as integer
dim maxRec as integer
dim numrVars as integer
dim maxzRec as integer
dim numzVars as integer
dim numAttrs as integer

try

¢ CDF identifier.

Returned status code.

Number of dimensions, rVariables.
Dimension sizes, rVariables .

Data encoding.

Variable majority.

Maximum record number, rVariables.
¢ Number of rVariables in CDF.
Maximum record number, zVariables.
¢ Number of zVariables in CDF.

¢ Number of attributes in CDF.

status = CDFinquireCDF (id, numDims, dimSizes, encoding, majority,

catch ex as Exception
end try

4.2.30 CDFopen

integer CDFopen(
CDFname as string,
id as long)

maxrRec, numrVars, maxzRec, numzVars, numAttrs)

3

out -- Completion status code.
* in -- CDF file name.
¢ out-- CDF identifier.

53

CDFopen, a legacy CDF function, opens an existing CDF. The CDF is initially opened with only read access. This
allows multiple applications to read the same CDF simultaneously. When an attempt to modify the CDF is made, it is
automatically closed and reopened with read/write access. (The method will fail if the application does not have or cannot
get write access to the CDF.)

The arguments to CDFopen are defined as follows:

CDFname File name of the CDF to open. (Do not specify an extension.) This may be at most
CDF PATHNAME LEN characters. A CDF file name may contain disk and directory
specifications that conform to the conventions of the operating system being used (including
logical names on OpenVMS systems and environment variables on UNIX systems).

UNIX: File names are case-sensitive.

id Identifier for the opened CDF. This identifier must be used in all subsequent operations on
the CDF.

NOTE: CDFclose must be used to close the CDF before your application exits to ensure that the CDF will be correctly
written to disk.

4.2.30.1. Example(s)
The following example will open a CDF named “NOAA1.cdf”.

dim id as long * CDF identifier.

dim status as integer ¢ Returned status code.
Dim CDFname as string= "NOAA1" ¢ file name of CDF.

try

status = CDFopen (CDFname, id)
catch ex as Exception
end try

4.2.31 CDFopenCDF

Integer CDFopenCDF(¢ out -- Completion status code.
CDFname as string, ¢ in -- CDF file name.
id as long) ¢ out-- CDF identifier.

CDFopenCDF opens an existing CDF. This method is identical to CDFopen, and the use of this method is strongly
encouraged over CDFopen as it might not be supported in the future. The CDF is initially opened with only read access.
This allows multiple applications to read the same CDF simultaneously. When an attempt to modify the CDF is made,
it is automatically closed and reopened with read/write access. The method will fail if the application does not have or
cannot get write access to the CDF.

The arguments to CDFopenCDF are defined as follows:
CDFname File name of the CDF to open. (Do not specify an extension.) This may be at most
CDF_PATHNAME LEN characters. A CDF file name may contain disk and directory

specifications that conform to the conventions of the operating system being used (including
logical names on OpenVMS systems and environment variables on UNIX systems).

54

UNIX: File names are case-sensitive.

id Identifier for the opened CDF. This identifier must be used in all subsequent operations on
the CDF.

NOTE: CDFcloseCDF must be used to close the CDF before your application exits to ensure that the CDF will be
correctly written to disk.

4.2.31.1. Example(s)
The following example will open a CDF named “NOAA1.cdf”.

dim id as long * CDF identifier.

dim status as integer ¢ Returned status code.
Dim CDFname as string = "NOAA1" ¢ file name of CDF.

try

status = CDFopenCDF (CDFname, id)

catch ex as Exception
end try

4.2.32 CDFselect

integer CDFselect(¢ out-- Completion status code.
id as long) ‘ in-- CDF identifier.

CDFselect selects an opened CDF as the current CDF. Only one CDF is allowed to be current. To access data from a
CDF, that CDF must be selected as the current. This method is no longer needed as the methods involved CDF operations
always need the CDF identifier, as the first argument, so it can be set as current before other operations can be applied.

The arguments to CDFselect are defined as follows:

id Identifier for the opened CDF. This identifier must be used in all subsequent operations on
the CDF.

NOTE: When a CDF is opened, it becomes the current. No CDF is current after CDFcloseCDF is called to close the
file.

4.2.32.1. Example(s)

The following example will select a CDF named “NOAA1.cdf” as the current CDF while another file “NOAA2.cdf” is
also opened.

dim id1 as long, id2 as long ¢ CDF identifier.

dim status as integer Returned status code.
Dim CDFnamel as string = "NOAA1" ¢ file name of CDF.
Dim CDFname?2 as string = "NOAA2" ¢ file name of CDF.

55

'.cry

;t:;tus: CDFopenCDF (CDFnamel, idl)
status = CDFopenCDF (CDFname2, id2)
status = CDFselect(id1)

status = CDFclose(id1)
status = CDFclose(id2)
catch ex as Exception

end try

4.2.33 CDFselectCDF

integer CDFselectCDF(out -- Completion status code.
id as long) ¢ in-- CDF identifier.

CDFselectCDF selects an opened CDF as the current CDF. Only one CDF is allowed to be current. To access data from
a CDF, that CDF must be selected as the current. This method is no longer needed as the methods involved CDF
operations always need the CDF identifier, as the first argument, so it can be set as current before other operations can
be applied. This method is identical to CDFselect.

The arguments to CDFselectCDF are defined as follows:

id Identifier for the opened CDF. This identifier must be used in all subsequent operations on
the CDF.

NOTE: When a CDF is opened, it becomes the current. No CDF is current after CDFcloseCDF is called to close the
file.

4.2.33.1. Example(s)

The following example will select a CDF named “NOAA1.cdf” as the current CDF while another file “NOAA2.cdf” is
also opened.

dim id1 as long, i2 as long ¢ CDF identifier.

dim status as integer ¢ Returned status code.
Dim CDFnamel as string = "NOAA1" ¢ file name of CDF.
Dim CDFname?2 as string = "NOAA2" ¢ file name of CDF.

try

;t‘;tus = CDFopenCDF (CDFnamel, idl)
status = CDFopenCDF (CDFname2, id2)
status = CDFselectCDF(id1)

.s.t.z.itus = CDFclose(id1)

status = CDFclose(id2)
catch ex as Exception

56

end try

4.2.34 CDFsetCacheSize

integer CDFsetCacheSize (¢ out-- Completion status code.
id as long, ‘ in-- CDF identifier.
numBuffer as integer) ¢ in -- CDF’s cache buffers.

CDFsetCacheSize specifies the number of cache buffers being used for the dotCDF file when a CDF is open. Refer to
the CDF User’s Guide for the description of the cache scheme used by the CDF library.

The arguments to CDFsetCacheSize are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

numBuffers Number of cache buffers.

4.2.34.1. Example(s)

The following example extends the number of cache buffers to 500 for the open CDF file. The default number is 300 for
a single-file format CDF on Unix systems.

dim id as long * CDF identifier.
dim status as integer ¢ Returned status code.
dim cacheBuffers as integer ¢ CDF’s cache buffers.

cacheBuffers = 500
try

status = CDFsetCacheSize (id, cacheBuffers)

catch ex as Exception
end try

4.2.35 CDFsetChecksum

integer CDFsetChecksum (¢ out -- Completion status code.

id as long, ¢ in-- CDF identifier.

checksum as integer) in -- CDF’s checksum mode.
CDFsetChecksum specifies the checksum mode for the CDF. The CDF checksum mode is described in Section 2.20.

The arguments to CDFsetChecksum are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

checksum Checksum mode (NO_CHECKSUM or MD5 CHECKSUM).

57

4.2.35.1. Example(s)
The following example turns off the checksum flag for the open CDF file..

dim id as long ¢ CDF identifier.
dim status as integer ¢ Returned status code.
dim checksum as integer ¢ CDF’s checksum.

checksum=NO_ CHECKSUM
try

status = CDFsetChecksum (id, checksum)

catch ex as Exception
end try

4.2.36 CDFsetCompression

integer CDFsetCompression (out -- Completion status code.

id as long, ‘ in-- CDF identifier.
compressionType as integer, in -- CDF’s compression type.
CompressionParms as integer()) in -- CDF’s compression parameters.

CDFsetCompression specifies the compression type and parameters for a CDF. This compression refers to the CDF, not
of any variables. The compressions are described in Section 2.11.

The arguments to CDFsetCompression are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

compressionType Compression type .

compressionParms Compression parameters.

4.2.36.1. Example(s)
The following example uses GZIP.6 to compress the CDF file.

dim id as long * CDF identifier.

dim status as integer ¢ Returned status code.

dim compressionType as integer CDF’s compression type.

Dim compressionParms(1) as integer CDF’s compression parameters.

3

compressionType = GZIP. COMPRESSION
compressionParms(0) = 6

try

status = CDFsetCompression (id, compressionType, compressionParms) ...

58

catch ex as Exception
end try

4.2.37 CDFsetCompressionCacheSize

integer CDFsetCompressionCacheSize (out -- Completion status code.
id as long, ¢ in-- CDF identifier.
numBuffers as integer) ¢ in -- CDF’s compressed cache buffers.

3

CDFsetCompressionCacheSize specifies the number of cache buffers used for the compression scratch CDF file. Refer
to the CDF User’s Guide for the description of the cache scheme used by the CDF library.

The arguments to CDFsetCompressionCacheSize are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

compressionNumBuffers Number of cache buffers.

4.2.37.1. Example(s)

The following example extends the number of cache buffers used for the scratch file from the compressed CDF file to
100. The default cache buffers is 80 for Unix systems.

dim id as long ¢ CDF identifier.

dim status as integer Returned status code.

dim numBuffers as integer = 100 ¢ CDF’s compression cache buffers.
try

status = CDFsetCompressionCacheSize (id, numBuffers)

catch ex as Exception
end try

4.2.38 CDFsetDecoding

integer CDFsetDecoding (out -- Completion status code.
id as long, ¢ in-- CDF identifier.
decoding as integer) ¢ in -- CDF decoding.

3

CDFsetDecoding sets the decoding of a CDF. The decodings are described in Section 2.8.
The arguments to CDFsetDecoding are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

decoding Decoding of a CDF.

59

4.2.38.1. Example(s)
The following example sets NETWORK DECODING to be the decoding scheme in the CDF.

dim id as long ¢ CDF identifier.
Dim status as integer ¢ Returned status code.
Dim decoding as integer ¢ Decoding.

decoding = NETWORK DECODING
try

status = CDFsetDecoding (id, decoding)

catch ex as Exception
end try

4.2.39 CDFsetEncoding

integer CDFsetEncoding (out -- Completion status code.
id as long, ‘ in-- CDF identifier.
encoding as integer) * in -- CDF encoding.

3

CDFsetEncoding specifies the data encoding of the CDF. A CDF’s encoding may not be changed after any variable
values have been written. The encodings are described in Section 2.7.

The arguments to CDFsetEncoding are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

encoding Encoding of the CDF.

4.2.39.1. Example(s)
The following example sets the encoding to HOST ENCODING for the CDF.

dim id as long ¢ CDF identifier.
Dim status as integer ¢ Returned status code.
Dim encoding as integer ¢ Encoding.

encoding = HOST _ENCODING

try
status = CDFsetEncoding(id, encoding)

catch ex as Exception

end try

60

4.2.40 CDFsetFileBackward

void CDFsetFileBackward(
mode as integer) ‘¢ in -- File backward Mode.

CDFsetFileBackward sets the backward mode. When the mode is set as FILEBACKWARDon, any new CDF files
created are of version 2.7, instead of the underlining library version. If mode FILEBACKWARDoff is used, the default
for creating new CDF files, the library version is the version of the file.

The arguments to CDFsetFileBackward are defined as follows:

mode Backward mode.

4.2.40.1. Example(s)

In the following example, it sets the file backward mode to FILEBACKWARDoff, which means that any files to be
created will be of version V3.*, the same as the library version.

try

CDFsetFileBackward (FILEBACKW ARDoff)

catch ex as Exception

end try

4.2.41 CDFsetFormat

integer CDFsetFormat (out -- Completion status code.

id as long, ¢ in-- CDF identifier.

format as integer) in -- CDF format.

CDFsetFormat specifies the file format, either single or multi-file format, of the CDF. A CDF’s format may not be
changed after any variable values have been written. The formats are described in Section 2.5.

3

The arguments to CDFsetFormat are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

format File format of the CDF.

4.2.41.1. Example(s)
The following example sets the file format to MULTI_FILE for the CDF. The default is SINGLE FILE format.

dim id as long ¢ CDF identifier.
Dim status as integer Returned status code.
Dim format as integer ¢ Format.

format = MULTI FILE
try

61

status = CDFsetFormat(id, format)

catch ex as Exception
end try

4.2.42 CDFsetLeapSecondLastUpdated

integer CDFsetLeapSecondLastUpdated (¢ out -- Completion status code.
id as long, ‘ in-- CDF identifier.
lastUpdated as integer) in-- Leap second last updated date

CDFsetLeapSecondLastUpdated respecifies the leap second last updated date in the CDF. The value, in YYYYMMDD
form, indicates what/if the leap second table this CDF is based upon. The value is either a valid entry in the currently
used leap second table, or zero (0). Value zero means the CDF is not using any leap second table. This field is only
relevant to TT2000 data. Normally, this function is used for older CDFs that have not had the field set.

The arguments to CDFsetLeapSecondLastUpdated are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

lastUpdated Date the latest leap second was added to the leap second table.

4.2.42.1. Example(s)

The following example resets the leap second last updated date in the CDF. Likely, the file’s field was not set originally
(an older CDF).

dim id as long ¢ CDF identifier.
dim status as integer Returned status code.
dim lastUpdated as integer ¢ Leap second last updated.

lastUpdated = 20150701
try

status = CDFsetLeapSecondLastUpdated (id, lastUpdated)

catch ex as Exception
end try

4.2.43 CDFsetMajority

integer CDFsetMajority (out -- Completion status code.
id as long, ‘ in-- CDF identifier.
majority as integer) ¢ in -- CDF variable majority.

3

CDFsetMajority specifies the variable majority, either row or column-major, of the CDF. A CDF’s majority may not be
changed after any variable values have been written. The majorities are described in Section 2.9.

62

The arguments to CDFsetMajority are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

majority Variable majority of the CDF.

4.2.43.1. Example(s)
The following example sets the majority to COLUMN_ MAJOR for the CDF. The default is ROW_MAJOR.

dim id as long ¢ CDF identifier.
Dim status as integer ¢ Returned status code.
Dim majority as integer ¢ Majority.

majority = COLUMN_MAJOR
try

status = CDFsetMajority (id, majority)

catch ex as Exception
end try

4.2.44 CDFsetNegtoPosfp0Mode

integer CDFsetNegtoPosfpOMode (¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.
negtoPosfp0 as integer) “ in-- -0.0 to 0.0 mode.

CDFsetNegtoPosfpOMode specifies the —0.0 to 0.0 mode of the CDF. The —0.0 to 0.0 modes are described in Section
2.16.

The arguments to CDFsetNegtoPosfpOMode are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

negtoPosfp0 —0.0 to 0.0 mode of the CDF.

4.2.44.1. Example(s)
The following example sets the —0.0 to 0.0 mode to ON for the CDF.

dim id as long ¢ CDF identifier.
Dim status as integer ¢ Returned status code.

Dim negtoPosfp0 as integer ¢ -0.0 to 0.0 mode.

negtoPosfp0 = NEGtoPOSfpOon
try

63

status = CDFsetNegtoPosfpOMode (id, negtoPosfp0)
catch ex as Exception
end try

4.2.45 CDFsetReadOnlyMode

integer CDFsetReadOnlyMode(¢ out -- Completion status code.
id as long, ‘ in-- CDF identifier.
readOnlyMode as integer) ‘ in-- CDF read-only mode.
CDFsetReadOnlyMode specifies the read-only mode for a CDF. The read-only modes are described in Section 2.14.
The arguments to CDFsetReadOnlyMode are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

readOnlyMode Read-only mode.

4.2.45.1. Example(s)
The following example sets the read-only mode to OFF for the CDF.

dim id as long ¢ CDF identifier.
Dim readMode as integer ¢ CDF read-only mode.
Dim status as integer

readMode = READONLY off
try

status = CDFsetReadOnlyMode (id, readMode)

catch ex as Exception
end try

4.2.46 CDFsetStageCacheSize

integer CDFsetStageCacheSize(¢ out -- Completion status code.
id as long, ‘ in-- CDF identifier.
numBuffers as integer) ‘ in -- The stage cache size.

CDFsetStageCacheSize specifies the number of cache buffers being used for the staging scratch file a CDF. Refer to the
CDF User’s Guide for the description of the caching scheme used by the CDF library.

The arguments to CDFsetStageCacheSize are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

64

numBuffers Number of cache buffers.

4.2.46.1. Example(s)
The following example sets the number of stage cache buffers to 10 for a CDF.

dim id as long ¢ CDF identifier.
Dim numBufffers as integer ¢ The number of cache buffers.
Dim status as integer

numBufffers = 10
try

status = CDFsetStageCacheSize (id, numBuffers)

catch ex as Exception
end try

4.2.47 CDFsetValidate

void CDFsetValidate(
mode as integer) ¢ in -- File Validation Mode.

CDFsetValidate sets the data validation mode. The validation mode dedicates whether certain data in an open CDF file
will be validated. This mode should be set before the any files are opened. Refer to Data Validation Section 2.21.

The arguments to CDFgetVersion are defined as follows:

mode Validation mode.

4.2.47.1. Example(s)

In the following example, it sets the validation mode to be on, so any following CDF files are subjected to the data
validation process when they are open.

iry

C.].).l.?setValidate (VALIDATEFILEon)
Ct.l'.[(.:h ex as Exception
en.(.l.try

4.2.48 CDFsetzMode

integer CDFsetzMode(¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.
zMode as integer) * in -- CDF zMode.

65

CDFsetzMode specifies the zMode for a CDF file. The zModes are described in Section 2.15 and see the Concepts
chapter in the CDF User’s Guide for a more detailed information on zModes. zMode is used when dealing with a CDF
file that contains 1) rVariables, or 2) rVariables and zVariables. If you want to treat rVariables as zVariables, it’s highly
recommended to set the value of zMode to zZMODEon2.

The arguments to CDFsetzMode are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

zMode CDF zMode.

4.2.48.1. Example(s)

In the following example, a CDF’s zMode is specified to zMODEon2: all rVariables are treated as zVariables with
NOVARY dimensions being eliminated.

dim id as long ¢ CDF identifier.
Dim status as integer ¢ Returned status code.

Dim zMode as integer ¢ CDF zMode.

zMode = zMODEon2
try

status = CDFsetzMode (id, zMode)

catch ex as Exception
end try

4.3 Variables

The methods in this section are all CDF variable-specific. A variable, either a rVariable or zVariable, is identified by
its unique name in a CDF or a variable number. Before you can perform any operation on a variable, the CDF in which
it resides in must be opened.

4.3.1 CDFcloserVar

integer CDFcloserVar(out -- Completion status code.
id as long, ¢ in-- CDF identifier.
varNum as integer) ‘ in -- rVariable number.

3

CDFcloserVar closes the specified rVariable file from a multi-file format CDF. Note that rVariables in a single-file CDF
don’t need to be closed. The variable's cache buffers are flushed before the variable's open file is closed. However, the
CDF file is still open.

NOTE: For the multi-file CDF, you must close all open variable files to guarantee that all modifications you have made
will actually be written to the CDF's file(s). If your program exits, normally or otherwise, without a successful call to

CDFcloseCDF, the CDF's cache buffers are left unflushed.

The arguments to CDFcloserVar are defined as follows:

66

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum Variable number for the open rVariable’s file. This identifier must have been initialized by a call to
CDFcreaterVar or CDFgetVarNum.

4.3.1.1. Example(s)

The following example will close an open rVariable file from a multi-file CDF.

dim id as long * CDF identifier.
Dim status as integer ¢ Returned status code.
Dim varNum as integer ¢ rVariable number.

iry
V;rII;Ium = CDFgetVarNum (id, “VAR NAME1”)
'status = CDFcloserVar (id, varNum)
;étch ex as Exception
en.(.i.try

4.3.2 CDFclosezVar

integer CDFclosezVar(out -- Completion status code.
id as long, ¢ in-- CDF identifier.
varNum as integer) ‘ in-- zVariable number.

3

CDFclosezVar closes the specified zVariable file from a multi-file format CDF. Note that zVariables in a single-file
CDF don’t need to be closed. The variable's cache buffers are flushed before the variable's open file is closed. However,
the CDF file is still open.

NOTE: For the multi-file CDF, you must close all open variable files to guarantee that all modifications you have made
will actually be written to the CDF's file(s). If your program exits, normally or otherwise, without a successful call to
CDFcloseCDF, the CDF's cache buffers are left unflushed.

The arguments to CDFclosezVar are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum Variable number for the open zVariable’s file. This identifier must have been initialized by a call to
CDFcreatezVar or CDFgetVarNum.

4.3.2.1. Example(s)

The following example will close an open zVariable file from a multi-file CDF.

dim id as long ¢ CDF identifier.
Dim status as integer ¢ Returned status code.

67

3

Dim varNum as integer zVariable number.

try
varNum = CDFgetVarNum (id, “VAR_NAME[”)
.status = CDFclosezVar (id, varNum)
;J;'[Ch ex as Exception
en.('l 'try

4.3.3 CDFconfirmrVarExistence

integer CDFconfirmrVarExistence(out -- Completion status code.
id as long, ‘ in-- CDF identifier.
varName as string) ‘ in -- rVariable name.

3

CDFconfirmrVarExistence confirms the existence of a rVariable with a given name in a CDF. If the rVariable does not
exist, an error code will be returned. No exception is thrown if the variable is not found.

The arguments to CDFconfirmrEntryExistence are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varName rVariable name to check.

4.3.3.1. Example(s)
The following example checks the existence of rVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
Dim status as integer ¢ Returned status code.
try

status = CDFconfirmrVarExistence (id, “MY_VAR”)
if status <> CDF_OK then UserStatusHandler (status)

catch ex as Exception
end try

4.3.4 CDFconfirmrVarPadValueExistence

integer CDFconfirmrVarPadValueExistence(out -- Completion status code.
id as long, ¢ in-- CDF identifier.
varNum as integer) ‘ in -- rVariable number.

3

68

CDFconfirmrVarPadValueExistence confirms the existence of an explicitly specified pad value for the specified
rVariable in a CDF. If an explicit pad value has not been specified, the informational status code
NO PADVALUE SPECIFIED will be returned. No exception is thrown if the variable’s pad value is not defined.

The arguments to CDFconfirmrVarPadValueExistence are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum rVariable number.

4.3.4.1. Example(s)
The following example checks the existence of the pad value of rVariable “MY_VAR” in a CDF.

dim id as long * CDF identifier.
Dim status as integer ¢ Returned status code.
Dim varNum as integer ¢ rVariable number.

try
varNum = CDFgetVarNum(id, “MY_VAR”)
status = CDFconfirmrVarPadValueExistence (id, varNum)
if status <> NO_PADVALUE_SPECIFIED then

end if

catch ex as Exception
end try

4.3.5 CDFconfirmzVarExistence

integer CDFconfirmzVarExistence(out -- Completion status code.
id as long, ‘ in-- CDF identifier.
varName as string) ‘ in-- zVariable name.

3

CDFconfirmzVarExistence confirms the existence of a zVariable with a given name in a CDF. If the zVariable does not
exist, an error code will be returned. No exception is thrown if the variable is not found.

The arguments to CDFconfirmrEntryExistence are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varName zVariable name to check.

4.3.5.1. Example(s)
The following example checks the existence of zVariable “MY_VAR” in a CDF.

69

dim id as long * CDF identifier.
Dim status as integer ¢ Returned status code.

try
status = CDFconfirmzVarExistence (id, “MY_VAR”)
if status <> CDF_OK then UserStatusHandler (status)

catch ex as Exception
end try

4.3.6 CDFconfirmzVarPadValueExistence

integer CDFconfirmzVarPadValueExistence(out -- Completion status code.
id as long, ‘ in-- CDF identifier.
varNum as integer) ¢ in -- zVariable number.

3

CDFconfirmzVarPadValueExistence confirms the existence of an explicitly specified pad value for the specified
zVariable in a CDF. If an explicit pad value has not been specified, the informational status code
NO PADVALUE_ SPECIFIED will be returned. No exception is thrown if the variable’s pad value is not defined.

The arguments to CDFconfirmzVarPadValueExistence are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

4.3.6.1. Example(s)
The following example checks the existence of the pad value of zVariable “MY_VAR” in a CDF.

dim id as longid * CDF identifier.
Dim status as integer ¢ Returned status code.
Dim varNum as integer ¢ zVariable number.

try
varNum = CDFgetVarNum(id, “MY_VAR”)
status = CDFconfirmzVarPadValueExistence (id, varNum)

if status <> NO PADVALUE SPECIFIED then

“end if

catch ex as Exception

end try

70

4.3.7 CDFcreaterVar

integer CDFcreaterVar(
id as long,

varName as string,
dataType as integer,
numElements as integer,
recVariance as integer,

dimVariances as integer(),

varNum as integer)

out -- Completion status code.

¢ in -- CDF identifier.

in -- rVariable name.

in -- Data type.

in -- Number of elements (of the data type).
in -- Record variance.

in -- Dimension variances.

out -- rVariable number.

CDFcreaterVar is used to create a new rVariable in a CDF. A variable (rVariable or rVariable) with the same name must

not already exist in the CDF.

The arguments to CDFcreaterVar are defined as follows:

id

varName

dataType

numElements

recVariance

dimVariances

varNum

4.3.7.1. Example(s)

Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

Name of the rVariable to create. This may be at most CDF_ VAR NAME LEN256
characters. Variable names are case-sensitive.

Data type of the new rVariable. Specify one of the data types defined in Section 2.6.

Number of elements of the data type at each value. For character data types (CDF_CHAR
and CDF_UCHAR), this is the number of characters in the string (each value consists of
the entire string). For all other data types this must always be one (1) - multiple elements
at each value are not allowed for non-character data types.

rVariable's record variance. Specify one of the variances defined in Section 2.10.

rVariable's dimension variances. Each element of dimVariances specifies the
corresponding dimension variance. For each dimension specify one of the variances
defined in Section 2.10. For 0-dimensional rVariables this argument is ignored (but must
be present).

Number assigned to the new rVariable. This number must be used in subsequent CDF
function calls when referring to this rVariable. An existing rVariable's number may be
determined with the CDFgetVarNum function.

The following example will create several rVariables in a 2-dimensional CDF.

dim id as long
Dim status as integer

¢ CDF identifier.
Returned status code.

Dim EPOCHrecVary as integer = VARY ¢ EPOCH record variance.
Dim LATrecVary as integer = NOVARY ¢ LAT record variance.

Dim LONrecVary as integer = NOVARY ¢ LON record variance.

Dim TMPrecVary as integer = VARY ¢ TMP record variance.

Dim EPOCHdimVarys() as integer = {NOVARY,NOVARY} ¢ EPOCH dimension variances.
Dim LATdimVarys() as integer = {VARY,VARY} ¢ LAT dimension variances.
Dim LONdimVarys() as integer = {VARY,VARY} ¢ LON dimension variances.
Dim TMPdimVarys() as integer = {VARY,VARY} ¢ TMP dimension variances.
Dim EPOCHvarNum as integer ¢ EPOCH rVariable number.

71

Dim LATvarNum as integer ¢ LAT rVariable number.

Dim LONvarNum as integer ¢ LON rVariable number.
Dim TMPvarNum as integer ¢ TMP rVariable number.
try

status = CDFcreaterVar (id, "EPOCH", CDF_EPOCH, 1, EPOCHrecVary,

EPOCHdimVarys, EPOCH varNum)
status = CDFcreaterVar (id, "LATITUDE", CDF_INT2, 1, LATrecVary, LATdimVarys, LATvarNum)
status = CDFcreaterVar (id, "INTITUDE", CDF _INT2, 1, LONrecVary, LONdimVarys, LONvarNum)
status = CDFcreaterVar (id, "TEMPERATURE", CDF_REALA4, 1, TMPrecVary, _

TMPdimVarys, TMPvarNum)

catch ex as Exception
end try

4.3.8 CDFcreatezVar

integer CDFcreatezVar(
id as long, ‘ in-- CDF identifier.

varName as string, ‘ in-- zVariable name.

dataType as integer, in -- Data type.

numElements as integer, in -- Number of elements (of the data type).
numDims as integer, in -- Number of dimensions.

dimSizes as integer(), in -- Dimension sizes

recVariance as integer, in -- Record variance.

dimVariances as integer(), in -- Dimension variances.

varNum as integer) out -- zVariable number.

out -- Completion status code.

CDFcreatezVar is used to create a new zVariable in a CDF. A variable (rVariable or zVariable) with the same name
must not already exist in the CDF.

The arguments to CDFcreatezVar are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varName Name of the zVariable to create. This may be at most CDF_ VAR NAME LEN256
characters. Variable names are case-sensitive.

dataType Data type of the new zVariable. Specify one of the data types defined in Section 2.6.

numElements Number of elements of the data type at each value. For character data types (CDF_CHAR

and CDF_UCHAR), this is the number of characters in the string (each value consists of
the entire string). For all other data types this must always be one (1) - multiple elements
at each value are not allowed for non-character data types.

numDims Number of dimensions the zVariable. This may be as few as zero (0) and at most
CDF_MAX DIMS.

dimSizes Size of each dimension. Each element of dimSizes specifies the corresponding dimension

size. Each size must be greater then zero (0). For 0-dimensional zVariables this argument is
ignored (but must be present).

72

recVariance zVariable's record variance. Specify one of the variances defined in Section 2.10.

dimVariances zVariable's dimension variances. Each element of dimVariances specifies the
corresponding dimension variance. For each dimension specify one of the variances
defined in Section 2.10. For 0-dimensional zVariables this argument is ignored (but must
be present).

varNum Number assigned to the new zVariable. This number must be used in subsequent CDF
function calls when referring to this zVariable. An existing zVariable's number may be
determined with the CDFgetVarNum function.

4.3.8.1. Example(s)

The following example will create several zVariables in a CDF. In this case EPOCH is a 0-dimensional, LAT and LON
are 2-diemnational, and TMP is a 1-dimensional.

dim id as long ¢ CDF identifier.

Dim status as integer ¢ Returned status code.

Dim EPOCHrecVary as integer = VARY ¢ EPOCH record variance.
Dim LATrecVary as integer = NOVARY ¢ LAT record variance.

Dim LONrecVary as integer = NOVARY ¢ LON record variance.

Dim TMPrecVary as integer = VARY ¢ TMP record variance.

Dim EPOCHdimVarys() as integer = (NOVARY} ¢ EPOCH dimension variances.
Dim LATdimVarys() as integer = {VARY,VARY} ¢ LAT dimension variances.
Dim LONdimVarys() as integer = {VARY,VARY} ¢ LON dimension variances.
Dim TMPdimVarys() as integer = {VARY,VARY} ¢ TMP dimension variances.
Dim EPOCHvarNum as integer ¢ EPOCH zVariable number.
Dim LATvarNum as integer ¢ LAT zVariable number.
Dim LONvarNum as integer ¢ LON zVariable number.
Dim TMPvarNum as integer ¢ TMP zVariable number.
Dim EPOCHdimSizes() as integer = {3} ¢ EPOCH dimension sizes.
Dim LATLONdimSizes() as integer = {2,3} ¢ LAT/LON dimension sizes.
Dim TMPdimSizes() as integer = {3} * TMP dimension sizes.

try

status = CDFcreatezVar (id, "EPOCH", CDF_EPOCH, 1, 0, EPOCHdimSizes, EPOCHrecVary, _
EPOCHdimVarys, EPOCHvarNum)

status = CDFcreatezVar (id, "LATITUDE", CDF_INT2, 1, 2, LATLONdimSizes,LATrecVary, _
LATdimVarys, LATvarNum)

status = CDFcreatezVar (id, "INTITUDE", CDF _INT2, 1, 2, LATLONdimSizes, LONrecVary, _
LONdimVarys, LONvarNum)

status = CDFcreatezVar (id, "TEMPERATURE", CDF_REALA4, 1, 1, TMPdimSizes, TMPrecVary, _
TMPdimVarys, TMPvarNum)

catch ex as Exception

end try

4.3.9 CDFdeleterVar

integer CDFdeleterVar(¢ out-- Completion status code.
id as long, ‘ in-- CDF identifier.

73

3

varNum as integer) in -- rVariable identifier.
CDFdeleterVar deletes the specified rVariable from a CDF.

The arguments to CDFdeleterVar are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum rVariable number to be deleted.

4.3.9.1. Example(s)
The following example deletes the rVariable named MY VAR in a CDF.

dim id as long * CDF identifier.
Dim status as integer ¢ Returned status code.
Dim varNum as integer ¢ rVariable number.

try
varNum = CDFgetVarNum (id, “MY_VAR”)
status = CDFdeleterVar (id, varNum)

catch ex as Exception

end try

4.3.10 CDFdeleterVarRecords

integer CDFdeleterVarRecords(¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.

varNum as integer, in -- rVariable identifier.
startRec as integer, in -- Starting record number.
endRec as integer) in -- Ending record number.

CDFdeleterVarRecords deletes a range of data records from the specified rVariable in a CDF. If this is a variable with
sparse records, the remaining records after deletion will not be renumbered.’

The arguments to CDFdeleterVarRecords are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum Identifier of the rVariable.
startRec Starting record number to delete.

endRec Ending record number to delete.

7 Normal variables without sparse records have contiguous physical records. Once a section of the records get deleted,
the remaining ones automatically fill the gap.

74

4.3.10.1. Example(s)

The following example deletes 11 records (from record numbered 11 to 21) from the rVariable “MY_VAR” in a CDF.
Note: The first record is numbered as 0.

dim id as long ¢ CDF identifier.

Dim status as integer ¢ Returned status code.
Dim varNum as integer rVariable number.

Dim startRec as integer Starting record number.
Dim endRec as integer Ending record number.

3
3

3

try
varNum = CDFgetVarNum (id, “MY_VAR”)
startRec = 10

endRec = 20
status = CDFdeleterVarRecords (id, varNum, startRec, endRec)

catch ex as Exception
end try

4.3.11 CDFdeleterVarRecordsRenumber

integer CDFdeleterVarRecordsRenumber(out -- Completion status code.
id as long, ¢ in-- CDF identifier.

varNum as integer, in -- rVariable identifier.
startRec as integer, in -- Starting record number.
endRec as integer) in -- Ending record number.

CDFdeleterVarRecordsRenumber deletes a range of data records from the specified rVariable in a CDF. If this is a
variable with sparse records, the remaining records after deletion will be renumbered, just like non-sparse variable’s
records.

The arguments to CDFdeleterVarRecordsRenumber are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum Identifier of the rVariable.
startRec Starting record number to delete.

endRec Ending record number to delete.

4.3.11.1. Example(s)

The following example deletes 11 records (from record numbered 11 to 21) from the rVariable “MY_ VAR” in a CDF.
Note: The first record is numbered as 0. If the last record number is 100, then after the deletion, the record will be 89.

dim id as long ¢ CDF identifier.
Dim status as integer ¢ Returned status code.

75

3

Dim varNum as integer rVariable number.

Dim startRec as integer ¢ Starting record number.
Dim endRec as integer Ending record number.
try

varNum = CDFgetVarNum (id, “MY_VAR”)

startRec = 10

endRec = 20

status = CDFdeleterVarRecordsRenumber (id, varNum, startRec, endRec)

catch ex as Exception
end try

4.3.12 CDFdeletezVar

integer CDFdeletezVar(¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.

varNum as integer) ‘ in-- zVariable identifier.
CDFdeletezVar deletes the specified zVariable from a CDF.

The arguments to CDFdeletezVar are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum zVariable number to be deleted.

4.3.12.1. Example(s)
The following example deletes the zVariable named MY VAR in a CDF.

dim id as long ¢ CDF identifier.
Dim status as integer Returned status code.
Dim varNum as integer ¢ zVariable number.

try
varNum = CDFgetVarNum (id, “MY_VAR”)
status = CDFdeletezVar (id, varNum)

catch ex as Exception

end try

4.3.13 CDFdeletezVarRecords

integer CDFdeletezVarRecords(¢ out -- Completion status code.
id as long, ‘ in-- CDF identifier.

76

3

in -- zVariable identifier.
in -- Starting record number.
in -- Ending record number.

varNum as integer,
startRec as integer,
endRec as integer)

3

3

CDFdeletezVarRecords deletes a range of data records from the specified zVariable in a CDF. If this is a variable with
sparse records, the remaining records after deletion will not be renumbered.

The arguments to CDFdeletezVarRecords are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum Identifier of the zVariable.
startRec Starting record number to delete.

endRec Ending record number to delete.

4.3.13.1. Example(s)

The following example deletes 11 records (from record numbered 11 to 21) from the zVariable “MY_VAR” in a CDF.
Note: The first record is numbered as 0.

dim id as long ¢ CDF identifier.

Dim status as integer ¢ Returned status code.
Dim varNum as integer zVariable number.

Dim startRec as integer Starting record number.
Dim endRec as integer Ending record number.

3
3

3

try
varNum = CDFgetVarNum (id, “MY_VAR”)
startRec = 10

endRec = 20
status = CDFdeletezVarRecords (id, varNum, startRec, endRec)

catch ex as Exception
end try

4.3.14 CDFdeletezVarRecordsRenumber

integer CDFdeletezVarRecordsRenumber(out -- Completion status code.
id as long, ¢ in-- CDF identifier.

varNum as integer, in -- zVariable identifier.
startRec as integer, in -- Starting record number.
endRec as integer) in -- Ending record number.

CDFdeletezVarRecordsRenumber deletes a range of data records from the specified zVariable in a CDF. If this is a
variable with sparse records, the remaining records after deletion will be renumbered, just like non-sparse variable’s

records.

The arguments to CDFdeletezVarRecordsRenumber are defined as follows:

77

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum Identifier of the zVariable.
startRec Starting record number to delete.

endRec Ending record number to delete.

4.3.14.1. Example(s)

The following example deletes 11 records (from record numbered 11 to 21) from the zVariable “MY_VAR” in a CDF.
Note: The first record is numbered as 0. If the last record number is 100, then after the deletion, the record will be 89.

dim id as long * CDF identifier.

Dim status as integer ¢ Returned status code.
Dim varNum as integer zVariable number.

Dim startRec as integer Starting record number.
Dim endRec as integer Ending record number.

3
3

3

try
varNum = CDFgetVarNum (id, “MY_VAR”)
startRec = 10

endRec = 20
status = CDFdeletezVarRecordsRenumber (id, varNum, startRec, endRec)

catch ex as Exception
end try

4.3.15 CDFgetMaxWrittenRecNums

integer CDFgetMaxWrittenRecNums (¢ out-- Completion status code.

id as long, ‘ in-- CDF identifier.

rVarsMaxNum as integer, out -- Maximum record number among all rVariables.
zVarsMaxNum as integer) out -- Maximum record number among all zVariables.
CDFgetMaxWrittenRecNums returns the maximum written record number for the rVariables and zVariables in a CDF.
The maximum record number for rVariables or zVariables is one less than the maximum number of records among all
respective variables.

The arguments to CDFgetMaxWrittenRecNums are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

rVarsMaxNum Maximum record number among all rVariables.

zVarsMaxNum Maximum record number among all zVariables.

78

4.3.15.1. Example(s)

The following example returns the maximum written record numbers among all rVariables and zVariables of the CDF.

dim id as long ¢ CDF identifier.

Dim status as integer ¢ Returned status code.

Dim rVarsMaxNum as integer ¢ Maximum record number among all rVariables.
Dim zVarsMaxNum as integer ¢ Maximum record number among all zVariables.
try

status = CDFgetMaxWrittenRecNums (id, rVarsMaxNum, zVarsMaxNum)

catch ex as Exception
end try

4.3.16 CDFgetNumrVars

integer CDFgetNumrVars (out -- Completion status code.
id as long, ‘ in-- CDF identifier.
numVars as integer) ¢ out -- Total number of rVariables.

3

CDFgetNumrVars returns the total number of rVariables in a CDF.
The arguments to CDFgetNumrVars are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

numVars Number of rVariables.

4.3.16.1. Example(s)

The following example returns the total number of rVariables in a CDF.

dim status as integer ¢ Returned status code.
dim id as long ¢ CDF identifier.

Dim numVars as integer ¢ Number of zVariables.
try

status = CDFgetNumrVars (id, numVars)

catch ex as Exception

end try

79

4.3.17 CDFgetNumzVars

integer CDFgetNumzVars (out -- Completion status code.
id as long, ‘ in-- CDF identifier.
numVars as integer) out -- Total number of zVariables.

3

CDFgetNumzVars returns the total number of zVariables in a CDF.
The arguments to CDFgetNumzVars are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

numVars Number of zVariables.

4.3.17.1. Example(s)

The following example returns the total number of zVariables in a CDF.

dim status as integer Returned status code.
dim id as long ¢ CDF identifier.

Dim numVars as integer ¢ Number of zVariables.
try

status = CDFgetNumzVars (id, numVars)

catch ex as Exception
end try

4.3.18 CDFgetrVarAllocRecords

integer CDFgetrVarAllocRecords(¢ out -- Completion status code.

id as long, ‘ in-- CDF identifier.

varNum as integer, in -- Variable number.

numRecs as integer) out -- Allocated number of records.
CDFgetrVarAllocRecords returns the number of records allocated for the specified rVariable in a CDF. Refer to the
CDF User’s Guide for a description of allocating variable records in a single-file CDF.

3

The arguments to CDFgetrVarAllocRecords are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum rVariable number.

numRecs Number of allocated records.

80

4.3.18.1. Example(s)
The following example returns the number of allocated records for rVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.

Dim varNum as integer ¢ rVariable number.
Dim numRecs as integer ¢ The allocated records.
Dim status as integer

try
varNum = CDFgetVarNum (id, “MY_VAR”)

status = CDFgetrVarAllocRecords (id, varNum, numRecs)

catch ex as Exception
end try

4.3.19 CDFgetrVarBlockingFactor

integer CDFgetrVarBlockingFactor(out -- Completion status code.
id as long, ‘ in-- CDF identifier.

varNum as integer, in -- Variable number.

bf as integer) out -- Blocking factor.

CDFgetrVarBlockingFactor returns the blocking factor for the specified rVariable in a CDF. Refer to the CDF User’s
Guide for a description of the blocking factor.

The arguments to CDFgetrVarBlockingFactor are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum rVariable number.

bf Blocking factor. A value of zero (o) indicates that the default blocking factor will be used.

4.3.19.1. Example(s)
The following example returns the blocking factor for the rVariable “MY_VAR?” in a CDF.

dim id as long ¢ CDF identifier.
Dim varNum as integer ¢ rVariable number.
Dim bf as integer ¢ The blocking factor.
Dim status as integer.

try
varNum = CDFgetVarNum (id, “MY_VAR?”)

status = CDFgetrVarBlockingFactor (id, varNum, bf) .

81

catch ex as Exception
end try

4.3.20 CDFgetrVarCacheSize

integer CDFgetrVarCacheSize(¢ out -- Completion status code.
id as long, ‘ in-- CDF identifier.

varNum as integer, in -- Variable number.
numBuffers as integer) out -- Number of cache buffers.

CDFgetrVarCacheSize returns the number of cache buffers being for the specified rVariable in a CDF. This operation
is not applicable to a single-file CDF. Refer to the CDF User’s Guide for a description of caching scheme used by the
CDF library.

The arguments to CDFgetrVarCacheSize are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum rVariable number.

numBuffers Number of cache buffers.

4.3.20.1. Example(s)
The following example returns the number of cache buffers for rVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.

Dim varNum as integer ¢ rVariable number.

Dim numBuffers as integer ¢ The number of cache buffers.
dim status as integer

try
varNum = CDFgetVarNum (id, “MY_VAR”)

status = CDFgetrVarCacheSize (id, varNum, numBuffers)

catch ex as Exception
end try

4.3.21 CDFgetrVarCompression

integer CDFgetrVarCompression(out -- Completion status code.
id as long, ‘ in-- CDF identifier.

varNum as integer, in -- Variable number.
compType as integer, out -- Compression type.
cParms as integer(), out -- Compression parameters.
cPct as integer) out -- Compression percentage.

CDFgetrVarCompression returns the compression type/parameters and compression percentage of the specified
rVariable in a CDF. Refer to Section 2.11 for a description of the CDF supported compression types/parameters. The

82

compression percentage is the result of the compressed size from all variable records divided by its original,
uncompressed variable size.

The arguments to CDFgetrVarCompression are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum rVariable number.

compType Compression type.

cParms Compression parameters.

cPct Percentage of the uncompressed size of rVariable’s data values needed to store the compressed
values.

4.3.21.1. Example(s)

The following example returns the compression information for rVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.

Dim varNum as integer ¢ rVariable number.

Dim compType as integer The compression type.

Dim cParms(1) as integer The compression parameters.
Dim cPct as integer The compression percentage.

3
3

3

try
varNum = CDFgetVarNum (id, “MY_VAR”)
status = CDFgetrVarCompression (id, varNum, compType, cParms, cPct)

catch ex as Exception
end try

4.3.22 CDFgetrVarData

integer CDFgetrVarData(¢ out -- Completion status code.

id as long, ¢ in-- CDF identifier.

varNum as integer, in -- Variable number.

recNum as integer, in -- Record number.

indices as integer(), in -- Dimension indices.

value as TYPE) ¢ out -- Data value.

TYPE -- VB value/string type or object.
CDFgetrVarData returns a data value from the specified indices, the location of the element, in the given record of the
specified rVariable in a CDF.

The arguments to CDFgetrVarData are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

83

varNum rVariable number.

recNum Record number.
indices Dimension indices within the record.
value Data value.

4.3.22.1. Example(s)

The following example returns two data values, the first and the fifth element, in Record 0 from rVariable “MY_VAR”,
a 2-dimensional (2 by 3) CDF_DOUBLE type variable, in a row-major CDF.

dim id as long * CDF identifier.

Dim varNum as integer ¢ rVariable number.
Dim recNum as integer The record number.
Dim indices(2) as integer The dimension indices.
Dim valuel as double, value2 as double The data values.

3
3

3

try
varNum = CDFgetVarNum (id, “MY_VAR”)
recNum = 0
indices(0) =0
indices(1)=0
status = CDFgetrVarData (id, varNum, recNum, indices, valuel)
indices(0) =1
indices(1) =1
object value2o
status = CDFgetrVarData (id, varNum, recNum, indices, value20)
value2 = value2o

catch ex as Exception
end try

4.3.23 CDFgetrVarDataType

integer CDFgetrVarDataType(out -- Completion status code.
id as long, ‘ in-- CDF identifier.

varNum as integer, in -- Variable number.
dataType as integer) out -- Data type.

CDFgetrVarDataType returns the data type of the specified rVariable in a CDF. Refer to Section 2.6 for a description of
the CDF data types.

The arguments to CDFgetrVarDataType are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum rVariable number.

84

dataType Data type.

4.3.23.1. Example(s)
The following example returns the data type of rVariable “MY_VAR” ina CDF.

dim id as long ¢ CDF identifier.
Dim varNum as integer ¢ rVariable number.
Dim dataType as integer * The data type.
dim status as integer

try

varNum = CDFgetVarNum (id, “MY_VAR”)

status = CDFgetrVarDataType (id, varNum, dataType)
catch ex as Exception
end try

4.3.24 CDFgetrVarDimVariances

integer CDFgetrVarDimVariances(out -- Completion status code.
id as long, ‘ in-- CDF identifier.

varNum as integer, in -- Variable number.
dimVarys as integer()) out -- Dimension variances.

CDFgetrVarDimVariances returns the dimension variances of the specified rVariable in a CDF. For 0-dimensional
rVariable, this operation is not applicable. The dimension variances are described in section 2.10.

The arguments to CDFgetrVarDimVariances are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum rVariable number.

dimVarys Dimension variances.

4.3.24.1. Example(s)

The following example returns the dimension variances of the 2-dimensional rVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
Dim dimVarys(2) as integer ¢ The dimension variances.
try

status = CDFgetrVarDimVariances (id, CDFgetVarNum (id, “MY_VAR?”), dimVarys)

85

catch ex as Exception
end try

4.3.25 CDFgetrVarlnfo

integer CDFgetrVarInfo(¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.

varNum as integer, in -- Variable number.
dataType as integer, out -- Data type.

numElems as integer, out -- Number of elements.
numDims as integer, out -- Number of dimensions.
dimSizes as integer()) out -- Dimension sizes.

CDFgetrVarInfo returns the basic information about the specified rVariable in a CDF.
The arguments to CDFgetrVarlnfo are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum rVariable number.

dataType Data type of the variable.

numElems Number of elements for the data type of the variable.
numDims Number of dimensions.

dimSizes Dimension sizes.

4.3.25.1. Example(s)
The following example returns the basic information of rVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.

Dim dataType as integer ¢ The data type.

Dim numElems as integer The number of elements.
Dim numDims as integer The number of dimensions.
Dim dimSizes() as integer The dimension sizes.

dim status as integer

3

try
status = CDFgetrVarlnfo (id, CDFgetVarNum (id, “MY_VAR?”), dataType, numElems,
numDims, dimVarys)
catch ex as Exception

end try

86

4.3.26 CDFgetrVarMaxAllocRecNum

integer CDFgetrVarMaxAllocRecNum(¢ out -- Completion status code.

id as long, ‘ in-- CDF identifier.

varNum as integer, in -- Variable number.

maxRec as integer) out -- Maximum allocated record #.
CDFgetrVarMaxAllocRecNum returns the number of records allocated for the specified rVariable in a CDF.

The arguments to CDFgetrVarMaxAllocRecNum are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum rVariable number.

maxRec Number of records allocated.

4.3.26.1. Example(s)

The following example returns the maximum allocated record number for the rVariable “MY_VAR” in a CDF.

dim id as long * CDF identifier.
Dim maxRec as integer ¢ The maximum record number.
Dim status as integer.

try

status = CDFgetrVarMaxAllocRecNum (id, CDFgetVarNum (id, “MY_VAR”), maxRec)
catch ex as Exception
end try

4.3.27 CDFgetrVarMaxWrittenRecNum

integer CDFgetrVarMaxWrittenRecNum (¢ out -- Completion status code.

id as long, ¢ in-- CDF identifier.

varNum as integer, in -- Variable number.

maxRec as integer) out -- Maximum written record number.
CDFgetrVarMaxWrittenRecNum returns the maximum record number written for the specified rVariable in a CDF.

The arguments to CDFgetrVarMaxWrittenRecNum are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum rVariable number.

maxRec Maximum written record number.

87

4.3.27.1. Example(s)

The following example returns the maximum record number written for the rVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
Dim maxRec as integer ¢ The maximum record number.
Dim status as integer.

try

status = CDFgetrVarMaxWrittenRecNum (id, CDFgetVarNum (id, “MY_VAR”), maxRec)
catch ex as Exception
end try

4.3.28 CDFgetrVarName

integer CDFgetrVarName(out -- Completion status code.
id as long, ¢ in-- CDF identifier.

varNum as integer, in -- Variable number.
varName as string) out -- Variable name.
CDFgetrVarName returns the name of the specified rVariable, by its number, in a CDF.

The arguments to CDFgetrVarName are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum rVariable number.

varName Name of the variable.

4.3.28.1. Example(s)

The following example returns the name of the rVariable whose variable number is 1.

dim id as long ¢ CDF identifier.

Dim varNum as integer ¢ rVariable number.

Dim varName as string ¢ The name of the variable.
Dim status as integer.

varNum = 1
try

status = CDFgetrVarName (id, varNum, varName)
catch ex as Exception

end try

88

4.3.29 CDFgetrVarNumElements

integer CDFgetrVarNumElements(out -- Completion status code.

id as long, ‘ in-- CDF identifier.

varNum as integer, in -- Variable number.

numElems as integer) out -- Number of elements.
CDFgetrVarNumElements returns the number of elements for each data value of the specified rVariable in a CDF. For
character data type (CDF_CHAR and CDF _UCHAR), the number of elements is the number of characters in the string.
For other data types, the number of elements will always be one (1).

The arguments to CDFgetrVarNumElements are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum rVariable number.

numElems Number of elements.

4.3.29.1. Example(s)
The following example returns the number of elements for the data type from rVariable “MY_VAR” in a CDF.

dim id as long CDF identifier.
Dim numElems as integer ¢ The number of elements.
Dim status as integer.

"cry

”s.t.atus = CDFgetrVarNumElements (id, CDFgetVarNum (id, “MY_VAR”), numElems) ...
c;t'ch ex as Exception
en.c.l'try

4.3.30 CDFgetrVarNumRecsWritten

integer CDFgetrVarNumRecsWritten(¢ out-- Completion status code.

id as long, ‘ in-- CDF identifier.

varNum as integer, in -- Variable number.

numRecs as integer) out -- Number of written records.

CDFgetrVarNumRecsWritten returns the number of records written for the specified rVariable in a CDF. This number
may not correspond to the maximum record written if the rVariable has sparse records.

The arguments to CDFgetrVarNumRecsWritten are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum rVariable number.

numRecs Number of written records.

89

4.3.30.1. Example(s)

The following example returns the number of written records from rVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
Dim numRecs as integer ¢ The number of written records.
Dim status as integer.

try

status = CDFgetrVarNumRecsWritten (id, CDFgetVarNum (id, “MY_VAR”), numRecs)

catch ex as Exception
end try

4.3.31 CDFgetrVarPadValue

integer CDFgetrVarPadValue(¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.
varNum as integer, in -- Variable number.
value as TYPE) * out-- Pad value.

¢ TYPE -- VB value/string type or object.
CDFgetrVarPadValue returns the pad value of the specified rVariable in a CDF. If a pad value has not been explicitly
specified for the rVariable through CDFsetrVarPadValue, the informational status code NO_PADVALUE_SPECIFIED
will be returned. Since a variable’s pad value is an optional, no exception is thrown while trying to get its value if its
value is not set. It’s recommended to check the returned status after the method is called.

The arguments to CDFgetrVarPadValue are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum rVariable number.

value Pad value.

4.3.31.1. Example(s)
The following example returns the pad value from rVariable “MY_VAR”, a CDF_INT4 type variable, in a CDF.

dim id as long CDF identifier.
Dim padValue as integer ¢ The pad value.
Dim status as integer.

try
object padValueo
status = CDFgetrVarPadValue (id, CDFgetVarNum (id, “MY_VAR”), padValueo)
if status <> NO_PADVALUE_SPECIFIED then

. padValue = Ctype(padValueo, integer)
end if

90

catch ex as Exception
end try

4.3.32 CDFgetrVarRecordData

integer CDFgetrVarRecordData(
id as long,

varNum as integer,

dim recNum as integer,

buffer as TYPE)

out -- Completion status code.

in -- CDF identifier.

in -- Variable number.

in -- Record number.

out -- Record data.

TYPE -- VB value/string type (likely
an array) or object.

CDFgetrVarRecordData returns an entire record at a given record number for the specified rVariable in a CDF. The
buffer should be large enough to hold the entire data values form the variable.

The arguments to CDFgetrVarRecordData are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate

(or CDFcreateCDF) or CDFopenCDF.

varNum rVariable number.
recNum Record number.
buffer

4.3.32.1. Example(s)

The buffer holding the entire record data.

The following example will read two full records (record numbers 2 and 5) from rVariable “MY_VAR?”, a 2-dimension
(2 by 3), CDF_INT4 type variable, in a CDF. The variable’s dimension variances are all VARY.

dim id as long

Dim varNum

Dim bufferl(,) as integer
Dim buffer2(,) as integer
Dim status as integer.

try

varNum = CDFgetVarNum (id, “MY_VAR?”)

status = CDFgetrVarRecordData (id, varNum, 2, bufferl)

dim buffer2o as object

status = CDFgetrVarRecordData (id, varNum, 5, buffer2o)

buffer2 = buffer2o

catch ex as Exception

end try

91

3

3

3

3

CDF identifier.

rVariable number.

The data holding buffer — pre-allocation.
The data holding buffer — API allocation.

4.3.33 CDFgetrVarRecVariance

integer CDFgetrVarRecVariance(
id as long,

varNum as integer,

recVary as integer)

out -- Completion status code.
in -- CDF identifier.

in -- Variable number.

out -- Record variance.

CDFgetrVarRecVariance returns the record variance of the specified rVariable in a CDF. The record variances are
described in Section 2.10.

The arguments to CDFgetrVarRecVariance are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum rVariable number.

recVary Record variance.

4.3.33.1. Example(s)

The following example returns the record variance for the rVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
Dim recVary as integer ¢ The record variance.
.Dim status as integer

try

.s.t;ltus = CDFgetrVarRecVariance (id, CDFgetVarNum (id, “MY_VAR”), recVary) ...
c;£ch ex as Exception
en.('l 'try

4.3.34 CDFgetrVarReservePercent

integer CDFgetrVarReservePercent(out -- Completion status code.

id as long, ‘ in-- CDF identifier.

varNum as integer, in -- Variable number.

percent as integer) out -- Reserve percentage.
CDFgetrVarReservePercent returns the compression reserve percentage being used for the specified rVariable in a CDF.
This operation only applies to compressed rVariables. Refer to the CDF User’s Guide for a description of the reserve
scheme used by the CDF library.

The arguments to CDFgetrVarReservePercent are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum rVariable number.

percent Reserve percentage.

92

4.3.34.1. Example(s)

The following example returns the compression reserve percentage from the compressed rVariable “MY_VAR” in a
CDF.

dim id as long ¢ CDF identifier.
Dim percent as integer ¢ The compression reserve percentage.
dim status as integer

try

status = CDFgetrVarReservePercent (id, CDFgetVarNum (id, “MY_VAR?”), percent)
catch ex as Exception
end try

4.3.35 CDFgetrVarsDimSizes

integer CDFgetrVarsDimSizes(out -- Completion status code.
id as long, ‘ in-- CDF identifier.
dimSizes as integer()) ‘ out -- Dimension sizes.

3

CDFgetrVarsDimSizes returns the size of each dimension for the rVariables in a CDF. (all rVariables have the same
dimensional sizes.) For 0-dimensional rVariables, this operation is not applicable.

The arguments to CDFgetrVarsDimSizes are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

dimSizes Dimension sizes. Each element of dimSizes receives the corresponding dimension size.

4.3.35.1. Example(s)

The following example returns the dimension sizes for rVariables in a CDF.

dim id as long ¢ CDF identifier.
dim dimSizes() as integer Dimensional sizes.
Dim status as integer

Ary

status = CDFgetrVarsDimSizes (id, dimSizes)

catch ex as Exception
end try

4.3.36 CDFgetrVarSeqData

integer CDFgetrVarSeqData(¢ out -- Completion status code.

93

id as long,
varNum as integer,
value as TYPE)

3

3

3

3

in -- CDF identifier.

in -- Variable number.

out -- Data value.

TYPE -- VB value/string type or object.

CDFgetrVarSeqData reads one value from the specified rVariable in a CDF at the current sequential value (position).
After the read, the current sequential value is automatically incremented to the next value. An error is returned if the
current sequential value is past the last record of the rVariable. Use CDFsetrVarSeqPos method to set the current

sequential value (position).

The arguments to CDFgetrVarSeqData are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate

(or CDFcreateCDF) or CDFopenCDF.

varNum rVariable number from which to read data.

value The buffer to store the value.

4.3.36.1. Example(s)

The following example will read the first two data values from the beginning of record number 2 (from a 2-dimensional

rVariable whose data type is CDF_INT4) in a CDF.

dim id as long

Dim varNum as integer

Dim valuel as integer, value2 as integer
Dim indices(2) as integer

Dim recNum as integer

Dim status as integer.

recNum = 2
indices(0) =0
indices(1) =0
try

status = CDFsetrVarSeqPos (id, varNum, recNum, indices)
status = CDFgetrVarSeqData (id, varNum, valuel)

object value2o

status = CDFgetrVarSeqData (id, varNum, value2o0)
value2 = value2o

catch ex as Exception
end try

4.3.37 CDFgetrVarSeqPos

integer CDFgetrVarSeqPos(
id as long,

varNum as integer,

recNum as integer,

indices as integer())

94

3

3

3

3

3

CDF identifier.

The variable number from which to read data
The data value.

The indices in a record.

The record number.

out -- Completion status code.
¢ in -- CDF identifier.

in -- Variable number.

out -- Record number.

out -- Indices in a record.

CDFgetrVarSeqPos returns the current sequential value (position) for sequential access for the specified rVariable in a
CDF. Note that a current sequential value is maintained for each rVariable individually. Use CDFsetrVarSeqPos method
to set the current sequential value.

The arguments to CDFgetrVarSeqPos are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum rVariable number.
recNum rVariable record number.
indices Dimension indices. Each element of indices receives the corresponding dimension index. For

0-dimensional rVariable, this argument is ignored, but must be presented.

4.3.37.1. Example(s)

The following example returns the location for the current sequential value (position), the record number and indices
within it, from a 2-dimensional rVariable named MY VAR in a CDF.

dim id as long ¢ CDF identifier.
Dim recNum as integer ¢ The record number.
Dim indices() as integer ¢ The indices.

dim status as integer
'.cry
“s.t.atus = CDFgetrVarSeqPos (id, CDFgetVarNum (id, “MY_VAR?”), recNum, indices)
;éltch ex as Exception
en.c.l-try

4.3.38 CDFgetrVarsMaxWrittenRecNum

integer CDFgetrVarsMax WrittenRecNum(¢ out-- Completion status code.
id as long, ‘ in-- CDF identifier.
recNum as integer) ¢ out -- Maximum record number.

CDFgetrVarsMaxWrittenRecNum returns the maximum record number among all of the rVariables in a CDF. Note that
this is not the number of written records but rather the maximum written record number (that is one less than the number
of records). A value of negative one (-1) indicates that rVariables contain no records. The maximum record number for
an individual rVariable may be acquired using the CDFgetrVarMax WrittenRecNum method call.

Suppose there are three rVariables in a CDF:Varl, Var2, and Var3. If Varl contains 15 records, Var2 contains 10 records,
and Var3 contains 95 records, then the value returned from CDFgetrVarsMaxWrittenRecNum would be 95.

The arguments to CDFgetrVarsMaxWrittenRecNum are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

recNum Maximum written record number.

95

4.3.38.1. Example(s)

The following example returns the maximum record number for all of the rVariables in a CDF.

dim id as long ¢ CDF identifier.
Dim recNum as integer ¢ The maximum record number.
Dim status as integer.

try

status = CDFgetrVarsMaxWrittenRecNum (id, recNum)
catch ex as Exception
end try

4.3.39 CDFgetrVarsNumDims

integer CDFgetrVarsNumDims(out -- Completion status code.
id as long, ‘ in-- CDF identifier.
numDims as integer) ‘¢ out -- Number of dimensions.

3

CDFgetrVarsNumDims returns the number of dimensions (dimensionality) for the rVariables in a CDF.
The arguments to CDFgetrVarsNumDims are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

numDims Number of dimensions.

4.3.39.1. Example(s)

The following example returns the number of dimensions for rVariables in a CDF.

dim id as long CDF identifier.
Dim numDims as integer ¢ The dimensionality of the variable.
Dim status as integer.

try

status = CDFgetrVarsNumDims (id, numDims)
catch ex as Exception
end try

4.3.40 CDFgetrVarSparseRecords

integer CDFgetrVarSparseRecords(out -- Completion status code.
id as long, ¢ in-- CDF identifier.
varNum as integer, ‘¢ in -- The variable number.

3

96

3

sRecordsType as integer) out -- The sparse records type.
CDFgetrVarSparseRecords returns the sparse records type of the rVariable in a CDF. Refer to Section 2.12.1 for the
description of sparse records.

The arguments to CDFgetrVarSparseRecords are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum Variable number.

sRecordsType Sparse records type.

4.3.40.1. Example(s)
The following example returns the sparse records type of the rVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
Dim sRecordsType as integer ¢ The sparse records type.
Dim status as integer.

try

ms.tatus = CDFgetrVarSparseRecords (id, CDFgetVarNum (id, “MY_VAR”), sRecordsType) ...
c;£ch ex as Exception
enlc.l -try

4.3.41 CDFgetVarNum 8

integer CDFgetVarNum(¢ out -- Variable number.
id as long, ‘ in-- CDF identifier.
varName as string) ¢ in -- Variable name.

CDFgetVarNum returns the variable number for the given variable name (rVariable or zVariable). If the variable is
found, CDFgetVarNum returns its variable number - which will be equal to or greater than zero (0). If an error occurs
(e.g., the variable does not exist in the CDF), an error code (of type int) is returned, and an exception is thrown. Error
codes are less than zero (0). The returned variable number should be used in the functions of the same variable type,
rVariable or zVariable. If it is an rVariable, functions dealing with rVariables should be used. Similarly, functions for
zVariables should be used for zVariables.

The arguments to CDFgetVarNum are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varName Name of the variable to search. This may be at most CDF_ VAR NAME LEN256 characters.
Variable names are case-sensitive.

CDFgetVarNum may be used as an embedded function call where an rVariable or zVariable number is needed.

8 Since no two variables, either rVariable or zVariable, can have the same name, this function now returns the variable
number for the given rVariable or zVariable name (if the variable name exists in a CDF).

97

4.3.41.1. Example(s)

In the following example CDFgetVarNum is used as an embedded function call when inquiring about a zVariable

dim id as longid ¢ CDF identifier.

Dim status as integer Returned status code.

Dim varName as string Variable name.

Dim dataType as integer Data type of the zVariable.

Dim numFElements as integer Number of elements (of the data type).
Dim numDims as integer Number of dimensions.

Dim dimSizes() as integer Dimension sizes.

Dim recVariance as integer Record variance.

Dim dimVariances() as integer Dimension variances.

try
status = CDFinquirezVar (id, CDFgetVarNum (id,"LATITUDE"), varName, dataType, _
numElements, numDims, dimSizes , recVariance, dimVariances)

catch ex as Exception
end try

In this example the zVariable named LATITUDE was inquired. Note that if LATITUDE did not exist in the CDF, the
call to CDFgetVarNum would have returned an error code. Passing that error code to CDFinquirezVar as a zVariable
number would have resulted in CDFinquirezVar also returning an error code. Also note that the name written into
varName is already known (LATITUDE). In some cases the zVariable names will be unknown - CDFinquirezVar would
be used to determine them. CDFinquirezVar is described in Section 4.3.66.

4.3.42 CDFgetzVarAllocRecords

integer CDFgetzVarAllocRecords(¢ out -- Completion status code.

id as long, ‘ in-- CDF identifier.

varNum as integer, in -- Variable number.

numRecs as integer) out -- Allocated number of records.

CDFgetzVarAllocRecords returns the number of records allocated for the specified zVariable in a CDF. Refer to the
CDF User’s Guide for a description of allocating variable records in a single-file CDF.

The arguments to CDFgetzVarAllocRecords are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

numRecs Number of allocated records.

4.3.42.1. Example(s)
The following example returns the number of allocated records for zVariable “MY_VAR” in a CDF.

98

dim id as long ¢ CDF identifier.

Dim varNum as integer ¢ zVariable number.
Dim numRecs as integer ¢ The allocated records.
Dim status as integer.

try
varNum = CDFgetVarNum (id, “MY_VAR”)
status = CDFgetzVarAllocRecords (id, varNum, numRecs)

catch ex as Exception
end try

4.3.43 CDFgetzVarBlockingFactor

integer CDFgetzVarBlockingFactor(out -- Completion status code.
id as long, ‘ in-- CDF identifier.

varNum as integer, in -- Variable number.

bf as integer) out -- Blocking factor.

CDFgetzVarBlockingFactor returns the blocking factor for the specified zVariable in a CDF. Refer to the CDF User’s
Guide for a description of the blocking factor.

The arguments to CDFgetzVarBlockingFactor are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

bf Blocking factor. A value of zero (o) indicates that the default blocking factor will be used.

4.3.43.1. Example(s)
The following example returns the blocking factor for the zVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
Dim varNum as integer ¢ zVariable number.
Dim bf as integer ¢ The blocking factor.
dim status as integer

try
varNum = CDFgetVarNum (id, “MY_VAR”)

status = CDFgetzVarBlockingFactor (id, varNum, bf) .
catch ex as Exception

end try

99

4.3.44 CDFgetzVarCacheSize

integer CDFgetzVarCacheSize(¢ out -- Completion status code.

id as long, ‘ in-- CDF identifier.

varNum as integer, ‘ in -- Variable number.

numBuffers as integer) out -- Number of cache
CDFgetzVarCacheSize returns the number of cache buffers being for the specified zVariable in a CDF. This operation
is not applicable to a single-file CDF. Refer to the CDF User’s Guide for a description of caching scheme used by the
CDF library.

3

The arguments to CDFgetzVarCacheSize are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

numBuffers Number of cache buffers.

4.3.44.1. Example(s)
The following example returns the number of cache buffers for zVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
Dim varNum as integer ¢ zVariable number.
Dim numBuffers as integer ¢ The number of cache buffers.

Dim status as integer.
try
varNum = CDFgetVarNum (id, “MY_VAR?”)

status = CDFgetzVarCacheSize (id, varNum, numBuffers)

catch ex as Exception
end try

4.3.45 CDFgetzVarCompression

integer CDFgetzVarCompression(out -- Completion status code.
id as long, ¢ in-- CDF identifier.

varNum as integer, in -- Variable number.
compType as integer, out -- Compression type.
cParms as integer(), out -- Compression parameters.
cPct as integer) out -- Compression percentage.

CDFgetzVarCompression returns the compression type/parameters and compression percentage of the specified
zVariable in a CDF. Refer to Section 2.11 for a description of the CDF supported compression types/parameters. The
compression percentage is the result of the compressed size from all variable records divided by its original,

uncompressed variable size.

The arguments to CDFgetzVarCompression are defined as follows:

100

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

compType Compression type.

cParms Compression parameters.

cPct Percentage of the uncompressed size of zVariable’s data values needed to store the

compressed values.

4.3.45.1. Example(s)

The following example returns the compression information for zVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.

Dim varNum as integer ¢ zVariable number.

Dim compType as integer The compression type.

Dim cParms() as integer ¢ The compression parameters.
Dim cPct as integer ¢ The compression percentage.
Dim status as integer.

3

try
varNum = CDFgetVarNum (id, “MY_VAR”)
status = CDFgetzVarCompression (id, varNum, compType, cParms, cPct)

catch ex as Exception
end try

4.3.46 CDFgetzVarData

integer CDFgetzVarData(¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.
varNum as integer, in -- Variable number.
dim recNum as integer, in -- Record number.
indices as integer(), in -- Dimension indices.
value as TYPE) ¢ out -- Data value.
* TYPE -- VB value/string type or object.

CDFgetzVarData returns a data value from the specified indices, the location of the element, in the given record of the
specified zVariable in a CDF.

The arguments to CDFgetzVarData are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

recNum Record number.

101

indices Dimension indices within the record.

value Data value.

4.3.46.1. Example(s)

The following example returns two data values, the first and the fifth element, in Record 0 from zVariable “MY_VAR”,
a 2-dimensional (2 by 3) CDF_DOUBLE type variable, in a row-major CDF.

dim id as long ¢ CDF identifier.

Dim varNum as integer ¢ zVariable number.
Dim recNum as integer The record number.
Dim indices(2) as integer The dimension indices.
Dim valuel as double, value2 as double The data values.

3
3

3

try
varNum = CDFgetVarNum (id, “MY_VAR”)
recNum = 0
indices(0) =0
indices(1) =0
status = CDFgetzVarData (id, varNum, recNum, indices, valuel)
indices(0) = 1
indices(1) =1
object value2o
status = CDFgetzVarData (id, varNum, recNum, indices, value20)
value2 = value2o

catch ex as Exception
end try

4.3.47 CDFgetzVarDataType

integer CDFgetzVarDataType(out -- Completion status code.
id as long, ‘ in-- CDF identifier.

varNum as integer, in -- Variable number.
dataType as integer) out -- Data type.

CDFgetzVarDataType returns the data type of the specified zVariable in a CDF. Refer to Section 2.6 for a description
of the CDF data types.

The arguments to CDFgetzVarDataType are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

dataType Data type.

102

4.3.47.1. Example(s)
The following example returns the data type of zVariable “MY_VAR” ina CDF.

dim id as long ¢ CDF identifier.
Dim varNum as integer ¢ zVariable number.
Dim dataType as integer ¢ The data type.
Dim status as integer.

try

varNum = CDFgetVarNum (id, “MY_VAR”)

status = CDFgetzVarDataType (id, varNum, dataType)
catch ex as Exception
end try

4.3.48 CDFgetzVarDimSizes

integer CDFgetzVarDimSizes(out -- Completion status code.
id as long, ‘ in-- CDF identifier.

varNum as integer, in -- Variable number.
dimSizes as integer) out -- Dimension sizes.

CDFgetzVarDimSizes returns the size of each dimension for the specified zVariable in a CDF. For 0-dimensional
zVariables, this operation is not applicable.

The arguments to CDFgetzVarDimSizes are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number

dimSizes Dimension sizes. Each element of dimSizes receives the corresponding dimension size.

4.3.48.1. Example(s)
The following example returns the dimension sizes for zVariable “MY_VAR” in a CDF.

dim id as long CDF identifier.
dim dimSizes() as integer ‘ Dimensional sizes.
Dim status as integer

Ary

status = CDFgetzVarDimSizes (id, CDFgetVarNum (id, “MY_VAR”), dimSizes)

catch ex as Exception

103

end try

4.3.49 CDFgetzVarDimVariances

integer CDFgetzVarDimVariances(out -- Completion status code.
id as long, ‘ in-- CDF identifier.

varNum as integer, in -- Variable number.
dimVarys as integer()) out -- Dimension variances.

CDFgetzVarDimVariances returns the dimension variances of the specified zVariable in a CDF. For 0-dimensional
zVariable, this operation is not applicable. The dimension variances are described in section 2.10.

The arguments to CDFgetzVarDimVariances are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

dimVarys Dimension variances.

4.3.49.1. Example(s)

The following example returns the dimension variances of the 2-dimensional zVariable “MY_VAR” in a CDF.

dim id as long * CDF identifier.
Dim dimVarys() as integer ¢ The dimension variances.
Dim status as integer.

try
status = CDFgetzVarDimVariances (id, CDFgetVarNum (id, “MY_VAR”), dimVarys)

catch ex as Exception
end try

4.3.50 CDFgetzVarlInfo

integer CDFgetzVarInfo(¢ out -- Completion status code.
id as long, ‘ in-- CDF identifier.

varNum as integer, in -- Variable number.
dataType as integer, out -- Data type.

numElems as integer, out -- Number of elements.
numDims as integer, out -- Number of dimensions.
dimSizes as integer()) out -- Dimension sizes.

CDFgetzVarInfo returns the basic information about the specified zVariable in a CDF.
The arguments to CDFgetzVarInfo are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

104

varNum zVariable number.

dataType Data type of the variable.

numElems Number of elements for the data type of the variable.
numDims Number of dimensions.

dimSizes Dimension sizes.

4.3.50.1. Example(s)
The following example returns the basic information of zVariable “MY_VAR” in a CDF.

dim id as long CDF identifier.
Dim dataType as integer ¢ The data type.
Dim numElems as integer ¢ The number of elements.

3

The number of dimensions.
The dimension sizes.

Dim numDims as integer
Dim dimSizes() as integer
Dim status as integer.

try
status = CDFgetzVarlnfo (id, CDFgetVarNum (id, “MY_VAR?”), dataType, numElems,
numDims, dimVarys)
catch ex as Exception
end try

4.3.51 CDFgetzVarMaxAllocRecNum

integer CDFgetzVarMaxAllocRecNum(out -- Completion status code.

id as long, ‘ in-- CDF identifier.

varNum as integer, ¢ in -- Variable number.

maxRec as integer) out -- Maximum allocated record #.

CDFgetzVarMaxAllocRecNum returns the number of records allocated for the specified zVariable in a CDF.
The arguments to CDFgetzVarMaxAllocRecNum are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

maxRec Number of records allocated.

4.3.51.1. Example(s)

The following example returns the maximum allocated record number for the zVariable “MY_VAR” in a CDF.

105

dim id as long CDF identifier.
Dim maxRec as integer ¢ The maximum record number.
dim status as integer

try

status = CDFgetzVarMaxAllocRecNum (id, CDFgetVarNum (id, “MY_VAR”), maxRec)
catch ex as Exception
end try

4.3.52 CDFgetzVarMaxWrittenRecNum

integer CDFgetzVarMaxWrittenRecNum (out -- Completion status code.

id as long, ¢ in-- CDF identifier.

varNum as integer, in -- Variable number.

maxRec as integer) out -- Maximum written record number.
CDFgetzVarMax WrittenRecNum returns the maximum record number written for the specified zVariable in a CDF.

The arguments to CDFgetzVarMaxWrittenRecNum are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

maxRec Maximum written record number.

4.3.52.1. Example(s)

The following example returns the maximum record number written for the zVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
Dim maxRec as integer ¢ The maximum record number.
Dim status as integer

try

status = CDFgetzVarMaxWrittenRecNum (id, CDFgetVarNum (id, “MY_VAR?”), maxRec)
catch ex as Exception
end try

4.3.53 CDFgetzVarName

integer CDFgetzVarName(out -- Completion status code.
id as long, ‘ in-- CDF identifier.

3

106

3

in -- Variable number.
out -- Variable name.

varNum as integer,
varName as string)

3

CDFgetzVarName returns the name of the specified zVariable, by its number, in a CDF.

The arguments to CDFgetzVarName are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate

(or CDFcreateCDF) or CDFopenCDF.
varNum zVariable number.

varName Name of the variable.

4.3.53.1. Example(s)

The following example returns the name of the zVariable whose variable number is 1.

dim id as long ¢ CDF identifier.

Dim varNum as integer ¢ zVariable number.

Dim varName as string The name of the variable.
Dim status as integer.

varNum = 1
try

status = CDFgetzVarName (id, varNum, varName)

catch ex as Exception
end try

4.3.54 CDFgetzVarNumDims

integer CDFgetzVarNumDims(
id as long, ‘ in-- CDF identifier.

varNum as integer, in -- Variable number.
numDims as integer)

out -- Completion status code.

out -- Number of dimensions.

CDFgetzVarNumDims returns the number of dimensions (dimensionality) for the specified zVariable in a CDF.

The arguments to CDFgetzVarNumDims are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate

(or CDFcreateCDF) or CDFopenCDF.
varNum zVariable number

numDims Number of dimensions.

4.3.54.1. Example(s)
The following example returns the number of dimensions for zVariable “MY_VAR” in a CDF.

107

dim id as long CDF identifier.
Dim numDims as integer ¢ The dimensionality of the variable.
Dim status as integer.

try

status = CDFgetzVarNumDims (id, CDFgetVarNum (id, “MY_VAR”), numDims)
catch ex as Exception
end try

4.3.55 CDFgetzVarNumElements

integer CDFgetzVarNumElements(out -- Completion status code.

id as long, ¢ in-- CDF identifier.

varNum as integer, in -- Variable number.

numElems as integer) out -- Number of elements.
CDFgetzVarNumElements returns the number of elements for each data value of the specified zVariable in a CDF. For
character data type (CDF_CHAR and CDF_UCHAR), the number of elements is the number of characters in the string.
For other data types, the number of elements will always be one (1).

The arguments to CDFgetzVarNumElements are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

numElems Number of elements.

4.3.55.1. Example(s)
The following example returns the number of elements for the data type from zVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
dim numElems as integer ¢ The number of elements.
Dim status as integer.

try

.s.t.a.ltus = CDFgetzVarNumElements (id, CDFgetVarNum (id, “MY_VAR”), numElems) ...
c;£ch ex as Exception
enlc.l -try

4.3.56 CDFgetzVarNumRecsWritten

integer CDFgetzVarNumRecsWritten(¢ out -- Completion status code.
id as long, ‘ in-- CDF identifier.

108

3

in -- Variable number.
out -- Number of written records.

varNum as integer,
numRecs as integer)

3

CDFgetzVarNumRecsWritten returns the number of records written for the specified zVariable in a CDF. This number
may not correspond to the maximum record written if the zVariable has sparse records.

The arguments to CDFgetzVarNumRecsWritten are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

numRecs Number of written records.

4.3.56.1. Example(s)

The following example returns the number of written records from zVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
Dim numRecs as integer ¢ The number of written records.
Dim status as integer.

try

status = CDFgetzVarNumRecsWritten (id, CDFgetVarNum (id, “MY_VAR”), numRecs)

catch ex as Exception
end try

4.3.57 CDFgetzVarPadValue

integer CDFgetzVarPadValue(¢ out -- Completion status code.

id as long, ‘ in-- CDF identifier.

varNum as integer, in -- Variable number.

value as TYPE) ¢ out-- Pad value.

TYPE -- VB value/string type or object
CDFgetzVarPadValue returns the pad value of the specified zVariable in a CDF. If a pad value has not been explicitly
specified for the zVariable through CDFsetzVarPadValue, the informational status code
NO_PADVALUE_SPECIFIED will be returned. Since a variable’s pad value is an optional, no exception is thrown
while trying to get its value if its value is not set. It’s recommended to check the returned status after the method is called.

The arguments to CDFgetzVarPadValue are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

value Pad value.

109

4.3.57.1. Example(s)
The following example returns the pad value from zVariable “MY_VAR”, a CDF_INT4 type variable, in a CDF.

dim id as long ¢ CDF identifier.
Dim padValue as integer ¢ The pad value.
Dim status as integer.

try
dim padValueo as object
status = CDFgetzVarPadValue (id, CDFgetVarNum (id, “MY_VAR”), padValueo)
if status <> NO _PADVALUE SPECIFIED then

. padValue = Ctype(padValueo, integer)
end if

catch ex as Exception
end try

4.3.58 CDFgetzVarRecordData

integer CDFgetzVarRecordData(¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.

varNum as integer, in -- Variable number.

dim recNum as integer, in -- Record number.

buffer as TYPE) ¢ out -- Record data.

* TYPE -- VB value/string type (likely an
array) or object
CDFgetzVarRecordData returns an entire record at a given record number for the specified zVariable in a CDF. The
buffer should be large enough to hold the entire data values form the variable.

The arguments to CDFgetzVarRecordData are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.
recNum Record number.
buffer The buffer holding the entire record data.

4.3.58.1. Example(s)

The following example will read two full records (record numbers 2 and 5) from zVariable “MY_VAR?”, a 2-dimension
(2 by 3), CDF_INT4 type variable, in a CDF. The variable’s dimension variances are all VARY.

dim id as long ¢ CDF identifier.
Dim varNum as integer ¢ zVariable number.
Dim buffer1(2,3) as integer ¢ The data holding buffer — pre-allocation.

110

Dim buffer2 as object ¢ The data holding buffer — API allocation.

Dim status as integer.
try
varNum = CDFgetVarNum (id, “MY_VAR”)

status = CDFgetzVarRecordData (id, varNum, 2, buffer1)
status = CDFgetzVarRecordData (id, varNum, 5, buffer2)

catch ex as Exception
end try

4.3.59 CDFgetzVarRecVariance

integer CDFgetzVarRecVariance(
id as long,

varNum as integer,

recVary as integer)

CDFgetzVarRecVariance returns the record variance of the specified zVariable
described in Section 2.10.
The arguments to CDFgetzVarRecVariance are defined as follows:

out -- Completion status code.
in -- CDF identifier.

in -- Variable number.

out -- Record variance.

in a CDF. The record variances are

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate

(or CDFcreateCDF) or CDFopenCDF.
varNum zVariable number.

recVary Record variance.

4.3.59.1. Example(s)

The following example returns the record variance for the zVariable “MY_VAR” in a CDF.

dim id as long
Dim recVary as integer
dim status as integer

try

¢ CDF identifier.
¢ The record variance.

status = CDFgetzVarRecVariance (id, CDFgetVarNum (id, “MY_VAR”), recVary) ...

catch ex as Exception
end try

4.3.60 CDFgetzVarReservePercent

integer CDFgetzVarReservePercent(
id as long,

varNum as integer,

percent as integer)

111

out -- Completion status code.
in -- CDF identifier.

in -- Variable number.

out -- Reserved percentage.

CDFgetzVarReservePercent returns the compression reserved percentage being used for the specified zVariable in a
CDF. This operation only applies to compressed zVariables. Refer to the CDF User’s Guide for a description of the
reserve scheme used by the CDF library.

The arguments to CDFgetzVarReservePercent are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

percent Reserved percentage.

4.3.60.1. Example(s)

The following example returns the compression reserved percentage from the compressed zVariable “MY_VAR” in a
CDF.

dim id as long ¢ CDF identifier.
Dim percent as integer ¢ The compression reserved percentage.
Dim status as integer.

try

status = CDFgetzVarReservePercent (id, CDFgetVarNum (id, “MY_VAR?”), percent)
catch ex as Exception
end try

4.3.61 CDFgetzVarSeqData

integer CDFgetzVarSeqData(¢ out -- Completion status code.

id as long, ‘ in-- CDF identifier.

varNum as integer, in -- Variable number.

value as TYPE) ¢ out -- Data value.

TYPE -- VB value/string type or object

CDFgetzVarSeqData reads one value from the specified zVariable in a CDF at the current sequential value (position).
After the read, the current sequential value is automatically incremented to the next value. An error is returned if the
current sequential value is past the last record of the zVariable. Use CDFsetzVarSeqPos method to set the current
sequential value (position).

The arguments to CDFgetzVarSeqData are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number from which to read data.

value The buffer to store the value.

112

4.3.61.1. Example(s)

The following example will read the first two data values from the beginning of record number 2 (from a 2-dimensional

zVariable whose data type is CDF_INT4) in a CDF.

dim id as long

Dim varNum as integer

Dim valuel as integer, value2 as integer
Dim indices(2) as integer

Dim recNum as integer

Dim status as integer.

recNum = 2
indices(0) =0
indices(1) =0
try

status = CDFsetzVarSeqPos (id, varNum, recNum, indices)
status = CDFgetzVarSeqData (id, varNum, valuel)

dim value2o as object

status = CDFgetzVarSeqData (id, varNum, value20)
value2 = value2o

catch ex as Exception
end try

4.3.62 CDFgetzVarSeqPos

integer CDFgetzVarSeqPos(
id as long,

varNum as integer,

recNum as integer,

indices as integer())

3

3

3

3

3

CDF identifier.

The variable number from which to read data
The data value.

The indices in a record.

The record number.

out -- Completion status code.
¢ in -- CDF identifier.

in -- Variable number.

out -- Record number.

out -- Indices in a record.

CDFgetzVarSeqPos returns the current sequential value (position) for sequential access for the specified zVariable in a
CDF. Note that a current sequential value is maintained for each zVariable individually. Use CDFsetzVarSeqPos method

to set the current sequential value.

The arguments to CDFgetzVarSeqPos are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate

(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.
recNum zVariable record number.
indices Dimension indices. Each element of indices receives the corresponding dimension index. For

0-dimensional zVariable, this argument is ignored, but must be presented.

113

4.3.62.1. Example(s)

The following example returns the location for the current sequential value (position), the record number and indices
within it, from a 2-dimensional zVariable named MY VAR in a CDF.

dim id as long ¢ CDF identifier.
Dim recNum as integer ¢ The record number.
Dim indices() as integer ¢ The indices.

Dim status as integer.
try
“s.t'atus = CDFgetzVarSeqPos (id, CDFgetVarNum (id, “MY_VAR”), recNum, indices)
;J;'[Ch ex as Exception
en.(.l .try

4.3.63 CDFgetzVarsMaxWrittenRecNum

integer CDFgetzVarsMaxWrittenRecNum(¢ out -- Completion status code.

id as long, ‘ in-- CDF identifier.

recNum as integer) ¢ out -- Maximum record number.
CDFgetzVarsMax WrittenRecNum returns the maximum record number among all of the zVariables in a CDF. Note that
this is not the number of written records but rather the maximum written record number (that is one less than the number
of records). A value of negative one (-1) indicates that zVariables contain no records. The maximum record number for
an individual zVariable may be acquired using the CDFgetzVarMax WrittenRecNum method call.

Suppose there are three zVariables in a CDF:Varl, Var2, and Var3. If Varl contains 15 records, Var2 contains 10
records, and Var3 contains 95 records, then the value returned from CDFgetzVarsMaxWrittenRecNum would be 95.

The arguments to CDFgetzVarsMaxWrittenRecNum are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

recNum Maximum written record number.

4.3.63.1. Example(s)

The following example returns the maximum record number for all of the zVariables in a CDF.

dim id as long * CDF identifier.
Dim recNum as integer ¢ The maximum record number.
dim status as integer
try
status = CDFgetzVarsMaxWrittenRecNum (id, recNum)

catch ex as Exception

114

end try

4.3.64 CDFgetzVarSparseRecords

integer CDFgetzVarSparseRecords(
id as long,

varNum as integer,

sRecordsType as integer)

out -- Completion status code.
‘ in-- CDF identifier.

in -- The variable number.

out -- The sparse records type.

CDFgetzVarSparseRecords returns the sparse records type of the zVariable in a CDF. Refer to Section 2.12.1 for the

description of sparse records.

The arguments to CDFgetzVarSparseRecords are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate

(or CDFcreateCDF) or CDFopenCDF.
varNum Variable number.

sRecordsType Sparse records type.

4.3.64.1. Example(s)

The following example returns the sparse records type of the zVariable “MY_VAR” in a CDF.

dim id as long
Dim sRecordsType as integer
dim status as integer

try

 CDF identifier.
¢ The sparse records type.

status = CDFgetzVarSparseRecords (id, CDFgetVarNum (id, “MY_VAR”), sRecordsType) ...

catch ex as Exception
end try

4.3.65 CDFhyperGetrVarData

integer CDFhyperGetrVarData(¢ out-- Completion status code.

id as long, ‘ in-- CDF identifier.

varNum as integer, ¢ in -- rVariable number.

recStart as integer, ‘ in -- Starting record number.

recCount as integer, ¢ in -- Number of records.

recInterval as integer, ‘ in -- Reading interval between records.
indices as integer(), ‘ in -- Dimension indices of starting value.
counts as integer(), ‘¢ in -- Number of values along each dimension.
intervals as integer(), ‘ in -- Reading intervals along each dimension.
buffer as TYPE) ¢ out -- Buffer of values.

TYPE -- VB value/string type (likely an array)

or object

CDFhyperGetrVarData is used to read one or more values for the specified rVariable. It is important to know the variable
majority of the CDF before using this method because the values placed into the data buffer will be in that majority.

115

CDFinquireCDF can be used to determine the default variable majority of a CDF distribution. The Concepts chapter in
the CDF User's Guide describes the variable majorities.

The record number starts at 0, not 1. For example, if you want to read the first 5 records, the starting record number
(recStart), the number of records to read (recCount), and the record interval (recInterval) should be 0, 5, and 1,
respectively. Note: you need to provide dummy arrays, with at least one (1) element, for indices, counts and intervals
for scalar variables.

The arguments to CDFhyperGetrVarData are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum rVariable number from which to read data. This number may be determined with a call to
CDFgetVarNum.

recStart Record number at which to start reading.

recCount Number of records to read.

recInterval The reading interval between records (e.g., an interval of 2 means read every other record).

indices Dimension indices (within each record) at which to start reading. Each element of indices specifies

the corresponding dimension index. For 0-dimensional rVariable, this argument is ignored (but
must be present).

counts Number of values along each dimension to read. Each element of counts specifies the
corresponding dimension count. For 0-dimensional rVariable, this argument is ignored (but must
be present).

intervals For each dimension, the dimension interval between reading (e.g., an interval of 2 means read
every other value). Each element of intervals specifies the corresponding dimension interval. For
0-dimensional rVariable, this argument is ignored (but must be present).

buffer The data holding buffer for the read values. The majority of the values in this buffer will be the
same as that of the CDF. This buffer must be large to hold the values. CDFinquirerVar can be
used to determine the rVariable's data type and number of elements (of that data type) at each
value. If a dimensional array of strings is expected, then use object type.

4.3.65.1. Example(s)

The following example will read 3 records of data, starting at record number 13 (14" record), from a rVariable named
Temperature The variable is a 3-dimensional array with sizes (180,91,10) and the CDF’s variable majority is
ROW_MAIJOR. The record variance is VARY, the dimension variances are (VARY,VARY,VARY), and the data type
is CDF_REAL4. This example is similar to the CDFgetrVarData example except that it uses a single call to
CDFhyperGetrVarData (rather than numerous calls to. CDFgetrVarData).

dim id as long ¢ CDF identifier.

Dim status as integer Returned status code.

Dim tmp(,,,) as single Temperature values.

Dim varN as integer rVariable number.

Dim recStart as integer = 13 Start record number.

Dim recCount as integer = 3 Number of records to read

Dim reclnterval as integer = 1 Record interval — read every record

116

Dim indices() as integer = {0,0,0} ¢ Dimension indices.

Dim counts() as integer = {180,91,10} ¢ Dimension counts.
Dim intervals() as integer = {1,1,1} ¢ Dimension intervals — read all
try
status = CDFhyperGetrVarData (id, varN, recStart, recCount, recInterval, indices, counts, intervals,
tmp)

catch ex as Exception
end try

Note that if the CDF's variable majority had been COLUMN_MAJOR, the tmp array would have been declared float
tmp(10,91,180,3) for proper indexing.

4.3.66 CDFhyperGetzVarData

integer CDFhyperGetzVarData(¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.

varNum as integer, ‘ in-- zVariable number.
recStart as integer, ‘ in -- Starting record number.

in -- Number of records.

in -- Reading interval between records.

in -- Dimension indices of starting value.

in -- Number of values along each dimension.
in -- Reading intervals along each dimension.

recCount as integer,
recInterval as integer,
indices as integer(),
counts as integer(),
intervals as integer(),

buffer as TYPE) ‘¢ out -- Buffer of values.
* TYPE -- VB value/string type (likely an array)
¢ or object.

CDFhyperGetzVarData is used to read one or more values for the specified zVariable. It is important to know the variable
majority of the CDF before using this method because the values placed into the data buffer will be in that majority.
CDFinquireCDF can be used to determine the default variable majority of a CDF distribution. The Concepts chapter in
the CDF User's Guide describes the variable majorities.

The record number starts at 0, not 1. For example, if you want to read the first 5 records, the starting record number
(recStart), the number of records to read (recCount), and the record interval (recInterval) should be 0, 5, and 1,
respectively. Note: you need to provide dummy arrays, with at least one (1) element, for indices, counts and intervals
for scalar variables.

The arguments to CDFhyperGetzVarData are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum zVariable number from which to read data. This number may be determined with a call to
CDFgetVarNum.

recStart Record number at which to start reading.

recCount Number of records to read.

recInterval Reading interval between records (e.g., an interval of 2 means read every other record).

117

indices

counts

intervals

buffer

Dimension indices (within each record) at which to start reading. Each element of indices specifies
the corresponding dimension index. For 0-dimensional zVariable, this argument is ignored (but
must be present).

Number of values along each dimension to read. Each element of counts specifies the
corresponding dimension count. For 0-dimensional zVariable, this argument is ignored (but must
be present).

For each dimension, the dimension interval between reading (e.g., an interval of 2 means read
every other value). Each element of intervals specifies the corresponding dimension interval. For
0-dimensional zVariable, this argument is ignored (but must be present).

The data holding buffer for the read values. The majority of the values in this buffer will be the
same as that of the CDF. This buffer must be large to hold the values. CDFinquirezVar can be
used to determine the zVariable's data type and number of elements (of that data type) at each
value. If a dimensional array of strings is expected, then use object type.

4.3.66.1. Example(s)

The following example will read 3 records of data, starting at record number 13 (14" record), from a zVariable named
Temperature The variable is a 3-dimensional array with sizes (180,91,10) and the CDEF’s variable majority is
ROW_MAIJOR. The record variance is VARY, the dimension variances are { VARY,VARY,VARY}, and the data type
is CDF REAL4. This example is similar to the CDFgetzVarData example except that it uses a single call to
CDFhyperGetzVarData (rather than numerous calls to. CDFgetzVarData).

dim id as long

Dim status as integer

Dim tmp(,,,) as single

Dim varN as integer

Dim recStart as integer = 13

Dim recCount as integer = 3
Dim reclnterval as integer = 1
Dim indices() as integer = {0,0,0}

¢ CDF identifier.

Returned status code.

Temperature values.

zVariable number.

Start record number.

Number of records to read

Record interval — read every record
Dimension indices.

Dim counts() as integer = {180,91,10} ¢ Dimension counts.

Dim intervals() as integer = {1,1,1}

try

Dimension intervals — read all

varN = CDFgetVarNum (id, "Temperature")

status = CDFhyperGetzVarData (id, varN, recStart, recCount, recInterval, indices, counts, intervals,

tmp)

catch ex as Exception

end try

Note that if the CDF's variable majority had been COLUMN MAIJOR, the tmp array would have been declared float
tmp(10,91,180,3) for proper indexing.

4.3.67 CDFhyperPutrVarData

integer CDFhyperPutrVarData(¢ out-- Completion status code.

id as long,

¢ in -- CDF identifier.

118

in -- rVariable number.

in -- Starting record number.

in -- Number of records.

in -- Writing interval between records.

in -- Dimension indices of starting value.
counts as integer(), in -- Number of values along each dimension.
intervals as integer(), in -- Writing intervals along each dimension.
buffer as TYPE) ‘ in -- Buffer of values.

TYPE -- VB value/string type (likely an array)

varNum as integer,
recStart as integer,
recCount as integer,
recInterval as integer,
indices as integer(),

CDFhyperPutrVarData is used to write one or more values from the data holding buffer to the specified rVariable. It is
important to know the variable majority of the CDF before using this method because the values in the data buffer will
be written using that majority. CDFinquireCDF can be used to determine the default variable majority of a CDF
distribution. The Concepts chapter in the CDF User's Guide describes the variable majorities.

The record number starts at 0, not 1. For example, if you want to write 2 records (10" and 11" record), the starting record
number (recStart), the number of records to write (recCount), and the record interval (recInterval) should be 9, 2, and 1,
respectively. Note: you need to provide dummy arrays, with at least one (1) element, for indices, counts and intervals
for scalar variables.

The arguments to CDFhyperPutrVarData are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum rVariable number to which write data. This number may be determined with a call to
CDFgetVarNum.

recStart Record number at which to start writing.

recCount Number of records to write.

recInterval Interval between records for writing (e.g., an interval of 2 means write every other record).

indices Indices (within each record) at which to start writing. Each element of indices specifies the

corresponding dimension index. For 0-dimensional rVariable this argument is ignored (but must
be present).

counts Number of values along each dimension to write. Each element of counts specifies the
corresponding dimension count. For 0-dimensional rVariable this argument is ignored (but must
be present).

intervals For each dimension, the interval between values for writing (e.g., an interval of 2 means write
every other value). Each element of intervals specifies the corresponding dimension interval. For
0-dimensional rVariable this argument is ignored (but must be present).

buffer The data holding buffer of values to write. The majority of the values in this buffer must be the
same as that of the CDF. The values starting at memory address buffer are written to the CDF.

4.3.67.1. Example(s)

The following example writes 2 records to a rVariable named LATITUDE that is a 1-dimensional array with dimension
sizes (181). The dimension variances are {VARY}, and the data type is CDF_INT2. This example is similar to the
CDFputrVarData example except that it uses a single call to CDFhyperPutrVarData rather than numerous calls to
CDFputrVarData.

119

dim id as long

Dim status as integer

Dim i as integer, j as integer
Dim lats(2,181) as short

Dim varN as integer

Dim recStart as integer = 0
Dim recCount as integer = 2
Dim reclnterval as integer = 1
Dim indices() as integer = {0}
Dim counts() as integer = {181}
Dim intervals() as integer = {1}

try
varN = CDFgetVarNum (id, "LATITUDE")
fori=0 tol
forj= -90 to 90
lats(i,90+1at) = Ctype(j, short)
next j
next i

¢ CDF identifier.
Returned status code.
Latitude value.
Buffer of latitude values.
rVariable number.
Record number.
Record counts.
Record interval.
Dimension indices.
Dimension counts.
Dimension intervals.

...status = CDFhyperPutrVarData (id, varN, recStart, recCount, recInterval, indices, counts, intervals, lats)

catch ex as Exception
end try

4.3.68 CDFhyperPutzVarData

integer CDFhyperPutzVarData(¢ out -- Completion status code.
id as long, ‘ in-- CDF identifier.

varNum as integer, ‘ in-- zVariable number.
recStart as integer, ‘ in -- Starting record number.
recCount as integer, ‘¢ in -- Number of records.

o -

recInterval as integer, in --

indices as integer(), < in --
counts as integer(), “in --
intervals as integer(), “in--
buffer as TYPE) ©in --

Writing interval between records.
Dimension indices of starting value.
Number of values along each dimension.
Writing intervals along each dimension.
Buffer of values.

TYPE -- VB value/string type (likely an array).

CDFhyperPutzVarData is used to write one or more values from the data holding buffer to the specified zVariable. It is
important to know the variable majority of the CDF before using this method because the values in the data buffer will
be written using that majority. CDFinquireCDF can be used to determine the default variable majority of a CDF
distribution. The Concepts chapter in the CDF User's Guide describes the variable majorities.

The record number starts at 0, not 1. For example, if you want to write 2 records (10% and 11" record), the starting record
number (recStart), the number of records to write (recCount), and the record interval (recInterval) should be 9, 2, and 1,
respectively. Note: you need to provide dummy arrays, with at least one (1) element, for indices, counts and intervals

for scalar variables.

The arguments to CDFhyperPutzVarData are defined as follows:

120

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum zVariable number to which write data. This number may be determined with a call to
CDFgetVarNum.

recStart Record number at which to start writing.

recCount Number of records to write.

recInterval Interval between records for writing (e.g., an interval of 2 means write every other record).

indices Indices (within each record) at which to start writing. Each element of indices specifies the

corresponding dimension index. For 0-dimensional zVariable this argument is ignored (but must
be present).

counts Number of values along each dimension to write. Each element of counts specifies the
corresponding dimension count. For 0-dimensional zVariable this argument is ignored (but must
be present).

intervals For each dimension, the interval between values for writing (e.g., an interval of 2 means write
every other value). Each element of intervals specifies the corresponding dimension interval. For
0-dimensional zVariable this argument is ignored (but must be present).

buffer The data holding buffer of values to write. The majority of the values in this buffer must be the
same as that of the CDF. The values starting at memory address buffer are written to the CDF.

4.3.68.1. Example(s)

The following example writes 2 records to a zVariable named LATITUDE that is a 1-dimensional array with dimension
sizes (181). The dimension variances are {VARY}, and the data type is CDF INT2. This example is similar to the
CDFputzVarData example except that it uses a single call to CDFhyperPutzVarData rather than numerous calls to
CDFputzVarData.

dim id as long ¢ CDF identifier.

Dim status as integer Returned status code.
Dim i as integer, j as integer Latitude value.

Dim lats(2,181) as short ¢ Buffer of latitude values.
Dim varN as integer zVariable number.
Dim recStart as integer = 0 Record number.

Dim recCount as integer = 2 Record counts.

Dim recInterval as integer = 1 Record interval.

Dim indices() as integer = {0} Dimension indices.
Dim counts() as integer = {181} Dimension counts.
Dim intervals() as integer = {1} Dimension intervals.

try
varN = CDFgetVarNum (id, "LATITUDE")
fori=0 to 1

forj= -90 to 90
lats(i,90+1at) = Ctype(j, short)

121

next j
next i

...status = CDFhyperPutzVarData (id, varN, recStart, recCount, reclnterval, indices, counts, intervals, lats)

catch ex as Exception

end try

4.3.69 CDFinquirerVar

integer CDFinquirezVar(
id as long,

varNum as integer,
varName as string,
dataType as integer,
numElements as integer,
numDims as integer,
dimSizes as integer(),
recVariance as integer,

dimVariances as integer())

out -- Completion status code.

¢ in -- CDF identifier.

in -- rVariable number.

out -- rVariable name.

out -- Data type.

out -- Number of elements (of the data type).
out -- Number of dimensions.

out -- Dimension sizes

out -- Record variance.

out -- Dimension variances.

CDFinquirerVar is used to inquire about the specified rVariable. This method would normally be used before reading
rVariable values (with CDFgetrVarData or CDFhyperGetrVarData) to determine the data type and number of elements

of that data type.

The arguments to CDFinquirezVar are defined as follows:

id
varNum
varName

dataType
numElements

numDims

dimSizes

recVariance

dimVariances

4.3.69.1. Example(s)

Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

Number of the rVariable to inquire. This number may be determined with a call to
CDFgetVarNum (see Section 4.3.41).

rVariable's name.

Data type of the rVariable. The data types are defined in Section 2.6.

Number of elements of the data type at each rVariable value. For character data types
(CDF_CHAR and CDF _UCHAR), this is the number of characters in the string. (Each
value consists of the entire string.) For all other data types, this will always be one (1) -
multiple elements at each value are not allowed for non-character data types.

Number of dimensions.

Dimension sizes. It is a 1-dimensional array, containing one element per dimension. Each
element of dimSizes receives the corresponding dimension size. For 0-dimensional
zVariables this argument is ignored (but must be present).

Record variance. The record variances are defined in Section 2.10.

Dimension variances. Each element of dimVariances receives the corresponding dimension

variance. The dimension variances are described in Section 2.10. For 0-dimensional
zVariables this argument is ignored (but a placeholder is necessary).

The following example returns information about a rVariable named HEAT FLUX in a CDF.

122

dim id as long ¢ CDF identifier.

Dim status as integer Returned status code.

Dim varName as string rVariable name.

Dim dataType as integer ¢ Data type of the rVariable.

Dim numElems as integer Number of elements (of data type).
Dim recVary as integer Record variance.

Dim numDims as integer Number of dimensions.

Dim dimSizes() as integer Dimension sizes

Dim dimVarys() as integer Dimension variances

try
status = CDFinquirerVar(id, CDFgetVarNum (id,"HEAT FLUX"), varName, dataType,
numElems, numDims, dimSizes, recVary, dimVarys)

catch ex as Exception
end try

4.3.70 CDFinquirezVar

integer CDFinquirezVar(out -- Completion status code.

id as long, ¢ in-- CDF identifier.

varNum as integer, in -- zVariable number.

varName as string, out -- zVariable name.

dataType as integer, out -- Data type.

numElements as integer, out -- Number of elements (of the data type).
numDims as integer, out -- Number of dimensions.

dimSizes as integer(), out -- Dimension sizes

recVariance as integer, out -- Record variance.

dimVariances as integer()) out -- Dimension variances.

CDFinquirezVar is used to inquire about the specified zVariable. This method would normally be used before reading
zVariable values (with CDFgetzVarData or CDFhyperGetzVarData) to determine the data type and number of elements
of that data type.

The arguments to CDFinquirezVar are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum Number of the zVariable to inquire. This number may be determined with a call to
CDFgetVarNum (see Section 4.3.41).

varName zVariable's name.
dataType Data type of the zVariable. The data types are defined in Section 2.6.
numElements Number of elements of the data type at each zVariable value. For character data types

(CDF_CHAR and CDF_UCHAR), this is the number of characters in the string. (Each

123

numDims

dimSizes

recVariance

dimVariances

4.3.70.1. Example(s)

value consists of the entire string.) For all other data types, this will always be one (1) -
multiple elements at each value are not allowed for non-character data types.

Number of dimensions.

Dimension sizes. It is a 1-dimensional array, containing one element per dimension. Each
element of dimSizes receives the corresponding dimension size. For 0-dimensional
zVariables this argument is ignored (but must be present).

Record variance. The record variances are defined in Section 2.10.

Dimension variances. Each element of dimVariances receives the corresponding dimension

variance. The dimension variances are described in Section 2.10. For 0-dimensional
zVariables this argument is ignored (but a placeholder is necessary).

The following example returns information about an zVariable named HEAT FLUX in a CDF.

dim id as long

Dim status as integer
Dim varName as string
Dim dataType as integer

Dim numElems as integer

Dim recVary as integer
Dim numDims as integer

Dim dimSizes() as integer
Dim dimVarys() as integer

try

¢ CDF identifier.

Returned status code.

zVariable name.

Data type of the zVariable.
Number of elements (of data type).
Record variance.

Number of dimensions.

Dimension sizes

Dimension variances

status = CDFinquirezVar(id, CDFgetVarNum (id,"HEAT FLUX"), varName, dataType,

catch ex as Exception

end try

numElems, numDims, dimSizes, recVary, dimVarys)

4.3.71 CDFputrVarData

integer CDFputrVarData(
id as long,

varNum as integer,
recNum as integer,
indices as integer(),
value as TYPE)

out -- Completion status code.
¢ in -- CDF identifier.

in -- Variable number.

¢ in -- Record number.

in -- Dimension indices.
in -- Data value.

¢ TYPE -- VB value/string type

CDFputrVarData writes a single data value to the specified index, the location of the element, in the given record of the
specified rVariable in a CDF.

The arguments to CDFputrVarData are defined as follows:

124

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum rVariable number.

recNum Record number.

indices Dimension indices within the record.
value Data value.

4.3.71.1. Example(s)

The following example will write two data values, the first and the fifth element, in Record 0 from rVariable “MY_VAR?”,
a 2-dimensional (2 by 3), CDF_DOUBLE type variable, in a row-major CDF. The first put operation passes the pointer
of the data value, while the second operation passes the data value as an object.

dim id as long ¢ CDF identifier.

Dim varNum as integer ¢ rVariable number.
Dim recNum as integer The record number.
Dim indices(2) as integer The dimension indices.
Dim valuel as double, value2 as double The data values.

Dim status as integer.

3
3

3

try
varNum = CDFgetVarNum (id, “MY_VAR”)
recNum = 0
indices(0) =0
indices(1) =0
valuel =10.1
status = CDFputrVarData (id, varNum, recNum, indices, valuel)
indices(0) =1
indices(1) =1
value2 =20.2
status = CDFputrVarData (id, varNum, recNum, indices, value2)

catch ex as Exception

end try

4.3.72 CDFputrVarPadValue

integer CDFputrVarPadValue(¢ out -- Completion status code.
id as long, ‘ in-- CDF identifier.

varNum as integer,

3

in -- Variable number.

value as TYPE) * in -- Pad value.

‘ TYPE — VB value/string type

CDFputrVarPadValue specifies the pad value for the specified rVariable in a CDF. A rVariable's pad value may be
specified (or respecified) at any time without affecting already written values (including where pad values were used).
The Concepts chapter in the CDF User's Guide describes variable pad values.

125

The arguments to CDFputrVarPadValue are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum rVariable number.

value Pad value.

4.3.72.1. Example(s)

The following example sets the pad value to 9999 for rVariable “MY_VAR”, a CDF_INT4 type variable, and “*****>
for another rVariable “MY_ VAR2”, a CDF_CHAR type with a number of elements of five (5), in a CDF.

dim id as long ¢ CDF identifier.

Dim padValuel as integer = -9999 ¢ An integer pad value.
Dim padValue2 as string = “**##*> ¢ A string pad value. °
try

status = CDFputrVarPadValue (id, CDFgetVarNum (id, “MY_VAR”), padValuel)

status = CDFputrVarPadValue (id, CDFgetVarNum (id, “MY_VAR2”), padValue2)

catch ex as Exception
end try

4.3.73 CDFputrVarRecordData

integer CDFputrVarRecordData(¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.

varNum as integer, in -- Variable number.
recNum as integer, in -- Record number.

buffer as TYPE) ¢ in -- Record data.
¢ TYPE -- VB value/string type (likely an
‘ array)

CDFputrVarRecordData writes an entire record at a given record number for the specified rVariable in a CDF. The
buffer should hold the entire data values for the variable. The data values in the buffer should be in the order that
corresponds to the variable majority defined for the CDF.

The arguments to CDFputrVarRecordData are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum rVariable number.
recNum Record number.
buffer The buffer holding the entire record values.

126

4.3.73.1. Example(s)

The following example will write one full record (numbered 2) from rVariable “MY_VAR?”, a 2-dimension (2 by 3),
CDF _INT4 type variable, in a CDF. The variable’s dimension variances are all VARY.

dim id as long ¢ CDF identifier.

Dim varNum as integer ¢ rVariable number.

Dim buffer(2,3) as integer = {{1,2,3},{4,5,6}} ¢ The data holding buffer.
try

varNum = CDFvarNum (id,”"MY_VAR?”)
status = CDFputrVarRecordData (id, varNum, 2, buffer)

catch ex as Exception

end try

4.3.74 CDFputrVarSeqData

integer CDFputrVarSeqData(¢ out-- Completion status code.
id as long, ‘ in-- CDF identifier.
varNum as integer, in -- Variable number.
value as TYPE) ‘ in -- Data value.
¢ TYPE -- VB value/string type

CDFputrVarSeqData writes one value to the specified rVariable in a CDF at the current sequential value (position) for
that variable. After the write, the current sequential value is automatically incremented to the next value. Use
CDFsetrVarSeqPos method to set the current sequential value (position).

The arguments to CDFputrVarSeqData are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum rVariable number.

value The buffer holding the data value.

4.3.74.1. Example(s)

The following example will write two data values starting at record number 2 from a 2-dimensional rVariable whose data
type is CDF_INT4. The first write will pass in a pointer from the data value, while the second write will pass in the data
value object directly.

dim id as long CDF identifier.

Dim varNum as integer ¢ The variable number.
Dim valuel as integer, value2 as integer The data value.

Dim indices(2) as integer The indices in a record.
Dim recNum as integer The record number.

3
3

3

127

dim status as integer

recNum = 2
indices(0) = 1
indices(1) =2

try
valuel =10
value2 = -20.

status = CDFsetrVarSeqPos (id, varNum, recNum, indices)
status = CDFputrVarSeqData (id, varNum, valuel)
status = CDFputrVarSeqData (id, varNum, value2)

catch ex as Exception

end try

4.3.75 CDFputzVarData

integer CDFputzVarData(¢ out -- Completion status code.
id as long, ‘ in-- CDF identifier.
varNum as integer, ‘ in -- Variable number.

recNum as integer, in -- Record number.
indices as integer(), in -- Dimension indices.
value as TYPE) ¢ in -- Data value.
¢ TYPE -- VB value/string type

CDFputzVarData writes a single data value to the specified index, the location of the element, in the given record of the
specified zVariable in a CDF.

The arguments to CDFputzVarData are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

recNum Record number.

indices Dimension indices within the record.
value Data value.

4.3.75.1. Example(s)

The following example will write two data values, the first and the fifth element, in Record 0 from zVariable “MY_VAR?”,
a 2-dimensional (2 by 3), CDF_DOUBLE type variable, in a row-major CDF. The first put operation passes the pointer
of the data value, while the second operation passes the data value as an object.

dim id as long ¢ CDF identifier.

dim varNum as integer ¢ zVariable number.

dim recNum as integer The record number.
Dim indices(2) as integer The dimension indices.
Dim valuel as double, value2 as double The data values.

3
3

3

128

Dim status as integer.
try
varNum = CDFgetVarNum (id, “MY_VAR”)
recNum = 0
indices(0) =0
indices(1)=0
valuel =10.1
status = CDFputzVarData (id, varNum, recNum, indices, valuel)
indices(0) =1
indices(1) =1
value2 =20.2
status = CDFputzVarData (id, varNum, recNum, indices, value2)

catch ex as Exception
end try

4.3.76 CDFputzVarPadValue

integer CDFputzVarPadValue(out -- Completion status code.
id as long, ‘ in-- CDF identifier.
varNum as integer, in -- Variable number.
value as TYPE) ¢ in -- Pad value.
¢ TYPE -- VB value/string type

CDFputzVarPadValue specifies the pad value for the specified zVariable in a CDF. A zVariable's pad value may be
specified (or respecified) at any time without affecting already written values (including where pad values were used).
The Concepts chapter in the CDF User's Guide describes variable pad values.

The arguments to CDFputzVarPadValue are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

value Pad value.

4.3.76.1. Example(s)

The following example sets the pad value to —9999 for zVariable “MY_ VAR?”, a CDF INT4 type variable, and “*****”
for another zVariable “MY_VAR2”, a CDF_CHAR type with a number of elements of five (5), in a CDF.

dim id as long ¢ CDF identifier.
dim padValuel as integer = -9999 ¢ An integer pad value.
Dim padValue2 as string = “***#*> ¢ A string pad value. °

Dim status as integer.
try

status = CDFputzVarPadValue (id, CDFgetVarNum (id, “MY_VAR?”), padValuel)

129

status = CDFputzVarPadValue (id, CDFgetVarNum (id, “MY_VAR2”), padValue2)

catch ex as Exception
end try

4.3.77 CDFputzVarRecordData

integer CDFputzVarRecordData(¢ out -- Completion status code.
id as long, ‘ in-- CDF identifier.

varNum as integer, in -- Variable number.
recNum as integer, in -- Record number.

buffer as TYPE) ‘ in -- Record data.
¢ TYPE -- VB value/string type (likely an
¢ array)

CDFputzVarRecordData writes an entire record at a given record number for the specified zVariable in a CDF. The
buffer should hold the entire data values for the variable. The data values in the buffer should be in the order that
corresponds to the variable majority defined for the CDF.

The arguments to CDFputzVarRecordData are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.
recNum Record number.
buffer The buffer holding the entire record values.

4.3.77.1. Example(s)

The following example will write one full record (numbered 2) from zVariable “MY_VAR”, a 2-dimension (2 by 3),
CDF_INT4 type variable, in a CDF. The variable’s dimension variances are all VARY.

dim id as long CDF identifier.

dim varNum as integer ¢ zVariable number.

Dim buffer(,)as integer = {{1,2,3},{4,5,6}} ¢ The data holding buffer.
Dim status as integer

try

varNum = CDFvarNum (id,”MY_VAR”)

status = CDFputzVarRecordData (id, varNum, 2, buffer)
catch ex as Exception
end try

4.3.78 CDFputzVarSeqData

integer CDFputzVarSeqData(¢ out -- Completion status code.

130

id as long, ‘ in-- CDF identifier.
varNum as integer, ¢ in -- Variable number.
value as TYPE) ‘ in -- Data value.
¢ TYPE -- VB value/string type

CDFputzVarSeqData writes one value to the specified zVariable in a CDF at the current sequential value (position) for
that variable. After the write, the current sequential value is automatically incremented to the next value. Use
CDFsetzVarSeqPos method to set the current sequential value (position).

The arguments to CDFputzVarSeqData are defined as follows:
id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

value The buffer holding the data value.

4.3.78.1. Example(s)

The following example will write two data values starting at record number 2 from a 2-dimensional zVariable whose
data type is CDF_INT4. The first write will pass in a pointer from the data value, while the second write will pass in the
data value object directly.

dim id as long ¢ CDF identifier.

dim varNum as integer ¢ The variable number.
dim valuel as integer, value2 as integer The data value.

Dim indices(2) as integer The indices in a record.
dim recNum as integer The record number.
Dim status as integer

3
3

3

recNum = 2
indices(0) = 1
indices(1) =2

try
valuel =10
value2 = -20.

status = CDFsetzVarSeqPos (id, varNum, recNum, indices)
status = CDFputzVarSeqData (id, varNum, valuel)
status = CDFputzVarSeqData (id, varNum, value2)

catch ex as Exception
end try

4.3.79 CDFrenamerVar

integer CDFrenamerVar(out -- Completion status code.
id as long, ‘ in-- CDF identifier.

varNum as integer, in -- rVariable number.
varName as string) in -- New name.

CDFrenamerVar is used to rename an existing rVariable. A variable (rVariable or zVariable) with the same name must
not already exist in the CDF.

131

The arguments to CDFrenamerVar are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum Number of the rVariable to rename. This number may be determined with a call to
CDFgetVarNum.

varName The new rVariable name. This may be at most CDF VAR NAME LEN256 characters.

Variable names are case-sensitive.

4.3.79.1. Example(s)

In the following example the rVariable named TEMPERATURE is renamed to TMP (if it exists). Note that if
CDFgetVarNum returns a value less than zero (0) then that value is not an rVariable number but rather an error code.

dim id as long
dim status as integer
dim varNum as integer

try
varNum = CDFgetVarNum (id, "TEMPERATURE")
status = CDFrenamerVar (id, varNum, "TMP")

catch ex as Exception
end try

4.3.80 CDFrenamezVar

integer CDFrenamezVar(
id as long,

varNum as integer,
varName as string)

¢ CDF identifier.
¢ Returned status code.
¢ zVariable number.

out -- Completion status code.
in -- CDF identifier.

in -- zVariable number.

in -- New name.

CDFrenamezVar is used to rename an existing zVariable. A variable (rVariable or zVariable) with the same name must

not already exist in the CDF.

The arguments to CDFrenamezVar are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or

CDFcreateCDF) or CDFopenCDF.

varNum Number of the zVariable to rename. This number may be determined with a call to
CDFgetVarNum.
varName The new zVariable name. This may be at most CDF_VAR NAME LEN256 characters.

Variable names are case-sensitive.

132

4.3.80.1. Example(s)

In the following example the zVariable named TEMPERATURE is renamed to TMP (if it exists). Note that if
CDFgetVarNum returns a value less than zero (0) then that value is not an zVariable number but rather an error code.

dim id as long ¢ CDF identifier.

dim status as integer ¢ Returned status code.
dim varNum as integer ¢ zVariable number.
try

varNum = CDFgetVarNum (id, "TEMPERATURE")
status = CDFrenamezVar (id, varNum, "TMP")

catch ex as Exception
end try

4.3.81 CDFsetrVarAllocBlockRecords

integer CDFsetrVarAllocBlockRecords(out -- Completion status code.
id as long, ‘ in-- CDF identifier.

varNum as integer, in -- Variable number.
firstRec as integer, in -- First record number.
lastRec as integer) in -- Last record number.

CDFsetrVarAllocBlockRecords specifies a range of records to be allocated (not written) for the specified rVariable in a
CDF. This operation is only applicable to uncompressed rVariable in single-file CDFs. Refer to the CDF User’s Guide
for the descriptions of allocating variable records.

The arguments to CDFsetrVarAllocBlockRecords are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum rVariable number.
firstRec The first record number to allocate.
lastRec The last record number to allocate.

4.3.81.1. Example(s)
The following example allocates 10 records, from record numbered 10 to 19, for rVariable “MY_VAR” in a CDF.

dim id as long * CDF identifier.
dim firstRec as integer, lastRec as integer ¢ The first/last record numbers.
Dim status as integer.

firstRec = 10
lastRec = 19

133

try

status = CDFsetrVarAllocBlockRecords (id, CDFgetVarNum (id, “MY_VAR?”), firstRec, lastRec)

catch ex as Exception
end try

4.3.82 CDFsetrVarAllocRecords

integer CDFsetrVarAllocRecords(¢ out-- Completion status code.
id as long, ‘ in-- CDF identifier.

varNum as integer, in -- Variable number.
numRecs as integer) in -- Number of records.

CDFsetrVarAllocRecords specifies a number of records to be allocated (not written) for the specified rVariable in a CDF.
The records are allocated beginning at record number zero (0). This operation is only applicable to uncompressed
rVariable in single-file CDFs. Refer to the CDF User’s Guide for the descriptions of allocating variable records.

The arguments to CDFsetrVarAllocRecords are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum rVariable number.

numRecs Number of records to allocate.

4.3.82.1. Example(s)
The following example allocates 100 records, from record numbered 0 to 99, for rVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
dim numRecs as integer ¢ The number of records.
dim status as integer

numRecs = 100
try

status = CDFsetrVarAllocRecords (id, CDFgetVarNum (id, “MY_VAR”), numRecs)

catch ex as Exception
end try

4.3.83 CDFsetrVarBlockingFactor

integer CDFsetrVarBlockingFactor(out -- Completion status code.
id as long, ¢ in-- CDF identifier.

varNum as integer, in -- Variable number.

bf as integer) in -- Blocking factor.

134

CDFsetrVarBlockingFactor specifies the blocking factor (number of records allocated) for the specified rVariable in a
CDF. Refer to the CDF User’s Guide for a description of the blocking factor.

The arguments to CDFsetrVarBlockingFactor are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum rVariable number.
bf The blocking factor. A value of zero (0) indicates that the default blocking factor is being
used.

4.3.83.1. Example(s)
The following example sets the blocking factor to 100 records for rVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
Dim bf as integer ¢ The blocking factor.
dim status as integer

bf=100
try

status = CDFsetrVarBlockingFactor (id, CDFgetVarNum (id, “MY_VAR?”), bf)

catch ex as Exception
end try

4.3.84 CDFsetrVarCacheSize

integer CDFsetrVarCacheSize(¢ out -- Completion status code.

id as long, ‘ in-- CDF identifier.

varNum as integer, in -- Variable number.

numBuffers as integer) in -- Number of cache buffers.
CDFsetrVarCacheSize specifies the number of cache buffers being for the rVariable in a CDF. This operation is not
applicable to a single-file CDF. Refer to the CDF User’s Guide for description about caching scheme used by the CDF
library.

The arguments to CDFsetrVarCacheSize are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum rVariable number.

numBuffers Number of cache buffers.

4.3.84.1. Example(s)
The following example sets the number of cache buffers to 10 for rVariable “MY_VAR” in a CDF.

135

dim id as long CDF identifier.
Dim numBuffers as integer ¢ The number of cache buffers.
dim status as integer

numBuffers = 10
try

status = CDFsetrVarCacheSize (id, CDFgetVarNum (id, “MY_VAR?”), numBuffers)

catch ex as Exception
end try

4.3.85 CDFsetrVarCompression

integer CDFsetrVarCompression(out -- Completion status code.

id as long, ¢ in-- CDF identifier.
varNum as integer, ‘ in-- Variable number.
compType as integer, ¢ in -- Compression type.

cParms as integer()) in -- Compression parameters.

CDFsetrVarCompression specifies the compression type/parameters for the specified rVariable in a CDF. Refer to
Section 2.11 for a description of the CDF supported compression types/parameters.

The arguments to CDFsetrVarCompression are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum rVariable number.
compType The compression type.
cParms The compression parameters.

4.3.85.1. Example(s)
The following example sets the compression to GZIP.6 for rVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
Dim compType as integer ¢ The compression type.
Dim cParms(1) as integer ¢ The compression parameters.

dim status as integer

compType = GZIP_ COMPRESSION
cParms(0) =6
try

status = CDFsetrVarCompression (id, CDFgetVarNum (id, “MY_VAR?”), compType, cParms)

136

catch ex as Exception
end try

4.3.86 CDFsetrVarDataSpec

integer CDFsetrVarDataSpec(¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.

varNum as integer, in -- Variable number.
dataType as integer) in -- Data type.

CDFsetrVarDataSpec respecifies the data type of the specified rVariable in a CDF. The variable’s data type cannot be
changed if the new data type is not equivalent (type having a different data size) to the old data type and any values
(including the pad value) have been written. Data specifications are considered equivalent if the data types are equivalent.
Refer to the CDF User’s Guide for equivalent data types.

The arguments to CDFsetrVarDataSpec are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum rVariable number.

dataType The new data type.

4.3.86.1. Example(s)

The following example respecifies the data type to CDF_INT2 (from its original CDF_UINT2) for rVariable “MY_VAR”
in a CDF.

dim id as long ¢ CDF identifier.
Dim dataType as integer ¢ The data type.
Dim status as integer.

dataType = CDF_INT2
try

status = CDFsetrVarDataSpec (id, CDFgetVarNum (id, “MY_VAR?”), dataType)

catch ex as Exception
end try

4.3.87 CDFsetrVarDimVariances

integer CDFsetrVarDimVariances(out -- Completion status code.
id as long, ¢ in-- CDF identifier.

varNum as integer, in -- Variable number.
dimVarys as integer()) in -- Dimension variances.

CDFsetrVarDimVariances respecifies the dimension variances of the specified rVariable in a CDF. For 0-dimensional
rVariable, this operation is not applicable. The dimension variances are described in Section 2.10.

137

The arguments to CDFsetrVarDimVariances are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate

(or CDFcreateCDF) or CDFopenCDF.
varNum rVariable number.

dimVarys Dimension variances.

4.3.87.1. Example(s)

The following example resets the dimension variances to true (VARY) and true (VARY) for rVariable “MY_VAR”, a

2-dimensional variable, in a CDF.

dim id as long ¢ CDF identifier.

dim varNum as integer ¢ rVariable number.

Dim dimVarys() as integer = {VARY, VARY} ¢ The dimension variances.
dim status as integer

try
varNum = CDFgetVarNum (id, “MY_VAR”)
status = CDFsetrVarDimVariances (id, varNum, dimVarys)

catch ex as Exception
end try

4.3.88 CDFsetrVarlnitialRecs

integer CDFsetrVarlnitialRecs(¢ out -- Completion status code.
id as long, ‘ in-- CDF identifier.

varNum as integer, in -- Variable number.
numRecs as integer) in -- Number of records.

CDFsetrVarlnitialRecs specifies a number of records to initially write to the specified rVariable in a CDF. The records
are written beginning at record number 0 (zero). This may be specified only once per rVariable and before any other
records have been written to that rVariable. If a pad value has not yet been specified, the default is used (see the Concepts
chapter in the CDF User’s Guide). If a pad value has been explicitly specified, that value is written to the records. The

Concepts chapter in the CDF User's Guide describes initial records.

The arguments to CDFsetrVarInitialRecs are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate

(or CDFcreateCDF) or CDFopenCDF.
varNum rVariable number.

numRecs Initially written records.

4.3.88.1. Example(s)
The following example writes the initial 100 records to rVariable “MY_VAR” in a CDF.

138

dim id as long CDF identifier.

dim varNum as integer ¢ rVariable number.

dim numRecs as integer ¢ The number of records.
Dim status as integer.

try
varNum = CDFgetVarNum (id, “MY_VAR”)
numRecs = 100
status = CDFsetrVarlInitialRecs (id, varNum, numRecs)
catch ex as Exception
end try
4.3.89 CDFsetrVarRecVariance

integer CDFsetrVarRecVariance(out -- Completion status code.
id as long, ‘ in-- CDF identifier.

varNum as integer, in -- Variable number.
recVary as integer) in -- Record variance.

CDFsetrVarRecVariance specifies the record variance of the specified rVariable in a CDF. The record variances are
described in Section 2.10.

The arguments to CDFsetrVarRecVariance are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum rVariable number.

recVary Record variance.

4.3.89.1. Example(s)
The following example sets the record variance to VARY (from NOVARY) for rVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
dim recVary as integer ¢ The record variance.
Dim status as integer.

recVary = VARY
try

status = CDFsetrVarRecVariance (id, CDFgetVarNum (id, “MY_VAR”), recVary)
catch ex as Exception

end try

139

4.3.90 CDFsetrVarReservePercent

integer CDFsetrVarReservePercent(out -- Completion status code.
id as long, ‘ in-- CDF identifier.

varNum as integer, in -- Variable number.
percent as integer) in -- Reserve percentage.

CDFsetrVarReservePercent specifies the compression reserve percentage being used for the specified rVariable in a CDF.
This operation only applies to compressed rVariables. Refer to the CDF User’s Guide for a description of the reserve
scheme used by the CDF library.

The arguments to CDFsetrVarReservePercent are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum rVariable number.

percent The reserve percentage.

4.3.90.1. Example(s)
The following example sets the reserve percentage to 10 for rVariable “MY_VAR” in a CDF.

dim id as long CDF identifier.
dim percent as integer ¢ The reserve percentage.
Dim status as integer.

percent = 10
try

status = CDFsetrVarReservePercent (id, CDFgetVarNum (id, “MY_VAR?”), percent)

catch ex as Exception

end try

4.3.91 CDFsetrVarsCacheSize

integer CDFsetrVarsCacheSize(out -- Completion status code.
id as long, ¢ in-- CDF identifier.
numBuffers as integer) ‘ in -- Number of cache buffers.

CDFsetrVarsCacheSize specifies the number of cache buffers to be used for all of the rVariable files in a CDF. This
operation is not applicable to a single-file CDF. The Concepts chapter in the CDF User's Guide describes the caching
scheme used by the CDF library.

The arguments to CDFsetrVarsCacheSize are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

140

numBuffers Number of buffers.

4.3.91.1. Example(s)

The following example sets the number of cache buffers to 10 for all rVariables in a CDF.

dim id as long ¢ CDF identifier.
dim numBuffers as integer ¢ The number of cache buffers.
Dim status as integer.

numBuffers = 10
try

status = CDFsetrVarsCacheSize (id, numBuffers)

catch ex as Exception
end try

4.3.92 CDFsetrVarSeqPos

integer CDFsetrVarSeqPos(¢ out -- Completion status code.
id as long, ‘ in-- CDF identifier.

varNum as integer, in -- Variable number.

dim recNum as integer, in -- Record number.

indices as integer()) in -- Indices in a record.

CDFsetrVarSeqPos specifies the current sequential value (position) for sequential access for the specified rVariable in a
CDF. Note that a current sequential value is maintained for each rVariable individually. Use CDFgetrVarSeqPos method
to get the current sequential value.

The arguments to CDFsetrVarSeqPos are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum rVariable number.
recNum rVariable record number.
indices Dimension indices. Each element of indices receives the corresponding dimension index. For

0-dimensional rVariable, this argument is ignored, but must be presented.

4.3.92.1. Example(s)

The following example sets the current sequential value to the first value element in record number 2 for a rVariable, a
2-dimensional variable, in a CDF.

dim id as long ¢ CDF identifier.
Dim varNum as integer ¢ The variable number.

141

dim recNum as integer ¢ The record number.
Dim indices(2) as integer ¢ The indices.

recNum = 2
indices(0) =0
indices(1) =0
try

status = CDFsetrVarSeqPos (id, varNum, recNum, indices)
catch ex as Exception
end try

4.3.93 CDFsetrVarSparseRecords

integer CDFsetrVarSparseRecords(out -- Completion status code.
id as long, ¢ in-- CDF identifier.

varNum as integer, in -- The variable number.
sRecordsType as integer) in -- The sparse records type.

CDFsetrVarSparseRecords specifies the sparse records type of the specified rVariable in a CDF. Refer to Section 2.12.1
for the description of sparse records.

The arguments to CDFsetrVarSparseRecords are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum rVariable number.

sRecordsType The sparse records type.

4.3.93.1. Example(s)

The following example sets the sparse records type to PAD SPARSERECORDS from its original type for rVariable
“MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
dim sRecordsType as integer ¢ The sparse records type.
Dim status as integer.
sRecordsType = PAD_ SPARSERECORDS
try
status = CDFsetrVarSparseRecords (id, CDFgetVarNum (id, “MY_VAR”), sRecordsType)
catch ex as Exception
end try
4.3.94 CDFsetzVarAllocBlockRecords

integer CDFsetzVarAllocBlockRecords(¢ out -- Completion status code.

142

id as long, ‘ in-- CDF identifier.

varNum as integer,

3

in -- Variable number.

¢ .

firstRec as integer in -- First record number.
b

lastRec as integer)

3

in -- Last record number.

CDFsetzVarAllocBlockRecords specifies a range of records to be allocated (not written) for the specified zVariable in a
CDF. This operation is only applicable to uncompressed zVariable in single-file CDFs. Refer to the CDF User’s Guide
for the descriptions of allocating variable records.

The arguments to CDFsetzVarAllocBlockRecords are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.
firstRec The first record number to allocate.
lastRec The last record number to allocate.

4.3.94.1. Example(s)

The following example allocates 10 records, from record numbered 10 to 19, for zVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
dim firstRec as integer, lastRec as integer ¢ The first/last record numbers.
dim status as integer

firstRec = 10
lastRec = 19

try

status = CDFsetzVarAllocBlockRecords (id, CDFgetVarNum (id, “MY_VAR?), firstRec, lastRec)

catch ex as Exception

end try

4.3.95 CDFsetzVarAllocRecords

integer CDFsetzVarAllocRecords(¢ out -- Completion status code.
id as long, ‘ in-- CDF identifier.

varNum as integer,
numRecs as integer)

in -- Variable number.
in -- Number of records.

CDFsetzVarAllocRecords specifies a number of records to be allocated (not written) for the specified zVariable in a
CDF. The records are allocated beginning at record number zero (0). This operation is only applicable to uncompressed
zVariable in single-file CDFs. Refer to the CDF User’s Guide for the descriptions of allocating variable records.

The arguments to CDFsetzVarAllocRecords are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

143

numRecs Number of records to allocate.

4.3.95.1. Example(s)
The following example allocates 100 records, from record numbered 0 to 99, for zVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
Dim numRecs as integer ¢ The number of records.
Dim status as integer.

numRecs = 100
try

status = CDFsetzVarAllocRecords (id, CDFgetVarNum (id, “MY_VAR”), numRecs)

catch ex as Exception
end try

4.3.96 CDFsetzVarBlockingFactor

integer CDFsetzVarBlockingFactor(out -- Completion status code.
id as long, ‘ in-- CDF identifier.

varNum as integer, in -- Variable number.

bf as integer) in -- Blocking factor.

CDFsetzVarBlockingFactor specifies the blocking factor (number of records allocated) for the specified zVariable in a
CDF. Refer to the CDF User’s Guide for a description of the blocking factor.

The arguments to CDFsetzVarBlockingFactor are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.
bf The blocking factor. A value of zero (0) indicates that the default blocking factor is being
used.

4.3.96.1. Example(s)
The following example sets the blocking factor to 100 records for zVariable “MY_VAR” in a CDF.

dim id as long CDF identifier.
Dim bf as integer ¢ The blocking factor.
Dim status as integer.

bf =100
try

status = CDFsetzVarBlockingFactor (id, CDFgetVarNum (id, “MY_VAR?”), bf)

144

catch ex as Exception

end try

4.3.97 CDFsetzVarCacheSize

integer CDFsetzVarCacheSize(¢ out -- Completion status code.
id as long, ‘ in-- CDF identifier.

varNum as integer, in -- Variable number.
numBuffers as integer) in -- Number of cache buffers.

CDFsetzVarCacheSize specifies the number of cache buffers being for the zVariable in a CDF. This operation is not
applicable to a single-file CDF. Refer to the CDF User’s Guide for description about caching scheme used by the CDF
library.

The arguments to CDFsetzVarCacheSize are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

numBuffers Number of cache buffers.

4.3.97.1. Example(s)
The following example sets the number of cache buffers to 10 for zVariable “MY_ VAR” in a CDF.

dim id as long ¢ CDF identifier.
Dim numBuffers as integer ¢ The number of cache buffers.
Dim status as integer.

numBuffers = 10
try

status = CDFsetzVarCacheSize (id, CDFgetVarNum (id, “MY_VAR”), numBuffers)

catch ex as Exception
end try

4.3.98 CDFsetzVarCompression

integer CDFsetzVarCompression(out -- Completion status code.

id as long, ¢ in-- CDF identifier.
varNum as integer, ‘ in-- Variable number.
compType as integer, ¢ in -- Compression type.

cParms as integer()) in -- Compression parameters.

CDFsetzVarCompression specifies the compression type/parameters for the specified zVariable in a CDF. Refer to
Section 2.11 for a description of the CDF supported compression types/parameters.

145

The arguments to CDFsetzVarCompression are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.
compType The compression type.
cParms The compression parameters.

4.3.98.1. Example(s)
The following example sets the compression to GZIP.6 for zVariable “MY_VAR” in a CDF.

dim id as long CDF identifier.
Dim compType as integer ¢ The compression type.
Dim cParms(1) as integer ¢ The compression parameters.

compType = GZIP_ COMPRESSION
cParms(0) =6
try

status = CDFsetzVarCompression (id, CDFgetVarNum (id, “MY_VAR?”), compType, cParms)

catch ex as Exception
end try

4.3.99 CDFsetzVarDataSpec

integer CDFsetzVarDataSpec(¢ out -- Completion status code.
id as long, ‘ in-- CDF identifier.

varNum as integer, in -- Variable number.
dataType as integer) in -- Data type.

CDFsetzVarDataSpec respecifies the data type of the specified zVariable in a CDF. The variable’s data type cannot be
changed if the new data type is not equivalent (type having a different data size) to the old data type and any values
(including the pad value) have been written. Data specifications are considered equivalent if the data types are equivalent.
Refer to the CDF User’s Guide for equivalent data types.

The arguments to CDFsetzVarDataSpec are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

dataType The new data type.

146

4.3.99.1. Example(s)

The following example respecifies the data type to CDF INT2 (from its original CDF UINT2) for zVariable
“MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
Dim dataType as integer ¢ The data type.
Dim status. as integer

dataType = CDF_INT2
try

status = CDFsetzVarDataSpec (id, CDFgetVarNum (id, “MY_VAR?”), dataType)

catch ex as Exception
end try

4.3.100 CDFsetzVarDimVariances

integer CDFsetzVarDimVariances(out -- Completion status code.
id as long, ‘ in-- CDF identifier.

varNum as integer, in -- Variable number.
dimVarys as integer()) in -- Dimension variances.

CDFsetzVarDimVariances respecifies the dimension variances of the specified zVariable in a CDF. For 0-dimensional
zVariable, this operation is not applicable. The dimension variances are described in Section 2.10.

The arguments to CDFsetzVarDimVariances are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

dimVarys Dimension variances.

4.3.100.1. Example(s)

The following example resets the dimension variances to true (VARY) and true (VARY) for zVariable “MY_VAR”, a
2-dimensional variable, in a CDF.

dim id as long ¢ CDF identifier.

dim varNum as integer ¢ zVariable number.

Dim dimVarys()as integer = {VARY, VARY} ¢ The dimension variances.
Dim status as integer

try

varNum = CDFgetVarNum (id, “MY_VAR”)
status = CDFsetzVarDimVariances (id, varNum, dimVarys)

147

catch ex as Exception
end try

4.3.101 CDFsetzVarlnitialRecs

integer CDFsetzVarlnitialRecs(¢ out -- Completion status code.
id as long, ‘ in-- CDF identifier.

varNum as integer, in -- Variable number.
numRecs as integer) in -- Number of records.

CDFsetzVarlnitialRecs specifies a number of records to initially write to the specified zVariable in a CDF. The records
are written beginning at record number O (zero). This may be specified only once per zVariable and before any other
records have been written to that zVariable. If a pad value has not yet been specified, the default is used (see the Concepts
chapter in the CDF User’s Guide). If a pad value has been explicitly specified, that value is written to the records. The
Concepts chapter in the CDF User's Guide describes initial records.

The arguments to CDFsetzVarInitialRecs are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

numRecs Initially written records.

4.3.101.1. Example(s)
The following example writes the initial 100 records to zVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.

dim varNum as integer ¢ zVariable number.
Dim numRecsas integer ¢ The number of records.
dim status as integer

try
varNum = CDFgetVarNum (id, “MY_VAR”)

numRecs = 100
status = CDFsetzVarlnitialRecs (id, varNum, numRecs)

catch ex as Exception
end try

4.3.102 CDFsetzVarRecVariance

integer CDFsetzVarRecVariance(out -- Completion status code.
id as long, ‘ in-- CDF identifier.

varNum as integer, in -- Variable number.
recVary as integer) in -- Record variance.

148

CDFsetzVarRecVariance specifies the record variance of the specified zVariable in a CDF. The record variances are
described in Section 2.10.

The arguments to CDFsetzVarRecVariance are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

recVary Record variance.

4.3.102.1. Example(s)
The following example sets the record variance to VARY (from NOVARY) for zVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
Dim recVary as integer ¢ The record variance.
Dim status as integer

recVary = VARY
try

status = CDFsetzVarRecVariance (id, CDFgetVarNum (id, “MY_VAR?”), recVary)

catch ex as Exception
end try

4.3.103 CDFsetzVarReservePercent

integer CDFsetzVarReservePercent(out -- Completion status code.

id as long, ‘ in-- CDF identifier.

varNum as integer, in -- Variable number.

percent as integer) in -- Reserve percentage.
CDFsetzVarReservePercent specifies the compression reserve percentage being used for the specified zVariable in a
CDF. This operation only applies to compressed zVariables. Refer to the CDF User’s Guide for a description of the
reserve scheme used by the CDF library.

The arguments to CDFsetzVarReservePercent are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

percent The reserve percentage.

149

4.3.103.1. Example(s)
The following example sets the reserve percentage to 10 for zVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
Dim percent as integer ¢ The reserve percentage.
Dim status as integer

percent = 10
try

status = CDFsetzVarReservePercent (id, CDFgetVarNum (id, “MY_VAR?”), percent)

catch ex as Exception
end try

4.3.104 CDFsetzVarsCacheSize

integer CDFsetzVarsCacheSize(¢ out -- Completion status code.

id as long, ‘ in-- CDF identifier.

numBuffers as integer) ¢ in -- Number of cache buffers.
CDFsetzVarsCacheSize specifies the number of cache buffers to be used for all of the zVariable files in a CDF. This
operation is not applicable to a single-file CDF. The Concepts chapter in the CDF User's Guide describes the caching
scheme used by the CDF library.

The arguments to CDFsetzVarsCacheSize are defined :

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

numBuffers Number of buffers.

4.3.104.1. Example(s)

The following example sets the number of cache buffers to 10 for all zVariables in a CDF.

dim id as long ¢ CDF identifier.
Dim numBuffers as integer ¢ The number of cache buffers.
.dim status as integer

numBuffers = 10
try
status = CDFsetzVarsCacheSize (id, numBuffers)

catch ex as Exception

150

end try

4.3.105 CDFsetzVarSeqPos

integer CDFsetzVarSeqPos(¢ out-- Completion status code.
id as long, ‘ in-- CDF identifier.

varNum as integer, in -- Variable number.

dim recNum as integer, in -- Record number.

indices as integer as integer()) in -- Indices in a record.

CDFsetzVarSeqPos specifies the current sequential value (position) for sequential access for the specified zVariable in a
CDF. Note that a current sequential value is maintained for each zVariable individually. Use CDFgetzVarSeqPos method
to get the current sequential value.

The arguments to CDFsetzVarSeqPos are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.
recNum zVariable record number.
indices Dimension indices. Each element of indices receives the corresponding dimension index. For

0-dimensional zVariable, this argument is ignored, but must be presented.

4.3.105.1. Example(s)

The following example sets the current sequential value to the first value element in record number 2 for a zVariable, a
2-dimensional variable, in a CDF.

dim id as long * CDF identifier.

dim varNum as integer ¢ The variable number.
Dim recNum as integer The record number.
Dim indices(2) as integer The indices.

3

3

recNum = 2
indices(0) =0
indices(1) =0

try
status = CDFsetzVarSeqPos (id, varNum, recNum, indices)

catch ex as Exception
end try

4.3.106 CDFsetzVarSparseRecords

integer CDFsetzVarSparseRecords(out -- Completion status code.
id as long, ¢ in-- CDF identifier.

varNum as integer, in -- The variable number.
sRecordsType as integer) in -- The sparse records type.

151

CDFsetzVarSparseRecords specifies the sparse records type of the specified zVariable in a CDF. Refer to Section 2.12.1
for the description of sparse records.

The arguments to CDFsetzVarSparseRecords are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

sRecordsType The sparse records type.

4.3.106.1. Example(s)

The following example sets the sparse records type to PAD SPARSERECORDS from its original type for zVariable
“MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
dim sRecordsType as integer ¢ The sparse records type.
Dim status as integer.

sRecordsType = PAD_ SPARSERECORDS

try
status = CDFsetzVarSparseRecords (id, CDFgetVarNum (id, “MY_VAR”), sRecordsType)

catch ex as Exception
end try

4.3.107 CDFvarClose’

integer CDFvarClose(out -- Completion status code.
id as long, ¢ in-- CDF identifier.
varNum as integer) ‘ in -- rVariable number.

3

CDFvarClose closes the specified rVariable file from a multi-file format CDF. The variable's cache buffers are flushed
before the variable's open file is closed. However, the CDF file is still open.

NOTE: You must close all open variable files to guarantee that all modifications you have made will actually be written
to the CDF's file(s). If your program exits, normally or otherwise, without a successful call to CDFclose, the CDF's cache
buffers are left unflushed.

The arguments to CDFclose are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

varNum Variable number for the open rVariable’s file. This identifier must have been initialized by a call to
CDFgetVarNum.

9 A legacy CDF function, handling rVariables only. While it is still available in V3.1, CDFcloserVar is the preferred
function for it.

152

4.3.107.1. Example(s)

The following example will close an open rVariable in a multi-file CDF.

dim id as long
dim status as integer

try

¢ CDF identifier.
¢ Returned status code.

status = CDFvarClose (id, CDFvarNum (id, “Flux”))

catch ex as Exception

end try

4.3.108 CDFvarCreate'®

integer CDFvarCreate(

id as long,

varName as string,
dataType as integer,
numElements as integer,
recVariance as integer,
dimVariances as integer(),
varNum as integer)

out -- Completion status code.

¢ in -- CDF identifier.

in -- rVariable name.

in -- Data type.

in -- Number of elements (of the data type).
in -- Record variance.

in -- Dimension variances.

out -- rVariable number.

CDFvarCreate is used to create a new rVariable in a CDF. A variable (rVariable or zVariable) with the same name must

not already exist in the CDF.

The arguments to CDFvarCreate are defined as follows:

id

varName

dataType

numElements

recVariance

dimVariances

Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

Name of the rVariable to create. This may be at most CDF VAR NAME LEN256
characters. Variable names are case-sensitive.

Data type of the new rVariable. Specify one of the data types defined in Section 2.6.

Number of elements of the data type at each value. For character data types (CDF_CHAR
and CDF_UCHAR), this is the number of characters in the string (each value consists of
the entire string). For all other data types this must always be one (1) - multiple elements
at each value are not allowed for non-character data types.

rVariable's record variance. Specify one of the variances defined in Section 2.10.

rVariable's dimension variances. Each element of dimVariances specifies the
corresponding dimension variance. For each dimension specify one of the variances
defined in Section 2.10. For 0-dimensional rVariables this argument is ignored (but must
be present).

10°A legacy CDF function, handling rVariables only. While it is still available in V3.1, CDFcreaterVar is the preferred

function for it.

153

varNum Number assigned to the new rVariable. This number must be used in subsequent CDF
function calls when referring to this rVariable. An existing rVariable's number may be
determined with the CDFvarNum or CDFgetVarNum function.

4.3.108.1. Example(s)

The following example will create several rVariables in a 2-dimensional CDF.

dim id as long

dim stats as integer

dim EPOCHrecVary as integer = VARY

Dim LATrecVary as integer = NOVARY

Dim LONrecVary as integer = NOVARY

Dim TMPrecVary as integer = VARY

Dim EPOCHdimVarys() as integer = {NOVARY,NOVARY}
Dim LATdimVarys() as integer = {VARY,VARY}
Dim LONdimVarys() as integer = {VARY,VARY}
Dim TMPdimVarys() as integer = {VARY,VARY}
Dim EPOCHvarNum as integer

Dim LATvarNum as integer

Dim LONvarNum as integer

Dim TMPvarNum as integer

try

status = CDFvarCreate (id, "EPOCH", CDF_EPOCH, 1, _

CDF identifier.

Returned status code.
EPOCH record variance.
LAT record variance.

LON record variance.

TMP record variance.
EPOCH dimension variances.
LAT dimension variances.
LON dimension variances.
TMP dimension variances.
EPOCH zVariable number.
LAT zVariable number.
LON zVariable number.
TMP zVariable number.

EPOCHrecVary, EPOCHdimVarys, EPOCHvarNum)

status = CDFvarCreate (id, "LATITUDE", CDF INT2, 1,
LATrecVary, LATdimVarys, LATvarNum)

status = CDFvarCreate (id, "INTITUDE", CDF _INT2, 1, _
LONrecVary, LONdimVarys, LONvarNum)

status = CDFvarCreate (id, "TEMPERATURE", CDF_REAL4, 1,
TMPrecVary, TMPdimVarys, TMPvarNum)

catch ex as Exception

end try

4.3.109 CDFvarGet!!

integer CDFvarGet(

id as long,

varNum as integer,
dim recNum as integer,
indices as integer(),
value as TYPE)

CDFvarGet is used to read a single value from an rVariable.

out -- Completion status code.

in -- CDF identifier.

in -- rVariable number.

in -- Record number.

in -- Dimension indices.

out -- Value.

TYPE -- VB value/string type or object

"' A legacy CDF function, handling rVariables only. While it is still available in V3.1, CDFgetrVarData is the preferred

function for it.

The arguments to CDFvarGet are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopen.

varNum rVariable number from which to read data.

recNum Record number at which to read.

indices Dimension indices within the record.

value Data value read. This buffer must be large enough to hold the value.

4.3.109.1. Example(s)

The following example returns two data values, the first and the fifth element, in Record 0 from an rVariable named
MY VAR, a 2-dimensional (2 by 3) CDF_DOUBLE type variable, in a row-major CDF. The first get operation passes
the value pointer, while the second operation uses “out” argument modifier.

dim id as long * CDF identifier.

dim recNum as integer ¢ The record number.
dim varNum as integer The variable number.
Dim indices(2) as integer ¢ The dimension indices.
Dim valuel as double, value2 as double ¢ The data values.

Dim status as integer.

3

try
varNum = CDFvarNum (id, “MY_VAR”)
recNum = 0
indices(0) =0
indices(1)=0
status = CDFvarGet (id, varNum, recNum, indices, valuel)
indices(0) =1
indices(1) =1
object value2o
status = CDFvarGet (id, varNum, recNum, indices, value20)
value2 = value2o
catch ex as Exception

end try

4.3.110 CDFvarHyperGet!?

integer CDFvarHyperGet(out -- Completion status code.

id as long, ‘ in-- CDF identifier.

varNum as integer, in -- rVariable number.

recStart as integer, in -- Starting record number.

recCount as integer, ‘ in -- Number of records.

recInterval as integer, in -- Subsampling interval between records.

indices as integer(), in -- Dimension indices of starting value.

12 A legacy CDF function, handling rVariables only. While it is still available in V3.1, CDFhyperGetrVarData is the
preferred function for it.

155

3

counts as integer(), in -- Number of values along each dimension.
intervals as integer(), in -- Subsampling intervals along each dimension.
values as TYPE) ¢ out-- Values.

¢ TYPE -- VB value/string type or object

3

CDFvarHyperGet is used to fill a buffer of one or more values from the specified rVariable. It is important to know the
variable majority of the CDF before using CDFvarHyperGet because the values placed into the buffer will be in that
majority. CDFinquire can be used to determine the default variable majority of a CDF distribution. The Concepts chapter
in the CDF User's Guide describes the variable majorities. Note: you need to provide dummy arrays, with at least one
(1) element, for indices, counts and intervals for scalar variables.

4.3.110.1. Example(s)

The following example will read an entire record of data from an rVariable. The CDF’s rVariables are 3-dimensional
with sizes (180,91,10) and CDF’s variable majority is ROW_MAJOR. For the rVariable the record variance is VARY,
the dimension variances are {VARY,VARY,VARY}, and the data type is CDF_REALA4. This example is similar to the
example provided for CDFvarGet except that it uses a single call to CDFvarHyperGet rather than numerous calls to
CDFvarGet.

dim id as long ¢ CDF identifier.

Dim status as integer Returned status code.
Dim tmp(,,) as single Temperature values.
Dim varN as integer rVariable number.
Dim recStart as integer = 13 Record number.

Dim recCount as integer = 1 Record counts.

Dim reclnterval as integer = 1 Record interval.

Dim indices() as integer = {0,0,0} Dimension indices.
Dim counts() as integer = {180,91,10} ¢ Dimension counts.
Dim intervals() as integer = {1,1,1} Dimension intervals.

try

varN = CDFgetVarNum (id, "Temperature")

status = CDFvarHyperGet (id, varN, recStart, recCount, recInterval, indices, counts, intervals, tmp)
catch ex as Exception
end try

Note that if the CDF's variable majority had been COLUMN_MAJOR, the tmp array would have been declared simple
type of tmp(10,91,180) for proper indexing.

4.3.111 CDFvarHyperPut'

integer CDFvarHyperPut(out -- Completion status code.

id as long, ‘ in-- CDF identifier.
varNum as integer, ‘¢ in -- rVariable number.
recStart as integer, ‘ in -- Starting record number.

in -- Number of records.
in -- Interval between records.

recCount as integer,
recInterval as integer,

13 A legacy CDF function, handling rVariables only. While it is still available in V3.1, CDFhyperPutrVarData is the
preferred function for it.

156

in -- Dimension indices of starting value.

counts as integer(), in -- Number of values along each dimension.
intervals as integer(), in -- Interval between values along each dimension.
buffer as TYPE) ° in -- Buffer of values.

TYPE -- VB value/string type (likely an array)

indices as integer(),

CDFvarHyperPut is used to write one or more values from the data holding buffer to the specified rVariable. It is
important to know the variable majority of the CDF before using this routine because the values in the buffer to be written
must be in the same majority. CDFinquire can be used to determine the default variable majority of a CDF distribution.
The Concepts chapter in the CDF User's Guide describes the variable majorities. Note: you need to provide dummy
arrays, with at least one (1) element, for indices, counts and intervals for scalar variables.

4.3.111.1. Example(s)

The following example writes values to the rVariable LATITUDE of a CDF that is an 2-dimensional array with dimension
sizes (360,181). For LATITUDE the record variance is NOVARY, the dimension variances are {NOVARY,VARY},
and the data type is CDF_INT2. This example is similar to the CDFvarPut example except that it uses a single call to
CDFvarHyperPut rather than numerous calls to CDFvarPut.

dim id as long ¢ CDF identifier.

Dim status as integer Returned status code.
Dim i as integer ¢ Latitude value.

Dim lats(181) as short ¢ Buffer of latitude values.

rVariable number.
Record number.
Record counts.
Record interval.
Dimension indices.
Dimension counts.
Dimension intervals.

Dim varN as integer

Dim recStart as integer = 0

Dim recCount as integer = 1

Dim reclnterval as integer = 1
Dim indices()as integer = {0,0}
Dim counts() as integer = {1,181}
Dim intervals() as integer = {1,1}

try
varN = CDFvarNum (id, "LATITUDE")
fori= -90 to 90
lats(90+i) = CType(i, short)
next lat
status = CDFvarHyperPut (id, varN, recStart, recCount, recInterval, indices, counts, intervals, lats)

catch ex as Exception
end try

4.3.112 CDFvarlInquire

integer CDFvarlnquire(out -- Completion status code.

id as long, ¢ in-- CDF identifier.

varNum as integer, in -- rVariable number.

varName as string, out -- rVariable name.

dataType as integer , out -- Data type.

numElements as integer, out -- Number of elements (of the data type).
recVariance as integer, out -- Record variance.

dimVariances as integer()) out -- Dimension variances.

157

CDFvarlnquire is used to inquire about the specified rVariable. This method would normally be used before reading
rVariable values (with CDFvarGet or CDFvarHyperGet) to determine the data type and number of elements (of that data

type).

The arguments to CDFvarlnquire are defined as follows:

id

varNum

varName
dataType

numElements

recVariance

dimVariances

Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

Number of the rVariable to inquire. This number may be determined with a call to
CDFvarNum (see Section 4.3.113).

rVariable's name.

Data type of the rVariable. The data types are defined in Section 2.6.

Number of elements of the data type at each rVariable value. For character data types
(CDF_CHAR and CDF _UCHAR), this is the number of characters in the string. (Each
value consists of the entire string.) For all other data types, this will always be one (1) -
multiple elements at each value are not allowed for non-character data types.

The record variance. The record variances are defined in Section 2.10.

Dimension variances. Each element of dimVariances receives the corresponding dimension

variance. The dimension variances are defined in Section 2.10. For 0-dimensional
rVariables this argument is ignored (but a placeholder is necessary).

4.3.112.1. Example(s)

The following example returns about an rVariable named HEAT FLUX in a CDF. Note that the rVariable name returned
by CDFvarlnquire will be the same as that passed in to CDFgetVarNum.

dim id as long

Dim status as integer
Dim varName as string
Dim dataType as integer

Dim numElems as integer

Dim recVary as integer

¢ CDF identifier.

Returned status code.

rVariable name.

Data type of the rVariable.

Number of elements (of data type).
Record variance.

Dim dimVarys(CDF_MAX DIMS) as integer * Dimension variances (allocate to allow the

try

maximum number of dimensions).

status = CDFvarlnquire (id, CDFgetVarNum (id,"HEAT_ FLUX"), varName, dataType, _

catch ex as Exception

end try

numElems, recVary, dimVarys)

158

4.3.113 CDFvarNum!

integer CDFvarNum(out -- Variable number.
id as long, ‘ in-- CDF identifier.
varName as string) ‘ in -- Variable name.

3

CDFvarNum is used to determine the number associated with a given variable name. If the variable is found,
CDFvarNum returns its variable number - which will be equal to or greater than zero (0). If an error occurs (e.g., the
variable does not exist in the CDF), an error code (of type Int) is returned. Error codes are less than zero (0). The returned
variable number should be used in the functions of the same variable type, rVariable or zVariable. If it is an rVariable,
functions dealing with rVariables should be used. Similarly, functions for zVariables should be used for zVariables.

The arguments to CDFvarNum are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

varName Name of the variable to search. This may be at most CDF_ VAR NAME LEN256 characters.
Variable names are case-sensitive.

4.3.113.1. Example(s)

In the following example CDFvarNum is used as an embedded function call when inquiring about an rVariable.

dim id as long ¢ CDF identifier.
dim status as integer ¢ Returned status code.
dim varName as string Variable name.

3

dim dataType as integer ¢ Data type of the rVariable.

dim numElements integer * Number of elements (of the data type).
dim recVariance as integer ¢ Record variance.

dim dimVariances(CDF _MAX DIMS) as integer ¢ Dimension variances.

try

status = CDFvarlnquire (id, CDFvarNum (id,"LATITUDE"), varName, dataType, _
numElements, recVariance, dimVariances)

catch ex as Exception
end try

In this example the rVariable named LATITUDE was inquired. Note that if LATITUDE did not exist in the CDF, the
call to CDFgetVarNum would have returned an error code. Passing that error code to CDFvarlnquire as an rVariable
number would have resulted in CDFvarlnquire also returning an error code. Also note that the name written into varName
is already known (LATITUDE). In some cases the rVariable names will be unknown - CDFvarlnquire would be used to
determine them. CDFvarlnquire is described in Section 4.3.112.

14 A legacy CDF function. It used to handle only rVariables. It has been extended to include zVariables. While it is still
available in V3.1, CDFgetVarNum is the preferred function for it.

159

4.3.114 CDFvarPut!®

integer CDFvarPut(¢ out -- Completion status code.
id as long, ‘ in-- CDF identifier.
varNum as integer, in -- rVariable number.
recNum as integer, in -- Record number.
indices as integer(), in -- Dimension indices.
value as TYPE) ¢ in-- Value.

* TYPE -- VB value/string type

CDFvarPut writes a single data value to an rVariable. CDFvarPut may be used to write more than one value with a single
call.

The arguments to CDFvarPut are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopen.

varNum rVariable number to which to write. This number may be determined with a call to
CDFvarNum.

recNum Record number at which to write.

indices Dimension indices within the specified record at which to write. Each element of indices

specifies the corresponding dimension index. For 0-dimensional variables, this argument is
ignored (but must be present).
value Data value to write.

4.3.114.1. Example(s)

The following example will write two data values (1% and 5" elements) of a 2-dimensional rVariable (2 by 3) named
MY _VAR to record number 0.

dim id as long ¢ CDF identifier.

dim varNum as integer ‘ rVariable number.

dim recNum as integer ¢ The record number.
Dim indices(2) as integer ¢ The dimension indices.
Dim valuel as double, value2 as double The data values.

3

try
varNum = CDFgetVarNum (id, “MY_VAR”)
recNum = (0
indices(0) =0
indices(1) =0
valuel = 10.1
status = CDFvarPut (id, varNum, recNum, indices, valuel)
indices(0) =1
indices(1) =1
value2 =20.2
status = CDFvarPut (id, varNum, recNum, indices, value2)

15 A legacy CDF function, handling rVariables only. While it is still available in V3.1, CDFputrVarData is the preferred
function for it.

160

catch ex as Exception
end try

4.3.115 CDFvarRename!®

integer CDFvarRename(out -- Completion status code.
id as long, ¢ in-- CDF identifier.

varNum as integer, in -- rVariable number.
varName as string) in -- New name.

CDFvarRename is used to rename an existing rVariable. A variable (rVariable or zVariable) name must be unique.

The arguments to CDFvarRename are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate

(or CDFcreateCDF) or CDFopen.
varNum rVariable number to rename. This number may be determined with a call to CDFvarNum.

varName The new rVariable name. The maximum length of the new name
CDF_VAR NAME LEN256 characters. Variable names are case-sensitive.

4.3.115.1. Example(s)

In the following example the rVariable named TEMPERATURE is renamed to TMP (if it exists). Note that if
CDFvarNum returns a value less than zero (0) then that value is not an rVariable number but rather a warning/error code.

dim id as long ¢ CDF identifier.
Dim status as integer ¢ Returned status code.
Dim varNum as integer ¢ rVariable number.

try

varNum = CDFvarNum (id, "TEMPERATURE")

}
catch ex as Exception
end try

4.4 Attributes/Entries

This section provides functions that are related to CDF attributes or attribute entries. An attribute is identified by its
name or an number in the CDF. Before you can perform any operation on an attribute or attribute entry, the CDF in
which it resides must be opened.

16 A legacy CDF function, handling rVariables only. While it is still available in V3.1, CDFrenamerVar is the preferred
function for it.

161

4.4.1 CDFattrCreate!”

integer CDFattrCreate(¢ out -- Completion status code.
id as long, ‘ in-- CDF identifier.
attrName as string, in -- Attribute name.

attrScope as integer, in -- Scope of attribute.
attrNum as integer) out -- Attribute number.

CDFattrCreate creates an attribute in the specified CDF. An attribute with the same name must not already exist in the
CDF.

The arguments to CDFattrCreate are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

attrName Name of the attribute to create. This may be at most CDF_ ATTR NAME LEN256
characters. Attribute names are case-sensitive.

attrScope Scope of the new attribute. Specify one of the scopes described in Section 2.13.

attrNum Number assigned to the new attribute. This number must be used in subsequent CDF

function calls when referring to this attribute. An existing attribute's number may be
determined with the CDFgetAttrNum function.

4.4.1.1. Example(s)

The following example creates two attributes. The TITLE attribute is created with global scope - it applies to the entire
CDF (most likely the title of the data set stored in the CDF). The Units attribute is created with variable scope - each
entry describes some property of the corresponding variable (in this case the units for the data).

dim id as long ¢ CDF identifier.

Dim status as integer ¢ Returned status code.

Dim UNITSattrName as string = "Units" ¢ Name of "Units" attribute.
Dim UNITSattrNum as integer ¢ "Units" attribute number.
Dim TITLEattrNum as integer ¢ "TITLE" attribute number.
Dim TITLEattrScope as integer = GLOBAL_SCOPE ¢ "TITLE" attribute scope.
try

status = CDFattrCreate (id, "TITLE", TITLEattrScope, TITLEattrNum)
status = CDFattrCreate (id, UNITSattrName, VARIABLE SCOPE, UNITSattrnum)

catch ex as Exception

end try

17 Same as CDFcreateAttr.

162

4.4.2 CDFattrEntrylnquire

integer CDFattrEntryInquire(
id as long,

attrNum as integer,
entryNum as integer,
dataType as integer,
numElements as integer)

out -- Completion status code.
“ in-- CDF identifier.
‘ in -- Attribute number.
in -- Entry number.
out -- Data type.
out -- Number of elements (of the data type).

CDFattrEntryInquire is used to inquire about a specific attribute entry. To inquire about the attribute in general, use
CDFattrInquire. CDFattrEntryIlnquire would normally be called before calling CDFattrGet in order to determine the data
type and number of elements (of that data type) for an entry. This would be necessary to correctly allocate enough
memory to receive the value read by CDFattrGet.

The arguments to CDFattrEntrylnquire are defined as follows:

id

attrNum

entryNum

dataType

NumElements

4.4.2.1. Example(s)

Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

Attribute number for which to inquire an entry. This number may be determined with a
call to CDFattrNum (see Section 4.4.5).

Entry number to inquire. Ifthe attribute is global in scope, this is simply the gEntry number
and has meaning only to the application. If the attribute is variable in scope, this is the
number of the associated rVariable (the rVariable being described in some way by the
rEntry).

Data type of the specified entry. The data types are defined in Section 2.6.
Number of elements of the data type. For character data types (CDF_CHAR and

CDF_UCHAR), this is the number of characters in the string (An array of characters). For
all other data types this is the number of elements in an array of that data type.

The following example returns each entry for an attribute. Note that entry numbers need not be consecutive - not every
entry number between zero (0) and the maximum entry number must exist. For this reason NO_SUCH_ENTRY is an
expected error code. Note also that if the attribute has variable scope, the entry numbers are actually rVariable numbers.

dim id as long

Dim status as integer
Dim attrN as integer
Dim entryN as integer
Dim attrName as string
Dim attrScope as integer
Dim maxEntry as integer
Dim dataType as integer

Dim numElems as integer

try

¢ CDF identifier.

¢ Returned status code.

¢ attribute number.

¢ Entry number.

¢ attribute name.

¢ attribute scope.

¢ Maximum entry number used.

¢ Data type.

‘ Number of elements (of the data type).

attrN = CDFgetAttrNum (id, "TMP")
status = CDFattrlnquire (id, attrN, attrName, attrScope, maxEntry)

163

for entryN = 0 to maxEntry
status = CDFattrEntrylnquire (id, attrN, entryN, dataType, numElems)

next entryN

}

catch ex as Exception
end try

4.4.3 CDFattrGet!'®

integer CDFattrGet(¢ out -- Completion status code.

id as long, ¢ in-- CDF identifier.

integer attrNum, in -- Attribute number.

integer entryNum, in -- Entry number.

value as TYPE) ¢ out -- Attribute entry value.

TYPE -- VB value/string type or object

CDFattrGet is used to read an attribute entry from a CDF. In most cases it will be necessary to call CDFattrEntrylnquire
before calling CDFattrGet in order to determine the data type and number of elements (of that data type) for the entry.

The arguments to CDFattrGet are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

attrNum Attribute number. This number may be determined with a call to CDFattrNum (Section 4.4.5).

entryNum Entry number. If the attribute is global in scope, this is simply the gEntry number and has
meaning only to the application. If the attribute is variable in scope, this is the number of the
associated rVariable (the rVariable being described in some way by the rEntry).

value The value read. This buffer must be large enough to hold the value. The method
CDFattrEntryInquire would be used to determine the entry data type and number of elements
(of that data type). The value is read from the CDF and placed into memory at address value.

4.4.3.1. Example(s)

The following example displays the value of the UNITS attribute for the rEntry corresponding to the PRES LVL
rVariable (but only if the data type is CDF_CHAR).

dim id as long * CDF identifier.

dim status as integer Returned status code.

Dim attrN as integer Attribute number.

Dim entryN as integer Entry number.

Dim dataType as integer Data type.

Dim numElems as integer Number of elements (of data type).

18 A legacy CDF function. While it is still available in V3.1, CDFgetAttrgEntry or CDFgetAttrrEntry is the preferred
function for it.

164

try

attrN = CDFattrNum (id, "UNITS")
entryN = CDFvarNum (id, "PRES LVL") ¢ The rEntry number is the rVariable number.

status = CDFattrEntrylnquire (id, attrN, entryN, dataType, numElems)

if dataType = CDF_CHAR then

dim buffer as string

status = CDFattrGet (id, attrN, entryN, buffer)

end if

catch ex as Exception

end try

4.4.4 CDFattrInquire®

integer CDFattrInquire(
id as long,

attrNum as integer,
attrName as string,
attrScope as integer,
maxEntry as integer)

out -- Completion status code.

‘ in-- CDF identifier.

in -- Attribute number.

out -- Attribute name.

out -- Attribute scope.

out -- Maximum gEntry/rEntry number.

CDFattrinquire is used to inquire about the specified attribute. To inquire about a specific attribute entry, use

CDFattrEntryInquire.

The arguments to CDFattrInquire are defined as follows:

id

attrNum

attrName
attrScope

maxEntry

4.4.4.1. Example(s)

Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

Number of the attribute to inquire. This number may be determined with a call to
CDFattrNum (see Section 4.4.5).

Attribute's name. This string length is limited to CDF_ ATTR NAME LEN256.

Scope of the attribute. Attribute scopes are defined in Section 2.13.

For gAttributes this is the maximum gEntry number used. For vAttributes this is the
maximum rEntry number used. In either case this may not correspond with the number of

entries (if some entry numbers were not used). If no entries exist for the attribute, then a
value of -1 will be passed back.

The following example displays the name of each attribute in a CDF. The number of attributes in the CDF is first
determined using the method CDFinquire. Note that attribute numbers start at zero (0) and are consecutive.

dim id as long

Dim status as integer

¢ CDF identifier.
¢ Returned status code.

19 A legacy function. While it is still available in V3.1, CDFinquireAttr is the preferred function for it.

165

Dim numDims as integer
Dim dimSizes() as integer

Dim encoding as integer
Dim majority as integer
Dim maxRec as integer
Dim numVars as integer
Dim numAttrs as integer
Dim attrN as integer
Dim attrName as string
Dim attrScope as integer
Dim maxEntry as integer

try

Number of dimensions.

Dimension sizes (allocate to allow the
maximum number of dimensions).

Data encoding.

Variable majority.

Maximum record number in CDF.

Number of variables in CDF.

Number of attributes in CDF.

attribute number.

attribute name.

attribute scope.

Maximum entry number.

status = CDFinquire (id, numDims, dimSizes, encoding, majority, maxRec, numVars,

for attrN = 0 to (numAttrs-1)

status = CDFattrlnquire (id, attrN, attrName, attrScope, maxEntry)

next attrN
catch ex as Exception

end try

4.4.5 CDFattrNum?’

integer CDFattrNum(
id as long,
attrName as string)

CDFattrNum is used to determine the attribute number associated with a given attribute name. If the attribute is found,
CDFattrNum returns its number - which will be equal to or greater than zero (0). If an error occurs (e.g., the attribute

3

out -- attribute number.
‘in-- CDF id
¢ in -- Attribute name

name does not exist in the CDF), an error code (of type Int) is returned. Error codes are less than zero (0).

The arguments to CDFattrNum are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or

CDFcreateCDF) or CDFopen.

attrName Name of the attribute for which to search. This may be at most CDF_ ATTR_NAME LEN256
characters. Attribute names are case-sensitive.

CDFattrNum may be used as an embedded function call when an attribute number is needed.

4.4.5.1. Example(s)

In the following example the attribute named pressure will be renamed to PRESSURE with CDFattrNum being used as
an embedded function call. Note that if the attribute pressure did not exist in the CDF, the call to CDFattrNum would
have returned an error code. Passing that error code to CDFattrRename as an attribute number would have resulted in
CDFattrRename also returning an error code.

20 A legacy CDF function. While it is still available in V3.1, CDFgetAttrNum is the preferred function for it.

166

dim id as long
Dim status as integer

try

¢ CDF identifier.
¢ Returned status code.

status = CDFattrRename (id, CDFattrNum (id,"pressure"), "PRESSURE")

catch ex as Exception
end try

4.4.6 CDFattrPut

integer CDFattrPut(
id as long,

integer attrNum,
integer entryNum,
integer dataType,
integer numElements,
value as TYPE)

out -- Completion status code.

¢ in-- CDF identifier.

in -- Attribute number.

in -- Entry number.

in -- Data type of this entry.

in -- Number of elements (of the data type).
in -- Attribute entry value.

* TYPE -- VB value/string type

CDFattrPut is used to write an entry to a global or rVariable attribute in a CDF. The entry may or may not already exist.
If it does exist, it is overwritten. The data type and number of elements (of that data type) may be changed when

overwriting an existing entry.

The arguments to CDFattrPut are defined as follows:

id

attrNum

entryNum

dataType

numElements

value

4.4.6.1. Example(s)

Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopen.

Attribute number. This number may be determined with a call to CDFgetAttrNum.
Entry number. If the attribute is global in scope, this is simply the gEntry number and
has meaning only to the application. If the attribute is variable in scope, this is the
number of the associated rVariable (the rVariable being described in some way by the
rEntry).

Data type of the specified entry. Specify one of the data types defined in Section 2.6.
Number of elements of the data type. For character data types (CDF_CHAR and
CDF_UCHAR), this is the number of characters in the string (an array of characters).

For all other data types this is the number of elements in an array of that data type.

The value(s) to write. The entry value is written to the CDF from memory address value.

The following example writes two attribute entries. The first is to gEntry number zero (0) of the gAttribute TITLE. The
second is to the variable scope attribute VALIDs for the rEntry that corresponds to the rVariable TMP.

dim id as long
Dim status as integer

¢ CDF identifier.
¢ Returned status code.

167

Dim TITLE_LEN as integer = 10 ‘ Entry string length.
Dim entryNum as integer ¢ Entry number.
Dim numElements as integer Number of elements (of data type).

3

Dim title as string = "CDF title." ¢ Value of TITLE attribute, entry number 0.
Dim TMPvalids() as short = {15,30} ¢ Value(s) of VALIDs attribute,
¢ rEntry for rVariable TMP.
entryNum = 0
try

status = CDFattrPut (id, CDFgetAttrNum (id,"TITLE"), entryNum, CDF_CHAR, TITLE LEN, title)

numElements = 2
status = CDFattrPut (id, CDFgetAttrNum (id,"VALIDs"), CDFgetVarNum (id,"TMP"), _
CDF _INT2, numElements, TMPvalids)

catch ex as Exception

end try

4.4.7 CDFattrRename?!

integer CDFattrRename(out -- Completion status code.
id as long, ‘ in-- CDF identifier.

attrNum as integer, in -- Attribute number.
attrName as string) in -- New attribute name.

CDFattrRename is used to rename an existing attribute. An attribute with the new name must not already exist in the
CDF.

The arguments to CDFattrRename are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

attrNum Number of the attribute to rename. This number may be determined with a call to
CDFattrNum (see Section 4.4.5).

attrName The new attribute name. This may be at most CDF_ ATTR NAME LEN256 characters.
Attribute names are case-sensitive.

4.4.7.1. Example(s)
In the following example the attribute named LAT is renamed to LATITUDE.

dim id as long ¢ CDF identifier.
Dim status as integer ¢ Returned status code.
try

status = CDFattrRename (id, CDFgetAttrNum (id,"LAT"), "LATITUDE")

21 A legacy CDF function. While it is still available in V3.1, CDFrenameAttr is the preferred function for it.

168

catch ex as Exception
end try

4.4.8 CDFconfirmAttrExistence

integer CDFconfirmAttrExistence(out -- Completion status code.
id as long, ¢ in-- CDF identifier.

attrName as string) ‘ in -- Attribute name.

3

CDFconfirmAttrExistence confirms whether an attribute exists for the given attribute name in a CDF. If the attribute
doesn’t exist, the informational status code, NO_SUCH_ATTR, is returned and no exception is thrown.

The arguments to CDFconfirmAttrExistence are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrName Attribute name to check.

4.4.8.1. Example(s)
The following example checks whether an attribute by the name of “ATTR NAME]1” is in a CDF.

dim id as long * CDF identifier.
Dim status as integer ¢ Returned status code.
try

status = CDFconfirmAttrExistence (id, “ATTR NAME1")
if status = NO_SUCH_ATTR then

end if
catch ex as Exception
end try

4.4.9 CDFconfirmgEntryExistence

integer CDFconfirmgEntryExistence(out -- Completion status code.
id as long, ¢ in-- CDF identifier.

attrNum as integer, in -- Attribute number.
entryNum as integer) in -- gEntry number.

CDFconfirmgEntryExistence confirms the existence of the specified entry (gEentry), in a global attribute from a CDF.
If the gEntry does not exist, the informational status code NO_SUCH_ENTRY will be returned and no exception is
thrown.

The arguments to CDFconfirmgEntryExistence are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

169

attrNum Global attribute number.

entryNum Global entry number.

4.4.9.1. Example(s)
The following example checks the existence of a gEntry numbered 1 for attribute “MY_ATTR” in a CDF.

dim id as long ¢ CDF identifier.

Dim status as integer Returned status code.
dim attrNum as integer ¢ Attribute number.
Dim entryNum as integer ¢ gEntry number.

try
attrNum = CDFgetAttrNum (id, “MY_ATTR”)
entryNum = 1

status = CDFconfirmgEntryExistence (id, attrNum, entryNum)
if status = NO_SUCH_ENTRY then UserStatusHandler (status)

4.4.10 CDFconfirmrEntryExistence

integer CDFconfirmrEntryExistence(out -- Completion status code.
id as long, ‘ in-- CDF identifier.
attrNum as integer, in -- Attribute number.
entryNum as integer) in -- rEntry number.

CDFconfirmrEntryExistence confirms the existence of the specified entry (rEntry), corresponding to an rVariable, in a
variable attribute from a CDF. If the rEntry does not exist, the informational status code NO SUCH_ ENTRY will be
returned and no exception is thrown.

The arguments to CDFconfirmrEntryExistence are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Variable attribute number.

entryNum rEntry number.

4.4.10.1. Example(s)

The following example checks the existence of an rEntry, corresponding to rVariable “MY_VAR”, for attribute
“MY_ATTR” in a CDF.

dim id as long ¢ CDF identifier.

dim status as integer Returned status code.
dim attrNum as integer ¢ Attribute number.
dim entryNum as integer ¢ rEntry number.

170

try
attrNum = CDFgetAttrNum (id, “MY_ATTR”)
entryNum = CDFgetVarNum (id, “MY_VAR?”)

status = CDFconfirmrEntryExistence (id, attrNum, entryNum)
if status = NO_SUCH_ENTRY then UserStatusHandler (status)

catch ex as Exception
end try

4.4.11 CDFconfirmzEntryExistence

integer CDFconfirmzEntryExistence(out -- Completion status code.
id as long, ‘ in-- CDF identifier.

attrNum as integer, in -- Attribute number.
entryNum as integer) in -- zEntry number.

CDFconfirmzEntryExistence confirms the existence of the specified entry (zEntry), corresponding to a zVariable, in a
variable attribute from a CDF. If the zEntry does not exist, the informational status code NO_SUCH_ENTRY will be
returned and no exception is thrown.

The arguments to CDFconfirmzEntryExistence are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Variable attribute number.

entryNum zVariable number.

4.4.11.1. Example(s)

The following example checks the existence of the zEntry corresponding to zVariable “MY_VAR” for the variable
attribute “MY_ATTR” in a CDF.

dim id as long ¢ CDF identifier.

Dim status as integer ¢ Returned status code.
dim varNum as integer ¢ Attribute number.
dim entryNum as integer zEntry number.

try
attrNum = CDFgetAttrNum (id, “MY_ATTR”)
entryNum = CDFgetVarNum (id, “MY_VAR”)
status = CDFconfirmzEntryExistence (id, attrNum, entryNum)
if status = NO_SUCH_ENTRY then UserStatusHandler (status)

catch ex as Exception

end try

171

4.4.12 CDFcreateAttr

integer CDFcreateAttr(¢ out -- Completion status code.
id as long, ‘ in-- CDF identifier.
attrName as string, in -- Attribute name.
attrScope as integer, in -- Scope of attribute.
attrNum as integer) out -- Attribute number.

CDFcreateAttr creates an attribute with the specified scope in a CDF. It is identical to the method CDFattrCreate. An
attribute with the same name must not already exist in the CDF.

The arguments to CDFcreateAttr are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrName Name of the attribute to create. This may be at most CDF_ ATTR NAME LEN256
characters. Attribute names are case-sensitive.

attrScope Scope of the new attribute. Specify one of the scopes described in Section 2.13.

attrNum Number assigned to the new attribute. This number must be used in subsequent CDF

function calls when referring to this attribute. An existing attribute's number may be
determined with the CDFgetAttrNum function.

4.4.12.1. Example(s)

The following example creates two attributes. The TITLE attribute is created with global scope - it applies to the entire
CDF (most likely the title of the data set stored in the CDF). The Units attribute is created with variable scope - each
entry describes some property of the corresponding variable (in this case the units for the data).

dim id as longid * CDF identifier.

Dim status as integer ¢ Returned status code.

Dim UNITSattrName as string = "Units" ¢ Name of "Units" attribute.
Dim UNITSattrNum as integer ¢ "Units" attribute number.
Dim TITLEattrNum as integer ¢ "TITLE" attribute number.
Dim TITLEattrScope as integer = GLOBAL SCOPE ¢ "TITLE" attribute scope.
try

status = CDFcreateAttr (id, "TITLE", TITLEattrScope, TITLEattrNum)
status = CDFcreateAttr (id, UNITSattrName, VARIABLE SCOPE, UNITSattrnum)

catch ex as Exception

end try

4.4.13 CDFdeleteAttr

integer CDFdelete Attr(out -- Completion status code.
id as long, ¢ in-- CDF identifier.
attrNum as integer) ¢ in -- Attribute identifier.

172

CDFdeleteAttr deletes the specified attribute from a CDF.
The arguments to CDFdeleteAttr are defined as follows:
id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Attribute number to be deleted.

4.4.13.1. Example(s)
The following example deletes an existing attribute named MY ATTR from a CDF.

dim id as long ¢ CDF identifier.

Dim status as integer ¢ Returned status code.
dim attrNum as integer ¢ Attribute number.
try

attrNum = CDFgetAttrNum (id, “MY_ATTR”)
status = CDFdeleteAttr (id, attrNum)

catch ex as Exception

end try

4.4.14 CDFdeleteAttrgEntry

integer CDFdeleteAttrgEntry(¢ out-- Completion status code.
id as long, ‘ in-- CDF identifier.
attrNum as integer, ¢ in -- Attribute identifier.

entryNum as integer) in -- gEntry identifier.
CDFdeleteAttrgEntry deletes the specified entry (gEntry) in a global attribute from a CDF.
The arguments to CDFdeleteAttrgEntry are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Global attribute number from which to delete an attribute entry.

entryNum gEntry number to delete.

4.4.14.1. Example(s)
The following example deletes the entry number 5 from an existing global attribute MY ATTR in a CDF.

dim id as long ¢ CDF identifier.

Dim status as integer Returned status code.
dim varNum as integer ¢ Attribute number.
dim entryNum as integer ¢ gEntry number.

173

try
attrNum = CDFgetAttrNum (id, “MY_ATTR”)
entryNum = 5
status = CDFdeleteAttrgEntry (id, attrNum, entryNum)

catch ex as Exception

end try

4.4.15 CDFdeleteAttrrEntry

integer CDFdeleteAttrrEntry(¢ out-- Completion status code.
id as long, ‘ in-- CDF identifier.
attrNum as integer, ¢ in -- Attribute identifier.

entryNum as integer) in -- rEntry identifier.

CDFdeleteAttrrEntry deletes the specified entry (rEntry), corresponding to an rVariable, in an (variable) attribute from
a CDF.

The arguments to CDFdeleteAttrrEntry are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Variable attribute number.

entryNum rVariable number.

4.4.15.1. Example(s)

The following example deletes the entry corresponding to rVariable “MY_VARI1” from the variable attribute
“MY_ATTR” in a CDF.

dim id as long ¢ CDF identifier.

Dim status as integer ¢ Returned status code.
dim varNum as integer ¢ Attribute number.
dim entryNum as integer ¢ rEntry number.

try

attrNum = CDFgetAttrNum (id, “MY_ATTR”)
entryNum = CDFgetVarNum (id, “MY_VAR1”)
status = CDFdeleteAttrrEntry (id, attrNum, entryNum)

catch ex as Exception

end try

174

4.4.16 CDFdeleteAttrzEntry

integer CDFdeleteAttrzEntry(¢ out -- Completion status code.
id as long, ‘ in-- CDF identifier.
attrNum as integer, ¢ in -- Attribute identifier.

entryNum as integer) in -- zEntry identifier.

CDFdeleteAttrzEntry deletes the specified entry (zEntry), corresponding to a zVariable, in an (variable) attribute from a
CDF.

The arguments to CDFdeleteAttrzEntry are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Identifier of the variable attribute.

entryNum zEntry number to be deleted that is the zVariable number.

4.4.16.1. Example(s)

The following example deletes the variable attribute entry named MY ATTR that is attached to the zVariable
MY_VARI.

dim id as long * CDF identifier.

Dim status as integer ¢ Returned status code.
dim attrNum as integer ¢ Attribute number.
dim entryNum as integer ¢ zEntry number.

try

attrNum = CDFgetAttrNum (id, “MY_ATTR”)
entryNum = CDFgetVarNum (id, “MY_VAR1”)
status = CDFdeleteAttrzEntry (id, attrNum, entryNum)

catch ex as Exception

end try

4.4.17 CDFgetAttrgEntry

integer CDFgetAttrgEntry (out -- Completion status code.
id as long, ‘ in-- CDF identifier.
attrNum as integer, ¢ in -- Attribute identifier.
entryNum as integer, in -- gEntry number.
value as TYPE) ¢ out -- gEntry data.
* TYPE -- VB value/string type or object

This method is identical to the method CDFattrGet. CDFgetAttrgEntry is used to read a global attribute entry from a
CDF. In most cases it will be necessary to call CDFinquireAttrgEntry before calling CDFgetAttrgEntry in order to
determine the data type and number of elements (of that data type) for the entry.

The arguments to CDFgetAttrgEntry are defined as follows:

175

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Attribute number. This number may be determined with a call to CDFgetAttrNum.
entryNum Global attribute entry number.
value The value read.

4.4.17.1. Example(s)
The following example displays the value of the global attribute called HISTORY.

dim id as long ¢ CDF identifier.

Dim status as integer Returned status code.

Dim attrN as integer ¢ Attribute number.

Dim entryN as integer ¢ Entry number.

Dim dataType as integer ¢ Data type.

Dim numElems as integer ¢ Number of elements (of data type).
Dim buffer as Object ‘ Buffer to receive value.

try
attrN = CDFattrNum (id, "HISTORY")
entryN = 0
status = CDFinquireAttrgEntry (id, attrN, entryN, dataType, numElems)
status = CDFgetAttrgEntry (id, attrN, entryN, buffer)

if dataType = CDF_CHAR then
¢ buffer is a string

end if
catch ex as Exception
end try

4.4.18 CDFgetAttrgEntryDataType

integer CDFgetAttrgEntryDataType (out -- Completion status code.

id as long, ‘ in-- CDF identifier.
attrNum as integer, ¢ in -- Attribute identifier.
entryNum as integer, ‘ in -- gEntry number.
dataType as integer) ¢ out -- gEntry data type.

CDFgetAttrgEntryDataType returns the data type of the specified global attribute and gEntry number in a CDF. The
data types are described in Section 2.6.

The arguments to CDFgetAttrgEntryDataType are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

176

attrNum Global attribute number.
entryNum gEntry number.

dataType Data type of the gEntry.

4.4.18.1. Example(s)
The following example gets the data type for the gEntry numbered 2 from the global attribute “MY_ATTR” in a CDF.

dim id as long * CDF identifier.

Dim status as integer ¢ Returned status code.
Dim attrNum as integer ¢ Attribute number.
dim entryNum as integer ¢ gEntry number.

dim dataType as integer ¢ gEntry data type.

try
attrNum = CDFgetAttrNum (id, “MY_ATTR”)

entryNum = 2
status = CDFgetAttrgEntryDataType (id, attrNum, entryNum, dataType)

catch ex as Exception

end try

4.4.19 CDFgetAttrgEntryNumElements

integer CDFgetAttrgEntryNumElements (out -- Completion status code.

id as long, ¢ in-- CDF identifier.

attrNum as integer, ¢ in -- Attribute identifier.
entryNum as integer, in -- gEntry number.

numElems as integer) out -- gEntry’s number of elements.

CDFgetAttrgEntryNumElements returns the number of elements of the specified global attribute and gentry number in a
CDF.

The arguments to CDFgetAttrgEntryNumElements are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Identifier of the global attribute.
entryNum gEntry number.

numElems Number of elements of the gEntry.

4.4.19.1. Example(s)

The following example gets the number of elements from the gEntry numbered 2 from the global attribute “MY_ATTR”
in a CDF.

177

dim id as long * CDF identifier.

Dim status as integer ¢ Returned status code.

dim attrNum as integer ¢ Attribute number.

dim entryNum as integer ¢ gEntry number.

dim numElements as integer gEntry’s number of elements.

3

try
attrNum = CDFgetAttrNum (id, “MY_ATTR”)
entryNum = 2
status = CDFgetAttrgEntryNumElements (id, attrNum, entryNum, numElements)

catch ex as Exception

end try

4.4.20 CDFgetAttrMaxgEntry

integer CDFgetAttrMaxgEntry (out -- Completion status code.
id as long, ‘ in-- CDF identifier.
attrNum as integer, ¢ in -- Attribute identifier.

maxEntry as integer) out -- The last gEntry number.
CDFgetAttrMaxgEntry returns the last entry number of the specified global attribute in a CDF.
The arguments to CDFgetAttrMaxgEntry are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Identifier of the global attribute.

maxEntry Last gEntry number.

4.4.20.1. Example(s)
The following example gets the last entry number from the global attribute “MY_ATTR” in a CDF.

dim id as long ¢ CDF identifier.

Dim attrNum as integer ¢ Attribute number.

dim maxEntry as integer ¢ The last gEntry number.
try

attrNum = CDFgetAttrNum (id, “MY_ATTR”)
status = CDFgetAttrMaxgEntry (id, attrNum, maxEntry)

catch ex as Exception

178

end try

4.4.21 CDFgetAttrMaxrEntry

integer CDFgetAttrMaxrEntry (out -- Completion status code.

id as long, ‘ in-- CDF identifier.

attrNum as integer, ¢ in -- Attribute identifier.

maxEntry as integer) out -- The maximum rEntry number.

CDFgetAttrMaxrEntry returns the last rEntry number (rVariable number) to which the given variable attribute is attached.
The arguments to CDFgetAttrMaxrEntry are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Identifier of the variable attribute.

maxEntry Last rEntry number (rVariable number) to which attrNum is attached..

4.4.21.1. Example(s)

The following example gets the last entry, corresponding to the last rVariable number, from the variable attribute
“MY_ATTR” in a CDF.

dim id as long ¢ CDF identifier.

Dim status as integer ¢ Returned status code.
dim attrNum as integer Attribute number.

dim maxEntry as integer The last rEntry number.

3

3

try
attrNum = CDFgetAttrNum (id, “MY_ATTR”)

status = CDFgetAttrMaxrEntry (id, attrNum, maxEntry)
catch ex as Exception

end try

4.4.22 CDFgetAttrMaxzEntry

integer CDFgetAttrMaxzEntry (out -- Completion status code.

id as long, ‘ in-- CDF identifier.

attrNum as integer, ¢ in -- Attribute identifier.

maxEntry as integer) out -- The maximum zEntry number.

CDFgetAttrMaxzEntry returns the last entry number, corresponding to the last zVariable number, to which the given
variable attribute is attached.

The arguments to CDFgetAttrMaxzEntry are defined as follows:

179

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Identifier of the variable attribute.

maxEntry Last zEntry number (zVariable number) to which attrNum is attached..

4.4.22.1. Example(s)

The following example gets the last entry, corresponding to the last zVariable number, attached to the variable attribute
MY_ATTR in a CDF.

dim id as long ¢ CDF identifier.

Dim status as integer ¢ Returned status code.
dim attrNum as integer Attribute number.

dim maxEntry as integer The last zEntry number

3

3

try
attrNum = CDFgetAttrNum (id, “MY_ATTR”)
status = CDFgetAttrMaxzEntry (id, attrNum, maxEntry)

catch ex as Exception

end try

4.4.23 CDFgetAttrName

integer CDFgetAttrName (¢ out -- Completion status code.
id as long, ‘ in-- CDF identifier.
attrNum as integer, ¢ in -- Attribute identifier.

attrName as string) out -- The attribute name.
CDFgetAttrName gets the name of the specified attribute (by its number) in a CDF.
The arguments to CDFgetAttrName are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Identifier of the attribute.

attrName Name of the attribute.

4.4.23.1. Example(s)

The following example retrieves the name of the attribute number 2, if it exists, in a CDF.

dim id as long ¢ CDF identifier.
Dim status as integer ¢ Returned status code.

180

dim attrNum as integer ¢ Attribute number.

Dim attrName as string ¢ The attribute name.
attrNum = 2
try

status = CDFgetAttrName (id, attrNum, attrName)
catch ex as Exception

end try

4.4.24 CDFgetAttrNum

integer CDFgetAttrNum (¢ out -- Attribute number.
id as long, ‘ in-- CDF identifier.
attrName as string) ¢ in -- The attribute name.

CDFgetAttrNum is used to determine the attribute number associated with a given attribute name. If the attribute is
found, CDFgetAttrNum returns its number - which will be equal to or greater than zero (0). If an error occurs (e.g., the
attribute name does not exist in the CDF), an error code (of type Int) is returned. Error codes are less than zero (0).

The arguments to CDFgetAttrNum are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrName Name of the attribute for which to search. This may be at most CDF_ ATTR NAME LEN256
characters. Attribute names are case-sensitive.

CDFgetAttrNum may be used as an embedded function call when an attribute number is needed.

4.4.24.1. Example(s)

In the following example the attribute named pressure will be renamed to PRESSURE with CDFgetAttrNum being used
as an embedded function call. Note that if the attribute pressure did not exist in the CDF, the call to CDFgetAttrNum
would have returned an error code. Passing that error code to CDFattrRename as an attribute number would have resulted
in CDFattrRename also returning an error code.

dim id as long ¢ CDF identifier.
Dim status as integer ¢ Returned status code.
try

status = CDFrenameAttr (id, CDFgetAttrNum (id,"pressure"), "PRESSURE")
catch ex as Exception

end try

181

4.4.25 CDFgetAttrrEntry

integer CDFgetAttrrEntry (¢ out -- Completion status code.

id as long, ¢ in-- CDF identifier.

attrNum as integer, ¢ in -- Attribute identifier.

entryNum as integer, in -- Entry number.

value as TYPE) ¢ out -- Entry data.

TYPE -- VB value/string type or object

This method is identical to the method CDFattrGet. CDFgetAttrrEntry is used to read an rVariable attribute entry from
a CDF. In most cases it will be necessary to call CDFinquireAttrrEntry before calling CDFgetAttrrEntry in order to
determine the data type and number of elements (of that data type) for the entry.

The arguments to CDFgetAttrrEntry are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Attribute number. This number may be determined with a call to CDFgetAttrNum.
entryNum rVariable attribute entry number that is the rVariable number from which the attribute is read.
value Entry value read.

4.4.25.1. Example(s)
The following example displays the value of the UNITS attribute for the rEntry corresponding to the PRES LVL

rVariable (but only if the data type is CDF_CHAR).

dim id as longid

Dim status as integer
Dim attrN as integer

Dim entryN as integer
Dim dataType as integer
Dim numElems as integer

¢ CDF identifier.

¢ Returned status code.

‘¢ Attribute number.

¢ Entry number.

¢ Data type.

¢ Number of elements (of data type).

try
attrN = CDFattrNum (id, "UNITS")
entryN = CDFvarNum (id, "PRES LVL") ° The rEntry number is the rVariable number.
status = CDFinquireAttrrEntry (id, attrN, entryN, out dataType, out numElems)
if dataType = CDF_CHAR then

Dim buffer as string
status = CDFgetAttrrEntry (id, attrN, entryN, buffer)

end if .
catch ex as Exception

end try

4.4.26 CDFgetAttrrEntryDataType
integer CDFgetAttrrEntryDataType (¢ out -- Completion status code.

182

id as long, ‘ in-- CDF identifier.
attrNum as integer, ¢ in -- Attribute identifier.
entryNum as integer, in -- rEntry number.
dataType as integer) out -- rEntry data type.

CDFgetAttrrEntryDataType returns the data type of the rEntry from an (variable) attribute in a CDF. The data types are
described in Section 2.6.

The arguments to CDFgetAttrrEntryDataType are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Identifier of the variable attribute.
entryNum rEntry number.

dataType Data type of the rEntry.

4.4.26.1. Example(s)

The following example gets the data type for the entry of rVariable “MY_VARI1” in the (variable) attribute “MY_ATTR”
in a CDF.

dim id as long ¢ CDF identifier.

Dim status as integer ¢ Returned status code.
dim attrNum as integer ¢ Attribute number.

dim entryNum as integer ‘ rEntry number.
dim dataType as integer ¢ rEntry data type.
try

attrNum = CDFgetAttrNum (id, “MY_ATTR”)
entryNum = CDFgetVarNum (id, “MY_VAR1”)
status = CDFgetAttrrEntryDataType (id, attrNum, entryNum, dataType)

catch ex as Exception
end try

4.4.27 CDFgetAttrrEntryNumElements

integer CDFgetAttrrEntryNumElements (out -- Completion status code.

id as long, ¢ in-- CDF identifier.

attrNum as integer, ¢ in-- Attribute identifier.

startRec as integer, in -- rEntry number.

numElems as integer) out -- rEntry’s number of elements.

CDFgetAttrrEntryNumElements returns the number of elements of the rEntry from an (variable) attribute in a CDF.

The arguments to CDFgetAttrrEntryNumElements are defined as follows:

183

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Identifier of the variable attribute.
entryNum rEntry number.

numElems Number of elements of the rEntry.

4.4.27.1. Example(s)

The following example gets the number of elements for the entry of rVariable “MY_VARI1” in the (variable) attribute
“MY_ATTR” in a CDF.

dim id as long ¢ CDF identifier.

Dim status as integer ¢ Returned status code.
dim attrNum as integer ¢ Attribute number.
dim entryNum as integer ‘ rEntry number.

3

dim numElements as integer rEntry’s number of elements.

try
attrNum = CDFgetAttrNum (id, “MY_ATTR”)

entryNum = CDFgetVarNum (id, “MY_VAR1”)
status = CDFgetAttrrEntryNumElements (id, attrNum, entryNum, numElements)

catch ex as Exception
end try

4.4.28 CDFgetAttrScope

integer CDFgetAttrScope (out -- Completion status code.
id as long, ‘ in-- CDF identifier.
attrNum as integer, in -- Attribute number.
attrScope as integer) out -- Attribute scope.

CDFgetAttrScope returns the attribute scope (GLOBAL SCOPE or VARIABLE SCOPE) of the specified attribute in a
CDF. Refer to Section 2.13 for the description of the attribute scopes.

The arguments to CDFgetAttrScope are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Attribute number.

attrScope Scope of the attribute.

4.4.28.1. Example(s)
The following example gets the scope of the attribute “MY_ ATTR” in a CDF.

184

dim id as long ¢ CDF identifier.

Dim status as integer ¢ Returned status code.
dim attrNum as integer ¢ Attribute number.
dim attrScope as integer ¢ Attribute scope.

try
attrNum = CDFgetAttrNum (id, “MY_ATTR”)
status = CDFgetAttrScope (id, attrNum, attrScope)

catch ex as Exception

end try

4.4.29 CDFgetAttrzEntry

integer CDFgetAttrzEntry(¢ out -- Completion status code.

id as long, ‘ in-- CDF identifier.

attrNum as integer, in -- Variable attribute number.
entryNum as integer, in -- Entry number.

value as TYPE) ¢ out-- Entry value.

TYPE -- VB value/string type or object

CDFgetAttrzEntry is used to read zVariable’s attribute entry.. In most cases it will be necessary to call
CDFinquireAttrzEntry before calling this method in order to determine the data type and number of elements (of that
data type) for the entry.

The arguments to CDFgetAttrzEntry are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Variable attribute number. This number may be determined with a call to CDFgetAttrNum.

entryNum Variable attribute entry number that is the zVariable number from which the attribute entry is
read

value Entry value read.

4.4.29.1. Example(s)

The following example displays the value of the UNITS attribute for the PRES LVL zVariable (but only if the data type
is CDF_CHAR).

dim id as long ¢ CDF identifier.

Dim status as integer ¢ Returned status code.
Dim attrN as integer ¢ Attribute number.
Dim entryN as integer ¢ Entry number.

Dim dataType as integer ¢ Data type.

185

Dim numElems as integer ¢ Number of elements (of data type).
try
attrN = CDFgetAttrNum (id, "UNITS")
entryN = CDFgetVarNum (id, "PRES LVL") ¢ The zEntry number is the zVariable number.
status = CDFinquireAttrzEntry (id, attrN, entryN, dataType, numElems)
if dataType = CDF_CHAR then
dim buffer as string

status = CDFgetAttrzEntry (id, attrN, entryN, buffer)
end if

catch ex as Exception

end try

4.4.30 CDFgetAttrzEntryDataType

integer CDFgetAttrzEntryDataType (¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.
attrNum as integer, ¢ in-- Attribute identifier.

entryNum as integer,
dataType as integer)

in -- zEntry number.
out -- zEntry data type.

CDFgetAttrzEntryDataType returns the data type of the zEntry for the specified variable attribute in a CDF. The data
types are described in Section 2.6.

The arguments to CDFgetAttrzEntryDataType are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Identifier of the variable attribute.
entryNum zEntry number that is the zVariable number.

dataType Data type of the zEntry.

4.4.30.1. Example(s)
The following example gets the data type of the attribute named MY _ATTR for the zVariable MY VARI in a CDF.

dim id as long * CDF identifier.

Dim status as integer Returned status code.
dim attrNum as integer Attribute number.
dim entryNum as integer zEntry number.

dim dataType as integer zEntry data type.

try

attrNum = CDFgetAttrNum (id, “MY_ATTR”)
entryNum = CDFgetVarNum (id, “MY_VAR1”)

186

status = CDFgetAttrzEntryDataType (id, attrNum, entryNum, dataType)

catch ex as Exception

end try

4.4.31 CDFgetAttrzEntryNumElements

integer CDFgetAttrzEntryNumElements (out -- Completion status code.
id as long, ‘ in-- CDF identifier.
attrNum as integer, ¢ in -- Attribute identifier.

entryNum as integer ,
numElems as integer)

in -- zEntry number.
out -- zEntry’s number of elements.

CDFgetAttrzEntryNumElements returns the number of elements of the zEntry for the specified variable attribute in a
CDF.

The arguments to CDFgetAttrzEntryNumElements are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Identifier of the variable attribute.
entryNum zEntry number that is the zVariable number.
numElems Number of elements of the zEntry.

4.4.31.1. Example(s)

The following example returns the number of elements for attribute named MY_ATTR for the zZVariable MY VARI in
a CDF

dim id as long * CDF identifier.

Dim status as integer Returned status code.

dim attrNum as integer ¢ Attribute number.

dim entryNum as integer zEntry number.

dim numElements as integer zEntry’s number of elements.

try
attrNum = CDFgetAttrNum (id, “MY_ATTR”)
entryNum = CDFgetVarNum (id, “MY_VAR1”)
status = CDFgetAttrzEntryNumElements (id, attrNum, entryNum, out numElements)

catch ex as Exception

end try

187

4.4.32 CDFgetNumAttrgEntries

integer CDFgetNumAttrgEntries (¢ out -- Completion status code.

id as long, ‘ in-- CDF identifier.

attrNum as integer, in -- Attribute number.

entries as integer) out -- Total gEntries.
CDFgetNumAttrgEntries returns the total number of entries (gEntries) written for the specified global attribute in a CDF.
The arguments to CDFgetNumAttrgEntries are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

attrNum Attribute number.

entries Number of gEntries for attrNum.

4.4.32.1. Example(s)
The following example retrieves the total number of gEntries for the global attribute MY ATTR in a CDF.

dim status as integer Returned status code.
dim id as long ¢ CDF identifier.

Dim attrNum as integer ¢ Attribute number.
Dim numEntries as integer ¢ Number of entries.

Dim i as integer

try
attrNum = CDFgetAttrNum (id, “MUY_ATTR”)
status = CDFgetNumAttrgEntries (id, attrNum, numEntries)
for i=0 to (numEntries-1)
¢ process an entry
next i
catch ex as Exception

end try

4.4.33 CDFgetNumAttributes

integer CDFgetNumA ttributes (¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.
numAttrs as integer) out -- Total number of attributes.

CDFgetNumAttributes returns the total number of global and variable attributes in a CDF.

The arguments to CDFgetNumAttributes are defined as follows:

188

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

numALttrs Total number of global and variable attributes.

4.4.33.1. Example(s)

The following example returns the total number of global and variable attributes in a CDF.

dim status as integer ¢ Returned status code.
dim id as long CDF identifier.

dim numAttrs as integer ¢ Number of attributes.
try

status = CDFgetNumAttributes (id, out numAttrs)

catch ex as Exception

end try

4.4.34 CDFgetNumAttrrEntries

integer CDFgetNumA ttrrEntries (¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.

attrNum as integer , ¢ in -- Attribute number.

entries as integer) out -- Total rEntries.

CDFgetNumAttrrEntries returns the total number of entries (rEntries) written for the rVariables in the specified (variable)
attribute of a CDF.

The arguments to CDFgetNumAttrrEntries are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

attrNum Attribute number.

entries Total rEntries.

4.4.34.1. Example(s)
The following example returns the total number of rEntries from the variable attribute “MY_ATTR” in a CDF.

dim status as integer ¢ Returned status code.

dim id as long

dim attrNum as integer ¢ Attribute number.
dim entries as integer ¢ Number of entries.

189

try
attrNum = CDFgetAttrNum (id, “MY_ATTR?”)
status = CDFgetNumAttrrEntries (id, attrNum, entries)

catch ex as Exception

end try

4.4.35 CDFgetNumAttrzEntries

integer CDFgetNumA ttrzEntries (¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.

attrNum as integer, in -- Attribute number.

entries as integer) out -- Total zEntries.

CDFgetNumAttrzEntries returns the total number of entries (zEntries) written for the zVariables in the specified variable
attribute in a CDF.

The arguments to CDFgetNumA ttrzEntries are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

attrNum Attribute number.

entries Total zEntries.

4.4.35.1. Example(s)
The following example returns the total number of zEntries for the variable attribute MY ATTR in a CDF.

3

dim status as integer Returned status code.
dim id as long ¢ CDF identifier.

dim attrNum as integer ¢ Attribute number.
dim entries as integer ¢ Number of entries.

"cry

;t.t.rNum = CDFgetAttrNum (id, “MY_ATTR”)

status = CDFgetNumAttrzEntries (id, attrNum, entries)
;:atch ex as Exception
en.c.l .try

4.4.36 CDFgetNumgAttributes

integer CDFgetNumgA ttributes (¢ out -- Completion status code.
id as long, ‘ in-- CDF identifier.

190

3

numAttrs as integer) out -- Total number of global attributes.
CDFgetNumgAttributes returns the total number of global attributes in a CDF.
The arguments to CDFgetNumgAttributes are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

numALttrs Number of global attributes.

4.4.36.1. Example(s)

The following example returns the total number of global attributes in a CDF.

dim status as integer ¢ Returned status code.

dim id as long ¢ CDF identifier.

dim numAttrs as integer ¢ Number of global attributes.
try

status = CDFgetNumgAttributes (id, numAttrs)

catch ex as Exception

end try

4.4.37 CDFgetNumvAttributes

integer CDFgetNumvA(ttributes (¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.
numAttrs as integer) out -- Total number of variable attributes.

CDFgetNumvAttributes returns the total number of variable attributes in a CDF.
The arguments to CDFgetNumvAttributes are defined as follows:
id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

numAttrs Number of variable attributes.

4.4.37.1. Example(s)

The following example returns the total number of variable attributes of a CDF.

dim status as integer ¢ Returned status code.
dim id as long ¢ CDF identifier.
dim numAttrs as integer ¢ Number of variable attributes.

191

try

status = CDFgetNumvAttributes (id, numAttrs)

catch ex as Exception

end try

4.4.38 CDFinquireAttr

integer CDFinquireAttr(
id as long,

attrNum as integer,
attrName as string,
attrScope as integer,
maxgEntry as integer,
maxrEntry as integer,
maxzEntry as integer)

out -- Completion status code.

¢ in-- CDF identifier.

in -- Attribute number.

out -- Attribute name.

out -- Attribute scope.

out -- Maximum gEntry number.
out -- Maximum rEntry number.
out -- Maximum zEntry number.

CDFinquireAttr is used to inquire information about the specified attribute. This method expands the method
CDFattrInquire to provide an extra information about zEntry if the attribute has a variable scope.

The arguments to CDFinquireAttr are defined as follows:

id

attrNum

attrName

attrScope

maxgEntry

maxrEntry

maxzEntry

4.4.38.1. Example(s)

Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

Attribute number to inquire. This number may be determined with a call to CDFgetAttrNum.

Attribute's name that corresponds to attrNum. This string length is limited to
CDF_ATTR NAME LEN256.

Scope of the attribute (GLOBAL SCOPE or VARIABLE SCOPE). Attribute scopes are
defined in Section 2.13.

For vAttributes, this value of this field is -1 as it doesn’t apply to global attribute entry
(gEntry). For gAttributes, this is the maximum entry (gentry) number used. This number
may not correspond with the number of entries (if some entry numbers were not used). If no
entries exist for the attribute, then the value of -1 is returned.

For gAttributes, this value of this field is -1 as it doesn’t apply to rVariable attribute entry
(tEntry). For vAttributes, this is the maximum rVariable attribute entry (rEntry) number
used. This number may not correspond with the number of entries (if some entry numbers
were not used). If no entries exist for the attribute, then the value of -1 is returned.

For gAttributes, this value of this field is -1 as it doesn’t apply to zVariable attribute entry
(zEntry). For vAttributes, this is the maximum zVariable attribute entry (zEntry) number
used. This may not correspond with the number of entries (if some entry numbers were not
used). If no entries exist for the attribute, then the value of -1 is returned.

The following example displays the name of each attribute in a CDF. The number of attributes in the CDF is first
determined by calling the method CDFinquireCDF. Note that attribute numbers start at zero (0) and are consecutive.

192

dim id as long

Dim status as integer
Dim numDims as integer
Dim dimSizes() as integer

Dim encoding as integer
Dim majority as integer
Dim maxRec as integer
Dim numVars as integer
Dim numAttrs as integer
Dim attrN as integer

Dim attrName as string
Dim attrScope as integer
Dim maxgEntry as integer
Dim maxrEntry as integer
Dim maxzEntry as integer

try

CDF identifier.

Returned status code.

Number of dimensions.

Dimension sizes (allocate to allow the
maximum number of dimensions).
Data encoding.

Variable majority.

Maximum record number in CDF.
Number of variables in CDF.

Number of attributes in CDF.

¢ attribute number.
¢ attribute name.

3

attribute scope.

¢ Maximum entry numbers.

status = CDFinquireCDF (id, numDims, dimSizes, encoding, majority, maxRec, numVars, numAttrs)

for attrN = 0 to (numAttrs-1)

status = CDFinquireAttr (id, attrN, attrName, attrScope, maxgEntry, maxrEntry, maxzEntry)

next attrN
catch ex as Exception

end try

4.4.39 CDFinquireAttrgEntry

integer CDFinquireAttrgEntry (
id as long,

attrNum as integer,

entryNum as integer,

dataType as integer,
numElements as integer)

out -- Completion status code.

in -- CDF identifier.

in -- attribute number.

in -- Entry number.

out -- Data type.

out -- Number of elements (of the data type).

This method is identical to CDFattrEntrylnquire. CDFinquireAttrgEntry is used to inquire information about a global
attribute entry.

The arguments to CDFinquireAttrgEntry are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Attribute number to inquire. This number may be determined with a call to
CDFgetAttrNum.
entryNum Entry number to inquire.

193

dataType Data type of the specified entry. The data types are defined in Section 2.6.

numElements Number of elements of the data type. For character data types (CDF_CHAR and
CDF_UCHAR), this is the number of characters in the string. For all other data types this
is the number of elements in an array of that data type.

4.4.39.1. Example(s)

The following example returns each entry for a global attribute named TITLE. Note that entry numbers need not be
consecutive - not every entry number between zero (0) and the maximum entry number must exist. For this reason
NO _SUCH_ENTRY is an expected error code.

dim id as long ¢ CDF identifier.

Dim status as integer Returned status code.

Dim attrN as integer attribute number.

Dim entryN as integer Entry number.

Dim attrName as string attribute name.

Dim attrScope as integer attribute scope.

Dim maxEntry as integer Maximum entry number used.
Dim dataType as integer Data type.

Dim numElems as integer Number of elements

try
attrN = CDFgetAttrNum (id, "TITLE")
status = CDFattrInquire (id, attrN, attrName, attrScope, maxEntry)

for entryN = 0 to maxEntry
status = CDFinquireAttrgEntry (id, attrN, entryN, dataType, numElems)

¢ process entries

next entryN
catch ex as Exception

end try

4.4.40 CDFinquireAttrrEntry

integer CDFinquireAttrrEntry (out -- Completion status code.
id as long, ‘ in-- CDF identifier.

attrNum as integer, in -- Attribute number.
entryNum as integer, in -- Entry number.

dataType as integer, out -- Data type.
numElements as integer) out -- Number of elements

This method is identical to the method CDFattrEntrylnquire. CDFinquireAttrrEntry is used to inquire about an
rVariable’s attribute entry.

The arguments to CDFinquireAttrrEntry are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

194

attrNum Attribute number to inquire. This number may be determined with a call to

CDFgetAttrNum.

entryNum Entry number to inquire. This is the rVariable number (the rVariable being described in
some way by the rEntry).

dataType Data type of the specified entry. The data types are defined in Section 2.6.

numElements Number of elements of the data type. For character data types (CDF_CHAR and

CDF_UCHAR), this is the number of characters in the string. For all other data types this
is the number of elements in an array of that data type.

4.4.40.1. Example(s)

The following example determines the data type of the “UNITS” attribute for the rVariable “Temperature”, then retrieves
and displays the value of the UNITS attribute.

dim id as long ¢ CDF identifier.

Dim status as integer Returned status code.
Dim attrN as integer Attribute number.
Dim entryN as integer Entry number.

Dim dataType as integer Data type.

Dim numElems as integer Number of elements.

try
attrN = CDFgetAttrNum (id, "UNITS")
entryN = CDFgetVarNum (id, "Temperature")
status = CDFinquireAttrrEntry (id, attrN, entryN, dataType, numElems)
if dataType = CDF_CHAR then

dim buffer as string
status = CDFgetAttrrEntry (id, attrN, entryN, buffer)

end if
catch ex as Exception

end try

4.4.41 CDFinquireAttrzEntry

integer CDFinquireAttrzEntry (out -- Completion status code.

id as long, ‘ in-- CDF identifier.

attrNum as integer, in -- (Variable) Attribute number.

entryNum as integer, in -- zEntry number.

dataType as integer, out -- Data type.

numElements as integer) out -- Number of elements (of the data type).

CDFinquireAttrzEntry is used to inquire about a zVariable’s attribute entry.

The arguments to CDFinquireAttrzEntry are defined as follows:

195

id

attrNum

entryNum

dataType

numElements

4.4.41.1. Example(s)

Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

Variable attribute number for which to inquire an entry. This number may be determined
with a call to CDFgetAttrNum (see Section 4.4.24).

Entry number to inquire. This is the zVariable number (the zVariable being described in
some way by the zEntry).

Data type of the specified entry. The data types are defined in Section 2.6.
Number of elements of the data type. For character data types (CDF _CHAR and

CDF_UCHAR), this is the number of characters in the string. For all other data types this
is the number of elements in an array of that data type.

The following example determines the data type of the UNITS attribute for the zVariable Temperature, then retrieves
and displays the value of the UNITS attribute.

dim id as long

Dim status as integer
Dim attrN as integer
Dim entryN as integer

Dim dataType as integer
Dim numElems as integer

try

¢ CDF identifier.
Returned status code.
attribute number.
Entry number.

Data type.

Number of elements .

attrN = CDFgetAttrNum (id, "UNITS")
entryN = CDFgetVarNum (id, "Temperature")

status = CDFinquireAttrzEntry (id, attrN, entryN, dataType, numElems)
if dataType = CDF_CHAR then

dim buffer as string

status = CDFgetAttrzEntry (id, attrN, entryN, buffer)

end if
catch ex as Exception

end try

4.4.42 CDFputAttrgEntry

integer CDFputAttrgEntry(

id as long,

attrNum as integer,
entryNum as integer,
value as string)

integer CDFputAttrgEntry(

id as long,
attrNum as integer,
entryNum as integer,

out -- Completion status code.

‘ in-- CDF identifier.

in -- Attribute number.

in -- Attribute entry number.

in -- Attribute entry value in string.

out -- Completion status code.
¢ in-- CDF identifier.

in -- Attribute number.

in -- Attribute entry number.

196

3

dataType as integer, in -- Data type of this entry.
numElements as integer, in -- Number of elements in the entry (of the data type).
value as TYPE) ‘ in -- Attribute entry value.

¢ TYPE -- VB value/string type.

3

CDFputAttrgEntry is used to write global attribute entry. The entry may or may not already exist. If it does exist, it is
overwritten. The data type and number of elements (of that data type) may be changed when overwriting an existing
entry.

The arguments to CDFputAttrrEntry are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

attrNum Global attribute number.

entryNum Global attribute entry number.

dataType Data type of the specified entry. Specify one of the data types defined in Section 2.6.
numElements Number of elements of the data type. For character data types (CDF_CHAR and

CDF_UCHAR), this is the number of characters in the string (An array of characters).
For all other data types this is the number of elements in an array of that data type.

value The value(s) to write. Entry value is written to the CDF from memory address value.

4.4.42.1. Example(s)
The following example writes a global attribute entry to the global attribute called TITLE.

dim id as long ¢ CDF identifier.

Dim status as integer ¢ Returned status code.
Dim entryNum as integer ¢ Attribute entry number.
Dim title as string = "CDF title." ¢ Value of TITLE attribute.
entryNum = 0

try

status = CDFputAttrgEntry (id, CDFgetAttrNum (id,"TITLE"), entryNum, CDF CHAR, title.Length, title)
catch ex as Exception

end try

4.4.43 CDFputAttrrEntry

integer CDFputAttrrEntry(¢ out -- Completion status code.
id as long, ‘ in-- CDF identifier.

attrNum as integer, in -- Attribute number.
entryNum as integer, in— Attribute entry number.
value as string) in -- tribute entry value in string.

197

integer CDFputAttrrEntry(¢ out-- Completion status code.
id as long, ‘ in-- CDF identifier.
attrNum as integer, in -- Attribute number.
entryNum as integer, in— Attribute entry number.
dataType as integer, in -- Data type.
numElems as integer, in -- Number of elements.
value as TYPE) ‘ in -- tribute entry value.

¢ TYPE -- VB value/string type.

This method is identical to the method CDFattrPut. CDFputAttrrEntry is used to write rVariable’s attribute entry. The
entry may or may not already exist. If it does exist, it is overwritten. The data type and number of elements (of that data
type) may be changed when overwriting an existing entry.

The arguments to CDFputAttrrEntry are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

attrNum Attribute number. This number may be determined with a call to CDFgetAttrNum.
entryNum Attribute entry number that is the rVariable number to which this attribute entry belongs.
dataType Data type of the specified entry. Specify one of the data types defined in Section 2.6.
numElements Number of elements of the data type. For character data types (CDF _CHAR and

CDF_UCHAR), this is the number of characters in the string (An array of characters).
For all other data types this is the number of elements in an array of that data type.

value The value(s) to write. Entry value is written to the CDF from memory address value.

4.4.43.1. Example(s)

The following example writes to the variable scope attribute VALIDs for the entry, of two elements, that corresponds to
the rVariable TMP.

dim id as long ¢ CDF identifier.

Dim status as integer ¢ Returned status code.

Dim entryNum as integer Entry number.

Dim numElements as integer Number of elements (of data type).

Dim TMPvalids() as short = {15,30} ¢ Value(s) of VALIDs attribute,
rEntry for rVariable TMP.

3

3

numElements = 2
try

status = CDFputAttrrEntry (id, CDFgetAttrNum (id,"VALIDs"), CDFgetVarNum (id,"TMP"), _
CDF_INT2, numElements, TMPvalids)

catch ex as Exception

end try

198

4.4.44 CDFputAttrzEntry

integer CDFputAttrzEntry(

id as long,

attrNum as integer,
entryNum as integer,
value as string)

integer CDFputAttrzEntry(

id as long,

attrNum as integer,
entryNum as integer,
dataType as integer,
numElements as integer,
value as TYPE)

out -- Completion status code.

‘ in-- CDF identifier.

in -- Attribute number.

in -- Attribute entry number.

in -- Attribute entry value in string.

out -- Completion status code.
¢ in-- CDF identifier.

in -- Attribute number.

in -- Attribute entry number.

‘ in -- Data type of this entry.

in -- Number of elements in the entry (of the data type)
in -- Attribute entry value.

* TYPE -- VB value/string type.

CDFputAttrzEntry is used to write zVariable’s attribute entry. The entry may or may not already exist. If it does exist,
it is overwritten. The data type and number of elements (of that data type) may be changed when overwriting an existing

entry.

The arguments to CDFputAttrzEntry are defined as follows:

id

attrNum

entryNum
dataType

numElements

value

4.4.44.1. Example(s)

Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

Variable attribute number. This number may be determined with a call to
CDFgetAttrNum (see Section 4.4.24).

Entry number that is the zVariable number to which this attribute entry belongs.

Data type of the specified entry. Specify one of the data types defined in Section 2.6.
Number of elements of the data type. For character data types (CDF _CHAR and
CDF_UCHAR), this is the number of characters in the string (An array of characters).

For all other data types this is the number of elements in an array of that data type.

The value(s) to write. The entry value is written to the CDF from memory address value.

The following example writes a zVariable’s attribute entry. The entry has two elements (that is two values for non-
CDF_CHAR type). The zEntry in the variable scope attribute VALIDs corresponds to the zVariable TMP.

dim id as long
Dim status as integer

Dim numFElements as integer

¢ CDF identifier.
* Returned status code.
¢ Number of elements (of data type).

Dim TMPvalids() as short = {15,30} ¢ Value(s) of VALIDs attribute,

numElements = 2
try

¢ zEntry for zVariable TMP.

199

status = CDFputAttrzEntry (id, CDFgetAttrNum (id,"VALIDs"), CDFgetVarNum (id,"TMP"),
CDF _INT2, numElements, TMPvalids)

catch ex as Exception

end try

4.4.45 CDFrenameAttr

integer CDFrenameAttr(out -- Completion status code.
id as long, ‘ in-- CDF identifier.

attrNum as integer, in -- Attribute number.
attrName as string) in -- New attribute name.

This method is identical to method CDFattrRename. CDFrenameAttr renames an existing attribute.

4.4.45.1. Example(s)
In the following example the attribute named LAT is renamed to LATITUDE.

dim id as long ¢ CDF identifier.
Dim status as integer Returned status code.
try

status = CDFrenameAttr (id, CDFgetAttrNum (id,"LAT"), "LATITUDE")
catch ex as Exception

end try

4.4.46 CDFsetAttrgEntryDataSpec

integer CDFsetAttrgEntryDataSpec (¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.

attrNum as integer, in -- Attribute number.
entryNum as integer, in -- gEntry number.
dataType as integer) in -- Data type.

CDFsetAttrgEntryDataSpec respecifies the data type of a gEntry of a global attribute in a CDF. The new and old data
type must be equivalent. Refer to the CDF User’s Guide for descriptions of equivalent data types.
The arguments to CDFsetAttrgEntryDataSpec are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

attrNum Global attribute number.

entryNum gEntry number.

200

dataType The new data type.

4.4.46.1. Example(s)

The following example modifies the third entry’s (entry number 2) data type of the global attribute MY ATTR in a CDF.
It will change its original data type from CDF _INT2 to CDF_UINT2.

dim id as long CDF identifier.

Dim status as integer ¢ Returned status code.
Dim entryNum as integer ¢ gEntry number.

Dim dataType as integer ¢ The new data type
entryNum = 2

dataType = CDF_UINT2
numElems = 1

try

status = CDFsetAttrgEntryDataSpec (id, CDFgetAttrNum (id, “MY_ATTR”), entryNum, dataType)
catch ex as Exception

end try

4.4.47 CDFsetAttrrEntryDataSpec

integer CDFsetAttrrEntryDataSpec (¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.
attrNum as integer, in -- Attribute number.

in -- rEntry number.
in -- Data type.
in -- Number of elements.

entryNum as integer,
dataType as integer,
numElements as integer)

CDFsetAttrrEntryDataSpec respecifies the data specification (data type and number of elements) of an rEntry of a
variable attribute in a CDF. The new and old data type must be equivalent, and the number of elements must not be
changed. Refer to the CDF User’s Guide for descriptions of equivalent data types.

The arguments to CDFsetAttrrEntryDataSpec are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

attrNum Variable attribute number.
entryNum rEntry number.

dataType The new data type.
numElements The new number of elements.

201

4.4.47.1. Example(s)

The following example modifies the data specification for an rEntry, corresponding to rVariable “MY_VAR?”, in the
variable attribute “MY_ATTR” in a CDF. It will change its original data type from CDF INT2 to CDF UINT?2.

dim id as long ¢ CDF identifier.

Dim status as integer ¢ Returned status code.

Dim dataType as integer

Dim numFElements as integer ¢ Data type and number of elements.

dataType = CDF_UINT2
numElems = 1

try

status = CDFsetAttrrEntryDataSpec (id, CDFgetAttrNum (id, “MY_ATTR”), _
CDFgetVarNum (id, “MY_VAR?”), dataType, numElems)

catch ex as Exception

end try

4.4.48 CDFsetAttrScope

integer CDFsetAttrScope (¢ out -- Completion status code.
id as long, ‘ in-- CDF identifier.

attrNum as integer, in -- Attribute number.

scope as integer) in -- Attribute scope.

CDFsetAttrScope respecifies the scope of an attribute in a CDF. Specify one of the scopes described in Section 2.13.
Global-scoped attributes will contain only gEntries, while variable-scoped attributes can hold rEntries and zEntries.

The arguments to CDFsetAttrScope are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

attrNum Attribute number.

scope The new attribute scope. The value should be either VARIABLE SCOPE or
GLOBAL _ SCOPE.

4.4.48.1. Example(s)

The following example changes the scope of the global attribute named MY ATTR to a variable attribute
(VARIABLE SCOPE).

dim id as long ¢ CDF identifier.
Dim status as integer Returned status code.
Dim scope as integer ¢ New attribute scope.

202

scope = VARIABLE SCOPE
try

status = CDFsetAttrScope (id, CDFgetAttrNum (id, “MY_ATTR”), scope)
catch ex as Exception

end try

4.4.49 CDFsetAttrzEntryDataSpec

integer CDFsetAttrzEntryDataSpec (¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.

attrNum as integer, in -- Attribute number.
entryNum as integer, in -- zEntry number.
dataType as integer) in -- Data type.

CDFsetAttrzEntryDataSpec modifies the data type of a zEntry of a variable attribute in a CDF. The new and old data
type must be equivalent. Refer to the CDF User’s Guide for the description of equivalent data types.
The arguments to CDFsetAttrzEntryDataSpec are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

attrNum Variable attribute number.
entryNum zEntry number that is the zVariable number.
dataType The new data type.

4.4.49.1. Example(s)

The following example respecifies the data type of the attribute entry of the attribute named MY _ATTR that is associated
with the zVariable MY VAR. It will change its original data type from CDF INT2 to CDF UINT2.

dim id as long ¢ CDF identifier.

Dim status as integer Returned status code.
dim dataType as integer ¢ Data type

try

dataType = CDF_UINT2

numElems = 1

status = CDFsetAttrzEntryDataSpec (id, CDFgetAttrNum (id, “MY_ATTR”),
CDFgetVarNum (id, “MY_VAR?”), dataType)

. catch ex as Exception

end try

203

4.5

lower-level functions.

4.5.1 ReadCDF

Dictionary (Of string,object) ReadCDF (
id as long)

Dictionary (Of string,object) ReadCDF (
id as long,
encoding as bool)

Dictionary (Of string,object) ReadCDF (
id as long,

encoding as bool,

basic as bool,

global as bool,

varall as bool)

Dictionary (Of string,object) ReadCDF (
id as long,

encoding as bool,

basic as bool,

global as bool,

varspec as bool,

varmeta as bool,

vardata as bool)

Dictionary (Of string,object) ReadCDF (
id as long,

encoding as bool,

basic as bool,

global as bool,

varspec as bool,

varmeta as bool,

vardata as bool,

noentry as bool)

Dictionary (Of string,object) ReadCDF (
id as long,

encoding as bool,

basic as bool,

global as bool,

varspec as bool,

varmeta as bool,

vardata as bool,

noentry as bool,

varshead as bool)

Quick Read Functions

This section provides a set of easy-to-use read functions that each will return an object of C#’s Dictionary, a set of
key/value pairs. The key is either a string or an integer. The value can be a generic scalar or array of value of integer,
floating value, or string, or another dictionary (of dictionaries). The returned information covers CDF basic
information, global attributes, and variables’ specification, metadat and data. Each functions is made of calls from other

204

out — A dictionary .
in -- CDF identifier.

out — A dictionary .
in -- CDF identifier.
in -- Whether to encode CDF epoch type

out — A dictionary .

in -- CDF identifier.

in -- Whether to encode CDF epoch type
in -- Whether to get CDF basic information
in -- Whether to get global metadata

in -- Whether to get all variables’ information

out — A dictionary .

in-- CDF identifier.

in -- Whether to encode CDF epoch type

in -- Whether to get CDF basic information

in -- Whether to get global metadata

in -- Whether to get all variables’ specifications
in -- Whether to get all variables’ metadata

in -- Whether to get all variables’ data

out — A dictionary .

in-- CDF identifier.

in -- Whether to encode CDF epoch type

in -- Whether to get CDF basic information

in -- Whether to get global metadata

in -- Whether to get all variables’ specifications
in -- Whether to get all variables’ metadata

in -- Whether to get all variables’ data

in -- Whether to show attributes without entry

out — A dictionary .

in -- CDF identifier.

in -- Whether to encode CDF epoch type

in -- Whether to get CDF basic information

in -- Whether to get global metadata

in -- Whether to get all variables’ specifications
in -- Whether to get all variables’ metadata

in -- Whether to get all variables’ data

in -- Whether to show attributes without entry
in -- Whether to add an extra level for variables

ReadCDF reads all CDF information or just the specific elements. There are three main key/value elements in the top of
retrieved dictionary. The keys are “CDFInfo”, “GlobalAttributes” and “Variables”. Each of the values is also a
dictionary itself. There may be another key/value element: “NoEntryAttributes” in the top dictionary.

The argument(s) to ReadCDF is defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

Optionally,
encoding Whether to encode any CDF epoch data type in global or variable metadata into date/time
string.
basic Whether to read the CDF basic specification information.
global Whether to read the global attributes.
varall Whether to read variables.
varspec Whether to read all variables’ specificationa.
varmeta Whether to read all variables’ metadata.
vardata Whether to read all variables’ data
noentry Whether to collect the attribute names that don’t have any entry data
varshead Whether to place an extra dictionary level for variables informsation. The default is true.

4.5.1.1. Example(s)

The following example reads the whole information from the CDF, test.cdf and displays it.

Dim id as long * CDF identifier.

Dim status as integer ¢ Returned status code.
Dim cdf as Dictionary (Of string, object) ¢ Retrieved information.
try

status = CDFopen (“test”, id)
cdf= ReadCDF (id)
CDFUftils.PrintDictionary (cdf)

catch ex as CDFException

End try

The output of the dictionary dump from the CDF looks as follows.

The four keys are CDFInfo, GlobalAttributes, Variables and NoEntryAttributes. The value for CDFinfo is a
dictionary, which contains the basic information about the CDF. The value for GlobalAttributes is a dictionary of
dictionaries. Each element in the dictionary has the attribute name as the key with its value being another dictionary (with
entry number being the key and value being the entry). The value for Variables is a dictionary of dictionaries. Each
element in the dictionary is for information from a variable. The variable name is then the key for its specification,
metadata and data, each of which is also a dictionary. If there is any attribute(s), global or variable, that has no entry data,
its name will be collected in a list as a “GlobalAttributes” or “VariableAttributes” key element in the
“NoEntryAttributes” dictionary.

205

CDFInfo =>
Version => "3.7.0"
Majority => 1
Format => 1
Encoding => 6

Global Attritbues =>
Project
0o=>"."
PI=>
0 => "Mr.Smith"
Text =>
0=>“Line 17
1 =>“Line 2”

Variables =>
Varl =>
Varlnfo
DataType => 2
NumElements => 1
NumDims => 1

Key:VarMetaData =>
VALIDMIN => 20
VALIDMAX => 90

VarData=>123
Var2 =>
Varlnfo =>
DataType => 4”
NumElements => 1
NumDims => 0

VarMetaData =>
VALIDMIN => 2000
VALIDMAX => 9000

VarData => 1
2
3
Var3 =>
Varlnfo =>
DataType => 45
NumElements => 1
NumDims => 1

206

VarMetaData =>
VALIDMIN =>20.0
VALIDMAX =>90.0

VarData=>1.12.23.3

NoEntryAttributes =>
GlobalAttributes => "g1"
VariableAttributes => "al"

4.5.2 ReadCDFGlobalAttributes

Dictionary (Of string,object) ReadCDFGlobalAttributes (¢ out — A dictionary .
id as long) ‘ in-- CDF identifier.
Dictionary (Of string,object> ReadCDFGlobal Attributes (¢ out — A dictionary .
id as long, “ in-- CDF identifier.

encoding as bool) in -- Whether to encode CDF epoch type

ReadCDFGlobalAttributes reads the global attributes for a given CDF. The value(s) in the key/value pair(s) from the
returned dictionary can be a dictionary itself.

The argument to ReadCDFGlobalAttributes is defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.
Optionally,
encoding Whether to encode any CDF epoch data type in global or variable metadat.

4.5.2.1. Example(s)
The following example reads the global attributes from the CDF, test.cdf and displays it.

Dim id as long * CDF identifier.

Dim status as integer ¢ Returned status code.
Dim meta as Dictionary(Of string, object) ¢ Retrieved information.
try

status = CDFopen (“test”, id)
meta = ReadCDFGlobalAttributes (id)
CDFUtils.PrintDictionary (meta)

catch (ex as CDFException)

End try

207

The output of the dictionary dump from the global attributes in the CDF looks as follows:

Each key field represents a global attribute name, and its value, which is another diectionary of <integer, object>
type pair(s). The number represents the entry number and the object can be a scalar or array of an entry type.

Project =>
0 =>"Using the CDFJava API "
PI
3 =>"Ernie Els"
Test =>
0=>5.3432
2=>55
3=>5510.2
4=>1
5=>123
6 =>-32768
7=>12
8§=>3
9=>45
10 => "This is a string"
11 =>4294967295
12 => 4294967295 2147483648
13 => 65535
14 => 65535 65534
15 =>255
16 => 255254
TestDate =>
1 =>"2002-04-25T00:00:00.000"
2 =>"2008-02-04T06:08:10.012014016"
epTestDate =>
0=>"2004-05-13T15:08:11.022033044055"

4.5.3 ReadCDFInfo

Dictionary (Of string,object) ReadCDFInfo (¢ out — A dictionary .
id as long) ‘ in-- CDF identifier.

ReadCDFInfo reads the basic information about a CDF.

The argument to ReadCDFInfo is defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

4.5.3.1. Example(s)

The following example reads the whole information from the CDF, test.cdf and displays it.

Dim id as long * CDF identifier.

Dim status as integer ¢ Returned status code.
Dim cdf as Dictionary (Of string, object) ¢ Retrieved information.
try

208

status = CDFopen (“test”, id)
cdf = ReadCDFInfo (id)
CDFUftils.PrintDictionary (cdf)

catch ex as CDFException

End try

The output of the basic CDF information looks as follows (first field as the key and second field as the value):

Version =>"3.7.0"

Majority => "ROW"

Format => "SINGLE"
Encoding => "IBMPC"
NumGlobalAttrs => 5
NumNumVarAttrs => 5
NumVars => 21
LastLeapSecond => 20150701

4.5.4 ReadCDFVariable

Dictionary (Of string,object) ReadCDF Variable(¢ out— A dictionary .

id as long, ¢ in-- CDF identifier.
varid as integer) ‘¢ in -- variable identifier.
Dictionary<string,object> ReadCDF Variable(¢ out — A dictionary .

id as long, ‘ in-- CDF identifier.

varid as long, in -- variable identifier.

encoding as bool)

in -- Whether to encode CDF epoch type.

ReadCDF Variable reads the information from a specified variable in a CDF into a dictionary. The variable information
includes the variable specification with key: “VarInfo”, its metadata with key: “VarMetaData” and all data with key:
“VarData”, if they exist. The retrieved information consists of the information from these three functions:

ReadCDF Variablelnfo, ReadCDFVariableAttributes and ReadCDFVariableData.

The argument to ReadCDF Variable is defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or

CDFcreateCDF) or CDFopen.

varid Variable identifier in the CDF. This identifier is based on the CDF open with zZMODEon2
(all variables are being handled as zVariables) if there are rVariables and zVariables in a

CDF. The variable identifier reflects the variable after renumbered.
Optionally,

encoding Whether to encode the CDF epoch data type into date/time string.

4.5.4.1. Example(s)

The following example collects the information from a variable ‘Varl’ in the CDF, test.cdf and displays it.

209

Dim id as long * CDF identifier.

Dim status as integer ¢ Returned status code.
Dim varid as integer ¢ Variable identifier.
Dim var as Dictionary (Of string, object) ¢ Retrieved information.
try

status = CDFopen (“test”, id)

status = CDFsetzMode (id, zMODEon2)
varid = CDFgetVarNum (id, “Varl”)
var = ReadCDFVariable (id, varid)

catch ex as CDFException

End try

The output of the variable dictionary dump looks as follows. Basically, there are three key/value pairs at the top level for
variable’s specification, metadata and data, identified by the Key name. For specifiction and metadata, its value is another
dictionary.

Varlnfo =>
DataType => 2
NumElements => 1
NumDims => 1
DimSizes => 3
NumWrittenRecs => 20
PadValue => -32767

VarMetaData =>
VALIDMIN => -100
VALIDMAX => 180
FILLVAL =>-999

VarData => 100 200 300
-32767 -32767 -32767
1020 30
4032767 -32768
-32767 -32767 -32767
-32767 -32767 -32767
-32767 -32767 -32767
-32767 -32767 -32767
-32767 -32767 -32767
-32767 -32767 -32767
112233
-32767 -32767 -32767
-32767 -32767 -32767
-32767 -32767 -32767
-32767 -32767 -32767
-32767 -32767 -32767

210

4.5.5 ReadCDFVariables

Dictionary (Of string,object) ReadCDF Variables(¢ out — A dictionary .
id as long) ¢ in-- CDF identifier.
Dictionary (Of string,object) ReadCDF Variables(¢ out — A dictionary .
id as long, ‘ in-- CDF identifier.

encoding as bool) in -- Whether to encode CDF epoch type.

ReadCDFVariables reads the information from all variables in a CDF into a dictionary. Each element in the dictionary
has the variable name as the key and its information as the value, which is a diectionary itself. The variable information
includes the variable specification (with key: “VarInfo”), its metadata (with key: “VarMetaData) and all data (with
key: “VarData”), if they exist.
The argument to ReadCDF Variables is defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or

CDFcreateCDF) or CDFopen.

Optionally,

encoding Whether to encode the CDF epoch data type into date/time string for metadata.

4.5.5.1. Example(s)

The following example collects the information from a variable ‘Varl’ in the CDF, test.cdf and displays it.

Dim id as long ¢ CDF identifier.

Dim status as integer ¢ Returned status code.
Dim varid as integer ¢ Variable identifier.
Dim cdf as Dictionary (Of string, object) ¢ Retrieved information.
try

status = CDFopen (“test”, id)
cdf = ReadCDFVariables (id)

CDFUftils.PrintDirectionary (cdf)
catch ex as CDFException

End try

The output of the variable dictionary dump looks as follows. Basically, there are three key/value pairs at the top level for
variable’s specification, metadata and data, identified by the Key name. For specifiction and metadata, its value is another
dictionary.

Varl =>
Varlnfo =>
DataType => 1
NumElements => 1
NumDims => 1

211

DimSizes => 3
NumWrittenRecs => 1
PadValue => -127
VarMetaData =>
VALIDMIN => 20
VALIDMAX => 90
VarData=>123
Var2 =>
Varlnfo =>
DataType => 11
NumElements => 1
NumDims => 1
DimSizes => 3
NumWrittenRecs => 3
PadValue => 254
VarData => 254 254 5
152535
100 128 255
Var3 =>
Varlnfo =>
DataType => 2
NumElements => 1
NumDims => 1
DimSizes => 3
NumWrittenRecs => 20
PadValue => -32767
VarMetaData =>
VALIDMIN => -100
VALIDMAX => 180

VarData => 100 200 300
-32767 -32767 -32767
10 20 30
4032767 -32768
-32767 -32767 -32767
-32767 -32767 -32767
-32767 -32767 -32767
-32767 -32767 -32767
-32767 -32767 -32767
-32767 -32767 -32767

4.5.6 ReadCDFVariableAttributes

Dictionary (Of string,object) ReadCDF VariableAttributes(¢ out — A dictionary .

id as long, ‘ in-- CDF identifier.
varid as integer) ‘ in -- variable identifier.
Dictionary<string,object> ReadCDF VariableAttributes(¢ out— A dictionary .

id as long, ¢ in-- CDF identifier.

in -- variable identifier.
in -- Whether to encode CDF epoch type.

varid as integer,
encoding as bool)

ReadCDFVariableAttributes reads the specified variable’s metadata in a CDF into a dictionary. The key for the key/value
pair(s) in the dictionary is the variable attribute name.

212

The argument to ReadCDF VariableAttributes is defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

varid Variable identifier in the CDF. This identifier is based on the CDF open with ZMODEon2
(all variables are being handled as zVariables) if there are rVariables and zVariables in a
CDF. The variable identifier reflects the variable after renumbered.
Optionally,
encoding Whether to encode the CDF epoch data type into date/time string.
4.5.6.1. Example(s)

The following example collects the metadat from a variable ‘Varl’ in the CDF, test.cdf and displays it.

Dim id as long

Dim status as integer

Dim varid as integer

Dim attrs as Dictionary (Of string, object)

¢ CDF identifier.

¢ Returned status code.
¢ Variable identifier.

¢ Retrieved information.

try

status = CDFopen (“test”, id)

status = CDFsetzMode (id, zZMODEon2)
varid = CDFgetVarNum (id, “Varl”)

attrs = ReadCDFVariableAttributes (id, varid)
CDFUftils.PrintDictionary (attrs)

Catch ex as CDFException

End try

The output of the variable attributes dictionary dump looks as follows (the key is variable attribute name):

VALIDMIN => -100
VALIDMAX => 180
FILLVAL =>-999

4.5.7 ReadCDFVariableData

object ReadCDF VariableData(¢ out— A dictionary .
id as long, ¢ in-- CDF identifier.
varid as integer) ‘ in-- variable identifier.

ReadCDF VariableData reads the specified variable’s data in a CDF into an object.

213

The argument to ReadCDF VariableData is defined as follows:

id

varid

4.5.7.1. Example(s)

Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

Variable identifier in the CDF. This identifier is based on the CDF open with ZMODEon2
(all variables are being handled as zVariables) if there are rVariables and zVariables in a
CDF. The variable identifier reflects the variable after renumbered.

The following example reads the full data from a variable ‘Varl’ in the CDF, test.cdf.

Dim id as long

Dim status as integer
Dim varid as integer
Dim data as object

try
status = CDFopen (“test”, id)
status = CDFsetzMode (id, zZMODEon2)

varid = CDFgetVarNum (id, “Varl”)
data = ReadCDFVariableData (id, varid)

Catch ex as CDFException

¢ CDF identifier.

¢ Returned status code.
¢ Variable identifier.

¢ Retrieved data.

End try

4.5.8 ReadCDFVariableInfo
Dictionary (Of string,object) ReadCDF VariableInfo(¢ out— A dictionary .

id as long,

varid as integer)

¢ in -- CDF identifier.
in -- variable identifier.

Dictionary (Of string,object) ReadCDF VariableInfo(¢ out — A dictionary .

id as long,

varid as integer,
encoding as bool)

‘ in-- CDF identifier.
¢ in-- variable identifier.
‘ in -- Whether to encode CDF epoch type.

ReadCDF Variablelnfo reads the specified variable’s specification in a CDF into a dictionary.

The argument to ReadCDF Variablelnfo is defined as follows:

id

varid

Optionally,

encoding

Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

Variable identifier in the CDF. This identifier is based on the CDF open with zZMODEon2
(all variables are being handled as zVariables) if there are rVariables and zVariables in a
CDF. The variable identifier reflects the variable after renumbered.

Whether to encode the CDF epoch data type into date/time string.

214

4.5.8.1. Example(s)

The following example collects the basic information from a variable ‘Varl’ in the CDF, test.cdf and displays it.

Dim id as long ¢ CDF identifier.

Dim status as integer ¢ Returned status code.
Dim varid as integer ¢ Variable identifier.
Dim info as Dictionary (Of string, object) ¢ Retrieved information.

try
status = CDFopen (“test”, id)
status = CDFsetzMode (id, zMODEon2)
varid = CDFgetVarNum (id, “Varl”)

info = ReadCDFVariablelnfo (id, varid)
CDFUtils.PrintDictionary (info)

catch ex as CDFException
End try

The output of the dictionary dump for the specification of the variable looks as follows (first field as the key and second
field as the value):

DataType => 2
NumElements => 1
NumDims => 1
DimSizes => 3
NumWrittenRecs => 20
PadValue => -32767

4.5.9 ReadCDFVariables

Dictionary (Of string,object) ReadCDF Variables(¢ out— A dictionary .
id as long) ¢ in-- CDF identifier.
Dictionary (Of string,object) ReadCDF Variables(¢ out — A dictionary .
id as long, ‘ in-- CDF identifier.

encoding as bool) in -- Whether to encode CDF epoch type.

ReadCDFVariables reads the information from all variables in a CDF into a dictionary. Each element in the dictionary
has the variable name as the key and its information as the value, which is a diectionary itself. The variable information
includes the variable specification (with key: “VarInfo”), its metadata (with key: “VarMetaData”) and all data (with
key: “VarData”), if they exist.

The argument to ReadCDF Variables is defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

Optionally,

215

encoding Whether to encode the CDF epoch data type into date/time string for metadata.

4.5.9.1. Example(s)

The following example collects the information from a variable ‘Varl’ in the CDF, test.cdf and displays it.

Dim id as long ¢ CDF identifier.

Dim status as integer ¢ Returned status code.
Dim varid as integer ‘ Variable identifier.
Dim cdf as Dictionary (Of string, object) ¢ Retrieved information.
try

status = CDFopen (“test”, id)
cdf = ReadCDFVariables (id)

CDFUftils.PrintDirectionary (cdf)
catch ex as CDFException

End try

The output of the variable dictionary dump looks as follows. Basically, there are three key/value pairs at the top level for
variable’s specification, metadata and data, identified by the Key name. For specifiction and metadata, its value is another
dictionary.

Varl =>
Varlnfo =>
DataType => 1
NumElements => 1
NumDims => 1
DimSizes => 3
NumWrittenRecs => 1
PadValue => -127
VarMetaData =>
VALIDMIN => 20
VALIDMAX => 90
VarData=>123
Var2 =>
Varlnfo =>
DataType => 11
NumElements => 1
NumDims => 1
DimSizes => 3
NumWrittenRecs => 3
PadValue => 254
VarData => 254 254 5
152535
100 128 255
Var3 =>
Varlnfo =>
DataType => 2

216

NumElements => 1
NumDims => 1
DimSizes => 3
NumWrittenRecs => 20
PadValue => -32767
VarMetaData =>
VALIDMIN => -100
VALIDMAX => 180

VarData => 100 200 300
-32767 -32767 -32767
10 20 30
4032767 -32768
-32767 -32767 -32767
-32767 -32767 -32767
-32767 -32767 -32767
-32767 -32767 -32767
-32767 -32767 -32767
-32767 -32767 -32767

4.5.10 ReadCDFVariablesData

Dictionary (Of string,object) ReadCDF VariableAttributesData(¢ out— A dictionary .

id as long) ‘ in-- CDF identifier.
Dictionary<string,object> ReadCDF VariableAttributesData(¢ out— A dictionary .

id as long, ¢ in-- CDF identifier.

encoding as bool) ‘ in -- Whether to encode CDF epoch type.

ReadCDF VariableAttributesData reads all variables data in a CDF into a dictionary. The key for the key/value pair(s) in
the dictionary is the variable name and data.

The argument to ReadCDF VariableAttributes is defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

Optionally,
encoding Whether to encode the CDF epoch data type into date/time string.

4.5.10.1. Example(s)
The following example collects all data from the CDF, test.cdf and displays it.

Dim id as long ¢ CDF identifier.

Dim status as integer ¢ Returned status code.
Dim varid as integer ‘ Variable identifier.
Dim data as Dictionary (Of string, object) ¢ Retrieved information.
try

status = CDFopen (“test”, id)
data = ReadCDFVariablesData (id)

217

CDFUftils.PrintDictionary (attrs)
Catch ex as CDFException
End try
The output of the variable attributes dictionary dump looks as follows (the key is variable attribute name):
VALIDMIN => -100

VALIDMAX => 180
FILLVAL =>-999

218

Chapter 5

S Interpreting CDF Status Codes

Most CDF APIs return a status code of type int. The symbolic names for these codes are defined in CDFException.cs
and should be used in your applications rather than using the true numeric values. Appendix A explains each status code.
When the status code returned from a CDF API is tested, the following rules apply.

status > CDF_OK Indicates successful completion but some additional information is
provided. These are informational codes.

status = CDF_OK Indicates successful completion.

CDF_WARN < status < CDF_OK Indicates that the function completed but probably not as expected.
These are warning codes.

status < CDF_WARN Indicates that the function did not complete. These for most cases
are error codes, thus an exception might be thrown.

The following example shows how you could check the status code returned from CDF functions.

dim status as integer

"cry

i status = CDFfunction (...) ¢ any CDF function returning integer

;:atch ex as Exception

end try
In your own status handler you can take whatever action is appropriate to the application. An example status handler
follows. Note that no action is taken in the status handler if the status is CDF_OK.

dim status as integer = ex.GetCurrentStatus()

dim errorMsg as string = ex.GetStatusMsg(status)

Explanations for all CDF status codes are available to your applications through the method CDFerror. CDFerror encodes
in a text string an explanation of a given status code.

219

Chapter 6

6 EPOCH Utility Routines

Several functions exist that compute, decompose, parse, and encode CDF_EPOCH and CDF_EPOCH16 values. These
functions may be called by applications using the CDF_EPOCH and CDF_EPOCH]16 data types and are included in the
CDF library. The Concepts chapter in the CDF User's Guide describes EPOCH values. All these APIs are defined as
static methods in CDFAPISs class. The date/time components for CDF_EPOCH and CDF_EPOCH16 are UTC-based,
without leap seconds.

The CDF_EPOCH and CDF_EPOCH]16 data types are used to store time values referenced from a particular epoch. For

CDF that epoch values for CDF EPOCH and CDF EPOCHI16 are 01-Jan-0000 00:00:00.000 and 01-Jan-0000
00:00:00.000.000.000.000, respectively.

6.1 computeEPOCH

double computeEPOCH(‘ out -- CDF_EPOCH value returned.
year as integer, ‘in -- Year (AD, e.g.,, 1994).
month as integer, ‘in -- Month (1-12).

day as integer, “in -- Day (1-31).

hour as integer, “in -- Hour (0-23).

minute as integer, ‘in -- Minute (0-59).

second as integer, “in -- Second (0-59).

msec as integer) ‘in -- Millisecond (0-999).

computeEPOCH calculates a CDF_EPOCH value given the individual components. If an illegal component is detected,
the value returned will be ILLEGAL EPOCH_VALUE.

NOTE: There are two variations on how computeEPOCH may be used. If the month argument is 0 (zero), then the day
argument is assumed to be the day of the year (DOY) having a range of 1 through 366. Also, if the hour, minute, and
second arguments are all 0 (zero), then the msec argument is assumed to be the millisecond of the day having a range of
0 through 86400000.

6.2 EPOCHbreakdown

void EPOCHbreakdown(

epoch as double, ‘ in -- The CDF_EPOCH value.
year as integer, ‘ out -- Year (AD, e.g., 1994).
month as integer, ¢ out -- Month (1-12).

day as integer, ¢ out -- Day (1-31).

hour as integer, ¢ out -- Hour (0-23).

minute as integer, ¢ out -- Minute (0-59).

second as integer, ¢ out -- Second (0-59).

msec as integer) ¢ out -- Millisecond (0-999).

EPOCHbreakdown decomposes a CDF_EPOCH value into the individual components.

220

6.3 toEncodeEPOCH

string toEncodeEPOCH(¢ out -- Encode date/time string.
epoch as double) “in -- The CDF_EPOCH value.
string toEncodeEPOCH(¢ out -- Encode date/time string.
epoch as double, ‘in -- The CDF_EPOCH value.
style as int) ¢ in -- The encoding style.
string[] toEncodeEPOCH(¢ out -- Encode date/time strings.
epochs as double[]) “in -- The CDF_EPOCH values.
string[] toEncodeEPOCH(¢ out -- Encode date/time strings.
epochs as double[], “in -- The CDF_EPOCH values.

style as int) in -- The encoding style.

toEncodeEPOCH encodes a CDF_EPOCH value(s) into a date/time character string(s) in one of the standard forms. The
style is between the value 0 and 4. With style 0, it is similar to calling encodeEPOCH. With style 1, 2 3 and 4, it is similar
to calling encodeEPOCH1, encodeEPOCH2, encodeEPOCH3 and encodeEPOCH4, respectively. Without style, the
default style, 4, is used. Refer the following sections to see what a standard date/time string looks like for each style.

6.4 encodeEPOCH

void encodeEPOCH(
epoch as double ‘ in -- The CDF_EPOCH value.
epString as string) ¢ out -- The standard date/time string.

encodeEPOCH encodes a CDF_EPOCH value into the standard date/time character string. The format of the string is
dd-mmm-yyyy hh:mm:ss.ccc where dd is the day of the month (1-31), mmm is the month (Jan, Feb, Mar, Apr, May,
Jun, Jul, Aug, Sep, Oct, Nov, or Dec), yyyy is the year, hh is the hour (0-23), mm is the minute (0-59), ss is the second
(0-59), and ccc is the millisecond (0-999).

6.5 encodeEPOCHI1

void encodeEPOCHI(
epoch as double ‘in -- The CDF_EPOCH value.
epString as string) ¢ out -- The alternate date/time string.

encodeEPOCH]1 encodes a CDF_EPOCH value into an alternate date/time character string. The format of the string is
yyyymmdd.ttttttt, where yyyy is the year, mm is the month (1-12), dd is the day of the month (1-31), and ttttttt is the
fraction of the day (e.g., 5000000 is 12 o'clock noon).

6.6 encodeEPOCH2

void encodeEPOCH2(
epoch as double ‘in -- The CDF_EPOCH value.
epString as string) ¢ out -- The alternate date/time string.

encodeEPOCH2 encodes a CDF_EPOCH value into an alternate date/time character string. The format of the string is
yyyymoddhhmmss where yyyy is the year, mo is the month (1-12), dd is the day of the month (1-31), hh is the hour (0-
23), mm is the minute (0-59), and ss is the second (0-59).

6.7 encodeEPOCH3

void encodeEPOCH3(
epoch as double “in -- The CDF_EPOCH value.

221

3

epString as string) out -- The alternate date/time string.
encodeEPOCH3 encodes a CDF_EPOCH value into an alternate date/time character string. The format of the string is
yyyy-mo-ddThh:mm:ss.cccZ where yyyy is the year, mo is the month (1-12), dd is the day of the month (1-31), hh is the
hour (0-23), mm is the minute (0-59), ss is the second (0-59), and ccc is the millisecond (0-999).

6.8 encodeEPOCH4

void encodeEPOCH4(
epoch as double “in -- The CDF_EPOCH value.
epString as string) ¢ out -- The ISO 8601 date/time string.

encodeEPOCH3 encodes a CDF_EPOCH value into an alternate, ISO 8601 date/time character string. The format of the
string is yyyy-mo-ddThh:mm:ss.ccc where yyyy is the year, mo is the month (1-12), dd is the day of the month (1-31),
hh is the hour (0-23), mm is the minute (0-59), ss is the second (0-59), and ccc is the millisecond (0-999).

6.9 encodeEPOCHXx

void encodeEPOCHXx(

epoch as double “in -- The CDF_EPOCH value.
format as string ¢ in -- The format string.

encoded as string) ¢ out -- The custom date/time string.
encodeEPOCHXx encodes a CDF_EPOCH value into a custom date/time character string. The format of the encoded
string is specified by a format string.

The format string consists of EPOCH components, which are encoded, and text that is simply copied to the encoded
custom string. Components are enclosed in angle brackets and consist of a component token and an optional width. The
syntax of a component is: <token[.width]>. If the optional width contains a leading zero, then the component will be
encoded with leading zeroes (rather than leading blanks).

The supported component tokens and their default widths are as follows. . .

Token Meaning Default
dom Day of month (1-31) <dom.0>
doy Day of year (001-366) <doy.03>
month Month (‘Jan',"Feb',...,"Dec") <month>
mm Month (1,2,...,12) <mm.0>
year Year (4-digit) <year.04>
yr Year (2-digit) <yr.02>
hour Hour (00-23) <hour.02>
min Minute (00-59) <min.02>
sec Second (00-59) <sec.02>
fos Fraction of second. <fos.3>
fod Fraction of day. <fod.8>

Note that a width of zero indicates that as many digits as necessary should be used to encoded the component. The
<month> component is always encoded with three characters. The <fos> and <fod> components are always encoded
with leading zeroes.

If a left angle bracket is desired in the encoded string, then simply specify two left angle brackets (<<) in the format string
(character stuffing).

For example, the format string used to encode the standard EPOCH date/time character string (see Section 6.3) would

be. ..
<dom.02>-<month>-<year> <hour>:<min>:<sec>.<fos>

222

6.10 toParseEPOCH

double toParseEPOCH(¢ out -- The CDF_EPOCH value.
epString as string) ‘ in -- The date/time string.

double[] toParseEPOCH(¢ out -- The CDF_EPOCH values.
epStrings as string[]) “ in -- The date/time strings.

toParseEPOCH parses an encoded, standard date/time character string(s) and returns a CDF_EPOCH value(s). The
format of the string is that produced by one of the encoding functions, e.g., toEncodeEPOCH, encodeEPOCH,
encodeEPOCH], etc. If an illegal field is detected in the string, the value returned will be ILLEGAL EPOCH_VALUE.

6.11 parseEPOCH

double parseEPOCH(¢ out -- CDF_EPOCH value.
epString as string) ‘ in -- The standard date/time string.

parseEPOCH parses a standard date/time character string and returns a CDF_EPOCH value. The format of the string is
that produced by the encodeEPOCH method described in Section 6.3. If an illegal field is detected in the string the value
returned will be ILLEGAL EPOCH_VALUE.

6.12 parseEPOCHI1

double parseEPOCHI(¢ out -- CDF_EPOCH value.
epString as string) ¢ in -- The alternate date/time string.

parseEPOCHI parses an alternate date/time character string and returns a CDF_EPOCH value. The format of the string
is that produced by the encodeEPOCH1 method described in Section 6.5. If an illegal field is detected in the string the
value returned will be ILLEGAL EPOCH_VALUE.

6.13 parseEPOCH2

double parseEPOCH2(¢ out -- CDF_EPOCH value.
epString as string) ‘ in -- The alternate date/time string.

parseEPOCH?2 parses an alternate date/time character string and returns a CDF_EPOCH value. The format of the string
is that produced by the encodeEPOCH2 method described in Section 6.6. If an illegal field is detected in the string the
value returned will be ILLEGAL EPOCH VALUE.

6.14 parseEPOCH3

double parseEPOCH3(¢ out -- CDF_EPOCH value.
epString as string) ‘ in -- The alternate date/time string.

parseEPOCH3 parses an alternate date/time character string and returns a CDF_EPOCH value. The format of the string
is that produced by the encodeEPOCH3 method described in Section 6.7. If an illegal field is detected in the string the
value returned will be ILLEGAL EPOCH_VALUE.

6.15 parseEPOCH4

double parseEPOCH4(¢ out -- CDF_EPOCH value.
epString as string) ¢ in -- The alternate date/time string.

parseEPOCH3 parses an alternate, ISO 8601 date/time character string and returns a CDF_EPOCH value. The format

of the string is that produced by the encodeEPOCH3 method described in Section 6.8. If an illegal field is detected in
the string the value returned will be ILLEGAL EPOCH_VALUE.

223

6.16

double computeEPOCH16(
year as integer,
month as integer,
day as integer,

hour as integer,
minute as integer,
second as integer,
msec as integer,
microsec as integer,
nanosec as integer,
picosec as integer,
epoch as double())

computeEPOC

H16

out -- status code returned.
in -- Year (AD, e.g., 1994).
in -- Month (1-12).

in -- Day (1-31).

in -- Hour (0-23).

in -- Minute (0-59).

in -- Second (0-59).

in -- Millisecond (0-999).
in -- Microsecond (0-999).
in -- Nanosecond (0-999).
in -- Picosecond (0-999).
out -- CDF_EPOCH16 value

computeEPOCH16 calculates a CDF_EPOCH16 value given the individual components. If an illegal component is
detected, the value returned will be ILLEGAL EPOCH_VALUE.

6.17 EPOCH16breakdown

void EPOCH16breakdown(
epoch as double(),
year as integer,
month as integer,
day as integer,

hour as integer,
minute as integer,
second as integer,
msec as integer,
microsec as integer,
nanosec as integer,
picosec as integer)

‘in -- The CDF_EPOCHI16 value.
out -- Year (AD, e.g., 1994).
* out -- Month (1-12).

out -- Day (1-31).

out -- Hour (0-23).

¢ out -- Minute (0-59).

out -- Second (0-59).

out -- Millisecond (0-999).

¢ out -- Microsecond (0-999).
out -- Nanosecond (0-999).
out -- Picosecond (0-999).

EPOCH]16breakdown decomposes a CDF_EPOCH16 value into the individual components.

6.18 toEncodeEPOCH16

string toEncodeEPOCH16(¢ out -- Encode date/time string.

epoch as double[]) ‘in -- The CDF_EPOCH value.
string toEncodeEPOCH16(¢ out -- Encode date/time string.
epoch as double[], ‘ in -- The CDF_EPOCH value.

3

style as int) in -- The encoding style.
toEncodeEPOCH16 encodes a CDF_EPOCH16 value, a two-double array, into a date/time character string in one of the
standard forms. The style is between the value 0 and 4. With style 0, it is similar to calling encodeEPOCH16. With style
1, 2 3 and 4, it is similar to calling encodeEPOCH16 1, encodeEPOCH16 2, encodeEPOCH16 3 and
encodeEPOCH16_4, respectively. Without style, the default style, 4, is used. Refer the following sections to see what a
date/time string looks like for each style.

6.19 encodeEPOCH16

void encodeEPOCH16(
epoch as double(),
epString as string)

¢ in -- The CDF_EPOCHI16 value.
‘ out -- The date/time string.

224

encodeEPOCH16 encodes a CDF_EPOCH16 value into the standard date/time character string. The format of the string
is dd-mmm-yyyy hh:mm:ss.mmm:uuu:nnn:ppp where dd is the day of the month (1-31), mmm is the month (Jan,
Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, or Dec), yyyy is the year, hh is the hour (0-23), mm is the minute (0-
59), ss is the second (0-59), mmm is the millisecond (0-999), uuu is the microsecond (0-999), nnn is the nanosecond (0-
999), and ppp is the picosecond (0-999).

6.20 encodeEPOCH16 1
void encodeEPOCH16_1(
epoch as double(), “in -- The CDF_EPOCHI16 value.

3

epString as string) out -- The date/time string.
encodeEPOCH16 1 encodes a CDF_EPOCH16 value into an alternate date/time character string. The format of the
string is yyyymmdd.ttttttttttttttt, where yyyy is the year, mm is the month (1-12), dd is the day of the month (1-31), and
tttettttttttttt is the fraction of the day (e.g., 500000000000000 is 12 o'clock noon).

6.21 encodeEPOCH16 2
void encodeEPOCH16 2(
epoch as double(), “in -- The CDF_EPOCHI16 value.

3

epString as string) out -- The date/time string.
encodeEPOCH16 2 encodes a CDF_EPOCH16 value into an alternate date/time character string. The format of the
string is yyyymoddhhmmss where yyyy is the year, mo is the month (1-12), dd is the day of the month (1-31), hh is the
hour (0-23), mm is the minute (0-59), and ss is the second (0-59).

6.22 encodeEPOCH16 3
void encodeEPOCH16 3(
epoch as double(), “in -- The CDF_EPOCHI16 value.

3

epString as string) out -- The alternate date/time string.
encodeEPOCHI16_3 encodes a CDF_EPOCH16 value into an alternate date/time character string. The format of the
string is yyyy-mo-ddThh:mm:ss.mmm:uuu:nnn:pppZ where yyyy is the year, mo is the month (1-12), dd is the day of
the month (1-31), hh is the hour (0-23), mm is the minute (0-59), ss is the second (0-59), mmm is the millisecond (0-
999), uuu is the microsecond (0-999), nnn is the nanosecond (0-999), and ppp is the picosecond (0-999).

6.23 encodeEPOCH16 4
void encodeEPOCH16 4(
epoch as double(), ¢ in -- The CDF_EPOCHI16 value.

3

epString as string) out -- The alternate date/time string.
encodeEPOCH16_3 encodes a CDF_EPOCH16 value into an alternate, ISO 8601 date/time character string. The format
of the string is yyyy-mo-ddThh:mm:ss.mmmuuunnnppp where yyyy is the year, mo is the month (1-12), dd is the day of
the month (1-31), hh is the hour (0-23), mm is the minute (0-59), ss is the second (0-59), mmm is the millisecond (0-
999), uuu is the microsecond (0-999), nnn is the nanosecond (0-999), and ppp is the picosecond (0-999).

6.24 encodeEPOCH16 x
void encodeEPOCH16 x(
epoch as double(), “in -- The CDF_EPOCHI16 value.

3

format as string
encoded as string)

in -- The format string.
out -- The date/time string.

3

225

encodeEPOCH16_x encodes a CDF_EPOCH16 value into a custom date/time character string. The format of the
encoded string is specified by a format string.

The format string consists of EPOCH components, which are encoded, and text that is simply copied to the encoded
custom string. Components are enclosed in angle brackets and consist of a component token and an optional width. The
syntax of a component is: <token[.width]>. If the optional width contains a leading zero, then the component will be
encoded with leading zeroes (rather than leading blanks).

The supported component tokens and their default widths are as follows. . .

Token Meaning Default
dom Day of month (1-31) <dom.0>
doy Day of year (001-366) <doy.03>
month Month (‘Jan',"Feb',...,"Dec") <month>
mm Month (1,2,...,12) <mm.0>
year Year (4-digit) <year.04>
yr Year (2-digit) <yr.02>
hour Hour (00-23) <hour.02>
min Minute (00-59) <min.02>
sec Second (00-59) <sec.02>
msc Millisecond (000-999) <msc.3>
usc Microsecond (000-999) <usc.3>
nsc Nanosecond (000-999) <nsc.3>
psc Picosecond (000-999) <psc.3>
fos Fraction of second. <fos.12>
fod Fraction of day. <fod.8>

Note that a width of zero indicates that as many digits as necessary should be used to encoded the component. The
<month> component is always encoded with three characters. The <fos> and <fod> components are always encoded
with leading zeroes.

If a left angle bracket is desired in the encoded string, then simply specify two left angle brackets (<<) in the format string
(character stuffing).

For example, the format string used to encode the standard EPOCH date/time character string would be. . .
<dom.02>-<month>-<year> <hour>:<min>:<sec>.<msc>.<usc>.<nsc>.<psc>.<fos>

6.25 toParseEPOCH16

double[] toParseEPOCH16(¢ out -- The CDF_EPOCH16 value.
epString as string) ¢ in -- The date/time string.

toParseEPOCH16 parses a encoded, standard date/time character string and returns a CDF_EPOCHI16 value, a two-
double array. The format of the string is that produced by one of the encoding functions, e.g., toEncodeEPOCH16,
encodeEPOCH16, encodeEPOCHI16 1, etc. If an illegal field is detected in the string, the value returned will be
ILLEGAL EPOCH_VALUE.

6.26 parseEPOCH16

double parseEPOCH16(¢ out -- The status code returned.
epString as string, ¢ in -- The date/time string.
epoch as double()) ¢ out -- The CDF_EPOCH16 value returned

parseEPOCH16 parses a standard date/time character string and returns a CDF_EPOCH16 value. The format of the
string is that produced by the encodeEPOCH16 function. If an illegal field is detected in the string the value returned
will be ILLEGAL EPOCH VALUE.

226

6.27 parseEPOCHI16 1

double parseEPOCHI16 1(¢ out -- The status code returned.
epString as string, ‘ in -- The date/time string.
epoch as double()) ¢ out -- The CDF_EPOCH16 value returned

parsesEPOCH16 1 parses an alternate date/time character string and returns a CDF_EPOCH16 value. The format of
the string is that produced by the encodeEPOCH16 1 function. If an illegal field is detected in the string the value
returned will be ILLEGAL EPOCH_VALUE.

6.28 parseEPOCH16 2

double parseEPOCHI16 2(¢ out -- The status code returned.

epString as string, ‘ in -- The date/time string.

epoch as double()) ¢ out -- The CDF_EPOCH16 value returned

parseEPOCH16_2 parses an alternate date/time character string and returns a CDF_EPOCH]16 value. The format of
the string is that produced by the encodeEPOCH16 2 function. If an illegal field is detected in the string the value
returned will be ILLEGAL EPOCH_VALUE.

6.29 parseEPOCH16 3

double parseEPOCHI16 3(¢ out -- The status code returned.

epString as string, ‘ in -- The date/time string.

epoch as double()) ¢ out -- The CDF_EPOCH16 value returned

parsesEPOCH16_3 parses an alternate date/time character string and returns a CDF_EPOCH16 value. The format of
the string is that produced by the encodeEPOCHI16 3 function. If an illegal field is detected in the string the value
returned will be ILLEGAL EPOCH_VALUE.

6.30 parseEPOCH16 4

double parseEPOCHI16 4(¢ out -- The status code returned.

epString as string, “in -- The ISO 8601 date/time string.
epoch as double()) ¢ out -- The CDF_EPOCH16 value returned

parseEPOCH16 4 parses an alternate date/time character string and returns a CDF_EPOCH16 value. The format of
the string is that produced by the encodeEPOCHI16 3 function. If an illegal field is detected in the string the value
returned will be ILLEGAL _EPOCH_VALUE.

6.31 EPOCHtoUnixTime

double EPOCHtoUnixTime(¢ out -- The Unix time returned.

epoch as double) “in -- The CDF_EPOCH value

double() EPOCHtoUnixTime(¢ out -- The Unix times returned.
epochs as double()) ‘ in -- The CDF_EPOCH values

EPOCHtoUnixTime converts an epoch time(s) in CDF_EPOCH type into a Unix time(s). A CDF_EPOCH epoch, a
double, is milliseconds from 0000-01-01T00:00:00.000 while Unix time, also a double, is seconds from 1970-01-
01T00:00:00.000. The Unix time can have sub-second, with a time resolution of microseconds, in its fractional part.

6.32 UnixTimetoEPOCH

double UnixTimetoEPOCH (¢ out -- The CDF_EPOCH epoch value.
unixTime as double) ¢ in -- The Unix time value

227

double() UnixTimetoEPOCH (¢ out -- The CDF_EPOCH epoch values.
unixTimes as double()) “ in -- The Unix time values

UnixTimetoEPOCH converts a Unix time(s) to an epoch time(s) in CDF_EPOCH. A CDF_EPOCH epoch, a double, is
milliseconds from 0000-01-01T00:00:00.000 while Unix time, also a double, is seconds from 1970-01-01T00:00:00.000.
The Unix time can have sub-second, with a time resolution of microseconds, in its fractional part. Converting the Unix
time to EPOCH will only keep the resolution to milliseconds.

6.33 EPOCH16toUnixTime

double EPOCH16toUnixTime(¢ out -- The Unix time returned.
epoch as double()) ‘ in -- The CDF_EPOCHI16 value

EPOCHI16toUnixTime converts an epoch time in CDF _EPOCHI16 type, a two-double array, to a Unix time. A
CDF_EPOCHI16 epoch is picoseconds from 0000-01-01T00:00:00.000.000.000.000, while Unix time, a double, is
seconds from 1970-01-01T00:00:00.000. The Unix time can have sub-second, with a time resolution of microseconds,
in its fractional part. Note: As CDF _ EPOCH16 has much higher time resolution, sub-microseconds portion of its time
might get lost during the conversion.

6.34 UnixTimetoEPOCH16

double() UnixTimetoEPOCH16 (¢ out -- The CDF_EPOCH16 epoch value.
unixTimes as double) ¢ in -- The Unix time value

UnixTimetoEPOCH16 converts a Unix time to an epoch time in CDF_EPOCH16. A CDF_EPOCH16 epoch, a two-
double array, is picoseconds from 0000-01-01T00:00:00.000.000.000.000, while Unix time, also a double, is seconds
from 1970-01-01T00:00:00.000. The Unix time can have sub-second, with a time resolution of microseconds, in its
fractional part. Sub-microseconds will be filled with 0’s when converting from Unix time to EPOCH16.

228

7 TT2000 Utility Routines

Several functions exist that compute, decompose, parse, and encode CDF_TIME TT2000 values. These functions may
be called by applications using the CDF_TIME TT2000 data type and is included in the CDF library. The Concepts
chapter in the CDF User's Guide describes TT2000 values. All these APIs are defined as static methods in CDFAPIs
class. The date/time components for CDF_TIME TT2000 are UTC-based, with leap seconds.

The CDF TIME TT2000 data type is wused to store time values referenced from J2000 (2000-01-

01T12:00:00.000000000). For CDF, values in CDF_TIME TT2000 are nanoseconds from J2000 with leap seconds
included. TT2000 data can cover years between 1707 and 2292.

7.1 computeTT2000

compueTT2000 is a overloaded function.

long computeTT2000(¢ out -- CDF_TIME TT2000 value.
year as double, ‘in -- Year (AD, e.g.,, 1994).
month as double, ‘in -- Month (1-12).

day as double) “in -- Day (1-31).

long computeTT2000(¢ out -- CDF _TIME TT2000 value.
year as double, ‘in -- Year (AD, e.g.,, 1994).
month as double, ‘in -- Month (1-12).

day as double, “in -- Day (1-31).

hour as double) ‘in -- Hour (0-23).

long computeTT2000(¢ out -- CDF _TIME TT2000 value.
year as double, “in -- Year (AD, e.g.,, 1994).
month as double, ‘in -- Month (1-12).

day as double, “in -- Day (1-31).

hour as double, “in -- Hour (0-23).

minute as double) ‘in -- Minute (0-59).
long computeTT2000(¢ out -- CDF _TIME TT2000 value.
year as double, ‘in -- Year (AD, e.g.,, 1994).
month as double, ‘in -- Month (1-12).

day as double, “in -- Day (1-31).

hour as double, “in -- Hour (0-23).

minute as double, ‘in -- Minute (0-59).

second as double) “in -- Second (0-59 or 0-60 if leap second).
long computeTT2000(‘ out -- CDF _TIME TT2000 value.
year as double, ‘in -- Year (AD, e.g.,, 1994).
month as double, ‘in -- Month (1-12).

day as double, ‘in -- Day (1-31).

hour as double, “in -- Hour (0-23).

minute as double, ‘in -- Minute (0-59).

second as double, “in -- Second (0-59 or 0-60 if leap second).
msec as double) “ in -- Millisecond (0-999).

long computeTT2000(¢ out -- CDF _TIME TT2000 value.
year as double, “in -- Year (AD, e.g.,, 1994).
month as double, ‘in -- Month (1-12).

day as double, “in -- Day (1-31).

229

hour as double, ‘in -- Hour (0-23).

minute as double, “in -- Minute (0-59).

second as double, “in -- Second (0-59 or 0-60 if leap second).
msec as double, “in -- Millisecond (0-999).

usec as double) “in -- Microsecond (0-999).

long computeTT2000(¢ out -- CDF _TIME TT2000 value.

year as double, “in -- Year (AD, e.g.,, 1994).

month as double, ‘in -- Month (1-12).

day as double, “in -- Day (1-31).

hour as double, “in -- Hour (0-23).

minute as double, ‘in -- Minute (0-59).

second as double, “in -- Second (0-59 or 0-60 if leap second).
msec as double, “in -- Millisecond (0-999).

usec as double, ‘ in -- Microsecond (0-999).

nsec as double) “in -- Nanosecond (0-999).

computeTT2000 calculates a CDF_TIME TT2000 value given the individual, UTC-based date/time components. If an
illegal component is detected, the value returned will be ILLEGAL TT2000 VALUE. The day componment can be
presented in day of the month or day of the year (DOY). If DOY form is used, the month componment must have a
value(s) of one (1).

NOTE: Even though this overloaded function uses double for all its parameter fields, all but the very last parameter can
not have a non-zero fractional part for simplifying the computation. An exception will be thrown if the rule is not
followed. For example, this call is allowed:

dm tt2000 as long = computeTT2000(2010.0, 10.0, 10.5)

But, this call will fail:

dim tt2000 as long = computeTT2000(2010.0, 10.0, 10.5, 12.5)

7.2 TT2000breakdown

void TT2000breakdown(

tt2000 as long, ‘in -- The CDF_TIME_TT2000.

year as double, ‘ out -- Year (AD, e.g., 1994).

month as double, ¢ out -- Month (1-12).

day as double, ¢ out -- Day (1-31).

hour as double, ¢ out -- Hour (0-23).

minute as double, ¢ out -- Minute (0-59).

second as double, ¢ out -- Second (0-59 or 0-60 if leap second).
msec as double, ¢ out -- Millisecond (0-999).

usec as double, ¢ out -- Microsecond (0-999).

nsec as double) ¢ out -- Nanosecond (0-999).

TT2000breakdown decomposes a CDF_TIME TT2000 value into the individual components.

7.3 toEncodeTT2000

string toEncodeTT2000(¢ out -- Encode date/time string.
epoch as long) “in -- The TT2000 value.
string toEncodeTT2000(* out -- Encode date/time string.
epoch as long, ¢ in -- The TT2000 value.

style as int) in -- The encoding style.

230

string() toEncodeTT2000(¢ out -- Encode date/time strings.

epochs as long()) “in -- The TT2000 values.
string() toEncodeTT2000(¢ out -- Encode date/time strings.
epochs as long(), “in -- The TT2000 values.

style as int) in -- The encoding style.

toEncodeTT2000 encodes a CDF_TIME TT2000 value(s) into a date/time character string(s) in one of the standard
forms. The style is between the value 0 and 4. Without style, the default style is used, which is style 3. Refer the following
section to see what a date/time string looks like for each style.

7.4 encodeTT2000

encodeTT2000 is a overloaded function.

void encodeTT2000(
tt2000 as long ‘in -- The CDF_TIME TT2000.
EpString as string) out -- The standard date/time string.

void encodeTT2000(

tt2000 as long “in -- The CDF_TIME TT2000.
epString as string. out -- The standard date/time string.
style as int) in -- The encoded string style.

encodeTT2000 encodes a CDF_TIME_ TT2000 value into one of the standard date/time UTC character strings. Without
the style, the default style of 3 is used, which makes the string in ISO 8601 format: yyyy-mm-ddT
hh:mm:ss.mmmuuunnn where yyyy is the year (1707-2292), mm is the month (01-12), dd is the day of the month (1-
31), hh is the hour (0-23), mm is the minute (0-59), ss is the second (0-59 or 0-60 if leap second), mmm is the millisecond
(0-999), uuu is the microsecond (0-999) and nnn is the nanosecond (0-999).

For a style of value 0, the encoded UTC string is DD-Mon-YYYY hh:mm:ss.mmmuuunnn, where DD is the day of
the month (1-31), Mon is the month (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, or Dec), YYYY is the
year, hh is the hour (0-23), mm is the minute (0-59 or 0-60 if leap second), ss is the second (0-59), mmm is the
millisecond (0-999), uuu is the microsecond (0-999), and nnn is the nanosecond (0-999). The encoded string has a
length of TT2000 0 STRING_LEN (30).

For a style of value 1, the encoded UTC string is YYYYMMDD.ttttttttt, where YYYY is the year, MM is the month
(1-12) DD is the day of the month (1-31), and ttttttttt is sub-day.(0-999999999). The encoded string has a length of
TT2000 1 STRING LEN (19).

For a style of value 2, the encoded UTC string is YYYYMMDDhhmmss, where YYYY is the year, MM is the month
(1-12) DD is the day of the month (1-31), hh is the hour (0-23), mm is the minute (0-59),and ss is the second (0-59 or
0-60 if leap second). The encoded string has a length of TT2000 2 STRING LEN (14).

For a style of value 3, the encoded UTC string is YYYY-MM-DDThh:mm:ss.mmmuuunnn, where YYYY is the
year, MM is the month (1-12), DD is the day of the month (1-31), hh is the hour (0-23), mm is the minute (0-59 or 0-60
if leap second), ss is the second (0-59), mmm is the millisecond (0-999), uuu is the microsecond (0-999), and nnn is the
nanosecond (0-999). The encoded string has a length of TT2000 3 STRING_LEN (29).

For a style of value 4, the encoded UTC string is similar to style 3, with an addition of “Z” appended to the end. The
encoded string has a length of TT2000 4 STRING LEN (30).

7.5 toParseTT2000

long toParseTT2000(¢ out -- CDF_TIME TT2000 value.

231

3

epString as string) in -- The standard date/time string.

long() toParseTT2000(‘ out -- CDF_TIME TT2000 values.
epString as string()) ¢ in -- The encoded date/time strings.

toParseTT2000 parses a encoded date/time character string(s) and returns a CDF_TIME TT2000 value(s). The format
of the string is that produced by the toEncodeTT2000 or encodeTT2000 method described in Section 6.3 or 7.4. If an
illegal field is detected in the string, the value(s) returned will be ILLEGAL TT2000 VALUE.

7.6 parseTT2000

long parseTT2000(¢ out -- CDF _TIME TT2000 value.
epString as string) “in -- The encoded date/time string.

parseTT2000 parses an encoded date/time character string and returns a CDF_TIME TT2000 value. The format of the

string is that produced by the encodeTT2000 method described in Section 7.3 or 7.4. If an illegal field is detected in the
string the value returned will be ILLEGAL TT2000 VALUE.

7.7 CDFgetLastDateinLeapSecondsTab

le
void CDFgetLastDateinLeapSecondsTable(
year as integer ¢ out -- The year.
month as integer ¢ out -- The month.
day as integer) ¢ out -- The day.

CDFgetLastDateinLeapSecondsTable returns the last entry in the leap second table used by the CDF processing. This
date comes from the leap second table, either through an external text file, or the hard-coded table in the library code.
This information can tell whether the leap second table is up-to-date.

7.8 TT2000toUnixTime

double TT2000toUnixTime(“in -- The Unix time value.
epoch as long) “in -- The TT2000 epoch value.
double() TT2000toUnixTime(“in -- The Unix time values.
epochs as long()) “in -- The TT2000 epoch values.

TT2000toUnixTime converts epoch time(s) in CDF _TIME TT2000 (TT2000) type into Unix time(s). A
CDF_TIME_TT2000 epoch, a 8-byte integer, is nanoseconds from J2000 with leap seconds, while Unix time, a double,
is seconds from 1970-01-01T00:00:00.000. The Unix time can have sub-second, with a time resolution of microseconds,
in its fractional part. Note: As CDF_TIME TT2000 has much higher time resolution, sub-microseconds portion of its
time might get lost during the conversion. Also, TT2000’s leap seconds will get lost during conversion.

7.9 UnixTimetoTT2000

long UnixTimetoTT2000 (“in -- The TT2000 epoch value.
epoch as double) “in -- The Unix time value.
long() UnixTimetoTT2000 (¢ in -- The TT2000 epoch values.
epochs as double()) “in -- The Unix time values.

UnixTimetoTT2000 converts Unix time(s) into epoch time(s) in CDF_TIME TT2000 (TT2000) type. A Unix time, a
double, is seconds from 1970-01-01T00:00:00.000 while a CDF_TIME TT2000 epoch, a 8-byte integer, is nanoseconds
from J2000 with leap seconds. The Unix time can have sub-second, with a time resolution of microseconds, in its
fractional part. Sub-microseconds will be filled with 0’s when converting from Unix time to TT2000.

232

8 CDF Utility Methods

Several methods are created that are mainly used to decipher the strings and their corresponding constant values or vice
verse. All these APIs are defined as static methods in CDFUtils class. The constant values are defined in CDFConstants
class.

8.1 CDFFileExists

boolean CDFFileExists(¢ out -- The file existence flag.
filename as string) ‘ in -- The file name.

CDFFileExists method checks whether a CDF file by the given file name, with or without the .cdf extension, exists. Even
the file exists, CDFFileExists will not be able to verify whether it is a valid one. (Use CDFopen to validate it).

8.2 CDFgetChecksumValue

integer CDFgetChecksumValue(¢ out -- The checksum value.
checksum as string) ¢ in -- The file checksum type string.

CDFgetChecksumValue method returns the corresponding file checksum type value, based on the passed string. The
file checksum types and their values are as follows:

Type Value
NONE NO_ CHECKSUM (0)
MD5 MD5_CHECKSUM (1)
OTHER OTHER_CHECKSUM
8.3 CDFgetCompressionTypeValue

3

out -- The compression type.
in -- The compression type string.

integer CDFgetCompressionTypeValue(
compressionType as string) ‘
CDFgetCompressionTypeValue method returns the corresponding compression type value, based on the passed string.
The compression types and values are as follows:

Type Value
NONE NO_COMPRESSION (0)
RLE RLE_COMPRESSION (1)
Huffman HUFF _COMPRESSION (2)
Adaptive Huffman AHUFF_COMPRESSION (3)
GZIP GZIP_ COMPRESSION (5)
8.4 CDFgetDataTypeValue

3

out -- The data type.
in -- The data type string.

integer CDFgetDataTypeValue(
dataType as string) ¢
CDFgetDataTypeValue method returns the corresponding data type value, based on the passed string. The data types
and their values are as follows:

Type Value

CDF BYTE CDF _BYTE (41)
CDF_CHAR CDF_CHAR (51)
CDF_UCHAR CDF_UCHAR (52)

233

CDF_INTI CDF_INTI1 (1)

CDF _UINT1 CDF _UINTI (11)

CDF_INT2 CDF_INT2 (2)

CDF _UINT2 CDF UINT2 (12)

CDF_INT4 CDF _INT4 (4)

CDF_UINT4 CDF_UINT4 (14)

CDF _INTS CDF _INTS (8)

CDF_REAL4 CDF_REALA4 (21)

CDF _FLOAT CDF _FLOAT (44)

CDF_REALS CDF _REALS (22)

CDF_DOUBLE CDF_DOUBLE (45)

CDF_EPOCH CDF_EPOCH (31)

CDF_EPOCH16 CDF_EPOCH16 (32)

CDF_TIME TT2000 CDF_TIME TT2000 (33)
8.5 CDFgetDecodingValue
integer CDFgetDecodingValue(¢ out -- The decoding value.
decoding as string) ‘ in -- The data decoding string.

CDFgetDecodingValue method returns the corresponding data decoding value, based on the passed string. The data
decodings and their values are as follows:

Type Value

NETWORK NETWORK DECODING (1)

SUN SUN_DECODING (2)

VAX VAX DECODING (3)

DECSTATION DECSTATION DECODING (4)

SGi SGi_DECODING (5)

IBMPC IBMPC_DECODING (6)

IBMRS IBMRS_DECODING (7)

HOST HOST DECODING (8)

PPC PPC_DECODING (9)

HP HP_DECODING (11)

NeXT NeXT DECODING (12)

ALPHAOSF1 ALPHAOSF1 _DECODING (13)

ALPHAVMSd ALPHAVMSd DECODING (14)

ALPHAVMSg ALPHAVMSg DECODING (15)

ALPHAVMSIi ALPHAVMSi DECODING (16)
8.6 CDFgetEncodingValue
integer CDFgetEncodingValue(¢ out -- The encoding value.
encoding as string) ¢ in -- The data encoding string.

CDFgetEncodingValue method returns the corresponding data encoding value, based on the passed string. The data
encodings and their values are as follows:

Type Value

NETWORK NETWORK ENCODING (1)
SUN SUN_ENCODING (2)

VAX VAX ENCODING (3)
DECSTATION DECSTATION_ENCODING (4)
SGi SGi_ ENCODING (5)

IBMPC IBMPC ENCODING (6)

234

IBMRS IBMRS_ENCODING (7)

HOST HOST_ENCODING (8)
PPC PPC_ENCODING (9)
HP HP_ENCODING (11)
NeXT NeXT_ENCODING (12)
ALPHAOSFI ALPHAOSF1_ENCODING (13)
ALPHAVMSd ALPHAVMSd _ENCODING (14)
ALPHAVMSg ALPHAVMSg ENCODING (15)
ALPHAVMSIi ALPHAVMSi _ENCODING (16)

8.7 CDFgetFormatValue

3

out -- The format value.
in -- The file format string.

integer CDFgetFormatValue(
format as string) ¢
CDFgetFormatValue method returns the corresponding file format value, based on the passed string. The file formats
and their values are as follows:

Type Value
SINGLE SINGLE_FILE (1)
MULTI MULTI FILE (2)
8.8 CDFgetMajorityValue

3

integer CDFgetMajority Value(
majority as string)

out -- The majority value.
¢ in -- The data majority string.
CDFgetMajorityValue method returns the corresponding file majority value, based on the passed string. The file
majorities and their values are as follows:

Type Value
ROW ROW_MAJOR (1)
COLUMN COLUMN_MAIOR (2)
8.9 CDFgetSparseRecordValue

3

integer CDFgetSparseRecordValue(
sparseRecord as string)

out -- The sparse record value.
¢ in -- The sparse record string.
CDFgetSparseRecordValue method returns the corresponding sparse record value, based on the passed string. The
sparse records types and their values are as follows:

Type YValue
NONE NO_SPARSERECORDS (0)
PAD PAD SPARSERECORDS (1)
PREV PREV_SPARSERECORDS (2)
8.10 CDFgetStringChecksum

3

string CDFgetStringChecksum(
checksum as integer)

out -- The checksum string.
in -- The file checksum type.

3

CDFgetStringChecksum method returns the corresponding file checksum string, based on the passed type. The file
checksum types and their values are the same as those defined in CDFgetChecksumValue method.

235

8.11 CDFgetStringCompressionType

3

out -- The compression string.
in -- The compression type.

string CDFgetStringCompressionType(
compressionType as integer) ¢
CDFgetStringCompressionType method returns the corresponding compression type string, based on the passed type.
The file checksum types and their values are the same as those defined in CDFgetCompressionTypeValue method.

8.12 CDFgetStringDataType

3

out -- The data type string.
in -- The data type.

string CDFgetStringDataType(
dataType as integer) ¢
CDFgetStringDataType method returns the corresponding data type string, based on the passed type. The data types
and their values are the same as those in CDFgetDataTypeValue method:

8.13 CDFgetStringDecoding

3

out -- The decoding string.
in -- The data decoding type.

string CDFgetStringDecoding(
decoding as integer) ¢
CDFgetStringDecoding method returns the corresponding data decoding string, based on the passed type. The data
decodings and their values are as same as those defined in CDFgetDecodingValue:

8.14 CDFgetStringEncoding

3

out -- The encoding string.
in -- The data encoding type.

string CDFgetStringEncoding(
encoding as integer) ‘
CDFgetStringEncoding method returns the corresponding data encoding string, based on the passed type. The data
encodings and their values are the same as those defined in CDFgetEncodingValue method.

8.15 CDFgetStringFormat

3

out -- The format string.
in -- The file format type.

string CDFgetStringFormat(
format as integer) ¢
CDFgetStringFormat method returns the corresponding file format string, based on the passed type. The file formats
and their values are the same as those defined in CDFgetFormatValue method.:

8.16 CDFgetStringMajority

3

out -- The majority string.
in -- The data majority type.

string CDFgetStringMajority(
majority as integer) ¢
CDFgetStringMajority method returns the corresponding file majority string, based on the passed type. The file
majorities and their values are the same as those defined in CDFgetMajorityValue method.

8.17 CDFgetStringSparseRecord

3

out -- The sparse record string.
in -- The sparse record type.

string CDFgetStringSparseRecord(
sparseRecord as integer)

3

CDFgetStringSparseRecord method returns the corresponding sparse record string, based on the passed type. The sparse
records types and their values are the same as those defined in CDFgetSparseRecordValue method.

236

8.18 DumpObject

void DumpObject (
data as object)

3

in -- The object to be dumped.

void DumpObject (

dataType as integer in -- The object’s data type.

data as object) in -- The object to be dumped.
DumpObject method dumps the data contents of an object retrieved from a CDF. For CDF epoch data, this method will
not encode it into date/time form.

3

3

8.19 PrintDictionary

void PrintDictionary (

data as Dictionary (Of string, data) ¢ in -- The data dictionary.

void PrintDictionary (

data as Dictionary (Of integer, data)) ¢ in -- The data dictionary.

void PrintDictionary (

data as Dictionary (Of string, data), ‘ in -- The data dictionary.
indent as integer) ‘ in -- The indentation at output

void PrintDictionary (
data as Dictionary (Of integer, data), in
indent as integer) in

The data dictionary.
The indentation at output

PrintDictionary method prints out the data retrieved from a CDF in a dictionary form. The CDF epoch data will not be
encoded into date/time form.

9 CDF Exception Methods

Several methods in the CDFexception class can be used to check what happens when an exception is thrown by the
CDFAPIs, and react to it if necessary. All these APIs are defined as static methods. CDFException inherits from VB’s
Exception class.

9.1 CDFgetCurrentStatus
integer CDFgetCurrentStatus() ¢ out -- The status.
CDFgetCurrentStatus method returns the status when an exception is detected. The status value should be a negative

value. Chapter 5 covers all possible status codes. Use the following CDFgetStatusMsg method to decipher what the status
means.

9.2 CDFgetStatusMsg

string CDFgetStatusMsg(¢ out -- The descriptive message.
status as integer) “ in -- The exception status.

CDFgetStatusMsg method returns the descriptive information of the passed status.

237

Appendix A

A.1 Introduction

A status code is returned from most CDF functions. The CDFConstants class contains the numerical values (constants)
for each of the status codes (and for any other constants referred to in the explanations). The method CDFerror can be
used within a program to inquire the explanation text for a given status code.

There are three classes of status codes: informational, warning, and error. The purpose of each is as follows:

Informational Indicates success but provides some additional information that may be of interest to an
application.

Warning Indicates that the method completed but possibly not as expected.

Error Indicates that a fatal error occurred and the function aborted.

Status codes fall into classes as follows:
Error codes < CDF_WARN < Warning codes < CDF_OK < Informational codes

CDF_OK indicates an unqualified success (it should be the most commonly returned status code). CDF_WARN is
simply used to distinguish between warning and error status codes.

A.2 Status Codes and Messages

The following list contains an explanation for each possible status code. Whether a particular status code is considered
informational, a warning, or an error is also indicated.

ATTR _EXISTS Named attribute already exists - cannot create or rename. Each
attribute in a CDF must have a unique name. Note that trailing
blanks are ignored by the CDF library when comparing attribute
names. [Error]

ATTR NAME TRUNC Attribute name truncated to CDF _ATTR NAME LEN256
characters. The attribute was created but with a truncated name.
[Warning]

BAD ALLOCATE RECS An illegal number of records to allocate for a variable was

specified. For RV variables the number must be one or greater.
For NRYV variables the number must be exactly one. [Error]

BAD ARGUMENT An illegal/undefined argument was passed. Check that all
arguments are properly declared and initialized. [Error]

BAD ATTR NAME [llegal attribute name specified. Attribute names must contain at
least one character, and each character must be printable. [Error]

BAD ATTR NUM [llegal attribute number specified. Attribute numbers must be zero

(0) or greater for C applications and one (1) or greater for Fortran
applications. [Error]

239

BAD BLOCKING FACTOR?

BAD CACHESIZE

BAD CDF _EXTENSION

BAD_CDF_ID

BAD CDF_NAME

BAD_INT

BAD CHECKSUM

BAD_COMPRESSION PARM

BAD DATA _TYPE

BAD DECODING

BAD DIM_COUNT

BAD DIM_INDEX

BAD_DIM_INTERVAL

BAD DIM_SIZE

BAD ENCODING

BAD ENTRY NUM

An illegal blocking factor was specified. Blocking factors must be
at least zero (0). [Error]

An illegal number of cache buffers was specified. The value must
be at least zero (0). [Error]

An illegal file extension was specified for a CDF. In general, do
not specify an extension except possibly for a single-file CDF that
has been renamed with a different file extension or no file
extension. [Error]

CDF identifier is unknown or invalid. The CDF identifier
specified is not for a currently open CDF. [Error]

[llegal CDF name specified. CDF names must contain at least one
character, and each character must be printable. Trailing blanks
are allowed but will be ignored. [Error]

Unknown CDF status code received. The CDF library does not
use the status code specified. [Error]

An illegal checksum mode received. It is invalid or currently not
supported. [Error]

An illegal compression parameter was specified. [Error]

An unknown data type was specified or encountered. The CDF
data types are defined in CDFConstants class for VB applications.
[Error]

An unknown decoding was specified. The CDF decodings are
defined in CDFConstants class for VB applications. [Error]

[llegal dimension count specified. A dimension count must be at
least one (1) and not greater than the size of the dimension. [Error]

One or more dimension index is out of range. A valid value must
be specified regardless of the dimension variance. Note also that
the combination of dimension index, count, and interval must not
specify an element beyond the end of the dimension. [Error]

Illegal dimension interval specified. Dimension intervals must be
at least one (1). [Error]

Illegal dimension size specified. A dimension size must be at least
one (1). [Error]

Unknown data encoding specified. The CDF encodings are
defined in CDFConstants class for VB applications. [Error]

[llegal attribute entry number specified. Entry numbers must be at
least zero (0) for VB applications. [Error]

22 The status code BAD BLOCKING FACTOR was previously named BAD EXTEND RECS.

240

BAD FNC_OR_ITEM

BAD FORMAT

BAD INITIAL RECS

BAD _MAIJORITY

BAD MALLOC

BAD_ NEGtoPOSfp0 MODE

BAD NUM _DIMS

BAD NUM_ELEMS

BAD NUM_VARS

BAD READONLY MODE

BAD REC_COUNT

BAD REC INTERVAL

BAD REC NUM

BAD_SCOPE

BAD SCRATCH DIR

BAD_SPARSEARRAYS PARM

The specified function or item is illegal. Check that the proper
number of arguments are specified for each operation being
performed. [Error]

Unknown format specified. The CDF formats are defined in
CDFConstants class for VB applications. [Error]

An illegal number of records to initially write has been specified.
The number of initial records must be at least one (1). [Error]

Unknown variable majority specified. =~ The CDF variable
majorities are defined in CDFConstants class for VB applications.
[Error]

Unable to allocate dynamic memory - system limit reached.
Contact CDF User Support if this error occurs. [Error]

An illegal -0.0 to 0.0 mode was specified. The -0.0 to 0.0 modes
are defined in CDFConstants class for VB applications. [Error]

The number of dimensions specified is out of the allowed range.
Zero (0) through CDF_MAX DIMS dimensions are allowed. If
more are needed, contact CDF User Support. [Error]

The number of elements of the data type is illegal. The number of
elements must be at least one (1). For variables with a non-
character data type, the number of elements must always be one
(1). [Error]

Illegal number of variables in a record access operation. [Error]

Illegal read-only mode specified. The CDF read-only modes are
defined in CDFConstants class for VB applications. [Error]

Illegal record count specified. A record count must be at least one
(1). [Error]

Illegal record interval specified. A record interval must be at least
one (1). [Error]

Record number is out of range. Record numbers must be at least
zero (0) for C applications and at least one (1) for Fortran
applications. Note that a valid value must be specified regardless
of the record variance. [Error]

Unknown attribute scope specified. The attribute scopes are
defined in CDFConstants class for VB applications. [Error]

An illegal scratch directory was specified. The scratch directory
must be writeable and accessible (if a relative path was specified)
from the directory in which the application has been executed.
[Error]

An illegal sparse arrays parameter was specified. [Error]

241

BAD VAR NAME

BAD VAR NUM

BAD zMODE

CANNOT ALLOCATE RECORDS

CANNOT CHANGE

CANNOT_COMPRESS

CANNOT _SPARSEARRAYS

Illegal variable name specified. Variable names must contain at
least one character and each character must be printable. [Error]

Illegal variable number specified. Variable numbers must be zero
(0) or greater for VB applications. [Error]

Illegal zMode specified. The CDF zModes are defined in
CDFConstants class for VB applications. [Error]

Records cannot be allocated for the given type of variable (e.g., a
compressed variable). [Error]

Because of dependencies on the value, it cannot be changed. Some
possible causes of this error follow:

1. Changing a CDF's data encoding after a variable value
(including a pad value) or an attribute entry has been
written.

2. Changing a CDF's format after a variable has been created
or if a compressed single-file CDF.

w

. Changing a CDF's variable majority after a variable value
(excluding a pad value) has been written.

4. Changing a variable's data specification after a value
(including the pad value) has been written to that variable
or after records have been allocated for that variable.

5. Changing a variable's record variance after a value
(excluding the pad value) has been written to that variable
or after records have been allocated for that variable.

6. Changing a variable's dimension variances after a value
(excluding the pad value) has been written to that variable
or after records have been allocated for that variable.

7. Writing “initial” records to a variable after a value
(excluding the pad value) has already been written to that
variable.

8. Changing a variable's blocking factor when a compressed
variable and a value (excluding the pad value) has been
written or when a variable with sparse records and a value
has been accessed.

9. Changing an attribute entry's data specification where the
new specification is not equivalent to the old specification.

The CDF or variable cannot be compressed. For CDFs, this occurs
if the CDF has the multi-file format. For variables, this occurs if
the variable is in a multi-file CDF, values have been written to the
variable, or if sparse arrays have already been specified for the
variable. [Error]

Sparse arrays cannot be specified for the variable. This occurs if
the variable is in a multi-file CDF, values have been written to the

242

CANNOT _SPARSERECORDS

CDF_CLOSE _ERROR

CDF_CREATE ERROR

CDF _DELETE ERROR

CDF_EXISTS

CDF_INTERNAL ERROR

CDF_NAME_TRUNC

CDF_OK

CDF OPEN_ERROR

CDF_READ ERROR

CDF_WRITE_ERROR

CHECKSUM_ERROR

CHECKSUM NOT_ALLOWED

COMPRESSION_ERROR

CORRUPTED_V2_CDF

DECOMPRESSION_ERROR

variable, records have been allocated for the variable, or if
compression has already been specified for the variable. [Error]

Sparse records cannot be specified for the variable. This occurs if
the variable is in a multi-file CDF, values have been written to the
variable, or records have been allocated for the variable. [Error]

Error detected while trying to close CDF. Check that sufficient
disk space exists for the dotCDF file and that it has not been
corrupted. [Error]

Cannot create the CDF specified - error from file system. Make
sure that sufficient privilege exists to create the dotCDF file in the
disk/directory location specified and that an open file quota has not
already been reached. [Error]

Cannot delete the CDF specified - error from file system.
Insufficient privileges exist the delete the CDF file(s). [Error]

The CDF named already exists - cannot create it. The CDF library
will not overwrite an existing CDF. [Error]

An unexpected condition has occurred in the CDF library. Report
this error to CDFsupport. [Error]

CDF file name truncated to CDF PATHNAME LEN characters.
The CDF was created but with a truncated name. [Warning]

Function completed successfully.

Cannot open the CDF specified - error from file system. Check
that the dotCDF file is not corrupted and that sufficient privilege
exists to open it. Also check that an open file quota has not already
been reached. [Error]

Failed to read the CDF file - error from file system. Check that the
dotCDF file is not corrupted. [Error]

Failed to write the CDF file - error from file system. Check that
the dotCDF file is not corrupted. [Error]

The data integrity verification through the checksum failed.
[Error]

The checksum is not allowed for old versioned files. [Error]

An error occurred while compressing a CDF or block of variable
records. This is an internal error in the CDF library. Contact CDF
User Support. [Error]

This Version 2 CDF is corrupted. An error has been detected in
the CDF's control information. If the CDF file(s) are known to be
valid, please contact CDF User Support. [Error]

An error occurred while decompressing a CDF or block of variable
records. The most likely cause is a corrupted dotCDF file. [Error]

243

DID NOT COMPRESS

EMPTY COMPRESSED CDF

END_OF VAR

FORCED PARAMETER

IBM_PC_OVERFLOW

ILLEGAL EPOCH VALUE

ILLEGAL FOR SCOPE

ILLEGAL IN zMODE

ILLEGAL ON_V1 CDF

MULTI_FILE FORMAT

NA_FOR_VARIABLE

NEGATIVE FP ZERO

NO ATTR SELECTED

NO_CDF_SELECTED

NO DELETE_ACCESS

NO_ENTRY_SELECTED

For a compressed variable, a block of records did not compress to
smaller than their uncompressed size. They have been stored
uncompressed. This can result If the blocking factor is set too
low or if the characteristics of the data are such that the
compression algorithm chosen is unsuitable. [Informational]

The compressed CDF being opened is empty. This will result if a
program, which was creating/modifying, the CDF abnormally
terminated. [Error]

The sequential access current value is at the end of the variable.
Reading beyond the end of the last physical value for a variable is
not allowed (when performing sequential access). [Error]

A specified parameter was forced to an acceptable value (rather
than an error being returned). [Warning]

An operation involving a buffer greater than 64k bytes in size has
been specified for PCs running 16-bit DOS/Windows 3.*. [Error]

Illegal component is detected in computing an epoch value or an
illegal epoch value is provided in decomposing an epoch value.
[Error]

The operation is illegal for the attribute's scope. For example, only
gEntries may be written for gAttributes - not rEntries or zEntries.
[Error]

The attempted operation is illegal while in zMode. Most
operations involving rVariables or rEntries will be illegal. [Error]

The specified operation (i.e., opening) is not allowed on Version 1
CDFs. [Error]

The specified operation is not applicable to CDFs with the multi-
file format. For example, it does not make sense to inquire
indexing statistics for a variable in a multi-file CDF (indexing is
only used in single-file CDFs). [Informational]

The attempted operation is not applicable to the given variable.
[Warning]

One or more of the values read/written are -0.0 (An illegal value
on VAXes and DEC Alphas running OpenVMS). [Warning]

An attribute has not yet been selected. First select the attribute on
which to perform the operation. [Error]

A CDF has not yet been selected. First select the CDF on which
to perform the operation. [Error]

Deleting is not allowed (read-only access). Make sure that delete
access is allowed on the CDF file(s). [Error]

An attribute entry has not yet been selected. First select the entry
number on which to perform the operation. [Error]

244

NO_MORE_ACCESS

NO_PADVALUE_SPECIFIED

NO_STATUS SELECTED

NO_SUCH_ATTR

NO_SUCH_CDF

NO_SUCH_ENTRY
NO_SUCH_RECORD

NO_SUCH_VAR

NO_VAR_SELECTED

NO_VARS_IN_CDF

NO_WRITE_ACCESS

NOT_A_CDF

NOT_A_CDF_OR_NOT SUPPORTED

PRECEEDING RECORDS ALLOCATED

READ ONLY DISTRIBUTION

READ _ONLY MODE

Further access to the CDF is not allowed because of a severe error.
If the CDF was being modified, an attempt was made to save the
changes made prior to the severe error. in any event, the CDF
should still be closed. [Error]

A pad value has not yet been specified. The default pad value is
currently being used for the variable. The default pad value was
returned. [Informational]

A CDF status code has not yet been selected. First select the status
code on which to perform the operation. [Error]

The named attribute was not found. Note that attribute names are
case-sensitive. [Error]

The specified CDF does not exist. Check that the file name
specified is correct. [Error]

No such entry for specified attribute. [Error]
The specified record does not exist for the given variable. [Error]

The named variable was not found. Note that variable names are
case-sensitive. [Error]

A variable has not yet been selected. First select the variable on
which to perform the operation. [Error]

This CDF contains no rVariables. The operation performed is not
applicable to a CDF with no rVariables. [Informational]

Write access is not allowed on the CDF file(s). Make sure that the
CDF file(s) have the proper file system privileges and ownership.
[Error]

Named CDF is corrupted or not actually a CDF. Contact CDF
User Support if you are sure that the specified file is a CDF that
should be readable by the CDF distribution being used. [Error]

This can occur if an older CDF distribution is being used to read a
CDF created by a more recent CDF distribution. Contact CDF
User Support if you are sure that the specified file is a CDF that
should be readable by the CDF distribution being used. CDF is
backward compatible but not forward compatible. [Error]

Because of the type of variable, records preceding the range of
records being allocated were automatically allocated as well.
[Informational]

Your CDF distribution has been built to allow only read access to
CDFs. Check with your system manager if you require write

access. [Error]

The CDF is in read-only mode - modifications are not allowed.
[Error]

245

SCRATCH_CREATE_ERROR

SCRATCH_DELETE_ERROR
SCRATCH_READ ERROR
SCRATCH_WRITE_ERROR

SINGLE_FILE_FORMAT

SOME ALREADY ALLOCATED

TOO_MANY_PARMS

TOO MANY_VARS

UNKNOWN_COMPRESSION

UNKNOWN_SPARSENESS

UNSUPPORTED OPERATION
VAR _ALREADY_ CLOSED

VAR CLOSE ERROR

VAR_CREATE_ERROR

VAR DELETE ERROR

VAR_EXISTS

VAR _NAME_TRUNC

Cannot create a scratch file - error from file system. If a scratch
directory has been specified, ensure that it is writeable. [Error]

Cannot delete a scratch file - error from file system. [Error]
Cannot read from a scratch file - error from file system. [Error]
Cannot write to a scratch file - error from file system. [Error]

The specified operation is not applicable to CDFs with the single-
file format. For example, it does not make sense to close a variable
in a single-file CDF. [Informational]

Some of the records being allocated were already allocated.
[Informational]

A type of sparse arrays or compression was encountered having
too many parameters. This could be causes by a corrupted CDF or
if the CDF was created/modified by a CDF distribution more
recent than the one being used. [Error]

A multi-file CDF on a PC may contain only a limited number of
variables because of the 8.3 file naming convention of MS-DOS.
This consists of 100 rVariables and 100 zVariables. [Error]

An unknown type of compression was specified or encountered.
[Error]

An unknown type of sparseness was specified or encountered.
[Error]

The attempted operation is not supported at this time. [Error]
The specified variable is already closed. [Informational]

Error detected while trying to close variable file. Check that
sufficient disk space exists for the variable file and that it has not
been corrupted. [Error]

An error occurred while creating a variable file in a multi-file CDF.
Check that a file quota has not been reached. [Error]

An error occurred while deleting a variable file in a multi-file CDF.
Check that sufficient privilege exist to delete the CDF files.
[Error]

Named variable already exists - cannot create or rename. Each
variable in a CDF must have a unique name (rVariables and
zVariables can not share names). Note that the CDF library when
comparing variable names ignores trailing blanks. [Error]

Variable name truncated to CDF VAR NAME LEN256

characters. The variable was created but with a truncated name.
[Warning]

246

VAR OPEN ERROR

VAR _READ_ERROR

VAR _WRITE_ERROR

VIRTUAL_RECORD_DATA

An error occurred while opening variable file. Check that
sufficient privilege exists to open the variable file. Also make sure
that the associated variable file exists. [Error]

Failed to read variable as requested - error from file system. Check
that the associated file is not corrupted. [Error]

Failed to write variable as requested - error from file system.
Check that the associated file is not corrupted. [Error]

One or more of the records are virtual (never actually written to
the CDF). Virtual records do not physically exist in the CDF file(s)
but are part of the conceptual view of the data provided by the CDF
library. Virtual records are described in the Concepts chapter in
the CDF User's Guide. [Informational

247

Appendix B

B.1 VB-CDF APIs

The APIs that have the TYPE symbol use a general form for dealing with data, either variable value(s) or attribute entry,
in various data type for input and output. TYPE can be specified either in VB basic value or string type (scalar or array)
for writing out and reading from a CDF. The VB base Object class can also be used to represent a data object reading
from a CDF, which will be a scalar or array of value or string type

integer CDFattrCreate (id, attrName, attrScope, attrNum)

id as long ‘in
attrName as string “in
attrScope as integer ‘in
attrNum as integer ‘ out
integer CDFattrEntrylnquire (id, attrNum, entryNum, dataType, numElements)

id as long “in
attrNum as integer ‘in
entryNum as integer “in
dataType as integer ‘ out
numElements as integer ‘ out
integer CDFattrGet (id, attrNum, entryNum, value)

id as long “in
attrNum as integer ‘in
entryNum as integer ‘in
value as TYPE ‘out
integer CDFattrInquire (id, attrNum, attrName, attrScope, maxEntry)

id as long ‘in
attrNum as integer “in
attrName as string ‘ out
attrScope as integer ‘ out
maxEntry as integer ‘ out
integer CDFattrNum (id, attrName)

id as long ‘in
attrName as string ‘in
integer CDFattrPut (id, attrNum, entryNum, dataType, numElements, value)

id as long “in
attrNum as integer ‘in
entryNum as integer “in
dataType as integer ‘“in
numElements as integer ‘in
value as TYPE “in
integer CDFattrRename (id, attrNum, attrName)

id as long ‘in
attrNum as integer ‘in
attrName as string ‘“in

integer CDFclose (id)

249

id as long in

integer CDFcloseCDF (id)
id as long in

integer CDFcloserVar (id, varNum)
id as long in
varNum as integer in

integer CDFclosezVar (id, varNum)
id as long in
varNum as integer in

integer CDFconfirmAttrExistence (id, attrName)
id as long in

attrName as string in

integer CDFconfirmgEntryExistence (id, attrNum, entryNum)

id as long ‘in
attrNum as integer ‘“in
entryNum as integer ‘in

integer CDFconfirmrEntryExistence (id, attrNum, entryNum)

id as long ‘in
attrNum as integer ‘“in
entryNum as integer ‘in

integer CDFconfirmrVarExistence (id, varNum)
id as long in
varNum as integer in

integer CDFconfirmrVarPadValueExistence (id, varNum)
id as long in

varNum as integer in

integer CDFconfirmzEntryExistence (id, attrNum, entryNum)

id as long ‘“in
attrNum as integer ‘in
entryNum as integer ‘in

integer CDFconfirmzVarExistence (id, varNum)
id as long in
varNum as integer in

integer CDFconfirmzVarPadValueExistence (id, varNum)
id as long in

varNum as integer in

integer CDFcreate (CDFname, numDims, dimSizes, encoding, majority, id)

CDFname as strin, “in
g
numDims as integer ‘in
dimSizes as integer ‘in
g
encoding as integer “in
majority as integer ‘in
id as long ‘ out

250

integer CDFcreateAttr (id, attrName, scope, attrNum)

id as long ‘in
attrName as string ‘in
scope as integer ‘in
attrNum as integer ‘ out
integer CDFcreateCDF (CDFname, id)

CDFname as string “in
id as long ‘ out
integer CDFcreaterVar (id, varName, dataType, numElements, recVary, dimVarys, varNum)

id as long “in
varName as string ‘“in
dataType as integer ‘in
numElements as integer ‘in
recVary as integer ‘in
dimVarys as integer() “in
varNum as integer ‘ out

integer CDFcreatezVar (id, varName, dataType, numElements, numDims, dimSizes, recVary, dimVarys, varNum)

id as long ‘in
varName as string ‘in
dataType as integer ‘in
numElements as integer “in
numDims as integer “in
dimSizes as integer() “in
recVary as integer ‘in
dimVarys as integer() ‘in
varNum as integer ‘ out
integer CDFdelete (id)

id as long “in
integer CDFdeleteAttr (id, attrNum)

id as long ‘in
attrNum as integer “in
integer CDFdeleteAttrgEntry (id, attrNum, entryNum)

id as long “in
attrNum as integer ‘in
entryNum as integer “in
integer CDFdeleteAttrrEntry (id, attrNum, entryNum)

id as long “in
attrNum as integer ‘in
entryNum as integer ‘in
integer CDFdeleteAttrzEntry (id, attrNum, entryNum)

id as long “in
attrNum as integer ‘in
entryNum as integer ‘in
integer CDFdeleteCDF (id)

id as long ‘in

integer CDFdeleterVar (id, varNum)

251

id as long
varNum as integer

integer CDFdeleterVarRecords (id, varNum, startRec, endRec)
id as long

varNum as integer

startRec as integer

endRec as integer

integer CDFdeleterVarRecordsRenumber (id, varNum, startRec, endRec)
id as long

varNum as integer

startRec as integer

endRec as integer

integer CDFdeletezVar (id, varNum)
id as long
varNum as integer

integer CDFdeletezVarRecords (id, varNum, startRec, endRec)
id as long

varNum as integer

startRec as integer

endRec as integer

integer CDFdeletezVarRecordsRenumber (id, varNum, startRec, endRec)
id as long

varNum as integer

startRec as integer

endRec as integer

integer CDFdoc (id, version, release, text)
id as long

version as integer

release as integer

text as string

integer CDFerror (status, message)
status as integer
message as string

integer CDFgetAttrgEntry (id, attrNum, entryNum, value)
id as long

attrNum as integer

entryNum as integer

value as TYPE

integer CDFgetAttrgEntryDataType (id, attrNum, entryNum, dataType)
id as long

attrNum as integer

entryNum as integer

dataType as integer

integer CDFgetAttrgEntryNumElements (id, attrNum, entryNum, numElems)

id as long
attrNum as integer

252

in
in

in
in
in
in

n
in
in
in

in
n

in
in
in
in

in
in
in
in

in

out
out
out

in
out

in
in
in
out

in
in
in
out

in
in

entryNum as integer
numElems as integer

integer CDFgetAttrMaxgEntry (id, attrNum, entryNum)
id as long

attrNum as integer

entryNum as integer

integer CDFgetAttrMaxrEntry (id, attrNum, entryNum)
id as long

attrNum as integer

entryNum as integer

integer CDFgetAttrMaxzEntry (id, attrNum, entryNum)
id as long

attrNum as integer

entryNum as integer

integer CDFgetAttrName (id, attrNum, attrName)
id as long

attrNum as integer

attrName as string

integer CDFgetAttrNum (id, attrName)
id as long
attrName as string

integer CDFgetAttrrEntry (id, attrNum, entryNum, value)
id as long

attrNum as integer

entryNum as integer

value as TYPE

integer CDFgetAttrrEntryDataType (id, attrNum, entryNum, dataType)
id as long

attrNum as integer

entryNum as integer

dataType as integer

integer CDFgetAttrrEntryNumElements (id, attrNum, entryNum, numElems)
id as long

attrNum as integer

entryNum as integer

numElems as integer

integer CDFgetAttrScope (id, attrNum, scope)
id as long

attrNum as integer

scope as integer

integer CDFgetAttrzEntry (id, attrNum, entryNum, value)
id as long

attrNum as integer

entryNum as integer

value as TYPE

253

in
out

in
in
out

in
n
out

in
in
out

in
in
out

in
in

in
in
in
out

n
in
in
out

in
in
in
out

in
in
out

in
in
in
out

integer CDFgetAttrzEntryDataType (id, attrNum, entryNum, dataType)

id as long ‘in
attrNum as integer ‘in
entryNum as integer ‘in
dataType as integer ‘ out
integer CDFgetAttrzEntryNumElements (id, attrNum, entryNum, numElems)

id as long “in
attrNum as integer ‘in
entryNum as integer ‘in
numElems as integer ‘ out

integer CDFgetCacheSize (id, numBuffers)
id as long in
numBuffers as integer out

integer CDFgetChecksum (id, checksum)
id as long in
checksum as integer out

integer CDFgetCompression (id, compType, compParms, compPercent)
id as long in

compType as integer ‘ out
compParms as integer ‘ out
compPercent as integer ‘ out

integer CDFgetCompressionCacheSize (id, numBuffers)
id as long in
numBuffers as integer out

integer CDFgetCompressionInfo (cdfName, compType, compParms, compSize, uncompSize)
cdfName as string in

compType as integer ‘¢ out
compParms as integer() ‘ out
compSize as long ‘ out
uncompSize as long ‘ out

integer CDFgetCopyright (id, copyright)
id as long in
copyright as string out

integer CDFgetDataTypeSize (dataType, numBytes)

dataType as integer in
numBytes as integer out
integer CDFgetDecoding (id, decoding)

id as long in
decoding as integer out
integer CDFgetEncoding (id, encoding)

id as long in
encoding as integer out

integer CDFgetFileBackward ()

integer CDFgetFormat (id, format)

254

id as long in

format as integer out
integer CDFgetLibraryCopyright (copyright)

copyright as string ‘ out
integer CDFgetLibraryVersion (version, release, increment, sublncrement)

version as integer ‘ out
release as integer ‘ out
increment as integer ‘ out
subIncrement as string ‘ out

integer CDFgetLeapSecondLastUpdated (id, lastUpdated)
id as long in
lastUpdate as integer out

integer CDFgetMajority (id, majority)
id as long in
majority as integer out

integer CDFgetMaxWrittenRecNums (id, maxRecrVars, maxReczVars)

id as long in
maxRecrVars as integer out
maxReczVars as integer out

integer CDFgetName (id, name)
id as long in
name as string out

integer CDFgetNegtoPosfpOMode (id, negtoPosfp0)
id as long in

negtoPosfp0 as integer ‘out
integer CDFgetNumAttrgEntries (id, attrNum, entries)

id as long ‘in
attrNum as integer “in
entries as integer ‘ out

integer CDFgetNumAttributes (id, numAttrs)
id as long in

numAttrs as integer ‘ out
integer CDFgetNumAttrrEntries (id, attrNum, entries)

id as long “in
attrNum as integer ‘in
entries as integer ‘ out
integer CDFgetNumAttrzEntries (id, attrNum, entries)

id as long “in
attrNum as integer ‘in
entries as integer ‘ out

integer CDFgetNumgA(ttributes (id, numAttrs)
id as long in
numAttrs as integer out

255

integer CDFgetNumrVars (id, numVars)
id as long in
numrVars as integer out

integer CDFgetNumvAttributes (id, numAttrs)
id as long in
numALttrs as integer out

integer CDFgetNumzVars (id, numVars)
id as long in
numzVars as integer out

integer CDFgetReadOnlyMode (id, mode)
id as long in

mode as integer ‘ out
integer CDFgetrVarAllocRecords (id, varNum, allocRecs)

id as long ‘in
varNum as integer ‘in
allocRecs as integer ‘ out
integer CDFgetrVarBlockingFactor (id, varNum, bf)

id as long ‘in
varNum as integer “in
bf as integer ‘ out
integer CDFgetrVarCacheSize (id, varNum, numBuffers)

id as long ‘in
varNum as integer “in
numBuffers as integer ‘ out
integer CDFgetrVarCompression (id, varNum, cType, cParms, cPercent)

id as long ‘in
varNum as integer ‘in
compType as integer ‘ out
cParms as integer() ‘ out
cPercent as integer ‘out
integer CDFgetrVarData (id, varNum, recNum, indices, value)

id as long ‘in
varNum as integer “in
recNum as integer ‘in
indices as integer() “in
value as TYPE ‘ out
integer CDFgetrVarDataType (id, varNum, dataType)

id as long ‘in
varNum as integer “in
dataType as integer ‘ out
integer CDFgetrVarsDimSizes (id, varNum, dimSizes)

id as long ‘in
varNum as integer “in
dimSizes as integer() < out

integer CDFgetrVarDimVariances (id, varNum, dimVarys)

256

id as long
varNum as integer
dimVarys as integer()

integer CDFgetrVarInfo (id, varNum, dataType, numElems, numDims, dimSizes)

id as long

varNum as integer
dataType as integer
numElems as integer
numDims as integer
dimSizes as integer()

integer CDFgetrVarMaxAllocRecNum (id, varNum, maxRec)
id as long

varNum as integer

maxRec as integer

integer CDFgetrVarMaxWrittenRecNum (id, varNum, maxRec)
id as long

varNum as integer

maxRec as integer

integer CDFgetrVarName (id, varNum, varName)
id as long

varNum as integer

varName as string

integer CDFgetrVarsNumDims (id, varNum, numDims)
id as long

varNum as integer

numDims as integer

integer CDFgetrVarNumElements (id, varNum, numElems)
id as long

varNum as integer

numElems as integer

integer CDFgetrVarNumRecsWritten (id, varNum, numRecs)
id as long

varNum as integer

numRecs as integer

integer CDFgetrVarPadValue (id, varNum, padValue)
id as long

varNum as integer

padValue as TYPE

integer CDFgetrVarRecordData (id, varNum, recNum, buffer)
id as long

varNum as integer

recNum as integer

buffer as TYPE

integer CDFgetrVarRecVariance (id, varNum, recVary)

id as long
varNum as integer

257

in
in
out

in
in
out
out
out
out

in
in
out

in
in
out

in
in
out

in
n
out

in
n
out

in
in
out

in
in
out

in
in
in
out

in
in

recVary as integer ‘ out
integer CDFgetrVarReservePercent (id, varNum, percent)

id as long ‘in
varNum as integer “in
percent as integer ‘ out

integer CDFgetrVarsDimSizes (id, dimSizes)
id as long in

dimSizes as integer() ‘ out
integer CDFgetrVarSeqData (id, varNum, value)

id as long “in
varNum as integer ‘in
value as TYPE ‘out
integer CDFgetrVarSeqPos (id, varNum, recNum, indices)

id as long ‘in
varNum as integer ‘in
recNum as integer ‘ out
indices as integer() < out

integer CDFgetrVarsMaxWrittenRecNum (id, recNum)
id as long in
recNum as integer out

integer CDFgetrVarsNumDims (id, numDims)
id as long in

numDims as integer ‘ out
integer CDFgetrVarSparseRecords (id, varNum, sRecords)

id as long “in
varNum as integer ‘in
sRecords as integer ‘ out

integer CDFgetStageCacheSize (id, numBuffers)
id as long in
numBuffers as integer out

integer CDFgetStatusText (status, text)
status as integer in

text as string ‘ out
integer CDFgetValidate ()

integer CDFgetVarNum (id, varName)

id as long ‘in
varName as string ‘in

integer CDFgetVersion (id, version, release, increment)
id as long in

version as integer ‘ out
release as integer ‘ out
increment as integer ‘ out

integer CDFgetzMode (id, zMode)

258

id as long in

zMode as integer ‘ out
integer CDFgetzVarAllocRecords (id, varNum, allocRecs)

id as long “in
varNum as integer ‘in
allocRecs as integer ‘ out
integer CDFgetzVarBlockingFactor (id, varNum, bf)

id as long “in
varNum as integer ‘in
bf as integer ¢ out
integer CDFgetzVarCacheSize (id, varNum, numBuffers)

id as long “in
varNum as integer ‘in
numBuffers as integer ‘ out
integer CDFgetzVarCompression (id, varNum, cType, cParms, cPercent)

id as long “in
varNum as integer ‘in
compType as integer ‘out
cParms as integer() < out
cPercent as integer ¢ out
integer CDFgetzVarData (id, varNum, recNum, indices, value)

id as long “in
varNum as integer ‘in
recNum as integer ‘in
indices as integer() “in
value as TYPE ‘ out
integer CDFgetzVarDataType (id, varNum, dataType)

id as long “in
varNum as integer ‘in
dataType as integer ‘ out
integer CDFgetzVarDimSizes (id, varNum, dimSizes)

id as long “in
varNum as integer ‘in
dimSizes as integer() ¢ out
integer CDFgetzVarDimVariances (id, varNum, dimVarys)

id as long “in
varNum as integer ‘in
dimVarys as integer() ‘ out
integer CDFgetzVarInfo (id, varNum, dataType, numElems, numDims, dimSizes)

id as long “in
varNum as integer ‘in
dataType as integer ‘ out
numElems as integer ‘ out
numDims as integer ‘ out
dimSizes as integer() < out

integer CDFgetzVarMaxAllocRecNum (id, varNum, maxRec)

259

id as long
varNum as integer
maxRec as integer

integer CDFgetzVarMaxWrittenRecNum (id, varNum, maxRec)

id as long
varNum as integer
maxRec as integer

integer CDFgetzVarName (id, varNum, varName)
id as long

varNum as integer

varName as string

integer CDFgetzVarNumDims (id, varNum, numDims)
id as long

varNum as integer

numDims as integer

integer CDFgetzVarNumElements (id, varNum, numElems)
id as long

varNum as integer

numElems as integer

integer CDFgetzVarNumRecsWritten (id, varNum, numRecs)
id as long

varNum as integer

numRecs as integer

integer CDFgetzVarPadValue (id, varNum, padValue)
id as long

varNum as integer

padValue as TYPE

integer CDFgetzVarRecordData (id, varNum, recNum, data)
id as long

varNum as integer

recNum as integer

data as TYPE

integer CDFgetzVarRecVariance (id, varNum, recVary)
id as long

varNum as integer

recVary as integer

integer CDFgetzVarReservePercent (id, varNum, percent)
id as long

varNum as integer

percent as integer

integer CDFgetzVarSeqData (id, varNum, value)
id as long

varNum as integer

value as TYPE

integer CDFgetzVarSeqPos (id, varNum, recNum, indices)

260

in
in
out

in
in
out

n
in
out

in
in
out

in
in
out

in
in
out

in
in
out

in
in
in
out

in
in
out

in
in
out

in
in
out

id as long in
varNum as integer in
recNum as integer out
indices as integer() out

integer CDFgetzVarsMaxWrittenRecNum (id, recNum)
id as long in

recNum as integer ‘ out
integer CDFgetzVarSparseRecords (id, varNum, sRecords)

id as long ‘in
varNum as integer “in
sRecords as integer ‘out

integer CDFhyperGetrVarData (id, varNum, recNum, recCount, reclnterval, indices, counts, intervals, buffer)

id as long ‘in
varNum as integer “in
recNum as integer ‘in
recCount as integer ‘in
recInterval as integer “in
indices as integer() ‘in
counts as integer() ‘in
intervals as integer() “in
buffer as TYPE ‘ out

integer CDFhyperGetzVarData (id, varNum, recNum, recCount, recInterval, indices, counts, intervals, buffer)

id as long “in
varNum as integer ‘in
recNum as integer ‘in
recCount as integer ‘in
recInterval as integer ‘in
indices as integer() “in
counts as integer() ‘in
intervals as integer() ‘in
buffer as TYPE ‘ out

integer CDFhyperPutrVarData (id, varNum, recNum, recCount, recInterval, indices, counts, intervals, buffer)

id as long ‘in
varNum as integer ‘in
recNum as integer ‘in
recCount as integer “in
recInterval as integer ‘in
indices as integer() “in
counts as integer() ‘“in
intervals as integer() ‘in
buffer as TYPE ‘in

integer CDFhyperPutzVarData (id, varNum, recNum, recCount, reclnterval, indices, counts, intervals, data)

id as long “in
varNum as integer ‘in
recNum as integer ‘in
recCount as integer ‘in
recInterval as integer “in
indices as integer() “in
counts as integer() ‘in
intervals as integer() “in

261

data as TYPE ‘in

integer CDFinquire (id, numDims, dimSizes, encoding, majority, maxRec, numVars, numAttrs)

3

id as long in

numDims as integer ‘ out
dimSizes as integer() < out
encoding as integer ‘ out
majority as integer ‘ out
maxRec as integer ‘ out
numVars as integer ‘out
numAttrs as integer ‘ out
integer CDFinquireAttr (id, attrNum, attrName, attrScope, maxgEntry, maxrEntry, maxzEntry)

id as long ‘in
attrNum as integer ‘in
attrName as string ‘ out
attrScope as integer ‘ out
maxgEntry as integer ‘ out
maxrEntry as integer ‘ out
maxzEntry as integer ‘ out
integer CDFinquireAttrgEntry (id, attrNum, entryNum, dataType, numElems)

id as long ‘in
attrNum as integer “in
entryNum as integer “in
dataType as integer ‘ out
numElems as integer ‘ out
integer CDFinquireAttrrEntry (id, attrNum, entryNum, dataType, numElems)

id as long ‘in
attrNum as integer ‘in
entryNum as integer “in
dataType as integer ‘ out
numElems as integer ¢ out
integer CDFinquireAttrzEntry (id, attrNum, entryNum, dataType, numElems)

id as long “in
attrNum as integer ‘in
entryNum as integer ‘in
dataType as integer ‘ out
numElems as integer ‘ out

integer CDFinquireCDF (id, numDims, dimSizes, encoding, majority, maxrRec, numrVars, maxzRec,
numzVars, numAttrs)
id as long in

numDims as integer ‘ out
dimSizes as integer () < out
encoding as integer ‘ out
majority as integer ‘ out
maxrRec as integer ‘ out
numrVars as integer ‘ out
maxzRec as integer ‘ out
numzVars as integer ‘ out
numAttrs as integer ‘ out

integer CDFinquirerVar (id, varNum, varName, dataType, numElems, numDims, dimSizes, recVary, dimVarys)

262

id as long in
varNum as integer in

varName as string ‘out
dataType as integer ‘ out
numElems as integer ‘ out
numDims as integer ‘ out
dimSizes as integer() ‘out
recVary as integer ‘ out
dimVarys as integer() ‘ out

integer CDFinquirezVar (id, varNum, varName, dataType, numElems, numDims, dimSizes, recVary, dimVarys)

id as long ‘in
varNum as integer ‘“in
varName as string ‘ out
dataType as integer ‘ out
numElems as integer ‘ out
numDims as integer ‘ out
dimSizes as integer() < out
recVary as integer ‘ out
dimVarys as integer() ‘ out
integer CDFopen (CDFname, id)

CDFname as string ‘in
id as long ‘ out
integer CDFopenCDF (CDFname, id)

CDFname as string ‘in
id as long ‘ out
integer CDFselectCDF (id)

id as long ‘in
integer CDFputAttrgEntry (id, attrNum, entryNum, value)

id as long “in
attrNum as integer ‘in
entryNum as integer “in
value as string ‘“in
integer CDFputAttrgEntry (id, attrNum, entryNum, dataType, numElems, value)

id as long ‘in
attrNum as integer “in
entryNum as integer ‘in
dataType as integer ‘in
numElems as integer “in
value as TYPE “in
integer CDFputAttrrEntry (id, attrNum, entryNum, value)

id as long “in
attrNum as integer ‘“in
entryNum as integer ‘in
value as string ‘in
integer CDFputAttrrEntry (id, attrNum, entryNum, dataType, numElems, value)

id as long ‘in
attrNum as integer ‘in
entryNum as integer “in

263

dataType as integer in
numElems as integer in
value as TYPE “in

integer CDFputAttrzEntry (id, attrNum, entryNum, value)

id as long ‘in
attrNum as integer ‘in
entryNum as integer “in
value as string ‘in

integer CDFputAttrzEntry (id, attrNum, entryNum, dataType, numElems, value)

id as long ‘in
attrNum as integer ‘“in
entryNum as integer ‘in
dataType as integer ‘in
numElems as integer ‘in
value as TYPE

integer CDFputrVarData (id, varNum, recNum, indices, value)

id as long “in
varNum as integer ‘in
recNum as integer ‘in
indices as integer() “in
value as TYPE ‘in

integer CDFputrVarPadValue (id, varNum, padValue)

id as long “in
varNum as integer ‘in
padValue as TYPE ‘in
integer CDFputrVarRecordData (id, varNum, recNum, values)

id as long “in
varNum as integer ‘in
recNum as integer ‘in
values as TYPE “in

integer CDFputrVarSeqData (id, varNum, value)

id as long ‘in
varNum as integer ‘in
value as TYPE ‘in

integer CDFputzVarData (id, varNum, recNum, indices, value)

id as long ‘in
varNum as integer ‘“in
recNum as integer ‘in
indices as integer() “in
value as TYPE “in

integer CDFputzVarPadValue (id, varNum, padValue)

id as long ‘in
varNum as integer ‘in
padValue as TYPE ‘in
integer CDFputzVarRecordData (id, varNum, recNum, values)

id as long ‘in
varNum as integer ‘“in

264

recNum as integer in
values as TYPE “in

integer CDFputzVarSeqData (id, varNum, value)

id as long “in
varNum as integer ‘in
value as TYPE ‘in

Dictionary(Of string, object) ReadCDF (id)

id as long “in
Dictionary(Of string, object) ReadCDF (id, encoding)

id as long “in
encoding as bool “in

Dictionary(Of string, object) ReadCDF (id, encoding, basic, globals, varall, noentry)

id as long ‘in
encoding as bool ‘in
basic as bool ‘in
globals as bool ‘in
varall as bool “in
noentry as bool ‘in

Dictionary(Of string, object) ReadCDF (id, encoding, basic, globals, varinfo, varmeta, vardata, noentry)

id as long ‘in
encoding as bool “in
basic as bool “in
globals as bool ‘in
varinfo as bool “in
varmeta as bool ‘in
vardata as bool “in
noentry as bool ‘in

Dictionary(Of string, object) ReadCDF (id, encoding, basic, globals, varinfo, varmeta, vardata, noentry, head)

id as long “in
encoding as bool ‘in
basic as bool ‘in
globals as bool “in
varinfo as bool “in
varmeta as bool ‘in
vardata as bool ‘in
noentry as bool “in
head as bool “in

Dictionary(Of string, object) ReadCDFInfo (id)
id as long in

Dictionary(Of string, object) ReadCDFGlobalAttributes (id)
id as long in

Dictionary(Of string, object) ReadCDFGlobalAttributes (id, encoding)
id as long in

encoding as bool in

Dictionary(Of string, object) ReadCDFNoEntryAttributes (id)
id as long in

265

Dictionary(Of string, object) ReadCDF Variable (id, varid)
id as long in
varid as integer in

Dictionary(Of string, object) ReadCDFVariable (id, varid, encoding, basic, varmeta, vardata)

id as long ‘in
varid as integer ‘in
encoding as bool “in
basic as bool “in
varmeta as bool ‘in
vardata as bool ‘in

object ReadCDF VariableData (id, varid)
id as long in
varid as integer in

Dictionary(Of string, object) ReadCDF Variables (id)

id as long ‘in
Dictionary(Of string, object) ReadCDF Variables (id, encoding)

id as long “in
encoding as bool ‘in

Dictionary(Of string, object) ReadCDF VariablesData (id)
id as long in

Dictionary(Of string, object) ReadCDF VariablesData (id, encoding)
id as long in
encoding as bool in

Dictionary(Of string, object) ReadCDF VariablesMetaData (id)
id as long in

Dictionary(Of string, object) ReadCDF VariablesMetaData (id, encoding)
id as long in
encoding as bool in

Dictionary(Of string, object) ReadCDF VariablesSpec (id)
id as long in

Dictionary(Of string, object) ReadCDF VariablesSpec (id, encoding)
id as long in

encoding as bool in

integer CDFrenameAttr (id, attrNum, attrName)

id as long ‘in
attrNum as integer ‘in
attrName as string ‘in

integer CDFrenamerVar (id, varNum, varName)

id as long ‘in
varNum as integer ‘in
varName as string ‘in

integer CDFrenamezVar (id, varNum, varName)
id as long in
varNum as integer in

266

varName as string in

integer CDFselect (id)
id as long in

integer CDFselectCDF (id)
id as long in

integer CDFsetAttrgEntryDataSpec (id, attrNum, entryNum, dataType)

id as long ‘in
attrNum as integer ‘in
entryNum as integer “in
dataType as integer ‘“in

integer CDFsetAttrrEntryDataSpec (id, attrNum, entryNum, dataType)

id as long ‘in
attrNum as integer “in
entryNum as integer ‘in
dataType as integer ‘in

integer CDFsetAttrScope (id, attrNum, scope)

id as long “in
attrNum as integer ‘in
scope as integer ‘in

integer CDFsetAttrzEntryDataSpec (id, attrNum, entryNum, dataType)

id as long “in
attrNum as integer ‘in
entryNum as integer “in
dataType as integer ‘in

integer CDFsetCacheSize (id, numBuffers)
id as long in
numBuffers as integer in

integer CDFsetChecksum (id, checksum)
id as long in

checksum as integer in

integer CDFsetCompression (id, compressionType, compressionParms)

id as long “in
compressionType as integer ‘in
compressionParms as integer() ‘in

integer CDFsetCompressionCacheSize (id, numBuffers)
id as long in
numBuffers as integer in

integer CDFsetDecoding (id, decoding)
id as long in
decoding as integer in

integer CDFsetEncoding (id, encoding)

id as long in
encoding as integer in

267

void CDFsetFileBackward (mode)
mode as integer in

integer CDFsetFormat (id, format)
id as long in
format as integer in

integer CDFsetLeapSecondLastUpdated (id, lastUpdated)
id as long in
lastUpdated as integer in

integer CDFsetMajority (id, majority)
id as long in

majority as integer in

integer CDFsetNegtoPosfpOMode (id, negtoPosfp0)

id as long “in
negtoPosfp0 as integer ‘in
integer CDFsetReadOnlyMode (id, readOnly)

id as long “in
readOnly as integer ‘in

integer CDFsetrVarAllocBlockRecords (id, varNum, firstRec, lastRec)

id as long ‘in
varNum as integer ‘“in
firstRec as integer ‘in
lastRec as integer ‘in

integer CDFsetrVarAllocRecords (id, varNum, numRecs)

id as long ‘in
varNum as integer ‘in
numRecs as integer “in

integer CDFsetrVarBlockingFactor (id, varNum, bf)

id as long ‘in
varNum as integer “in
bf as integer ‘“in

integer CDFsetrVarCacheSize (id, varNum, numBuffers)

id as long ‘in
varNum as integer “in
numBuffers as integer ‘in

integer CDFsetrVarCompression (id, varNum, compressionType, compressionParms)

id as long ‘in
varNum as integer ‘in
compressionType as integer ‘in
compressionParms as integer() ‘in

integer CDFsetrVarDataSpec (id, varNum, dataType)

id as long ‘in
varNum as integer ‘in
dataType as integer “in

integer CDFsetrVarDimVariances (id, varNum, dimVarys)
id as long in

268

varNum as integer
dimVarys as integer()

integer CDFsetrVarlnitialRecs (id, varNum, initialRecs)
id as long

varNum as integer

initialRecs as integer

integer CDFsetrVarRecVariance (id, varNum, recVary)
id as long

varNum as integer

recVary as integer

integer CDFsetrVarReservePercent (id, varNum, reservePercent)
id as long

varNum as integer

reservePercent as integer

integer CDFsetrVarsCacheSize (id, numBuffers)

id as long

numBuffers as integer

integer CDFsetrVarSeqPos (id, varNum, recNum, indices)
id as long

varNum as integer

recNum as integer

indices as integer()

integer CDFsetrVarSparseRecords (id, varNum, sRecords)
id as long

varNum as integer

sRecords as integer

integer CDFsetStageCacheSize (id, numBuffers)
id as long
numBuffers as integer

void CDFsetValidate (mode)
mode as integer

integer CDFsetzMode (id, zMode)
id as long
zMode as integer

integer CDFsetzVarAllocBlockRecords (id, varNum, firstRec, lastRec)
id as long

varNum as integer

firstRec as integer

lastRec as integer

integer CDFsetzVarAllocRecords (id, varNum, numRecs)
id as long

varNum as integer

numRecs as integer

integer CDFsetzVarBlockingFactor (id, varNum, bf)
id as long

269

in
in

in
in
in

in
n
in

in
in
in

in
in

in
in
in
in

in
n
in

in
n

in

in
in

in
in
in
in

in
in
in

in

varNum as integer
bf as integer

integer CDFsetzVarCacheSize (id, varNum, numBuffers)

id as long
varNum as integer
numBuffers as integer

integer CDFsetzVarCompression (id, varNum, compressionType, compressionParms)

id as long

varNum as integer
compressionType as integer
compressionParms as integer()

integer CDFsetzVarDataSpec (id, varNum, dataType)
id as long

varNum as integer

dataType as integer

integer CDFsetzVarDimVariances (id, varNum, dimVarys)

id as long
varNum as integer
dimVarys as integer()

integer CDFsetzVarInitialRecs (id, varNum, initialRecs)

id as long
varNum as integer
initialRecs as integer

integer CDFsetzVarRecVariance (id, varNum, recVary)

id as long
varNum as integer
recVary as integer

integer CDFsetzVarReservePercent (id, varNum, reservePercent)

id as long
varNum as integer
reservePercent as integer

integer CDFsetzVarsCacheSize (id, numBuffers)
id as long
numBuffers as integer

integer CDFsetzVarSeqPos (id, varNum, recNum, indices)

id as long

varNum as integer
recNum as integer
indices as integer()

integer CDFsetzVarSparseRecords (id, varNum, sRecords)

id as long
varNum as integer
sRecords as integer

integer CDFvarClose (id, varNum)
id as long
varNum as integer

270

in
in

in
in
in

in
n
in
in

in
in
n

in
in
in

in
in
in

n
in
in

n
in
in

in
in

in
in
in
in

in
in
in

in
in

integer CDFvarCreate (id, varName, dataType, numElements, recVariance, dimVariances, varNum)

id as long “in
varName as string ‘in
dataType as integer “in
numElements as integer ‘in
recVariance as integer ‘in
dimVariances as integer() “in
varNum as integer ‘ out
integer CDFvarGet (id, varNum, recNum, indices, value)

id as long “in
varNum as integer ‘“in
recNum as integer ‘in
indices as integer() “in
value as TYPE ‘ out

integer CDFvarHyperGet (id, varNum, recStart, recCount, recInterval, indices, counts, intervals, buffer)

id as long ‘in
varNum as integer ‘“in
recStart as integer ‘in
recCount as integer ‘in
recInterval as integer ‘in
indices as integer() “in
counts as integer() ‘“in
intervals as integer() ‘in
buffer as TYPE ‘ out

integer CDFvarHyperPut (id, varNum, recStart, recCount, recInterval, indices, counts, intervals, buffer)

id as long ‘in
varNum as integer ‘in
recStart as integer ‘“in
recCount as integer ‘in
recInterval as integer ‘in
indices as integer() “in
counts as integer() “in
intervals as integer() “in
buffer as TYPE ‘in

integer CDFvarlnquire (id, varNum, varName, dataType, numElements, recVariance, dimVariances)

id as long ‘in
varNum as integer ‘in
varName as string ‘ out
dataType as integer ‘ out
numElements as integer ‘ out
recVariance as integer ‘ out
dimVariances as integer() < out
integer CDFvarNum (id, varName)

id as long ‘in
varName as string ‘in
integer CDFvarPut (id, varNum, recNum, indices, value)

id as long ‘in
varNum as integer ‘in
recNum as integer ‘“in

271

indices as integer()
value as TYPE

integer CDFvarRename (id, varNum, varName)
id as long

varNum as integer

varName as string

272

in
in

in
in
in

B.2 EPOCH Utility Methods

double computeEPOCH (year, month, day, hour, minute, second, msec)

year as integer ‘in
month as integer ‘in
day as integer ‘in
hour as integer ‘in
minute as integer “in
second as integer ‘in
msec as integer ‘in

void EPOCHbreakdown (epoch, year, month, day, hour, minute, second, msec)
epoch as double in

year as integer ¢ out
month as integer ‘¢ out
day as integer ¢ out
hour as integer ¢ out
minute as integer ¢ out
second as integer ¢ out
msec as integer ¢ out
string toEncodeEPOCH (epoch)

epoch as double “in
string toEncodeEPOCH (epoch, style)

epoch as double ‘in
style as integer “in
string() toEncodeEPOCH (epoch)

epoch as double() “in
string() toEncodeEPOCH (epoch, style)

epoch as double() ‘in
style as integer “in

void encodeEPOCH (epoch, epString)
epoch as double in
epString as string out

void encodeEPOCH1 (epoch, epString)
epoch as double in
epString as string out

void encodeEPOCH2 (epoch, epString)
epoch as double in
epString as string out

void encodeEPOCH3 (epoch, epString)
epoch as double in
epString as string out

void encodeEPOCH4 (epoch, epString)

epoch as double in
epString as string out

273

void encodeEPOCHx (epoch, format, epString)
epoch as double

format as string

epString as string

double toParseEPOCH (epString)
epString as string

double() toParseEPOCH (epString)
epString as string()

double parseEPOCH (epString)
epString as string

double parseEPOCHI1 (epString)
epString as string

double parseEPOCH2 (epString)
epString as string

double parseEPOCH3 (epString)
epString as string

double parseEPOCH4 (epString)
epString as string

in
in
out

in

in

in

in

in

in

¢

m

double computeEPOCH16 (year, month, day, hour, minute, second, msec, microsec, nanosec, picosec)

3

year as integer
month as integer
day as integer
hour as integer
minute as integer
second as integer
msec as integer
microsec as integer
nanosec as integer
picosec as integer
epoch as double()

3

void EPOCHI16breakdown (epoch, year, month, day, hour, minute, second, msec, microsec, nanosec, picosec)

3

epoch as double()
year as integer
month as integer
day as integer
hour as integer
minute as integer
second as integer
msec as integer
microsec as integer
nanosec as integer
picosec as integer

string toEncodeEPOCH16 (epoch)
epoch as double()

string toEncodeEPOCH16 (epoch, style)

274

m

¢

m

¢

m

¢

m

¢

m

¢

m

¢

m

¢

m

¢

m

¢

n
out

n
out
out
out
out
out
out
out
out
out
out

in

epoch as double()
style as integer

void encodeEPOCH16 (epoch, epString)
epoch as double()
epString as string

void encodeEPOCH16 1 (epoch, epString)
epoch as double()
epString as string

void encodeEPOCH16 2 (epoch, epString)
epoch as double()
epString as string

void encodeEPOCH16 3 (epoch, epString)
epoch as double()
epString as string

void encodeEPOCH16 4 (epoch, epString)
epoch as double()
epString as string

void encodeEPOCH16 x (epoch, format, epString)
epoch as double()

format as string

epString as string

double() toParseEPOCH16 (epString)
epString as string

double parseEPOCH16 (epString, epoch)
epString as string
epoch as double()

double parseEPOCHI16 1 (epString)
epString as string
epoch as double()

double parseEPOCH16 2 (epString)
epString as string
epoch as double()

double parseEPOCH16 3 (epString)
epString as string
epoch as double()

double parseEPOCH16 4 (epString)
epString as string
epoch as double()

long computeTT2000 (year, month, day)
year as double

month as double

day as double

275

in
in

in
out

in
out

in
out

in
out

in
out

in
in
out

in

in
out

in
out

n
out

in
out

in
out

n
in
in

long computeTT2000 (year, month, day, hour)
year as double

month as double

day as double

hour as double

long computeTT2000 (year, month, day, hour, minute)
year as double

month as double

day as double

hour as double

minute as double

long computeTT2000 (year, month, day, hour, minute, second)

year as double
month as double
day as double
hour as double
minute as double
second as double

long computeTT2000 (year, month, day, hour, minute, second, msec)

year as double
month as double
day as double
hour as double
minute as double
second as double
msec as double

long computeTT2000 (year, month, day, hour, minute, second, msec, usec)

year as double
month as double
day as double
hour as double
minute as double
second as double
msec as double
usec as double

long computeTT2000 (year, month, day, hour, minute, second, msec, usec, nsec)

year as double
month as double
day as double
hour as double
minute as double
second as double
msec as double
usec as double
nsec as double

void TT2000breakdown (epoch, year, month, day, hour, minute, second, msec, usec, nsec)

epoch as long
year as double
month as double
day as double

276

in
in
in
in

in
in
in
in
in

in
in
in
in
in
in

in
in
in
in
in
in
in

in
in
in
in
in
in
in
in

in
in
in
in
in
in
in
in
in

in

out
out
out

hour as double ¢ out
minute as double ¢ out
second as double ¢ out
msec as double ¢ out
usec as double ¢ out
nsec as double ¢ out
string toEncodeTT2000 (epoch)

epoch as long “in
string toEncodeTT2000 (epoch, style)

epoch as long “in
style as integer ‘in
string() toEncodeTT2000 (epoch)

epoch as long() “in
string() toEncodeTT2000 (epoch, style)

epoch as long() “in
style as integer ‘in
void encodeTT2000 (epoch, epString, style)

epoch as long ‘in
epString as string ‘¢ out
style as string ‘in
long toParseTT2000 (epString)

epString as string ‘in
long() toParseTT2000 (epString)

epString as string() ‘in
long parseTT2000 (epString)

epString as string ‘in
void CDFgetLastDateinLeapSecondsTable (year, month, day)

year as integer ‘out
month as integer ‘ out
day as integer ‘ out
double EPOCHtoUnixTime (epoch)

epoch as double “in
double() EPOCHtoUnixTime (epoch)

epoch as double() “in
double UnixTimetoEPOCH (unixTime)

unixTime as double ‘in
double() UnixTimetoEPOCH (unixTime)

unixTime as double() ‘in
double EPOCHI16toUnixTime (epoch)

epoch as double() “in

double() UnixTimetoEPOCH16 (unixTime)

277

unixTime as double ‘1in

double TT2000toUnixTime (epoch)
epoch as long ‘in

double() TT2000toUnixTime (epoch)
epoch as long() ‘in

long UnixTimetoTT2000 (unixTime)
unixTime as double ‘in

long() UnixTimetoTT2000 (unixTime)
unixTime as double() “in

278

B.3 CDF Utility Methods

boolean CDFFileExists (fileName)
filename as string

integer CDFgetChecksumValue(checksum)
fileName as string

integer CDFgetCompressionTypeValue(compressionType)
compressionType as string

integer CDFgetDataTypeValue(dataType)
dataType as string

integer CDFgetDecodingValue(decoding)
decoding as string

integer CDFgetEncodingValue(encoding)
encoding as string

integer CDFgetFormatValue(format)
format as string

integer CDFgetMajority Value(majority)
majority as string

integer CDFgetSparseRecordValue(sparseRecord)
sparseRecord as string

string CDFgetStringChecksum(checksum)
checksum as integer

string CDFgetStringCompressionType(compressionType)
compressionType as integer

string CDFgetStringDataType(dataType)
dataType as integer

string CDFgetStringDecoding(decoding)
decoding as integer

string CDFgetStringEncoding(encoding)
encoding as integer

string CDFgetStringFormat(format)
format as integer

string CDFgetStringMajority(majority)
majority as integer

string CDFgetStringSparseRecord(sparseRecord)
sparseRecord as integer

279

in

in

in

in

in

in

n

in

in

in

n

in

in

in

n

in

in

B.4 CDF Exception Methods

integer CDFgetCurrentStatus ()

string CDFgetStatusMsg(status)
status as integer

280

Index

ALPHAOSFI_DECODING
ALPHAOSF1_ENCODING
ALPHAVMSd DECODING
ALPHAVMSd ENCODING
ALPHAVMSg DECODING
ALPHAVMSg ENCODING
ALPHAVMSi DECODING
ALPHAVMSi_ENCODING
ARM_BIG _DECODING
ARM_BIG_ENCODING
ARM_LITTLE DECODING
ARM_LITTLE ENCODING
attribute

inquiring

number

inquiring

renaming
attributes

checking existence

16
15
16
15
16
15
16
15
17
16
17
16

165

166
168

169

creation 162, 172, 204, 207, 208, 209, 211, 212, 213, 214,

215,217
entries
global entry
checking existence
inquiring
reading
writing
naming
inquiring
number of
inquiring
scopes
constants
GLOBAL_SCOPE
VARIABLE_SCOPE
inquiring
Attributes
entries
global entry
deleting
reading
Attributes
deleting
entries
rVariable entry
checking existence
zVariable entry
checking existence
Attributes
entries
rVariable entry
deleting
Attributes
entries
zVariable entry
deleting

169

163

164

167
20,162, 172
165

51

19

19

19
165,192

173
175

173

170

171

174

175

281

Attributes
entries
global entry
data type
inquiring
Attributes
entries
global entry
number of elements
inquiring
Attributes
entries
global entry
last entry number
inquiring
Attributes
entries
rVariable entry
last entry number
inquiring
Attributes
entries
zVariable entry
last entry number
inquiring
Attributes
name
inquiring
Attributes
number
inquiring
Attributes
entries
rVariable entry
reading
Attributes
entries
global entry
data type
inquiring
Attributes
entries
global entry
number of elements
inquiring
Attributes
scope
inquiring
Attributes
entries
zVariable entry
reading
Attributes
entries
zVariable entry
data type

176

177

178

179

179

180

181

182

183

183

184

185

inquiring
Attributes
entries
zVariable entry
number of elements
inquiring
Attributes
entries
global entries
number of
inquiring
Attributes
number of
inquiring
Attributes
entries
rEntries
number of
inquiring
Attributes
entries
zEntries
number of
inquiring
Attributes
inquiring
Attributes
entries
global entry
inquiring
Attributes
entries
rVariable entry
inquiring
Attributes
entries
zVariable entry
inquiring
Attributes
entries
global entry
writing
Attributes
entries
rVariable entry
writing
Attributes
entries
zVariable entry
writing
Attributes
renaming
Attributes
entries
global entry
data specification
resetting
Attributes
entries
rVariable entry
data specification
resetting

186

187

188

188

189

190

192

193

194

195

196

197

199

200

200

201

Attributes

scope
resetting

Attributes

entries
zVariable entry
data specification
resetting

CDF

backward file
backward file flag
getting
setting
cache size
compression
resetting
Checksum
closing
Copyright
inquiring
creation
deleting
exception methods
Long Integer
opening
selecting
set
majority
utility methods
Validation

CDF getNegtoPosfpOMode
CDF library

copy right notice
max length
modes
-0.0t0 0.0
constants
NEGtoPOS{pOoff
NEGtoPOSfpOon
decoding
constants
ALPHAOSF1_DECODING
ALPHAVMSd DECODING
ALPHAVMSg DECODING
ALPHAVMSi_DECODING
DECSTATION_ DECODING
HOST_DECODING
HP_DECODING
IBMPC_DECODING
IBMRS_DECODING
MAC DECODING
NETWORK DECODING
NeXT_DECODING
SGi DECODING
SUN_DECODING
VAX DECODING
MegToPosFpOMode
selecting
read-only
constants
READONLYoff
READONLYon

202

203
20

21
20

59
21
32

42

34

36
237
23
53,54
55,56

62
233
22
47

20

20
20

16
16
16
16
17
16
17
17
17
17
16
17
17
16
16

20

19
19

selecting
zMode
constants
zMODEoff
zMODEon1
zZMODEon2
selecting
CDF setNegtoPosfpOMode
CDF_ATTR NAME LEN256
CDF_BYTE
CDF_CHAR
CDF _COPYRIGHT LEN
CDF_DOUBLE
CDF_EPOCH
CDF_EPOCH16
CDF_FLOAT
CDF_INT1
CDF_INT2
CDF_INT4
CDF INT8
CDF_MAX_DIMS
CDF_MAX PARMS
CDF_OK
CDF_PATHNAME LEN
CDF_REAL4
CDF_REALS
CDF_STATUSTEXT LEN
CDF_TIME_TT2000
CDF_UCHAR
CDF_UINT1
CDF_UINT2
CDF_UINT4
CDF VAR NAME LEN256
CDF_WARN

19

20
20
20
20
63
20
14
14
20
14
14
14
14
14
14
14
14
20
20
13
20
14
14
20
14
14
14
14
14
20
13

CDFattrCreate 162, 204, 207, 208, 209, 211, 212, 213, 214,

215,217
CDFattrEntrylnquire
CDFattrGet
CDFattrlnquire
CDFattrNum
CDFattrPut
CDFattrRename
CDFclose
CDFcloseCDF
CDFcloserVar
CDFclosezVar
CDFconfirmAttrExistence
CDFconfirmgEntryExistence
CDFconfirmrEntryExistence
CDFconfirmrVarExistence
CDFconfirmrVarPadValueExistence
CDFconfirmzEntryExistence
CDFconfirmzVarExistence
CDFconfirmzVarPadValueExistence
CDFcreate
CDFcreateAttr
CDFcreateCDF
CDFcreaterVar
CDFcreatezVar
CDFdelete
CDFdeleteAttr
CDFdeleteAttrgEntry

163
164
165
166
167
168
32
33
66
67
169
169
170
68
68
171
69
70
34
172
35
71
72
36
173
173

283

CDFdeleteAttrrEntry
CDFdeleteAttrzEntry
CDFdeleteCDF
CDFdeleterVar
CDFdeleterVarRecords
CDFdeletezVar
CDFdeletezVarRecords
CDFdoc
CDFerror
CDFerror
CDFException

CDFgetCurrentStatus

CDFgetStatusMsg

utility methods

CDFgetCurrentStatus
CDFgetStatusMsg

CDFFileExists
CDFgetAttrgEntry
CDFgetAttrgEntryDataType
CDFgetAttrMaxrEntry
CDFgetAttrMaxzEntry
CDFgetAttrName
CDFgetAttrNum
CDFgetAttrrEntry
CDFgetAttrrEntryDataType
CDFgetAttrrEntryNumElements
CDFgetAttrScope
CDFgetAttrzEntry
CDFgetAttrzEntryDataType
CDFgetAttrzEntryNumElements
CDFgetCacheSize
CDFgetChecksumValue
CDFgetCkecksum
CDFgetCompression
CDFgetCompressionCacheSize
CDFgetCompressionInfo
CDFgetCompressionTypeValue
CDFgetCopyright
CDFgetCurrentStatus
CDFgetDataTypeSize
CDFgetDataTypeValue
CDFgetDecoding
CDFgetDecodingValue
CDFgetEncoding
CDFgetEncodingValue
CDFgetFileBackward
CDFgetFormat
CDFgetFormatValue
CDFgetLastDateinLeapSecondsTable
CDFgetLibraryCopyright
CDFgetLibraryVersion
CDFgetMajority
CDFgetMajorityValue
CDFgetMaxWrittenRecNums
CDFgetName
CDFgetNumAttrgEntries
CDFgetNumAttributes
CDFgetNumAttrrEntries
CDFgetNumAttrzEntries
CDFgetNumgAttributes
CDFgetNumrVars
CDFgetNumvAttributes

174
175
36

73
74,75
76
76,77
37
239

237
237

237
237
233
175
176
179
179
180
181
182
183
183
184
185
186
187

38
233

39

41
41
233
42
237
30
233

234
43
234
44
44,45
235
232
30

31

46
235
78

46
188
188
189
190
190
79
191

CDFgetNumzVars
CDFgetReadOnlyMode
CDFgetrVarAllocRecords
CDFgetrVarBlockingFactor
CDFgetrVarCacheSize
CDFgetrVarCompression
CDFgetrVarData
CDFgetrVarDataType
CDFgetrVarDimVariances
CDFgetrVarlnfo
CDFgetrVarMaxAllocRecNum
CDFgetrVarMaxWrittenRecNum
CDFgetrVarName
CDFgetrVarNumElements
CDFgetrVarNumRecs Written
CDFgetrVarPadValue
CDFgetrVarRecordData
CDFgetrVarRecVariance
CDFgetrVarReservePercent
CDFgetrVarsDimSizes
CDFgetrVarSeqData
CDFgetrVarSeqPos
CDFgetrVarsMaxWrittenRecNum
CDFgetrVarsNumDims
CDFgetrVarSparseRecords
CDFgetSparseRecordValue
CDFgetStageCacheSize
CDFgetStatusMsg
CDFgetStatusText
CDFgetStringChecksum
CDFgetStringCompressionType
CDFgetStringDataType
CDFgetStringDecoding
CDFgetStringEncoding
CDFgetStringFormat
CDFgetStringMajority
CDFgetStringSparseRecord
CDFgetValidae
CDFgetVarNum
CDFgetVersion
CDFgetzMode
CDFgetzVarAllocRecords
CDFgetzVarBlockingFactor
CDFgetzVarCacheSize
CDFgetzVarCompression
CDFgetzVarData
CDFgetzVarDataType
CDFgetzVarDimSizes
CDFgetzVarDimVariances
CDFgetzVarlnfo
CDFgetzVarMaxAllocRecNum
CDFgetzVarMaxWrittenRecNum
CDFgetzVarName
CDFgetzVarNumDims
CDFgetzVarNumElements
CDFgetzVarNumRecsWritten
CDFgetzVarPadValue
CDFgetzVarRecordData
CDFgetzVarRecVariance
CDFgetzVarReservePercent
CDFgetzVarSeqData
CDFgetzVarSeqPos

236,

80
48
80
81
82
82
83
84
85

87
87
88
89
89
90
91
92
92
93
93
94
95
96
96
235
48
237
31
235
236
236
236
236
236
236
237
49
97
49
50

99
100
100
101
102
103
104
104
105
106
106
107
108
108
109
110
111
111
112
113

284

CDFgetzVarsMaxWrittenRecNum
CDFgetzVarSparseRecords
CDFhyperGetrVarData
CDFhyperGetzVarData
CDFhyperPutrVarData
CDFhyperPutzVarData
CDFinquire
CDFinquireAttr
CDFinquireAttrgEntry
CDFinquireAttrrEntry
CDFinquireAttrzEntry
CDFinquireCDF
CDFinquirerVar
CDFinquirezVar
CDFopen
CDFopenCDF
CDFputAttrgEntry
CDFputAttrrEntry
CDFputAttrzEntry
CDFputrVarData
CDFputrVarPadValue
CDFputrVarRecordData
CDFputrVarSeqData
CDFputzVarData
CDFputzVarPadValue
CDFputzVarRecordData
CDFputzVarSeqData
CDFrenameAttr
CDFrenamerVar
CDFrenamezVar
CDFs
compression
inquiring
CDFs
browsing
cache size
inquiring
checksum
inquiring
closing
compression types/parameters
copy right notice
max length
reading
corrupted
creation
decoding
constants
ARM BIG DECODING

ARM_LITTLE DECODING

IA64VMSd_DECODING
1A64VMSg_DECODING
[IA64VMSi_DECODING
encoding
constants

ALPHAOSF1_ENCODING
ALPHAVMSd_ENCODING
ALPHAVMSg_ENCODING
ALPHAVMSi_ENCODING
ARM BIG_ENCODING
ARM_LITTLE_ENCODING
DECSTATION ENCODING

114
115
115
117
118
120

51
192
193
194
195

52
122
123

53

54
196
197
199
124
125
126
127
128
129
130
130
200
131
132

40, 41
19
38

39
33
18

20
37
34,35
35

17
17
17
17
17

15
15
15
15
15
16
16
15

HOST_ENCODING
HP_ENCODING
TIA64VMSd_ENCODING
[A64VMSg ENCODING
IA64VMSi_ENCODING
IBMPC_ENCODING
IBMRS ENCODING
MAC_ENCODING
NETWORK _ENCODING
NeXT_ENCODING
SGi_ENCODING
SUN_ENCODING
VAX_ENCODING
default
format
constants
MULTI_FILE
SINGLE_FILE
default
naming
overwriting
version
inquiring
CDFs
cache size
compression
inquiring
CDFs
decoding
inquiring
CDFs
decoding
inquiring
CDFs
file backard
inquiring
CDFs
format
inquiring
CDFs
format
inquiring
CDFs
majority
inquiring
CDFs
name
inquiring
CDFs
-0.0 to 0.0 mode
inquiring
CDFs
read-only mode
inquiring
CDFs
cache size
stage
inquiring
CDFs
validation
inquiring
CDFs

15
15
16
16
16
15
15
16
15
16
15
15
15
15

14

13

13

20, 34,35
34,35

37

41

43

43

44

44

45

46

46

47

48

48

49

285

version
inquiring
CDFs
zMode
inquiring
CDFs
encoding
inquiring
CDFs
inquiring
CDFs
naming
CDFs
naming
CDFs
cache size
resetting
CDFs
checksum
resetting
CDFs
compression
resetting
CDFs
decoding
resetting
CDFs
encoding
resetting
CDFs
File Backward
resetting
CDFs
format
resetting
CDFs
format
resetting
CDFs
-0.0 to 0.0 Mode
resetting
CDFs
read-only mode
resetting
CDFs
cache size
stage
resetting
CDFs
validation
resetting
CDFs
zMode
resetting
CDFs
record numbers
maximum written
zVariables and rVariables
CDFs
rVariables
number of rVariables
inquiring

49

50

51

52

54

54

57

57

58

59

60

61

61

62

63

64

64

65

65

78

79

CDFs
zVariables
number of zVariables
inquiring
CDFs
global attributes
number of
inquiring
CDFs
variable attributes
number of
inquiring
CDFselect
CDFselectCDF
CDFsetAttrgEntryDataSpec
CDFsetAttrrEntryDataSpec
CDFsetAttrScope
CDFsetAttrzEntryDataSpec
CDFsetCacheSize
CDFsetChecksum
CDFsetCompression
CDFsetCompressionCacheSize
CDFsetDecoding
CDFsetEncoding
CDFsetFileBackward
CDFsetFormat
CDFsetMajority
CDFsetReadOnlyMode
CDFsetrVarAllocBlockRecords
CDFsetrVarAllocRecords
CDFsetrVarBlockingFactor
CDFsetrVarCacheSize
CDFsetrVarCompression
CDFsetrVarDataSpec
CDFsetrVarDimVariances
CDFsetrVarlnitialRecs
CDFsetrVarRecVariance
CDFsetrVarReservePercent
CDFsetrVarsCacheSize
CDFsetrVarSeqPos
CDFsetrVarSparseRecords
CDFsetStageCacheSize
CDFsetValidate
CDFsetzMode
CDFsetzVarAllocBlockRecords
CDFsetzVarAllocRecords
CDFsetzVarBlockingFactor
CDFsetzVarCacheSize
CDFsetzVarCompression
CDFsetzVarDataSpec
CDFsetzVarDimVariances
CDFsetzVarlnitialRecs
CDFsetzVarRecVariance
CDFsetzVarReservePercent
CDFsetzVarsCacheSize
CDFsetzVarSeqPos
CDFsetzVarSparseRecords
CDFUtils
CDFFileExists
CDFgetChecksumValue
CDFgetCompressionTypeValue
CDFgetDataTypeValue

80

190

191
55
56

200

201

202

203
57
57
58
59
59
60
61

61,62
62
64

133

134

134

135

136

137

137

138

139

140

140

141

142
64
65
65

142

143

144

145

145

146

147

148

148

149

150

151

151

233
233
233
233

286

CDFgetDecodingValue
CDFgetEncodingValue
CDFgetFormatValue
CDFgetMajorityValue
CDFgetSparseRecordValue
CDFgetStringChecksum
CDFgetStringCompressionType
CDFgetStringDataType
CDFgetStringDecoding
CDFgetStringEncoding
CDFgetStringFormat
CDFgetStringMajority
CDFgetStringSparseRecord
utility methods
CDFFileExists
CDFgetChecksumValue

CDFgetCompressionTypeValue

CDFgetDataTypeValue
CDFgetDecodingValue
CDFgetEncodingValue
CDFgetFormatValue
CDFgetMajorityValue
CDFgetSparseRecordValue
CDFgetStringChecksum

CDFgetStringCompressionType

CDFgetStringDataType
CDFgetStringDecoding
CDFgetStringEncoding
CDFgetStringFormat
CDFgetStringMajority
CDFgetStringSparseRecord
CDFvarClose
CDFvarCreate
CDFvarGet
CDFvarHyperGet
CDFvarHyperPut
CDFvarlnquire
CDFvarNum
CDFvarPut
CDFvarRename
Ckecksum
Classes
closing
rVar in a multi-file CDF
zVar in a multi-file CDF
COLUMN_ MAIJOR
compiling
Compiling
compression
types/parameters
computeEPOCH
computeEPOCH16
computeTT2000
Data type
size
inquiring
data types
constants
CDF BYTE
CDF_CHAR
CDF_DOUBLE
CDF_EPOCH

234
234
235
235
235
235
236
236
236
236
236
236
236,237

233
233
233
233
234
234
235
235
235
235
236
236
236
236
236
236
236,237
152
153
154
155
156
157
159
160
161
39,57

66
67
17
11
11

18
220
224
229

30
14
14
14

14

CDF_EPOCHI16
CDF_FLOAT
CDF_INTI
CDF_INT2

CDF_INT4
CDF_INT8
CDF_REAL4
CDF_REALS
CDF_TIME_ TT2000
CDF_UCHAR
CDF_UINT1
CDF _UINT2
CDF_UINT4
DECSTATION_DECODING
DECSTATION_ENCODING
dimensions
limit
encodeEPOCH
encodeEPOCHI1
encodeEPOCH16
encodeEPOCH16 1
encodeEPOCH16 2
encodeEPOCHI16 3
encodeEPOCH16 4
encodeEPOCH16 x
encodeEPOCH2
encodeEPOCH3
encodeEPOCH4
encodeEPOCHx
encodeTT2000
EPOCH
computing
decomposing
encoding
parsing
utility routines
computeEPOCH
computeEPOCH16
encodeEPOCH
encodeEPOCH1
encodeEPOCH16
encodeEPOCH16 1
encodeEPOCH16 2
encodeEPOCH16 3
encodeEPOCH16_4
encodeEPOCH16_x
encodeEPOCH2
encodeEPOCH3
encodeEPOCH4
encodeEPOCHx
EPOCH16breakdown
EPOCHbreakdown
parseEPOCH
parseEPOCH1
parseEPOCH16
parseEPOCH16 1
parseEPOCH16 2
parseEPOCH16_3
parseEPOCH16 4
parseEPOCH2
parseEPOCH3
parseEPOCH4

221, 224,

220,
220,
221,222,224, 225, 226,
223,226,227,

221, 224,

223,

227,

14
14
14
14
14
14
14
14
14
14
14
14
14
17
15

20
230
221
225
225
225
225
225
226
221
221
222
222
231

224
224
230
228
220
220
224
230
221
225
225
225
225
225
226
221
221
222
222
224
220
223
223
226
227
227
227
228
223
223
223

EPOCH]16breakdown
EPOCHbreakdown
Equivalent data types
examples

CDF

-0.0 to 0.0 mode
set63
attribute
name
get
scope
get
checksum
set58
compression
get
compression cache size
set59
Copyright
get
decoding
get
encoding
set60
file backward
set61
global attribute
entry
data type
get
get
entry
number of elements
get
number of entries
get
inquiring
number of attributes
get
read-only mode
set64
rVariable attribute
entry
get
entry
data type
get
stage cache size
set6S
validate
set6S
validation
get
version
get
zMode
get
set66

CDF

cache size
get
checksum

224
220
26

180

185

40

42

43

177
176

178

188
53

189

182

183

49

50

50

39

get
close
create
delete
CDF
compression cache size
get
CDF
compression information
get
CDF
file backward
get
CDF
format
get
CDF
format
get
CDF
majority
get
CDF
name
get
CDF
-0.0 to 0.0 mode
get
CDF
read-only mode
get
CDF
cache buffer size
get
CDF
open
CDF
select
CDF
select
CDF
cache size
setS7
CDF
compression
setS8
CDF
decoding
set60
CDF
format
set61
CDF
format
set62
CDF
majority
set63
CDF
rVar
close
CDF

39
33
35
37

41

42

44

45

45

46

47

47

48

48

55

55

56

67

288

zVar
close
CDF
rVariable
existence
confirm
CDF
rVariable
pad value existence
confirm
CDF
zVariable
existence
confirm
CDF
zVariable
pad value existence
confirm
CDF
rVariable
create
CDF
zVariable
create
CDF
rVariable
delete
CDF
rVariable
data records
delete
CDF
rVariable
data records
delete
CDF
zVariable
delete
CDF
zVariable
data records
delete
CDF
zVariable
data records
delete
CDF
max record numbers

zVariables and rVariables

get
CDF
number of rVariables
get
CDF
number of zVariables
get
CDF
rVariable

number of records allocated

get
CDF
rVariable

67

68

69

69

70

71

73

74

75

75

76

77

78

79

79

80

81

blocking factor
get
CDF
rVariable
cache size
get
CDF
rVariable
compression
get
CDF
rVariable
variable data
get
CDF
rVariable
data type
get
CDF
rVariable
dimension variances
get
CDF
rVariable
information
get
CDF
rVariable
maximum number of records allocated
get
CDF
rVariable
maximum record number
get
CDF
rVariable
name
get
CDF
rVariable
number of elements
get
CDF
rVariable
number of records written
get
CDF
rVariable
pad value
get
CDF
rVariable
record data
get
CDF
rVariable
record variance
get
CDF
rVariable
compression reserve percentage
get

81

82

83

84

85

85

86

87

88

88

89

90

90

91

92

93

289

CDF
rVariable
dimension sizes
get
CDF
rVariable
data value
get
CDF
rVariable
read position
get
CDF
rVariables
maximum record number
get
CDF
rVariable
dimensionality
get
CDF
rVariable
sparse record type
get
CDF
Variable number
get
CDF
zVariable
number of records allocated
get
CDF
zVariable
blocking factor
get
CDF
zVariable
cache size
get
CDF
zVariable
compression
get
CDF
zVariable
variable data
get
CDF
zVariable
data type
get
CDF
zVariable
dimension sizes
get
CDF
zVariable
dimension variances
get
CDF
rVariable
information

93

94

95

96

96

97

98

98

99

100

101

102

103

103

104

get
CDF
zVariable

maximum number of records allocated

get
CDF
zVariable
maximum record number
get
CDF
zVariable
name
get
CDF
zVariable
dimensionality
get
CDF
zVariable
number of elements
get
CDF
zVariable
number of records written
get
CDF
zVariable
pad value
get
CDF
zVariable
record data
get
CDF
zVariable
record variance
get
CDF
zVariable
compression reserve percentage
get
CDF
zVariable
data value
get
CDF
zVariable
read position
get
CDF
zVariables
maximum record number
get
CDF
zVariable
sparse record type
get
CDF
rVariable
multiple values or records
get
CDF

105

105

106

107

107

108

109

110

110

111

112

113

114

114

115

116

290

zVariable
multiple values or records
get
CDF
rVariable
data values
write
CDF
zVariable
data values
write
CDF
rVariable
inquire
CDF
zVariable
inquire
CDF
rVariable
data value
write
CDF
rVariable
pad value
setl126
CDF
rVariable
record data
write
CDF
rVariable
data value
sequential write
CDF
zVariable
data value
write
CDF
zVariable
pad value
set129
CDF
zVariable
record data
write
CDF
zVariable
data value
sequential write
CDF
zVariable
rename
CDF
zVariable
rename
CDF
rVariable
data records
block
allocate
CDF
rVariable

118

119

121

122

124

125

127

127

128

130

131

132

133

133

data records
sequential
allocate
CDF
rVariable
blocking factor
setl35
CDF
rVariable
cache size
setl35
CDF
rVariable
compression
setl136
CDF
rVariable
data type
setl137
CDF
rVariable
dimension variances
set138
CDF
rVariable
number of initial records
set138
CDF
rVariable
record variance
set139
CDF
rVariable
compression reserve percentage
set140
CDF
rVariable
cache size
set141
CDF
rVariable
sequential location
set141
CDF
rVariable
sparse record flag
set142
CDF
zVariable
data records
block
allocate
CDF
zVariable
data records
sequential
allocate
CDF
zVariable
blocking factor
setl44
CDF

134

143

144

291

zVariable
cache size
set145
CDF
zVariable
compression
set146
CDF
zVariable
data type
set147
CDF
zVariable
dimension variances
setl147
CDF
zVariable
number of initial records
set148
CDF
zVariable
record variance
set149
CDF
zVariable
compression reserve percentage
set150
CDF
zVariable
cache size
setl150
CDF
zVariable
sequential location
setl51
CDF
zVariable
sparse record flag
setl52
CDF
attribute
existence
confirm
CDF
gentry
existence
confirm
CDF
rEntry
existence
confirm
CDF
zEntry
existence
confirm
CDF
attribute
create
CDF
attribute
delete
CDF

169

170

170

171

172

173

global attribute
entry
delete
CDF
rVariable attribute
entry
delete
CDF
zVariable attribute
entry
delete
CDF
global attribute
last Entry number
get
CDF
rVariable attribute
last Entry number
get
CDF
zVariable attribute
last entry number
get
CDF
attribute
number
get
CDF
rVariable attribute
entry
number of elements
get
CDF
zVariable attribute
entry
get
CDF
zVariable attribute
entry
data type
get
CDF
zVariable attribute
entry
number of elements
get
CDF
rVariable attribute
number of entries
get
CDF
zVariable attribute
number of entries
get
CDF
number of global attributes
get
CDF

number of variable attributes

get
CDF
attribute

173

174

175

178

179

180

181

184

185

186

187

189

190

191

191

information
get 193
CDF
global attribute
entry
information
get 194
CDF
rVariable attribute
entry
information
get 195
CDF
zVariable attribute
entry
information
get 196
CDF
global attribute
entry
write 197
CDF
rVariable attribute
entry
write 198
CDF
zVariable attribute
entry
write 199
CDF
attribute
rename 200
CDF
global attribute
entry
specification
set201
CDF
rVariable attribute
entry
specification
set202
CDF
attribute
data scope
set202
CDF
zVariable attribute
entry
specification
set203
closing
CDF 33
rVariable 153
creating
attribute 162, 205, 207, 208, 209, 211, 213,214, 215,
216,217
CDF 34
rVariable 154
deleting
CDF 36
get

CDF

Copyright

library version
data type size
rVariable

data

inquiring

attribute

entry
attribute number
CDF

error code explanation text

rVariable
variable number
interpreting
status codes
opening
CDF
reading
attribute entry
rVariable values
hyper
renaming
attribute
rVariable
status handler
writing
attribute
gEntry
rEntry
rVariable
multiple records/values
rVariable
Exception handling
Fixed statement
getAttrgEntryNumElements
getAttrMaxgEntry
GLOBAL SCOPE
HOST _DECODING
HOST ENCODING
HP_DECODING
HP_ENCODING
[A64VMSd DECODING
TIA64VMSd_ENCODING
TIA64VMSg DECODING
[IA64VMSg ENCODING
TIA64VMSi_DECODING
IA64VMSi_ENCODING
IBMPC_DECODING
IBMPC_ENCODING
IBMRS DECODING
IBMRS_ENCODING
id 13
inquiring
CDF information
Interface
Leap Seconds
Library
error text
inquiring
Library
Copyright

30
31
30

155

165
163
166
37,52
32,38
158
159

219

54
164
156

168
161
219

167
167

157
160

27
177
178

19

16

15

17

15

17

16

17

16

17

16

17

17
15

37
24,29
23

31

293

inquiring
version
inquiring
Limitation
dimensions
limits
attribute name
Copyright text
dimensions
explanation/status text
file name
parameters
variable name
Limits of names
MAC_ DECODING
MAC_ENCODING
MULTI_FILE
multidimensional arrays
namespace
NEGtoPOSfpOoff
NEGtoPOS{pOon
NETWORK _DECODING
NETWORK ENCODING
NeXT DECODING
NeXT ENCODING
NO_COMPRESSION
NO_SPARSEARRAYS
NO _SPARSERECORDS
NOVARY
PAD SPARSERECORDS
parseEPOCH
parseEPOCH1
parseEPOCH16
parseEPOCH16 1
parseEPOCH16_2
parseEPOCH16 3
parseEPOCH16 4
parseEPOCH2
parseEPOCH3
parseEPOCH4
parseTT2000
Passing arguments
PREV_SPARSERECORDS
programming interface
CDF id
CDF status
READONLY off
READONLYon
ROW_MAIJOR
rVariables
data records
deleting
rVariables
check existence
creation
deleting
pad value
checking existence
rVariables
record numbers
allocated records
inquiring

30

31

28

20
20
20
20
20
20
20
20
17
16
14
26
11
20
20
16
15
17
16
18
19
19
18
19
223
223

223,226

227
227
227

227,228

223
223
223

231,232

24
19

13
13
19
19
17

74,75
68
71
73

68

80

rVariables
blocking factor
inquiring
rVariables
cache size
inquiring
rVariables
compression
inquiring
rVariables
reading
single value
rVariables
data type
inquiring
rVariables
dimension variances
inquiring
rVariables
information
inquiring
rVariables
record numbers
maximum allocated records
inquiring
rVariables
record numbers
maximum written record
inquiring
rVariables
name
inquiring
rVariables
number of elements
inquiring
rVariables
written records
inquiring
rVariables
pad value
inquiring
rVariables
reading
one record
rVariables
record variance
inquiring
rVariables
compression
reserve percentage
inquiring
rVariables
dimension sizes
inquiring
rVariables
reading
sequential data
rVariables
sequential position
inquiring
rVariables
maximum written record

81

82

82

83

84

85

86

87

87

88

&9

&9

90

91

92

92

93

93

94

294

rVariables
rVariables
dimensionality
inquiring
rVariables
sparse records type
inquiring
rVariables
reading
multiple values or records
rVariables
writing
multiple values or records
rVariables
inquiring
rVariables
writing
single data
rVariables
pad value
resetting
rVariables
writing
record data
rVariables
writing
sequential data
rVariables
renaming
rVariables
records
allocation
rVariables
records
allocation
rVariables
blocking factor
resetting
rVariables
cache size
resetting
rVariables
compression
resetting
rVariables
data specification
resetting
rVariables
dimension variances
resetting
rVariables
records
writing initially
rVariables
record variance
resetting
rVariables
compression
reserve percentage
resetting
rVariables
cache size

95

96

96

115

118

122

124

125

126

127

131

133

134

134

135

136

137

137

138

139

140

resetting
rVariables
sequential position
resetting
rVariables
sparse records type
resetting
rVariables
close
rVariables
creation
rVariables
reading
single value
rVariables
hyper read

multiple values or records

rVariables
hyper put

multiple values or records

rVariables
writing
single value
rVariables
renaming
sample programs
SGi_DECODING
SGi_ENCODING
SINGLE_FILE
sparse arrays
types
sparse records
types
status
status codes
constants
CDF_OK
CDF _WARN
error
explanation text
inquiring
max length
informational
interpreting
warning
SUN DECODING
SUN_ENCODING
TT2000
computing
decomposing
encoding
info
parsing
utility routines

CDFgetLastDateinLeapSecondsTable

computeTT2000

encodeTT2000

parseTT2000

TT2000breakdown
TT2000breakdown
VARIABLE SCOPE
variables

140

141

142
152

153

154

155

156

160

161
12
17
15
13

19

19
13

13,219
13

13
239

38
20
239
219
239
16
15

229

230

231

232
231,232
229

232

229

231
231,232
230

230

19

compression
types/parameters 18
data specification
data type
inquiring 157
number of elements
inquiring 157
dimensionality
inquiring 51
inquiring 51
majority
considering 17
constants 17
COLUMN_MAJOR 17
ROW_MAIJOR 17
maximum records
inquiring 51
name
inquiring 157
naming 71,72, 153
max length 20
records
sparse 19
sparse arrays
types 19
variable number
inquiring 159
variances
constants 18
NOVARY 18
VARY 18
Variables
variable number
inquiring 97
VARY 18
VAX DECODING 16
VAX ENCODING 15
VB-CDF Interface 24,29
zMODEoff 20
zMODEon1 20
zMODEon2 20
zVariables
data records
deleting 76,77
zVariables
check existence 69
creation 72
deleting 76
pad value
checking existence 70
zVariables

record numbers
allocated records
inquiring 98
zVariables
blocking factor
inquiring 99
zVariables
cache size
inquiring 100
zVariables
compression

295

inquiring
zVariables
reading data
zVariables
data type
inquiring
zVariables
dimension sizes
inquiring
zVariables
dimension variances
inquiring
zVariables
information
inquiring
zVariables
record numbers
maximum allocated record
inquiring
zVariables
record numbers
maximum written record
inquiring
zVariables
name
inquiring
zVariables
dimensionality
inquiring
zVariables
number of elements
inquiring
zVariables
record numbers
written records
inquiring
zVariables
pad value
inquiring
zVariables
reading
one record
zVariables
record variance
inquiring
zVariables
compression
reserve percentage
inquiring
zVariables
sequential data
reading one value
zVariables
sequential position
inquiring
zVariables
record numbers
written records
maximum

rVariables and zVariables

zVariables
sparse records type

100

101

102

103

104

104

105

106

106

107

108

108

109

110

111

111

112

113

114

296

inquiring
zVariables
reading
multiple values or records
zVariables
writing
multiple values or records
zVariables
inquiring
zVariables
writing
single data
zVariables
pad value
resetting
zVariables
writing
record data
zVariables
writing
sequential data
zVariables
renaming
zVariables
records
allocation
zVariables
records
allocation
zVariables
blocking factor
resetting
zVariables
cache size
resetting
zVariables
compression
resetting
zVariables
data specification
resetting
zVariables
dimension variances
resetting
zVariables
records
writing initially
zVariables
record variance
resetting
zVariables
compression
reserve percentage
resetting
zVariables
cache size
resetting
zVariables
sequential position
resetting
zVariables
sparse records type

115

117

120

123

128

129

130

130

132

142

143

144

145

145

146

147

148

148

149

150

151

resetting 151

297

	CDF
	Visual Basic Reference Manual
	NASA / Goddard Space Flight Center
	1 Compiling
	1.1 Namespaces
	1.2 Base Classes
	1.3 Compiling with Compiler Options
	1.4 Sample programs

	2 Programming Interface
	2.1 Item Referencing
	2.2 Compatible Types
	2.3 CDFConstants

	CDF defines a set of constants that are used all over the .DLL. These constants are mimicked in CDFConstants class with compatible data types.
	2.4 CDF status

	These constants are of same type as the operation status, mentioned in 2.2.
	2.5 CDF Formats
	2.6 CDF Data Types

	One of the following constants must be used when specifying a CDF data type for an attribute entry or variable.
	2.7 Data Encodings

	DECSTATION_ENCODING
	2.8 Data Decodings
	2.9 Variable Majorities
	2.10 Record/Dimension Variances

	Record and dimension variances affect how variable data values are physically stored.
	2.11 Compressions
	2.12 Sparseness
	2.12.1 Sparse Records

	The following types of sparse records for variables are supported.
	2.12.2 Sparse Arrays

	The following types of sparse arrays for variables are supported.2F
	2.13 Attribute Scopes
	2.14 Read-Only Modes
	2.15 zModes
	2.16 -0.0 to 0.0 Modes
	2.17 Operational Limits

	These are limits within the CDF library. If you reach one of these limits, please contact CDF User Support.
	2.18 Limits of Names and Other Character Strings
	2.19 Backward File Compatibility with CDF 2.7

	By default, a CDF file created by CDF V3.0 or a later release is not readable by any of the CDF releases before CDF V3.0 (e.g. CDF 2.7.x, 2.6.x, 2.5.x, etc.). The file incompatibility is due to the 64-bit file offset used in CDF 3.0 and later release...
	There are two ways to create a file that’s backward compatible with CDF 2.7 and 2.6, but not 2.5. A method, CDFsetFileBackward, can be called to control the backward compatibility from an application before a CDF file is created (i.e. CDFcreateCDF). ...
	The following example creates two CDF files: “MY_TEST1.cdf” is a V3.* file while “MY_TEST2.cdf” a V2.7 file.
	Another method is through an environment variable and no method call is needed (and thus no code change involved in any existing applications). The environment variable, CDF_FILEBACKWARD on Windows, is used to control the CDF file backward compatibil...
	2.20 Checksum

	To ensure the data integrity while transferring CDF files from/to different platforms at different locations, the checksum feature was added in CDF V3.2 as an option for the single-file format CDF files (not for the multi-file format). By default, th...
	If the checksum bit is turned on, a 16-byte signature message (a.k.a. message digest) is computed from the entire file and appended to the end of the file when the file is closed (after any create/write/update activities). Every time such file is ope...
	There are several ways to add or remove the checksum bit. One way is to use the method call with a proper checksum mode. Another way is through the environment variable. Finally, CDFedit and CDFconvert (CDF tools included as part of the standard CD...
	The environment variable CDF_CHECKSUM on Windows is used to control the checksum option. If its value is set to “MD5”, all new CDF files will have their checksum bit set with a signature message produced by the MD5 algorithm. If the environment varia...
	The following example set a new CDF file with the MD5 checksum and set another existing file’s checksum to none.
	2.21 Data Validation

	The following example sets the data validation on when the CDF file, “TEST”, is open.
	The following example turns off the data validation when the CDF file, “TEST” is open.
	2.22 8-Byte Integer
	2.23 Leap Seconds

	3 Understanding the Application Interface
	3.1 Arguments Passing
	3.2 Multi-Dimensional Arrays
	3.3 Data Type Equivalent
	3.4 Fixed Statement
	3.5 Exception Handling
	3.6 Dimensional Limitations

	4 Application Interface
	4.1 Library Information
	4.1.1 CDFgetDataTypeSize
	4.1.1.1. Example(s)

	The following example returns the size of the data type CDF_INT4 that is 4 bytes.
	4.1.2 CDFgetLibraryCopyright
	4.1.2.1. Example(s)

	The following example returns the Copyright of the CDF library being used.
	4.1.3 CDFgetLibraryVersion
	4.1.3.1. Example(s)

	The following example returns the version and release information of the CDF library that is being used.
	4.1.4 CDFgetStatusText
	4.1.4.1. Example(s)

	The following example displays the explanation text for the error code that is returned from a call to CDFopenCDF.
	4.2 CDF
	4.2.1 CDFclose
	4.2.1.1. Example(s)

	The following example will close an open CDF.
	4.2.2 CDFcloseCDF
	4.2.2.1. Example(s)

	The following example will close an open CDF.
	4.2.3 CDFcreate

	UNIX: File names are case-sensitive.
	NOTE: CDFclose must be used to close the CDF before your application exits to ensure that the CDF will be correctly written to disk.
	4.2.3.1. Example(s)

	The following example creates a CDF named “test1.cdf” with network encoding and row majority.
	4.2.4 CDFcreateCDF

	UNIX: File names are case-sensitive.
	NOTE: CDFcloseCDF must be used to close the CDF before your application exits to ensure that the CDF will be correctly written to disk.
	4.2.4.1. Example(s)

	The following example creates a CDF named “test1.cdf” with the default encoding and majority.
	4.2.5 CDFdelete
	4.2.5.1. Example(s)

	The following example will open and then delete an existing CDF.
	4.2.6 CDFdeleteCDF
	4.2.6.1. Example(s)

	The following example will open and then delete an existing CDF.
	4.2.7 CDFdoc
	4.2.7.1. Example(s)

	The following example returns and displays the version/release and copyright notice.
	4.2.8 CDFerror4F
	4.2.8.1. Example(s)

	The following example displays the explanation text if an error code is returned from a call to CDFopen.
	4.2.9 CDFgetCacheSize
	4.2.9.1. Example(s)

	The following example returns the cache buffers for the open CDF file.
	4.2.10 CDFgetChecksum
	4.2.10.1. Example(s)

	The following example returns the checksum code for the open CDF file.
	4.2.11 CDFgetCompression
	4.2.11.1. Example(s)

	The following example returns the compression information of the open CDF file.
	4.2.12 CDFgetCompressionCacheSize
	4.2.12.1. Example(s)

	The following example returns the number of cache buffers used for the scratch file from the compressed CDF file.
	4.2.13 CDFgetCompressionInfo
	4.2.13.1. Example(s)

	The following example returns the compression information from a “unopen” CDF named “MY_TEST.cdf”.
	4.2.14 CDFgetCopyright
	4.2.14.1. Example(s)

	The following example returns the Copyright in a CDF.
	4.2.15 CDFgetDecoding
	4.2.15.1. Example(s)

	The following example returns the decoding for the CDF.
	4.2.16 CDFgetEncoding
	4.2.16.1. Example(s)

	The following example returns the data encoding used for the given CDF.
	4.2.17 CDFgetFileBackward
	4.2.17.1. Example(s)

	In the following example, the CDF’s file backward mode is acquired.
	4.2.18 CDFgetFormat
	4.2.18.1. Example(s)

	The following example returns the file format of the CDF.
	4.2.19 CDFgetLeapSecondLastUpdated
	4.2.19.1. Example(s)

	The following example returns the date that the last leap second was added to the leap second table from the CDF.
	4.2.20 CDFgetMajority
	4.2.20.1. Example(s)

	The following example returns the majority of the CDF.
	4.2.21 CDFgetName
	4.2.21.1. Example(s)

	The following example returns the name of the CDF.
	4.2.22 CDFgetNegtoPosfp0Mode
	4.2.22.1. Example(s)

	The following example returns the –0.0 to 0.0 mode of the CDF.
	4.2.23 CDFgetReadOnlyMode
	4.2.23.1. Example(s)

	The following example returns the read-only mode for the given CDF.
	4.2.24 CDFgetStageCacheSize
	4.2.24.1. Example(s)

	The following example returns the number of cache buffers used in a CDF.
	4.2.25 CDFgetValidate
	4.2.25.1. Example(s)

	In the following example, it gets the data validation mode.
	4.2.26 CDFgetVersion
	4.2.26.1. Example(s)

	In the following example, a CDF’s version/release is acquired.
	4.2.27 CDFgetzMode
	4.2.27.1. Example(s)

	In the following example, a CDF’s zMode is acquired.
	4.2.28 CDFinquire
	4.2.28.1. Example(s)

	The following example returns the basic information about a CDF.
	4.2.29 CDFinquireCDF
	4.2.29.1. Example(s)

	The following example returns the basic information about a CDF.
	4.2.30 CDFopen

	UNIX: File names are case-sensitive.
	4.2.30.1. Example(s)

	The following example will open a CDF named “NOAA1.cdf”.
	4.2.31 CDFopenCDF

	UNIX: File names are case-sensitive.
	4.2.31.1. Example(s)

	The following example will open a CDF named “NOAA1.cdf”.
	4.2.32 CDFselect
	4.2.32.1. Example(s)

	The following example will select a CDF named “NOAA1.cdf” as the current CDF while another file “NOAA2.cdf” is also opened.
	4.2.33 CDFselectCDF
	4.2.33.1. Example(s)

	The following example will select a CDF named “NOAA1.cdf” as the current CDF while another file “NOAA2.cdf” is also opened.
	4.2.34 CDFsetCacheSize
	4.2.34.1. Example(s)

	The following example extends the number of cache buffers to 500 for the open CDF file. The default number is 300 for a single-file format CDF on Unix systems.
	4.2.35 CDFsetChecksum
	4.2.35.1. Example(s)

	The following example turns off the checksum flag for the open CDF file..
	4.2.36 CDFsetCompression
	4.2.36.1. Example(s)

	The following example uses GZIP.6 to compress the CDF file.
	4.2.37 CDFsetCompressionCacheSize
	4.2.37.1. Example(s)

	The following example extends the number of cache buffers used for the scratch file from the compressed CDF file to 100. The default cache buffers is 80 for Unix systems.
	4.2.38 CDFsetDecoding
	4.2.38.1. Example(s)

	The following example sets NETWORK_DECODING to be the decoding scheme in the CDF.
	4.2.39 CDFsetEncoding
	4.2.39.1. Example(s)

	The following example sets the encoding to HOST_ENCODING for the CDF.
	4.2.40 CDFsetFileBackward
	4.2.40.1. Example(s)

	In the following example, it sets the file backward mode to FILEBACKWARDoff, which means that any files to be created will be of version V3.*, the same as the library version.
	4.2.41 CDFsetFormat
	4.2.41.1. Example(s)

	The following example sets the file format to MULTI_FILE for the CDF. The default is SINGLE_FILE format.
	4.2.42 CDFsetLeapSecondLastUpdated
	4.2.42.1. Example(s)

	The following example resets the leap second last updated date in the CDF. Likely, the file’s field was not set originally (an older CDF).
	4.2.43 CDFsetMajority
	4.2.43.1. Example(s)

	The following example sets the majority to COLUMN_MAJOR for the CDF. The default is ROW_MAJOR.
	4.2.44 CDFsetNegtoPosfp0Mode
	4.2.44.1. Example(s)

	The following example sets the –0.0 to 0.0 mode to ON for the CDF.
	4.2.45 CDFsetReadOnlyMode
	4.2.45.1. Example(s)

	The following example sets the read-only mode to OFF for the CDF.
	4.2.46 CDFsetStageCacheSize
	4.2.46.1. Example(s)

	The following example sets the number of stage cache buffers to 10 for a CDF.
	4.2.47 CDFsetValidate
	4.2.47.1. Example(s)

	In the following example, it sets the validation mode to be on, so any following CDF files are subjected to the data validation process when they are open.
	4.2.48 CDFsetzMode
	4.2.48.1. Example(s)

	In the following example, a CDF’s zMode is specified to zMODEon2: all rVariables are treated as zVariables with NOVARY dimensions being eliminated.
	4.3 Variables
	4.3.1 CDFcloserVar
	4.3.1.1. Example(s)

	The following example will close an open rVariable file from a multi-file CDF.
	4.3.2 CDFclosezVar
	4.3.2.1. Example(s)

	The following example will close an open zVariable file from a multi-file CDF.
	4.3.3 CDFconfirmrVarExistence
	4.3.3.1. Example(s)

	The following example checks the existence of rVariable “MY_VAR” in a CDF.
	4.3.4 CDFconfirmrVarPadValueExistence
	4.3.4.1. Example(s)

	The following example checks the existence of the pad value of rVariable “MY_VAR” in a CDF.
	4.3.5 CDFconfirmzVarExistence
	4.3.5.1. Example(s)

	The following example checks the existence of zVariable “MY_VAR” in a CDF.
	4.3.6 CDFconfirmzVarPadValueExistence
	4.3.6.1. Example(s)

	The following example checks the existence of the pad value of zVariable “MY_VAR” in a CDF.
	4.3.7 CDFcreaterVar
	4.3.7.1. Example(s)

	4.3.8 CDFcreatezVar
	4.3.8.1. Example(s)

	4.3.9 CDFdeleterVar
	4.3.9.1. Example(s)

	The following example deletes the rVariable named MY_VAR in a CDF.
	4.3.10 CDFdeleterVarRecords
	4.3.10.1. Example(s)

	The following example deletes 11 records (from record numbered 11 to 21) from the rVariable “MY_VAR” in a CDF. Note: The first record is numbered as 0.
	4.3.11 CDFdeleterVarRecordsRenumber
	4.3.11.1. Example(s)

	The following example deletes 11 records (from record numbered 11 to 21) from the rVariable “MY_VAR” in a CDF. Note: The first record is numbered as 0. If the last record number is 100, then after the deletion, the record will be 89.
	4.3.12 CDFdeletezVar
	4.3.12.1. Example(s)

	The following example deletes the zVariable named MY_VAR in a CDF.
	4.3.13 CDFdeletezVarRecords
	4.3.13.1. Example(s)

	The following example deletes 11 records (from record numbered 11 to 21) from the zVariable “MY_VAR” in a CDF. Note: The first record is numbered as 0.
	4.3.14 CDFdeletezVarRecordsRenumber
	4.3.14.1. Example(s)

	The following example deletes 11 records (from record numbered 11 to 21) from the zVariable “MY_VAR” in a CDF. Note: The first record is numbered as 0. If the last record number is 100, then after the deletion, the record will be 89.
	4.3.15 CDFgetMaxWrittenRecNums
	4.3.15.1. Example(s)

	The following example returns the maximum written record numbers among all rVariables and zVariables of the CDF.
	4.3.16 CDFgetNumrVars
	4.3.16.1. Example(s)

	The following example returns the total number of rVariables in a CDF.
	4.3.17 CDFgetNumzVars
	4.3.17.1. Example(s)

	The following example returns the total number of zVariables in a CDF.
	4.3.18 CDFgetrVarAllocRecords
	4.3.18.1. Example(s)

	The following example returns the number of allocated records for rVariable “MY_VAR” in a CDF.
	4.3.19 CDFgetrVarBlockingFactor
	4.3.19.1. Example(s)

	The following example returns the blocking factor for the rVariable “MY_VAR” in a CDF.
	4.3.20 CDFgetrVarCacheSize
	4.3.20.1. Example(s)

	The following example returns the number of cache buffers for rVariable “MY_VAR” in a CDF.
	4.3.21 CDFgetrVarCompression
	4.3.21.1. Example(s)

	The following example returns the compression information for rVariable “MY_VAR” in a CDF.
	4.3.22 CDFgetrVarData
	4.3.22.1. Example(s)

	The following example returns two data values, the first and the fifth element, in Record 0 from rVariable “MY_VAR”, a 2-dimensional (2 by 3) CDF_DOUBLE type variable, in a row-major CDF.
	4.3.23 CDFgetrVarDataType
	4.3.23.1. Example(s)

	The following example returns the data type of rVariable “MY_VAR” in a CDF.
	4.3.24 CDFgetrVarDimVariances
	4.3.24.1. Example(s)

	The following example returns the dimension variances of the 2-dimensional rVariable “MY_VAR” in a CDF.
	4.3.25 CDFgetrVarInfo
	4.3.25.1. Example(s)

	The following example returns the basic information of rVariable “MY_VAR” in a CDF.
	4.3.26 CDFgetrVarMaxAllocRecNum
	4.3.26.1. Example(s)

	The following example returns the maximum allocated record number for the rVariable “MY_VAR” in a CDF.
	4.3.27 CDFgetrVarMaxWrittenRecNum
	4.3.27.1. Example(s)

	The following example returns the maximum record number written for the rVariable “MY_VAR” in a CDF.
	4.3.28 CDFgetrVarName
	4.3.28.1. Example(s)

	The following example returns the name of the rVariable whose variable number is 1.
	4.3.29 CDFgetrVarNumElements
	4.3.29.1. Example(s)

	The following example returns the number of elements for the data type from rVariable “MY_VAR” in a CDF.
	4.3.30 CDFgetrVarNumRecsWritten
	4.3.30.1. Example(s)

	The following example returns the number of written records from rVariable “MY_VAR” in a CDF.
	4.3.31 CDFgetrVarPadValue
	4.3.31.1. Example(s)

	The following example returns the pad value from rVariable “MY_VAR”, a CDF_INT4 type variable, in a CDF.
	4.3.32 CDFgetrVarRecordData
	4.3.32.1. Example(s)

	The following example will read two full records (record numbers 2 and 5) from rVariable “MY_VAR”, a 2-dimension (2 by 3), CDF_INT4 type variable, in a CDF. The variable’s dimension variances are all VARY.
	4.3.33 CDFgetrVarRecVariance
	4.3.33.1. Example(s)

	The following example returns the record variance for the rVariable “MY_VAR” in a CDF.
	4.3.34 CDFgetrVarReservePercent
	4.3.34.1. Example(s)

	The following example returns the compression reserve percentage from the compressed rVariable “MY_VAR” in a CDF.
	4.3.35 CDFgetrVarsDimSizes
	4.3.35.1. Example(s)

	The following example returns the dimension sizes for rVariables in a CDF.
	4.3.36 CDFgetrVarSeqData
	4.3.36.1. Example(s)

	The following example will read the first two data values from the beginning of record number 2 (from a 2-dimensional rVariable whose data type is CDF_INT4) in a CDF.
	4.3.37 CDFgetrVarSeqPos
	4.3.37.1. Example(s)

	The following example returns the location for the current sequential value (position), the record number and indices within it, from a 2-dimensional rVariable named MY_VAR in a CDF.
	4.3.38 CDFgetrVarsMaxWrittenRecNum
	4.3.38.1. Example(s)

	The following example returns the maximum record number for all of the rVariables in a CDF.
	4.3.39 CDFgetrVarsNumDims
	4.3.39.1. Example(s)

	The following example returns the number of dimensions for rVariables in a CDF.
	4.3.40 CDFgetrVarSparseRecords
	4.3.40.1. Example(s)

	The following example returns the sparse records type of the rVariable “MY_VAR” in a CDF.
	4.3.41 CDFgetVarNum 7F

	CDFgetVarNum may be used as an embedded function call where an rVariable or zVariable number is needed.
	4.3.41.1. Example(s)

	In the following example CDFgetVarNum is used as an embedded function call when inquiring about a zVariable
	4.3.42 CDFgetzVarAllocRecords
	4.3.42.1. Example(s)

	The following example returns the number of allocated records for zVariable “MY_VAR” in a CDF.
	4.3.43 CDFgetzVarBlockingFactor
	4.3.43.1. Example(s)

	The following example returns the blocking factor for the zVariable “MY_VAR” in a CDF.
	4.3.44 CDFgetzVarCacheSize
	4.3.44.1. Example(s)

	The following example returns the number of cache buffers for zVariable “MY_VAR” in a CDF.
	4.3.45 CDFgetzVarCompression
	4.3.45.1. Example(s)

	The following example returns the compression information for zVariable “MY_VAR” in a CDF.
	4.3.46 CDFgetzVarData
	4.3.46.1. Example(s)

	The following example returns two data values, the first and the fifth element, in Record 0 from zVariable “MY_VAR”, a 2-dimensional (2 by 3) CDF_DOUBLE type variable, in a row-major CDF.
	4.3.47 CDFgetzVarDataType
	4.3.47.1. Example(s)

	The following example returns the data type of zVariable “MY_VAR” in a CDF.
	4.3.48 CDFgetzVarDimSizes
	4.3.48.1. Example(s)

	The following example returns the dimension sizes for zVariable “MY_VAR” in a CDF.
	4.3.49 CDFgetzVarDimVariances
	4.3.49.1. Example(s)

	The following example returns the dimension variances of the 2-dimensional zVariable “MY_VAR” in a CDF.
	4.3.50 CDFgetzVarInfo
	4.3.50.1. Example(s)

	The following example returns the basic information of zVariable “MY_VAR” in a CDF.
	4.3.51 CDFgetzVarMaxAllocRecNum
	4.3.51.1. Example(s)

	The following example returns the maximum allocated record number for the zVariable “MY_VAR” in a CDF.
	4.3.52 CDFgetzVarMaxWrittenRecNum
	4.3.52.1. Example(s)

	The following example returns the maximum record number written for the zVariable “MY_VAR” in a CDF.
	4.3.53 CDFgetzVarName
	4.3.53.1. Example(s)

	The following example returns the name of the zVariable whose variable number is 1.
	4.3.54 CDFgetzVarNumDims
	4.3.54.1. Example(s)

	The following example returns the number of dimensions for zVariable “MY_VAR” in a CDF.
	4.3.55 CDFgetzVarNumElements
	4.3.55.1. Example(s)

	The following example returns the number of elements for the data type from zVariable “MY_VAR” in a CDF.
	4.3.56 CDFgetzVarNumRecsWritten
	4.3.56.1. Example(s)

	The following example returns the number of written records from zVariable “MY_VAR” in a CDF.
	4.3.57 CDFgetzVarPadValue
	4.3.57.1. Example(s)

	The following example returns the pad value from zVariable “MY_VAR”, a CDF_INT4 type variable, in a CDF.
	4.3.58 CDFgetzVarRecordData
	4.3.58.1. Example(s)

	The following example will read two full records (record numbers 2 and 5) from zVariable “MY_VAR”, a 2-dimension (2 by 3), CDF_INT4 type variable, in a CDF. The variable’s dimension variances are all VARY.
	4.3.59 CDFgetzVarRecVariance
	4.3.59.1. Example(s)

	The following example returns the record variance for the zVariable “MY_VAR” in a CDF.
	4.3.60 CDFgetzVarReservePercent
	4.3.60.1. Example(s)

	The following example returns the compression reserved percentage from the compressed zVariable “MY_VAR” in a CDF.
	4.3.61 CDFgetzVarSeqData
	4.3.61.1. Example(s)

	The following example will read the first two data values from the beginning of record number 2 (from a 2-dimensional zVariable whose data type is CDF_INT4) in a CDF.
	4.3.62 CDFgetzVarSeqPos
	4.3.62.1. Example(s)

	The following example returns the location for the current sequential value (position), the record number and indices within it, from a 2-dimensional zVariable named MY_VAR in a CDF.
	4.3.63 CDFgetzVarsMaxWrittenRecNum
	4.3.63.1. Example(s)

	The following example returns the maximum record number for all of the zVariables in a CDF.
	4.3.64 CDFgetzVarSparseRecords
	4.3.64.1. Example(s)

	The following example returns the sparse records type of the zVariable “MY_VAR” in a CDF.
	4.3.65 CDFhyperGetrVarData
	4.3.65.1. Example(s)

	4.3.66 CDFhyperGetzVarData
	4.3.66.1. Example(s)

	4.3.67 CDFhyperPutrVarData
	4.3.67.1. Example(s)

	4.3.68 CDFhyperPutzVarData
	4.3.68.1. Example(s)

	4.3.69 CDFinquirerVar
	4.3.69.1. Example(s)

	4.3.70 CDFinquirezVar
	4.3.70.1. Example(s)

	4.3.71 CDFputrVarData
	4.3.71.1. Example(s)

	The following example will write two data values, the first and the fifth element, in Record 0 from rVariable “MY_VAR”, a 2-dimensional (2 by 3), CDF_DOUBLE type variable, in a row-major CDF. The first put operation passes the pointer of the data val...
	4.3.72 CDFputrVarPadValue
	4.3.72.1. Example(s)

	The following example sets the pad value to –9999 for rVariable “MY_VAR”, a CDF_INT4 type variable, and “*****” for another rVariable “MY_VAR2”, a CDF_CHAR type with a number of elements of five (5), in a CDF.
	4.3.73 CDFputrVarRecordData
	4.3.73.1. Example(s)

	The following example will write one full record (numbered 2) from rVariable “MY_VAR”, a 2-dimension (2 by 3), CDF_INT4 type variable, in a CDF. The variable’s dimension variances are all VARY.
	4.3.74 CDFputrVarSeqData
	4.3.74.1. Example(s)

	The following example will write two data values starting at record number 2 from a 2-dimensional rVariable whose data type is CDF_INT4. The first write will pass in a pointer from the data value, while the second write will pass in the data value obj...
	4.3.75 CDFputzVarData
	4.3.75.1. Example(s)

	The following example will write two data values, the first and the fifth element, in Record 0 from zVariable “MY_VAR”, a 2-dimensional (2 by 3), CDF_DOUBLE type variable, in a row-major CDF. The first put operation passes the pointer of the data val...
	4.3.76 CDFputzVarPadValue
	4.3.76.1. Example(s)

	The following example sets the pad value to –9999 for zVariable “MY_VAR”, a CDF_INT4 type variable, and “*****” for another zVariable “MY_VAR2”, a CDF_CHAR type with a number of elements of five (5), in a CDF.
	4.3.77 CDFputzVarRecordData
	4.3.77.1. Example(s)

	The following example will write one full record (numbered 2) from zVariable “MY_VAR”, a 2-dimension (2 by 3), CDF_INT4 type variable, in a CDF. The variable’s dimension variances are all VARY.
	4.3.78 CDFputzVarSeqData
	4.3.78.1. Example(s)

	The following example will write two data values starting at record number 2 from a 2-dimensional zVariable whose data type is CDF_INT4. The first write will pass in a pointer from the data value, while the second write will pass in the data value obj...
	4.3.79 CDFrenamerVar
	4.3.79.1. Example(s)

	4.3.80 CDFrenamezVar
	4.3.80.1. Example(s)

	4.3.81 CDFsetrVarAllocBlockRecords
	4.3.81.1. Example(s)

	The following example allocates 10 records, from record numbered 10 to 19, for rVariable “MY_VAR” in a CDF.
	4.3.82 CDFsetrVarAllocRecords
	4.3.82.1. Example(s)

	The following example allocates 100 records, from record numbered 0 to 99, for rVariable “MY_VAR” in a CDF.
	4.3.83 CDFsetrVarBlockingFactor
	4.3.83.1. Example(s)

	The following example sets the blocking factor to 100 records for rVariable “MY_VAR” in a CDF.
	4.3.84 CDFsetrVarCacheSize
	4.3.84.1. Example(s)

	The following example sets the number of cache buffers to 10 for rVariable “MY_VAR” in a CDF.
	4.3.85 CDFsetrVarCompression
	4.3.85.1. Example(s)

	The following example sets the compression to GZIP.6 for rVariable “MY_VAR” in a CDF.
	4.3.86 CDFsetrVarDataSpec
	4.3.86.1. Example(s)

	The following example respecifies the data type to CDF_INT2 (from its original CDF_UINT2) for rVariable “MY_VAR” in a CDF.
	4.3.87 CDFsetrVarDimVariances
	4.3.87.1. Example(s)

	The following example resets the dimension variances to true (VARY) and true (VARY) for rVariable “MY_VAR”, a 2-dimensional variable, in a CDF.
	4.3.88 CDFsetrVarInitialRecs
	4.3.88.1. Example(s)

	The following example writes the initial 100 records to rVariable “MY_VAR” in a CDF.
	4.3.89 CDFsetrVarRecVariance
	4.3.89.1. Example(s)

	The following example sets the record variance to VARY (from NOVARY) for rVariable “MY_VAR” in a CDF.
	4.3.90 CDFsetrVarReservePercent
	4.3.90.1. Example(s)

	The following example sets the reserve percentage to 10 for rVariable “MY_VAR” in a CDF.
	4.3.91 CDFsetrVarsCacheSize
	4.3.91.1. Example(s)

	The following example sets the number of cache buffers to 10 for all rVariables in a CDF.
	4.3.92 CDFsetrVarSeqPos
	4.3.92.1. Example(s)

	The following example sets the current sequential value to the first value element in record number 2 for a rVariable, a 2-dimensional variable, in a CDF.
	4.3.93 CDFsetrVarSparseRecords
	4.3.93.1. Example(s)

	The following example sets the sparse records type to PAD_SPARSERECORDS from its original type for rVariable “MY_VAR” in a CDF.
	4.3.94 CDFsetzVarAllocBlockRecords
	4.3.94.1. Example(s)

	The following example allocates 10 records, from record numbered 10 to 19, for zVariable “MY_VAR” in a CDF.
	4.3.95 CDFsetzVarAllocRecords
	4.3.95.1. Example(s)

	The following example allocates 100 records, from record numbered 0 to 99, for zVariable “MY_VAR” in a CDF.
	4.3.96 CDFsetzVarBlockingFactor
	4.3.96.1. Example(s)

	The following example sets the blocking factor to 100 records for zVariable “MY_VAR” in a CDF.
	4.3.97 CDFsetzVarCacheSize
	4.3.97.1. Example(s)

	The following example sets the number of cache buffers to 10 for zVariable “MY_VAR” in a CDF.
	4.3.98 CDFsetzVarCompression
	4.3.98.1. Example(s)

	The following example sets the compression to GZIP.6 for zVariable “MY_VAR” in a CDF.
	4.3.99 CDFsetzVarDataSpec
	4.3.99.1. Example(s)

	The following example respecifies the data type to CDF_INT2 (from its original CDF_UINT2) for zVariable “MY_VAR” in a CDF.
	4.3.100 CDFsetzVarDimVariances
	4.3.100.1. Example(s)

	The following example resets the dimension variances to true (VARY) and true (VARY) for zVariable “MY_VAR”, a 2-dimensional variable, in a CDF.
	4.3.101 CDFsetzVarInitialRecs
	4.3.101.1. Example(s)

	The following example writes the initial 100 records to zVariable “MY_VAR” in a CDF.
	4.3.102 CDFsetzVarRecVariance
	4.3.102.1. Example(s)

	The following example sets the record variance to VARY (from NOVARY) for zVariable “MY_VAR” in a CDF.
	4.3.103 CDFsetzVarReservePercent
	4.3.103.1. Example(s)

	The following example sets the reserve percentage to 10 for zVariable “MY_VAR” in a CDF.
	4.3.104 CDFsetzVarsCacheSize
	4.3.104.1. Example(s)

	The following example sets the number of cache buffers to 10 for all zVariables in a CDF.
	4.3.105 CDFsetzVarSeqPos
	4.3.105.1. Example(s)

	The following example sets the current sequential value to the first value element in record number 2 for a zVariable, a 2-dimensional variable, in a CDF.
	4.3.106 CDFsetzVarSparseRecords
	4.3.106.1. Example(s)

	The following example sets the sparse records type to PAD_SPARSERECORDS from its original type for zVariable “MY_VAR” in a CDF.
	4.3.107 CDFvarClose8F
	4.3.107.1. Example(s)

	The following example will close an open rVariable in a multi-file CDF.
	4.3.108 CDFvarCreate9F
	4.3.108.1. Example(s)

	4.3.109 CDFvarGet10F
	4.3.109.1. Example(s)

	The following example returns two data values, the first and the fifth element, in Record 0 from an rVariable named MY_VAR, a 2-dimensional (2 by 3) CDF_DOUBLE type variable, in a row-major CDF. The first get operation passes the value pointer, while ...
	4.3.110 CDFvarHyperGet11F
	4.3.110.1. Example(s)

	4.3.111 CDFvarHyperPut12F
	4.3.111.1. Example(s)

	4.3.112 CDFvarInquire
	4.3.112.1. Example(s)

	4.3.113 CDFvarNum13F
	4.3.113.1. Example(s)

	In the following example CDFvarNum is used as an embedded function call when inquiring about an rVariable.
	4.3.114 CDFvarPut14F
	4.3.114.1. Example(s)

	The following example will write two data values (1st and 5th elements) of a 2-dimensional rVariable (2 by 3) named MY_VAR to record number 0.
	4.3.115 CDFvarRename15F
	4.3.115.1. Example(s)

	4.4 Attributes/Entries
	4.4.1 CDFattrCreate16F
	4.4.1.1. Example(s)

	4.4.2 CDFattrEntryInquire
	4.4.2.1. Example(s)

	4.4.3 CDFattrGet17F
	4.4.3.1. Example(s)

	4.4.4 CDFattrInquire18F
	4.4.4.1. Example(s)

	4.4.5 CDFattrNum19F

	CDFattrNum may be used as an embedded function call when an attribute number is needed.
	4.4.5.1. Example(s)
	4.4.6 CDFattrPut
	4.4.6.1. Example(s)

	4.4.7 CDFattrRename20F
	4.4.7.1. Example(s)

	In the following example the attribute named LAT is renamed to LATITUDE.
	4.4.8 CDFconfirmAttrExistence
	4.4.8.1. Example(s)

	The following example checks whether an attribute by the name of “ATTR_NAME1” is in a CDF.
	4.4.9 CDFconfirmgEntryExistence
	4.4.9.1. Example(s)

	The following example checks the existence of a gEntry numbered 1 for attribute “MY_ATTR” in a CDF.
	4.4.10 CDFconfirmrEntryExistence
	4.4.10.1. Example(s)

	The following example checks the existence of an rEntry, corresponding to rVariable “MY_VAR”, for attribute “MY_ATTR” in a CDF.
	4.4.11 CDFconfirmzEntryExistence
	4.4.11.1. Example(s)

	The following example checks the existence of the zEntry corresponding to zVariable “MY_VAR” for the variable attribute “MY_ATTR” in a CDF.
	4.4.12 CDFcreateAttr
	4.4.12.1. Example(s)

	4.4.13 CDFdeleteAttr
	4.4.13.1. Example(s)

	The following example deletes an existing attribute named MY_ATTR from a CDF.
	4.4.14 CDFdeleteAttrgEntry
	4.4.14.1. Example(s)

	The following example deletes the entry number 5 from an existing global attribute MY_ATTR in a CDF.
	4.4.15 CDFdeleteAttrrEntry
	4.4.15.1. Example(s)

	The following example deletes the entry corresponding to rVariable “MY_VAR1” from the variable attribute “MY_ATTR” in a CDF.
	4.4.16 CDFdeleteAttrzEntry
	4.4.16.1. Example(s)

	The following example deletes the variable attribute entry named MY_ATTR that is attached to the zVariable MY_VAR1.
	4.4.17 CDFgetAttrgEntry
	4.4.17.1. Example(s)

	4.4.18 CDFgetAttrgEntryDataType
	4.4.18.1. Example(s)

	The following example gets the data type for the gEntry numbered 2 from the global attribute “MY_ATTR” in a CDF.
	4.4.19 CDFgetAttrgEntryNumElements
	4.4.19.1. Example(s)

	The following example gets the number of elements from the gEntry numbered 2 from the global attribute “MY_ATTR” in a CDF.
	4.4.20 CDFgetAttrMaxgEntry
	4.4.20.1. Example(s)

	The following example gets the last entry number from the global attribute “MY_ATTR” in a CDF.
	4.4.21 CDFgetAttrMaxrEntry
	4.4.21.1. Example(s)

	The following example gets the last entry, corresponding to the last rVariable number, from the variable attribute “MY_ATTR” in a CDF.
	4.4.22 CDFgetAttrMaxzEntry
	4.4.22.1. Example(s)

	The following example gets the last entry, corresponding to the last zVariable number, attached to the variable attribute MY_ATTR in a CDF.
	4.4.23 CDFgetAttrName
	4.4.23.1. Example(s)

	The following example retrieves the name of the attribute number 2, if it exists, in a CDF.
	4.4.24 CDFgetAttrNum

	CDFgetAttrNum may be used as an embedded function call when an attribute number is needed.
	4.4.24.1. Example(s)
	4.4.25 CDFgetAttrrEntry
	4.4.25.1. Example(s)

	4.4.26 CDFgetAttrrEntryDataType
	4.4.26.1. Example(s)

	The following example gets the data type for the entry of rVariable “MY_VAR1” in the (variable) attribute “MY_ATTR” in a CDF.
	4.4.27 CDFgetAttrrEntryNumElements
	4.4.27.1. Example(s)

	The following example gets the number of elements for the entry of rVariable “MY_VAR1” in the (variable) attribute “MY_ATTR” in a CDF.
	4.4.28 CDFgetAttrScope
	4.4.28.1. Example(s)

	The following example gets the scope of the attribute “MY_ATTR” in a CDF.
	4.4.29 CDFgetAttrzEntry
	4.4.29.1. Example(s)

	4.4.30 CDFgetAttrzEntryDataType
	4.4.30.1. Example(s)

	The following example gets the data type of the attribute named MY_ATTR for the zVariable MY_VAR1 in a CDF.
	4.4.31 CDFgetAttrzEntryNumElements
	4.4.31.1. Example(s)

	The following example returns the number of elements for attribute named MY_ATTR for the zVariable MY_VAR1 in a CDF
	4.4.32 CDFgetNumAttrgEntries
	4.4.32.1. Example(s)

	The following example retrieves the total number of gEntries for the global attribute MY_ATTR in a CDF.
	4.4.33 CDFgetNumAttributes
	4.4.33.1. Example(s)

	The following example returns the total number of global and variable attributes in a CDF.
	4.4.34 CDFgetNumAttrrEntries
	4.4.34.1. Example(s)

	The following example returns the total number of rEntries from the variable attribute “MY_ATTR” in a CDF.
	4.4.35 CDFgetNumAttrzEntries
	4.4.35.1. Example(s)

	The following example returns the total number of zEntries for the variable attribute MY_ATTR in a CDF.
	4.4.36 CDFgetNumgAttributes
	4.4.36.1. Example(s)

	The following example returns the total number of global attributes in a CDF.
	4.4.37 CDFgetNumvAttributes
	4.4.37.1. Example(s)

	The following example returns the total number of variable attributes of a CDF.
	4.4.38 CDFinquireAttr
	4.4.38.1. Example(s)

	4.4.39 CDFinquireAttrgEntry
	4.4.39.1. Example(s)

	4.4.40 CDFinquireAttrrEntry
	4.4.40.1. Example(s)

	4.4.41 CDFinquireAttrzEntry
	4.4.41.1. Example(s)

	4.4.42 CDFputAttrgEntry
	4.4.42.1. Example(s)

	4.4.43 CDFputAttrrEntry
	4.4.43.1. Example(s)

	4.4.44 CDFputAttrzEntry
	4.4.44.1. Example(s)

	4.4.45 CDFrenameAttr
	4.4.45.1. Example(s)

	In the following example the attribute named LAT is renamed to LATITUDE.
	4.4.46 CDFsetAttrgEntryDataSpec
	4.4.46.1. Example(s)

	The following example modifies the third entry’s (entry number 2) data type of the global attribute MY_ATTR in a CDF. It will change its original data type from CDF_INT2 to CDF_UINT2.
	4.4.47 CDFsetAttrrEntryDataSpec
	4.4.47.1. Example(s)

	The following example modifies the data specification for an rEntry, corresponding to rVariable “MY_VAR”, in the variable attribute “MY_ATTR” in a CDF. It will change its original data type from CDF_INT2 to CDF_UINT2.
	4.4.48 CDFsetAttrScope
	4.4.48.1. Example(s)

	The following example changes the scope of the global attribute named MY_ATTR to a variable attribute (VARIABLE_SCOPE).
	4.4.49 CDFsetAttrzEntryDataSpec
	4.4.49.1. Example(s)

	The following example respecifies the data type of the attribute entry of the attribute named MY_ATTR that is associated with the zVariable MY_VAR. It will change its original data type from CDF_INT2 to CDF_UINT2.
	4.5 Quick Read Functions
	4.5.1 ReadCDF
	4.5.1.1. Example(s)

	4.5.2 ReadCDFGlobalAttributes
	4.5.2.1. Example(s)

	4.5.3 ReadCDFInfo
	4.5.3.1. Example(s)

	4.5.4 ReadCDFVariable
	4.5.4.1. Example(s)

	4.5.5 ReadCDFVariables
	4.5.5.1. Example(s)

	4.5.6 ReadCDFVariableAttributes
	4.5.6.1. Example(s)

	4.5.7 ReadCDFVariableData
	4.5.7.1. Example(s)

	4.5.8 ReadCDFVariableInfo
	4.5.8.1. Example(s)

	4.5.9 ReadCDFVariables
	4.5.9.1. Example(s)

	4.5.10 ReadCDFVariablesData
	4.5.10.1. Example(s)

	5 Interpreting CDF Status Codes
	The following example shows how you could check the status code returned from CDF functions.
	dim status as integer
	6 EPOCH Utility Routines
	6.1 computeEPOCH
	6.2 EPOCHbreakdown

	EPOCHbreakdown decomposes a CDF_EPOCH value into the individual components.
	6.3 toEncodeEPOCH
	6.4 encodeEPOCH
	6.5 encodeEPOCH1
	6.6 encodeEPOCH2
	6.7 encodeEPOCH3
	6.8 encodeEPOCH4
	6.9 encodeEPOCHx

	The supported component tokens and their default widths are as follows. . .
	6.10 toParseEPOCH
	6.11 parseEPOCH
	6.12 parseEPOCH1
	6.13 parseEPOCH2
	6.14 parseEPOCH3
	6.15 parseEPOCH4
	6.16 computeEPOCH16
	6.17 EPOCH16breakdown

	EPOCH16breakdown decomposes a CDF_EPOCH16 value into the individual components.
	6.18 toEncodeEPOCH16
	6.19 encodeEPOCH16
	6.20 encodeEPOCH16_1
	6.21 encodeEPOCH16_2
	6.22 encodeEPOCH16_3
	6.23 encodeEPOCH16_4
	6.24 encodeEPOCH16_x

	The supported component tokens and their default widths are as follows. . .
	6.25 toParseEPOCH16
	6.26 parseEPOCH16
	6.27 parseEPOCH16_1
	6.28 parseEPOCH16_2
	6.29 parseEPOCH16_3
	6.30 parseEPOCH16_4
	6.31 EPOCHtoUnixTime
	6.32 UnixTimetoEPOCH
	6.33 EPOCH16toUnixTime
	6.34 UnixTimetoEPOCH16

	7 TT2000 Utility Routines
	7.1 computeTT2000
	7.2 TT2000breakdown

	TT2000breakdown decomposes a CDF_TIME_TT2000 value into the individual components.
	7.3 toEncodeTT2000
	7.4 encodeTT2000
	7.5 toParseTT2000
	7.6 parseTT2000
	7.7 CDFgetLastDateinLeapSecondsTable
	7.8 TT2000toUnixTime
	7.9 UnixTimetoTT2000

	8 CDF Utility Methods
	8.1 CDFFileExists
	8.2 CDFgetChecksumValue
	8.3 CDFgetCompressionTypeValue
	8.4 CDFgetDataTypeValue
	8.5 CDFgetDecodingValue
	8.6 CDFgetEncodingValue
	8.7 CDFgetFormatValue
	8.8 CDFgetMajorityValue
	8.9 CDFgetSparseRecordValue
	8.10 CDFgetStringChecksum
	8.11 CDFgetStringCompressionType
	8.12 CDFgetStringDataType
	8.13 CDFgetStringDecoding
	8.14 CDFgetStringEncoding
	8.15 CDFgetStringFormat
	8.16 CDFgetStringMajority
	8.17 CDFgetStringSparseRecord
	8.18 DumpObject
	8.19 PrintDictionary

	9 CDF Exception Methods
	9.1 CDFgetCurrentStatus
	9.2 CDFgetStatusMsg
	Appendix A
	A.1 Introduction

	Error codes < CDF_WARN < Warning codes < CDF_OK < Informational codes
	A.2 Status Codes and Messages
	Appendix B
	B.1 VB-CDF APIs
	B.2 EPOCH Utility Methods
	B.3 CDF Utility Methods
	B.4 CDF Exception Methods

	Index

