CDF

Fortran Reference Manual

Version 3.9.2, September 1, 2025

Space Physics Data Facility
NASA / Goddard Space Flight Center

Space Physics Data Facility
NASA/Goddard Space Flight Center
Greenbelt, Maryland 20771 (U.S.A.)

This software may be copied or redistributed as long as it is not sold for profit, but it can be incorporated into any other
substantive product with or without modifications for profit or non-profit. If the software is modified, it must include
the following notices:

- The software is not the original (for protection of the original author’s reputations from any problems introduced
by others)

- Change history (e.g. date, functionality, etc.)

This copyright notice must be reproduced on each copy made. This software is provided as is without any express or
implied warranties whatsoever.

Internet: nasa-cdf-support@nasa.onmicrosoft.com

mailto:gsfc-cdf-support@lists.nasa.gov

Contents

1 COMPIIING ceueeeeeeeereeeeenneeeeeeeneeeeeesemmesss |
L1 VIMS/OPENVIMS SYSIEIMSuuvieeuiiieeiiieeeiteesetteesitteeiteessteessseeessseesssseesseeessesssssessssseesssseesssssessseesssseesssseesssseanss 2
1.2 TUNIX SYSERINIS c..uteeiiieeitieeitee ettt e ettt ettt ettt e ettt e ettt e s ettt e bt e e e bt e e ettt e smbe e e s mtee e st eesabeeesmbeeesmteeenateesbteesmnaeesaneeenns 2
1.3 Windows Systems, Digital Visual FOItranc.ccccuieiiiieiiiiieiiie e eieeeeeee e sieee st eseeeeseteeeseveesnaeesneeeenes 2

2 Linking..'."'.".'.......... 5
2.1 VAX/VMS & VAX/OPENVIMS SYSLEIMSeeuvieeirreriieeriieeniteeeiateesreesseeessseesssseesssneasssesssseesssseesssseesssseesssees 5
2.2 DEC AIPha/OPEnVIMS SYSLEINSccuvieeiiieeiiieriiieesiteeeitteesteeesreeesaseesseeesseeessseessssesssssessssssesssesssssessssseesssseenns 5
2.3 UNIX SYSTEIMS ..ottt ettt et et e et e et e et e et e et eeane e e sene e e aneeeaneesanneesaneeenaneees 6

2.3.1 Combining the Compile and Linkccceiiiiiiiiiiiiiiiieeciie e e be e erae e esreeeens 6
2.4 Windows Systems, Digital Visual FOItrancooooiiiiiiiiiiiiiiie et 6

3 Linking Shared CDF LibDrary....ccccccciiiiiiiiiiiissssssssssssssssssssss 9

3.1 VAX (VMS & OPENVMS) ..ottt ettt ettt ettt et et e bt e st e saeeembe e st aaseeenseanseaseeensesmseanseasneesnseenseanneas 9
3.2 DEC AIPha (OPENVIMS)...c ittt eeite et e et e et s e et e s st e e ssseeessseessseessseesnsaeeasseesnsseesnsaeesnseessseesnseeenns 10
3.3 SUN (SOLARIS). ettt ettt ettt ettt ettt et e e bt e e et e e ate e bt e eaeeemt e e tee bt e ameeemseenbeaaseeanseenseenbeenneas 10
3.4 HP 9000 (HP-UX) ...oeiiiiiieiieeiie ettt esttestte et e et e esttestteeaseesseesseassseasseasseasseassseanseanseaseassseanseanseesseesnseenseanseessnes 11
3.5 IBM RSO000 (ALX) ettt ettt ettt ettt et et esh e e e st et e e bt e ebeeeas e e bt e bt e aseeeate e bt e bt e anteenbeenbeenaeas 11
I B) D O N o) - I (O 1N 27) USSR 11
3.7 SGI (TRIX 6.X) ettt ettt ettt ettt ettt bt ettt et esb e e et et e e bt e e bt e at e et e e bt e e bt e e et e bt e bt e eh b e s e b e enaees 11
3.8 LINUX (PC & POWET PC) ...ttt ettt e e e e ettt e e e ettt e e e ettt aee s s nsaeeeeensssaaessannsaeeeennssaaeens 11
3.9 WIIAOWS 1.ttt ettt bt ettt e bt s bt e ot et e bt e bt e e et e et e e bt e ebe e s et e e bt e bt e sabeeabeebeenaees 12

4 Programming INterface........eeeeeiiiiiininnnnneeeeeiicciiisisnnnneeeeeeccccsssssnsssseeeeessesses 13

4.1 ACZUMENLE PASSINE....eiiiiieiiiieiiiee ittt eetteeiiee ettt esteeestteeetaeeesteeeaaseeenseeesseeenseeassseeanseeesseesnsseesnseeesnseesnnseesseens 13
4.2 THEM RETEICICING .. .eiiiviiiiiieiiiee et et ee ettt e et e e et e e et e e etbeeesteeeesbeeesbeeestseeesseeeasseeessseeessseesnsseessseeesssaesssseesnseens 14
4.3 Status Code CONSLANESo.ueieiiieeiiieeeiieeitee ettt e etteestteeestaee ettt e eteeasaseeeseeesaneeeanseeaanseeeaneeesaneeeanseeeanseesanseesnnens 14
4.4 CDF FOTMALS....eiiiiitiiiiite ittt ettt ettt ettt e ettt ettt ettt ettt e sabe e e s ettt ebte e e bt e e sabeeesmbeeenbteesbeeesabeees 14
I O B) S D 1 I 4 1< SO SPPP S SR 14
4.6 Datad ENCOMINES ...uveeeiiiieiiiieiiteeeite e iteeiee ettt e st e e st te ettt e enteeeeaseeasseeensseeenseeasnseeanseeesseesnseeeanseeeanseeenseensneas 15
4T Datd DECOGINESuveeeiiieiiiie ittt ettt ettt ettt e ettt e ettt e e ettt e bt e e ettt e eab et e embee e bt e e ettt e sbeeesabeeeaateesbeeennneeas 17
A Vo 10 (S 0 L PSP 18
4.9 RecOrd/DIiMENSION VAITANCESeertiertieriieiieetientie et eteesteestteseteenbeesbeeseteeateanseesaeeseseeabeeseesaeeeaseenbeenseesaeesnne 18
410 COMPIESSIONS ..euuvreeiiieettieateeeateeeauteeeatteestaeeaeteeeasteeabaeeaateeaamseeanseeeaseeeamseeeamseeaneeeeseeesaneeeamseeeanseesneeesneens 19
ZLTT SPAISEIIESS teeeuuerieeeeiiiieeeeiitteeeeeittteeeaatteeeeeauttaeessaatteeeeaasbaaeessssbeeesansbaaeessnnsaeeeeansbaeeesanbeeeeeansbbeeesannbaeeeenantaaeens 19

411.1T SPAISE RECOTAS ...vvvieeiiiiieeeeiiiiee ettt ettt e ettt e e e ettt e e e ettt e e e e e aabeeeeesstaaeesssnsaeeeeesssaeesenssseeeeennssnaessnnssees 20

L B BN o 1 I AN 5 ¢) £ TP UPPPPROP 20
412 ALLTIDULE SCOPES ..vvreirieeeiieitteeitieeeteeestteeetaeesteeessbeeatseeasteeeasseeasseeassseeassseessseeassseeesseessseessseeesssaessssesssees 20
4.13 REAA-ONLY MOAES.....c..eiiiiiiiiiiiiiecieete ettt ettt et ettt st et e sae e sat e et e bt e sbeeseteeabeenbeenane e 20
O A\ (T (< S OO OO P PO PO UPTOPPOON 21
o T T O 0 (o 2 001 (0T (<SPPSR 21
4,16 OpEratioNal LIMIIESeeeiiieiiiieeiiieeeiieeeiee ettt e eiee e st ee ettt e eteeesaseeeseseeesseesnseeassseeaanseeesseesnsseesnseeesnseesnsseesseens 21
4.17 Limits of Names and Other Character StrNEScccueiiruiiiiiiieiiii ettt s 21
4.18 Backward File Compatibility With CDF 2.7c..ccoiiiiiiiiiiiiiiiiiiiteiteec ettt 22
T L B) 1 T1e) < 11+ DO OSSPSR 23
4.20 Data ValIdAtiOnoeoueeiieiie ittt ettt ettt ettt e ettt e ettt e eate e e st e e e bt e e eabeeeem bt e e nte e e bt e e e bt e e anbeeeanteeeaneeeeneeas 25

L B L 2 Tl U 11T < OO PUPPRPPI 26

5 Standard INEEITACE c..ceuceeeeeeeeeeereereceeeeeeeereereecreecrseseesssecsssssssssssssssssssssssssssssssessee & 7

T B 01D) 315 g & (- 1 SO OUPPPPUUPTPPRNt 27
S.101 0 EXAMPLE(S) veeeuvrieiiieeiiiieeitee ettt e eiee et e e et e e ettt eeebeeetbeeestaeeesbeeesbeeessseeestaeeasaeeeasbeeetaeeentaeearbaeeanaaeenreeenraeas 28
5.2 CDF _attr @NLIY INQUITE....eeeiutreeieeeeteeesteeeettee ettt eeteeeseeeaesneeeaseeesseeeanseesaneeesaseeeanseeeanseessseesnsaeeanseesanseesnseeenns 28
TR B o5 &4) 1) I PSSP 29
I R O 5) o G (< S SRR UPSRRPR 30
oI T B 25 & 4) <) ISR 30
5.4 CDF At IIQUITE ..eeoutieiitieeiiie ettt ettt ettt ettt ettt ettt e e bt e e et eea bt e e eateesabeee st e e e sateeebteesabeeesateeesnbeeebeeesnbeeenas 31
R O o5 €0)) 1 PSSP 32
5.5 CDF Gt NUIML..c..uiiiiiieiiiiiee ettt e ettt e e ettt e e ettt e e e sttt eeeesbbaeee s ssaeeeeastbaeesannsseeesasssaaessansseeesansssneessnnsseeesannss 33
T T B 25 €141 o) (1) ISP 33
5.6 CDF At PUL ceoiiiiiiiieeiiieee ettt ettt e bttt e e sttt e e ettt e e e sttt e e e eabbeeessatbeee e s sbbaeessansaeeeeannsbaeeseansbaeesannss 34
T2 N 25 €111 o) (<) ISR USRI 35
IR 1) 315 g (<121 14 [PP UPPPPUPTPPRNt 35
S.7.1 0 EXAMPLE(S) veeiuvrieiiieeiiiieeitiee ettt e etee et eeertteeeabeeeeeseeetbeeestaeeesseeesseeessseeessseeasseeeasseeessseeensaeeasseeensneeenseeerraeas 36
R O B) S o1 (oYU 36
IR T B =5 &1 s)) I PSSP 37
IR I O B) S o2 < S PSPURSPSRRRPS 37
IR B o5 &4]) ISP 38
I (O O D) S«) [(OO UPR PP UPSRRRPPN 39
oI O B 2 111 o) (<t () TSP 39
N O B O B) S« [T USRS 39
T O B 2 < 111 o) (<t () TSR 40
T B Ol B] < 4 (o) PP UUPPPURPPPRRRNt 41
T B B 2 < 01 T () TR USRRPR 41
5.13 CDF_getrvarsreCOTAAAtAc..iieiiieiiieeiiieeeeie et e ette et te et eestaeestteeebeeestaeesssaeessseeensseaensaeennseeesseesnneennnes 42
oI B 20 B < 1411 o) (! () T OSSPSR RRURPRIRP 42
5.14 CDF_getzvarst@COTAAAtacocuieiiiriiiiiiiiiieit ettt ettt ettt ettt ettt ettt et esbe e st e et enbeeseeeeaneenbeennees 44
oI 3 R 2 < 1111 o) (T (£ T PSR PS 44
oI T OB) S 11| 53 (OSSR PSRUPSRIPS 45
oI G B 2 1111 o) (T () TSRS 46
I L D) 1<) WO TSR PRPPRUPSPRRRPP 47
oI LT B 2 111 o) (<t () TSP 48
5.17 CDF_putrvarsreCOTAAAta.couietieiiieiit ettt ettt ettt e sttt et e saeeeabe e bt e sbeeseeeeabeebeesneesnneenbeenaeas 48
T A N 2 < 111 o) (<! () TSRS 49
5.18 CDF _putzvarsreCOrddataccecvieiriiieiiieeiiieeiteesteeesteeesteestaeesstaeestseesssaeesssaeessseeassseesssseesssesessseesnsseennnes 50
T BT B 2 <1 01 T () TSRS 50
N I O B) S v o o 1o USRS 52
IR L B 2 <. 1111 o) (! () T OO R O SRR TRURPRRRP 52
5.20 CDF VAT CTEAE....c.uuiiiiiiieiiie et eeiiet ettt ettt et e et e ettt e st e s st e e ae e e st e st e e e st e e eeaeesanaeesanaeesaneeensneesanneenas 53
oI O R 25 1111 o) (! () T PSR PRP 53
I B 1) S v (<. PSPPSRSO 54
IR I B 2 1111 o) (<t () TSP 55
R O10) S 4. g 1) o 1) S -1 OSSP PPPUPSRRRPPN 56
I B 2 < 1111 o) (<! () TSP 57
523 CDF VAT MYPET PUL..eitiiiiiiiieiit ettt ettt ettt ettt sttt e b e s et et e bt e sa e e e et e bt e sbeeseeeembeenbeesneesmneenbeenneas 58
I B N 2 < 111 o) (<! () TSRS 59
5.24 CDF VAT INQUITC.....eceiuiieeiieeetteesreeeiteesteeesseessseesssaeesssaessseessseesssssasssessssssesssssesssesassseesssssessesessseesssseennses 60
IR B B < 101 1 () TSRS 61
I R O B) 7 o 110 11 DU PP UUPPPPRRPTPPRNt 61
I B 25 < 1111 o) (! () T RSSO RRURPRIRP 62
5.260 CDF VAT PUL.coiiiiiiiieiiie ettt ettt et et s e e st e et ee s e e st e e st e e e aa e e st e e st e e e st e e etneeeneee e 62
oI T B 25 < 1111 o) (T £ T PSSP 63
RV O10) S v/ g (<) -1 1 1 LIPS P SR UPSRRPS 64

IR T 2 < 1111 o) (<! () T PSP 64

6 Extended Standard INtEITACE.. ... ceeeeeereireeereeeeceeeereecreceesseecrsesesscsecsssssesssecses 07

LT R o) 1 PSSR SPSRRPS 67
6.1.1 CDF_get datatyPe SIZEccveeiiiiieririeeiiieeeitieeeteeesteeetteesteeessseeessseeesseessseeesssesesseessseesssesessseesssseessses 68
6.1.2 CDF_get Iib COPYTIZRE c..oeoiiiiiiiiiieeii ettt et ettt ettt sttt e bt e saneeneens 68
(O B O B) - A 1 T = 60 o) 1 W PSP 69
(O30 B I O] B) - ! 110 S o) PRSI 70

6.2 CDF et h e bttt et h e bt et e b e e bt e e bt st e b e e be e st e et e enaees 71
(3 B O] B) o] (o I o1 O O SR PTOTUPUTS 71
6.2.2 CDF _CTEate CAf......eiiiiiiiiiiiieeeitt ettt ettt ettt et s bt sttt et e eae e et e e bt esbeesaeeeareens 72
6.2.3 CDF _delete CAf....uiiiiiiiiiie ettt ettt et e e e e et e e et e e s rbe e e e sb e e e taeeetaeearbaeennbaeenreeenraeas 73
(O N O] D) - ot Te] 1 11 I/ SRR PS 74
6.2.5 CDF_Et CRECKSUIMcciiiiiiiiiieiiie ettt ettt e et e ettt e et e e st e e etaeeestaeessseeessseeesseesnsseessseeessseesnsseesnseees 75
6.2.6 CDF_get COMPIESS CACRESIZEieiuiiieiiiieiiii ettt ettt ettt ettt e ettt set e e it e ettt e e eteessbee e sateeeaeeesneeeas 76
6.2.7 CDF Ot COMPIESSIONuuieiuiieeriireeirieetteestaeaseseeesseessseesseeaasseeassseessseesseeassseesssseesnsseesssesesseesssseesssees 77
6.2.8 CDF_get COMPIESSION TN 0. ...cciiiiiiiiiiiiiiieiiieeieeeeiee ettt e eieeesbeeetaeeetaeessseeessseeesseesssaeessseeessseeesseessseees 78
6.2.9 CDF et COPYTIZNL .eoniiiiiiiiiiieiteeet ettt ettt sttt ettt sat e sttt et esae et e eteenbeesaneeareens 79
6.2.10 CDF _ZEt ACCOINGceeuiieiiiiieiiieeeiiee et ette et ee ettt e ettt e et e e ebeeetbeesssaeessseeessseeesseesnsseessseeessseeasseesnseens 79
(O B B O D) S (< A o7 T L' TSRS 80
(O N O D) S (< o) w1 T | PSS 81
6.2.13 CDF_get leapsecondlastupdated.............coiuiiiiiiiiiiiiiiiieiie ettt s 82
6.2.14 CDF_ZEt MAJOTIEY +eeuveeruriritieieerteentie et entee st eet et e st e sttt et et e steesae e eate et e esbeesateeteenbeesaeeemteenteenbeeenneenreens 83
6.2.15 CDF _ZEE NMAIMC ...cciiiuiiiiieeiiiieeeeiiiteeeeittee e ettt e eesittteeeesettteeeastaaeesasssseeeeansssaaessassseeesensssaaesssssseeesensseeeens 83
6.2.16 CDF_get negtoposfPO MOAE.......coouuiiiiiiiiiiii ettt ettt e e ete et e et eeneeeeaeeas 84
6.2.17 CDF_get readonly MOAEcccuviiriiiiiiieeiiieeiie et e et e et e eeteeesaeeetteesseeessbeeesseesssseessseeessseessseesnseees 85
6.2.18 CDF_get Stage CACRESIZE......coiuiiiiiiiiiiiieiiie ettt et et e et e et e e st e e seteeeaeeesneeeas 86
(O R A O B) S (< A 1§ U 1 SRS 87
6.2.20 CDF _ZEt VETISION ...cutiiiiieeitiieiiieeetteeesttee ettt eseseeestseeestseeasseeessseeesseeassseessseeesssesessseesssseesssesessseesssseessees 87
6.2.21 CDF_ZEt ZIMOGEcouiiiiiiiiiieiieitteete ettt et ettt ettt et s bt st et e st e sae e et e et e enbeesaneeareens 88
(O A O) S 11 Ta 11 (T o1 § PSSR PR 89
(O B O D) o) 1<) o N e b SRS 91
(O O D) St [T A T | SR 92
6.2.25 CDF _SEt CACRESIZEeeiuttieiiiiieeiiie ettt ettt ettt ettt e ettt e ab e e bt e e e et esebee e sateesbeeesneeeas 93
6.2.26 CDF_Set ChECKSUINc.uiiiiiiiiiiiticiic ettt et ettt sttt et sae et e e bt e sateeaneens 93
6.2.27 CDF_Set_COMPIESS CACNESIZEeeeevvieiiiieeiiieetieeeiee ettt e eteeeereeertaeeetteessseeessseeesseessaeessseeessseeesseessseens 94
6.2.28 CDF St COMPIESSION «...eeitiieiitieeiiieetteeeetieeetteeeattee ettt e eateeeastee e beeeaabeeesmseeeanseeeseeeeseeeanseeeanneeeaneeesnneeas 95
6.2.29 CDF _SEt_dECOMINE.....ccccuiiiiiiieiiieeeiie et e ettt eeteeesttee ettt e esbeeesebeeesseesssaeessseeessseeessseesssseessseeessseessseessseens 96
6.2.30 CDF St @NCOMINEZ. ... eeiuttieiiiiteiiiie ettt ettt ettt ettt ettt e ettt e ettt e s ettt e asbeeebeeesabteesmbeeesateesbeeesnneeas 97
(O B R O) Y A o) 013 | ARSI 98
6.2.32 CDF _set_leapsecondlastupdatedcc.eieeviiieiiiiiiie e eiee et ettt et re e e raeesnre e e seaeeeaaeeennaees 99
6.2.33 CDF _SEt IMAJOTIEY..ccveeruriritieieeiteentie et et sttt et e st e sttt et et e ste e sttt eaa e e teesbeesateeateenbeesaeeemteenteenbeesnneenneens 99
6.2.34 CDF _set_negtopoSTPO MOAECceviiiiiiieeiiie ettt et et e et e et e e b e e etaeeestaeesnseeessseeesneessneennns 100
6.2.35 CDF _set_1eadonly MOGE.ccoouiiiiiiiiiie ettt ettt et e ettt e et e e et e e et e et e e e neeeeaee e 101
6.2.36 CDF_SEt_Stage CACNESIZE ..uvvieriiieeiieeeiiieeeiiie ettt e ettt e iee e tee ettt e seteeessaeeesbeeenseeeenseeesnseeeanseeenneesnneeennns 102
6.2.37 CDF _SEt VAIIAALEeeiiiieiiiie ittt ettt e s ettt e et e e bt e et e e sttt e sebeeenbteeebeeesaeeennee 103
6.2.38 CDF _SEt ZIMOGEeotiiiiiiiiieiienite ettt et ettt sttt ettt et et e sbe ettt ettt enee 103

L A o -1 o) [OOSR UUPRRUPSROPIOt 104
(O T B O B) o] (o 1 OSSPSRt 104
6.3.2 CDF_CONfIrM _ZVAr EXISEEICEcuvvrervreerieeerireeeiiteeeteeeeteeestreeetteesssseessseeessseeassseesssseesssesesssessssseesssseennns 105
6.3.3 CDF_confirm zvar padvalue @XIST..........ccocouiiiiiiiiiiiiiiiit ittt ettt ettt et e e e s e 106
(O 2 O B) S (< 11 A 7 | OO OO PP PPPPORRUPPI 107
6.3.5 CDF _dCIEIE ZVATcccuiiiiiiieeiiie et e citeeetee et e et e e e teeeetbeeetbeessaaeessbaeeasseeessseeassaeeessseesssesessseeessseesnseennns 109
6.3.6 CDF _dElEtE ZVAT TECS ..c..viiurieiieriieiitietieniee sttt et ste ettt e bt sttt et e bt e sae e et eteesbeesasteateenteenbeesaneenee 110
6.3.7 CDF _delete Zvar I€CS TENUIMDETeeivieeitiieiiiieeeiieeeteeesiteeeiteessseeessseeessseeassseesssseesssesessseesssseesssseennns 111
6.3.8 CDF O INUIML ZVATS ...eeeutieiiuiieitieeetteeaiteeeatteesateeeeateeeasteeaaseeeaabeeeamteeaamseeaseee e seeeemseeaanseeeaneeeenneeesnneeennne 112
6.3.9 CDF_get var allreCOrdS VAIMAIMEcccueeerireeriiieeeiieeeieeeiteeeiaeesseeesseeessseeansseesseeesseeessseesssseessseeesnns 113

6.3.10 CDF _ZEE VAT TUITL....uiiiiiiiiiieeeiiiiieeeeiiteeeeeitteeeeeetteeeesatteeeeastaeeesassseessassseeessnssseessssssseesssssseessnnsssees 114

6.3.11 CDF_get var rangereCords NAIMIEc..ecoueeuierueerieerireeteenteenieeeeteenteesteesueeesseenseesteessseeseesseenseessneenses 115
6.3.12 CDF_get vars MAaxXWITtENIECIUINISeeeruveerrrreeereeerreeesereesssseessseessseeessseesssseesssssesssesessseesssseesssseennns 116
6.3.13 CDF_get zvar allrecordS Varid..........occuoeeiuieiiiieiiie ettt ettt ettt e et e et e e e e 117
6.3.14 CDF_get ZVAT AIIOCTECS ...eevvieiuiiieeiieeetieeeitee ettt e etee et ee e taee ettt esataeessseeesseeensseesnseeesnseeeanseesnneennnneennns 118
6.3.15 CDF_get zvar BlOCKINGTACTOTcoiiiiiiiiiiiiie ettt et et e et e st e 119
6.3.16 CDF_get ZVAr CACRESIZE.....ccueeruiiriiiiiiiiiiite ettt ettt ettt ettt et see et emee 120
6.3.17 CDF _Z€t ZVAI COMPIESSION ..eevviieiurieerireeerireeeitreeareeeaseeessseeasseesssseesssesesssesassseesssseesssesesssesessseesssseesnns 121
6.3.18 CDF_gEt ZVAT AL ...eeiiuiiiiiiieiiie ettt ettt e bt e et e e ettt e bt e e e bt e e ettt e et e e nteeeeneeeenneeeanae 122
6.3.19 CDF _get ZVAr AAtALYPE...ecciuiieiiiieiiieeeiieertee ettt e eteeeeree e tbeeetaeesssaeessseeesseeansseesssseesssesensseesssseesnsseennns 123
6.3.20 CDF_get ZVAT AIMISIZES ..eeivtieiiiieiiiie ettt ettt ettt ettt e sttt e sib e ettt e ettt e sttt e sebeeenbteeebeeesbeeennee 124
6.3.21 CDF_get Zvar dIMVATIANCEScceiuveerieeeririeesieeeeieeesteeessseessaeessaeessseeassseesasseessseeesssesesseesssseessseeesnns 125
6.3.22 CDF_get zvar mMaXallOCTECIUMcccviiirurieiiiieeerieeeieeeeiteeeieeeesteeessbeeetseeetseeesseeessseeessseeesseesssseesnns 126
6.3.23 CDF_get zvar MaxWITHENIECIIUIIL.eerutiriiirutienteenttentteeteenteestteeeteeteesteesueeeaeeeteesteesaeeemteesteenaeesaneeneee 127
6.3.24 CDF Ot ZVAI NAINE ..eeeevuvviieeeiiiiieeeeiiieeeeeiitteeeeiiteeeestttteeeatbaeeessttteeesanstaeeesassseeesasssaeeessnssseeesnnssseens 127
6.3.25 CDF_get Zvar NUMAIMSooiiiiieiiieeiiie ettt ettt e ettt e ettt e et e e eebee e beeeeseeeenbeeesnbeeeaneeeeaneeesnneeeanee 128
6.3.26 CDF_get Zvar NUMEICIMSc.eeeiiiieeiiieeeiieeeritee ettt ee e e teeeiaeesesteeseseeesseessseessseeesnseeessseeennneesnseeennns 129
6.3.27 CDF_get Zvar NUMIECS WITEIEI . .cuutiiiutieiitiieiiieeeitie ettt ettt e ettt e st eesitee ettt e ebeeessbeeesebeeenaeeeebeeesaeeennne 130
6.3.28 CDF_get zvar PadvalUue......c..ccoiiiiiiiiiniiiiieiieeeniec ettt ettt ettt et ettt e 131
6.3.29 CDF _get zvar rangereCords VAIQ..........cccvvieiiiieeirireeiieeeieeeiteeeteeesreeestreeetaeeesseeesssesessseeessseesssseennns 132
6.3.30 CDF_get zvar 1eCOTAAALAcccuuieiiiiiiiie ettt ettt ettt et e ettt e e bt e e et eesnteeeanteeesneeeenneeeanae 133
6.3.31 CDF _ZEt ZVAI TECVATIANCEeceuvveererreerireeerireesisreeareeeasseeessseessseesssseessseeessseesssseesssseesssesessseesssseesssseennns 134
6.3.32 CDF_gEt ZVAI TESEIVEPEICENLeeeiuiiieitieitiieiiteeeitieeniteeettee ettt e setteesatee ettt e ebeeesnbeeesmbeeenseeeebeeesneeennne 135
6.3.33 CDF_get ZVar SEQUALAceeeiiiiieiiieeeieeectee et e ettt e tee ettt e e taeeseteeesasee e sseeensneeenseeesnseeeanseeeanneeennneennns 136
6.3.34 CDF Ot ZVAT SEUPOS teeeeuvvrieeeeurrteeeaiitteeeeasittteeeaaisteeesasssseeeessssseeesasssseesssnssseesssnssseessssssseessssssseessnsssees 137
6.3.35 CDF_get zvars MaxWITHENIECIIUITLcovueirurirutieteenteentteeteenteenteeeetteteenteesueeeateenteesteesantenseenteenaeesaneennee 138
6.3.36 CDF_get ZVar SPArSEIECOTAS.......eerivrrerreeerireeeitieeetteesteeestteeetaeesssseessseeessseesssseesssseesssesessseesssseesssseennns 139
6.3.37 CDF_get zvars T€COTAAALAuiiiiiiiiiie ettt ettt et e ettt e et e e et eesmteeesneeeesneeesneeeanee 139
6.3.38 CDF _hyper et ZVar data...........ccccciieiiuieiiiieiiieeeiieeeiee e iee et e stteesaeeesbeeesaeessseeesnseeessseeenneesnnneennns 141
6.3.39 CDF_hyper put Zvar datacooouiiiiiiiiiiie ettt ettt e ettt et e et et e st 143
6.3.40 CDF _INQUITE ZVAT .eouveiiiiiiiiieiieniie it et entee sttt ettt e st st eattesteesteesete e bt esbeesuseeateeteesbeesasteateenteenbeesaneennee 145
6.3.41 CDF _put var allreCOrdS VAIMAIME........c.eeerveeeiireeerieeeieeesreeesireesseeessseeessseesssseesssseesssesesseesssseesssseesnns 147
6.3.42 CDF _put var rangereCOrdS NAIMEeeeiuueeriuieeatieeaiieeaiteeeteeestteeaeeeeaaseeeaaseeesseeesnseeeasseeeaneeesaseeesnne 148
6.3.43 CDF _put_zvar allteCordS VAridccoveeiiiiiiiiiieiieeeieeeeiee et e ettt e sreeestreeetaeeeseeesnseeessseessseessneennns 149
6.3.44 CDF _PUL ZVAT dATA ...eoiiiiiiiiiieiiiieetee ettt ettt ettt e et e et e e e bt e e ssbee ettt e ebeeesaeeennee 150
6.3.45 CDF _put zvar rangerecordS VATIA..........cccieiiiiieriiireeiieeriee et e ettt esteeesreeesaeesseeesseeessseessnneesnsneennns 152
6.3.46 CDF _put zvar re€COTAAATAc.eeeiiiiiiiiiieiiie ettt e eteeeetee ettt e et eeteeeseaeeetbeeetaeeesseeessseeessseeesseesnseesnns 153
6.3.47 CDF_put Zvar SEqAata........ccccervuiriiiriiiniiiiiiiteieentee sttt ettt sttt e st sttt e bt e sbe e sttt et et eneee 154
6.3.48 CDF _put zvars reCOTAUIALA.......c..eeiiiiieeiieeiieeeciieeeieeeeieeetee ettt e staeessbeeesseeesseessseeesssesessseeesseesssseennns 155
6.3.49 CDF _T@NAME ZVATceiiuiiiiiiieiiieeetieeeetee et ee e ette e et eeeestee ettt e ebeeeeabeeeameteesbee e seeeenseeeambeeeaneeeeaneeeenneeeanne 157
6.3.50 CDF _set_zvar alloChIOCKIECScccuviiiiieeiiiieeitieeeieeeeiee et e et e ette e st e ettt e esaeessaeesnseeessseesnseesnneennns 158
6.3.51 CDF _SEt_ZVAr AlLOCTECS ...couttieiuiiieiiie ettt ettt ettt ettt eset e ettt e ettt e e bt e esebeeenbteeebeeesaeeennee 159
6.3.52 CDF set zvar blockinGFactor..........ccceiiiiiiiiiiiiiieniciic ettt ettt 160
6.3.53 CDF _SEt_ZVAr CACNESIZE ...c.vviiieiiieeiiiieciieeiee ettt tee et e ettt e et e e e tbeeetbeeestbeeessaeessseeessseeesseesnseennns 161
6.3.54 CDF _SCt_ZVAI COMPIESSION. ..ccuuiieiutieeiutieeitteeaitteeateeeasteeeateeeabeeeaatteeaneeeaseeeaseeeenseeeanseeeaneeeeaneeesaneeeanne 161
6.3.55 CDF _SCt_ZVATr dAASPEC ...eeieurieiiiieriieeiiieertieeeitteeeteeeeteeestreeesaeesssaeessseeessseeasseesssseesssesessseesssseesssseesnns 162
6.3.56 CDF_Set ZVar dIMVATTAINCES. ..cuutteiutiiiiiieiitiieeitee ettt et ee ettt e ettt e sebt e e sttt e ettt e ebeeessbeeesnbeeenbeeeebeeesneeennee 163
6.3.57 CDF _SEt_ZVAr INTHAITECS ..eeuvieiiiieeiieeiiieeeiee et et iee ettt e et e st e e s eteeesaeeensaeeesseeesnseeeanseeenseesnneeennns 164
6.3.58 CDF _Set_ZVar PAAVAIUECeeeiiiieiiiieciieeciee ettt etee et e re e e tee e st e e s ebeeetbeeestseeessaeesssesessseeesseessseennns 165
6.3.59 CDF _SEt ZVAI TECVATIAIICE ..uveeuierurieutienieeniteeitteteentee sttt eateenteesteesetteteenteesuseeateenteesbeesastenteenteenaeesaneennee 166
6.3.60 CDF _SEt_ZVATI TESETVEPEICENLuviieeruirreeerrirreeeeairteeeeaiuttteeeaatteeesssseeeessssreeesssssseessssssseesssnsseeesnnnssees 167
6.3.61 CDF _SEt_ZVArS CACHESIZEieiiiieiiieeiitie ettt ettt ettt ettt e ettt e et e ettt e e bt e e e bt e e smteeeaneeeeaneeeenneeeanee 168
6.3.02 CDF _SEL_ZVAT SEOPOS.ceeeiutttieeeiiitteeiaititeeeaitttteeeaiiteeessatteeesabbbeeessatteeesansbbeeessstteeessssbbeeesanssseeesassaeeas 169
6.3.63 CDF _SEt ZVAr SPAISETECOTAS ..e.uvveeruiieeritieetiieittee ettt e et ee et ee ettt e sabteesebee ettt e ettt e ssbeeeasbeeensteeebeeesneeennne 170
TR N 1y 1oL oTd 21U o Lt PSSR 171

6.4.1 CDF_cOnfirm attr @XISTENCEeevvvieiiieeirieeiiieeiiieeeteeeeteeestbeeetaeessseeessseeesseeessseesssseesssesessseeessseesssseesnns 171

6.4.2

6.4.3

6.4.4

6.4.5

6.4.6

6.4.7

6.4.8

6.4.9

6.4.10
6.4.11
6.4.12
6.4.13
6.4.14
6.4.15
6.4.16
6.4.17
6.4.18
6.4.19
6.4.20
6.4.21
6.4.22
6.4.23
6.4.24
6.4.25
6.4.26
6.4.27
6.4.28
6.4.29
6.4.30
6.4.31
6.4.32
6.4.33
6.4.34
6.4.35
6.4.36
6.4.37
6.4.38
6.4.39
6.4.40
6.4.41
6.4.42

CDF_CONIrM_ GENLIY EXISTEIICE. ... vvieiurieerereeeriieeitieeiteeeseseeestseesteeesssaeessseeasssesesseesseeessseeenssessssseesssseens 172

CDF_CONfIrm TNty EXISEEICEeouvieutieriieriteeitieteentte ettt eteestee st eett et e steesateeateenbeesbaesantemaeenbeesaneeaeeenee 173
CDF_CONIrM_ZENIIY EXISTEICE ... viieurieeieiieiiieeitieesteeeseteeestreestaeesssaeessseesssseesnsseessseeessseesnssessnsseenssseens 174
(010 S (xS 11 SRS 175
(0D S 12 (1L o G PSSR 176
(010) S (<) (<1 S Vi n g o) 1L o TSROSO 177
CDF _delete attf TENIY ..eeeuiiiiiiiiiiiieieeniee sttt ettt sttt ettt st ettt st et et sbeesae e e et e nbeesaeeeaneeneee 177
CDF _dElete Attl ZENIIY ...couiiieiiieiiiieeieeesiteeeetteeetteesteeesebeestbeeesbaeesssaeessseeassseeessseesssaeesssaeesssessssseenssseens 178
(O10) S ot A 113 g LS 112 SRS TS 179
CDF_get attr gentry datAtYPE ...cccveeeeiieeeeiieeeiieeiteeeitee ettt esteeeseteesteeesreeesesaesssseesssaeesssaessssessnsseesnses 181
CDF _get attr gentry NUMEIEIS.ccouuiiiiiieiiiie ettt ettt ettt e et e st e sbee et e e et eesbeeesaeees 182
(01D - (1 11 o o0 - 0. G {3111 o OO PSSO PRI 183
(O)0) -1 1 ol o4 - 0. 1<) 01 U PPSPRURPP 183
CDF_get attr MAX ZENITY ..oeoouiiiiiiiieiiteeiie ettt ettt e e e e e e e s e e s e e esaneesnaeesaneee 184
(01D) S (< 113 o o V-1 L= PSPPSR 185
(O10) St A 113 g 1 L1 RSP URTR 186
(O10) S 110 g 100 =0 11 o (SRS 187
(O10) S ot A 113 g (L1 0 B () 112 3 [ST P USRI 188
CDF _get attr NUIM ZENEIIES ..eoveerueiriieiieeieeniteiite et etee e sttt esteesete st esbeesaaesabeeabeenbeesbaesareenneenneenanens 189
(010 - 1 11 o (=) 113) 2SSOSR 190
(O10) S A 113 g (3113 6 171 4 o1 RSP URTR 191
CDF_get attr rentry NUMEIEINScccuvieeeiireeiieeriteeeiieeeieeesaeeeseteesseeesseeesssaesssseessssessseessssessssseessees 192
(010 S ot A 113 g /0] oL TR PRSPPI 193
(01D - (1 117 /<) 113 5 2SSO OSSO PTUPTPPPRURPP 194
(010) (T 188 g3 L g o - 1714 o< SRR PU PP 196
CDF get attr Zentry NUMEIEIMSc..uiiuieiiiiiiiiieeieeicerit ettt ettt et et st ebe e e e e 197
(01D) S (< 110100 B 15 TSP 198
(O1D) St 1110 o 11 ¢ SRS 198
(01D) S (5 110100 7 113 ¢ D OSSO PPPR PP 199
(010) S 11 Ta 1133 TS s O OO PU RS 200
CDF _INQUITE T ZEIETY ..eeitiiiiieiieriie ittt ettt et ettt sttt et e sate st et e sbeesabeeabeenbeenbnesebeenneenaeenaneen 202
(010) I8 Vi Te 11T (S Ve g (<118 2SO TP PUR PP 203
(O10) I8 11 1o 1181 TS i /<) 112 RPN 205
(01D) S 01 LY n g {1111 o 2SRRI 206
(O10) I o101Vt s g (<) 12 SO P USRS 208
CDF _PUL_ AT ZENTIY .eeeiiiiiiiieeiiiiiee ettt ettt e e ettt e e s ettt e e s s abbbeeeseabaeeesansbbeeesennteeeesnnsbaeeas 209
(01D A (i 10 L 111 SRS 210
CDF _set attr gentry dataASPEC.......cccuerueeriiereerieeieenieeniteniteeteeniee st e et e saeeseteeabeesbeesenesereenbeenmeenaneas 211
CDF _set_attr 1entry dAtASPEC ...eeecveeeriieeeiieeeiieeriteeeitee ettt esseesseteessreessseeessseesssseesssaeessseesssseessseesnsens 212
(01D) SN s ol) o1 TP 213
CDF _set_attr Zentry datASPEC......ccueeeruuieriiieeniieertee ettt e ettt esseeeseteesseeesseeesnseesanseessaeesnseeessseesnsseesses 214

7 Internal Interface — CDF _LiD...ccccoviviiiiiiiiiiniiiisinssinsssssssssssssssssssssssssssssssssssseses 217

B B 5 V111, (<) PSPPSR 217
7.2 Current Objects/States (IEEIMIS)eeiuuiiiiiieiit ettt ettt et e ettt e st e e st e e st e e nateesbeeesaeees 219
A B 111 1STa BN 72110 S PP UPPPRURP 222
T4 INACNEALION/SEYIC ..viiiuiiiieiie ettt ettt ettt e ettt e et e e e bt e e sbe e e tbeeessaeesssaeessbeeesseeensaaessbaeeanbaeetbaeentseeenreas 223
B TN) 11 - - PSPPSR 223
7.5.1 MacintoSh, MPW FOItIan............oooiiiiiiiiiiiiiiiie et e e e e e e e e e e e e e e e e e eeennanannees 224
O 15 ¢ 1510 OSSPSR 224
R Y] (o) (<3 25101 o) PSSR 283
A T O < 1 T« DO OO USSP RUPURTRR 283
7.7.2 zVariable Creation (Character Data TYPE)cccueeruiiriiriiiiiiiienieeit ettt ettt ettt 283
7.7.3 Hyper Read wWith SUDSAMPIING.......cccciiiiiiiiiiiie ittt et e et e etaeeeaeeesbeeessseeesseessneennns 284
7.7.4 AHribute RENAMINGoooiiiiiiiiiiiie ettt et ettt et e ettt e ettt e e bt e e smbeeeanteeeaneeeeneeeanee 285

T.7.5 SEQUENTIAL ACCESS ..viivriiiiiieiitiie et e ettt e ettt e et e e ettt e eteeeeebeeetbeestaeesssaeeasseeessseeassseeessseesssesesssesesseessseennns 285
7.7.6 AUIIDULE TENITY WIIEESeeieiiiie ettt ettt e ettt e ettt e st e ettt e e nee e e st e e snseeesnseeeneeeeneeennne 286
7.7.77 MUltiple ZVariable WLc..ceiiiieiiiiieiiie et ettt e et e ettt e st e e e reeetbeeestaeesssaeesnseeensseessseessseennns 287

8 Interpreting CDF Status Codes.......cccevvvrrrrissssssssssssssssssssssssssssssssssessssssssssees 288

9 EPOCH Utility ROULINES....cccciiiiiiiiiiivrnnnnnniiicccssssssssnnsnnsecccsssssssssssssssssscssssssse 290

9.1

9.2

9.3

94

9.5

9.6

9.7

9.8

9.9

9.10
9.11
9.12
9.13
9.14
9.15
9.16
9.17
9.18
9.19
9.20
9.21
9.22
9.23
9.24
9.25
9.26
9.27
9.28
9.29
9.30
9.31
9.32
9.33
9.34

ComPUEE. EPOCH ..ottt ettt e et e ettt e st e e eenn e sneeenane 290
EPOCH _BIEaKAOWIviiiiiiieiiie ettt ettt et e et e e stbee e abaesstbeesssaeessseeasssaessssaesnsaeanssesensseesnsseennseeans 291
1101 1ot e[S 2 o O 1 O = USRS 291
ENCOAC EPOCHooiiiiiiiiiie ettt ettt e ettt e st e e et e ettt e easaeaesseeessee e sseeensseesnseeeanseeenseesseeennns 292
€NCOAE EPOCH ..ottt et ettt ettt e ettt e bt e ettt e ettt e sabeeenbteeebeeesbeeennee 292
eNCOAE EPOCHZ....couiiiiiiiiiiie ettt ettt ettt ettt e bt st st et enbeeseteeteenbeenae 293
€NCOAC EPOCHS ...ttt ettt e e et e e e et e e e tbeeestaeeesbaeessbeeessseeessseessseeeasseeessseesnsneennns 293
€NCOAE EPOCHA. ... ettt e e ettt ettt e e bt e e e bt e e aae e e be e e e bt e e smbeeeambeeeneeeeneeennne 293
ENCOAC EPOCHX.....ceiiiiiiiiieiiie ettt e e e et e e et e e et e e esabeeetbeesssaeeessaeesseeansseesnsseesnseeensseennseennsseennns 293
tOPATSE EPOCH ...ttt ettt ettt et e et e ettt e e et e e bt e st e et e e et e ebeeesateas 294
PATSE EPOCHoiiiiiiiiie ettt e sttt e e ettt e e e ettt e e e ettt e e s sabb e e e e aabbbeeeseabaeeeeas 295
PATSE EPOCH ..ottt ettt e et e e et e e e ettt e e e snetbeeeeesabaeeeeanstaeeeeanssseeeeanssaeaesassneeennns 295
PArSe EPOCHZ ... ettt et ettt et e et e eene e e sene e ean e e e e e enene 295
PATSE EPOCHS ..ottt e ettt e e e sttt e e e st eee e s aabb e e e e ettt eeeeenbbeeeeannbaeeeeentaeeeens 295
Jo) EIo 2 o O 1) = U OSSPSR 296
COMPULE. EPOCHTO ...coiiiiiiiieiie ettt e e bt e e s sttt e e e abbe e e s sttt e e ssanbbeeessanee 296
EPOCHIO DIeaKAOWILceouiiiiiiiieiiie ettt ettt ettt et e et e e bt e st e e st e e nateesneeesateas 296
t0NCOAE. EPOCHIO. ..ottt et ettt ettt et st et e nbe e sateeaneebeenae 297
ENCOAE EPOCHIO........cviiiiiiieiie ettt ettt ettt e et e e et e s be e e s abeeesabeeesaseesnbaaesaseeessseeenssaesnssaennseas 297
€NCOAE EPOCHTO L. ..ottt ettt et et e e et e et e e s bt e e et e e enteeenteesneeeeneeas 298
il o Lo IS 20 o O 1Ol = YU SUS 298
enCOde EPOCHIO 3. ..ottt ettt ettt ettt e st e st e e st e e nateesbteesaaeeesateas 298
S u Lo Lo IS B0 o @ T Ol = 0 Y USSP 299
ENCOAE EPOCHIO X..cuviiiiiiieiiieeiii ettt e ettt e e e e s tte e e tte e ettt e s teeesabeeessseeessseesnssaesssaeessseessssaesnsseennsens 299
tOPArSE EPOCHLOooiiiiiiiiic ettt ettt et e e e e 300
PATSE EPOCHLO oottt et ettt e e e ettt e e st e e e s sttt e e eensbbeeeesnabbeeesannbbeeesennraeeanns 300
Jo) e Io 2 o 013 = B L T U PUUPRPSNt 300
PATSE EPOCHTLO 2.ttt ettt e e e et e e sttt e e s sttt e e e s bbb e e e s sabbeeeesabbbeeesaasnaeeesns 301
PArSE EPOCHIO 3. ..ottt ettt e et e sttt e bt e ettt e ettt e smbeeensbeeebeeesneeennne 301
parse EPOCHIO 4.ttt et et e e e eean e e e e e 301
EPOCH _t0 UNIXTIIME. .. .eiiiiiiiiiiieiit ettt ettt ettt e ettt e et e e s vt e e stbeeesaseessseeessseeesssaesnsseesssaeessasensseennsens 301
UniXTime t0 EPOCH.coiiiiiiiee ettt ettt e et e et e e eeb e ettt e e bt e e e beeeemeeeeaneeeeneeeanee 302
EPOCHI6 t0 UNIXTIME.....utiiiiiieeiieeeieeeiieeeiteeetteesitee et e eaeeessaeeesaseesssaeesnseeessseessseesnsseessssessssassnssessnses 302
UniXTime t0 EPOCHLO........oiiiiiiiiieiiee ettt ettt et ettt e ettt e st eseteeebeeesneeennne 302

10 TT2000 Utility ROULINES..cccceeeeeeeeeeeeeeeeeeeeeeeeneeneeneeneeenseesessesssssssssssesssssssssssssees 303

101 comMPUE TT2000cooiiiiiiiieiiieet ettt ettt ettt e e bt e sttt e s st e e ebtee s bt eesabeeesateeesateesbteesataeesateas 303
10.2 TT2000 DIrEaKAOWN...c..viieiiiieiiieeiiteeiteeeite et e et e eteesaee e seeeasaeessseeesnseeeanseesasseesnseeesnsaessnseesnseessseesnsens 303
10.3 t0€NCOAE TT2000........ccuuiieiiieiieeeiieeetteeeteeerteeereeeteeesbeeeseseeesaeesssteessseeessseesssaessseessseeesssaessssesssseesnsees 304
L 3y Lo Yo [T 2 0O TS 304
10.5 tOPArSE TT2000.......ccciiiiiiieiiiiiiee ettt ee ettt e e ettt ee e ettt eeessatteeeeesstbaeeesssttteeesansbaeeessssseessanssaeeessnsseeesannsneeas 305
106 PArSE TT2000eeieieeiiieeeiiie ettt ettt ettt e ettt e ettt e e st e e e s et e ebeeeeabeeeamaeeeaneeeeneeesaneeesmteeeemteeeaneeesneeeennees 305
10.7 TT2000 from EPOCH.......coiiiiiiiiiiiii ettt ettt ettt ettt s ettt e bt esbe e sateebeenbee e 306
10.8 TT2000 t0 EPOCHcc.eiiiiiiiiiiiiieteett sttt sttt st sttt sttt bt et st eaeesaesaeeaenaeens 306
10.9 TT2000 from EPOCHIO......ccceiiiiiiiiiiiieierteeteste ettt ettt st sttt st e e st entesbeeeeentesbeetenneens 306
10.10 TT2000 t0 EPOCHIOeeiiiiiiee ettt ettt ettt ettt e bt e e et e ate et e nbeeenteenbeenbeenns 306
10.11 TT2000 t0 UNIXTIIMIC ..ceeueeiietiieeiieeeitie ettt ettt e ettt e et e et e ettt e s e e e emeeeeameeeeaneeesaneeesmteeeemteeeneeesneeesnnees 307

10.12 UniXTime t0 TT2000........cccccuieeiiieerieerieeeritteesteeeetteesteeeseseesssaeessseesseeessseesssseesssseessssessssesssssessnsseessees 307

Chapter 1

1 Compiling

Each program, subroutine, or function that calls the CDF library or references CDF parameters must include one or
more CDF include files. On VMS systems a logical name, CDFS$INC, that specifies the location of the CDF include
files is defined in the definitions files, DEFINITIONS.COM, provided with the CDF distribution. On UNIX systems
(including Mac OS X) an environment variable, CDF INC, that serves the same purpose is defined in the definitions
files definitions.<shell-type> where <shell-type> is the type of shell being used: C for the C-shell (csh and tcsh), K for
the Korn (ksh), BASH, and POSIX shells, and B for the Bourne shell (sh). This section assumes that you are using the
appropriate definitions files on those systems. The location of cdf.inc is specified as described in the appropriate
sections for those systems.

On VMS and UNIX systems the following line would be included at/near the top of each routine:
INCLUDE '<inc-path>cdf.inc'

where <inc-path> is the files name of the directory containing cdf.inc. On VMS systems CDF$INC: may be used for
<inc-path>. On UNIX systems <inc-path> must be a relative or absolute files name. (An environment variable may
not be used.) Another option would be to create a symbolic link to cdf.inc (using In -s) making cdf.inc appear to be in
the same directory as the source files to be compiled. In that case specifying <inc-path> would not be necessary. On
UNIX systems you will need to know where on your system cdf.inc has been installed.

The cdf.inc include files declares the FUNCTIONSs available in the CDF library (CDF var num, CDF lib, etc.). Some
Fortran compilers will display warning messages about unused variables if these functions are not used in a routine
(because they will be assumed to be variables not function declarations). Most of these Fortran compilers have a
command line option (e.g., -nounused) that will suppress these warning messages. If a suitable command line option is
not available (and the messages are too annoying to ignore), the function declarations could be removed from cdf.inc
but be sure to declare each CDF function that a routine uses. !

Digital Visual Fortran'

On Windows NT/2000/XP systems using Digital Visual Fortran, the following lines would be included at the top of
each routine/source files:

(PROGRAM, SUBROUTINE, or FUNCTION statement)

! Normally, you need to run DFVARS.BAT in bin directory to set up the proper environment from the command
prompt.

INCLUDE 'cdfdvf.inc'
INCLUDE 'cdfdf.inc'

The include files cdfdvf.inc contains an INTERFACE statement for each subroutine/function in the CDF library.
Including this files is absolutely essential no matter if you are using the Internal Interface (CDF lib) or Standard
Interface (e.g., CDF create, etc.) cdfdvf.inc is located in the same directory as cdf.inc. The include file cdfdf.inc is
similar to cdfdf.inc, with some statements commented out for Digital Visual Fortran compiler.

1.1 VMS/OpenVMS Systems

An example of the command to compile a source file on VMS/OpenVMS systems would be as follows:

$ FORTRAN <source-name>

where <source-name> is the name of the source file being compiled. (The .FOR extension is not necessary.) The
object module created will be named <source-name>.OBJ.

NOTE: If you are running OpenVMS on a DEC Alpha and are using a CDF distribution built for a default double-

precision floating-point representation of D FLOAT, you will also have to specify /FLOAT=D FLOAT on the CC
command line in order to correctly process double-precision floating-point values.

1.2 UNIX Systems

An example of the command to compile a source file on UNIX flavored systems would be as follows:?
s £77 -c <source-name>.f
where <source-file>.f is the name of the source file being compiled. (The .f extension is required.)

The -c option specifies that only an object module is to be produced. (The link step is described in Chapter 2.) The
object module created will be named <source-name>.o.

1.3 Windows Systems, Digital Visual Fortran

An example of the command to compile a source file on Windows NT/95/98 systems using Digital Visual Fortran
would be as follows:3

> DF /c /iface:nomixed strfilesn arg /nowarn /optimize:0 /I<inc-path> <source-name>.f

2 The name of the Fortran compiler may be different depending on the flavor of UNIX being used.
3 This example assumes you have properly set the MS-DOS environment variables used by the Digital Visual Fortran
compiler.

where <source-name>.f is the name of the source file being compiled (the .f extension is required) and <inc-path> is
the file name of the directory containing cdfdvf.inc and cdfdf.inc. You will need to know where on your system
cdfdvf.inc and cdfdf.inc have been installed. <inc-path> may be ecither an absolute or relative file name.

The /c option specifies that only an object module is to be produced. (The link step is described in Chapter 2.) The
object module will be named <source-name>.ob.

The /iface:nomixed str len arg option specifies that Fortran string arguments will have their string lengths appended to
the end of the argument list by the compiler.

The /optimize:0 option specifies that no code optimization is done. We had a problem using the default optimization.
The /nowarn option specifies that no warning messages will be given.

You can run the batch files, DFVARS.BAT, came with the Digital Visual Fortran, to set them up.

Chapter 2

2 Linking

Your applications must be linked with the CDF library.* Both the Standard and Internal interfaces for C applications are
built into the CDF library. On VMS systems a logical name, CDF$LIB, which specifies the location of the CDF library,
is defined in the definitions file, DEFINITIONS.COM, provided with the CDF distribution. On UNIX systems (including
Mac OS X) an environment variable, CDF_LIB, which serves the same purpose, is defined in the definitions file
definitions.<shell-type> where <shell-type> is the type of shell being used: C for the C-shell (csh and tcsh), K for the
Korn (ksh), BASH, and POSIX shells, and B for the Bourne shell (sh). This section assumes that you are using the
appropriate definitions file on those systems. On MS-DOS and Macintosh (MacOS) systems, definitions files are not
available. The location of the CDF library is specified as described in the appropriate sections for those systems.

21 VAX/VMS & VAX/OpenVMS Systems

An example of the command to link your application with the CDF library (LIBCDF.OLB) on VAX/VMS and
VAX/OpenVMS systems would be as follows:

$ LINK <object-file(s)>, CDF$LIB:LIBCDF/LIBRARY
where<object-file(s)> is your application's object module(s). (The .OBJ extension is not necessary.) The name of the
executable created will be the name part of the first object file listed with .EXE appended. A different executable name
may be specified by using the /EXECUTABLE qualifier.

It may also be necessary to specify SYSSLIBRARY:VAXCRTL/LIBRARY at the end of the LINK command if your
system does not properly define LNKSLIBRARY (or LNKSLIBRARY 1, etc.).

2.2 DEC Alpha/OpenVMS Systems

4 A shareable version of the CDF library is also available on VMS and some flavors of UNIX. Its use is described in
Chapter 3. A dynamic link library (DLL), LIBCDF.DLL, is available on MS-DOS systems for Microsoft and Borland
Windows applications. Consult the Microsoft and Borland documentation for details on using a DLL. Note that the DLL
for Microsoft is created using Microsoft C 7.00.

An example of the command to link your application with the CDF library (LIBCDF.OLB) on DEC Alpha/OpenVMS
systems would be as follows:

$ LINK <object-file(s)>, CDFS$LIB:LIBCDF/LIBRARY, SYSSLIBRARY:<crtl>/LIBRARY

where <object-file(s)> is your application's object module(s) (the .OBJ extension is not necessary) and <crtl> is
VAXCRTL if your CDF distribution is built for a default double-precision floating-point representation of G FLOAT or
VAXCRTLD for a default of D FLOAT. (You must specify a VAX C run-time library because the CDF library is
written in C.) The name of the executable created will be the name part of the first object file listed with .EXE appended.
A different executable name may be specified by using the /EXECUTABLE qualifier.

2.3 UNIX Systems

An example of the command to link your application with the CDF library (libcdf.a) on UNIX flavored systems would
be as follows:

% £77 <object-file(s)>.o ${CDF_LIB}/libcdf.a

where <object-file(s)>.0 is your application's object module(s). (The .o extension is required.) The name of the
executable created will be a.out by default. It may also be explicitly specified using the —o option. Some UNIX systems
may also require that -lc (the C run-time library), -Im (the math library), and/or -1dl (the dynamic linker library) be
specified at the end of the command line. This may depend on the particular release of the operating system being used.
Note that in a “makefile” where CDF_LIB is imported, $(CDF_LIB) would be specified instead of ${CDF LIB}.

2.3.1 Combining the Compile and Link

On UNIX systems the compile and link may be combined into one step as follows:

$ £77 <source-file(s)>.f ${CDF _LIB}/libcdf.a

where <source-file(s)>.f is the name of the source file(s) being compiled/linked. (The .f extension is required.) Some
UNIX systems may also require that -Ic, -Im, and/or -1d1 be specified at the end of the command line. Note that in a
“makefile” where CDF_LIB is imported, $(CDF_LIB) would be specified instead of ${CDF LIB}.

2.4 Windows Systems, Digital Visual Fortran

NOTE: Even though your application is written in Fortran and compiled with a Fortran compiler, compatible C run-
time system libraries (as supplied with Microsoft Visual C++) will be necessary to successfully link your application.
This is because the CDF library is written in C and calls C run-time system functions.

An example of the command used to link an application to the CDF library (LIBCDF.LIB) on Windows NT/95/98
systems using Digital Visual Fortran and Microsoft Visual C++ would be as follows:?

> LINK <objs> <lib-path>libcdf.lib /out:<name.exe> /nodefaultlib:libcd

5 This example assumes you have properly set the MS-DOS environment variables (e.g., LIB should be set to include
directories that contain C's LIBC.LIB and Fortran's DFOR.LIB.)

where <objs> is your application's object module(s) (the .obj extension is necessary); <name.exe> is the name of the
executable file to be created and <lib-path> is the file name of the directory containing LIBCDF.LIB. You will need to
know where on your system LIBCDF.LIB has been installed. <lib-path> may be either an absolute or relative file
name.

The /nodefaultlib:libcd option specifies that the LIBCD.LIB is to be ignored during the library search for resolving
references.

Chapter 3

3 Linking Shared CDF Library

A shareable version of the CDF library is also available on VMS systems, some flavors of UNIX®, Windows NT/95/987
and Macintosh.® The shared version is put in the same directory as the non-shared version and is named as follows:

Machine/Operating System Shared CDF Library
VAX (VMS & OpenVMS) LIBCDF.EXE
DEC Alpha (OpenVMS) LIBCDF.EXE
Sun (SOLARIS) libedf.so

HP 9000 (HP-UX)’ libedf.sl

IBM RS6000 (AIX)* libcdf.o

DEC Alpha (OSF/1) libedf.so

SGi (6.x) libedf.so
Linux (PC & Power PC) libedf.so
Windows NT/2000/XP dllcdf.dll
Macintosh OS X* libedf.dylib

The commands necessary to link to a shareable library vary among operating systems. Examples are shown in the
following sections.

31 VAX (VMS & OpenVMS)

$ ASSIGN CDFSLIB:LIBCDF.EXE CDFSLIBCDFEXE
$ LINK <object-file(s)>, SYSSINPUT:/OPTIONS
CDF$LIBCDFEXE/SHAREABLE

® On UNIX systems, when executing a program linked to the shared CDF library, the environment variable
LD LIBRARY PATH must be set to include the directory containing libcdf.so or libedf.sl.

7 When executing a program linked to the dynamically linked CDF library (DLL), the environment variable PATH must
be set to include the directory containing dllcdf.dIL

8 On Mac systems, when executing a program linked to the shared CDF library, dlledf.ppc or dllcdf.68k must be copied
into System's Extension folder.

% Not yet tested. Contact Nasa-cdf-support@nasa.onmicrosoft.com to coordinate the test.

mailto:GSFC-CDF-support@lists.nasa.gov

SYSSSHARE : VAXCRTL/SHAREABLE
<Control-Z>
$ DEASSIGN CDFSLIBCDFEXE

where<object-file(s)> is your application's object module(s). (The .OBJ extension is not necessary.) The name of the
executable created will be the name part of the first object file listed with .EXE appended. A different executable name
may be specified by using the /EXECUTABLE qualifier.

NOTE: on VAX/VMS and VAX/OpenVMS systems the shareable CDF library may also be installed in SYS$SHARE.
If that is the case, the link command would be as follows:

$ LINK <object-file(s)>, SYSSINPUT:/OPTIONS
SYSSSHARE : LIBCDF/SHAREABLE
SYSSSHARE : VAXCRTL/SHAREABLE
<Control-Z>

3.2 DEC Alpha (OpenVMS)

$ ASSIGN CDFSLIB:LIBCDF.EXE CDFSLIBCDFEXE

$ LINK <object-file(s)>, SYSSINPUT:/OPTIONS
CDFSLIBCDFEXE/SHAREABLE
SYSSLIBRARY:<crtl>/LIBRARY
<Control-Z>

$ DEASSIGN CDFS$SLIBCDFEXE

where <object-file(s)> is your application's object module(s) (the .OBJ extension is not necessary) and <crtl> is
VAXCRTL if your CDF distribution is built for a default double-precision floating-point representation of G FLOAT or
VAXCRTLD for a default of D_ FLOAT or VAXCRTLT for a default of IEEE_FLOAT. (You must specify a VAX C
run-time library [RTL] because the CDF library is written in C.) The name of the executable created will be the name
part of the first object file listed with .EXE appended. A different executable name may be specified by using the
/EXECUTABLE qualifier.

NOTE: on DEC Alpha/OpenVMS systems the shareable CDF library may also be installed in SYS$SHARE. If that is
the case, the link command would be as follows:

$ LINK <object-file(s)>, SYSSINPUT:/OPTIONS
SYS$SHARE : LIBCDF/SHAREABLE

SYSSLIBRARY:<crtl>/LIBRARY
<Control-z>

3.3 SUN (SOLARIS)

$ £77 -o <exe-file> <object-file(s)>.o ${CDF_LIB}/libcdf.so -lc -1lm
where <object-file(s)>.0 is your application's object module(s) (the .o extension is required) and <exe-file> is the name

of the executable file created. Note that in a “makefile” where CDF _LIB is imported, $(CDF_LIB) would be specified
instead of ${CDF_LIB}.

10

3.4 HP 9000 (HP-UX)

$ £77 -o <exe-file> <object-file(s)>.o0 ${CDF_LIB}/libcdf.sl -lc -1m

where <object-file(s)>.0 is your application's object module(s) (the .o extension is required) and <exe-file> is the name
of the executable file created. Note that in a “makefile” where CDF_LIB is imported, $(CDF_LIB) would be specified
instead of ${CDF LIB}.

3.5 IBM RS6000 (AIX)

$ £77 -o <exe-file> <object-file(s)>.o -L${CDF_LIB} ${CDF LIB}/libcdf.o -lc -1m

where <object-file(s)>.0 is your application's object module(s) (the .o extension is required) and <exe-file> is the name
of the executable file created. Note that in a “makefile” where CDF_LIB is imported, $(CDF_LIB) would be specified
instead of ${CDF LIB}.

3.6 DEC Alpha (OSF/1)

$ £77 -o <exe-file> <object-file(s)>.o ${CDF_LIB}/libcdf.so -1lm -1c

where <object-file(s)>.0 is your application's object module(s) (the .o extension is required) and <exe-file> is the name
of the executable file created. Note that in a “makefile” where CDF_LIB is imported, $(CDF_LIB) would be specified
instead of ${CDF LIB}.

3.7 SGi (IRIX 6.x)

$ £77 -o <exe-file> <object-file(s)>.o ${CDF_LIB}/libcdf.so -lm -1c

o

where <object-file(s)>.0 is your application's object module(s) (the .o extension is required) and <exe-file> is the name
of the executable file created. Note that in a “makefile” where CDF_LIB is imported, $(CDF_LIB) would be specified
instead of ${CDF LIB}.

3.8 Linux (X86 & Power PC)

% gfortran -o <exe-file> <object-file(s)>.o ${CDF_LIB}/libcdf.so -1lm -1c

where <object-file(s)>.0 is your application's object module(s) (the .o extension is required) and <exe-file> is the name
of the executable file created. Note that in a “makefile” where CDF_LIB is imported, $(CDF_LIB) would be specified
instead of ${CDF LIB}.

11

3.9 Windows

)

% link /out:<exe-file>.exe <object-file(s)>.obj <lib-path>dllcdf.lib
/nodefaultlib:libcd

where <object-file(s)>.obj is your application's object module(s) (the .obj extension is required) and <exe-file>.exe is the
name of the executable file created, and <lib-path> may be either an absolute or relative directory name that has dllcdf.lib.

The environment variable LIB has to set to the directory that contains LIBC.LIB. Your PATH environment variable
needs to be set to include the directory that contains dllcdf.dll when the executable is run.

3.10 Mac OS (X86_64 & ARM)

$ gfortran -o <exe-file> <object-file(s)>.o $CDF_LIB/libcdf.dylib -lc -1m
where <object-file(s)>.o is your application's object module(s) (the .0 extension is required) and <exe-file> is the name

of the executable file created. Note that in a “makefile” where CDF_LIB is imported, $(CDF_LIB) would be specified
instead of ${CDF_LIB}.

12

Chapter 4

4 Programming Interface

The following sections describe various aspects of the Fortran programming interface for CDF applications. These
include constants and types defined for use by all CDF application programs written in Fortran. These constants and
types are defined in cdf.inc. The file cdf.inc should be INCLUDE-ed in all application source files referencing CDF
routines/parameters.

4.1 Argument Passing

The CDF library is written entirely in C. Most computer systems have Fortran and C compilers that allow a Fortran
application to call a C function without being concerned that different programming languages are involved. The CDF
library takes advantage of the mechanisms provided by these compilers so that your Fortran application can appear to
be calling another Fortran subroutine/function (in actuality the CDF library written in C). Pass all arguments exactly as
shown in the description of each CDF function. This includes character strings (i.e., %REF(...) is not required). Be
aware, however, that trailing blanks on variable and attribute names will be considered as part of the name. If the
trailing blanks are not desired, pass only the part of the character string containing the name (e.g., VAR NAME(1:8)).

NOTE: Unfortunately, the Microsoft C and Microsoft Fortran compilers on the IBM PC and the C and Fortran
compilers on the NeXT computer do not provide the needed mechanism to pass character strings from Fortran to C
without explicitly NUL terminating the strings. Your Fortran application must place an ASCII NUL character after the
last character of a CDF, variable, or attribute name. An example of this follows:

CHARACTER ATTR NAME*9 ! Attribute name

ATTR NAME (1:8) 'VALIDMIN' ! Actual attribute name
ATTR NAME (9:9) = CHAR(O) ! ASCII NUL character

CHAR(O0) is an intrinsic Fortran function that returns the ASCII character for the numerical value passed in (0 is the
numerical value for an ASCII NUL character). ATTR_NAME could then be passed to one of the CDF library
functions.

13

When the CDF library passes out a character string on an IBM PC (using the Microsoft compilers) or on a NeXT
computer, the number of characters written will be exactly as shown in the description of the function called. You must
declare your Fortran variable to be exactly that size.

4.2 Item Referencing

For Fortran applications all items are referenced starting at one (1). These include variable, attribute, and attribute entry
numbers, record numbers, dimensions, and dimension indices. Note that both rVariables and zVariables are numbered
starting at one (1).

4.3 Status Code Constants

These constants are of type INTEGER*4.
CDF_OK A status code indicating the normal completion of a CDF function.
CDF_WARN Threshold constant for testing severity of non-normal CDF status codes.

Chapter 8 describes how to use these constants to interpret status codes.

4.4 CDF Formats

SINGLE FILE The CDF consists of only one file. This is the default file format.

MULTI FILE The CDF consists of one header file for control and attribute data and one additional
file for each variable in the CDF.

4.5 CDF Data Types

One of the following constants must be used when specifying a CDF data type for an attribute entry or variable.

CDF_BYTE 1-byte, signed integer.
CDF _CHAR 1-byte, signed character.
CDF _INT1 1-byte, signed integer.
CDF_UCHAR 1-byte, unsigned character.
CDF UINT1 1-byte, unsigned integer.

14

CDF_INT2 2-byte, signed integer.

CDF_UINT2 2-byte, unsigned integer.
CDF_INT4 4-byte, signed integer.
CDF_UINT4 4-byte, unsigned integer.
CDF_INT8 8-byte, signed integer.
CDF _REAILA4 4-byte, floating point.
CDF_FLOAT 4-byte, floating point.
CDF_REALS 8-byte, floating point.
CDF _DOUBLE 8-byte, floating point.
CDF_EPOCH 8-byte, floating point.
CDF _EPOCHI16 two 8-byte, floating point.
CDF_ETIME_TT2000 8-byte, signed integer.

CDF_CHAR and CDF_UCHAR are considered character data types. These are significant because only variables of
these data types may have more than one element per value (where each element is a character).

NOTE: When using a DEC Alpha running OSF/1 keep in mind that a long is 8 bytes and that an int is 4 bytes. Use int
C variables with the CDF data types CDF INT4 and CDF_UINT4 rather than long C variables.

NOTE: When using an PC (MS-DOS) keep in mind that an int is 2 bytes and that a long is 4 bytes. Use long C variables
with the CDF data types CDF _INT4 and CDF UINT4 rather than int C variables.

4.6 Data Encodings

A CDF's data encoding affects how its attribute entry and variable data values are stored (on disk). Attribute entry and
variable values passed into the CDF library (to be written to a CDF) should always be in the host machine's native
encoding. Attribute entry and variable values read from a CDF by the CDF library and passed out to an application will
be in the currently selected decoding for that CDF (see the Concepts chapter in the CDF User's Guide).

HOST _ENCODING Indicates host machine data representation (native). This is the default
encoding, and it will provide the greatest performance when reading/writing
on a machine of the same type.

NETWORK ENCODING Indicates network transportable data representation (XDR).

VAX ENCODING Indicates VAX data representation. Double-precision floating-point values
are encoded in Digital's D_FLOAT representation.

15

ALPHAVMSd ENCODING

ALPHAVMSg ENCODING

ALPHAVMSi ENCODING

ALPHAOSF1_ENCODING
SUN_ENCODING
SGi_ENCODING

DECSTATION_ENCODING

IBMRS_ENCODING
HP_ENCODING
IBMPC_ENCODING

NeXT ENCODING
MAC_ENCODING
ARM_LITTLE_ENCODING
ARM_BIG_ENCODING

[A64VMSi_ENCODING

[A64VMSd ENCODING

1A64VMSg_ENCODING

Indicates DEC Alpha running OpenVMS data representation. Double-
precision floating-point values are encoded in Digital's D FLOAT
representation.
Indicates DEC Alpha running OpenVMS data representation. Double-
precision floating-point values are encoded in Digital's G _FLOAT
representation.

Indicates DEC Alpha running OpenVMS data representation. Double-
precision floating-point values are encoded in IEEE representation.

Indicates DEC Alpha running OSF/1 data representation.
Indicates SUN data representation.

Indicates Silicon Graphics Iris and Power Series data representation.

Indicates DECstation data representation.

Indicates IBMRS data representation (IBM RS6000 series).
Indicates HP data representation (HP 9000 series).

Indicates Intel 1386 data representation.

Indicates NeXT data representation.

Indicates Macintosh data representation.

Indicates ARM architecture in little-endian data representation.
Indicates ARM architecture in big-endian data representation.

Indicates Itanium 64 running OpenVMS data representation. Double-
precision floating-point values are encoded in IEEE representation.

Indicates Itanium 64 running OpenVMS data representation. Double-
precision floating-point values are encoded in Digital's D _FLOAT
representation.

Indicates Itanium 64 running OpenVMS data representation. Double-
precision floating-point values are encoded in Digital's G FLOAT
representation.

When creating a CDF (via the Standard interface) or respecifying a CDF's encoding (via the Internal Interface), you may
specify any of the encodings listed above. Specifying the host machine's encoding explicitly has the same effect as
specifying HOST ENCODING.

When inquiring the encoding of a CDF, either NETWORK ENCODING or a specific machine encoding will be returned.
(HOST_ENCODING is never returned.)

16

4.7 Data Decodings

A CDF's decoding affects how its attribute entry and variable data values are passed out to a calling application. The
decoding for a CDF may be selected and reselected any number of times while the CDF is open. Selecting a decoding
does not affect how the values are stored in the CDF file(s) - only how the values are decoded by the CDF library. Any
decoding may be used with any of the supported encodings. The Concepts chapter in the CDF User's Guide describes a
CDF's decoding in more detail.

HOST DECODING

NETWORK DECODING

VAX DECODING

ALPHAVMSd DECODING

ALPHAVMSg DECODING

ALPHAVMSi DECODING

ALPHAOSF1_DECODING
SUN_DECODING
SGi_DECODING
DECSTATION_DECODING
IBMRS_DECODING
HP_DECODING
IBMPC_DECODING

NeXT DECODING
MAC_DECODING
ARM_LITTLE_DECODING
ARM BIG_DECODING

[A64VMSi_DECODING

[A64VMSd DECODING

Indicates host machine data representation (native). This is the default
decoding.

Indicates network transportable data representation (XDR).

Indicates VAX data representation. Double-precision floating-point values
will be in Digital's D_FLOAT representation.

Indicates DEC Alpha running OpenVMS data representation. Double-
precision floating-point values will be in Digital's D _FLOAT
representation.

Indicates DEC Alpha running OpenVMS data representation. Double-
precision floating-point values will be in Digital's G FLOAT

representation.

Indicates DEC Alpha running OpenVMS data representation. Double-
precision floating-point values will be in IEEE representation.

Indicates DEC Alpha running OSF/1 data representation.
Indicates SUN data representation.

Indicates Silicon Graphics Iris and Power Series data representation.
Indicates DECstation data representation.

Indicates IBMRS data representation (IBM RS6000 series).
Indicates HP data representation (HP 9000 series).

Indicates Intel 1386 data representation.

Indicates NeXT data representation.

Indicates Macintosh data representation.

Indicates ARM architecture in little-endian data representation.
Indicates ARM architecture in big-endian data representation.

Indicates Itanium 64 running OpenVMS data representation. Double-
precision floating-point values are encoded in IEEE representation.

Indicates Itanium 64 running OpenVMS data representation. Double-

precision floating-point values are encoded in Digital's D FLOAT
representation.

17

[A64VMSg DECODING Indicates Itanium 64 running OpenVMS data representation. Double-
precision floating-point values are encoded in Digital's G_FLOAT
representation.

The default decoding is HOST DECODING. The other decodings may be selected via the Internal Interface with the
<SELECT ,CDF _DECODING > operation. The Concepts chapter in the CDF User's Guide describes those situations
in which a decoding other than HOST DECODING may be desired.

4.8 Variable Majorities

A CDF's variable majority determines the order in which variable values (within the variable arrays) are stored in the
CDF file(s). The majority is the same for rVariable and zVariables.

ROW_MAJOR C-like array ordering for variable storage. The first dimension in each
variable array varies the slowest. This is the default majority.

COLUMN_MAJOR Fortran-like array ordering for variable storage. The first dimension in each
variable array varies the fastest.

Knowing the majority of a CDF's variables is necessary when performing hyper reads and writes. During a hyper read
the CDF library will place the variable data values into the memory buffer in the same majority as that of the variables.
The buffer must then be processed according to that majority. Likewise, during a hyper write, the CDF library will expect
to find the variable data values in the memory buffer in the same majority as that of the variables.

The majority must also be considered when performing sequential reads and writes. When sequentially reading a
variable, the values passed out by the CDF library will be ordered according to the majority. When sequentially writing
a variable, the values passed into the CDF library are assumed (by the CDF library) to be ordered according to the
majority.

As with hyper reads and writes, the majority of a CDF's variables affects multiple variable reads and writes. When
performing a multiple variable write, the full-physical records in the buffer passed to the CDF library must have the
CDF's variable majority. Likewise, the full-physical records placed in the buffer by the CDF library during a multiple
variable read will be in the CDF's variable majority.

For Fortran applications the compiler defined majority for arrays is column major. The first dimension of multi-
dimensional arrays varies the fastest in memory.

4.9 Record/Dimension Variances

Record and dimension variances affect how variable data values are physically stored.
VARY True record or dimension variance.

NOVARY False record or dimension variance.

18

If a variable has a record variance of VARY, then each record for that variable is physically stored. If the record variance
is NOVARY, then only one record is physically stored. (All of the other records are virtual and contain the same values.)

If a variable has a dimension variance of VARY, then each value/subarray along that dimension is physically stored. If
the dimension variance is NOVARY, then only one value/subarray along that dimension is physically stored. (All other
values/subarrays along that dimension are virtual and contain the same values.)

4.10 Compressions

The following types of compression for CDFs and variables are supported. For each, the required parameters are also
listed. The Concepts chapter in the CDF User's Guide describes how to select the best compression type/parameters for
a particular data set. Among the available compression types, GZIP provides the best result.

NO_COMPRESSION

RLE_COMPRESSION

HUFF _COMPRESSION

AHUFF COMPRESSION

GZIP_COMPRESSION

4.11 Sparseness

No compression.
Run-length encoding compression. There is one parameter.

1. The style of run-length encoding. Currently, only the run-length
encoding of zeros is supported. This parameter must be set to
RLE OF ZEROs.

Huffman compression. There is one parameter.

1. The style of Huffman encoding. Currently, only optimal encoding trees
are supported. An optimal encoding tree is determined for each block
of bytes being compressed. This parameter must be set to
OPTIMAL ENCODING TREES.

Adaptive Huffman compression. There is one parameter.

1. The style of adaptive Huffman encoding. Currently, only optimal
encoding trees are supported. An optimal encoding tree is determined
for each block of bytes being compressed. This parameter must be set
to OPTIMAL ENCODING TREES.

Gnu's “zip" compression.'® There is one parameter.

1. The level of compression. This may range from 1 to 9. 1 provides the
least compression and requires less execution time. 9 provides the most
compression but requires the most execution time. Values in-between
provide varying compromises of these two extremes. 6 nornally provides
a better balance between compression and execution.

10 Disabled for PC running 16-bit DOS/Windows 3.x.

19

4.11.1 Sparse Records

The following types of sparse records for variables are supported.
NO_SPARSERECORDS No sparse records.

PAD SPARSERECORDS Sparse records - the variable's pad value is used when reading values from
a missing record.

PREV_SPARSERECORDS Sparse records - values from the previous existing record are used when

reading values from a missing record. If there is no previous existing record
the variable's pad value is used.

4.11.2 Sparse Arrays

The following types of sparse arrays for variables are supported.'!

NO_SPARSEARRAYS No sparse arrays.

4.12 Attribute Scopes

Attribute scopes are simply a way to explicitly declare the intended use of an attribute by user applications (and the CDF
toolkit).

GLOBAL SCOPE Indicates that an attribute's scope is global (applies to the CDF as a whole).

VARIABLE SCOPE Indicates that an attribute's scope is by-variable. (Each rEntry or zEntry
corresponds to an rVariable or zVariable, respectively.)

4.13 Read-Only Modes

Once a CDF has been opened, it may be placed into a read-only mode to prevent accidental modification (such as when
the CDF is simply being browsed). Read-only mode is selected via the Internal Interface using the
<SELECT ,CDF READONLY MODE > operation. When read-only mode is set, all metadata is read into memory for
future reference. This improves overall metadata access performance but is extra overhead if metadata is not needed.
Note that if the CDF is modified while not in read-only mode, subsequently setting read-only mode in the same session
will not prevent future modifications to the CDF.

READONLYon Turns on read-only mode.

READONLYoff Turns off read-only mode.

' The sparse arrays are not (and will not be) supported.

20

4.14 zModes

Once a CDF has been opened, it may be placed into one of two variations of zMode. zMode is fully explained in the
Concepts chapter in the CDF User's Guide. A zMode is selected for a CDF via the Internal Interface using the
<SELECT ,CDF zMODE > operation.

zMODEoff Turns off zMode.
zMODEonl1 Turns on zMode/1.
zMODEon2 Turns on zMode/2.

4.15 -0.0 to 0.0 Modes

Once a CDF has been opened, the CDF library may be told to convert -0.0 to 0.0 when read from or written to that CDF.
This mode is selected via the Internal Interface using the <SELECT ,CDF_NEGtoPOSfp0 MODE > operation.

NEGtoPOSfpOon Convert -0.0 to 0.0 when read from or written to a CDF.

NEGtoPOSfpOoff Do not convert -0.0 to 0.0 when read from or written to a CDF.

4.16 Operational Limits

These are limits within the CDF library. If you reach one of these limits, please contact CDF User Support.
CDF_MAX DIMS Maximum number of dimensions for the rVariables or a zVariable.
CDF_MAX PARMS Maximum number of compression or sparseness parameters.

The CDF library imposes no limit on the number of variables, attributes, or attribute entries that a CDF may have. On

the PC, however, the number of rVariables and zVariables will be limited to 100 of each in a multi-file CDF because of
the 8.3 naming convention imposed by MS-DOS.

4.17 Limits of Names and Other Character Strings

CDF_PATHNAME LEN Maximum length of a CDF file name (excluding the .cdf or .vnn appended
by the CDF library to construct file names). A CDF file name may contain
disk and directory specifications that conform to the conventions of the
operating systems being used (including logical names on VMS systems
and environment variables on UNIX systems).

CDF_VAR NAME LEN256 Maximum length of a variable name.

21

CDF_ATTR NAME LEN256 Maximum length of an attribute name.
CDF_COPYRIGHT LEN Maximum length of the CDF copyright text.

CDF_STATUSTEXT LEN Maximum length of the explanation text for a status code.

4.18 Backward File Compatibility with CDF 2.7

By default, a CDF file created by CDF V3.0 or a later release is not readable by any of the CDF releases before CDF
V3.0 (e.g. CDF 2.7.x, 2.6.x, 2.5.%, etc.). The file incompatibility is due to the 64-bit file offset used in CDF 3.0 and later
releases (to allow for files greater than 2G bytes). Note that before CDF 3.0, 32-bit file offset was used.

There are two ways to create a file that’s backward compatible with CDF 2.7 and 2.6, but not 2.5. Fortran subroutine,
CDF _set_FileBackward, can be called to control the backward compatibility from an application before a CDF file is
created (i.e. CDF _create CDF). This subroutine takes an argument to control the backward file compatibility. Passing
a flag value of BACKWARDFILEon, defined in cdf.inc, to the subroutine will cause new files being created to be
backward compatible. The created files are of version V2.7.2, not V3.*. This option is useful for those who wish to
create and share files with colleagues who still use a CDF V2.6/V2.7 library. If this option is specified, the maximum
file size is limited to 2G bytes. Passing a flag value of BACKWARDFILEoff, also defined in cdf.inc, will use the
default file creation mode and new files created will not be backward compatible with older libraries. The created files
are of version 3.* and thus their file sizes can be greater than 2G bytes. Not calling this function has the same effect of
calling the function with an argument value of BACKWARDFILEoff.

The following example uses the Internal Interface routine to create two CDF files: “MY_TEST1.cdf” is a V3.* file while

“MY _TEST2.cdf” a V2.7 file. Alternatively, the Standard Interface routine CDF_create CDF can be used for the file
creation.

include ‘cdf.in¢’

integer*4 id1, id2 /* CDF identifier. */
integer*4 status /* Returned status code. */
integer*4 numDims = 0 /* Number of dimensions. */
integer*4 dimSizes[1] = {0} /* Dimension sizes. */

status = CDF _lib (CREATE , CDF , “MY_TEST1”, numDims, dimSizes, id1,
1 NULL , status)
if (status .It. CDF_OK) call UserStatusHandler (status)

call CDF_set FileBackward(BACKWARDFILEon)

status = CDF _lib (CREATE , CDF , “MY_TEST2”, numDims, dimSizes, id2,
1 NULL , status)

if (status .NE. CDF_OK) call UserStatusHandler (status)

22

Another method is through an environment variable and no function call is needed (and thus no code change involved in
any existing applications). The environment variable, CDF_FILEBACKWARD on all Unix platforms and Windows,
or CDFSFILEBACKWARD on Open/VMS, is used to control the CDF file backward compatibility. If its value is set
to “TRUE”, all new CDF files are backward compatible with CDF V2.7 and 2.6. This applies to any applications or
CDF tools dealing with creation of new CDFs. If this environment variable is not set, or its value is set to anything other
than “TRUE”, any files created will be of the CDF 3.* version and these files are not backward compatible with the CDF
2.7.2 or earlier versions .

Normally, only one method should be used to control the backward file compatibility. If both methods are used, the
subroutine call through CDF_set FileBackward will take the precedence over the environment variable.

You can use the CDF_get_FileBackward subroutine to check the current value of the backward-file-compatibility flag.
It returns 1 if the flag is set (i.e. create files compatible with V2.7 and 2.6) or 0 otherwise.

include ‘cdf.inc’

integer*4 flag /* CDF identifier. */

flag = CDF_get FileBackward()

4.19 Checksum

To ensure the data integrity while transferring CDF files from/to different platforms at different locations, the checksum
feature was added in CDF V3.2 as an option for the single-file format CDF files (not for the multi-file format). By
default, the checksum feature is not turned on for new files. Once the checksum bit is turned on for a particular file, the
data integrity check of the file is performed every time it is open; and a new checksum is computed and stored when it is
closed. This overhead (performance hit) may be noticeable for large files. Therefore, it is strongly encouraged to turn
off the checksum bit once the file integrity is confirmed or verified.

If the checksum bit is turned on, a 16-byte signature message (a.k.a. message digest) is computed from the entire file and
appended to the end of the file when the file is closed (after any create/write/update activities). Every time such file is
open, other than the normal steps for opening a CDF file, this signature, serving as the authentic checksum, is used for
file integrity check by comparing it to the re-computed checksum from the current file. If the checksums match, the file’s
data integrity is verified. Otherwise, an error message is issued. Currently, the valid checksum modes are:
NO_CHECKSUM and MD5_CHECKSUM, both defined in cdf.h. With MD5 CHECKSUM, the MDS5 algorithm is
used for the checksum computation. The checksum operation can be applied to CDF files that were created with V2.6
or later.

There are several ways to add or remove the checksum bit. One way is to use the Interface call (Standard or Internal)
with a proper checksum mode. Another way is through the environment variable. Finally, CDFedit and CDFconvert
(CDF tools included as part of the standard CDF distribution package) can be used for adding or removing the checksum
bit. Through the Interface call, you can set the checksum mode for both new or existing CDF files while the environment
variable method only allows to set the checksum mode for new files.

See Section 6.2.5 and 6.2.26 for the Standards Interface functions and Section 7.6 for the Internal Interface functions.
The environment variable method requires no function calls (and thus no code change is involved for existing
applications). The environment variable CDF_CHECKSUM on all Unix platforms and Windows, or
CDF$SCHECKSUM on Open/VMS, is used to control the checksum option. If its value is set to “MD5”, all new CDF
files will have their checksum bit set with a signature message produced by the MD5 algorithm. If the environment
variable is not set or its value is set to anything else, no checksum is set for the new files.

23

The following example uses the Internal Interface to set one new CDF file with the MD5 checksum and set another
existing file’s checksum to none.

include ‘cdf.in¢’

integer*4 id1, id2 /* CDF identifier. */
integer*4 status /* Returned status code. */
integer*4 numDims = 0 /* Number of dimensions. */
integer*4 dimSizes[1] = {0} /* Dimension sizes. */
integer*4 checksum /* Number of dimensions. */

status = CDF _lib (CREATE , CDF , “MY_TEST!1”, numDims, dimSizes, id1,
1 NULL , status)
if (status .NE. CDF_OK) call UserStatusHandler (status)

checksum = MD5_CHECKSUM

status = CDFlib (SELECT , CDF _, idl,

1 PUT _, CDF_CHECKSUM , checksum,
2 NULL , status)

if (status .NE. CDF_OK) UserStatusHandler (status)

status = CDFlib (OPEN _, CDF , “MY_TEST2”, id2,
1 NULL , status);
if (status .NE. CDF_OK) UserStatusHandler (status)

checksum = NO_CHECKSUM

status = CDFlib (SELECT , CDF , id2,

1 PUT _, CDF _CHECKSUM , checksum,
2 NULL , status)

if (status .NE. CDF_OK) UserStatusHandler (status)

Alternatively, the Standard Interface function CDF_set_Checksum can be used for the same purpose.

The following example uses the Internal Interface to get the checksum mode used in a CDF.

#include "cdf.inc"

integer*4 id; /* CDF identifier. */
integer*4 status; /* Returned status code. */
integer*4 checksum; /* Checksum code. */

status = CDFlib (OPEN_, CDF_, “MY_TEST1”, id,
NULL , status);
if (status .NE. CDF_OK) CALL UserStatusHandler (status);

24

status = CDFlib (SELECT , CDF , id,
GET _, CDF_CHECKSUM , checksum,
NULL , status);
if (status .NE. CDF_OK) CALL UserStatusHandler (status)
if (checksum .EQ. MD5_CHECKSUM) THEN

ENDIF

Alternatively, the Standard Interface function CDF_get Checksum can be used for the same purpose.

4.20 Data Validation

To ensure the data integrity of CDF files and secure operation of CDF-based applications, a data validation feature has
been added to the CDF opening logic. This process, as the default, performs sanity checks on the data fields in the
CDF's internal data structures to make sure that the values are within valid ranges and consistent with the defined
values/types/entries. It also ensures that the variable and attribute associations within the file are valid. Any
compromised CDF files, if not validated properly, could cause applications to function unexpectedly, e.g.,
segmentation fault due to a buffer overflow. The main purpose of this feature is to safeguard the CDF operations, catch
any bad data in the file and end the application gracefully if any bad data is identified. Using this feature, in most
cases, will slow down the file opening process especially for large or very fragmented files. Therefore, it is
recommended that this feature be turned off once a file’s integrity is confirmed or verified. Or, the file in question may
need a file conversion, which will consolidate the internal data structures and eliminate the fragmentations. Check the
cdfconvert tool program in the CDF User’s Guide for further information.

This This validation feature is controlled by setting/unsetting the environment variable CDF_VALIDATE on all Unix
platforms, Mac OS X and Windows, or CDF$VALIDATE on Open/VMS. If its value is not set or set to “yes”, all CDF
files are subjected to the data validation process. If the environment variable is set to “no”, then no validation is
performed. The environment variable can be set at logon or through the command line, which goes into effect during a
terminal session, or within an application, which is good only while the application is running. Setting the environment
variable, CDF_set_Validate, at application level will overwrite the setup from the command line. The validation is set
to be on when VALIDATEFILEon is passed in as an argument. VALIDATEFILEoff will turn off the validation. The
Fortran subroutine, CDF_get Validate will return the validation mode, 1 (one) means data being validated, 0 (zero)
otherwise. If the environment variable is not set, the default is to validate the CDF file upon opening.

The following example sets the data validation on when it opens the CDF file, “TEST”.
include ‘cdf.inc’

integer*4 id /* CDF identifier. */
integer*4 status /* Returned status code. */

CALL CDF_set_Validate (VALIDATEFILEon)
status = CDF _lib (OPEN , CDF , “TEST”, id,

12 The data validation during the open process will not check the variable data. It is still possible that data could be
corrupted, especially compression is involved. To fully validate a CDF file, use cdfdump tool with “-detect” switch.

25

1 NULL , status)
if (status .NE. CDF_OK) call UserStatusHandler (status)

The following example turns off the data validation when it opens the CDF file, “TEST”.
include ‘cdf.inc’

integer*4 id /* CDF identifier. */
integer*4 status /* Returned status code. */

CALL CDF_SET Validate (VALIDATEFILEofY)

status = CDF _lib (OPEN_, CDF _, “TEST”, id,

1 NULL , status)

if (status .NE. CDF_OK) call UserStatusHandler (status)

4.21 8-Byte Integer

Both data types of CDF_INT8 and CDF_TIME TT2000 use 8-byes signed integer. While there are several ways to define
such integer by various Fortran compilers on various platforms, The following Kind notation appears to be accepted by
GNU Fortran (gfortran) that support CDF. This is the data type that CDF library uses for these two CDF data types.. In
cdf.inc, the KIND INTS is defined as following:

INTEGER, PARAMETER :: INT8 = 18
INTEGER, PARAMETER :: KIND INT8 = SELECTED_ INT KIND (INTS)

In Fortran application, once the cdf.inc is included, we can use the following statements to define such 8-byte integers:
INCLUDE ‘CDF.INC’

INTEGER (KIND=KIND_INT8) TT2000(8), MMM(8), DINT8(2,3),
OUT8(2,3), NN

26

Chapter 5

5 Standard Interface

The following sections describe the original Standard Interface routines callable from Fortran applications. Most
functions return a status code of type INTEGER*4 (see Chapter 8). The Internal Interface is described in Chapter 7. An
application can use both interfaces when necessary.

These routines have been available since earlier CDF versions. Very limited access to zVariables is available here and
there is no access to entries associated with zVariable. While they are still supported in the V3.* library, a new set of
Standard Interface routines is made available to complement this limited list. Those routines are described in the Chapter
6.

5.1 CDF_attr_create

SUBROUTINE CDF attr create (

in -- CDF identifier.
in -- Attribute name.
in -- Scope of attribute.
out -- Attribute number.

out -- Completion status

INTEGER*4 id,
CHARACTER attr_name*(*),
INTEGER*4 attr_scope,
INTEGER*4 attr num,
INTEGER*4 status)

CDF attr_create creates an attribute in the specified CDF. An attribute with the same name must not already exist in the
CDF.

The arguments to CDF _attr create are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF _create or
CDF _open.
attr name Name of the attribute to create. This may be at most CDF_ATTR NAME LEN256

characters. Attribute names are case-sensitive.

attr_scope Scope of the new attribute. Specify one of the scopes described in Section 4.12.

27

attr num Number assigned to the new attribute. This number must be used in subsequent CDF
function calls when referring to this attribute. An existing attribute's number may be
determined with the CDF_attr num function.

status Completion status code. Chapter 8 explains how to interpret status codes.

5.1.1 Example(s)

The following example creates two attributes. The TITLE attribute is created with global scope - it applies to the entire
CDF (most likely the title of the data set stored in the CDF). The Units attribute is created with variable scope - each
entry describes some property of the corresponding variable (in this case the units for the data).

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.

INTEGER*4 status ! Returned status code.
CHARACTER UNITS attr name*5 ! Name of "Units" attribute.
INTEGER*4 UNITS attr num ! "Units" attribute number.
INTEGER*4 TITLE attr num ! "TITLE" attribute number.
INTEGER*4 TITLE attr scope ! "TITLE" attribute scope.

DATA UNITS attr name/'Units'/, TITLE attr scope/GLOBAL SCOPE/

CALL CDF attr create (id, 'TITLE', TITLE attr scope, TITLE attr num, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

CALL CDF attr create (id, UNITS attr name, VARIABLE SCOPE, UNITS attr num,

1 status)

IF (status .NE. CDF OK) CALL UserStatusHandler (status)

5.2 CDF _attr_entry_inquire

SUBROUTINE CDF _attr _entry_inquire (

INTEGER*4 1id,
INTEGER*4 attr num,
INTEGER*4 entry num,
INTEGER*4 data type,
INTEGER*4 num_eclements,
INTEGER*4 status)

in -- CDF identifier.

in -- Attribute number.

in -- Entry number.

out -- Data type.

out -- Number of elements (of the data type).
out -- Completion status

CDF attr_entry inquire is used to inquire about a specific attribute entry. to inquire about the attribute in general, use
CDF attr inquire (see Section 5.4). CDF attr entry inquire would normally be called before calling CDF _attr get in
order to determine the data type and number of elements (of that data type) for an entry. This would be necessary to
correctly allocate enough memory to receive the value read by CDF_attr get.

28

The arguments to CDF _attr entry inquire are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF_create
or CDF_open.

attr num Attribute number for which to inquire an entry. This number may be determined with a
call to CDF _attr num (see Section 5.5).

entry num Entry number to inquire. Ifthe attribute is global in scope, this is simply the gEntry number
and has meaning only to the application. If the attribute is variable in scope, this is the
number of the associated rVariable (the rVariable being described in some way by the
rEntry).

data_type Data type of the specified entry. The data types are defined in Section 4.5.

num_elements

status

5.2.1

Number of elements of the data type. For character data types (CDF_CHAR and
CDF_UCHAR), this is the number of characters in the string (an array of characters). For
all other data types this is the number of elements in an array of that data type.

Completion status code. Chapter 8 explains how to interpret status codes.

Example(s)

The following example inquires each entry for an attribute. Note that entry numbers need not be consecutive - not every
entry number between one (1) and the maximum entry number must exist. For this reason NO_SUCH_ENTRY is an
expected error code. Note also that if the attribute has variable scope, the entry numbers are actually rVariable numbers.

INCLUDE '<path>cdf.inc'

INTEGER*4 id

CDF identifier.

INTEGER*4 status Returned status code.
INTEGER*4 attr n Attribute number.
INTEGER*4 entryN Entry number.

CHARACTER attr name* (CDF_ATTR NAME LEN256)

Attribute name.

INTEGER*4 attr scope Attribute scope.

INTEGER*4 max entry Maximum entry number used.

INTEGER*4 data type Data type.

INTEGER*4 num elems Number of elements (of the
data type).

attr n = CDF attr num (id, 'TMP')

IF (attr n .LT. 1) CALL UserStatusHandler (attr n) ! If less than one (1),

CALL CDF attr inquire (id,

IF (status .NE. CDF_OK)

DO entryN = 1, max entry
CALL CDF attr entry inquire (id,
1 status)
IF (status .LT. CDF OK) THEN

attr n,

29

attr name,
CALL UserStatusHandler

attr _n,

entryN, data type,

attr scope, max entry,

! then it must be a

! warning/error code.
status)
(status)

num elems,

IF (status .NE. NO SUCH ENTRY) CALL UserStatusHandler (status)

ELSE
C (process

END IF
END DO

entries)

5.3 CDF _attr_get

SUBROUTINE CDF _attr_get (

INTEGER*4 id,
INTEGER*4 attr_num,
INTEGER*4 entry num,
<type> value,
INTEGER*4 status)

in -- CDF identifier.

in -- attribute number.

in -- Entry number.

out -- Value (<type> is dependent on the data type of the enrty).
out -- Completion status

CDF attr get is used to read an attribute entry from a CDF. In most cases it will be necessary to call
CDF attr entry inquire before calling CDF _attr get in order to determine the data type and number of elements (of that

data type) for the entry.

The arguments to CDF _attr get are defined as follows:

id

attr num

entry _num

value

status

Identifier of the CDF. This identifier must have been initialized by a call to CDF_create or
CDF_open.

Attribute number. This number may be determined with a call to CDF_attr num (see Section
5.5).

Entry number. If the attribute is global in scope, this is simply the gEntry number and has
meaning only to the application. If the attribute is variable in scope, this is the number of the
associated rVariable (the rVariable being described in some way by the rEntry).

Value read. This buffer must be large enough to hold the value. The function
CDF attr_entry inquire would be used to determine the entry data type and number of
elements (of that data type). The value is read from the CDF and placed into memory at
address value.

WARNING: If the entry has one of the character data types (CDF_CHARor
CDF_UCHAR), then value must be a CHARACTER Fortran variable. If the entry does not
have one of the character data types, then value must NOT be a CHARACTER Fortran
variable.

Completion status code. Chapter 8 explains how to interpret status codes.

5.3.1 Example(s)

The following example displays the value of the UNITS attribute for the rEntry corresponding to the PRES LVL
rVariable (but only if the data type is CDF_CHAR).

30

INCLUDE '<path>cdf.inc'

INTEGER*4

id ! CDF identifier.
INTEGER*4 status ! Returned status code.
INTEGER*4 attr n ! Attribute number.
INTEGER*4 entryN ! Entry number.
INTEGER*4 data_ type ! Data type.
INTEGER*4 num elems ! Number of elements (of data type).
CHARACTER buffer*100 ! Buffer to receive value (in this case it is
! assumed that 100 characters is enough).
attr n = CDF _attr Num (id, 'UNITS')
IF (attr n .LT. 0) CALL UserStatusHandler (attr n) ! If less than one (1),
! then it must be a
! warning/error code.
entryN = CDF var num (id, 'PRES LVL') ! The rEntry number is
! the rVariable number.
IF (entryN .LT. 0) CALL UserStatusHandler (entryN) ! If less than one (1),

! then it must be a
! warning/error code.

CALL CDF _attr entry inquire (id, attr n, entryN, data type, num elems,
1 status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)
IF (data type .EQ. CDF CHAR) THEN
CALL CDF_attr get (id, attr n, entryN, buffer, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)
WRITE (6,10) buffer (l:num elems)
10 FORMAT (' ',A)
END IF
5.4 CDF_attr_inquire
SUBROUTINE CDF _attr_inquire (
INTEGER*4 id, ! in -- CDF identifier.
INTEGER*4 attr num, ! in -- Attribute number.
CHARACTER attr name*(CDF_ATTR NAME LEN256), ! out-- Attribute name.
INTEGER*4 attr_scope, ! out -- Attribute scope.
INTEGER*4 max_entry, ! out -- Maximum gEntry or rEntry number.
INTEGER*4 status) ! out -- Completion status

31

CDF attr_inquire is used to inquire about the specified attribute. to inquire about a specific attribute entry, use
CDF attr entry inquire (Section 5.2).

The arguments to CDF _attr_inquire are defined as follows:

id

attr num

attr_name

attr_scope

max_entry

status

Identifier of the CDF. This identifier must have been initialized by a call to CDF_create or
CDF_open.

Number of the attribute to inquire. This number may be determined with a call to
CDF attr num (see Section 5.5).

Attribute's name. This character string must be large enough to hold
CDF_ATTR NAME LEN256 characters and will be blank padded if necessary.

Scope of the attribute. Attribute scopes are defined in Section 4.12.

For gAttributes this is the maximum gEntry number used. For vAttributes this is the
maximum rEntry number used. in either case this may not correspond with the number of
entries (if some entry numbers were not used). The number of entries actually used may be
inquired with the CDF _lib function (see Section 7). If no entries exist for the attribute, then
a value of zero (0) will be passed back.

Completion status code. Chapter 8 explains how to interpret status codes.

5.4.1 Example(s)

The following example displays the name of each attribute in a CDF. The number of attributes in the CDF is first
determined using the function CDF _inquire. Note that attribute numbers start at one (1) and are consecutive.

INCLUDE '<path>cdf.inc'

INTEGER*4 id

INTEGER*4 status
INTEGER*4 num dims
INTEGER*4 dim_sizes(CDF_MAX_DIMS)

INTEGER*4 encoding
INTEGER*4 majority
INTEGER*4 max rec

INTEGER*4 num vars
INTEGER*4 num attrs

! CDF identifier.

! Returned status code.

! Number of dimensions.

! Dimension sizes (allocate to
! allow the maximum number of
! dimensions).

! Data encoding.

! Variable majority.

! Maximum record number in CDF.
! Number of variables in CDF.

! Number of attributes in CDF.

INTEGER*4 attr n ! Attribute number.
CHARACTER attr name* (CDF_ATTR NAME LEN256)! Attribute name.
INTEGER*4 attr scope ! Attribute scope.
INTEGER*4 max entry ! Maximum entry number.

CALL CDF inquire (id, num dims, dim sizes, encoding, majority,

1

max rec, num _vars, num attrs, status)

IF (status .NE. CDF OK) CALL UserStatusHandler (status)

DO attr n = 1,

num attrs

32

CALL CDF attr inquire (id, attr n, attr name, attr scope, max entry,

1 status)

IF (status .LT. CDF_OK) THEN ! INFO status codes ignored.
CALL UserStatusHandler (status)

ELSE
WRITE (6,10) attr name

10 FORMAT (' ',A)
END IF
END DO

5.5 CDF_attr num

INTEGER*4 FUNCTION CDF _attr_num (

INTEGER*4 id, !'in-- CDF id
CHARACTER attr_name*(*)); ! in-- attribute name

CDF _attr num is used to determine the attribute number associated with a given attribute name. If the attribute is found,
CDF _attr num returns its number - which will be equal to or greater than one (1). If an error occurs (e.g., the attribute

name does not exist in the CDF), an error code (of type INTEGER*4) is returned. Error codes are less than zero (0).

The arguments to CDF_attr num are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF create or
CDF_open.
attr name Name of the attribute for which to search. This may be at most CDF_ ATTR NAME LEN256

characters. Attribute names are case-sensitive.

CDF attr num may be used as an embedded function call when an attribute number is needed. CDF attr num is
declared in cdf.inc. (Fortran functions must be declared so that the returned value is interpreted correctly.)

5.5.1 Example(s)

In the following example the attribute named pressure will be renamed to PRESSURE with CDF _attr num being used
as an embedded function call. Note that if the attribute pressure did not exist in the CDF, the call to CDF_attr num
would have returned an error code. Passing that error code to CDF attr rename as an attribute number would have
resulted in CDF_attr rename also returning an error code. CDF _attr rename is described in Section 5.7.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.
INTEGER*4 status ! Returned status code.

CALL CDF attr rename (id, CDF attr num(id, 'pressure'), 'PRESSURE', status)

33

IF (status .NE. CDF OK) CALL UserStatusHandler (status)

5.6 CDF _attr put

SUBROUTINE CDF attr put (

INTEGER*4 1id,
INTEGER*4 attr_num,
INTEGER*4 entry num,
INTEGER*4 data type,
INTEGER*4 num_elements,
<type> value,
INTEGER*4 status)

! in -- CDF identifier.
! in -- Attribute number.
! in -- Entry number.
-- Data type of this entry.

! in -- Number of elements (of the data type).
! out -- Value (<type> is dependent on the data type of the enrty).

!
!
!
! in
!
!
! out -- Completion status

CDF attr put is used to write an attribute entry to a CDF. The entry may or may not already exist. If it does exist, it is
overwritten. The data type and number of elements (of that data type) may be changed when overwriting an existing

entry.

The arguments to CDF _attr_put are defined as follows:

id

attr num

entry_num

data_type

num_elements

value

status

Identifier of the CDF. This identifier must have been initialized by a call to CDF _create
or CDF_open.

Attribute number. This number may be determined with a call to CDF_attr num (see
Section 5.5).

Entry number. If the attribute is global in scope, this is simply the gEntry number and
has meaning only to the application. If the attribute is variable in scope, this is the
number of the associated rVariable (the rVariable being described in some way by the
rEntry).

Data type of the specified entry. Specify one of the data types defined in Section 4.5.

Number of elements of the data type. For character data types (CDF _CHAR and
CDF_UCHAR), this is the number of characters in the string (an array of characters).
For all other data types this is the number of elements in an array of that data type.

The value(s) to write. The entry value is written to the CDF from memory address value.
WARNING: If the entry has one of the character data types (CDF_CHARor
CDF_UCHAR), then value must be a CHARACTER Fortran variable. If the entry
does not have one of the character data types, then value must NOT be a

CHARACTER Fortran variable.

Completion status code. Chapter 8 explains how to interpret status codes.

num_elements elements of the data type data_type will be written to the CDF starting from memory address value.

34

5.6.1 Example(s)

The following example writes two attribute entries. The first is to gEntry number one (1) of the gAttribute TITLE. The
second is to the variable scope attribute VALIDs for the rEntry that corresponds to the rVariable TMP.

INCLUDE '<path>cdf.inc'
PARAMETER TITLE LEN = 10 ! Length of CDF title.

CDF identifier.

Returned status code.

Entry number.

Number of elements (of data type).

Value of TITLE attribute, rEntry number 1.
Value (s) of VALIDs attribute,

rEntry for rVariable TMP

INTEGER*4 id

INTEGER*4 status

INTEGER*4 entry num
INTEGER*4 num elements
CHARACTER title* (TITLE LEN)
INTEGER*2 TMPvalids (2)

DATA title/'CDF title.'/, TMPvalids/15,30/

entry num = 1

CALL CDF attr put (id, CDF attr num(id, 'TITLE'), entry num, CDF CHAR,
1 TITLE LEN, title, status)

IF (status .NE. CDF OK) CALL UserStatusHandler (status)

num_elements = 2

CALL CDF _attr put (id, CDF_attr num(id, 'VALIDs'), CDF _var num(id, 'TMP'),
1 CDF INTZ2, num elements, TMPvalids, status)

IF (status .NE. CDF OK) CALL UserStatusHandler (status)

5.7 CDF _attr rename

SUBROUTINE CDF _attr rename (

in -- CDF identifier.

in -- Attribute number.

in -- New attribute name.
out -- Completion status

INTEGER*4 id,
INTEGER*4 attr num,
CHARACTER attr_name*(*),
INTEGER*4 status)

CDF attr_rename is used to rename an existing attribute. An attribute with the new name must not already exist in the
CDF.

The arguments to CDF_attr rename are defined as follows:

35

id Identifier of the CDF. This identifier must have been initialized by a call to CDF_create or
CDF_open.

attr num Number of the attribute to rename. This number may be determined with a call to
CDF _attr num (see Section 5.5).

attr name New attribute name. This may be at most CDF ATTR NAME LEN256 characters.
Attribute names are case-sensitive.

status Completion status code. Chapter 8 explains how to interpret status codes.

5.7.1 Example(s)

In the following example the attribute named LAT is renamed to LATITUDE.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.
INTEGER*4 status ! Returned status code.

CALL CDF attr rename (id, CDF attr num(id, 'LAT'), 'LATITUDE', status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

5.8 CDF close

SUBROUTINE CDF _close (

INTEGER*4 id, ! in -- CDF identifier.
INTEGER*4 status) ! out -- Completion status

CDF _close closes the specified CDF. The CDF's cache buffers are flushed; the CDF's open file is closed (or files in the
case of a multi-file CDF); and the CDF identifier is made available for reuse.

NOTE: You must close a CDF with CDF_close to guarantee that all modifications you have made will actually be
written to the CDF's file(s). If your program exits, normally or otherwise, without a successful call to CDF close, the
CDF's cache buffers are left unflushed.

The arguments to CDF_close are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF_create or
CDF _open.
status Completion status code. Chapter 8 explains how to interpret status codes.

36

5.8.1 Example(s)

The following example will close an open CDF.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.
INTEGER*4 status ! Returned status code.

CALL CDF close (id, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

5.9 CDF_create

SUBROUTINE CDF create (

CHARACTER CDF_name*(*), !in -- CDF file name.

INTEGER*4 num_dims, !'in -- Number of dimensions, rVariables.
INTEGER*4 dim_sizes(*), 'in -- Dimension sizes, rVariables.
INTEGER*4 encoding, !in -- Data encoding.

INTEGER*4 majority, !in -- Variable majority.

INTEGER*4 id, ! out -- CDF identifier.

INTEGER*4 status) ! out -- Completion status

CDF _create creates a CDF as defined by the arguments. A CDF cannot be created if it already exists. (The existing CDF
will not be overwritten.) If you want to overwrite an existing CDF, you must first open it with CDF_open, delete it with
CDF _delete, and then recreate it with CDF _create. If the existing CDF is corrupted, the call to CDF_open will fail. (An
error code will be returned.) In this case you must delete the CDF at the command line. Delete the dotCDF file (having
an extension of .cdf), and if the CDF has the multi-file format, delete all of the variable files (having extensions of .v0,.v1,.
..and .z0,.z1,.. .).

The arguments to CDF_create are defined as follows:

CDF_name File name of the CDF to create. (Do not specify an extension.) This may be at most
CDF PATHNAME LEN characters. A CDF file name may contain disk and directory
specifications that conform to the conventions of the operating system being used (including
logical names on VMS systems and environment variables on UNIX systems).

UNIX: File names are case-sensitive.

num_dims Number of dimensions the rVariables in the CDF are to have. This may be as few as zero (0)
and at most CDF MAX DIMS.

37

dim_sizes The size of each dimension. Each element of dim sizes specifies the corresponding
dimension size. Each size must be greater then zero (0). For 0-dimensional rVariables this
argument is ignored (but must be present).

encoding Encoding for variable data and attribute entry data. Specify one of the encodings described
in Section 4.6.

majority The majority for variable data. Specify one of the majorities described in Section 4.8.

id Identifier for the created CDF. This identifier must be used in all subsequent operations on
the CDF.

status Completion status code. Chapter 8 explains how to interpret status codes.

When a CDF is created, both read and write access are allowed. The default format for a CDF created with CDF_create
is specified in the configuration file of your CDF distribution. Consult your system manager for this default. The
CDF _lib function (Internal Interface) may be used to change a CDF's format.

NOTE: CDF close must be used to close the CDF before your application exits to ensure that the CDF will
be correctly written to disk (see Section 5.8).

5.9.1 Example(s)

The following example will create a CDF named test] with network encoding and row majority.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.

INTEGER*4 status ! Returned status code.

INTEGER*4 num dims ! Number of dimensions, rVariables.
INTEGER*4 dim sizes (3) ! Dimension sizes, rVariables.
INTEGER*4 majority ! Variable majority.

DATA num dims/3/, dim sizes/180,360,10/, majority/ROW MAJOR/

CALL CDF create ('testl', num dims, dim sizes, NETWORK ENCODING,
1 majority, id, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

ROW_MAIJOR and NETWORK ENCODING are defined in cdf.inc.

38

5.10 CDF _delete

SUBROUTINE CDF _delete (

INTEGER*4 1id, ! in -- CDF identifier.
INTEGER*4 status) ! out -- Completion status

CDF _delete deletes the specified CDF. The CDF files deleted include the dotCDF file (having an extension of .cdf), and
if a multi-file CDF, the variable files (having extensions of .v0,.v1,. . . and .z0,.z1,.. .).

You must open a CDF before you are allowed to delete it. If you have no privilege to delete the CDF files, they will not
be deleted. If the CDF is corrupted and cannot be opened, the CDF file(s) must be deleted at the command line.

The arguments to CDF_delete are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF_create or
CDF_open.
status Completion status code. Chapter 8 explains how to interpret status codes.

5.10.1 Example(s)

The following example will open and then delete an existing CDF.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.
INTEGER*4 status ! Returned status code.

CALL CDF open ('test2', id, status)

IF (status .LT. CDF _OK) THEN ! INFO status codes ignored.
CALL UserStatusHandler (status)

ELSE
CALL CDF delete (id, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

END IF

5.11 CDF _doc

SUBROUTINE CDF_doc (

INTEGER*4 id, ! in -- CDF identifier.
INTEGER*4 version, ! out -- Version number.

39

INTEGER*4 release,
CHARACTER copy_right*(CDF_COPYRIGHT_LEN),
INTEGER*4 status)

CDF _doc is used to inquire general documentation about a CDF. The version/release of the CDF library that created the

! out -- Release number.
! out -- Copyright.
! out -- Completion status

CDF is provided (e.g., CDF V2.4 is version 2, release 4) along with the CDF copyright notice.

The arguments to CDF_doc are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF_create or
CDF _open.

version Version number of the CDF library that created the CDF.

release Release number of the CDF library that created the CDF.

copy_right The copyright notice of the CDF library that created the CDF. This character string must be

large enough to hold CDF COPYRIGHT LEN characters and will be blank padded if
necessary. This string will contain a newline character after each line of the copyright notice.

status Completion status code. Chapter 8 explains how to interpret status codes.

The copyright notice is formatted for printing without modification. The version and release are used together (e.g., CDF

V2.4 is version 2, release 4).

5.11.1 Example(s)

The following example will inquire and display the version/release and copyright notice.

INCLUDE '<path>cdf.inc'

INTEGER*4 id

INTEGER*4 status

INTEGER*4 version

INTEGER*4 release

CHARACTER copyright*(CDF_COPYRIGHT_LEN)
INTEGER*4 last char

INTEGER*4 start char

CHARACTER 1f*1

CDF identifier.

Returned status code.

CDF version number.

CDF release number.

Copyright notice.

Last character position
actually used in the copyright.
Starting character position
ina line of the copyright.
Linefeed character.

CALL CDF _doc (id, version, release, copyright, status)

IF (status .LT. CDF _OK) THEN
CALL UserStatusHandler (status)

ELSE
WRITE (6,101) version, release

! INFO status codes ignored

101 FORMAT (' ', 'Version: ',I3,' Release:',I3)

40

last7CHARACTER= CDF_ COPYRIGHT LEN
DO WHILE (copyright (last char:last char) .EQ. ' ")
last_CHARACTER= last_CHARACTER— 1
END DO
1f = CHAR(10)
start CHARACTER= 1
DO i = 1, last char
IF (copyright(i:i) .EQ. 1f) THEN
WRITE (6,301) copyright(start char:i-1)

301 FORMAT (' ',2)
start CHARACTER= i + 1
END IF
END DO
END IF

5.12 CDF error

SUBROUTINE CDF error (

INTEGER*4 status, ! in -- Status code.
CHARACTER message*(CDF_STATUSTEXT LEN)) ! out -- Explanation text for the status code.

CDF _error is used to inquire the explanation of a given status code (not just error codes). Chapter 8 explains how to
interpret status codes and Appendix A lists all of the possible status codes.

The arguments to CDF _error are defined as follows:
status Status code to check.

message The explanation of the status code. This character string must be large enough to hold
CDF_STATUSTEXT LEN characters and will be blank padded if necessary.

5.12.1 Example(s)

The following example displays the explanation text if an error code is returned from a call to CDF_open.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.
INTEGER*4 status ! Returned status code.
CHARACTER text* (CDF_STATUSTEXT LEN) ! Explanation text.
INTEGER*4 last char ! Last character position
! actually used in the copyright.

41

CALL CDF open ('giss wetl', id, status)
IF (status .LT. CDF_WARN)
CALL CDF _error (status, text)
last_CHARACTER= CDF_STATUSTEXT LEN
DO WHILE (text(last char:last char) .EQ. ' ')
last_CHARACTER= last_CHARACTER— 1

THEN ! INFO and WARNING codes ignored.

P B)

END DO
WRITE (6,101) text(l:last char)
101 FORMAT (' ', "ERROR> '
END IF

5.13 CDF_getrvarsrecorddata

SUBROUTINE CDF _getrvarsrecorddata(

INTEGER*4 1id, !
INTEGER*4 num_var !
INTEGER*4 var nums(*) !
INTEGER*4 rec num !
<type> buffer !

!

!

INTEGER*4 status

in
in
in
in
out

out

-- CDF identifier.
-- Number of rVariables.
-- rVariable numbers.
-- Record number.
-- First variable buffer in a common block (<type> depends
on the data type of the rVariable).
-- Completion status.

CDF _getrvarsrecorddata is used to read a full record data at a specific record number for a selected group of rVariables
in a CDF. It expects that the data buffer for each rVariable is big enough to hold a full physical record'® data and
properly put in a common block. No space is needed for each rVariable's non-variant dimensional elements. Retrieved
record data from the variable group is filled into respective rVariable's buffer.

The arguments to CDF_getrvarsrecorddata are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate, CDF_open
or a similar CDF creation or opening functionality from the Internal Interface.

num_vars Number of the rVariables in the group involved this read operation.

var_nums Numbers of the rVariables involved for which to read a whole record data.

rec_num Record number at which to read the whole record data for the group of rVariables.
buffer First variable buffer to read in a common block. The number of buffers should match to the

num_var argument. Each buffer should hold a full physical record data.

5.13.1 Example(s)

The following example will read an entire single record data for a group of rVariables. The CDF's rVariables are 2-
dimensional with sizes [2,2]. The rVariables involved in the read are Time, Longitude, Latitude and Temperature. The

13 Physical record is explained in the Primer chapter in the CDF User's Guide.

4

record to read is 5. Since the dimension variances for Time are [NONVARY,NONVARY], a scalar variable of
INTEGER*4 is allocated for its data type CDF_INT4. For Longitude, a 1-dimensional array of REAL*4 is allocated
as its dimension variances are [VARY,NONVARY] with data type CDF_REAL4. A similar allocation is done for
Latitude for its [NONVARY,VARY] dimension variances and CDF_REAL4 data type. For Temperature, a 2-
dimensional array of REAL*4 is allocated due to its [VARY,VARY] dimension variances and CDF_REAIL4 data type.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.

INTEGER*4 status ! Returned status code.
INTEGER*4 num_var ! Number of rVariables.
INTEGER*4 var_nums(4) ! rVariable numbers in CDF.
INTEGER*4 rec_num ! Record number to read.
INTEGER*4 time ! Datatype: INT4.

! Rec/dim variances: T/FF.
REAL*4 longitude(2) ! Datatype: REAL4.

! Rec/dim variances: T/TF.
REAL*4 latitude(2) ! Datatype: REALA4.

! Rec/dim variances: T/FT.
REAL*4 temperature(2,2) ! Datatype: REAL4.

! Rec/dim variances: T/TT.
COMMON /BLK/time, longitude, latitude, temperature

num_var =4 ! Number of rVariables

rec_num=>5 ! Record number to read

var nums(1) = CDF_var num (id, 'Time') ! rVariable number

IF (var_nums(1) .LT. 1) ! If less than one (1),

1 CALL UserStatusHandler (var_nums(1)) ! then it is actually a
! warning/error code.

var_nums(2) = CDF_var_num (id, 'Longitude")

IF (var_nums(2) .LT. 1) CALL UserStatusHandler (var_nums(2))

var_nums(3) = CDF_var num (id, 'Latitude’)
IF (var_nums(3) .LT. 1) CALL UserStatusHandler (var_nums(3))

var nums(4) = CDF_var num (id, 'Temperature')
IF (var_nums(4) .LT. 1) CALL UserStatusHandler (var_nums(4))

CALL CDF _getrvarsrecorddata (id, num_var, var_nums, rec_num,
1 time, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

Note that the ordering of the variable data buffer in the COMMON block BLK is very important. Always arrange data
buffer in the order in such way that the variables with the bigger data types come in front of the variables with the smaller
data types. They should be in this ordering: 8-byte, 4-byte, 2-byte, and 1-byte. Unexpected results may return if such
ordering is not followed. This function can be a replacement for the similar functionality provided from the Internal
Interface as <GET , rVARs RECDATA >.

43

5.14 CDF _getzvarsrecorddata

SUBROUTINE CDF _getzvarsrecorddata(

INTEGER*4 1id, ! in -- CDF identifier.

INTEGER*4 num_var ! in -- Number of zVariables.

INTEGER*4 var nums(*) ! in -- zVariable numbers.

INTEGER*4 rec num ! in -- Record number.

<type> buffer ! out -- First variable buffer in a common block (<type> depends
! on the data type of the zVariable).

INTEGER*4 status ! out -- Completion status.

CDF _getzvarsrecorddata is used to read a full record data at a specific record number for a selected group of zVariables

in a CDF. It expects that the data buffer for each zVariable is big enough to hold a full physical record'* data and

properly put in a common block. No space is needed for each zVariable's non-variant dimensional elements. Retrieved

record data from the variable group is filled into respective zVariable's buffer.

The arguments to CDF_getzvarsrecorddata are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate, CDF_open
or a similar CDF creation or opening functionality from the Internal Interface.

num_vars Number of the zVariables in the group involved this read operation.

var_nums Numbers of the zVariables involved for which to read a whole record data.

rec_num Record number at which to read the whole record data for the group of zVariables.
buffer First variable buffer to read in a common block. The number of buffers should match to the

num_var argument. Each buffer should hold a full physical record data.

5.14.1 Example(s)

The following example will read an entire single record data for a group of zVariables. The zVariables involved in the
read are Time, Longitude, Delta, Temperature and NAME. The record to read is 4. Since Temperature is O-
dimensional with CDF_FLOAT data type, a scalar variable of REAL*4 is allocated. For Longitude, a 1-dimensional
array of INTEGER*2 (size [3]) is given for its dimension variance [VARY] and data type CDF_INT2. Similar data
variables are provided for Longitude and Time. They both are 2-dimensional array of INTEGER*4 (sizes [3,2]) for their
dimension variances [VARY,VARY] and data type either CDF_INT4 or CDF_UINT4. For NAME, a 1-dimensional
array of CHARACTER*10 (size [2]) is allocated due to its [VARY] dimension variance and CDF_CHAR data type
with the number of element 10.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.

INTEGER*4 status ! Returned status code.
INTEGER*4 num_var ! Number of zVariables.
INTEGER*4 var_nums(5) ! zVariable numbers in CDF.
INTEGER*4 rec_num ! Record number to write.

14 Physical record is explained in the Primer chapter in the CDF User's Guide.

44

INTEGER*4 time(3,2) ! Datatype: UINT4.
! Rec/dim variances: T/TT.

INTEGER*4 delta(3,2) ! Datatype: INT4 .

! Rec/dim variances: T/TT.
INTEGER*2 longitude(3) ! Datatype: INT2.

! Rec/dim variances: T/T.
REAL*4 temperature ! Datatype: FLOAT.

! Rec/dim variances: T/.
CHARACTER*10 name(2) ! Datatype: CHAR/10.

! Rec/dim variances: T/T.
COMMON /BLK/delta, time, temperature, longitude, name

num_var =5 ! Number of zVariables
rec_num = 4 ! Record number to read

status = CDF_LIB (GET , zVAR NUMBER , 'Delta', var nums(1),
1 NULL , status) ! zVariable number
IF (var_nums(1) .LT. 1) ! If less than one (1),
x CALL UserStatusHandler (var_nums(1)) ! then it is actually a
! warning/error code.

status = CDF_LIB (GET , zVAR NUMBER , 'Time', var_nums(2),
1 NULL , status)
IF (var_nums(2) .LT. 1) CALL UserStatusHandler (var _nums(2))

status = CDF_LIB (GET _, zZVAR _NUMBER , 'Longitude', var_nums(3),
1 NULL , status)
IF (var_nums(3) .LT. 1) CALL UserStatusHandler (var nums(3))

status = CDF_LIB (GET , zVAR NUMBER , 'Temperature', var nums(4),
1 NULL , status)
IF (var_nums(4) .LT. 1) CALL UserStatusHandler (var_nums(4))

status = CDF_LIB (GET_, zVAR_NUMBER , 'NAME!, var_nums(5),
1 NULL , status)
IF (var_nums(5) .LT. 1) CALL UserStatusHandler (var_nums(5))

CALL CDF_getzvarsrecorddata (id, num_var, var_nums, rec_num,
1 time, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

Note that the ordering of the variable data buffer in the COMMON block BLK is very important. Always arrange data
buffer in the order in such way that the variables with the bigger data types come in front of the variables with the smaller
data types. They should be in this ordering: 8-byte, 4-byte, 2-byte, and 1-byte. Unexpected results may return if such
ordering is not followed. This function can be a replacement for the similar functionality provided from the Internal

Interface as <GET , zVARs RECDATA >.

5.15 CDF _inquire

45

SUBROUTINE CDF _inquire(

INTEGER*4 1id,
INTEGER*4 num_dims,

INTEGER*4 dim_sizes(CDF_MAX_ DIMS),

INTEGER*4 encoding,
INTEGER*4 majority,

INTEGER*4 max_rec,

INTEGER*4 num_vars,
INTEGER*4 num_attrs,
INTEGER*4 status)

in -- CDF identifier

out -- Number of dimensions, rVariables.

out -- Dimension sizes, rVariables.

out -- Data encoding.

out -- Variable majority.

out -- Maximum record number in the CDF, rVariables.
out -- Number of rVariables in the CDF.

out -- Number of attributes in the CDF.

out -- Completion status

CDF inquire inquires the basic characteristics of a CDF. An application needs to know the number of rVariable
dimensions and their sizes before it can access rVariable data. Knowing the variable majority can be used to optimize
performance and is necessary to properly use the variable hyper functions (for both rVariables and zVariables).

The arguments to CDF _inquire are defined as follows:

id

num_dims

dim_sizes

encoding

majority

max_rec

num_vars
num_attrs

status

5.15.1 Example(s)

Identifier of the CDF. This identifier must have been initialized by a call to CDF_create or
CDF _open.

Number of dimensions for the rVariables in the CDF.

Dimension sizes of the rVariables in the CDF. dim sizes is a l-dimensional array
containing one element per dimension. Each element of dim_sizes receives the
corresponding dimension size. For O-dimensional rVariables this argument is ignored (but

must be present).

Encoding of the variable data and attribute entry data. The encodings are defined in Section
4.6.

The majority of the variable data. The majorities are defined in Section 4.8.

Maximum record number written to an rVariable in the CDF. Note that the maximum record
number written is also kept separately for each rVariable in the CDF. The value of max_rec
is the largest of these. Some rVariables may have fewer records actually written. CDF _lib
(Internal Interface) may be used to inquire the maximum record written for an individual
rVariable (see Section 7).

Number of rVariables in the CDF.

Number of attributes in the CDF.

Completion status code. Chapter 8 explains how to interpret status codes.

The following example will inquire the basic information about a CDF.

INCLUDE '<path>cdf.inc'

46

CDF identifier.
Returned status code.

INTEGER*4 id

INTEGER*4 status

INTEGER*4 num_ dims

INTEGER*4 dim sizes (CDF MAX DIMS)

INTEGER*4 encoding
INTEGER*4 majority
INTEGER*4 max rec

INTEGER*4 num vars
INTEGER*4 num attrs

Data encoding.

Variable majority.
Maximum record number.
Number of rVariables in

|

|

|

|

!

! number of dimensions).
!

|

!

|

! Number of attributes in

CALL CDF _inquire (id, num dims, dim sizes, encoding, majority,

max rec, num vars, num _attrs, status)

IF (status .NE. CDF OK) CALL UserStatusHandler (status)

5.16 CDF open

SUBROUTINE CDF open (

CHARACTER CDF_name*(*), ! in -- CDF file name.
INTEGER*4 id, ! out-- CDF identifier.
INTEGER*4 status) ! out -- Completion status

CDF _open opens an existing CDF. The CDF is initially opened with only read access. This allows multiple applications
to read the same CDF simultaneously. When an attempt to modify the CDF is made, it is automatically closed and
reopened with read/write access. (The function will fail if the application does not have or cannot get write access to the

CDF.)

The arguments to CDF_open are defined as follows:

CDF_name File name of the CDF to open. (Do not specify an extension.) This may be at most
CDF_PATHNAME LEN characters. A CDF file name may contain disk and directory
specifications that conform to the conventions of the operating system being used (including

Number of dimensions, rVariables.
Dimension sizes, rVariables
(allocate to allow the maximum

CDF.
CDF.

logical names on VMS systems and environment variables on UNIX systems).

UNIX: File names are case-sensitive.

id Identifier for the opened CDF. This identifier must be used in all subsequent operations on
the CDF.
status Completion status code. Chapter 8 explains how to interpret status codes.

NOTE: CDF_close must be used to close the CDF before your application exits to ensure that the CDF will be correctly

written to disk (see Section 5.8).

47

5.16.1 Example(s)

The following example will open a CDF named NOAAI.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.

INTEGER*4 status ! Returned status code.
CHARACTER CDF_name*(CDF_PATHNAME_LEN) ! File name of CDF.

DATA CDF name/'NOAALl'/

CALL CDF open (CDF _name, id, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

5.17 CDF_putrvarsrecorddata

SUBROUTINE CDF _putrvarsrecorddata(

INTEGER*4 id, ! in -- CDF identifier.

INTEGER*4 num_var ! in -- Number of rVariables.

INTEGER*4 var nums(*) ! in -- rVariable numbers.

INTEGER*4 rec_num ! in -- Record number.

<type> buffer ! in -- First variable buffer in a common block (<type> depends
! on the data type of the rVariable).

INTEGER*4 status ! out -- Completion status.

CDF _putrvarsrecorddata is used to write a full record data at a specific record number for a selected group of

rVariables in a CDF. It expects that the data buffer for each zVariable is big enough to contain a full physical record

data and properly put in a common block. No space is expected for each rVariable's non-variant dimensional elements.

Record data from each buffer is written to its respective rVariable.

The arguments to CDF_putrvarsrecorddata are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate, CDF_open
or a similar CDF creation or opening functionality from the Internal Interface.

num_vars Number of the rVariables in the group involved this write operation.

var_nums Numbers of the rVariables involved for which to write a whole record data.

rec_num Record number at which to write the whole record data for the group of rVariables.
buffer First variable buffer to write in a common block. The number of buffers should match to the

num_var argument. Each buffer should hold a full physical record data.

48

5.17.1 Example(s)

The following example will write an entire single record data for a group of rVariables. The CDF's rVariables are 2-
dimensional with sizes [2,2]. The rVariables involved in the write are Time, Longitude, Latitude and Temperature.
The record to write is 5. Since the dimension variances for Time are [NONVARY,NONVARY], a scalar variable of
INTEGER*4 is allocated for its data type CDF_INT4. For Longitude, a 1-dimensional array of REAL*4 is allocated
as its dimension variances are [VARY,NONVARY] with data type CDF_REAL4. A similar allocation is done for
Latitude for its [NONVARY,VARY] dimension variances and CDF_REAL4 data type. For Temperature, a 2-
dimensional array of REAL*4 is allocated due to its [VARY,VARY] dimension variances and CDF_REAIL4 data type.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.

INTEGER*4 status ! Returned status code.
INTEGER*4 num_var ! Number of rVariables.
INTEGER*4 var_nums(4) ! rVariable numbers in CDF.
INTEGER*4 rec_num ! Record number to write.
INTEGER*4 time /123/ ! Datatype: INT4.

! Rec/dim variances: T/FF.
REAL*4 longitude(2) ! Datatype: REALA4.
1 /100.01, -100.02/ ! Rec/dim variances: T/TF.
REAL*4 latitude(2) ! Datatype: REAL4.
1 /23.45, -54.32/ ! Rec/dim variances: T/FT.
REAL*4 temperature(2,2) ! Datatype: REAL4.
1 /20.0, 40.0, ! Rec/dim variances: T/TT.
2 30.0, 50.0/

COMMON /BLK/time, longitude, latitude, temperature

num_var =4 ! Number of rVariables
rec_num =15 ! Record number to write
var_nums(1) = CDF_var _num (id, 'Time") ! rVariable number

IF (var_nums(1) .LT. 1) ! If less than one (1),

1 CALL UserStatusHandler (var_ nums(1)) ! then it is actually a

! warning/error code.
var nums(2) = CDF_var num (id, 'Longitude')
IF (var_nums(2) .LT. 1) CALL UserStatusHandler (var_nums(2))

var_nums(3) = CDF_var num (id, 'Latitude’)
IF (var_nums(3) .LT. 1) CALL UserStatusHandler (var_nums(3))

var_nums(4) = CDF_var _num (id, 'Temperature')
IF (var_nums(4) .LT. 1) CALL UserStatusHandler (var_nums(4))

CALL CDF _putrvarsrecorddata (id, num_var, var_nums, rec_num,

1 time, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

49

Note that the ordering of the variable data buffer in the COMMON block BLK is very important. Always arrange data
buffer in the order in such way that the variables with the bigger data types come in front of the variables with the smaller
data types. They should be in this ordering: 8-byte, 4-byte, 2-byte, and 1-byte. Unexpected results may return if such
ordering is not followed. This function can be a replacement for the similar functionality provided from the Internal
Interface as <PUT , rVARs RECDATA >.

5.18 CDF_putzvarsrecorddata

SUBROUTINE CDF _putzvarsrecorddata(

INTEGER*4 id, ! in -- CDF identifier.

INTEGER*4 num_var ! in -- Number of zVariables.

INTEGER*4 var nums(*) ! in -- zVariable numbers.

INTEGER*4 rec_num ! in -- Record number.

<type> buffer ! in -- First variable buffer in a common block (<type> depends
! on the data type of the zVariable).

INTEGER*4 status ! out -- Completion status.

CDF _putzvarsrecorddata is used to write a full record data at a specific record number for a selected group of

zVariables in a CDF. It expects that the data buffer for each zVariable is big enough to contain a full physical record

data and properly put in a common block. No space is expected for each zVariable's non-variant dimensional elements.

Record data from each buffer is written to its respective zVariable.

The arguments to CDF_putzvarsrecorddata are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate, Cdf_open
or a similar CDF creation or opening functionality from the Internal Interface.

num_vars Number of the zVariables in the group involved this write operation.

var_nums Numbers of the zVariables involved for which to write a whole record data.

rec_num Record number at which to write the whole record data for the group of zVariables.
buffer First variable buffer to write in a common block. The number of buffers should match to the

num_var argument. Each buffer should hold a full physical record data.

5.18.1 Example(s)

The following example will write an entire single record data for a group of zVariables. The zVariables involved in the
write are Time, Longitude, Delta, Temperature and NAME. The record to write is 4. Since Temperature is 0-
dimensional with CDF_FLOAT data type, a scalar variable of REAL*4 is allocated. For Longitude, a 1-dimensional
array of INTEGER*2 (size [3]) is given for its dimension variance [VARY] and data type CDF_INT2. Similar data
variables are provided for Longitude and Time. They both are 2-dimensional array of INTEGER*4 (sizes [3,2]) for their
dimension variances [VARY,VARY] and data type either CDF_INT4 or CDF_UINT4. For NAME, a |-dimensional
array of CHARACTER*10 (size [2]) is allocated due to its [VARY] dimension variance and CDF_CHAR data type
with the number of element 10.

INCLUDE '<path>cdf.inc'

50

INTEGER*4

id ! CDF identifier.
INTEGER*4 status ! Returned status code.
INTEGER*4 num_var ! Number of zVariables.
INTEGER*4 var_nums(5) ! zVariable numbers in CDF.
INTEGER*4 rec_num ! Record number to write.
INTEGER*4 time(3,2) ! Datatype: UINT4.
1 /10, 20, ! Rec/dim variances: T/TT.
2 30, 40,
3 50, 60/
INTEGER*4 delta(3,2) ! Datatype: INT4 .
1 /1,2, ! Rec/dim variances: T/TT.
2 5,6,
3 9, 10/
INTEGER*2 longitude(3) ! Datatype: INT2.
1 /10, 20, 30/ ! Rec/dim variances: T/T.
REAL*4 temperature ! Datatype: FLOAT.
1 /1234.56/ ! Rec/dim variances: T/.
CHARACTER*10 name(2) ! Datatype: CHAR/10.
1 /'"ABCDEFGHIJ', ! Rec/dim variances: T/T.
2 '12345678'/

COMMON /BLK/delta, time, temperature, longitude, name

num var =5
rec_num = 4

! Number of zVariables
! Record number to write

status = CDF_LIB (GET , zVAR NUMBER , 'Delta’, var nums(1),

1

NULL , status)

IF (var_nums(1) .LT. 1)
x CALL UserStatusHandler (var_nums(1)) ! then it is actually a

! zVariable number
! If less than one (1),

! warning/error code.

status = CDF_LIB (GET , zVAR NUMBER , 'Time', var nums(2),

1

NULL , status)

IF (var_nums(2) .LT. 1) CALL UserStatusHandler (var_nums(2))

status = CDF_LIB (GET , zVAR NUMBER , 'Longitude', var_nums(3),

1

NULL , status)

IF (var_nums(3) .LT. 1) CALL UserStatusHandler (var_nums(3))

status = CDF_LIB (GET ,zVAR NUMBER , 'Temperature', var nums(4),

1

NULL , status)

IF (var_nums(4) .LT. 1) CALL UserStatusHandler (var_nums(4))

status = CDF_LIB (GET , zVAR NUMBER , 'NAME', var nums(5),

1

NULL , status)

IF (var_nums(5) .LT. 1)7CALL UserStatusHandler (var_nums(5))

CALL CDF _putzvarsrecorddata (id, num_var, var_nums, rec_num,
time, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

1

51

Note that the ordering of the variable data buffer in the COMMON block BLK is very important. Always arrange data
buffer in the order in such way that the variables with the bigger data types come in front of the variables with the smaller
data types. They should be in this ordering: 8-byte, 4-byte, 2-byte, and 1-byte. Unexpected results may return if such
ordering is not followed. This function can be a replacement for the similar functionality provided from the Internal
Interface as <PUT , zZVARs RECDATA >.

5.19 CDF var_close

SUBROUTINE CDF _var_close (

INTEGER*4 1id, ! in -- CDF identifier.
INTEGER*4 var num, ! in -- rVariable number.
INTEGER*4 status) ! out -- Completion status

CDF var close is used to close an rVariable in a multi-file CDF. This function is not applicable to single-file CDFs.
The use of CDF_var_close is not required since the CDF library automatically closes the rVariable files when a multi-
file CDF is closed or when there are insufficient file pointers available (because of an open file quota) to keep all of the
rVariable files open. CDF var close would be used by an application since it knows best how its rVariables are going
to be accessed. Closing an rVariable would also free the cache buffers that are associated with the rVariable's file. This
could be important in those situations where memory is limited (e.g., the IBM PC). The caching scheme used by the
CDF library is described in the Concepts chapter in the CDF User's Guide. Note that there is not a function that opens
an rVariable. The CDF library automatically opens an rVariable when it is accessed by an application (unless it is already
open).

The arguments to CDF_var_close are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF_create or
CDF _open.
var_num Number of the rVariable to close. This number may be determined with a call to

CDF_var num (see Section 5.25).

status Completion status code. Chapter 8 explains how to interpret status codes.

5.19.1 Example(s)

The following example will close an rVariable in a multi-file CDF.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.
INTEGER*4 status ! Returned status code.

CALL CDF var close (id, CDF var num(id, 'Flux'), status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

52

5.20 CDF _var_create

SUBROUTINE CDF _var_create (

INTEGER*4 id,

! in -- CDF identifier.

CHARACTER var name*(*), ! in -- rVariable name.

INTEGER*4 data_type,

! in -- Data type.

INTEGER*4 num_elements, ! in -- Number of elements (of the data type).

INTEGER*4 rec_variance,

in -- Record variance.

!
INTEGER*4 dim_variances(*), ! in -- Dimension variances.
!

INTEGER*4 var num,

out -- rVariable number.

CDF var create is used to create a new rVariable in a CDF. A variable (rVariable or zVariable) with the same name
must not already exist in the CDF.

The arguments to CDF_var_create are defined as follows:

id
var_name

data_type

num_elements

rec_variance

dim_variances

var_num

status

5.20.1 Example(s)

Identifier of the CDF. This identifier must have been initialized by a call to CDF_create
or CDF_open.

Name of the rVariable to create. This may be at most CDF VAR NAME LEN256
characters. Variable names are case-sensitive.

Data type of the new rVariable. Specify one of the data types defined in Section 4.5.

Number of elements of the data type at each value. For character data types (CDF_CHAR
and CDF_UCHAR), this is the number of characters in the string (each value consists of
the entire string). For all other data types this must always be one (1) - multiple elements
at each value are not allowed for non-character data types.

rVariable's record variance. Specify one of the variances defined in Section 4.9.

rVariable's dimension variances. Each element of dim_variances specifies the
corresponding dimension variance. For each dimension specify one of the variances
defined in Section 4.9. For 0-dimensional rVariables this argument is ignored (but must
be present).

Number assigned to the new rVariable. This number must be used in subsequent CDF
function calls when referring to this rVariable. An existing rVariable's number may be

determined with the CDF_var num function.

Completion status code. Chapter 8 explains how to interpret status codes.

The following example will create several rVariables in a CDF whose rVariables are 2-dimensional. In this case EPOCH,
LAT, and LON are independent rVariables, and TMP is a dependent rVariable.

53

INCLUDE '<path>cdf.inc'

INTEGER*4

id ! CDF identifier.
INTEGER*4 status ! Returned status code.
INTEGER*4 EPOCH rec vary EPOCH record variance.
INTEGER*4 LAT rec vary LAT record variance.
INTEGER*4 LON rec vary LON record variance.
INTEGER*4 TMP rec vary TMP record variance.

|
!
|
!
INTEGER*4 EPOCH dim varys(2) ! EPOCH dimension variances.
INTEGER*4 LAT dim varys(2) ! LAT dimension variances.
INTEGER*4 LON dim varys(2) ! LON dimension variances.
INTEGER*4 TMP dim varys(2) ! TMP dimension variances.
INTEGER*4 EPOCH var num ! EPOCH variable number.
INTEGER*4 LAT var num ! LAT rVariable number.
INTEGER*4 LON var num ! LON rVariable number.
INTEGER*4 TMP_ var num ! TMP rVariable number.

DATA EPOCH rec vary/VARY/, LAT rec vary/NOVARY/,
1 LON rec vary/NOVARY/, TMP rec vary/VARY/

DATA EPOCH dim varys/NOVARY,NOVARY/, LAT dim varys/NOVARY,VARY/,

1 LON dim varys/VARY,NOVARY/, TMP dim varys/VARY, VARY/

CALL CDF var create (id, 'EPOCH', CDF EPOCH, 1,

1 EPOCH rec vary, EPOCH dim varys, EPOCH var num, status)

IF (status .NE. CDF OK) CALL UserStatusHandler (status)

CALL CDF _var create (id, 'LATITUDE', CDF_INTZ, 1,
1 LAT rec vary, LAT dim varys, LAT var num,
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

CALL CDF var create (id, 'LONGITUDE', CDF INT2, 1,
1 LON_rec vary, LON dim varys, LON var num,
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

CALL CDF var create (id, 'TEMPERATURE', CDF REAL4, 1,
1 TMP rec vary, TMP dim varys, TMP var num,
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

5.21 CDF _var_get

SUBROUTINE CDF var get (

INTEGER*4 1id, ! in -- CDF identifier.
INTEGER*4 var num, ! in -- rVariable number.

54

status)

status)

status)

INTEGER*4 rec_num,
INTEGER*4 indices(*),
<type> value,
INTEGER*4 status)

in -- Record number.

in -- Dimension indices.

out -- Value (<type> is dependent on the data type of the rVariable).
out -- Completion status

CDF var_get is used to read a single value from an rVariable. CDF_var hyper get may be used to read more than one
rVariable value with a single call (see Section 5.22).

The arguments to CDF_var_get are defined as follows:

id

var_num

rec_num

indices

value

status

Identifier of the CDF. This identifier must have been initialized by a call to CDF_create or
CDF_open.

Number of the rVariable from which to read. This number may be determined with a call to
CDF var num (see Section 5.25).

Record number at which to read.

Array indices within the specified record at which to read. Each element of indices specifies
the corresponding dimension index. For 0-dimensional rVariables this argument is ignored
(but must be present).

Value read. This buffer must be large enough to hold the value. CDF_var inquire would be
used to determine the rVariable's data type and number of elements (of that data type) at each
value. The value is read from the CDF and placed at memory address value.

WARNING: If the rVariable has one of the character data types (CDF_CHAR or
CDF_UCHAR), then value must be a CHARACTER Fortran variable. If the rVariable does
not have one of the character data types, then value must NOT be a CHARACTER Fortran
variable.

Completion status code. Chapter 8 explains how to interpret status codes.

5.21.1 Example(s)

The following example will read and hold an entire record of data from an rVariable. The CDF's rVariables are 3-
dimensional with sizes [180,91,10]. For this rVariable the record variance is VARY, the dimension variances are
[VARY,VARY,VARY], and the data type is CDF_REALA4.

INCLUDE '<path>cdf.inc'

INTEGER*4 id

|
INTEGER*4 status
REAL*4 tmp(180,91,10) !
INTEGER*4 indices (3) ! Dimension indices.
|
|
|

CDF identifier.
Returned status code.
Temperature values.

INTEGER*4 var n rVariable number.
INTEGER*4 rec num Record number.
INTEGER*4 d1, d2, d3 Dimension index values.
var n = CDF var num (id, 'Temperature')

55

IF (var n .LT. 1) CALL UserStatusHandler (var n) ! If less than one (1),
! then it is actually a
! warning/error code.
rec num = 13
DO dl1 = 1, 180
indices (1) = dl
DO d2 =1, 91
indices (2) = d2
DO d3 =1, 10
indices (3) = d3
CALL CDF var get (id, var n, rec num, indices, tmp(dl,d2,d3), status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)
END DO
END DO
END DO

5.22 CDF _var_hyper get

SUBROUTINE CDF var hyper get (

INTEGER*4 id, ! in -- CDF identifier.

INTEGER*4 var num, ! in -- rVariable number.

INTEGER*4 rec_start, ! in -- Starting record number.

INTEGER*4 rec_count, ! in -- Number of records.

INTEGER*4 rec_interval, ! in -- Subsampling interval between records.

INTEGER*4 indices(*), ! in -- Dimension indices of starting value.

INTEGER*4 counts(*), ! in -- Number of values along each dimension.

INTEGER*4 intervals(*), ! in -- Subsampling intervals along each dimension.

<type> buffer, ! in -- Buffer of values (<type> is dependent on the data type of the rVariable).
INTEGER*4 status) ! out-- Completion status

CDF _var_hyper_get is used to read a buffer of one or more values from an rVariable. It is important to know the variable
majority of the CDF before using CDF var hyper get because the values placed into the buffer will be in that majority.
CDF _inquire can be used to determine the default variable majority of a CDF distribution. The Concepts chapter in the

CDF User's Guide describes the variable majorities.

The arguments to CDF_var hyper get are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF_create or
CDF_open.

var_num Number of the rVariable from which to read. This number may be determined with a call to
CDF_var num (see Section 5.25).

rec_start Record number at which to start reading.

rec_count Number of records to read.

rec_interval

Interval between records for subsampling (e.g., an interval of 2 means read every other record).

56

indices Indices (within each record) at which to start reading. Each element of indices specifies the
corresponding dimension index. If there are zero (0) dimensions, this argument is ignored (but
must be present).

counts Number of values along each dimension to read. Each element of counts specifies the
corresponding dimension count. For 0-dimensional rVariables this argument is ignored (but must
be present).

intervals For each dimension, the interval between values for subsampling (e.g., an interval of 2 means read
every other value). Each element of intervals specifies the corresponding dimension interval. For
0-dimensional rVariables, this argument is ignored (but must be present).

buffer Buffer of values read. The majority of the values in this buffer will be the same as that of the CDF.
This buffer must be large to hold the values. CDF_var_inquire would be used to determine the
rVariable's data type and number of elements (of that data type) at each value. The values are read
from the CDF and placed into memory starting at address buffer.

WARNING: If the rVariable has one of the character data types (CDF_CHAR or
CDF_UCHAR), then value must be a CHARACTER Fortran variable. If the rVariable does not
have one of the character data types, then value must NOT be a CHARACTER Fortran variable.

status Completion status code. Chapter 8 explains how to interpret status codes.

5.22.1 Example(s)

The following example will read an entire record of data from an rVariable. The CDF’s rVariables are 3-dimensional
with sizes [180,91,10] and CDEF’s variable majority is ROW_MAJOR. For the rVariable the record variance is VARY,
the dimension variances are [VARY,VARY,VARY], and the data type is CDF_REAL4. This example is similar to the
example in Section 5.21 except that it uses a single call to CDF var hyper get rather than numerous calls to
CDF var get.

INCLUDE '<path>cdf.inc'

INTEGER*4 id
INTEGER*4 status

! CDF identifier.

! Returned status code.
REAL*4 tmp(180,91,10) ! Temperature values.
INTEGER*4 var n ! rVariable number.
INTEGER*4 rec_ start ! Record number.
INTEGER*4 rec_count ! Record counts.
INTEGER*4 rec interval ! Record interval.
INTEGER*4 indices (3) ! Dimension indices.
INTEGER*4 counts (3) ! Dimension counts.
INTEGER*4 intervals (3) ! Dimension intervals.

DATA rec start/13/, rec count/l/, rec interval/l/,

1 indices/1,1,1/, counts/180,91,10/, intervals/1,1,1/
var n = CDF _var num (id, 'Temperature')
IF (var n .LT. 1) CALL UserStatusHandler (var_ n) ! If less than one (1),

57

! then it is actually a
! warning/error code.

CALL CDF var hyper get (id, var n, rec_start, rec count, rec interval,

1 indices, counts, intervals, tmp, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

Note that if the CDF's variable majority had been ROW_MAJOR, the tmp array would have been declared REAL*4
tmp[10][91][180] for proper indexing.

5.23 CDF _var_ hyper put

SUBROUTINE CDF var hyper put (

INTEGER*4 1id,
INTEGER*4 var num,

! in -- CDF identifier.

! in -- rVariable number.

INTEGER*4 rec_start, ! in -- Starting record number.

INTEGER*4 rec count, ! in -- Number of records.

INTEGER*4 rec_interval, ! in -- Interval between records.

INTEGER*4 indices(*), ! in -- Dimension indices of starting value.

INTEGER*4 counts(*), ! in -- Number of values along each dimension.

INTEGER*4 intervals(*), ! in -- Interval between values along each dimension.

<type> buffer, ! in -- Buffer of values (<type> is dependent on the data type of the rVariable).
INTEGER*4 status) ! out -- Completion status

CDF var hyper put is used to write a buffer of one or more values to an rVariable. It is important to know the variable
majority of the CDF before using CDF_var_hyper put because the values in the buffer to be written must be in the same
majority. CDF inquire can be used to determine the default variable majority of a CDF distribution. The Concepts
chapter in the CDF User's Guide describes the variable majorities.

The arguments to CDF_var_hyper put are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF_create or
CDF _open.
var_num Number of the rVariable to which to write. This number may be determined with a call to

CDF var num (see Section 5.25).

rec_start Record number at which to start writing.

rec_count Number of records to write.

rec_interval Interval between records for subsampling'® (e.g., An interval of 2 means write to every other
record).

indices Indices (within each record) at which to start writing. Each element of indices specifies the

corresponding dimension index. Ifthere are zero (0) dimensions, this argument is ignored (but
must be present).

15 »Subsampling" is not the best term to use when writing data, but you should know what we mean.

58

counts Number of values along each dimension to write. Each element of count specifies the
corresponding dimension count. For 0-dimensional rVariables this argument is ignored (but
must be present).

intervals For each dimension the interval between values for subsampling'® (e.g., an interval of 2 means
write to every other value). intervals is a 1-dimensional array containing one element per
rVariable dimension. Each element of intervals specifies the corresponding dimension interval.
For 0-dimensional rVariables this argument is ignored (but a place holder is necessary).

buffer Buffer of values to write. The majority of the values in this buffer must be the same as that of
the CDF. The values starting at memory address buffer are written to the CDF.

WARNING: If the rVariable has one of the character data types (CDF_CHAR or

CDF _UCHAR), then value must be a CHARACTER Fortran variable. If the entry does not
have one of the character data types, then value must NOT be a CHARACTER Fortran
variable.

status Completion status code. Chapter 8 explains how to interpret status codes.

5.23.1 Example(s)

The following example writes values to the rVariable LATITUDE of a CDF whose rVariables are 2-dimensional with
dimension sizes [360,181]. For LATITUDE the record variance is NOVARY, the dimension variances are
[NOVARY,VARY], and the data type is CDF_INT2. This example is similar to the example in Section 5.26

except that it uses a single call to CDF_var_hyper put rather than numerous calls to CDF_var put.

INCLUDE '<path>cdf.inc'

INTEGER*4

INTEGER*4

counts (2)

Dimension counts.

id ! CDF identifier.

INTEGER*4 status ! Returned status code.
INTEGER*2 lat ! Latitude value.
INTEGER*2 lats (181) ! Buffer of latitude values.
INTEGER*4 var n ! rVariable number.
INTEGER*4 rec_start ! Record number.
INTEGER*4 rec count ! Record counts.
INTEGER*4 rec interval ! Record interval.
INTEGER*4 indices (2) ! Dimension indices.

|

|

INTEGER*4

intervals (2)

Dimension intervals.

DATA rec_start/l/, rec count/l/, rec_interval/l/,

1 indices/1,1/,

var n = CDF _var num

IF (var_n

LT, 1)

16 Again, not the best term.

(id,

counts/1,181/,

intervals/1,1/

'LATITUDE")
CALL UserStatusHandler

If less than one (1),
then not an rVariable
number but rather a
warning/error code

(var_n)

59

DO lat = -90, 90
lats (91+1lat) = lat
END DO

CALL CDF _var hyper put (id, var n, rec_start, rec count, rec interval,
1 indices, counts, intervals, lats, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

5.24 CDF _var_inquire

SUBROUTINE CDF var inquire (

INTEGER*4 id, ! in -- CDF identifier.
INTEGER*4 var num, ! in -- rVariable number.
CHARACTER var name*(CDF_VAR NAME LEN256), ! out-- rVariable name.
INTEGER*4 data_type, ! out -- Data type.

INTEGER*4 num_elements,

INTEGER*4 rec_variance,

INTEGER*4 dim_variances(CDF_MAX DIMS),
INTEGER*4 status)

! out -- Number of elements (of the data type).

! out-- Record variance.

! out -- Dimension variances.

! out -- Completion status

CDF var inquire is used to inquire about the specified rVariable. This function would normally be used before reading
rVariable values (with CDF_var_get or CDF_var_hyper get) to determine the data type and number of elements (of that
data type).

The arguments to CDF_var_inquire are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF _create or
CDF _open.
var_num Number of the rVariable to inquire. This number may be determined with a call to

CDF _var num (see Section 5.25).

var_name rVariable's name. This character string must be large enough to hold
CDF VAR NAME LEN256 characters and will be blank padded if necessary.

data type Data type of the rVariable. The data types are defined in Section 4.5.

num_elements Number of elements of the data type at each rVariable value. For character data types
(CDF_CHAR and CDF_UCHAR), this is the number of characters in the string. (Each
value consists of the entire string.) For all other data types, this will always be one (1) -
multiple elements at each value are not allowed for non-character data types.

rec_variance Record variance. The record variances are defined in Section 4.9.

dim_variances Dimension variances. Each element of dim_variances receives the corresponding
dimension variance. The dimension variances are defined in Section 4.9. For 0-dimensional

rVariable this argument is ignored (but must be present).

status Completion status code. Chapter 8 explains how to interpret status codes.

60

5.24.1 Example(s)

The following example inquires about an rVariable named HEAT FLUX in a CDF. Note that the rVariable name

returned by CDF_var_inquire will be the same as that passed in to CDF_var_num.

INCLUDE '<path>cdf.inc'

INTEGER*4

allow the maximum number of
dimensions) .

id ! CDF identifier.
INTEGER*4 status ! Returned status code.
CHARACTER var_ name* (CDF_ VAR NAME LEN256) ! rVariable name.
INTEGER*4 data type ! Data type.
INTEGER*4 num elems ! Number of elements (of data type).
INTEGER*4 rec vary ! Record variance.
INTEGER*4 dim varys (CDF_MAX DIMS) ! Dimension variances (allocate to
|
|

CALL CDF var inquire (id, CDF _var num(id, 'HEAT FLUX'), var name, data type,
1 num_elems, rec vary, dim varys, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

5.25 CDF_var num

INTEGER*4 FUNCTION CDF _var num (

! in-- CDF identifier.
! in-- Variable name.

INTEGER*4 id,
CHARACTER var_name*(*));

CDF_var_num is used to determine the number associated with a given rVariable or zVariable name. If the variable is
found, CDF_var num returns its number - which will be equal to or greater than one (1). If an error occurs (e.g., the

rVariable does not exist in the CDF), an error code (of type INTEGER*4) is returned. Error codes are less than zero (0).

The arguments to CDF_var num are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF_create or
CDF_open.
VarName Name of the variable, either rVariable or zVariable, for which to search. This may be at most

CDF_VAR NAME LEN256 characters. Variable names are case-sensitive.

CDF var num may be used as an embedded function call when a variable number is needed. CDF var num is
declared in cdf.inc. (Fortran functions must be declared so that the returned value is interpreted correctly.)

61

5.25.1 Example(s)

In the following example CDF var num is used as an embedded function call when inquiring about an rVariable.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.

INTEGER*4 status ! Returned status code.
CHARACTER var_ name* (CDF_VAR NAME LEN256) ! rVariable name.
INTEGER*4 data_ type ! Data type of the rVariable.
INTEGER*4 num elements ! Number of elements (of the
! data type).

! Record variance.

! Dimension variances.

INTEGER*4 rec_variances
INTEGER*4 dim variances (CDF_MAX DIMS)

CALL CDF var inquire (id, CDF var num(id, 'LATITUDE'), var name, data type,
1 num_elements, rec_variance, dim variances, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

In this example the rVariable named LATITUDE was inquired. Note that if LATITUDE did not exist in the CDF, the
call to CDF_var_num would have returned an error code. Passing that error code to CDF_var inquire as an rVariable
number would have resulted in CDF_var_inquire also returning an error code. Also note that the name written into
var_name is already known (LATITUDE). In some cases the rVariable names will be unknown - CDF_var_inquire
would be used to determine them. CDF var inquire is described in Section 5.24.

5.26 CDF _var put

SUBROUTINE CDF_var put (

in -- CDF identifier.

in -- rVariable number.

in -- Record number.

in -- Dimension indices.

out -- Value (<type> is dependent on the data type of the rVariable).
out -- Completion status

INTEGER*4 id,
INTEGER*4 var num,
INTEGER*4 rec num,
INTEGER*4 indices(*),
<type> value,
INTEGER*4 status)

CDF var put is used to write a single value to an rVariable. CDF var hyper put may be used to write more than one
rVariable value with a single call (see Section 5.23).

The arguments to CDF_var put are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF create or
CDF _open.
var_num Number of the rVariable to which to write. This number may be determined with a call to

CDF_var_num (see Section 5.25).

62

rec_num Record number at which to write.

indices Array indices within the specified record at which to write. Each element of indices specifies
the corresponding dimension index. For 0-dimensional rVariables this argument is ignored
(but must be present).

value Value to write. The value is written to the CDF from memory address value.

WARNING: If the rVariable has one of the character data types (CDF_CHARor
CDF_UCHAR), then value must be a CHARACTER Fortran variable. If the rVariable does
not have one of the character data types, then value must NOT be a CHARACTER Fortran
variable.

status Completion status code. Chapter 8 explains how to interpret status codes.

5.26.1 Example(s)

The following example writes values to the rVariable named LATITUDE in a CDF whose rVariables are 2-dimensional
with dimension sizes [360,181]. For LATITUDE the record variance is NOVARY, the dimension variances are
[NOVARY,VARY], and the data type is CDF_INT2.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.
INTEGER*4 status ! Returned status code.
INTEGER*2 lat ! Latitude value.
INTEGER*4 var n ! rVariable number.
INTEGER*4 rec num ! Record number.
INTEGER*4 indices (2) ! Dimension indices.

DATA rec_num/1/, indices/1,1/

var n = CDF _var num (id, 'LATITUDE')
IF (var n .LT. 1) CALL UserStatusHandler (var_ n) If less than one (1),
then not an rVariable
number but rather a
warning/error code.
DO lat = -90, 90

indices (2) = 91 + lat

CALL CDF var put (id, var n, rec num, indices, lat, status)

IF (status .NE. CDF OK) CALL UserStatusHandler (status)
END DO

Since the record variance is NOVARY, the record number (rec_num) is set to one (1). Also note that because the
dimension variances are [NOVARY,VARY], only the second dimension is varied as values are written. (The values are
“virtually” the same at each index of the first dimension.)

63

5.27 CDF_var_rename

SUBROUTINE CDF_var rename (

in -- CDF identifier.
in -- rVariable number.
in -- New name.

out -- Completion status

INTEGER*4 id,
INTEGER*4 var_num,
CHARACTER var name*(*),
INTEGER*4 status)

CDF var rename is used to rename an existing rVariable. A variable (rVariable or zVariable) with the same name must
not already exist in the CDF.

The arguments to CDF_var_rename are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF_create or
CDF_open.
var_num Number of the rVariable to rename. This number may be determined with a call to

CDF _var num (see Section 5.25).

var_name New rVariable name. This may be at most CDF_ VAR NAME LEN256 characters. Variable
names are case-sensitive.

status Completion status code. Chapter 8 explains how to interpret status codes.

5.27.1 Example(s)

In the following example the rVariable named TEMPERATURE is renamed to TMP (if it exists). Note that if
CDF var num returns a value less than one (1) then that value is not an rVariable number but rather a warning/error
code.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.

INTEGER*4 status ! Returned status code.
INTEGER*4 var num ! rVariable number.

var num = CDF var num (id, 'TEMPERATURE')

IF (var num .LT. 1) THEN

IF (var num .NE. NO SUCH VAR) CALL UserStatusHandler (var_ num)
ELSE

CALL CDF _var rename (id, var_num, 'TMP', status)

IF (status .NE. CDF OK) CALL UserStatusHandler (status)

END IF

64

65

Chapter 6

6 Extended Standard Interface

The following sections describe the new, extended set of Standard Interface routines callable from Fortran applications.
Most subroutines return a status code of type INTEGER*4 (see Chapter 8). The Internal Interface is described in Chapter
7. An application can use either or both interfaces when necessary.

Previously, the Standard Interface only provided a very limited functionality within the CDF library. For example, it
could not handle zVariables and their attribute entries (they were only accessible via the Internal Interface). Since V3.1,
the Standard Interface has been expanded to include many new operations that are previously only available through the
Internal Interface.

The original Standard Interface functions'” and subroutines'®, described in Chapter 5, in the previous library version are
still available and work the same way as before. To encourage the use of zVariables, the preferred variable type over the
rVariables in the CDF, new subroutines are explicitly added to the library to handle zVariables, their data as well as
entries in the variable-scoped attributes. The original Standard Interface functions/subroutines can be used to operate the
rVariables and their associated rEntries. The Internal Interface needs to be called to operate the functions/items that are
not available from the new Standard Interface.

A naming convention is adopted by the new extended Standard Interface subroutines to separate the operations on
zVariable, as well as entry, i.e., gEntry, rEntry and zEntry.

The new functions, based on the operands, are grouped into four (4) categories: library, CDFs, variables and
attributes/entries.

6.1 Library

The functions in this section are related to the library being used for the CDF operations and are common for any CDF
entity, i.e., CDFs, variables, attributes and entries.

17 They are: CDF_attr Num and CDF_var Num.

18 They are: CDF_create, CDF_open, CDF_doc, CDF _inquire, CDF close, CDF _delete, CDF_attr Create,

CDF attr Rename, CDF_attr Inquire, CDF_attr Entry Inquire, CDF attr Put, CDF _attr Get, CDF var_Create,
CDF var Rename, CDF var Inquire, CDF var Put, CDF var Get, CDF var Hyper Put, CDF var Hyper Get,
CDF var Close, CDF_getrVarsRecordData, CDF_getzVarsRecordData, CDF_putrVarsRecordData and

CDF _putzVarsRecordData.

67

6.1.1 CDF _get datatype size

SUBROUTINE CDF get datatype size (

INTEGER*4 data_type, ! in -- CDF data type.
INTEGER*4 size, ! out -- Size in bytes.
INTEGER*4 status) ! out -- Completion status

CDF get datatype_size acquires the size (in bytes) of an element of the specified CDF data type

The arguments to CDF_get datatype_size are defined as follows:

data type A CDF data type.
size Size in bytes of that data type.
status Completion status code. Chapter 8 explains how to interpret status codes.

6.1.1.1. Example(s)

The following example acquires the size (in bytes) of CDF data type CDF _INT4 (it should be 4 bytes).

INCLUDE '<path>cdf.inc'

INTEGER*4 size ! Size of the data type.
INTEGER*4 status ! Returned status code.

CALL CDF _get datatype size (CDF_INT4, size, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

6.1.2 CDF _get lib_copyright

SUBROUTINE CDF get lib_copyright (

CHARACTER copyright*(*), ! out -- CDF library copyright notice.
INTEGER*4 status) ! out -- Completion status

CDF _get lib_copyright acquires the copyright notice of the CDF library being used.
The arguments to CDF_get lib_copyright are defined as follows:

copyright CDF’s copyright notice.

68

status Completion status code. Chapter 8 explains how to interpret status codes.

6.1.2.1. Example(s)

The following example acquires the CDF library’s copyright notice.

INCLUDE '<path>cdf.inc'

CHARACTER copyright* (CDF_COPYRIGHT LEN) ! Copyright notice.
INTEGER*4 status ! Returned status code.

CALL CDF get 1lib copyright (copyright, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

6.1.3 CDF_get lib_version

SUBROUTINE CDF get lib_version (

INTEGER*4 version, ! out -- CDF library version.
INTEGER*4 release, ! out -- CDF library release.
INTEGER*4 increment, ! out -- CDF library increment.
CHARACTER sub_increment*(*) ! out -- CDF library sub-increment..
INTEGER*4 status) ! out -- Completion status.

CDF get lib version acquires the version and release information from the CDF library being used.

The arguments to CDF _get lib_version are defined as follows:

version CDF library version.

release CDF library release.

increment CDF library increment.

sub_increment CDF library sub-increment.

status Completion status code. Chapter 8 explains how to interpret status codes.

69

6.1.3.1. Example(s)

The following example acquires the CDF library’s version/release information.

INCLUDE '<path>cdf.inc'

INTEGER*4 version
INTEGER*4 release
INTEGER*4 increment
CHARACTER sub_increment*1l
INTEGER*4 status

Library version.
Library release.
Library increment.
Library sub-increment.
Returned status code.

CALL CDF get 1lib version (version, release, increment,
1 sub_increment, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

6.1.4 CDF _get status_text

SUBROUTINE CDF _get status_text (

INTEGER*4 status_id, ! in -- CDEF status identifier.
CHARACTER text*(*), ! out -- Status text description.
INTEGER*4 status) ! out-- Completion status

CDF get status_text is used to inquire the explanation of a given status code (not just error codes). Chapter 8 explains
how to interpret status codes and Appendix A lists all of the possible status codes.

The arguments to CDF_get status_text are defined as follows:
status_id Status code to check.

message The explanation of the status code. This character string must be large enough to hold
CDF_STATUSTEXT LEN characters and will be blank padded if necessary.

status Status of checking.

6.1.4.1. Example(s)

The following example displays the explanation text if an error code is returned from a call to CDF_open_cdf.

INCLUDE '<path>cdf.inc'

70

CDF identifier.

Returned status code.
Explanation text.

Last character position
actually used in the copyright.

INTEGER*4 id

INTEGER*4 statusl, status2
CHARACTER text*(CDF_STATUSTEXT_LEN)
INTEGER*4 last_char

CALL CDF open _cdf ('giss wetl', id, statusl)
IF (statusl .LT. CDF_WARN) THEN ! INFO and WARNING codes ignored.
CALL CDF get status text (statusl, text, status2)
last CHARACTER= CDF_STATUSTEXT LEN
DO WHILE (text(last char:last char) .EQ. ' ')
last CHARACTER= last CHARACTER- 1

END DO
WRITE (6,101) text(l:last char)
101 FORMAT (' ', 'ERROR> ',A)
END IF

6.2 CDF

The functions in this section provide CDF-specific operations. Any operations on variables or attributes in a CDF are
described in the following sections. This CDF has to be a newly created or opened from an existing one.

6.2.1 CDF close_cdf

SUBROUTINE CDF close cdf (

INTEGER*4 1id, ! in -- CDF identifier.
INTEGER*4 status) ! out -- Completion status

CDF close _cdf closes the specified CDF. The CDF's cache buffers are flushed; the CDF's open file is closed (or files in
the case of a multi-file CDF); and the CDF identifier is made available for reuse. This routine is identical to the original
Standard Interface routine CDF_close.

NOTE: You must close a CDF with CDF_close cdf to guarantee that all modifications you have made will actually be
written to the CDF's file(s). If your program exits, normally or otherwise, without a successful call to CDF close cdf,
the CDEF's cache buffers are left unflushed.

The arguments to CDF_close cdf are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF _create cdf
or CDF_open_cdf.

status Completion status code. Chapter 8 explains how to interpret status codes.

71

6.2.1.1. Example(s)

The following example will close an open CDF.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.
INTEGER*4 status ! Returned status code.

CALL CDF _close_cdf (id, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

6.2.2 CDF _create cdf

SUBROUTINE CDF _create cdf (

CHARACTER CDF_name*(*), !in -- CDF file name.
INTEGER*4 status) ! out -- Completion status

CDF create cdf creates a CDF as defined by the arguments. This function provides the simplest form of CDF creation
without the number of dimensions, dimension sizes, encoding and majority arguments required in the original Standard
Interface routine, CDF _create, or the similar process from the Internal Interface CDF _lib routine. The created CDF will
have zero (0) dimension (thus no dimension sizes) and use the default encoding (HOST ENCODING) and majority
(ROW_MAIJOR), specified in the configuration file of your CDF distribution. This routine should be used to create CDFs
that will have only zVariables, or rVariables with no dimensionality. Use CDF _create or CDF _lib routine to create CDFs
to hold rVariables with dimensions. A CDF cannot be created if it already exists. (The existing CDF will not be
overwritten.) If you want to overwrite an existing CDF, you must first open it with CDF_open_cdf, delete it with
CDF _delete, and then recreate it with CDF _create cdf. If the existing CDF is corrupted, the call to CDF_open_cdf will
fail. (An error code will be returned.) In this case you must delete the CDF at the command line. Delete the dotCDF
file (having an extension of .cdf), and if the CDF has the multi-file format, delete all of the variable files (having
extensions of .v0,.v1,. .. and .z0,.z1,.. .).

The arguments to CDF_create_cdf are defined as follows:
CDF_name The file name of the CDF to create. (Do not specify an extension.) This may be at most
CDF PATHNAME LEN characters. A CDF file name may contain disk and directory
specifications that conform to the conventions of the operating system being used (including

logical names on VMS systems and environment variables on UNIX systems).

UNIX: File names are case-sensitive.

id Identifier for the created CDF. This identifier must be used in all subsequent operations on
the CDF.
status Completion status code. Chapter 8 explains how to interpret status codes.

72

When a CDF is created, both read and write access are allowed. The default format for a CDF created with CDF_create
is specified in the configuration file of your CDF distribution. Consult your system manager for this default. The
CDF _1ib function (Internal Interface) may be used to change a CDF's format.

NOTE: CDF close cdf must be used to close the CDF before your application exits to ensure that the CDF will
be correctly written to disk (see Section 6.2.1).

6.2.2.1. Example(s)

The following example will create a CDF named test] with default encoding and majority.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.
INTEGER*4 status ! Returned status code.

CALL CDF create cdf ('testl', id, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

6.2.3 CDF _delete_cdf

SUBROUTINE CDF _delete cdf (

INTEGER*4 1id, ! in -- CDF identifier.
INTEGER*4 status) ! out-- Completion status

CDF _delete cdf deletes the specified CDF. The CDF files deleted include the dotCDF file (having an extension of .cdf),
and if a multi-file CDF, the variable files (having extensions of .v0,.v1,. . . and .z0,.z1,.. .).

You must open a CDF before you are allowed to delete it. If you have no privilege to delete the CDF files, they will not
be deleted. If the CDF is corrupted and cannot be opened, the CDF file(s) must be deleted at the command line.

The arguments to CDF_delete_cdf are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF_create cdf
or CDF _open_cdf.

73

status Completion status code. Chapter 8 explains how to interpret status codes.

6.2.3.1. Example(s)

The following example will open and then delete an existing CDF.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.
INTEGER*4 status ! Returned status code.

CALL CDF open cdf ('test2', id, status)

IF (status .LT. CDF_OK) THEN ! INFO status codes ignored.
CALL UserStatusHandler (status)

ELSE
CALL CDF delete cdf (id, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

END IF

6.2.4 CDF _get cachesize

SUBROUTINE CDF get cachesize (

INTEGER*4 1id, ! in -- CDF identifier.
INTEGER*4 num_buffers, ! out -- Number of cache buffers.
INTEGER*4 status) ! out -- Completion status

CDF _get cachesize acquires the number of cache buffers being used for the dotCDF file when a CDF is open. Refer to
the CDF User’s Guide for the description of caching scheme used by the CDF library.

The arguments to CDF_get cachesize are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF create cdf
or CDF open_cdf.

num_buffers Number of cache buffers.

status Completion status code. Chapter 8 explains how to interpret status codes.

6.2.4.1. Example(s)

74

The following example acquires the number of cache buffers used for a CDF.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.

INTEGER*4 num buffers ! Number of cache buffers.
INTEGER*4 status ! Returned status code.

CALL CDF get cachesize (id, num buffers, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

6.2.5 CDF_get checksum

SUBROUTINE CDF _get checksum (

INTEGER*4 id, ! in -- CDF identifier.
INTEGER*4 checksum, ! out -- Checksum mode.
INTEGER*4 status) ! out -- Completion status

CDF _get checksum acquires the checksum mode of a CDF file. Refer to Section 4.19 for the description of checksum.

The arguments to CDF_get checksum are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF_create cdf
or CDF open_cdf.

checksum The checksum mode.

status Completion status code. Chapter 8 explains how to interpret status codes.

6.2.5.1. Example(s)

The following example acquires the checksum mode for a CDF.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.

INTEGER*4 checksum ! Checksum mode.
INTEGER*4 status ! Returned status code.

75

CALL CDF _get checksum(id, checksum, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

6.2.6 CDF _get compress cachesize

SUBROUTINE CDF get compress_cachesize (

INTEGER*4 1id, ! in -- CDF identifier.
INTEGER*4 num_buffers, ! out -- Number of cache buffers.
INTEGER*4 status) ! out -- Completion status

CDF _get compress_cachesize acquires the number of cache buffers used for the compression scratch CDF file. Refer
to the CDF User’s Guide for the description of caching scheme used by the CDF library.

The arguments to CDF _get compress cachesize are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF_create cdf
or CDF open_cdf.

num_buffers Number of cache buffers.

status Completion status code. Chapter 8 explains how to interpret status codes.

6.2.6.1. Example(s)

The following example acquires the number of cache buffers used for the compression scratch CDF file.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.

INTEGER*4 num buffers ! Number of cache buffers.
INTEGER*4 status ! Returned status code.

CALL CDF get compress cachesize (id, num buffers, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

76

6.2.7 CDF_get compression

SUBROUTINE CDF get compression (

INTEGER*4 1id,

INTEGER*4 compress_type,

INTEGER*4 compress_percent,

in -- CDF identifier.
out -- Compression type.

out -- Compression percentage.

!
!
INTEGER*4 compress parms(*), ! out-- Compression parameters.
!
!

INTEGER*4 status)

out -- Completion status

CDF get compression acquires the compression information of the CDF. It returns the compression type (method) and,
if compressed, the compression parameters and compression percentage. CDF compression types/parameters are
described in Section 4.10. The compression percentage is the result of the compressed file divided by its original,

uncompressed file size.'’

The arguments to CDF _get compression are defined as follows:

id

compress_type
compress_parms
compress_percent

status

6.2.7.1.

Identifier of the CDF. This identifier must have been initialized by a call to CDF _create cdf
or CDF _open_cdf.

Compression type.
Compression parameters.
Compression percentage.

Completion status code. Chapter 8 explains how to interpret status codes.

Example(s)

The following example acquires the compression information from a CDF.

INCLUDE '<path>cdf.inc'

INTEGER*4 id

INTEGER*4 compress_type

CDF identifier.
Compression type.

Compression percentage.

|
!
INTEGER*4 compress parms (CDF MAX DIMS) ! Compression parameters.
!
|

INTEGER*4 compress percent
INTEGER*4 status

Returned status code.

CALL CDF _get compression (id, compress type, compress parms,

1

compress_ percent, status)

IF (status .NE. CDF OK) CALL UserStatusHandler (status)

19 The compression ratio is (100 — compression cercentage): the lower the compression percentage, the better the

compression ratio.

77

6.2.8 CDF _get compression_info

SUBROUTINE CDF get compression_info (

char *CDFname, !in -- CDF name. */
INTEGER*4 compress_type, ! out -- Compression type.
INTEGER*4 compress parms(*), ! out-- Compression parameters.
INTEGER*4 compress percent, ! out-- Compression percentage.
INTEGER*4 status) ! out -- Completion status

CDF _get compression_info returns the compression type/parameters and compression percentage of a CDF without
having to open the CDF. This refers to the compression of the CDF - not of any compressed variables.

The arguments to CDFgetCompressionInfo are defined as follows:
CDFname The pathname of a CDF file without the .cdf file extension.
compress_type Compression type.
compress_parms Compression parameters.
compress_percent ~Compression percentage.

status Completion status code. Chapter 8 explains how to interpret status codes.

6.2.8.1. Example(s)

The following example acquires the compression information from a CDF named “MYCDF.cdf”.

INCLUDE '<path>cdf.inc'

Compression type.
Compression parameters.
Compression percentage.
Returned status code.

INTEGER*4 compress_type

INTEGER*4 compress_parms (CDF_MAX DIMS)
INTEGER*4 compress percent

INTEGER*4 status

CALL CDF get compression info (‘'MYCDF’, id, compress type, compress parms,
1 compress_percent, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

78

6.2.9 CDF _get copyright

SUBROUTINE CDF get copyright (

INTEGER*4 1id,

! in -- CDF identifier.

CHARACTER copyright*(*), ! out -- Copyright notice.

INTEGER*4 status)

! out -- Completion status

CDF _get copyright acquires the copyright notice in a CDF.

The arguments to CDF_get copyright are defined as follows:

id

copyright

status

Identifier of the CDF. This identifier must have been initialized by a call to CDF_create cdf
or CDF _open_cdf.

CDF’s copyright notice.

Completion status code. Chapter 8 explains how to interpret status codes.

6.2.9.1. Example(s)

The following example acquires the copyright notice from a CDF.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.

CHARACTER copyright* (CDF_COPYRIGHT LEN) ! Copyright.
INTEGER*4 status ! Returned status code.

CALL CDF _get copyright (id, copyright, status)

IF (status

.NE. CDF OK) CALL UserStatusHandler (status)

6.2.10 CDF_get decoding

SUBROUTINE CDF get decoding (

INTEGER*4 1id,

! in -- CDF identifier.

INTEGER*4 decoding, ! out-- CDF decoding.

INTEGER*4 status)

! out -- Completion status

CDF get decoding acquires the decoding for the data in a CDF. The decodings are described in Section 4.7.

79

The arguments to CDF_get decoding are defined as follows:

id

decoding

status

6.2.10.1.

Identifier of the CDF. This identifier must have been initialized by a call to CDF _create cdf
or CDF_open_cdf.

CDF’s decoding.

Completion status code. Chapter 8 explains how to interpret status codes.

Example(s)

The following example acquires the decoding code for a CDF.

INCLUDE '<path>cdf.inc'

INTEGER*4 id

! CDF identifier.

INTEGER*4 decoding ! Decoding.
INTEGER*4 status ! Returned status code.

CALL CDF _get decoding (id, decoding, status)

IF (status

.NE. CDF_OK) CALL UserStatusHandler (status)

6.2.11 CDF_get _encoding

SUBROUTINE CDF get encoding (

INTEGER*4 1id,
INTEGER*4 decoding,
INTEGER*4 status)

! in-- CDF identifier.
! out -- CDF encoding.
! out -- Completion status

CDF _get encoding acquires the encoding code used for the data in a CDF. The encodings are described in Section 4.6.

The arguments to CDF_get encoding are defined as follows:

id

encoding

status

Identifier of the CDF. This identifier must have been initialized by a call to CDF _create cdf
or CDF _open_cdf.

CDF’s encoding.

Completion status code. Chapter 8 explains how to interpret status codes.

80

6.2.11.1. Example(s)

The following example acquires the encoding code used in a CDF.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.

INTEGER*4 encoding ! Encoding.
INTEGER*4 status ! Returned status code.

CALL CDF _get encoding (id, encoding, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

6.2.12 CDF_get format

SUBROUTINE CDF _get format (

INTEGER*4 1id, ! in -- CDF identifier.
INTEGER*4 format, ! out -- CDF format.
INTEGER*4 status) ! out-- Completion status

CDF get format acquires the file format, single or multi-file, of the CDF. The formats are described in Section 4.4.
The arguments to CDF_get format are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF _create cdf
or CDF _open_cdf.

format CDF’s format.

status Completion status code. Chapter 8 explains how to interpret status codes.

6.2.12.1. Example(s)

The following example acquires the file format for a CDF.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.
INTEGER*4 format ! Format.

81

INTEGER*4 status ! Returned status code.

CALL CDF get format (id, format, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

6.2.13 CDF get leapsecondlastupdated

SUBROUTINE CDF _get leapsecondlastupdated (

INTEGER*4 id, ! in-- CDF identifier.
INTEGER*4 lastUpdated, ! out-- The new leap second last added to the table in YYYYMMDD.
INTEGER*4 status) ! out-- Completion status

CDF _get leapsecondlastupdated acquires the the date that the last leap second was added to the leap second table, which
was used to created the CDF.

The arguments to CDF _get leapsecondlastupdated are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF _create_cdf
or CDF _open_cdf.

lastUpdated Date that the last leap second was added to the leap second table.

status Completion status code. Chapter 8 explains how to interpret status codes.

6.2.13.1. Example(s)

The following example acquires the file format for a CDF.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.

INTEGER*4 lastupdated ! The last updated date for leap second table.
INTEGER*4 status ! Returned status code.

CALL CDF _get format (id, lastupdated, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

82

6.2.14 CDF_get majority

SUBROUTINE CDF_get majority (

INTEGER*4 id, ! in -- CDF identifier.
INTEGER*4 majority, ! out -- Variable majority.
INTEGER*4 status) ! out-- Completion status

CDF_get majority acquires the CDF’s majority, either row or column-major. The majorities are described in Section
4.8.

The arguments to CDF_get majority are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF _create cdf
or CDF _open_cdf.

majority CDEF’s majority.

status Completion status code. Chapter 8 explains how to interpret status codes.

6.2.14.1. Example(s)

The following example acquires the variable majority of a CDF.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.

INTEGER*4 majority ! Variable majority.
INTEGER*4 status ! Returned status code.

CALL CDF _get majority (id, majority, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

6.2.15 CDF_get name

SUBROUTINE CDF_get name (

INTEGER*4 1id, ! in -- CDF identifier.
INTEGER*4 name, ! out -- CDF name.
INTEGER*4 status) ! out-- Completion status

83

CDF_get name acquires the name of the specified CDF.

The arguments to CDF _get name are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF_create cdf

or CDF open_cdf.

name Name of the CDF.

status Completion status code. Chapter 8 explains how to interpret status codes.

6.2.15.1. Example(s)

The following example acquires the name of a CDF.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.

CHARACTER name* (CDF_PATHNAME_LEN) ! CDF name.
INTEGER*4 status ! Returned status code.

CALL CDF get name (id, name, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

6.2.16 CDF _get negtoposfp0 _mode

SUBROUTINE CDF_get negtoposfp0_mode (

INTEGER*4 id, ! in -- CDF identifier.
INTEGER*4 negtoposfp0, ! out -- -0.0 to 0.0 mode.
INTEGER*4 status) ! out-- Completion status

CDF _get negtoposfp0_mode acquires —0.0 to 0.0 mode of the CDF. You can use CDF_set negtoposfp0_mode

subroutine to set the mode. The —0.0 to 0.0 modes are described in Section 4.15.

The arguments to CDF_get negtoposfp0_mode are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF _create cdf

or CDF_open_cdf.

negtoposfp0 —0.0 to 0.0 mode of the CDF.

84

status Completion status code. Chapter 8 explains how to interpret status codes.

6.2.16.1. Example(s)

The following example acquires the —0.0 to 0.0 mode of a CDF.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.

INTEGER*4 negtoposfp0 ! =0.0 to 0.0 mode.
INTEGER*4 status ! Returned status code.

CALL CDF _get negtoposfp0 mode (id, negtoposfp0, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

6.2.17 CDF _get readonly mode

SUBROUTINE CDF get readonly mode (

INTEGER*4 id, ! in -- CDF identifier.
INTEGER*4 readonly, ! out -- Read-only mode of the CDF.
INTEGER*4 status) ! out -- Completion status

CDF _get readonly mode acquires the read-only mode for a CDF. You can use CDF_set readonly mode to set the mode.
The read-only modes are described in Section 4.13.

The arguments to CDF_get readonly mode are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF_create cdf
or CDF_open_cdf.

readonly Read-only mode.

status Completion status code. Chapter 8 explains how to interpret status codes.

6.2.17.1. Example(s)

The following example acquires the read-only mode of a CDF.

85

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.

INTEGER*4 readonly ! Read-only mode.
INTEGER*4 status ! Returned status code.

CALL CDF get readonly mode (id, readonly, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

6.2.18 CDF _get stage cachesize

SUBROUTINE CDF _get stage cachesize (

INTEGER*4 id, ! in -- CDF identifier.
INTEGER*4 num_buffers, ! out -- Number of cache buffers.
INTEGER*4 status) ! out -- Completion status

CDF _get stage cachesize inquires the number of cache buffers being used for the staging scratch file a CDF. Refer to
the CDF User’s Guide for the description of the caching scheme used by the CDF library.

The arguments to CDF_get stage cachesize are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF_create cdf
or CDF open_cdf.

num_buffers Number of cache buffers.

status Completion status code. Chapter 8 explains how to interpret status codes.

6.2.18.1. Example(s)

The following example acquires the number of cache size buffers used for the staging scratch file for a CDF.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.

INTEGER*4 status ! Returned status code.
INTEGER*4 num buffers ! Number of cache buffers.

CALL CDF _get stage cachesize (id, num buffers, status)

86

IF (status .NE. CDF OK) CALL UserStatusHandler (status)

6.2.19 CDF _get validate

FUNCTION CDF get validate () ! out -- Validation indicator

CDF _get validate returns the data validation mode. This information reflects whether when a CDF is open, its data is
subjected to a validation process. 1 is returned if the data validation is to be performed, 0 otherwise.

The arguments to CDF_get version are defined as follows:

N/A

6.2.19.1. Example(s)

In the following example, it gets the data validation mode.

INCLUDE '<path>cdf.inc'
INTEGER*4 validate ! CDF file validation mode.

validate = CDF get validate ()

6.2.20 CDF_get version

SUBROUTINE CDF_get version (

INTEGER*4 id,
INTEGER*4 version,
INTEGER*4 release,
INTEGER*4 increment,
INTEGER*4 status)

in -- CDF identifier.

out -- CDF version number.

out -- CDF release number within the version.
out -- CDF increment number within the release.
out -- Completion status

CDF _get version inquires the version/release information for a CDF file. This information reflects the CDF library that
was used to create the CDF file.

The arguments to CDF _get version are defined as follows:

87

id Identifier of the CDF. This identifier must have been initialized by a call to CDF create cdf
or CDF open_cdf.

version CDF version number.

release CDF release number within the version.

increment CDF increment number within the release.

status Completion status code. Chapter 8 explains how to interpret status codes.

6.2.20.1. Example(s)

In the following example, a CDF’s version/release is acquired.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.
INTEGER*4 status ! Returned status code.
INTEGER*4 version ! CDF version number.
INTEGER*4 release ! CDF release number.
INTEGER*4 increment ! CDF increment number.

CALL CDF get version (id, version, release, increment, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

6.2.21 CDF_get zmode

SUBROUTINE CDF get zmode (

INTEGER*4 1id, ! in -- CDF identifier.
INTEGER*4 zmode, ! out -- CDF zMode.
INTEGER*4 status) ! out -- Completion status

CDF_get zmode inquires the zMode for a CDF file. The zModes are described in Section 4.14.
The arguments to CDF_get zmode are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF _create cdf
or CDF open_cdf.

zmode CDF zMode.

status Completion status code. Chapter 8 explains how to interpret status codes.

88

6.2.21.1. Example(s)

In the following example, a CDF’s zMode is acquired.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.

INTEGER*4 status ! Returned status code.
INTEGER*4 zmode ! CDF zMode.

CALL CDF get zmode (id, zmode, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

6.2.22 CDF inquire cdf

SUBROUTINE CDF inquire cdf (

in -- CDF identifier

out -- Number of dimensions, rVariables.

out -- Dimension sizes, rVariables.

out -- Data encoding.

out -- Variable majority.

out -- Maximum record number in the CDF, rVariables.
out -- Number of rVariables in the CDF.

out -- Maximum record number in the CDF, zVariables.
out -- Number of zVariables in the CDF.

out -- Number of attributes in the CDF.

out -- Completion status

INTEGER*4 1id,
INTEGER*4 num_dims,
INTEGER*4 dim_sizes(CDF MAX DIMS),
INTEGER*4 encoding,
INTEGER*4 majority,
INTEGER*4 max_rrec,
INTEGER*4 num_rvars,
INTEGER*4 max_zrec,
INTEGER*4 num_zvars,
INTEGER*4 num_attrs,
INTEGER*4 status)

CDF _inquire_cdf inquires the basic characteristics of a CDF. This subroutine expands the original Standard Interface
subroutine CDF _inquire by acquiring extra information regarding the zVariables. An application needs to know the
number of rVariable dimensions and their sizes before it can access rVariable data. For zVariables, use
CDF get zvar numdims and CDF get zvar dimsizes subroutines to acquire each individual zVariable’s dimensions
and its sizes. Knowing the variable majority can be used to optimize performance and is necessary to properly use the
variable hyper functions (for both rVariables and zVariables).

The arguments to CDF _inquire cdf are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF_create cdf
or CDF_open_cdf.

num_dims Number of dimensions for the rVariables in the CDF.

dim_sizes Dimension sizes of the rVariables in the CDF. dim sizes is a l-dimensional array
containing one element per dimension. Each element of dim_sizes receives the

89

corresponding dimension size. For 0-dimensional rVariables this argument is ignored (but
must be present).

encoding Encoding of the variable data and attribute entry data. The encodings are defined in Section
4.6.

majority CDF’s majority of the data. The majorities are defined in Section 4.8.

max_rrec Maximum record number written to an rVariable in the CDF. Note that the maximum record
number written is also kept separately for each rVariable in the CDF. The value of max_rrec
is the largest of these. Some rVariables may have fewer records actually written

num_rvars Number of rVariables in the CDF.

max_zrec Maximum record number written to a zVariable in the CDF. Note that the maximum record
number written is also kept separately for each zVariable in the CDF. The value of
max_zrec is the largest of these. Some zVariables may have fewer records actually written.
CDF_get zvar maxwrittenrecnum (Section 6.3.23) can be used to inquire the maximum
record written for an individual zVariable.

num_zvars Number of zVariables in the CDF.

num_attrs Number of attributes in the CDF.

status Completion status code. Chapter 8 explains how to interpret status codes.

6.2.22.1. Example(s)

The following example inquires the basic information about a CDF.

INCLUDE '<path>cdf.inc'

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

id CDF identifier.

status Returned status code.

num_dims Number of dimensions, rVariables.
dim sizes (CDF_MAX DIMS)! Dimension sizes, rVariables

(allocate to allow the maximum

number of dimensions).

Data encoding.

Variable majority.

Maximum record number among rVariables.
Number of rVariables in CDF.

Maximum record number among zVariables.
Number of zVariables in CDF.

Number of attributes in CDF.

encoding
majority
max _rrec
num rvars
max zrec
num_zvars
num attrs

CALL CDF_inquire cdf (id, num dims, dim sizes, encoding, majority,

IF

(status

max rrec,
status)
CDF OK) CALL UserStatusHandler

num rvars, max zrec, num zvars, num attrs,

.NE. (status)

90

6.2.23 CDF _open_cdf

SUBROUTINE CDF_open_cdf (

CHARACTER CDF_name*(*), ! in -- CDF file name.

INTEGER*4
INTEGER*4

! out-- CDF identifier.
! out -- Completion status

CDF _open_cdf opens an existing CDF. The CDF is initially opened with only read access. This allows multiple
applications to read the same CDF simultaneously. When an attempt to modify the CDF is made, it is automatically
closed and reopened with read/write access. (The function will fail if the application does not have or cannot get write
access to the CDF.) This routine is identical to the original Standard Interface routine CDF_open.

The arguments to CDF_open_cdf are defined as follows:

CDF_name

id

status

File name of the CDF to open. (Do not specify an extension.) This may be at most
CDF_PATHNAME LEN characters. A CDF file name may contain disk and directory
specifications that conform to the conventions of the operating system being used (including
logical names on VMS systems and environment variables on UNIX systems).

UNIX: File names are case-sensitive.

Identifier for the opened CDF. This identifier must be used in all subsequent operations on
the CDF.

Completion status code. Chapter 8 explains how to interpret status codes.

NOTE: CDF close cdf must be used to close the CDF before your application exits to ensure that the CDF will be
correctly written to disk (see Section 6.2.1).

6.2.23.1.

Example(s)

The following example will open a CDF named NOAAL.

INCLUDE '<path>cdf.inc'

INTEGER*4 id

! CDF identifier.

INTEGER*4 status ! Returned status code.
CHARACTER CDF_name* (CDF_PATHNAME LEN) ! File name of CDF.

DATA CDF name/'NOAAl'/

CALL CDF open cdf (CDF_name, 1id, status)

IF (status

.NE. CDF OK) CALL UserStatusHandler (status)

91

6.2.24 CDF select cdf

SUBROUTINE CDF select cdf (

INTEGER*4 id, ! in-- CDF identifier.
INTEGER*4 status) ! out -- Completion status

CDF select CDF selects an opened CDF as the current CDF. Only one CDF is allowed to be current. To access data
from a CDF, that CDF must be selected as the current. This function is needed while operating multiple opened CDFs at
the same time. It’s not necessary to call this function if only one CDF is opened as it is always the current until the file is
closed.

The arguments to CDF_select_cdf are defined as follows:

id Identifier for the opened CDF. This identifier must be used in all subsequent operations on
the CDF.
status Completion status code. Chapter 8 explains how to interpret status codes.

NOTE: When a CDF is opened, it becomes the current. No CDF is current after CDF_close CDF is called to close the
file

6.2.24.1. Example(s)

The following example will select a CDF named “NOAA1.cdf” as the current CDF while another file “NOAA2.cdf” is
also opened.

INCLUDE '<path>cdf.inc'

CDF identifier.
Returned status code.
File name of CDF.
File name of CDF.

INTEGER*4 idl, id2

INTEGER*4 status

CHARACTER CDF_namel* (CDF_PATHNAME LEN)
CHARACTER CDF name2* (CDF_PATHNAME LEN)

DATA CDF namel/'NOAAl'/,CDF name2/'NOAAL'/

CALL CDF open cdf (CDF _namel, idl, status)

IF (status .NE. CDF OK) CALL UserStatusHandler (status)
CALL CDF open cdf (CDF name2, id2, status)

IF (status .NE. CDF OK) CALL UserStatusHandler (status)
CDF_select CDF(idl, status)

92

6.2.25 CDF _set_cachesize

SUBROUTINE CDF _set cachesize (

INTEGER*4 1id, ! in -- CDF identifier.
INTEGER*4 num_buffers, ! in -- Number of cache buffers.
INTEGER*4 status) ! out -- Completion status

CDF _set_cachesize specifies the number of cache buffers being used for the dotCDF file when a CDF is open. Refer to

the CDF User’s Guide for the description of caching scheme used by the CDF library.

The arguments to CDF_set_cachesize are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF _create cdf

or CDF_open_cdf.
num_buffers Number of cache buffers.

status Completion status code. Chapter 8 explains how to interpret status codes.

6.2.25.1. Example(s)

The following example sets the number of cache buffers to 10 to be used for a CDF.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.

INTEGER*4 num buffers ! Number of cache buffers.
INTEGER*4 status ! Returned status code.
num_buffers = 10

CALL CDF_set cachesize (id, num buffers, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

6.2.26 CDF _set checksum

SUBROUTINE CDF _set checksum (

93

INTEGER*4 1id, ! in -- CDF identifier.

INTEGER*4 checksum, ! in -- Checksum mode.

INTEGER*4 status) ! out -- Completion status

CDF _set_checksum specifies the checksum mode of a CDF file. Refer to Section 4.19 for the description of checksum.

The arguments to CDF_set _checksum are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF _create cdf
or CDF _open_cdf.

checksum CDF checksum mode.

status Completion status code. Chapter 8 explains how to interpret status codes.

6.2.26.1. Example(s)

The following example sets checksum mode for a CDF.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.

INTEGER*4 checksum ! Checksum mode.
INTEGER*4 status ! Returned status code.

checksum = MD5 CHECKSUM
CALL CDF_set checksum (id, checksum, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

6.2.27 CDF _set _compress_cachesize

SUBROUTINE CDF _set compress_cachesize (

INTEGER*4 id, ! in -- CDF identifier.
INTEGER*4 num_buffers, ! in -- Number of cache buffers.
INTEGER*4 status) ! out -- Completion status

CDF set compress_cachesize specifies the number of cache buffers used for the compression scratch CDF file. Refer
to the CDF User’s Guide for the description of caching scheme used by the CDF library.

The arguments to CDF_set_compress_cachesize are defined as follows:

94

id

num_buffers

status

6.2.27.1.

Identifier of the CDF. This identifier must have been initialized by a call to CDF create cdf
or CDF open_cdf.

Number of cache buffers.

Completion status code. Chapter 8 explains how to interpret status codes.

Example(s)

The following example sets the number of cache buffers to 10 to be used for the compression scratch CDF file.

INCLUDE '<path>cdf.inc'

INTEGER*4 id

! CDF identifier.

INTEGER*4 num buffers ! Number of cache buffers.
INTEGER*4 status ! Returned status code.

num buffers

10

CALL CDF_set compress cachesize (id, num buffers, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

6.2.28 CDF _set_compression

SUBROUTINE CDF _set compression (

INTEGER*4 id,

INTEGER*4 compress_type,

in -- CDF identifier.
in -- Compression type.

!
!

INTEGER*4 compress parms(*), ! in -- Compression parameters.
!

INTEGER*4 status)

out -- Completion status

CDF _set_compression specifies the compression information of the CDF. It returns the compression type (method) and,
if compressed, the compression parameters and compression rate. CDF compression types/parameters are described in

Section 4.10.

The arguments to CDF_set compression are defined as follows:

id

compress_type

compress parms

Identifier of the CDF. This identifier must have been initialized by a call to CDF _create cdf
or CDF_open_cdf.

Compression type.

Compression parameters.

95

status Completion status code. Chapter 8 explains how to interpret status codes.

6.2.28.1. Example(s)

The following example uses GZIP.6 compression for a CDF.

INCLUDE '<path>cdf.inc'

CDF identifier.
Compression type.
Compression parameters.
Returned status code.

INTEGER*4 id

INTEGER*4 compress_type

INTEGER*4 compress_parms (CDF_MAX DIMS)
INTEGER*4 status

compress_type = GZIP COMPRESSION

compress_parms(l) = 6

CALL CDF_set compression (id, compress type, compress parms,
1 status)

IF (status .NE. CDF OK) CALL UserStatusHandler (status)

6.2.29 CDF set decoding

SUBROUTINE CDF set decoding (

INTEGER*4 id, ! in-- CDF identifier.
INTEGER*4 decoding, ! in -- CDF decoding.
INTEGER*4 status) ! out-- Completion status

CDF _set_decoding specifies the decoding for the data in a CDF. The decodings are described in Section 4.7.
The arguments to CDF_set_decoding are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF create cdf
or CDF open_cdf.

decoding CDF decoding.

status Completion status code. Chapter 8 explains how to interpret status codes.

6.2.29.1. Example(s)

96

The following example sets the decoding to NETWORK DECODING for a CDF.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.

INTEGER*4 decoding ! Decoding.
INTEGER*4 status ! Returned status code.

decoding = NETWORK DECODING
CALL CDF_set decoding (id, decoding, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

6.2.30 CDF_set_encoding

SUBROUTINE CDF set _encoding (

INTEGER*4 id, ! in -- CDF identifier.
INTEGER*4 decoding, ! in -- CDF encoding.
INTEGER*4 status) ! out -- Completion status

CDF _set encoding specifies the encoding code used for the data in a CDF. The encodings are described in Section 4.6.
The arguments to CDF_set encoding are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF _create cdf
or CDF open_cdf.

encoding CDF encoding.

status Completion status code. Chapter 8 explains how to interpret status codes.

6.2.30.1. Example(s)

The following example sets the encoding code to NETWORK ENCODING to be used for a CDF.
INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.
INTEGER*4 encoding ! Encoding.

97

INTEGER*4 status ! Returned status code.

encoding = NETWORK_ENCODING
CALL CDF_ set encoding (id, encoding, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

6.2.31 CDF _set format

SUBROUTINE CDF _set format (

INTEGER*4 id, ! in-- CDF identifier.
INTEGER*4 format, ! in -- CDF format.
INTEGER*4 status) ! out-- Completion status

CDF _set_format specifies the file format, single or multi-file, of the CDF. The formats are described in Section 4.4.
The arguments to CDF_set format are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF _create cdf
or CDF_open_cdf.

format CDF format.

status Completion status code. Chapter 8 explains how to interpret status codes.

6.2.31.1. Example(s)

The following example sets the file format to MULTI_FILE FORMAT for a CDF.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.

INTEGER*4 format ! Format.
INTEGER*4 status ! Returned status code.

format = MULTI FILE FORMAT
CALL CDF _set format (id, format, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

98

6.2.32 CDF _set leapsecondlastupdated

SUBROUTINE CDF _set leapsecondlastupdated (

INTEGER*4 1id, ! in -- CDF identifier.
INTEGER*4 lastUpdated ! in -- The date that the last leap second was added to the leap second table.
INTEGER*4 status) ! out -- Completion status

CDF _set_leapsecondlastupdated resets the the eap second last updated date in the CDF. This value must be a valid entry
in the currently used leap second table, or zero (0). This value is only relevant to TT2000 data. It is set normally for the
older CDFs that have not had that field set.

The arguments to CDF_set format are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF_create cdf
or CDF_open_cdf.

lastUpdated Date that the new leap second was last added to the table.

status Completion status code. Chapter 8 explains how to interpret status codes.

6.2.32.1. Example(s)

The following example sets the file’s last leap second updated date.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.

INTEGER*4 lastupdated ! The last updated date.
INTEGER*4 status ! Returned status code.

lastupdate = 20150701
CALL CDF_set leapsecondlastupdated (id, lasupdated, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

6.2.33 CDF _set majority

SUBROUTINE CDF _set _majority (

99

INTEGER*4 id, ! in -- CDF identifier.
INTEGER*4 majority, ! in -- CDF majority.
INTEGER*4 status) ! out-- Completion status

CDF _set majority specifies the CDF majority, in either row or column-major. The majorities are described in Section
4.8.

The arguments to CDF_set_majority are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF _create cdf
or CDF _open_cdf.

majority CDF majority.

status Completion status code. Chapter 8 explains how to interpret status codes.

6.2.33.1. Example(s)

The following example sets the variable majority to ROW_MAJOR for a CDF.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.

INTEGER*4 majority ! Variable majority.
INTEGER*4 status ! Returned status code.

majority = ROW_MAJOR
CALL CDF_set majority (id, majority, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

6.2.34 CDF _set _negtoposfp0_mode

SUBROUTINE CDF _set negtoposfp0_mode (

INTEGER*4 id, ! in -- CDF identifier.
INTEGER*4 negtoposfp0, !in ---0.0 to 0.0 mode.
INTEGER*4 status) ! out-- Completion status

CDF set negtoposfp0_mode specifies —0.0 to 0.0 mode of the CDF. You can use CDF get negtoposfp0 mode
subroutine to check the mode. The —0.0 to 0.0 modes are described in Section 4.15.

The arguments to CDF_set_negtoposfp0_mode are defined as follows:

100

id Identifier of the CDF. This identifier must have been initialized by a call to CDF create cdf
or CDF open_cdf.

negtoposfp0The —0.0 to 0.0 mode of the CDF.

status Completion status code. Chapter 8 explains how to interpret status codes.

6.2.34.1. Example(s)

The following example sets the —0.0 to 0.0 mode to NEGtoPOS{pOoff for a CDF.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.

INTEGER*4 negtoposfp0 ! =0.0 to 0.0 mode.
INTEGER*4 status ! Returned status code.

negtoposfp0 = NEGtoPOSfpOoff
CALL CDF_set negtoposfp0 mode (id, negtoposfp0, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

6.2.35 CDF set readonly mode

SUBROUTINE CDF _set readonly mode (

INTEGER*4 1id, ! in -- CDF identifier.
INTEGER*4 readonly, ! in -- Read-only mode of the CDF.
INTEGER*4 status) ! out -- Completion status

CDF _set_readonly mode specifies the read-only mode for a CDF. You can use CDF_get readonly mode to check the
mode. The read-only modes are described in Section 4.13.

The arguments to CDF_set readonly mode are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF _create cdf
or CDF_open_cdf.

readonly Read-only mode.

status Completion status code. Chapter 8 explains how to interpret status codes.

101

6.2.35.1. Example(s)

The following example sets the read-only mode to READONLY off (to allow read/write) for a CDF.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.

INTEGER*4 readonly ! Read-only mode.
INTEGER*4 status ! Returned status code.

readonly = READONLYoff
CALL CDF set readonly mode (id, readonly, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

6.2.36 CDF set stage cachesize

SUBROUTINE CDF _set stage cachesize (

INTEGER*4 id, ! in -- CDF identifier.
INTEGER*4 num_buffers, ! in -- Number of cache buffers.
INTEGER*4 status) ! out -- Completion status

CDF set stage cachesize respecifies the number of cache buffers being used for the staging scratch file a CDF. Refer to
the CDF User’s Guide for the description of the caching scheme used by the CDF library.

The arguments to CDF_set stage cachesize are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF_create cdf
or CDF _open_cdf.

num_buffers Number of cache buffers.

status Completion status code. Chapter 8 explains how to interpret status codes.

6.2.36.1. Example(s)

The following example sets the number of stage cache buffers to 10 for a CDF.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.

102

INTEGER*4 status ! Returned status code.
INTEGER*4 num buffers ! Number of cache buffers.

num_buffers = 10
CALL CDF set stage cachesize (id, rec number, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

6.2.37 CDF set validate

SUBROUTINE CDF set validate (
INTEGER*4 validate) ! in -- validate.

CDF set validate respecifies the data validation mode for any CDF files that are to be open. Data validation is described
in Section 4.20..

The arguments to CDF_set validate are defined as follows:

validate Data validation mode.

6.2.37.1. Example(s)

The following example turns on the data validation when any following CDF files are open.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.
INTEGER*4 status ! Returned status code.

CALL CDF set validate (VALIDATEFILEon)

6.2.38 CDF _set zmode

SUBROUTINE CDF _set zmode (

INTEGER*4 id, ! in -- CDF identifier.
INTEGER*4 zmode, ! in -- zMode.
INTEGER*4 status) ! out -- Completion status

103

CDF set zmode respecifies the zZMode for a CDF file. The zModes are described in Section 4.14.
The arguments to CDF_set_zmode are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF_create cdf
or CDF open_cdf.

zmode CDF zMode.

status Completion status code. Chapter 8 explains how to interpret status codes.

6.2.38.1. Example(s)

The following example sets zMode to zMODEon2, all rVariables are viewed as zVariables with NOVARY dimensions
being eliminated, for a CDF.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.
INTEGER*4 status ! Returned status code.

CALL CDF_set zmode (id, zMODEon2, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

6.3 Variable

This section provides the variable-specific functions. A variable is identified by its unique name in a CDF or a variable
number in either rVariable or zVariable group. To operate a variable, the CDF it resides in must be open.

6.3.1 CDF _close zvar

SUBROUTINE CDF close zvar (

INTEGER*4 1id, ! in -- CDF identifier.
INTEGER*4 var num, ! in -- zVariable identifier.
INTEGER*4 status) ! out -- Completion status

CDF close zvar closes the specified zVariable file from a multi-file format CDF. The variable's cache buffers are
flushed before the variable's open file is closed. However, the CDF file is still open.

104

NOTE: You must close all open variable files to guarantee that all modifications you have made will actually be written
to the CDF's file(s). If your program exits, normally or otherwise, without a successful call to CDF _close, the CDF's
cache buffers are left unflushed.

The arguments to CDF_close zvar are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF _create cdf
or CDF _open_cdf.

var_num Variable number for the open zVariable’s file. This identifier must have been initialized by a
call to CDF_create zvar or CDF_get var num.

status Completion status code. Chapter 8 explains how to interpret status codes.

6.3.1.1. Example(s)

The following example closes an open zVariable “MY_VAR” in a CDF.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.

INTEGER*4 var num ! Variable identifier.
INTEGER*4 status ! Returned status code.

var num = CDF get var num(id, ‘MY VAR’)

IF (var num .LT. 0) CALL UserQuit(..)

CALL CDF close zvar (id, var num, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

6.3.2 CDF _confirm_zvar_existence

INTEGER*4 FUNCTION CDF _confirm_zvar existence (

INTEGER*4 id, ! in -- CDF identifier.
CHARACTER var_name*(*)) ! in -- Variable name.

CDF _ confirm_zvar existence confirms the existence of a zVariable with the specified name in a CDF. If the zVariable
does not exist, an error code will be returned.

The arguments to CDF _ confirm_zvar existence are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF_create cdf
or CDF open_cdf.

105

var_name Variable name.

6.3.2.1. Example(s)

The following example will check the existence of zVariable “MY_VAR” in a CDF.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.

INTEGER*4 status ! Returned status code.
status = CDF confirm zvar existence (id, ‘MY VAR’)

IF (status .NE. CDF OK) CALL UserStatusHandler (status)

6.3.3 CDF _confirm_zvar padvalue_exist

INTEGER*4 FUNCTION CDF_confirm_zvar padvalue exist (

INTEGER*4 id, ! in -- CDF identifier.
INTEGER*4 var num) ! in -- Variable number.

CDF _ confirm_zvar padvalue exist confirms the existence of an explicitly specified pad value for the specified
zVariable in a CDF. If an explicit pad value has not been specified, the informational status code
NO PADVALUE_ SPECIFIED will be returned.

The arguments to CDF _ confirm zvar padvalue exist are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF _create cdf
or CDF_open_cdf.

var_num Variable number.

6.3.3.1. Example(s)

The following example will check the existence of the pad value for zVariable “MY_VAR” in a CDF.

INCLUDE '<path>cdf.inc'

106

INTEGER*4 id ! CDF identifier.
INTEGER*4 var num ! Variable number.
INTEGER*4 status ! Returned status code.

var num = CDF get var num(id, ‘MY VAR’)

IF (var num .LT. 1) CALL UserQuit(....)

Status = CDF _confirm zvar padvalue exist (id, wvar num)
IF (status .NE. NO PADVALUE SPECIFIED) THEN

END IF

6.3.4 CDF create zvar

SUBROUTINE CDF _create zvar (

INTEGER*4 id,
CHARACTER var_name*(*),
INTEGER*4 data type, ! in -- Data type.

INTEGER*4 num_elements, ! in -- Number of elements (of the data type).

! in -- CDF identifier.
!
!
!
INTEGER*4 num_dims, ! in -- Number of dimensions.
!
!
!
!
!

! in -- zVariable name.

INTEGER*4 dim_sizes(*), ! in -- Dimension sizes.
INTEGER*4 rec variance, ! in -- Record variance.
INTEGER*4 dim_variances(*), ! in -- Dimension variances.
INTEGER*4 var num, ! out -- zVariable number.
INTEGER*4 status) ! out-- Completion status

CDF create zvar is used to create a new zVariable in a CDF. A variable (rVariable or zVariable) with the same name
must not already exist in the CDF.

The arguments to CDF_create_zvar are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to
CDF create cdf or CDF_open_cdf.

var_name Name of the zVariable to create. This may be at most CDF_ VAR NAME LEN256
characters. Variable names are case-sensitive.

data_type Data type of the new zVariable. Specify one of the data types defined in Section 4.5.

num_elements Number of elements of the data type at each value. For character data types (CDF_CHAR

and CDF_UCHAR), this is the number of characters in the string (each value consists of
the entire string). For all other data types this must always be one (1) - multiple elements
at each value are not allowed for non-character data types.

num_dims zVarriable's number of dimension.

107

dim_sizes

rec_variance

dim_variances

var_num

status

6.3.4.1.

zVarriable's dimension sizes. Each element of dim_sizes specifies the number of values
in corresponding dimension. For 0-dimensional zVariables this argument is ignored (but
must be present).

zVarriable's record variance. Specify one of the variances defined in Section 4.9.

zVarriable's dimension variances. Each element of dim variances specifies the
corresponding dimension variance. For each dimension specify one of the variances
defined in Section 4.9. For 0-dimensional zVariables this argument is ignored (but must
be present).

Number assigned to the new zVariable. This number must be used in subsequent CDF
function calls when referring to this zVariable. An existing zVariable's number may be

determined with the CDF get var num function.

Completion status code. Chapter 8 explains how to interpret status codes.

Example(s)

The following example will create several zVariables in a CDF. In this case, EPOCH is a 0-dimensional of CDF_EPOCH
data type, LAT a 1-dimensional of 2 elements of CDF_INT2 data type, LON a 2-dimensional with 2 by 3 of CDF_INT2
data type and TMP a 2 dimensional with 2 by 3 of CDF_REALA4 data type.

INCLUDE '<path>cdf.inc'

INTEGER*4
INTEGER*4

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
1
INTEGER*4
1

id
status

EPOCH rec vary !
LAT rec vary !
LON_ rec vary !
TMP rec vary !
EPOCH_dim varys(2) !
LAT dim varys(2) ! LAT dimension variances.
LON_dim varys (2) !
TMP_dim varys (2) !
EPOCH_var num !
LAT var_ num !
LON var num !
TMP_var_ num

! CDF identifier.
! Returned status code.

EPOCH record variance.

LAT record variance.

LON record variance.

TMP record variance.

EPOCH dimension variances.

LON dimension variances.
TMP dimension variances.
EPOCH variable number.
LAT zVariable number.
LON zVariable number.
TMP zVariable number.

num dims EPOCH, num dims LAT, num dims LON,
num_dims_ TEMP ! Number of dimensions.
dim sizes EPOCH(1l), dim sizes LAT(1l),

dim sizes LON(2), dim sizes TEMP (2)

! Dimesion sizes.

DATA num dims EPOCH/0/, num dims LAT/1/,
1 num dims LON/2/, num dims TEMP/2/

DATA dim sizes EPOCH/1/, dim sizes LAT/3/,
1 dim sizes LON/2,3/, dim sizes TEMP/2,3/

108

DATA EPOCH rec vary/VARY/, LAT rec vary/NOVARY/,
1 LON rec vary/NOVARY/, TMP rec vary/VARY/

DATA EPOCH dim varys/NOVARY/, LAT dim varys/VARY/,
1 LON dim varys/VARY,VARY/, TMP dim varys/VARY,VARY/

CALL CDF create zvar (id, 'EPOCH', CDF _EPOCH, 1, num dims_ EPOCH,
1 dim sizes EPOCH,
2 EPOCH rec vary, EPOCH dim varys, POCH var num, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

CALL CDF create zvar (id, 'LATITUDE', CDF INT2, 1, num dims_ LAT,

1 dim sizes LAT,
2 LAT rec vary, LAT dim varys, LAT var num, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

CALL CDF create zvar (id, 'LONGITUDE', CDF INTZ2, 1, num dims_ LON,
1 dim sizes LON,
2 LON_rec vary, LON dim varys, LON var num, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

CALL CDF create zvar (id, 'TEMPERATURE', CDF REAL4, 1, num dims TEMP,
1 dim sizes TEMP,

2 TMP rec vary, TMP dim varys, TMP var num, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

6.3.5 CDF _delete_zvar

SUBROUTINE CDF _delete zvar (

INTEGER*4 1id, ! in -- CDF identifier.
INTEGER*4 var num, ! in -- zVariable number.
INTEGER*4 status) ! out -- Completion status

CDF _delete_zvar deletes the specified zVariable from a CDF
The arguments to CDF_delete zvar are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF _create cdf
or CDF_open_cdf.

var_num zVarriable number.

status Completion status code. Chapter 8 explains how to interpret status codes.

109

6.3.5.1. Example(s)

The following example will delete the zVariable “MY_VAR” in a CDF.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.
INTEGER*4 status ! Returned status code.

CALL CDF delete zvar (id, CDF get var num(id, ‘MY VAR’), status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

6.3.6 CDF delete zvar recs

SUBROUTINE CDF _delete zvar recs (

INTEGER*4 id, ! in -- CDF identifier.
INTEGER*4 var num, ! in -- zVariable number.
INTEGER*4 start rec, ! in -- Starting record number.
!
!

INTEGER*4 end rec, in -- Ending record number.
INTEGER*4 status) out -- Completion status

CDF delete zvar recs deletes a range of data records from the specified zVariable in a CDF. If this is a variable with
sparse records, the remaining records after deletion will not be renumbered.

The arguments to CDF_delete zvar recs are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF_create cdf
or CDF_open_cdf.

var_num zVarriable number.

start_rec Starting record number to delete.

end rec Ending record number to delete.

status Completion status code. Chapter 8 explains how to interpret status codes.

20 Normal variables without sparse records have contiguous physical records. Once a section of the records get deleted,
the remaining ones automatically fill the gap.

110

6.3.6.1. Example(s)

The following example will delete 10 records (from record number 10 to 19) from the zVariable “MY_VAR” in a CDF.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.
INTEGER*4 status ! Returned status code.

CALL CDF delete zvar recs (id, CDF _get var num(id, ‘MY VAR’), 10, 19, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

6.3.7 CDF delete zvar recs renumber

SUBROUTINE CDF delete zvar recs renumber (

INTEGER*4 id, ! in -- CDF identifier.
INTEGER*4 var num, ! in -- zVariable number.
INTEGER*4 start rec, ! in -- Starting record number.
!
!

INTEGER*4 end rec, in -- Ending record number.
INTEGER*4 status) out -- Completion status

CDF delete zvar recs_renumber deletes a range of data records from the specified zVariable in a CDF. If this is a
variable with sparse records, the remaining records after deletion will be renumbered, just like non-sparse variable’s
records.

The arguments to CDF_delete zvar recs_renumber are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF_create cdf
or CDF open_cdf.

var_num zVarriable number.

start_rec Starting record number to delete.

end_rec Ending record number to delete.

status Completion status code. Chapter 8 explains how to interpret status codes.

6.3.7.1. Example(s)

111

The following example will delete 10 records (from record number 10 to 19) from the zVariable “MY_VAR” in a CDF.
If the last record number is 100, then after the deletion, the record will be 89.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.
INTEGER*4 status ! Returned status code.

CALL CDF delete zvar recs renumber (id, CDF get var num(id, ‘MY VAR’), 10,
C 19, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

6.3.8 CDF _get num_zvars

SUBROUTINE CDF get num_zvars (

INTEGER*4 id, ! in -- CDF identifier.
INTEGER*4 vars, ! out — Number of zVariables.
INTEGER*4 status) ! out-- Completion status

CDF_get num_zvars acquires the total number of zVariables in a CDF.
The arguments to CDF _get num_zvars are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF create cdf
or CDF_open_cdf.

vars Number of zVariables.

status Completion status code. Chapter 8 explains how to interpret status codes.

6.3.8.1. Example(s)

The following example acquires the total number of zVariables in a CDF.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.
INTEGER*4 vars ! zVariables.

112

INTEGER*4 status ! Returned status code.

CALL CDF _get num zvars (id, vars, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

6.3.9 CDF get var allrecords varname

SUBROUTINE CDF _get var_allrecords varname (

in -- CDF identifier.

in -- Variable name.

in -- buffer (<type> is dependent on the data type of the zVariavle).
out -- Completion status

INTEGER*4 id, !
CHARACTER var_name*(*), !
<type> buffer, !
INTEGER*4 status) !
CDF get var allrecords_varname reads the whole records for the specified variable in a CDF. Make sure that the buffer
is big enough to hold the returned data. Otherwise, a segmentation fault may happen. Since a variable name is unique in
a CDF, this function can be called for either a rVariable or zVariable. For zVariables, this function is similar to
CDF _get zvar allrecords_varid, only that function requires a variable id.

The arguments to CDF_get var allrecords_varname are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF create cdf
or CDF open_cdf.

var_name Variable name.
buffer Buffer holding the written record data.
status Completion status code. Chapter 8 explains how to interpret status codes.

6.3.9.1. Example(s)

The following example reads the while records for zVariable “MY_VAR” in a CDF. Assuming there are 100 records,
and each record is 1-dimension with 3 REAL*8 value.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.

REAL*8 buffer (3,100) ! Buffer holding the record data.
INTEGER*4 status ! Returned status code.

CALL CDF _get var allrecords varname (id, ‘MY VAR',

113

1 buffer, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

6.3.10 CDF _get var num

INTEGER*4 FUNCTION CDF get var num (

INTEGER*4 id, 'in-- CDF identifier.
CHARACTER var_name*(*)); !in-- Variable name.

CDF_get var num is used to determine the number associated with the specified variable name. If the Variable is found,
CDF get var num returns its number - which will be equal to or greater than one (1). If an error occurs (e.g., the Variable
does not exist in the CDF), an error code (of type INTEGER*4) is returned. Error codes are less than zero (0).

Initially, this function can only handle rVariables. As the variable name is unique in a CDF file, no two variables, either
rVariable or zVariable can have the same name. This function is now extended to include zVariable. The variable number
it returns represents the number in either the rVariable group or zVariable group wherever the variable exists.

The arguments to CDF_get var num are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF_create cdf
or CDF_open_cdf.

varName Name of the Variable for which to search. This may be at most CDF VAR NAME LEN256
characters. Variable names are case-sensitive.

CDF get var num may be used as an embedded function call when a Variable number is needed. CDF get var num
is declared in cdf.inc. (Fortran functions must be declared so that the returned value is interpreted correctly.)

6.3.10.1. Example(s)

In the following example CDF get var num is used as an embedded function call when inquiring about an rVariable
and a zVariable.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.

INTEGER*4 status ! Returned status code.
CHARACTER var namel* (CDF VAR NAME LEN256) ! rVariable name.
CHARACTER var_ name2* (CDF_VAR NAME LEN256) ! zVariable name.

INTEGER*4 data typel, data typel
INTEGER*4 num _elemsl, num elems2

! Data type of the rVariable.
! Number of elements (of the
! data type).

! Record variance.

INTEGER*4 rec varyl, rec vary2

114

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

num dims2 Number of

|
dim sizes2 (CDF_MAX DIMS) ! Dimension
dim variancesl (CDF_MAX DIMS)! Dimension
dim variances2 (CDF _MAX DIMS)! Dimension

dimensions
sizes
variances.
variances..

CALL CDF var inquire (id, CDF get var num(id, 'LATITUDE'), var namel,

1
2

IF (status
CALL CDF inquire zvar

1
2

IF (status

In this example the rVariable named LATITUDE was inquired. Note that if LATITUDE did not exist in the CDF, the
call to CDF_get var num would have returned an error code. Passing that error code to CDF inquire rvar as an
rVariable number would have resulted in CDF_inquire rvar also returning an error code. Also note that the name written
into var_name is already known (LATITUDE). In some cases the rVariable names will be unknown — CDF_var_inquire

data typel, num elemsl, rec_

status)

varyl, dim variancesl,

.NE. CDF _OK) CALL UserStatusHandler (status)

(id, CDF_get var num(id, 'LONGITUDE'), var namel,

data type2, num elems2, num dims2, dim sizesZ2,

rec_vary2, dim variancesZ,

status)

.NE. CDF _OK) CALL UserStatusHandler (status)

would be used to determine them. CDF var inquire is described in Section 5.24.

6.3.11 CDF get var rangerecords name

SUBROUTINE CDF get var rangerecords name (

INTEGER*4 id,

CHARACTER¥*256 var_name,
INTEGER*4 num_recs,
INTEGER*4 num_recs,
<type> buffer,
INTEGER*4 status)

CDF _get var rangerecords name reads a range of written records for the specified variable in a CDF. Make sure that
the buffer is big enough to hold the returned data. Otherwise, a segmentation fault may occur. Since a variable name is
unique in a CDF, this function can be called for either a rVariable or zVariable. For zVariables, this function is similar

in -- CDF identifier.
in -- Variable name.

out -- Completion status

to CDF_get zvar rangerecords varid, only that function requires a variable id.

The arguments to CDF_get var rangerecords name are defined as follows:

id

var_name
start rec
stop_rec
buffer

status

Identifier of the CDF. This identifier must have been initialized by a call to

CDF create_cdf or CDF_open_cdf.
Variable name.

Starting record number to read.
Stopping record number to read.

Buffer holding the returned record data.

in — Total record number to write.
in — Total record number to write.
in -- buffer (<type> is dependent on the data type of the zVariavle).

Completion status code. Chapter 8 explains how to interpret status codes.

115

6.3.11.1. Example(s)

The following example reads 100 records, from record 10 to 109, for zVariable “MY_VAR” in a CDF. Assuming that
each record is 1-dimension with 3 REAL*S§ value.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.

REAL*8 buffer(3,100) ! Buffer holding the record data.
INTEGER*4 status ! Returned status code.

CALL CDF get var rangerecords name (id, ‘MY VAR’,
1 10, 109, buffer, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

6.3.12 CDF _get vars maxwrittenrecnums

SUBROUTINE CDF get vars maxwrittenrecnums (

INTEGER*4 1id, ! in -- CDF identifier.

INTEGER*4 rvars maxrec, ! out -- Maximum record number among rVariables.
INTEGER*4 zvars maxrec, ! out -- Maximum record number among zVariables.
INTEGER*4 status) ! out-- Completion status

CDF get vars maxwrittenrecnums inquires the maximum written record numbers among all rVariables and zVariables
in a CDF.

The arguments to CDF_get vars maxwrittenrecnums are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF_create cdf
or CDF _open_cdf.

rvars_maxrec Maximum record number among rVariables.
zvars_maxrec Maximum record number among zVariables.
status Completion status code. Chapter 8 explains how to interpret status codes.

6.3.12.1. Example(s)

The following example acquires the maximum record numbers from all rVariables and zVariables in a CDF.

116

INCLUDE '<path>cdf.inc'

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

id

status
rvars_maxrec
zZvars_ maxrec

CDF identifier.

Returned status code.

Maximum record number among rVariables.
Maximum record number among zVariables.

CALL CDF get vars maxwrittenrecnums (id, rvars maxrec, zvars maxrec, status)
.NE. CDF_OK) CALL UserStatusHandler (status)

IF (status

6.3.13 CDF _get zvar_allrecords varid

SUBROUTINE CDF get zvar allrecords varid (

INTEGER*4 1id,

INTEGER*4 var num,
<type> buffer,
INTEGER*4 status)

in -- CDF identifier.

in -- zVariable number.

out -- buffer (<type> is dependent on the data type of the zVariavle).
out -- Completion status

CDF get zvar allrecords varid reads the total number of written records for the specified zVariable in a CDF. Make
sure that the buffer is big enough to hold the all records. Otherwise, a segmentation fault can happen.

The arguments to CDF_get zvar allrecords varid are defined as follows:

id

var_num

buffer

status

6.3.13.1.

Identifier of the CDF. This identifier must have been initialized by a call to CDF _create cdf
or CDF _open_cdf.

zVarriable number.

Buffer holding the returned record data.

Completion status code. Chapter 8 explains how to interpret status codes.

Example(s)

The following example reads the whole record data for zVariable “MY_VAR” in a CDF. Assuming that there are 100
records, and each record is 1-dimension with 3 REAL*8 value.

INCLUDE '<path>cdf.inc'

117

INTEGER*4 id ! CDF identifier.
REAL*8 buffer(3,100) ! Buffer holding the record data.
INTEGER*4 status ! Returned status code.

CALL CDF get zvar allrecords varid (id, CDF get var num(id, ‘MY VAR’),
1 buffer, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

6.3.14 CDF get zvar_allocrecs

SUBROUTINE CDF get zvar allocrecs (

INTEGER*4 1id, ! in -- CDF identifier.

INTEGER*4 var_num, ! in -- zZVariable number.
INTEGER*4 num_recs, ! out -- Number of allocated records.
INTEGER*4 status) ! out-- Completion status

CDF _get zvar allocrecs inquires the number of records allocated for the specified zVariable in a CDF. Refer to the
CDF User’s Guide for the description of allocating variable records in a single-file CDF.

The arguments to CDF_get zvar allocrecs are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF _create cdf
or CDF_open_cdf.

var_num zVarriable number.
Num_recs Number of records allocated for the variable.
status Completion status code. Chapter 8 explains how to interpret status codes.

6.3.14.1. Example(s)

The following example acquires the number of records allocated for zVariable “MY_VAR” in a CDF.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.

INTEGER*4 num recs ! Number of allocated records.
INTEGER*4 status ! Returned status code.

118

CALL CDF get zvar allocrecs (id, CDF_get var num(id, ‘MY VAR'),
1 num_recs, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

6.3.15 CDF _get zvar blockingfactor

SUBROUTINE CDF get zvar blockingfactor (

INTEGER*4 id, ! in -- CDF identifier.
INTEGER*4 var_num, ! in -- zVariable number.
INTEGER*4 bf, ! out -- Variable blocking factor.
INTEGER*4 status) ! out -- Completion status

CDF _get zvar blockingfactor inquires the blocking factor for the specified zVariable in a CDF. Refer to the CDF User’s

Guide for the description of the blocking factor.

The arguments to CDF_get zvar blockingfactor are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF_create cdf

or CDF open_cdf.

var_num zVarriable number.
bf Blocking factor of the variable.
status Completion status code. Chapter 8 explains how to interpret status codes.

6.3.15.1. Example(s)

The following example acquires the blocking factor for zVariable “MY_VAR” in a CDF.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.

INTEGER*4 Dbf ! Blocking factor.
INTEGER*4 status ! Returned status code.

CALL CDF get zvar blockingfactor (id, CDF get var num(id, ‘MY VAR’),
1 bf, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

119

6.3.16 CDF get zvar cachesize

SUBROUTINE CDF get zvar cachesize (

INTEGER*4 id, ! in -- CDF identifier.

INTEGER*4 var num, ! in -- zVariable number.

INTEGER*4 num_buffers, ! out-- Variable number of cache buffers.
INTEGER*4 status) ! out -- Completion status

CDF _get zvar_cachesize inquires the number of cache buffers being for the specified zVariable in a CDF. This operation
is not applicable to a single-file CDF. Refer to the CDF User’s Guide for the description about caching scheme used by
the CDF library.

The arguments to CDF_get zvar cachesize are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF create cdf
or CDF_open_cdf.

var_num zVarriable number.
num_buffers Number of cache buffers.
status Completion status code. Chapter 8 explains how to interpret status codes.

6.3.16.1. Example(s)

The following example acquires the number of cache buffers used for zVariable “MY_ VAR” in a CDF.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.

INTEGER*4 num buffers! Number of cache buffers.
INTEGER*4 status ! Returned status code.

CALL CDF get zvar cachesize (id, CDF _get var num(id, ‘MY VAR’),
1 num buffers, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

120

6.3.17 CDF _get zvar compression

SUBROUTINE CDF get zvar compression (

INTEGER*4 1id, ! in -- CDF identifier.

INTEGER*4 var num, ! in -- zVariable number.

INTEGER*4 compress_type, ! out -- Compression type.

INTEGER*4 compress _parms, ! out-- Compression parameters.

INTEGER*4 compress_percent, ! out-- Compression percentage.

INTEGER*4 status) ! out-- Completion status

CDF _get zvar compression inquires the compression type/parameters of the specified zVariable in a CDF. Refer to
Section 4.10 for the description of the CDF supported compression types/parameters. The compression percentage is the
result of the compressed size from all variable records divided by its original, uncompressed varible size.

The arguments to CDF_get zvar compression are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF _create cdf
or CDF _open_cdf.

var_num zVarriable number.
compress_type Compression type.
compress_parms Compression parameters.
compress percent Compression percentage.

status Completion status code. Chapter 8 explains how to interpret status codes.

6.3.17.1. Example(s)

The following example acquires the compression type/parameters for zVariable “MY_VAR” in a CDF.

INCLUDE '<path>cdf.inc'

CDF identifier.
Compression type.
Compression parameters.
Compression percentage.
Returned status code.

INTEGER*4 id

INTEGER*4 ctype

INTEGER*4 cparms (CDF_MAX DIMS)
INTEGER*4 cpercent

INTEGER*4 status

CALL CDF get zvar compression (id, CDF_get var num(id, ‘MY VAR'),
1 ctype, cparms, cpercent, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

121

6.3.18 CDF _get zvar_data

SUBROUTINE CDF_get zvar data (

INTEGER*4 1id,
INTEGER*4 var num,
INTEGER*4 rec_num,
INTEGER*4 indices(*),
<type> value,
INTEGER*4 status)

! in -- CDF identifier.

! in -- zVariable number.
! in -- Record number.
!
!
!

in -- Dimension indices.
out -- Value (<type> is dependent on the data type of the zVariable).
out -- Completion status

CDF get zvar data is used to read a single value from a zVariable. CDF_hyper get zvar data may be used to read
more than one zVariable values with a single call (see Section 6.3.38).

The arguments to CDF_get zvar data are defined as follows:

id

var_num

rec_num

indices

value

status

6.3.18.1.

Identifier of the CDF. This identifier must have been initialized by a call to CDF create cdf
or CDF_open_cdf.

Number of the zVariable from which to read. This number may be determined with a call to
CDF get var num (see Section 6.3.9).

Record number at which to read.

Array indices within the specified record at which to read. Each element of indices specifies
the corresponding dimension index. For 0-dimensional zVariables this argument is ignored
(but must be present).

Value read. This buffer must be large enough to hold the value. CDF _inquire zvar would be
used to determine the zVariable's data type and number of elements (of that data type) at each
value. The value is read from the CDF and placed at memory address value.

WARNING: If the zVariable has one of the character data types (CDF_CHAR or
CDF_UCHAR), then value must be a CHARACTER Fortran variable. If the zVariable does
not have one of the character data types, then value must NOT be a CHARACTER Fortran
variable.

Completion status code. Chapter 8 explains how to interpret status codes.

Example(s)

The following example reads and hold an entire record of data from zVariable “Temperature” in a CDF. This zVariable
is 3-dimensional with sizes [180,91,10]. The record variance is VARY, the dimension variances are
[VARY,VARY,VARY], and the data type is CDF_REALA4.

INCLUDE '<path>cdf.inc'

INTEGER*4 id

! CDF identifier.

122

Returned status code.
Temperature values.
Dimension indices.
zVariable number.
Record number.
Dimension index values.

INTEGER*4 status
REAL*4 tmp(180,91,10)
INTEGER*4 indices (3)
INTEGER*4 var n
INTEGER*4 rec num
INTEGER*4 dl1, d2, d3

var n = CDF _get var num (id, 'Temperature')

IF (var n .LT. 1) CALL UserStatusHandler (var n) ! If less than one (1),
! then it is actually a
! warning/error code.

rec num = 13

DO dl =1, 180

indices (1) = dl
DO d2 =1, 91
indices (2) = d2
DO d3 =1, 10
indices (3) = d3
CALL CDF _get zvar data (id, var n, rec num, indices, tmp(dl,d2,d3),
1 status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)
END DO
END DO
END DO

6.3.19 CDF get zvar datatype

SUBROUTINE CDF get zvar datatype (

INTEGER*4 1id, ! in -- CDF identifier.
INTEGER*4 var num, ! in -- zVariable number.
INTEGER*4 data_type, ! out -- Data type.
INTEGER*4 status) ! out-- Completion status

CDF _get zvar datatype is used to acquires the data type of the specified zVariable in a CDF. Refer to Section 4.5 for
the description of the CDF data types.

The arguments to CDF_get zvar datatype are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF _create cdf
or CDF_open_cdf.

var_num Number of the zVariable from which to read. This number may be determined with a call to
CDF _get var num (see Section 6.3.9).

data type Data type of the variable data.

status Completion status code. Chapter 8 explains how to interpret status codes.

123

6.3.19.1. Example(s)

The following example acquires the data type of zVariable “Temperature” in a CDF.

INCLUDE '<path>cdf.inc'

INTEGER*4 id
INTEGER*4 status
INTEGER*4 data type

! CDF identifier.
! Returned status code.
! Data type.

CALL CDF get zvar datatype (id, CDF get var num (id, 'Temperature'),

1

data type, status)

IF (status .NE. CDF OK) CALL UserStatusHandler (status)

6.3.20 CDF _get zvar_dimsizes

SUBROUTINE CDF _get zvar dimsizes (

INTEGER*4 1id,
INTEGER*4 var num,
INTEGER*4 dim_sizes(¥),

!
!
!
INTEGER*4 status) !

in -- CDF identifier.

in -- zVariable number.
out -- Dimension sizes.
out -- Completion status

CDF _get zvar dimsizes acquires the size of each dimension for the specified zVariable in a CDF. For 0-dimensional
zVariables, this operation is not applicable.

The arguments to CDF_get zvar dimsizes are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF_create cdf
or CDF_open_cdf.

var_num zVariable number.
dim_sizes Dimension sizes.
status Completion status code. Chapter 8 explains how to interpret status codes.

6.3.20.1. Example(s)

The following example acquires the dimension sizes for zVariable “MY_VAR” in a CDF.

INCLUDE '<path>cdf.inc'

124

INTEGER*4 id ! CDF identifier.
INTEGER*4 status ! Returned status code.
INTEGER*4 dim sizes (CDF_MAX DIMS) ! Dimension sizes.

CALL CDF get zvar dimsizes (id, CDF get var num(id, ‘MY VAR’), dim sizes,
1 status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

6.3.21 CDF get zvar dimvariances

SUBROUTINE CDF get zvar dimvariances (

INTEGER*4 1id, ! in -- CDF identifier.

INTEGER*4 var num, ! in -- zVariable number.

INTEGER*4 dim_varys(*), ! out -- Dimension variances.

INTEGER*4 status) ! out-- Completion status

CDF _get zvar dimvariances acquires the dimension variances of the specified zVariable in a CDF. For 0-dimensional
zVariable, this operation is not applicable. Refer to Section 4.9 for the description of the CDF variable’s dimension
variances.

The arguments to CDF_get zvar dimvariances are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF _create cdf
or CDF_open_cdf.

var_num Number of the zVariable from which to read. This number may be determined with a call to
CDF get var num (see Section 6.3.9).

dim_varys Dimension variances.

status Completion status code. Chapter 8 explains how to interpret status codes.

6.3.21.1. Example(s)

The following example acquires the dimension variances for zVariable “Temperature” in a CDF.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.
INTEGER*4 status ! Returned status code.
INTEGER*4 dim varys (CDF_MAX DIMS)! Dimension variances.

125

CALL CDF get zvar dimvariances (id, CDF get var num (id, 'Temperature'),
1 dim varys, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

6.3.22 CDF _get zvar maxallocrecnum

SUBROUTINE CDF_get zvar maxallocrecnum (

INTEGER*4 id, ! in -- CDF identifier.

INTEGER*4 var num, ! in -- zVariable number.

INTEGER*4 rec num, ! out -- Maximum allocated record number.
INTEGER*4 status) ! out-- Completion status

CDF _get zvar maxallocrecnum acquires the maximum record number allocated for the specified zVariable in a CDF.

The arguments to CDF_get zvar maxallocrecnum are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF_create cdf

or CDF open_cdf.

var_num Number of the zVariable from which to read. This number may be determined with a call to

CDF _get var num (see Section 6.3.9).
rec_num Maximum record number allocated.

status Completion status code. Chapter 8 explains how to interpret status codes.

6.3.22.1. Example(s)

The following example acquires the maximum record number allocated for zVariable “Temperature” in a CDF.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.

INTEGER*4 status ! Returned status code.
INTEGER*4 rec num ! Maximum allocated record number.

CALL CDF get zvar maxallocrecnum (id, CDF get var num (id, 'Temperature'),
1 rec_num, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

126

6.3.23 CDF_get zvar _maxwrittenrecnum

SUBROUTINE CDF_get zvar maxwrittenrecnum (

INTEGER*4 id, !
INTEGER*4 var num, !
INTEGER*4 rec num, !
INTEGER*4 status) !

in -- CDF identifier.

in -- zVariable number.

out -- Maximum written record number.
out -- Completion status

CDF get zvar maxwrittenrecnum acquires the maximum record number written for the specified zVariable in a CDF.

The arguments to CDF_get zvar maxwrittenrecnum are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF _create cdf
or CDF _open_cdf.

var_num Number of the zVariable from which to read. This number may be determined with a call to
CDF _get var num (see Section 6.3.9).

rec_num The maximum record number written.

status Completion status code. Chapter 8 explains how to interpret status codes.

6.3.23.1. Example(s)

The following example acquires the maximum record number written for zVariable “Temperature” in a CDF.

INCLUDE '<path>cdf.inc'

INTEGER*4 id
INTEGER*4 status
INTEGER*4 rec num

! CDF identifier.
! Returned status code.
! Maximum written record number.

CALL CDF get zvar maxwrittenrecnum (id, CDF get var num (id, 'Temperature'),

1

rec_num, status)

IF (status .NE. CDF OK) CALL UserStatusHandler (status)

6.3.24 CDF _get zvar name

SUBROUTINE CDF _get zvar name (

INTEGER*4 id, ! in -- CDF identifier.

127

INTEGER*4 var num, ! in -- zVariable number.

CHARACTER var_name*(*), ! out -- zVariable name.

INTEGER*4 status) ! out -- Completion status

CDF get zvar name acquires the name of the specified zVariable, by its number, in a CDF.

The arguments to CDF_get zvar name are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF_create cdf
or CDF_open_cdf.

var_num Number of the zVariable from which to read. This number may be determined with a call to
CDF _get var num (see Section 6.3.9).

var_name Name of the variable.

status Completion status code. Chapter 8 explains how to interpret status codes.

6.3.24.1. Example(s)

The following example acquires the name of the zVariable, numbered 2 in the zVariable group, in a CDF.

INCLUDE '<path>cdf.inc'

CDF identifier.
Returned status code.
zVariable number.
zVariable name.

INTEGER*4 id

INTEGER*4 status

INTEGER*4 var num

INTEGER*4 var_name* (CDF_VAR_NAME_LEN256)

rec_num = 2
CALL CDF _get zvar name (id, var num, var_ name, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

6.3.25 CDF_get zvar numdims

SUBROUTINE CDF get zvar numdims (

INTEGER*4 1id, ! in -- CDF identifier.
INTEGER*4 var num, ! in -- zVariable number.
INTEGER*4 num_dims, ! out -- Number of dimensions.
INTEGER*4 status) ! out-- Completion status

CDF _get zvar numdims acquires the number of dimensions for the specified zVariable in a CDF.

The arguments to CDF _get zvar numdims are defined as follows:

128

id

var_num
num_dims

status

6.3.25.1.

Identifier of the CDF. This identifier must have been initialized by a call to CDF _create cdf
or CDF_open_cdf.

zVariable number.
Number of dimensions.

Completion status code. Chapter 8 explains how to interpret status codes.

Example(s)

The following example acquires the number of dimensions for zVariable “MY_VAR” in a CDF.

INCLUDE '<path>cdf.inc'

INTEGER*4 id

! CDF identifier.

INTEGER*4 status ! Returned status code.
INTEGER*4 num_dims ! Dimension sizes.

CALL CDF get zvar numdims (id, CDF _get var num(id, ‘MY VAR’), num dims,

1
IF (status .NE.

status)
CDF_OK) CALL UserStatusHandler (status)

6.3.26 CDF get zvar numelems

SUBROUTINE CDF get zvar numelems (

INTEGER*4 1id,
INTEGER*4 var num,
INTEGER*4 num_elems,
INTEGER*4 status)

CDF get zvar numelems

! in -- CDF identifier.

! in -- zVariable number.

! out -- Number of elements.
! out -- Completion status

acquires the number of elements for each data value of the specified zVariable in a CDF. For

character data type (CDF_CHAR and CDF_UCHAR), the number of elements is the number of characters in the string.
(Each value consists of the entire string.) For other data types, the number of elements will always be one (1).

The arguments to CDF_get zvar numelems are defined as follows:

id

var_num

Identifier of the CDF. This identifier must have been initialized by a call to CDF create cdf
or CDF open_cdf.

Number of the zVariable from which to read. This number may be determined with a call to
CDF get var num (see Section 6.3.9).

129

num_elems Number of elements.

status Completion status code. Chapter 8 explains how to interpret status codes.

6.3.26.1. Example(s)

The following example acquires the number of elements for the data values for zVariable “Temperature” in a CDF.

INCLUDE '<path>cdf.inc'

INTEGER*4 id
INTEGER*4 status
INTEGER*4 num elems

! CDF identifier.
! Returned status code.
! Number of elements.

CALL CDF _get zvar numelems (id, CDF get var num (id, 'Temperature'),

1

num _elems, status)

IF (status .NE. CDF OK) CALL UserStatusHandler (status)

6.3.27 CDF _get zvar numrecs_written

SUBROUTINE CDF _get zvar numrecs (

INTEGER*4 id,
INTEGER*4 var num,
INTEGER*4 num_records,

!
!
!
INTEGER*4 status) !

in -- CDF identifier.

in -- zVariable number.

out -- Number of written records.
out -- Completion status

CDF _get zvar numrecs_written acquires the number of records written for the specified zVariable in a CDF. This
number may not correspond to the maximum record written if the zVariable has sparse records.

The arguments to CDF_get zvar numrecs written are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF create cdf
or CDF open_cdf.

var_num Number of the zVariable from which to read. This number may be determined with a call to
CDF get var num (see Section 6.3.9).

num_records Number of written records.

status Completion status code. Chapter 8 explains how to interpret status codes.

130

6.3.27.1. Example(s)

The following example acquires the number of written records for zVariable “Temperature” in a CDF.

INCLUDE '<path>cdf.inc'

INTEGER*4 id
INTEGER*4 status
INTEGER*4 num records

CALL CDF get zvar numrecs written (id, CDF get var num (id,

1

! CDF identifier.
! Returned status code.
! Number of written records.

num_records, status)

IF (status .NE. CDF OK) CALL UserStatusHandler (status)

6.3.28 CDF _get zvar padvalue

SUBROUTINE CDF _get zvar padvalue (

INTEGER*4 1id,
INTEGER*4 var num,
<type> pad_value,

!
!
!
INTEGER*4 status) !

CDF _get zvar padvalue acquires the pad value of the specified zVariable in a CDF. If a pad value has not been explicitly
specified for the zVariable through CDF set zvar padvalue or something similar from the Internal Interface function,
the informational status code NO PADVALUE SPECIFIED will be returned and the default pad value for the variable’s

in -- CDF identifier.
in -- zVariable number.
out -- Pad value.

out -- Completion status

data type will be placed in the pad value buffer provided.

The arguments to CDF_get zvar padvalue are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF_create cdf

or CDF_open_cdf.

var_num Number of the zVariable from which to read. This number may be determined with a call to

CDF _get var num (see Section 6.3.9).

pad_value Pad value.

'Temperature'),

status Completion status code. Chapter 8 explains how to interpret status codes.

6.3.28.1. Example(s)

The following example acquires acquire the pad value from zVariable “MY_ VAR”, a CDF INT4 type variable in a CDF.

131

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.

INTEGER*4 status ! Returned status code.
INTEGER*4 pad value ! Pad value.

CALL CDF get zvar padvalue (id, CDF get var num (id, 'MY VAR'),
1 pad value, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

6.3.29 CDF _get zvar rangerecords_ varid

SUBROUTINE CDF get zvar arangerecords_varid (

INTEGER*4 id,
INTEGER*4 var_num,
INTEGER*4 start_rec,
INTEGER*4 stop_rec,
<type> buffer,
INTEGER*4 status)

! in -- CDF identifier.

! in -- zVariable number.

! in — Starting record number.

! in — Stopping record number.

! out -- buffer (<type> is dependent on the data type of the zVariavle).

! out -- Completion status

CDF get zvar rangercords varid reads a range of the written records for the specified zVariable in a CDF. Make sure
that the buffer is big enough to hold the all records. Otherwise, a segmentation fault can happen.

The arguments to CDF _get zvar rangerecords varid are defined as follows:

id dldentifier of the CDF. This identifier must have been initialized by a call to CDF create cdf
or CDF_open_cdf.

var_num zVarriable number.

start_rec Starting record number.

stop_rec Stopping record number.

buffer Buffer holding the returned record data.

status Completion status code. Chapter 8 explains how to interpret status codes.

6.3.29.1. Example(s)

The following example reads 100 records, from record number 10 to 109, for zVariable “MY_VAR” in a CDF. Assuming
that there are 100 records, and each record is 1-dimension with 3 REAL*8 value.

132

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.

REAL*8 buffer (3,100) ! Buffer holding the record data.
INTEGER*4 status ! Returned status code.

CALL CDF get zvar rangerecords varid (id, CDF _get var num(id, ‘MY VAR’),
1 10, 109, buffer, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

6.3.30 CDF get zvar recorddata

SUBROUTINE CDF get zvar recorddata (

INTEGER*4 1id, ! in -- CDF identifier.
INTEGER*4 var num, ! in -- zVariable number.
INTEGER*4 rec_num, ! in -- Record number.
<type> buffer, ! out -- Record data buffer.
INTEGER*4 status) ! out -- Completion status

CDF get zvar recorddata acquires an entire record at a given record number for the specified zVariable in a CDF. The
buffer should be large enough to hold the entire data values for the variable. The retrieved data values in the buffer are
in the order that corresponds to the variable majority defined for the CDF.

The arguments to CDF_get zvar recorddata are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF _create cdf
or CDF_open_cdf.

var_num Number of the zVariable from which to read. This number may be determined with a call to
CDF _get var num (see Section 6.3.9).

rec_num Record number of the zVariable from which to read.
buffer Record buffer to hold the data values from an entire record.
status Completion status code. Chapter 8 explains how to interpret status codes.

6.3.30.1. Example(s)

The following example acquires an entire record, at numbered 5, for zVariable “MY_VAR?”, a 2-dimensional variable (2
by 3) of CDF_INT4 data type, in a CDF.

133

INCLUDE '<path>cdf.inc'

INTEGER*4 id
INTEGER*4 status
INTEGER*4 buffer (2, 3)

! CDF identifier.
! Returned status code.
! Record buffer.

CALL CDF get zvar recorddata (id, CDF get var num (id, 'MY VAR'), 5,

1

buffer, status)

IF (status .NE. CDF OK) CALL UserStatusHandler (status)

6.3.31 CDF _get zvar recvariance

SUBROUTINE CDF _get zvar recvariance (

INTEGER*4 1id, !
INTEGER*4 var num, !
INTEGER*4 rec vary, !
INTEGER*4 status) !

in -- CDF identifier.

in -- zVariable number.
out -- Record variance.
out -- Completion status

CDF get zvar recvariance acquires the record variance of the specified zVariable in a CDF. Refer to Section 4.9 for the
description of the CDF variable’s record variance.

The arguments to CDF_get zvar recvariance are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF_create cdf
or CDF open_cdf.

var_num Number of the zVariable from which to read. This number may be determined with a call to
CDF get var num (see Section 6.3.9).

rec_vary Record variance.

status Completion status code. Chapter 8 explains how to interpret status codes.

6.3.31.1. Example(s)

The following example acquires the record variance for zVariable “Temperature” in a CDF.

INCLUDE '<path>cdf.inc'

INTEGER*4 id

! CDF identifier.

134

INTEGER*4 status ! Returned status code.
INTEGER*4 rec vary ! Record variance.

CALL CDF _get zvar recvariance (id, CDF_get var num (id, 'Temperature'),
1 rec_vary, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

6.3.32 CDF get zvar reservepercent

SUBROUTINE CDF_get zvar reservepercent (

INTEGER*4 id, ! in -- CDF identifier.

INTEGER*4 var num, ! in -- zVariable number.

INTEGER*4 res percent, ! out -- Reserved percentage.

INTEGER*4 status) ! out-- Completion status

CDF _get zvar reservepercent acquires the reserved percentage being used for the specified zVariable in a CDF. This
operation only applies to compressed zVariables. Refer to the CDF User’s Guide for the description of the reserve scheme
used by the CDF library.

The arguments to CDF_get zvar reservepercent are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF_create cdf
or CDF_open_cdf.

var_num Number of the zVariable from which to read. This number may be determined with a call to
CDF get var num (see Section 6.3.9).

res_percent Reserved percentage.

status Completion status code. Chapter 8 explains how to interpret status codes.

6.3.32.1. Example(s)

The following example acquires the reserve percentage for the compressed zVariable “Temperature” in a CDF.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.

INTEGER*4 status ! Returned status code.
INTEGER*4 res percent ! Reserve percentage.

CALL CDF _get zvar reservepercent (id, CDF get var num (id, 'Temperature'),
1 res percent, status)

135

IF (status .NE. CDF OK) CALL UserStatusHandler (status)

6.3.33 CDF _get zvar seqdata

SUBROUTINE CDF get zvar seqdata (

INTEGER*4 1id, ! in -- CDF identifier.
INTEGER*4 var num, ! in -- zVariable number.
<type> value, ! out -- Data value.
INTEGER*4 status) ! out-- Completion status

CDF get zvar seqdata reads one data value at the current sequential value for the specified zVariable in a CDF. After
the read, the current sequential value is automatically incremented to the next value. An error is returned if the current
sequential value is past the last record of the zVariable. Use CDF_set zvar seqpos and CDF_get zvar seqpos subroutine
calls to set and get the current sequential value (position) for the variable.

The arguments to CDF_get zvar seqdata are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF_create cdf
or CDF_open_cdf.

var_num zVarriable number.
value Data value buffer.
status Completion status code. Chapter 8 explains how to interpret status codes.

6.3.33.1. Example(s)

The following example reads two data values from the beginning of record (numbered 2) from a zVariable, a 2-
dimensional CDF_INT4 type variable, in a CDF.

INCLUDE '<path>cdf.inc'

CDF identifier.
Returned status code.
Variable number.
Variable data values.
Record number.
Dimension indices.

INTEGER*4 id

INTEGER*4 status
INTEGER*4 var num
INTEGER*4 valuel, value?2
INTEGER*4 rec_ num
INTEGER*4 indices (2)

rec num = 2

indzces(l) =0
indices (2) = 0

CALL CDF_set zvar segpos (id, var num, rec_num, indices, status)

136

IF (status .NE. CDF OK) CALL UserStatusHandler (status)

CALL CDF get zvar seqdata (id, var_num, valuel, status
IF (status .NE. CDF OK) CALL UserStatusHandler (status
CALL CDF _get zvar seqgdata (id, var_num, value2, status

)
)
)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

6.3.34 CDF get zvar seqpos

SUBROUTINE CDF_get zvar seqpos (

INTEGER*4 id, ! in -- CDF identifier.
INTEGER*4 var num, ! in -- zVariable number.
INTEGER*4 rec num, ! out -- Record number.
INTEGER*4 indices(*), ! out -- Indices in a record.
INTEGER*4 status) ! out -- Completion status

CDF get zvar seqpos acquires the current sequential value (position) for sequential access for the specified zVariable
in a CDF. Note that a current sequential value is maintained for each zVariable individually. Use CDF get zvar seqdata
subroutine to get the data value.

The arguments to CDF_get zvar seqpos are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF create cdf
or CDF open_cdf.

var_num zVarriable number.
rec_num Record number.
Indices Dimension indices. Each element of indices receives the corresponding dimension index. For

0-dimensional zVariable, this argument is ignored, but must be presented.

status Completion status code. Chapter 8 explains how to interpret status codes.

6.3.34.1. Example(s)

The following example inquires the location for the current sequential value, the record number and indices within it,
from a 2-dimensional zVariable “MY_VAR” in a CDF.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.

INTEGER*4 status ! Returned status code.
INTEGER*4 rec_ num ! Record number.

137

INTEGER*4 indices (2) ! Dimension indices.

CALL CDF get zvar segpos (id, CDF get var num(id, ‘MY VAR’), rec num,

1

indices, status)

IF (status .NE. CDF OK) CALL UserStatusHandler (status)

6.3.35 CDF _get zvars maxwrittenrecnum

SUBROUTINE CDF_get zvars maxwrittenrecnum (

INTEGER*4 id,
INTEGER*4 rec num,
INTEGER*4 status)

! in -- CDF identifier.
! out -- Maximum record number.
! out -- Completion status

CDF get zvars maxwrittenrecnum acquires the maximum written record number among all of the zVariables in a CDF.
A value of zero (0) indicates that zVariables contain no records. The maximum record number for an individual zVariable
may be acquired using the CDF get zvar maxwrittenrecnum function call.

The arguments to CDF_get zvars maxwrittenrecnum are defined as follows:

id

rec_num

status

6.3.35.1.

Identifier of the CDF. This identifier must have been initialized by a call to CDF _create cdf
or CDF_open_cdf.

Maximum record number among all zVariables.

Completion status code. Chapter 8 explains how to interpret status codes.

Example(s)

The following example acquires the maximum written record number among all zVariables in a CDF.

INCLUDE '<path>cdf.inc'

INTEGER*4 id

! CDF identifier.

INTEGER*4 status ! Returned status code.
INTEGER*4 rec_ num ! Record number.

CALL CDF get zvars maxwrittenrecnum (id, rec num, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

138

6.3.36 CDF get zvar sparserecords

SUBROUTINE CDF get zvar sparserecords (

INTEGER*4 1id,
INTEGER*4 var num,
INTEGER*4 srecords_type,
INTEGER*4 status)

! in -- CDF identifier.

! in -- zVariable number.

! out -- Sparse records type.

! out -- Completion status

CDF get zvar sparserecords acquires the sparse records type of the specified zVariable in a CDF. Refer to Section 4.11
for the description of the sparse records.

The arguments to CDF_get zvar sparserecords are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF _create cdf
or CDF_open_cdf.

var_num zVariable number.
srecords_type Sparse records type.
status Completion status code. Chapter 8 explains how to interpret status codes.

6.3.36.1. Example(s)

The following example inquires the sparse records type for zVariable ‘MY VAR” in a CDF.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.

INTEGER*4 srecords type ! Sparse records type.
INTEGER*4 num_dims ! Dimension sizes.

CALL CDF get zvar sparserecrods (id, CDF _get var num(id, ™“MY VAR"),
1 srecords type, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

6.3.37 CDF get zvars recorddata

SUBROUTINE CDF get zvars recorddata(

INTEGER*4 id, ! in -- CDF identifier.
INTEGER*4 num_var, ! in -- Number of zVariables.
INTEGER*4 var nums(*), ! in -- zVariable numbers.

139

in -- Record number.

out -- First variable buffer in a common block (<type> depends
on the data type of the zVariable).

out -- Completion status.

INTEGER*4 rec_num,
<type> buffer,

INTEGER*4 status

CDF _get zvars recorddata is used to read a full record data at a specific record number for a selected group of
zVariables in a CDF. It expects that the data buffer for each zVariable is big enough to hold a full physical record?!
data and properly put in a common block. No space is needed for each zVariable's non-variant dimensional elements.
Retrieved record data from the variable group is filled into respective zVariable's buffer.

The arguments to CDF_get zvars recorddata are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate,
CDF_open or a similar CDF creation or opening functionality from the Internal Interface.

num_vars Number of the zVariables in the group involved this read operation.
var_nums Numbers of the zVariables involved for which to read a whole record data.
rec_num Record number at which to read the whole record data for the group of zVariables.
buffer First variable buffer to read in a common block. The number of buffers should match to
the num_var argument. Each buffer should hold a full physical record data.
6.3.37.1. Example(s)

The following example will read an entire single record data for a group of zVariables. The zVariables involved in the
read are Time, Longitude, Delta, Temperature and NAME. The record to read is 4. Since Temperature is 0O-
dimensional with CDF_FLOAT data type, a scalar variable of REAL*4 is allocated. For Longitude, a 1-dimensional
array of INTEGER*2 (size [3]) is given for its dimension variance [VARY] and data type CDF_INT2. Similar data
variables are provided for Longitude and Time. They both are 2-dimensional array of INTEGER*4 (sizes [3,2]) for their
dimension variances [VARY,VARY] and data type either CDF_INT4 or CDF_UINT4. For NAME, a 1-dimensional
array of CHARACTER*10 (size [2]) is allocated due to its [VARY] dimension variance and CDF_CHAR data type
with the number of element 10.

INCLUDE '<path>cdf.inc'

INTEGER*4

id ! CDF identifier.

INTEGER*4 status ! Returned status code.
INTEGER*4 num_var ! Number of zVariables.
INTEGER*4 var_nums(5) ! zVariable numbers in CDF.
INTEGER*4 rec_num ! Record number to write.
INTEGER*4 time(3,2) ! Datatype: UINT4.

! Rec/dim variances: T/TT.
INTEGER*4 delta(3,2) ! Datatype: INT4 .

! Rec/dim variances: T/TT.
INTEGER*2 longitude(3) ! Datatype: INT2.

! Rec/dim variances: T/T.
REAL*4 temperature ! Datatype: FLOAT.

21 Physical record is explained in the Primer chapter in the CDF User's Guide.

! Rec/dim variances: T/.

140

CHARACTER*10 name(2) ! Datatype: CHAR/10.
! Rec/dim variances: T/T.
COMMON /BLK/delta, time, temperature, longitude, name

num_var =5 ! Number of zVariables
rec_num = 4 ! Record number to read

status = CDF_LIB (GET , zZVAR NUMBER , 'Delta’, var nums(1),
1 NULL , status) ! zVariable number
IF (var_nums(1) .LT. 1) ! If less than one (1),
x CALL UserStatusHandler (var nums(1)) ! then it is actually a
! warning/error code.

status = CDF_LIB (GET , zZVAR NUMBER , 'Time', var nums(2),
1 NULL , status)
IF (var_nums(2) .LT. 1) CALL UserStatusHandler (var nums(2))

status = CDF_LIB (GET , zVAR NUMBER , 'Longitude', var nums(3),
1 NULL , status)
IF (var_nums(3) .LT. 1) CALL UserStatusHandler (var_nums(3))

status = CDF_LIB (GET ,zVAR NUMBER , 'Temperature', var nums(4),
1 NULL , status)
IF (var_nums(4) .LT. 1) CALL UserStatusHandler (var_nums(4))

status = CDF_LIB (GET ,zVAR NUMBER , 'NAME', var nums(5),
1 NULL , status)
IF (var_nums(5) .LT. 1) CALL UserStatusHandler (var nums(5))

CALL CDF get zvars recorddata (id, num_var, var nums, rec_num,
1 time, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

Note that the ordering of the variable data buffer in the COMMON block BLK is very important. Always arrange data
buffer in the order in such way that the variables with the bigger data types come in front of the variables with the smaller
data types. They should be in this ordering: 8-byte, 4-byte, 2-byte, and 1-byte. Unexpected results may return if such
ordering is not followed. This function can be a replacement for the similar functionality provided from the Internal

Interface as <GET , zVARs RECDATA >.

6.3.38 CDF_ hyper get zvar data

SUBROUTINE CDF_hyper get zvar data (

INTEGER*4 id, in -- CDF identifier.
INTEGER*4 var num, in -- zVariable number.
INTEGER*4 rec_start, in -- Starting record number.

Number of records.

INTEGER*4 rec_interval, in

!
!
!
INTEGER*4 rec_count, ! in
!
INTEGER*4 indices(*), ! in

141

Subsampling interval between records.
Dimension indices of starting value.

INTEGER*4 counts(*),
INTEGER*4 intervals(*),
<type> buffer,
INTEGER*4 status)

in -- Number of values along each dimension.
in -- Subsampling intervals along each dimension.

in -- Buffer of values (<type> is dependent on the data type of the zVariable).
out -- Completion status

CDF hyper get zvar data is used to read a buffer of one or more values from a zVariable. It is important to know the
variable majority of the CDF before using CDF hyper get zvar data because the values placed into the buffer will be
in that majority. CDF_inquire can be used to determine the default variable majority of a CDF distribution. The Concepts
chapter in the CDF User's Guide describes the variable majorities.

The arguments to CDF_hyper get zvar data are defined as follows:

id

var_num

rec_start
rec_count

rec_interval

indices

counts

intervals

buffer

status

6.3.38.1.

Identifier of the CDF. This identifier must have been initialized by a call to CDF _create cdf
or CDF open_cdf.

Number of the zVariable from which to read. This number may be determined with a call to
CDF get var num (see Section 6.3.9).

Record number at which to start reading.
Number of records to read.

Interval between records for subsampling (e.g., an interval of 2 means read every other
record).

Indices (within each record) at which to start reading. Each element of indices specifies the
corresponding dimension index. If there are zero (0) dimensions, this argument is ignored
(but must be present).

Number of values along each dimension to read. Each element of counts specifies the
corresponding dimension count. For O-dimensional zVariables this argument is ignored (but
must be present).

For each dimension, the interval between values for subsampling (e.g., an interval of 2 means
read every other value). Each element of intervals specifies the corresponding dimension
interval. For 0-dimensional zVariables, this argument is ignored (but must be present).

Buffer of values read. The majority of the values in this buffer will be the same as that of the
CDF. This buffer must be large to hold the values. CDF_var inquire would be used to
determine the zVariable's data type and number of elements (of that data type) at each value.
The values are read from the CDF and placed into memory starting at address buffer.

WARNING: If the zVariable has one of the character data types (CDF_CHAR or
CDF_UCHAR), then value must be a CHARACTER Fortran variable. If the zVariable does
not have one of the character data types, then value must NOT be a CHARACTER Fortran
variable.

Completion status code. Chapter 8 explains how to interpret status codes.

Example(s)

The following example reads an entire record of data from zVariable “Temperature” in a CDF. This zVariable is 3-
dimensional with sizes [180,91,10] and CDF’s variable majority is ROW_MAJOR. The record variance is VARY, the
dimension variances are [VARY,VARY,VARY], and the data type is CDF REAL4. This example is similar to the

142

example in Section 6.3.38 except that it uses a single call to CDF_hyper get zvar data rather than numerous calls to
CDF get zvar data.

INCLUDE '<path>cdf.inc'

INTEGER*4 id

INTEGER*4 status
REAL*4 tmp(180,91,10)
INTEGER*4 var n
INTEGER*4 rec_start
INTEGER*4 rec_count
INTEGER*4 rec interval

CDF identifier.
Returned status code.
Temperature values.
rVariable number.
Record number.

Record counts.

Record interval.

INTEGER*4 indIces(B) ! Dimension indices.
INTEGER*4 counts (3) ! Dimension counts.
INTEGER*4 intervals (3) ! Dimension intervals.

DATA rec_start/13/, rec _count/l/, rec interval/l/,
1 indices/1,1,1/, counts/180,91,10/, intervals/1,1,1/

var n = CDF _get var num (id, 'Temperature')

IF (var n .LT. 1) CALL UserStatusHandler (var n) ! If less than one (1),
! then it is actually a
! warning/error code.

CALL CDF _hyper get zvar data (id, var n, rec_start, rec count, rec interval,

1 indices, counts, intervals, tmp, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

Note that if the CDF's variable majority had been ROW_MAIJOR, the tmp array would have been declared REAL*4
tmp[10][91][180] for proper indexing.

6.3.39 CDF_hyper_ put_zvar data

SUBROUTINE CDF_hyper put zvar data (

INTEGER*4 1id,
INTEGER*4 var num,

in -- CDF identifier.
in -- zVariable number.

INTEGER*4 rec_start, in -- Starting record number.
INTEGER*4 rec_count, in -- Number of records.
INTEGER*4 rec_interval, in -- Interval between records.

INTEGER*4 counts(*), in -- Number of values along each dimension.
INTEGER*4 intervals(*), in -- Interval between values along each dimension.
<type> buffer, in -- Buffer of values (<type> is dependent on the data type of the zVariable).

!
!
!
!
!
INTEGER*4 indices(*), ! in -- Dimension indices of starting value.
!
!
!
INTEGER*4 status) ! out -- Completion status

143

CDF hyper put zvar data is used to write a buffer of one or more values to a zVariable. It is important to know the
variable majority of the CDF before using CDF_hyper put zvar data because the values in the buffer to be written must

be in the same majority.

CDF inquire can be used to determine the default variable majority of a CDF distribution. The

Concepts chapter in the CDF User's Guide describes the variable majorities.

The arguments to CDF_hyper put zvar data are defined as follows:

id

var_num

rec_start
rec_count

rec_interval

indices

counts

intervals

buffer

status

6.3.39.1.

Identifier of the CDF. This identifier must have been initialized by a call to CDF _create cdf or
CDF _open_cdf.

Number of the zVariable to which to write. This number may be determined with a call to
CDF get var num (see Section 6.3.9).

Record number at which to start writing.
Number of records to write.

Interval between records for subsampling?? (e.g., An interval of 2 means write to every other
record).

Indices (within each record) at which to start writing. Each element of indices specifies the
corresponding dimension index. Ifthere are zero (0) dimensions, this argument is ignored (but
must be present).

Number of values along each dimension to write. Each element of count specifies the
corresponding dimension count. For 0-dimensional zVariables this argument is ignored (but
must be present).

For each dimension the interval between values for subsampling?® (e.g., an interval of 2 means
write to every other value). intervals is a 1-dimensional array containing one element per
zVariable dimension. Each element of intervals specifies the corresponding dimension interval.
For 0-dimensional zVariables this argument is ignored (but a place holder is necessary).

Buffer of values to write. The majority of the values in this buffer must be the same as that of
the CDF. The values starting at memory address buffer are written to the CDF.

WARNING: If the zVariable has one of the character data types (CDF_CHAR or
CDF_UCHAR), then value must be a CHARACTER Fortran variable. If the entry does not
have one of the character data types, then value must NOT be a CHARACTER Fortran
variable.

Completion status code. Chapter 8 explains how to interpret status codes.

Example(s)

The following example writes values to the zVariable LATITUDE of a CDF. This zVariable is 2-dimensional with
dimension sizes [360,181]. The record variance is NOVARY, the dimension variances are [NOVARY,VARY], and the

data type is CDF_INT2.

This example is similar to the example in Section 6.3.39

except that it uses a single call to CDF_hyper put zvar data rather than numerous calls to CDF put zvar data.

22 »Subsampling" is not the best term to use when writing data, but you should know what we mean.
23 Again, not the best term.

144

INCLUDE '<path>cdf.inc'

INTEGER*4
INTEGER*4
INTEGER*2
INTEGER*2
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

id

status

lat

lats (181)
var n
rec_start
rec_count
rec_interval
indices (2)
counts (2)
intervals (2)

CDF identifier.
Returned status code.
Latitude value.
Buffer of latitude values.
zVariable number.

Record number.
Record counts.

Record interval.

Dimension indices.
Dimension counts.
Dimension intervals.

DATA rec_start/l/, rec count/l/, rec_interval/l/,

1 indices/1,1/,
var n = CDF _get var num
IF (var n .LT. 1)
DO lat = -90, 90

lats(91+lat) =

END DO

CALL CDF hyper put zvar data

1
IF

(status

lat

.NE. CDF_OK)

6.3.40 CDF inquire_zvar

SUBROUTINE CDF _inquire_zvar (

counts/1,181/,

(id,

'LATITUDE")

(id,
indices,

INTEGER*4 id,

INTEGER*4 var num,

CHARACTER var name*(CDF_VAR NAME LEN256),
INTEGER*4 data type,

INTEGER*4 num_elements,

INTEGER*4 num_dims,

INTEGER*4 dim_sizes(CDF_MAX DIMS),
INTEGER*4 rec_variance,

INTEGER*4 dim_variances(CDF_MAX DIMS),
INTEGER*4 status)

145

CALL UserStatusHandler

var n,
counts,
CALL UserStatusHandler

(var_n)

rec_start,

intervals/1,1/

intervals,
(status)

! in -- CDF identifier.

! in -- zVariable number.
! out -- zVariable name.

! out -- Data type.

out -- Number of elements (of the data type).
Number of dimensions.

out --
out --
out --
out --
out --

Dimension sizes.
Record variance

If less than one
then not a zVariable
number but rather a
warning/error code

rec_count,

lats,

Dimension variances.

Completion status

(1),

rec_interval,
status)

CDF inquire_zvar is used to inquire about the specified zVariable. This subroutine would normally be used before
reading zVariable values (with CDF get zvar data or CDF hyper get zvar data) to determine the data type and number
of elements (of that data type).

The arguments to CDF _inquire zvar are defined as follows:

id

var_num

var_name

data_type

num_elements

num_dims

dim_sizes

rec_variance

dim_variances

status

6.3.40.1.

Identifier of the CDF. This identifier must have been initialized by a call to CDF_create cdf
or CDF_open.

Number of the zVariable to inquire. This number may be determined with a call to
CDF_get var num (see Section 6.3.9).

zVarriable's name. This character string must be large enough to hold
CDF VAR NAME LEN256 characters and will be blank padded if necessary.

Data type of the zVariable. The data types are defined in Section 4.5.

Number of elements of the data type at each zVariable value. For character data types
(CDF_CHAR and CDF _UCHAR), this is the number of characters in the string. (Each
value consists of the entire string.) For all other data types, this will always be one (1) -
multiple elements at each value are not allowed for non-character data types.

Number of dimensions.

Dimension sizes. It is a 1-dimensional array, containing one element per dimension. Each
element of dimSizes receives the corresponding dimension size. For 0-dimensional
zVariable this argument is ignored (but must be present).

Record variance. The record variances are defined in Section 4.9.

Dimension variances. Each element of dim_ variances receives the corresponding
dimension variance. The dimension variances are defined in Section 4.9. For 0-dimensional

zVariable this argument is ignored (but must be present).

Completion status code. Chapter 8 explains how to interpret status codes.

Example(s)

The following example inquires about a zVariable named HEAT FLUX in a CDF. Note that the zVariable name returned
by CDF inquire_zvar will be the same as that passed in to CDF_get var_num.

INCLUDE '<path>cdf.inc'

INTEGER*4
INTEGER*4
CHARACTER
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

allow the maximum number of

id ! CDF identifier.
status ! Returned status code.
var name* (CDF_VAR NAME LEN256) ! zVariable name.
data type ! Data type.
num_elems ! Number of elements (of data type).
rec_vary ! Record variance.
dim varys (CDF_MAX DIMS) ! Dimension variances (allocate to
|
|

dimensions) .

146

INTEGER*4 num dims
INTEGER*4 dim sizes (CDF _MAX DIMS)

Number of dimensions.
Dimension sizes (allocate to
allow the maximum number of
dimensions) .

CALL CDF _inquire zvar (id, CDF_get var num(id, 'HEAT FLUX'), var_ name,
1 data type, num elems, rec vary, dim varys,
2 num_dims, dim sizes, status)

IF (status .NE. CDF OK) CALL UserStatusHandler (status)

6.3.41 CDF put var_allrecords varname

SUBROUTINE CDF put var allrecords varname (

INTEGER*4 1id, ! in -- CDF identifier.

CHARACTER*256 var _name, ! in -- Variable name.

INTEGER*4 num_recs, ! in — Total record number to write.

<type> buffer, ! in -- buffer (<type> is dependent on the data type of the zVariavle).
INTEGER*4 status) ! out-- Completion status

CDF put_var allrecords_varname writes/updates®* the whole records for the specified variable in a CDF. Make sure
that the buffer has the enough data to cover the records to be written. Since a variable name is unique in a CDF, this
function can be called for either a rVariable or zVariable. For zVariables, this function is similar to
CDF put zvar allrecords_varid, only that function requires a variable id.

The arguments to CDF_put var allrecords varname are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF _create cdf
or CDF_open_cdf.

var_name Variable name.

num_recs Total record number to write.

buffer Buffer holding the written record data.

status Completion status code. Chapter 8 explains how to interpret status codes.

6.3.41.1. Example(s)

The following example writes 100 records for zVariable “MY_VAR” in a CDF. Assuming that each record is 1-
dimension with 3 REAL*8 value.

24 Tf the variable already has more records than the total number indicated in
this function call, records out of the range will stay and not be deleted. If
those records are not needed, you can delete all the records before calling this
function.

147

INCLUDE '<path>cdf.inc'

INTEGER*4 id
REAL*8 buffer(3,100)
INTEGER*4 status

.fill the buffer

CDF identifier.
Buffer holding the record data.
Returned status code.

CALL CDF put var allrecords varname (id, ‘MY VAR',

1

100, buffer, status)

IF (status .NE. CDF OK) CALL UserStatusHandler (status)

6.3.42 CDF _put var _rangerecords name

SUBROUTINE CDF_put var rangerecords name (

INTEGER*4 1id,
CHARACTER*256 var_name,
INTEGER*4 start_rec,
INTEGER*4 stop_rec,

<type> buffer,

!
!
!
!
!
INTEGER*4 status) !

in -- CDF identifier.

in -- Variable name.

in — Starting record number.

in — Stopping record number.

in -- buffer (<type> is dependent on the data type of the zVariavle).
out -- Completion status

CDF put _var rangerecords _name writes/updates a range of the records for the specified variable in a CDF. Make sure
that the buffer has the enough data to cover the records to be written. Since a variable name is unique in a CDF, this
function can be called for either a rVariable or zVariable. For zVariables, this function is similar to
CDF put _zvar rangerecords varid, only that function requires a variable id.

The arguments to CDF_put var rangerecords name are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF _create cdf

or CDF _open_cdf.

var_name Variable name.

start rec Starting record number.

stop_rec Stopping record number.

buffer Buffer holding the written record data.

status Completion status code. Chapter 8 explains how to interpret status codes.

148

6.3.42.1. Example(s)

The following example writes 100 records, from record number 10 to 109, for zVariable “MY_VAR” in a CDF.
Assuming that there are 100 records, and each record is 1-dimension with 3 REAL*8 value.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.

REAL*8 buffer(3,100) ! Buffer holding the record data.
INTEGER*4 status ! Returned status code.

.fill the buffer

CALL CDF put var rangerecords name (id, ‘MY VAR’,
1 10, 109, buffer, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

6.3.43 CDF_put_zvar_allrecords_varid

SUBROUTINE CDF _put zvar allrecords varid (

INTEGER*4 1id, ! in -- CDF identifier.

INTEGER*4 var_num, ! in -- zZVariable number.

INTEGER*4 num_recs, ! in — Total record number to write.

<type> buffer, ! out -- buffer (<type> is dependent on the data type of the zVariavle).
INTEGER*4 status) ! out -- Completion status

CDF put zvar allrecords varid writes/updates?’ the whole records for the specified zVariable in a CDF. Make sure that
the buffer has all the data to be written.

The arguments to CDF_put_zvar allrecords varid are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF _create cdf
or CDF _open_cdf.

var_num zVarriable number.

num_recs Total record number.

buffer Buffer holding the writen record data.

status Completion status code. Chapter 8 explains how to interpret status codes.

25 If the variable already has more records than the total number indicated in this function call, records out of the range
will stay and not be deleted. If those records are not needed, you can delete all the records before calling this function.

149

6.3.43.1.

Example(s)

The following example writes out a total of 100 records for zVariable “MY_VAR” in a CDF. Assuming that there are
100 records, and each record is 1-dimension with 3 REAL*8 value.

INCLUDE '<path>cdf.inc'

INTEGER*4 id

! CDF identifier.

REAL*8 buffer(3,100) ! Buffer holding the record data.
INTEGER*4 status ! Returned status code.

.fill the buffer

CALL CDF put zvar allrecords varid (id, CDF get var num(id, ‘MY VAR’),

1
IF (status .NE.

100, buffer, status)
CDF _OK) CALL UserStatusHandler (status)

6.3.44 CDF_put_zvar_data

SUBROUTINE CDF _put zvar data (

INTEGER*4 1id,
INTEGER*4 var num,
INTEGER*4 rec_num,
INTEGER*4 indices(*),
<type> value,
INTEGER*4 status)

! in -- CDF identifier.

! in -- zVariable number.

! in -- Record number.

! in -- Dimension indices.

! in -- Value (<type> is dependent on the data type of the zVariable).
!

out -- Completion status

CDF put zvar data is used to write a single value for a zVariable. CDF_hyper put zvar data may be used to write
more than one zVariable values with a single call (see Section 6.3.39).

The arguments to CDF_put_zvar data are defined as follows:

id

var_num

rec_num

indices

Identifier of the CDF. This identifier must have been initialized by a call to CDF_create cdf
or CDF_open_cdf.

Number of the zVariable to which to write. This number may be determined with a call to
CDF get var num (see Section 6.3.9).

Record number at which to write.
Array indices within the specified record at which to write. Each element of indices specifies

the corresponding dimension index. For 0-dimensional zVariables this argument is ignored
(but must be present).

150

value Value to write. This buffer must be large enough to hold the value. CDF_inquire zvar would
be used to determine the zVariable's data type and number of elements (of that data type) at
each value. The value is written to the CDF.

WARNING: If the zVariable has one of the character data types (CDF_CHAR or
CDF_UCHAR), then value must be a CHARACTER Fortran variable. If the zVariable does
not have one of the character data types, then value must NOT be a CHARACTER Fortran
variable.

status Completion status code. Chapter 8 explains how to interpret status codes.

6.3.44.1. Example(s)

The following example writes an entire record of data to zVariable “Temperature”. This zVariable is 3-dimensional with
sizes [180,91,10]. The record variance is VARY, the dimension variances are [VARY,VARY,VARY], and the data type
is CDF_REALA.

INCLUDE '<path>cdf.inc'

CDF identifier.
Returned status code.
Temperature values.
Dimension indices.
zVariable number.
Record number.
Dimension index values.

INTEGER*4 id
INTEGER*4 status
REAL*4 tmp(180,91,10)
INTEGER*4 indices (3)
INTEGER*4 var n
INTEGER*4 rec num
INTEGER*4 dl1, d2, d3

var n = CDF _get var num (id, 'Temperature')
IF (var n .LT. 1) CALL UserStatusHandler (var n) ! If less than one (1),
! then it is actually a
! warning/error code.
rec num = 13

filled tmp array

DO d1 =1, 180
indices (1) = dl
DO d2 =1, 91
indices (2) = d2
DO d3 =1, 10
indices (3) = d3
CALL CDF put zvar data (id, var n, rec num, indices, tmp(dl,d2,d3),
1 status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)
END DO
END DO
END DO

151

6.3.45 CDF _put zvar rangerecords varid

SUBROUTINE CDF put zvar rangerecords varid (

INTEGER*4 1id,
INTEGER*4 var num,
INTEGER*4 start rec,
INTEGER*4 stop_rec,
<type> buffer,
INTEGER*4 status)

! in -- CDF identifier.

! in -- zZVariable number.

! in — Starting record number.

! in — Stopping record number.

! in -- buffer (<type> is dependent on the data type of the zVariavle).

! out-- Completion status

CDF put_zvar rangerecords_varid writes/updates a range of the records for the specified zVariable in a CDF. Make
sure that the buffer has the enough data to cover the records to be written.

The arguments to CDF_put zvar rangerecords varid are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF_create cdf
or CDF_open_cdf.

var_num zVarriable number.

start_rec Starting record number.

stop_rec Stopping record number.

buffer Buffer holding the written record data.

status Completion status code. Chapter 8 explains how to interpret status codes.

6.3.45.1. Example(s)

The following example writes 100 records, from record number 10 to 109, for zVariable “MY_VAR” in a CDF.
Assuming that there are 100 records, and each record is 1-dimension with 3 REAL*8 value.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.

REAL*8 buffer (3,100) ! Buffer holding the record data.
INTEGER*4 status ! Returned status code.

.fill the buffer
CALL CDF put zvar rangerecords varid (id, CDF get var num(id, ‘MY VAR'),

1 10, 109, buffer, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

152

6.3.46 CDF put zvar recorddata

SUBROUTINE CDF put zvar recorddata (

INTEGER*4 1id, ! in -- CDF identifier.
INTEGER*4 var num, ! in -- zVariable number.
INTEGER*4 rec_num, ! in -- Record number.
<type> buffer, ! in -- Record data buffer.
INTEGER*4 status) ! out -- Completion status

CDF put_zvar recorddata writes an entire record at a given record number for the specified zVariable in a CDF. The
buffer should be large enough to hold the entire data values for the variable. The written data values in the buffer are in
the order that corresponds to the variable majority defined for the CDF.

The arguments to CDF_put zvar recorddata are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF_create cdf
or CDF_open_cdf.

var_num Number of the zVariable to which to write. This number may be determined with a call to
CDF _get var num (see Section 6.3.9).

rec_num Record number of the zVariable to which to write.
buffer Record buffer to hold the data values for an entire record.
status Completion status code. Chapter 8 explains how to interpret status codes.

6.3.46.1. Example(s)

The following example writes an entire record (numbered 5) for zVariable “MY_VAR”, a 2-dimensional variable (2 by
3) of CDF_INT4 data type, in a CDF.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.

INTEGER*4 status ! Returned status code.
INTEGER*4 buffer (2, 3) ! Record buffer.

fill buffer array
CALL CDF put zvar recorddata (id, CDF get var num (id, 'MY VAR'), 5,
1 buffer, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

153

6.3.47 CDF _put zvar seqdata

SUBROUTINE CDF put zvar seqdata (

INTEGER*4 1id,
INTEGER*4 var num,
<type> value,
INTEGER*4 status)

!"in -- CDF identifier.

! in -- zVariable number.

! in -- Data value.

! out -- Completion status

CDF put zvar seqdata writes one data value at the current sequential value for the specified zVariable in a CDF. After
the read, the current sequential value is automatically incremented to the next value. An error is returned if the current
sequential value is past the last record of the zVariable. Use CDF_get zvar seqpos and CDF_set_zvar seqpos subroutine
calls to get and set the current sequential value (position) for the variable.

The arguments to CDF_put zvar seqdata are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF_create cdf
or CDF_open_cdf.

var_num zVarriable number.
value Data value.
status Completion status code. Chapter 8 explains how to interpret status codes.

6.3.47.1. Example(s)

The following example writes two data values from the beginning of record (numbered 2) to a zVariable, a 2-dimensional
CDF_INT4 type variable, in a CDF.

INCLUDE '<path>cdf.inc'

INTEGER*4 id

INTEGER*4 status
INTEGER*4 var num
INTEGER*4 valuel, value?2
INTEGER*4 rec num
INTEGER*4 indices (2)

CDF identifier.
Returned status code.
Variable number.
Variable data values.
Record number.
Dimension indices.

rec_num = 2
indices (1) = 0
indices(2) = 0

CALL CDF set zvar segpos (id, var num, rec_num, indices, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

valuel = 10

value2 = 20

CALL CDF put zvar seqdata (id, var num, valuel, status
IF (status .NE. CDF OK) CALL UserStatusHandler (status
CALL CDF put zvar seqdata (id, var_num, value2, status

)
)
)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

154

6.3.48 CDF put _zvars recorddata

SUBROUTINE CDF_put_zvars_recorddata(

INTEGER*4 id, ! in -- CDF identifier.

INTEGER*4 num_var, ! in -- Number of zVariables.

INTEGER*4 var nums(*), ! in -- zVariable numbers.

INTEGER*4 rec_num, ! in -- Record number.

<type> buffer, ! in -- First variable buffer in a common block (<type> depends
! on the data type of the zVariable).

INTEGER*4 status) ! out -- Completion status.

CDF put zvars_recorddata is used to write a full record data at a specific record number for a selected group of

zVariables in a CDF. It expects that the data buffer for each zVariable is big enough to contain a full physical record

data and properly put in a common block. No space is expected for each zVariable's non-variant dimensional elements.

Record data from each buffer is written to its respective zVariable.

The arguments to CDF_put_zvars recorddata are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate,
Cdf_open or a similar CDF creation or opening functionality from the Internal Interface.

num_vars Number of the zVariables in the group involved this write operation.

var_nums Numbers of the zVariables involved for which to write a whole record data.

rec_num Record number at which to write the whole record data for the group of zVariables.
buffer First variable buffer to write in a common block. The number of buffers should match to

the num_var argument. Each buffer should hold a full physical record data.

6.3.48.1. Example(s)

The following example will write an entire single record data for a group of zVariables. The zVariables involved in the
write are Time, Longitude, Delta, Temperature and NAME. The record to write is 4. Since Temperature is 0-
dimensional with CDF_FLOAT data type, a scalar variable of REAL*4 is allocated. For Longitude, a 1-dimensional
array of INTEGER*2 (size [3]) is given for its dimension variance [VARY] and data type CDF_INT2. Similar data
variables are provided for Longitude and Time. They both are 2-dimensional array of INTEGER*4 (sizes [3,2]) for their
dimension variances [VARY,VARY] and data type either CDF_INT4 or CDF_UINT4. For NAME, a 1-dimensional
array of CHARACTER*10 (size [2]) is allocated due to its [VARY] dimension variance and CDF_CHAR data type
with the number of element 10.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.

155

INTEGER*4 status ! Returned status code.
INTEGER*4 num_var ! Number of zVariables.
INTEGER*4 var_nums(5) ! zVariable numbers in CDF.
INTEGER*4 rec_num ! Record number to write.
INTEGER*4 time(3,2) ! Datatype: UINT4.

1 /10, 20, ! Rec/dim variances: T/TT.
2 30, 40,

3 50, 60/

INTEGER*4 delta(3,2) ! Datatype: INT4 .

1 /1,2, ! Rec/dim variances: T/TT.
2 5,6,

3 9, 10/

INTEGER*2 longitude(3) ! Datatype: INT2.

1 /10, 20, 30/ ! Rec/dim variances: T/T.
REAL*4 temperature ! Datatype: FLOAT.

1 /1234.56/ ! Rec/dim variances: T/.
CHARACTER*10 name(2) ! Datatype: CHAR/10.

1 /'"ABCDEFGHIJ', ! Rec/dim variances: T/T.
2 '12345678'/

COMMON /BLK/delta, time, temperature, longitude, name

num_var =5
rec_num =4

! Number of zVariables
! Record number to write

status = CDF_LIB (GET , zZVAR NUMBER , 'Delta', var nums(1),
1 NULL , status) ! zVariable number
IF (var_nums(1) .LT. 1) ! If less than one (1),
x CALL UserStatusHandler (var_nums(1)) ! then it is actually a
! warning/error code.

status = CDF_LIB (GET , zVAR _NUMBER , 'Time', var_nums(2),
1 NULL , status)
IF (var_nums(2) .LT. 1) CALL UserStatusHandler (var_nums(2))

status = CDF_LIB (GET , zZVAR_NUMBER , 'Longitude', var_nums(3),
1 NULL , status)
IF (var_nums(3) .LT. 1) CALL UserStatusHandler (var nums(3))

status = CDF_LIB (GET , zVAR NUMBER , 'Temperature', var nums(4),
1 NULL , status)
IF (var_nums(4) .LT. 1) CALL UserStatusHandler (var_nums(4))

status = CDF_LIB (GET_, zVAR_NUMBER , 'NAME/, var_nums(5),
1 NULL , status)
IF (var_nums(5) .LT. 1) CALL UserStatusHandler (var_nums(5))

CALL CDF _put_zvars recorddata (id, num_var, var_nums, rec_num,

1 time, status)
IF (status .NE. CDF_OK) CALL UserStatusHandler (status)

Note that the ordering of the variable data buffer in the COMMON block BLK is very important. Always arrange data
buffer in the order in such way that the variables with the bigger data types come in front of the variables with the smaller

156

data types. They should be in this ordering: 8-byte, 4-byte, 2-byte, and 1-byte. Unexpected results may return if such
ordering is not followed. This function can be a replacement for the similar functionality provided from the Internal
Interface as <PUT , zZVARs RECDATA >.

6.3.49 CDF _rename_zvar

SUBROUTINE CDF _rename zvar (

in -- CDF identifier.
in -- zVariable number.

in -- New name.
out -- Completion status

INTEGER*4 id,
INTEGER*4 var _num,
CHARACTER var name*(*),
INTEGER*4 status)

CDF rename_zvar is used to rename an existing zVariable. A variable (rVariable or zVariable) with the same name
must not already exist in the CDF.

The arguments to CDF_rename_zvar are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF create cdf
or CDF open_cdf.

var_num Number of the zVariable to rename. This number may be determined with a call to
CDF get var num (see Section 6.3.9).

var_name New zVariable name. This may be at most CDF_ VAR NAME LEN256 characters. Variable
names are case-sensitive.

status Completion status code. Chapter 8 explains how to interpret status codes.

6.3.49.1. Example(s)

In the following example the zVariable named TEMPERATURE is renamed to TMP (if it exists). Note that if
CDF get var num returns a value less than one (1) then that value is not a zVariable number but rather a warning/error
code.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.

INTEGER*4 status ! Returned status code.
INTEGER*4 var num ! zVariable number.

var num = CDF get var num (id, 'TEMPERATURE')
IF (var num .LT. 1) THEN

IF (var num .NE. NO SUCH VAR) CALL UserStatusHandler (var_ num)
ELSE

CALL CDF rename zvar (id, var num, 'TMP', status)

IF (status .NE. CDF OK) CALL UserStatusHandler (status)

157

END IF

6.3.50 CDF set zvar allocblockrecs

SUBROUTINE CDF set zvar allocblockrecs (

INTEGER*4 1id,

INTEGER*4 var

INTEGER*4 last_rec,

in -- CDF identifier.

num, in -- zVariable number.

in -- Last record number to allocate.

!
!
INTEGER*4 first rec, !' in -- First record number to allocate.
!
!

INTEGER*4 status)

out -- Completion status

CDF _set_zvar_allocblockrecs specifies a range records to allocate for the specified zVariable in a CDF. This operation

is only applicable

to uncompressed variables in single-file CDFs. Refer to the CDF User’s Guide for the description of

allocations of variable records.

The arguments to

CDF set zvar allocblockrecs are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF_create cdf
or CDF_open_cdf.

var_num zVarriable number.

first_rec First record number to allocate.

last rec Last record number to allocate.

status Completion status code. Chapter 8 explains how to interpret status codes.

6.3.50.1. Example(s)

The following example allocates 100 records, from record number 21 to 120, for zVariable “MY_VAR” in a CDF.

INCLUDE '

<path>cdf.inc'
INTEGER*4 id ! CDF identifier.
INTEGER*4 first rec | Starting record number to allocate.
INTEGER*4 last rec ! Ending record number to allocate.
INTEGER*4 status ! Returned status code.
first rec = 21
last rec = 120
CALL CDF_set zvar allocblockrecs (id, CDF _get var num(id, ‘MY VAR’),

158

1 first rec, last rec, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

6.3.51 CDF set zvar_allocrecs

SUBROUTINE CDF _set zvar allocrecs (

INTEGER*4 id, ! in -- CDF identifier.
INTEGER*4 var_num, ! in -- zVariable number.
INTEGER*4 num_recs, ! in -- Number of allocated records.
INTEGER*4 status) ! out -- Completion status

CDF _set_zvar_allocrecs specifies the number of records allocated for the specified zVariable in a CDF. The records are
allocated beginning at record number one (1). This operation is only applicable to uncompressed variables in single-file
CDFs. Refer to the CDF User’s Guide for the description of allocating variable records in a single-file CDF.

The arguments to CDF_set zvar allocrecs are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF _create cdf
or CDF_open_cdf.

var_num zVarriable number.
num_recs Number of records allocated for the variable.
status Completion status code. Chapter 8 explains how to interpret status codes.

6.3.51.1. Example(s)

The following example allocates 100 records (record number 1 to 100) for zVariable “MY_VAR” in a CDF.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.

INTEGER*4 num recs ! Number of allocated records.

INTEGER*4 status ! Returned status code.

num recs = 100

CALL CDF _set zvar allocrecs (id, CDF_get var num(id, ‘MY VAR'),
1 num recs, status)

IF (status .NE. CDF OK) CALL UserStatusHandler (status)

159

6.3.52 CDF set zvar blockingfactor

SUBROUTINE CDF _set zvar blockingfactor (

INTEGER*4 id, !
INTEGER*4 var num, !
INTEGER*4 bf, !
INTEGER*4 status) !

in -- CDF identifier.

in -- zVariable number.

in -- Variable blocking factor.
out -- Completion status

CDF _set_zvar_blockingfactor respecifies the blocking factor for the specified zVariable in a CDF. Refer to the CDF
User’s Guide for the description of a variable’s blocking factor.

The arguments to CDF_set_zvar blockingfactor are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF _create cdf
or CDF _open_cdf.

var_num zVarriable number.

bf Blocking factor of the variable.

status Completion status code. Chapter 8 explains how to interpret status codes.

6.3.52.1. Example(s)

The following example sets the blocking factor to 100 records for zVariable “MY_VAR” in a CDF.

INCLUDE '<path>cdf.inc'

CDF identifier.
Blocking factor.
Returned status code.

INTEGER*4 id !
INTEGER*4 bf !
INTEGER*4 status !

pbf = 100

CALL CDF set zvar blockingfactor (id, CDF get var num(id, ‘MY VAR'),
1 bf, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

160

6.3.53 CDF set zvar cachesize

SUBROUTINE CDF set zvar cachesize (

INTEGER*4 1id,
INTEGER*4 var num,
INTEGER*4 num_buffers,

!
!
!
INTEGER*4 status) !

in -- CDF identifier.

in -- zVariable number.

in -- Number of cache buffers.
out -- Completion status

CDF set zvar cachesize specifies the number of cache buffers being for the specified zVariable in a CDF. This
operation is not applicable to a single-file CDF. Refer to the CDF User’s Guide for the description about caching scheme

used by the CDF library.

The arguments to CDF_set_zvar cachesize are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF create cdf
or CDF_open_cdf.

var_num zVarriable number.
num_buffers Number of cache buffers.
status Completion status code. Chapter 8 explains how to interpret status codes.

6.3.53.1. Example(s)

The following example sets the number of cache buffers to 10 to be used for zVariable “MY_ VAR” in a multi-file CDF.

INCLUDE '<path>cdf.inc'

INTEGER*4 id

CDF identifier.

INTEGER*4 num buffers! Number of cache buffers.

INTEGER*4 status

num_buffers = 10

Returned status code.

CALL CDF _set zvar cachesize (id, CDF_get var num(id, ‘MY VAR'),

1

num buffers, status)

IF (status .NE. CDF OK) CALL UserStatusHandler (status)

6.3.54 CDF _set zvar_compression

SUBROUTINE CDF set zvar compression (

161

INTEGER*4 id,
INTEGER*4 var num,
INTEGER*4 compress_type,
INTEGER*4 compress_parms,
INTEGER*4 status)

in -- CDF identifier.

in -- zVariable number.

in -- Compression type.

in -- Compression parameters.
out -- Completion status

CDF _set_zvar _compression respecifies the compression type/parameters of the specified zVariable in a CDF. Refer to
Section 4.10 for the description of the CDF supported compression types/parameters.

The arguments to CDF_set_zvar compression are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF create cdf
or CDF open_cdf.

var_num zVarriable number.
compress_type Compression type.
compress_parms Compression parameters.

status Completion status code. Chapter 8 explains how to interpret status codes.

6.3.54.1. Example(s)

The following example uses GZIP.6 compression for zVariable “MY_ VAR” in a CDF.

INCLUDE '<path>cdf.inc'

INTEGER*4 id

INTEGER*4 ctype

INTEGER*4 cparms(CDF_MAX_DIMS)
INTEGER*4 status

CDF identifier.
Compression type.
Compression parameters.
Returned status code.

ctype = GzZIP COMPRESSION

cparms (1) = 6

CALL CDF set zvar compression (id, CDF_get var num(id, ‘MY VAR'),
1 ctype, cparms, status)

IF (status .NE. CDF OK) CALL UserStatusHandler (status)

6.3.55 CDF set zvar dataspec

SUBROUTINE CDF _set zvar_ dataspec (

162

INTEGER*4 id,
INTEGER*4 var num,
INTEGER*4 data_type,
INTEGER*4 status)

in -- CDF identifier.
in -- zVariable number.
in -- Data type.

out -- Completion status

CDF set zvar dataspec is used to respecify the data specification (data type and number of elements) of the specified
zVariable in a CDF. A zVariable’s data specification may not be changed if the new data specification is not equivalent
to the old one and any values, including pad value, have been written. Data specifications are considered equivalent if
the data types are equivalent and the number of elements are the same. Refer to Section 4.5 for the description of the
CDF data types.

The arguments to CDF_set_zvar dataspec are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF _create cdf
or CDF_open_cdf.

var_num Number of the zVariable to which to set. This number may be determined with a call to
CDF get var num (see Section 6.3.9).

data_type Data type of the variable data.

status Completion status code. Chapter 8 explains how to interpret status codes.

6.3.55.1. Example(s)

The following example respecifies the data type of zVariable “Temperature” to CDF UINT2, from its original
CDF INT2, in a CDF.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.

INTEGER*4 status ! Returned status code.
INTEGER*4 data type ! Data type.

data type = CDF_UINT2

CALL CDF set zvar dataspec (id, CDF get var num (id, 'Temperature'),
1 data type, status)

IF (status .NE. CDF OK) CALL UserStatusHandler (status)

6.3.56 CDF set zvar dimvariances

SUBROUTINE CDF _set zvar dimvariances (

INTEGER*4 1id, ! in -- CDF identifier.

163

INTEGER*4 var num, ! in -- zVariable number.

INTEGER*4 dim_varys(*), ! in -- Dimension variances.

INTEGER*4 status) ! out -- Completion status

CDF _set_zvar_dimvariances respecifies the dimension variances of the specified zVariable in a CDF. For 0-dimensional
zVariable, this operation is not applicable. Refer to Section 4.9 for the description of the CDF variable’s dimension
variances.

The arguments to CDF_set_zvar dimvariances are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF_create cdf
or CDF_open_cdf.

var_num Number of the zVariable to which to set. This number may be determined with a call to
CDF get var num (see Section 6.3.9).

dim_varys Dimension variances.

status Completion status code. Chapter 8 explains how to interpret status codes.

6.3.56.1. Example(s)

The following example sets the dimension variances to VARY and VARY for zVariable “Temperature”, a 2-dimensional
variable, in a CDF.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.

INTEGER*4 status ! Returned status code.

INTEGER*4 dim varys (CDF _MAX DIMS) ! Dimension variances.

dim varys(l) = VARY

dim varys(2) = VARY

CALL CDF set zvar dimvariances (id, CDF get var num (id, 'Temperature'),
1 dim varys, status)

IF (status .NE. CDF OK) CALL UserStatusHandler (status)

6.3.57 CDF _set_zvar_initialrecs

SUBROUTINE CDF set zvar_initialrecs (

INTEGER*4 1id, ! in -- CDF identifier.
INTEGER*4 var_num, ! in -- zVariable number.
INTEGER*4 num_recs, ! in -- Number of written records.
INTEGER*4 status) ! out -- Completion status

164

CDF set zvar initialrecs specifies the number of records initially written for the specified zVariable in a CDF. The
records are written beginning at record number one (1). This may be specified only once per variable and before any
other records have been written to that variable. If a pad value has not yet been specified, the default value is used. If a
pad value has been explicitly specified, that value is written to the records. Refer to the CDF User’s Guide for the
description of initial variable records.

The arguments to CDF_set zvar initialrecs are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF _create cdf
or CDF _open_cdf.

var_num zVarriable number.
num_recs Number of records to be written for the variable.
status Completion status code. Chapter 8 explains how to interpret status codes.

6.3.57.1. Example(s)

The following example writes initially 100 records (record number 1 to 100) for zVariable “MY_VAR” in a CDF.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.

INTEGER*4 num_recs ! Number of initially written records.
INTEGER*4 status ! Returned status code.

num_recs = 100

CALL CDF set zvar initialrecs (id, CDF get var num(id, ‘MY VAR'),
1 num_recs, status)

IF (status .NE. CDF OK) CALL UserStatusHandler (status)

6.3.58 CDF_set_zvar_padvalue

SUBROUTINE CDF set zvar padvalue (

INTEGER*4 1id, ! in -- CDF identifier.
INTEGER*4 var num, ! in -- zVariable number.
<type> pad_value, ! in -- Pad value.
INTEGER*4 status) ! out-- Completion status

165

CDF set zvar padvalue respecifies the pad value for the specified zVariable in a CDF. A zVariable's pad value may be
specified (or respecified) at any time without affecting already written values (including where pad values were used).
The Concepts chapter in the CDF User's Guide describes variable pad values.

The arguments to CDF_set zvar padvalue are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF _create cdf
or CDF _open_cdf.

var_num Number of the zVariable to which to set. This number may be determined with a call to
CDF _get var num (see Section 6.3.9).

pad_value Pad value.

status Completion status code. Chapter 8 explains how to interpret status codes.

6.3.58.1. Example(s)

The following example sets the pad value to 999 for zVariable “MY_VAR”, a CDF_INT4 type variable, in a CDF.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.

INTEGER*4 status ! Returned status code.

INTEGER*4 pad value ! Pad value.

pad value = -999

CALL CDF_set zvar padvalue (id, CDF get var num (id, 'MY VAR'),
1 pad value, status)

IF (status .NE. CDF OK) CALL UserStatusHandler (status)

6.3.59 CDF set zvar recvariance

SUBROUTINE CDF set zvar recvariance (

INTEGER*4 id, ! in -- CDF identifier.
INTEGER*4 var num, ! in -- zVariable number.
INTEGER*4 rec_vary, ! in -- Record variance.
INTEGER*4 status) ! out -- Completion status

CDF set zvar recvariance respecifies the record variance for the specified zVariable in a CDF. Refer to Section 4.9 for
the description of the CDF variable’s record variance.

The arguments to CDF_set zvar recvariance are defined as follows:

166

id Identifier of the CDF. This identifier must have been initialized by a call to CDF create cdf
or CDF open_cdf.

var_num Number of the zVariable to which to set. This number may be determined with a call to
CDF get var num (see Section 6.3.9).

rec_vary Record variance.

status Completion status code. Chapter 8 explains how to interpret status codes.

6.3.59.1. Example(s)

The following example sets the record variance to VARY for zVariable “Temperature” in a CDF.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.

INTEGER*4 status ! Returned status code.
INTEGER*4 rec vary ! Record variance.

rec vary = VARY

CALL CDF _set zvar recvariance (id, CDF_get var num (id, 'Temperature'),
1 rec _vary, status)

IF (status .NE. CDF OK) CALL UserStatusHandler (status)

6.3.60 CDF set zvar reservepercent

SUBROUTINE CDF set zvar reservepercent (

INTEGER*4 id, ! in -- CDF identifier.
INTEGER*4 var num, ! in -- zVariable number.
INTEGER*4 res_percent, ! in -- Reserved percentage.
INTEGER*4 status) ! out -- Completion status

CDF set_zvar reservepercent respecifies the reserve percentaged being used for the specified zVariable in a CDF. This
operation only applies to compressed zVariables. Refer to the CDF User’s Guide for the description of the reserve scheme
used by the CDF library.

The arguments to CDF_set zvar reservepercent are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF _create cdf
or CDF_open_cdf.

var_num Number of the zVariable from which to read. This number may be determined with a call to
CDF _get var num (see Section 6.3.9).

167

res_percent Reserved percentage.

status Completion status code. Chapter 8 explains how to interpret status codes.

6.3.60.1. Example(s)

The following example sets the reserve percentage to 15 for the compressed zVariable “Temperature” in a CDF.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.

INTEGER*4 status ! Returned status code.

INTEGER*4 res percent ! Reserve percentage.

res percent = 15

CALL CDF _set zvar reservepercent (id, CDF get var num (id, 'Temperature'),
1 res percent, status)

IF (status .NE. CDF OK) CALL UserStatusHandler (status)

6.3.61 CDF _set zvars_cachesize

SUBROUTINE CDF _set _zvars_cachesize (

INTEGER*4 id, ! in -- CDF identifier.
INTEGER*4 num_buffers, ! in -- zVariables’s number of cache buffers.
INTEGER*4 status) ! out -- Completion status

CDF set zvars_cachesize respecifies the number of cache buffers being used for all zVariables in a CDF. This operation
is not applicable to a single-file CDF. Refer to the CDF User’s Guide for the description about caching scheme used by
the CDF library.

The arguments to CDF_set_zvars cachesize are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF create cdf
or CDF open_cdf.

num_buffers Number of cache buffers.

status Completion status code. Chapter 8 explains how to interpret status codes.

168

6.3.61.1. Example(s)

The following example sets the number of cache buffers to 10 for all zVariables in a CDF.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.

INTEGER*4 num buffers! Number of cache buffers.
INTEGER*4 status ! Returned status code.
num_buffers = 10

CALL CDF set zvars cachesize (id, num buffers, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

6.3.62 CDF set zvar seqpos

SUBROUTINE CDF _set_zvar seqpos (

INTEGER*4 id, ! in -- CDF identifier.
INTEGER*4 var num, ! in -- zVariable number.
INTEGER*4 rec num, ! in -- Record number.
INTEGER*4 indices(*), ! in -- Indices in a record.
INTEGER*4 status) ! out-- Completion status

CDF set_zvar seqpos specifies the current sequential value (position) for sequential access for the specified zVariable
in a CDF. Note that a current sequential value is maintained for each zVariable individually. Use CDF get zvar seqdata
subroutine to get the data value.

The arguments to CDF_set_zvar seqpos are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF _create_cdf
or CDF _open_cdf.

var_num zVarriable number.
rec_num Record number.
indices Dimension indices. Each element of indices receives the corresponding dimension index. For

0-dimensional zVariable, this argument is ignored, but must be presented.

status Completion status code. Chapter 8 explains how to interpret status codes.

169

6.3.62.1. Example(s)

The following example sets the current sequential value to the first value element in record number 2 for zVariable
“MY_VAR?”, a 2-dimensional variable, in a CDF.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.

INTEGER*4 status ! Returned status code.
INTEGER*4 rec num ! Record number.
INTEGER*4 indices (2) ! Dimension indices.

rec_num = 2

indices (1) = 0

indices (2) = 0

CALL CDF set zvar_ seqgpos (id, CDF get var num(id, ‘MY VAR’), rec num,
1 indices, status)

IF (status .NE. CDF OK) CALL UserStatusHandler (status)

6.3.63 CDF set zvar sparserecords

SUBROUTINE CDF _set zvar_sparserecords (

INTEGER*4 1id, ! in -- CDF identifier.

INTEGER*4 var num, ! in -- zVariable number.

INTEGER*4 srecords_type, ! in -- Sparse records type.
!

INTEGER*4 status) out -- Completion status

CDF set zvar sparserecords respecifies the sparse records type for the specified zVariable in a CDF. Refer to Section
4.11 for the description of the sparse records.

The arguments to CDF_set_zvar_sparserecords are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF _create cdf
or CDF _open_cdf.

var_num zVariable number.
srecords_type Sparse records type.
status Completion status code. Chapter 8 explains how to interpret status codes.

170

6.3.63.1. Example(s)

The following example sets the sparse records type to PAD SPARSERECORDS from its original type for zVariable
“MY_VAR” in a CDF.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.

INTEGER*4 srecords_ type ! Sparse records type.
INTEGER*4 num_ dims ! Dimension sizes.

srecords type = PAD SPARSERECORDS

CALL CDF set zvar sparserecords (id, CDF _get var num(id, “MY VAR”"),
1 srecords type, status)

IF (status .NE. CDF OK) CALL UserStatusHandler (status)

6.4 Attributes/Entries

This section provides the functions related to attributes or entries in an attribute. An attribute is identified by its name
or an number in the CDF. To operate an attribute or entry, the CDF it resides in must be open.

6.4.1 CDF_confirm_attr_existence

INTEGER*4 FUNCTION CDF _confirm_attr existence (

INTEGER*4 1id, ! in -- CDF identifier.
CHARACTER attr name*(*)) ! in -- Attribute name.

CDF _confirm_attr existence confirms whether the specified name is an existing attribute in a CDF. It returns CDF_OK
if the attribute exists.

The arguments to CDF_ confirm_attr existence are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF _create cdf
or CDF_open_cdf.

attr name Checks if an attribute with the given name exists in the CDF.

171

6.4.1.1. Example(s)

The following example checks whether the attribute by the name of “ATTR NAME1” is in a CDF.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.
INTEGER*4 status ! Returned status code.

status = CDF _confirm attr existence (id, “ATTR NAMEl”, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

6.4.2 CDF_confirm_gentry_existence

INTEGER*4 FUNCTION CDF_confirm_gentry existence (

INTEGER*4 1id, ! in -- CDF identifier.
INTEGER*4 attr num, ! in -- Global attribute identifier.
INTEGER*4 entry num) ! in -- gEntry number.

CDF_confirm_gentry existence confirms the existence of the specified gEntry in an (global) attribute of a CDF. If the
gEntry does not exist, NO_SUCH_ENTRY will be returned.

The arguments to CDF _ confirm_gentry existence are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF _create cdf
or CDF_open_cdf.

attr num Global attribute number.

entry _num gEntry number.

6.4.2.1. Example(s)

The following example will check the existence of gEntry numbered 1 for attribute “MY_ATTR” in a CDF.
INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.
INTEGER*4 attr num ! Attribute number.

172

INTEGER*4 status ! Returned status code.

attr num = CDF get attr num(id, ‘MY ATTR’)

IF (attr num .LT. 1) CALL UserQuit(....)

status = CDF confirm gentry existence (id, attr num, 1)

IF (status .EQ. NO_SUCH ENTRY) CALL UserStatusHandler (status)

6.4.3 CDF confirm_rentry_existence

INTEGER*4 FUNCTION CDF _confirm_rentry_existence (

INTEGER*4 id, ! in -- CDF identifier.
INTEGER*4 attr num, ! in -- Variable attribute identifier.
INTEGER*4 entry num) ! in -- rEntry number.

CDF _ confirm_rentry existence confirms the existence of the specified rEntry, corresponding to an rVariable, in an
(variable) attribute of a CDF. If the rEntry does not exist, NO_SUCH_ENTRY will be returned.

The arguments to CDF__ confirm_rentry existence are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF_create cdf
or CDF_open_cdf.

attr num Variable attribute number.

entry _num rEntry number.

6.4.3.1. Example(s)

The following example will check the existence of the rEntry corresponding to rVariable “MY_VAR” for attribute
“MY_ATTR” in a CDF.

INCLUDE '<path>cdf.inc'

CDF identifier.
Attribute number.
rEntry number.
Returned status code.

INTEGER*4 id
INTEGER*4 attr num
INTEGER*4 entry num
INTEGER*4 status

attr num = CDF get attr num(id, ‘MY ATTR’)
IF (attr num .LT. 1) CALL UserQuit(....)
entry num = CDF _get var num(id, ‘MY VAR')
IF (entry num .LT. 1) CALL UserQuit (....)

173

status = CDF confirm rentry existence (id, attr num, entry num,
IF (status .EQ. NO_SUCH ENTRY) CALL UserStatusHandler (status)

6.4.4 CDF _confirm_zentry_existence

INTEGER*4 FUNCTION CDF _confirm_zentry existence (

INTEGER*4 id, ! in -- CDF identifier.
INTEGER*4 attr num, ! in -- Variable attribute identifier.
INTEGER*4 entry num) ! in -- zEntry number.

status)

CDF _ confirm zentry existence confirms the existence of the specified zEntry, corresponding to a zVariable, in an

(variable) attribute of a CDF. If the zEntry does not exist, NO_SUCH_ENTRY will be returned.

The arguments to CDF _ confirm_zentry existence are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF_create cdf

or CDF _open_cdf.
attr num Variable attribute number.

entry_num zEntry number.

6.4.4.1. Example(s)

The following example will check the existence of the zEntry corresponding to zVariable “MY_VAR” for attribute

“MY_ATTR” in a CDF.

INCLUDE '<path>cdf.inc'

CDF identifier.
Attribute number.
zEntry number.
Returned status code.

INTEGER*4 id
INTEGER*4 attr num
INTEGER*4 entry num
INTEGER*4 status

attr num = CDF get attr num(id, ‘MY ATTR')

IF (attr num .LT. 1) CALL UserQuit(....)

entry num = CDF get var num(id, ‘MY VAR')

IF (entry num .LT. 1) CALL UserQuit (....)

Status = CDF confirm zentry existence (id, attr num, entry num,
IF (status .EQ. NO _SUCH ENTRY) CALL UserStatusHandler (status)

174

status)

6.4.5 CDF_ create_attr

SUBROUTINE CDF _ create_attr (

INTEGER*4 id,
CHARACTER attr_name*(*),
INTEGER*4 attr_scope,
INTEGER*4 attr num,
INTEGER*4 status)

in -- CDF identifier.
in -- Attribute name.
in -- Scope of attribute.
out -- Attribute number.
out -- Completion status

CDF create_attr creates an attribute in the specified CDF. An attribute with the same name must not already exist in the

CDF.

The arguments to CDF _create_attr are defined as follows:

id

attr_name

attr_scope

attr_num

status

Identifier of the CDF. This identifier must have been initialized by a call to CDF_create cdf
or CDF_open_cdf.

Name of the attribute to create. This may be at most CDF_ ATTR NAME LEN256
characters. Attribute names are case-sensitive.

Scope of the new attribute. Specify one of the scopes described in Section 4.12.
Number assigned to the new attribute. This number must be used in subsequent CDF
subroutine calls when referring to this attribute. An existing attribute's number may be

determined with the CDF_get attr num function.

Completion status code. Chapter 8 explains how to interpret status codes.

6.4.5.1. Example(s)

The following example creates two attributes. The TITLE attribute is created with global scope - it applies to the entire
CDF (most likely the title of the data set stored in the CDF). The Units attribute is created with variable scope - each
entry describes some property of the corresponding variable (in this case the units for the data).

INCLUDE '<path>cdf.inc'

INTEGER*4
INTEGER*4
CHARACTER

INTEGER*4
INTEGER*4
INTEGER*4

id ! CDF identifier.

status ! Returned status code.
UNITS attr name*5 ! Name of "Units" attribute.
UNITS attr num ! "Units" attribute number.
TITLE attr num ! "TITLE" attribute number.
TITLE attr scope ! "TITLE" attribute scope.

DATA UNITS attr name/'Units'/, TITLE attr scope/GLOBAL SCOPE/

175

CALL CDF create attr (id, 'TITLE', TITLE attr scope, TITLE attr num, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

CALL CDF create attr (id, UNITS attr name, VARIABLE SCOPE, UNITS attr num,

1 status)

IF (status .NE. CDF OK) CALL UserStatusHandler (status)

6.4.6 CDF _delete_attr

SUBROUTINE CDF delete_attr (

INTEGER*4 id, ! in -- CDF identifier.
INTEGER*4 attr num, ! in -- Attribute number.
INTEGER*4 status) ! out -- Completion status

CDF delete_attr deletes the specified attribute from a CDF.
The arguments to CDF_delete_attr are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF _create cdf
or CDF_open_cdf.

attr num Attribute number to be deleted.

status Completion status code. Chapter 8 explains how to interpret status codes.

6.4.6.1. Example(s)

The following example will delete attribute “MY_ATTR” in a CDF.
INCLUDE '<path>cdf.inc'
INTEGER*4 id ! CDF identifier.

INTEGER*4 status ! Returned status code.

CALL CDF delete attr (id, CDF _get attr num(id, ‘MY ATTR’), status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

176

6.4.7 CDF _delete_attr_gentry

SUBROUTINE CDF delete attr gentry (

INTEGER*4 1id, ! in -- CDF identifier.
INTEGER*4 attr num, ! in -- Global attribute number.
INTEGER*4 entry num, ! in -- gEntry number.

INTEGER*4 status) ! out -- Completion status
CDF delete attr gentry deletes the specified gEntry in an (global) attribute from a CDF
The arguments to CDF_delete_attr gentry are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF create cdf
or CDF open_cdf.

attr num Global attribute number.
entry _num gEntry number to be deleted.
status Completion status code. Chapter 8 explains how to interpret status codes.

6.4.7.1. Example(s)

The following example will delete gEntry numbered 2 from the global attribute “MY_ATTR” in a CDF.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.
INTEGER*4 status ! Returned status code.

CALL CDF delete attr gentry (id, CDF _get attr num(id, ‘MY ATTR’), 2, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

6.4.8 CDF delete attr _rentry

SUBROUTINE CDF _delete attr rentry (

INTEGER*4 id, ! in -- CDF identifier.
INTEGER*4 attr num, ! in -- Variable attribute number.
INTEGER*4 entry num, ! in -- rEntry number.
INTEGER*4 status) ! out -- Completion status

177

CDF delete attr rentry deletes the specified rEntry, corresponding to an rVariable, in an (variable) attribute from a CDF
The arguments to CDF_delete_attr _rentry are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF_create cdf
or CDF open_cdf.

attr num Variable attribute number.
entry _num rEntry number to be deleted.
status Completion status code. Chapter 8 explains how to interpret status codes.

6.4.8.1. Example(s)

The following example will delete the entry for rVariable “MY_ VAR” from the variable attribute “MY_ATTR” in a
CDF.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.

INTEGER*4 entry num ! rVariable number.
INTEGER*4 status ! Returned status code.

entry num = CDF _get var num(id, ‘MY VAR')

IF (entry num .LT. 1) CALL UserQuit (....)

CALL CDF delete attr rentry (id, CDF_get attr num(id, ‘MY ATTR’), entry num,
1 status)

IF (status .NE. CDF OK) CALL UserStatusHandler (status)

6.4.9 CDF delete attr zentry

SUBROUTINE CDF delete attr zentry (

INTEGER*4 id, ! in -- CDF identifier.

INTEGER*4 attr num, ! in -- Variable attribute number.

INTEGER*4 entry num, ! in -- zEntry number.

INTEGER*4 status) ! out -- Completion status

CDF _delete_attr zentry deletes the specified rEntry, corresponding to a zVariable, in an (variable) attribute from a CDF

The arguments to CDF_delete attr zentry are defined as follows:

178

id Identifier of the CDF. This identifier must have been initialized by a call to CDF _create cdf
or CDF_open_cdf.

attr num Variable attribute number.
entry _num zEntry number to be deleted.
status Completion status code. Chapter 8 explains how to interpret status codes.

6.4.9.1. Example(s)

The following example will delete the entry for zVariable “MY_VAR” from the variable attribute “MY_ATTR” in a

CDF.

INCLUDE '<path>cdf.inc'

INTEGER*4 id
INTEGER*4 entry num
INTEGER*4 status

! CDF identifier.
! zVariable number.
! Returned status code.

entry num = CDF _get var num(id, “MY VAR")

IF (entry num .LT.

CALL UserQuit (....)

CALL CDF delete attr zentry (id, CDF _get attr num(id, ‘MY ATTR’), entry num,

1

status)

IF (status .NE. CDF OK) CALL UserStatusHandler (status)

6.4.10 CDF _get attr gentry

SUBROUTINE CDF _get attr gentry (

INTEGER*4 1id,
INTEGER*4 attr num,
INTEGER*4 entry num,
<type> value,
INTEGER*4 status)

in -- CDF identifier.

in -- Global attribute number.

in -- Entry number.

out -- Value (<type> is dependent on the data type of the enrty).
out -- Completion status

CDF get attr gentry is used to read a global attribute’s entry from a CDF. In most cases it will be necessary to call
CDF inquire_attr gentry before calling CDF _get attr gentry in order to determine the data type and number of elements

(of that data type) for the entry.

The arguments to CDF_get attr gentry are defined as follows:

179

id Identifier of the CDF. This identifier must have been initialized by a call to CDF create cdf
or CDF open_cdf.

attr num Global attribute number. This number may be determined with a call to CDF_get attr num
(see Section 6.4.17).

entry _num Entry number. This is the gEntry number and has meaning only to the application.

value Value read. This buffer must be large enough to hold the value. The subroutine
CDF attr entry inquire would be used to determine the entry data type and number of
elements (of that data type). The value is read from the CDF and placed into memory at
address value.

WARNING: If the entry has one of the character data types (CDF_CHARor
CDF_UCHAR), then value must be a CHARACTER Fortran variable. If the entry does not
have one of the character data types, then value must NOT be a CHARACTER Fortran
variable.

status Completion status code. Chapter 8 explains how to interpret status codes.

6.4.10.1. Example(s)

The following example displays the value of the global attribute UNITS for the gEntry numbered 2 (but only if the data
type is CDF_CHAR).

10

INCLUDE '<path>cdf.inc'

CDF identifier.

Returned status code.

Attribute number.

Data type.

Number of elements (of data type).

Buffer to receive value (in this case it is
assumed that 100 characters is enough).

INTEGER*4 id
INTEGER*4 status
INTEGER*4 attr n
INTEGER*4 data type
INTEGER*4 num elems
CHARACTER buffer*100

attr n = CDF get attr num (id, 'UNITS')

IF (attr n .LT. 0) CALL UserStatusHandler (attr n) ! If less than one (1),
! then it must be a
! warning/error code.

CALL CDF _inquire attr gentry (id, attr n, 2, data type, num elems,
1 status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

IF (data type .EQ. CDF CHAR) THEN
CALL CDF _get attr gentry (id, attr n, 2, buffer, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)
WRITE (6,10) buffer(l:num elems)
FORMAT (' ',A)

END IF

180

6.4.11 CDF _get attr_gentry_datatype

SUBROUTINE CDF_get attr gentry datatype (

INTEGER*4 1id, ! in -- CDF identifier.
INTEGER*4 attr num, ! in -- Attribute number.
INTEGER*4 entry num, ! in -- Entry number.
INTEGER*4 data_type, ! out-- Data type of the entry.
INTEGER*4 status) ! out-- Completion status

CDF get attr _gentry datatype acquires the data type of the specified gEntry from an (global) attribute in a CDF

The arguments to CDF_get attr gentry datatype are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF_create cdf
or CDF_open_cdf.

attr_ num Attribute number.

entry _num gEntry number.

data_type Data type of the entry.

status Completion status code. Chapter 8 explains how to interpret status codes.

6.4.11.1. Example(s)

The following example acquires the data type for gEntry numbered 5 in the global attribute “MY_ ATTR” in a CDF.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.

INTEGER*4 data type ! Data type.
INTEGER*4 status ! Returned status code.

CALL CDF get attr gentry datatype (id, CDF _get attr num(id, ‘MY ATTR’), 5,
1 data type, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

181

6.4.12 CDF _get attr gentry numelems

SUBROUTINE CDF get attr gentry numelems (

INTEGER*4 1id, ! in -- CDF identifier.

INTEGER*4 attr num, ! in -- Attribute number.

INTEGER*4 entry num, ! in -- Entry number.

INTEGER*4 num_elems,! out-- Number of elements of the entry.
INTEGER*4 status) ! out -- Completion status

CDF get attr gentry numelems acquires the number of elements of the specified gEntry from an (global) attribute in a
CDF

The arguments to CDF_get attr gentry numelems are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF create cdf
or CDF_open_cdf.

attr num Attribute number.

entry _num gEntry number.

num_elems Number of elements of the gEntry.

status Completion status code. Chapter 8 explains how to interpret status codes.

6.4.12.1. Example(s)

The following example acquires the number of elements for gEntry numbered 5 in the global attribute “MY_ATTR” in
a CDF.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.

INTEGER*4 num elements ! Number of elements.
INTEGER*4 status ! Returned status code.

CALL CDF get attr gentry numelems (id, CDF get attr num(id, ‘MY ATTR’), 5,
1 num_elems, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

182

6.4.13 CDF_get attr_max_gentry

SUBROUTINE CDF get attr max gentry (

INTEGER*4 1id, ! in -- CDF identifier.

INTEGER*4 attr num, ! in -- Attribute number.

INTEGER*4 entry num, ! out-- Entry number.

INTEGER*4 status) ! out-- Completion status

CDF get attr max_gentry acquires the last gEntry number from an (global) attribute in a CDF.

The arguments to CDF_get attr max_gentry are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to
CDF create cdf or CDF _open_cdf.

attr num Attribute number.
entry_num Last gEntry number.
status Completion status code. Chapter 8 explains how to interpret status codes.

6.4.13.1. Example(s)

The following example acquires the last gEntry number from the global attribute “MY_ ATTR” in a CDF.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.

INTEGER*4 entry num ! The last gEntry number.
INTEGER*4 status ! Returned status code.

CALL CDF get attr max gentry (id, CDF get attr num(id, ‘MY ATTR’),
1 entry num, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

6.4.14 CDF _get attr_ max_rentry

SUBROUTINE CDF _get attr max_rentry (

INTEGER*4 id, ! in -- CDF identifier.
INTEGER*4 attr num, ! in -- Attribute number.

183

INTEGER*4 entry num, ! out-- Entry number.
INTEGER*4 status) ! out-- Completion status

CDF get attr max_rentry acquires the last rEntry number from an (variable) attribute in a CDF.
The arguments to CDF_get attr max_rentry are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF create cdf
or CDF _open_cdf.

attr num Attribute number.
entry _num Last rEntry number.
status Completion status code. Chapter 8 explains how to interpret status codes.

6.4.14.1. Example(s)

The following example acquires the last rEntry number from the variable attribute “MY_ATTR” in a CDF.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.

INTEGER*4 entry num ! The last rEntry number.
INTEGER*4 status ! Returned status code.

CALL CDF get attr max gentry (id, CDF get attr num(id, ‘MY ATTR’),
1 entry num, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

6.4.15 CDF _get attr_max_zentry

SUBROUTINE CDF _get attr max_zentry (
INTEGER*4 id, ! in -- CDF identifier.
INTEGER*4 attr num, ! in -- Attribute number.
INTEGER*4 entry num, ! out-- Entry number.
INTEGER*4 status) ! out -- Completion status

CDF _get attr max_zentry acquires the last zEntry number from an (variable) attribute in a CDF.

The arguments to CDF_get attr max_zentry are defined as follows:

184

id Identifier of the CDF. This identifier must have been initialized by a call to CDF create cdf

or CDF open_cdf.

attr num Attribute number.
entry _num Last zEntry number.
status Completion status code. Chapter 8 explains how to interpret status codes.

6.4.15.1. Example(s)

The following example acquires the last zEntry number from the variable attribute “MY_ATTR” in a CDF.

INCLUDE '<path>cdf.inc'

INTEGER*4 id
INTEGER*4 entry num
INTEGER*4 status

! CDF identifier.
! The last zEntry number.
! Returned status code.

CALL CDF get attr max gentry (id, CDF get attr num(id, ‘MY ATTR’),

1

IF (status .NE. CDF_OK)

entry num, status)

CALL UserStatusHandler (status)

6.4.16 CDF_get attr name

SUBROUTINE CDF _get attr name (

INTEGER*4 id, !
INTEGER*4 attr num, !
CHARACTER attr name*(*), !
INTEGER*4 status) !

in --
in --
out --
out --

CDF identifier.
Attribute number.
Attribute name.
Completion status

CDF _get attr name acquires the name of the specified attribute (by its number) in a CDF.

The arguments to CDF_get attr name are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF _create cdf

or CDF_open_cdf.

attr num Attribute number.

attr name Attribute name.

185

status Completion status code. Chapter 8 explains how to interpret status codes.

6.4.16.1. Example(s)

The following example acquires the name of the attribute number 2 in a CDF.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.

CHARACTER attr name* (CDF ATTR NAME LEN256) ! The last rEntry number.
INTEGER*4 status ! Returned status code.

CALL CDF get attr name (id, 2, attr name, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

6.4.17 CDF_get _attr num

INTEGER*4 FUNCTION CDF_get attr num (

INTEGER*4 id, ! in -- CDF identifier.
CHARACTER attr name*(*), ! in -- Attribute name.
INTEGER*4 status) ! out -- Completion status

CDF _get attr num is used to determine the attribute number associated with a given attribute name. If the attribute is
found, CDF get attr num returns its number - which will be equal to or greater than one (1). If an error occurs (e.g.,
the attribute name does not exist in the CDF), an error code (of type INTEGER*4) is returned. Error codes are less than
zero (0).

The arguments to CDF_get attr num are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF create cdf
or CDF open_cdf.

attr name Name of the attribute for which to search. This may be at most CDF_ATTR_NAME LEN256
characters. Attribute names are case-sensitive.

status Completion status code. Chapter 8 explains how to interpret status

CDF attr num may be used as an embedded function call when an attribute number is needed. CDF attr num is
declared in cdf.inc. (Fortran functions must be declared so that the returned value is interpreted correctly.)

186

6.4.17.1. Example(s)

In the following example the attribute named pressure will be renamed to PRESSURE with CDF _attr num being used
as an embedded function call. Note that if the attribute pressure did not exist in the CDF, the call to CDF_get attr num
would have returned an error code. Passing that error code to CDF_rename attr as an attribute number would have
resulted in CDF _rename _attr also returning an error code. CDF _rename _attr is described in Section 6.4.38.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.
INTEGER*4 status ! Returned status code.

CALL CDF rename attr (id, CDF get attr num(id, 'pressure'), 'PRESSURE',
1 status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

6.4.18 CDF _get attr num_gentries

SUBROUTINE CDF _get attr num_gentries (

INTEGER*4 id, ! in -- CDF identifier.

INTEGER*4 attr num, ! in -- Attribute number.

INTEGER*4 entries, ! out -- Total entries.

INTEGER*4 status) ! out -- Completion status

CDF get attr num_gentries acquires the total number of entries (gEntries) in the specified (global) attribute of a CDF.

The arguments to CDF_get attr num_gentries are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF _create cdf
or CDF _open_cdf.

attr num Attribute number.
entries Total gEntries.
status Completion status code. Chapter 8 explains how to interpret status codes.

6.4.18.1. Example(s)

The following example acquires the total number of entries (gEntries) in the global attribute “MY_ATTR” in a CDF.

187

INCLUDE '<path>cdf.inc'

INTEGER*4 id

INTEGER*4 entries

INTEGER*4 status

! CDF identifier.
! Total entries.
! Returned status code.

CALL CDF get attr num gentries (id, CDF get attr num(id, ‘MY ATTR’),

1

entries, status)

IF (status .NE. CDF OK) CALL UserStatusHandler (status)

6.4.19 CDF get attr num_rentries
SUBROUTINE CDF_get attr num_rentries (

INTEGER*4 1id, !
INTEGER*4 attr num, !
INTEGER*4 entries, !
INTEGER*4 status) !

in --
in --
out --
out --

CDF identifier.
Attribute number.
Total entries.
Completion status

CDF _get attr num_rentries acquires the total number of entries for the rVariables (rEntries) in the specified (variable)

attribute of a CDF.

The arguments to CDF_get attr num_rentries are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF_create cdf
or CDF_open_cdf.

attr num Attribute number.

entries Total rEntries.

status Completion status code. Chapter 8 explains how to interpret status codes.

6.4.19.1. Example(s)

The following example acquires the total number of entries (rEntries) in the variable attribute “MY_ATTR” in a CDF.

INCLUDE '<path>cdf.inc'

INTEGER*4 id

INTEGER*4 entries

! CDF identifier.
! Total entries.

188

INTEGER*4 status ! Returned status code.

CALL CDF get attr num rentries (id, CDF get attr num(id, ‘MY ATTR’),
1 entries, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

6.4.20 CDF get attr num_zentries

SUBROUTINE CDF_get attr num_zentries (

INTEGER*4 id, ! in -- CDF identifier.
INTEGER*4 attr num, ! in -- Attribute number.
!

!

INTEGER*4 entries, out -- Total entries.
INTEGER*4 status) out -- Completion status

CDF get attr num_zentries acquires the total number of entries for the zVariable (zEntries) in the specified (variable)
attribute of a CDF.

The arguments to CDF_get attr num_zentries are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF _create_cdf
or CDF _open_cdf.

attr num Attribute number.
entries Total zEntries.
status Completion status code. Chapter 8 explains how to interpret status codes.

6.4.20.1. Example(s)

The following example acquires the total number of entries (zEntries) in the variable attribute “MY_ATTR” in a CDF.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.

INTEGER*4 entries ! Total entries.
INTEGER*4 status ! Returned status code.

CALL CDF get attr num zentries (id, CDF get attr num(id, ‘MY ATTR’),
1 entries, status)

189

IF (status .NE. CDF OK) CALL UserStatusHandler (status)

6.4.21 CDF_get attr_rentry

SUBROUTINE CDF get attr rentry (

INTEGER*4 1id, ! in -- CDF identifier.

INTEGER*4 attr num, ! in -- Variable attribute number.

INTEGER*4 entry num, ! in -- Entry number.

<type> value, ! out -- Value (<type> is dependent on the data type of the enrty).
INTEGER*4 status) ! out -- Completion status

CDF _get attr_rentry is used to read a variable attribute’s entry corresponding to an rVariable (rEntry) from a CDF. In
most cases it will be necessary to call CDF _inquire attr rentry before calling CDF_get attr rentry in order to determine
the data type and number of elements (of that data type) for the entry.

The arguments to CDF_get attr rentry are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF_create cdf
or CDF_open_cdf.

attr num Variable attribute number. This number may be determined with a call to CDF_get attr num
(see Section 6.4.17).

entry num Entry number. This is the number of the associated rVariable (the rVariable being described
in some way by the rEntry).

value Value read. This buffer must be large enough to hold the value. The subroutine
CDF attr entry inquire would be used to determine the entry data type and number of
elements (of that data type). The value is read from the CDF and placed into memory at
address value.
WARNING: If the entry has one of the character data types (CDF_CHARor
CDF_UCHAR), then value must be a CHARACTER Fortran variable. If the entry does not
have one of the character data types, then value must NOT be a CHARACTER Fortran
variable.

status Completion status code. Chapter 8 explains how to interpret status codes.

6.4.21.1. Example(s)

The following example displays the value of the variable attribute UNITS for the rEntry corresponding to the PRES LVL
rVariable (but only if the data type is CDF_CHAR).

INCLUDE '<path>cdf.inc'

190

INTEGER*4 id
INTEGER*4 status
INTEGER*4 attr n
INTEGER*4 entryN
INTEGER*4 data_ type
INTEGER*4 num elems
CHARACTER buffer*100

CDF identifier.

Returned status code.

Attribute number.

Entry number.

Data type.

Number of elements (of data type).

Buffer to receive value (in this case it is
assumed that 100 characters is enough).

attr n = CDF _get attr num (id, 'UNITS')

IF (attr n .LT. 0) CALL UserStatusHandler (attr n) ! If less than one (1),
! then it must be a
! warning/error code.

entryN = CDF get var num (id, 'PRES LVL') ! The rEntry number is
! the rvVariable number.

IF (entryN .LT. 0) CALL UserStatusHandler (entryN) ! If less than one (1),
! then it must be a
! warning/error code.

CALL CDF _inquire attr rentry (id, attr n, entryN, data type, num elems,
1 status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

IF (data_type .EQ. CDF_CHAR) THEN
CALL CDF get attr rentry (id, attr n, entryN, buffer, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)
WRITE (6,10) buffer(l:num elems)
10 FORMAT (' ',A)
END IF

6.4.22 CDF get attr rentry datatype

SUBROUTINE CDF_get attr_rentry_datatype (

INTEGER*4 id, ! in -- CDF identifier.
INTEGER*4 attr num, ! in -- Attribute number.
INTEGER*4 entry num, ! in -- Entry number.
INTEGER*4 data type, ! out-- Data type of the entry.
INTEGER*4 status) ! out -- Completion status

CDF get attr rentry datatype acquires the data type of the specified rEntry, corresponding to an rVariable, from an
(variable) attribute in a CDF.

The arguments to CDF _get attr rentry datatype are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF create cdf
or CDF_open_cdf.

191

attr num Attribute number.

entry_num rEntry number.
data type Data type of the entry.
status Completion status code. Chapter 8 explains how to interpret status codes.

6.4.22.1. Example(s)

The following example acquires the data type for rEntry, corresponding to rVariable “MY_VAR” in the variable attribute
“MY_ATTR” in a CDF.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.

INTEGER*4 data_ type ! Data type.
INTEGER*4 status ! Returned status code.

CALL CDF get attr rentry datatype (id, CDF _get attr num(id, ‘MY ATTR'),

1 CDF_get var num(id, “MY VAR"”), data type,
2 status)

IF (status .NE. CDF OK) CALL UserStatusHandler (status)

6.4.23 CDF_get attr_rentry_numelems

SUBROUTINE CDF get attr rentry numelems (

INTEGER*4 1id, ! in -- CDF identifier.

INTEGER*4 attr num, ! in -- Attribute number.

INTEGER*4 entry num, ! in -- Entry number.

INTEGER*4 num_elems,! out-- Number of elements of the entry.
INTEGER*4 status) ! out -- Completion status

CDF _get attr rentry numelems acquires the number of elements of the specified rEntry, corresponding to an rVariable,
from an (variable) attribute in a CDF.

The arguments to CDF_get attr rentry numelems are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF_create cdf
or CDF open_cdf.

attr num Attribute number.

192

entry _num rEntry number.
num_elems Number of elements of the rEntry.

status Completion status code. Chapter 8 explains how to interpret status codes.

6.4.23.1. Example(s)

The following example acquires the number of elements for rEntry, corresponding to rVariable “MY_VAR?”, in the
variable attribute “MY_ATTR” in a CDF.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.

INTEGER*4 num elements ! Number of elements.
INTEGER*4 status ! Returned status code.

CALL CDF get attr rentry numelems (id, CDF_get attr num(id, ‘MY ATTR'),

1 CDF_get var num(id, “MY VAR”), num elems,
2 status)

IF (status .NE. CDF OK) CALL UserStatusHandler (status)

6.4.24 CDF _get_attr_scope

SUBROUTINE CDF _get attr_scope (

INTEGER*4 1id, ! in -- CDF identifier.
INTEGER*4 attr num, ! in -- Attribute number.
INTEGER*4 scope, ! out -- Attribute scope.
INTEGER*4 status) ! out -- Completion status

CDF _get attr scope acquires the scope, either GLOBAL SCOPE or VARIABLE SCOPE, of the specified attribute in
a CDF.

The arguments to CDF_get attr _scope are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF_create cdf
or CDF_open_cdf.

attr_ num Attribute number.

scope Attribute scope.

193

status Completion status code. Chapter 8 explains how to interpret status codes.

6.4.24.1. Example(s)

The following example acquires the scope for the attribute “MY_ATTR” in a CDF.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.

INTEGER*4 scope ! Attribute scope.
INTEGER*4 status ! Returned status code.

CALL CDF get attr scope (id, CDF _get attr num(id, ‘MY ATTR’), scope,
1 status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

6.4.25 CDF_get attr_zentry

SUBROUTINE CDF get attr zentry (

INTEGER*4 1id, ! in -- CDF identifier.

INTEGER*4 attr num, ! in -- variable attribute number.

INTEGER*4 entry num, ! in -- Entry number.

<type> value, ! out-- Value (<type> is dependent on the data type of the enrty).
INTEGER*4 status) ! out -- Completion status

CDF get attr zentry is used to read a variable attribute’s entry, corresponding to a zVariable, (zEntry) in a CDF. In most
cases it will be necessary to call CDF_inquire_attr zentry before calling CDF_get attr zentry in order to determine the
data type and number of elements (of that data type) for the entry.

The arguments to CDF_get attr zentry are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF _create cdf
or CDF_open_cdf.

attr num Variable attribute number. This number may be determined with a call to CDF_get attr num
(see Section 6.4.17).

entry _num Entry number. This is the number of the associated zVariable (the zVariable being described
in some way by the zEntry).

194

value Value read. This buffer must be large enough to hold the value. The subroutine
CDF inquire attr zentry would be used to determine the entry data type and number of
elements (of that data type). The value is read from the CDF and placed into memory at
address value.

WARNING: If the entry has one of the character data types (CDF_CHARor
CDF_UCHAR), then value must be a CHARACTER Fortran variable. If the entry does not
have one of the character data types, then value must NOT be a CHARACTER Fortran
variable.

status Completion status code. Chapter 8 explains how to interpret status codes.

6.4.25.1. Example(s)

The following example displays the value of the UNITS attribute for the zEntry corresponding to the PRES LVL
zVariable (but only if the data type is CDF_CHAR).

10

INCLUDE '<path>cdf.inc'

CDF identifier.

Returned status code.

Attribute number.

Entry number.

Data type.

Number of elements (of data type).

Buffer to receive value (in this case it is
assumed that 100 characters is enough).

INTEGER*4 id
INTEGER*4 status
INTEGER*4 attr n
INTEGER*4 entryN
INTEGER*4 data type
INTEGER*4 num elems
CHARACTER buffer*100

attr n = CDF _get attr num (id, 'UNITS')

IF (attr n .LT. 0) CALL UserStatusHandler (attr n) ! If less than one (1),
! then it must be a
! warning/error code.

entryN = CDF get var num (id, 'PRES LVL') ! The zEntry number is
! the zVariable number.

IF (entryN .LT. 0) CALL UserStatusHandler (entryN) ! If less than one (1),
! then it must be a
! warning/error code.

CALL CDF inquire attr zentry (id, attr n, entryN, data type, num elems,
1 status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

IF (data_type .EQ. CDF CHAR) THEN
CALL CDF get attr zentry (id, attr _n, entryN, buffer, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)
WRITE (6,10) buffer (l:num elems)
FORMAT (' ',A)
END IF

195

6.4.26 CDF_get attr_zentry_datatype

SUBROUTINE CDF _get attr zentry datatype (
INTEGER*4 1id, ! in -- CDF identifier.
INTEGER*4 attr num, ! in -- Attribute number.
INTEGER*4 entry num, ! in -- Entry number.
INTEGER*4 data_type, ! out-- Data type of the entry.
INTEGER*4 status) ! out-- Completion status

CDF _get attr_zentry datatype acquires the data type of the specified zEntry, corresponding to a zVariable, from an
(variable) attribute in a CDF.

The arguments to CDF _get attr zentry datatype are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF _create cdf
or CDF_open_cdf.

attr num Attribute number.

entry_num zEntry number.

data type Data type of the entry.

status Completion status code. Chapter 8 explains how to interpret status codes.

6.4.26.1. Example(s)

The following example acquires the data type for zEntry, corresponding to zVariable “MY_VAR?” in the variable attribute
“MY_ATTR” in a CDF.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.

INTEGER*4 data_ type ! Data type.
INTEGER*4 status ! Returned status code.

CALL CDF get attr zentry datatype (id, CDF_get attr num(id, ‘MY ATTR'),

1 CDF_get var num(id, ‘MY VAR’), data type,
2 Status)

IF (status .NE. CDF OK) CALL UserStatusHandler (status)

196

6.4.27 CDF get attr zentry numelems

SUBROUTINE CDF get attr rentry numelems (

INTEGER*4 id, !
INTEGER*4 attr num, !
INTEGER*4 entry num, !
INTEGER*4 num_elems, !
INTEGER*4 status) !

in --
in --
in --
out --
out --

CDF identifier.

Attribute number.

Entry number.

Number of elements of the entry.
Completion status

CDF _get attr zentry numelems acquires the number of elements of the specified zEntry, corresponding to a zVariable,
from an (variable) attribute in a CDF.

The arguments to CDF_get attr zentry numelems are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF create cdf
or CDF_open_cdf.

attr num Attribute number.

entry _num zEntry number.

num_elems Number of elements of the zEntry.

status Completion status code. Chapter 8 explains how to interpret status codes.

6.4.27.1. Example(s)

The following example acquires the number of elements for zEntry corresponding to zVariable “MY_VAR” in the
variable attribute “MY_ATTR” in a CDF.

INCLUDE '<path>cdf.inc'

INTEGER*4 id

! CDF identifier.

INTEGER*4 num_elements ! Number of elements.

INTEGER*4 status

! Returned status code.

CALL CDF get attr zentry numelems (id, CDF get attr num(id, ‘MY ATTR'),

1
2

CDF_get var num(id, ‘MY VAR’), num elems,
status)

IF (status .NE. CDF OK) CALL UserStatusHandler (status)

197

6.4.28 CDF_get num_attrs

SUBROUTINE CDF_get num_attrs (

INTEGER*4 1id, ! in -- CDF identifier.
INTEGER*4 num_attrs, ! out -- Number of attributes.
INTEGER*4 status) ! out -- Completion status

CDF _get num_attrs acquires the total number of (global and variable) attributes in a CDF.
The arguments to CDF_get num_attrs are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF _create cdf
or CDF _open_cdf.

num_attrs Number of attributes.

status Completion status code. Chapter 8 explains how to interpret status codes.

6.4.28.1. Example(s)

The following example acquires the total number of attributes in a CDF.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.

INTEGER*4 attrs ! Attributes.
INTEGER*4 status ! Returned status code.

CALL CDF _get num attrs (id, attrs, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

6.4.29 CDF_get num_gattrs

SUBROUTINE CDF_get num_gattrs (

INTEGER*4 1id, ! in -- CDF identifier.
INTEGER*4 attrs, ! out -- Number of attributes.
INTEGER*4 status) ! out -- Completion status

198

CDF get num_gattrs acquires the total number of global attributes in a CDF.
The arguments to CDF _get num_gattrs are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF_create cdf
or CDF open_cdf.

attrs Number of global attributes.

status Completion status code. Chapter 8 explains how to interpret status codes.

6.4.29.1. Example(s)

The following example acquires the total number of global attributes in a CDF.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.

INTEGER*4 attrs ! Attributes.
INTEGER*4 status ! Returned status code.

CALL CDF get num gattrs (id, attrs, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

6.4.30 CDF _get num_vattrs

SUBROUTINE CDF get num vattrs (

INTEGER*4 id, ! in -- CDF identifier.
INTEGER*4 attrs, ! out -- Number of attributes.
INTEGER*4 status) ! out-- Completion status

CDF_get num _vattrs acquires the total number of variable attributes in a CDF.
The arguments to CDF_get num_vattrs are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF create cdf or
CDF open_cdf.

attrs Number of variable attributes.

status Completion status code. Chapter 8 explains how to interpret status codes.

199

6.4.30.1.

Example(s)

The following example acquires the total number of variable attributes in a CDF.

INCLUDE '<path>cdf.inc'

INTEGER*4 id
INTEGER*4 attrs
INTEGER*4 status ! Returned status code.

! CDF identifier.
! Attributes.

CALL CDF _get num vattrs (id, attrs, status)
IF (status .NE.

CDF_OK) CALL UserStatusHandler (status)

6.4.31 CDF .inquire_attr

SUBROUTINE CDF inquire_attr (

INTEGER*4
INTEGER*4
CHARACTER
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

id, ! in -- CDF identifier.

attr_num, ! in -- Attribute number.

attr name*(CDF_ATTR NAME LEN256), ! out-- Attribute name.

attr_scope, ! out -- Attribute scope.

max_gentry, ! out -- Maximum gEntry number if global attribute.
max_rentry, ! out -- Maximum rEntry number if variable attribute.
max_zentry, ! out -- Maximum zEntry number if variable attribute.
status) ! out -- Completion status

CDF inquire_attr is used to inquire about the specified attribute. This subroutine expands the original Standard Interface
subroutine CDF _attr _inquire (Section 5.4) by including an extra information about zEntry if variable attribute is involved.
To inquire about a specific attribute entry, use CDF inquire attr gentry (Section 6.4.32), CDF inquire attr rentry
(Section 6.4.33) or CDF _inquire_attr zentry (Section 6.4.34).

The arguments to CDF _inquire_attr are defined as follows:

id

attr num

attr name

Identifier of the CDF. This identifier must have been initialized by a call to CDF_create cdf
or CDF open_cdf.

Number of the attribute to inquire. This number may be determined with a call to
CDF get attr num (see Section 6.4.17).

Attribute's name. This character string must be large enough to hold
CDF_ATTR NAME LEN256 characters and will be blank padded if necessary.

200

attr_scope

max_gentry

max_rentry

max_zentry

status

Scope of the attribute. Attribute scopes are defined in Section 4.12.

For gAttributes this is the maximum gEntry number used. This may not correspond with the
number of entries (if some entry numbers were not used). The number of entries actually
used may be inquired with CDF get attr num_gentries (see Section 6.4.18). If no entries
exist for the attribute, then a value of zero (0) will be passed back.

For vAttributes this is the maximum rEntry number used. This may not correspond with the
number of entries (if some entry numbers were not used). The number of entries actually
used may be inquired with CDF_get _attr num_rentries (see Section 6.4.19). If no entries
exist for the attribute, then a value of zero (0) will be passed back.

For vAttributes, this is the maximum zEntry number used. This may not correspond with the
number of entries (if some entry numbers were not used). The number of entries actually
used may be inquired with the CDF_get attr num_zentries subroutine (see Section 6.4.20).
If no entries exist for the attribute, such as for gAttributes, then a value of zero (0) will be
passed back.

Completion status code. Chapter 8 explains how to interpret status codes.

6.4.31.1. Example(s)

The following example displays the name of each attribute in a CDF. The number of attributes in the CDF is first
determined using the subroutine CDF _inquire. Only variable attributes may return non-zero maximum zEntry number.
Note that attribute numbers start at one (1) and are consecutive.

INCLUDE '<path>cdf.inc'

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
CHARACTER
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

CDF identifier.

Returned status code.

Number of dimensions.
Dimension sizes (allocate to
allow the maximum number of
dimensions) .

encoding Data encoding.

majority Variable majority.

id !
I
|
I
|
|
|
|

max rec ! Maximum record number in CDF.
|
I
|
I
|
|
|
|

status
num_dims
dim sizes (CDF_MAX DIMS)

num vars Number of variables in CDF.
num attrs Number of attributes in CDF.
attr n Attribute number.

attr name* (CDF ATTR NAME LEN256) Attribute name.

attr_ scope Attribute scope.

max gentry Maximum gEntry number.
max_rentry Maximum rEntry number.

max zentry Maximum zEntry number.

CALL CDF _inquire (id, num dims, dim sizes, encoding, majority,

1

IF (status

DO attr n

max rec, num vars, num attrs, status)
.NE. CDF _OK) CALL UserStatusHandler (status)
= 1, num attrs

CALL CDF inquire attr (id, attr n, attr name, attr scope, max gentry,

max rentry, max zentry, status)

201

IF (status .LT. CDF OK) THEN ! INFO status codes ignored.
CALL UserStatusHandler (status)

ELSE

WRITE (6,10) attr name

10 FORMAT (
END IF
END DO

",/ A)

6.4.32 CDF .inquire attr_gentry

SUBROUTINE CDF inquire attr gentry (

INTEGER*4 id,
INTEGER*4 attr num,
INTEGER*4 entry num,
INTEGER*4 data_type,
INTEGER*4 num_elements,
INTEGER*4 status)

in -- CDF identifier.

in -- Global attribute number.

in -- Entry number.

out -- Data type.

out -- Number of elements (of the data type).

out -- Completion status

CDF inquire attr gentry is used to inquire about a specific global attribute’s entry. To inquire about the attribute in
general, use CDF _inquire_attr (see Section 6.4.31). CDF _inquire attr gentry would normally be called before calling
CDF _get attr gentry in order to determine the data type and number of elements (of that data type) for an entry. This
would be necessary to correctly allocate enough memory to receive the value read by CDF_attr _get.

The arguments to CDF _attr entry inquire are defined as follows:

id

attr_num

entry _num

data_type

num_elements

status

Identifier of the CDF. This identifier must have been initialized by a call to
CDF _create_cdf or CDF_open_cdf.

Global attribute number for which to inquire an entry. This number may be determined
with a call to CDF_get_attr num (see Section 6.4.17).

Entry number to inquire. This is simply the gEntry number and has meaning only to the
application.

Data type of the specified entry. The data types are defined in Section 4.5.
Number of elements of the data type. For character data types (CDF_CHAR and
CDF_UCHAR), this is the number of characters in the string (an array of characters). For

all other data types this is the number of elements in an array of that data type.

Completion status code. Chapter 8 explains how to interpret status codes.

6.4.32.1. Example(s)

The following example inquires each entry for a global attribute. Note that entry numbers need not be consecutive - not
every entry number between one (1) and the maximum entry number must exist. For this reason NO_SUCH_ENTRY is

an expected error code.

202

INCLUDE '<path>cdf.inc'

CDF identifier.

Returned status code.
Attribute number.

Entry number.

Attribute name.

Attribute scope.

Maximum gEntry number used.
Maximum rEntry number used.
Maximum zEntry number used.

INTEGER*4 id

INTEGER*4 status

INTEGER*4 attr n

INTEGER*4 entryN

CHARACTER attr name* (CDF_ATTR NAME LEN256)
INTEGER*4 attr scope

INTEGER*4 max gentry

INTEGER*4 max rentry

INTEGER*4 max zentry

INTEGER*4 data_ type Data type.
INTEGER*4 num elems Number of elements (of the
data type).

attr n = CDF get attr num (id, 'TMP')
IF (attr n .LT. 1) CALL UserStatusHandler (attr n) ! If less than one (1),
! then it must be a
! warning/error code.
CALL CDF inquire attr (id, attr n, attr name, attr scope, max gentry,
1 max rentry, max zentry, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)
DO entryN = 1, max gentry
CALL CDF inquire attr gentry (id, attr n, entryN, data type, num elems,
1 status)
IF (status .LT. CDF_OK) THEN
IF (status .NE. NO_ SUCH ENTRY) CALL UserStatusHandler (status)
ELSE
C (process entries)

END IF
END DO

6.4.33 CDF _inquire_attr_rentry

SUBROUTINE CDF inquire attr rentry (

in -- CDF identifier.

in -- Variable attribute number.

in -- Entry number.

out -- Data type.

out -- Number of elements (of the data type).
out -- Completion status

INTEGER*4 1id,
INTEGER*4 attr num,
INTEGER*4 entry num,
INTEGER*4 data type,
INTEGER*4 num_elements,
INTEGER*4 status)

CDF inquire_attr rentry is used to inquire about a specific entry, corresponding to an rVariable, in a variable attribute,
(rEntry). To inquire about the attribute in general, use CDF _inquire attr (see Section 6.4.31). CDF inquire attr rentry
would normally be called before calling CDF_get_attr rentry in order to determine the data type and number of elements

203

(of that data type) for an entry. This would be necessary to correctly allocate enough memory to receive the value read
by CDF _get attr zentry.

The arguments to CDF _inquire_attr_rentry are defined as follows:

id

attr num

entry_num

data_type

num_elements

status

6.4.3

3.1.

Identifier of the CDF. This identifier must have been initialized by a call to
CDF create cdf or CDF_open_cdf.

Attribute number for which to inquire an entry. This number may be determined with a
call to CDF_get attr num (see Section 6.4.17).

Entry number to inquire. The attribute must be variable in scope. This is the number of the
associated rVariable (the rVariable being described in some way by the zEntry).

Data type of the specified entry. The data types are defined in Section 4.5.
Number of elements of the data type. For character data types (CDF_CHAR and
CDF_UCHAR), this is the number of characters in the string (an array of characters). For

all other data types this is the number of elements in an array of that data type.

Completion status code. Chapter 8 explains how to interpret status codes.

Example(s)

The following example inquires each rEntry for variable attribute “TMP” in a CDF. Note that entry numbers need not
be consecutive - not every entry number between one (1) and the maximum entry number must exist. For this reason
NO SUCH_ENTRY is an expected error code.

1

INCLUDE '<path>cdf.inc'

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
CHARACTER
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

id

status

attr n

entryN

attr name* (CDF_ATTR NAME LEN256)
attr scope

max_gentry

max_ rentry

max zentry

data type

num_elems

CDF identifier.

Returned status code.
Attribute number.

Entry number.

Attribute name.

Attribute scope.

Maximum gEntry number used.
Maximum rEntry number used.
Maximum zEntry number used.

attr n = CDF get attr num (id, 'TMP')

IF (attr n .LT.

Data type.
Number of elements (of the
data type).

1) CALL UserStatusHandler (attr n) ! If less than one (1),

! then it must be a
! warning/error code.

CALL CDF inquire attr (id, attr n, attr name, attr scope, max gentry,

IF (status

DO entryN =

max rentry, max zentry, status)

.NE. CDF_OK) CALL UserStatusHandler (status)

1,

max rentry

204

CALL CDF inquire attr rentry (id, attr n, entryN, data type, num elems,

1 status)
IF (status .LT. CDF OK) THEN
IF (status .NE. NO SUCH ENTRY) CALL UserStatusHandler (status)
ELSE
C (process entries)
END IF
END DO

6.4.34 CDF inquire_attr_zentry

SUBROUTINE CDF inquire_attr zentry (

INTEGER*4 1id,
INTEGER*4 attr num,
INTEGER*4 entry num,
INTEGER*4 data type,
INTEGER*4 num_elements,
INTEGER*4 status)

in -- CDF identifier.

in -- Variable attribute number.

in -- Entry number.

out -- Data type.

out -- Number of elements (of the data type).

out -- Completion status

CDF inquire_attr zentry is used to inquire about a specific entry, corresponding to a zVariable, in a variable attribute,
(zEntry). To inquire about the attribute in general, use CDF _inquire_attr (see Section 6.4.31). CDF inquire attr zentry
would normally be called before calling CDF_get attr zentry in order to determine the data type and number of elements
(of that data type) for an entry. This would be necessary to correctly allocate enough memory to receive the value read

by CDF _get attr zentry.

The arguments to CDF_inquire attr zentry are defined as follows:

id

attr_num

entry_num

data_type

num_elements

status

Identifier of the CDF. This identifier must have been initialized by a call to
CDF _create_cdf or CDF_open_cdf.

Attribute number for which to inquire an entry. This number may be determined with a
call to CDF_get attr num (see Section 6.4.17).

Entry number to inquire. The attribute must be variable in scope. This is the number of the
associated zVariable (the zVariable being described in some way by the zEntry).

Data type of the specified entry. The data types are defined in Section .
Number of elements of the data type. For character data types (CDF_CHAR and
CDF _UCHAR), this is the number of characters in the string (an array of characters). For

all other data types this is the number of elements in an array of that data type.

Completion status code. Chapter 8 explains how to interpret status codes.

6.4.34.1. Example(s)

205

The following example inquires each zEntry for variable attribute “TMP” in a CDF. Note that entry numbers need not
be consecutive - not every entry number between one (1) and the maximum entry number must exist. For this reason
NO_SUCH_ENTRY is an expected error code.

INCLUDE '<path>cdf.inc'

id

status
attr n
entryN

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
CHARACTER
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

attr scope
max gentry
max_ rentry
max zentry
data type
num_elems

attr n
IF (attr n .LT.

CDF_get attr num
1)

(

attr name* (CDF_ATTR NAME LEN256)

CALL UserStatusHandler

CDF identifier.

Returned status code.
Attribute number.

Entry number.

Attribute name.

Attribute scope.

Maximum gEntry number used.
Maximum rEntry number used.
Maximum zEntry number used.
Data type.

Number of elements
data type).

(of the

id, 'TMP')

(attr n) ! If less than one (1),
! then it must be a

! warning/error code.

CALL CDF inquire attr (id, attr n, attr name, attr scope, max gentry,
1 max rentry, max zentry, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

DO entryN = 1, max zentry

CALL CDF inquire attr zentry (id,

IF (status .LT.
IF (status
ELSE

(process entries)

CDF_OK)

END IF
END DO

6.4.35 CDF _put_attr _gentry

SUBROUTINE CDF _put_attr gentry (

in
in
in
in
in
in
out --

INTEGER*4 1id, !
INTEGER*4 attr num, !
INTEGER*4 entry num, !
INTEGER*4 data_type, !
!
!
!

INTEGER*4 num_elements,
<type> value,
INTEGER*4 status)

.NE. NO_SUCH_ENTRY)

attr _n,
status)

entryN, data type, num elems,
THEN

CALL UserStatusHandler (status)

CDF identifier.

Global attribute number.

Entry number.

Data type of this entry.

Number of elements (of the data type).

Value (<type> is dependent on the data type of the enrty).
Completion status

206

CDF put attr gentry is used to write an gentry to a variable attribute in a CDF. The entry may or may not already exist.
If it does exist, it is overwritten. The data type and number of elements (of that data type) may be changed when

overwriting an existing entry.

The arguments to CDF_put_attr gentry are defined as follows:

id

attr_num

entry _num
data_type

num_elements

value

status

Identifier of the CDF. This identifier must have been initialized by a call to
CDF _create_cdf or CDF_open_cdf.

Global attribute number. This number may be determined with a call to
CDF _get _attr num (see Section 6.4.17).

Entry number. The attribute must be global in scope.

Data type of the specified entry. Specify one of the data types defined in Section 4.5.
Number of elements of the data type. For character data types (CDF_CHAR and
CDF_UCHAR), this is the number of characters in the string (an array of characters).
For all other data types this is the number of elements in an array of that data type.
Value(s) to write. The entry value is written to the CDF from memory address value.
WARNING: If the entry has one of the character data types (CDF_CHARor
CDF_UCHAR), then value must be a CHARACTER Fortran variable. If the entry
does not have one of the character data types, then value must NOT be a

CHARACTER Fortran variable.

Completion status code. Chapter 8 explains how to interpret status codes.

6.4.35.1. Example(s)

The following example writes one global attribute’s gEntry. It is to the global scope attribute VALIDs for gEntry
numbered 2. This entry is of CDF_INT?2 type.

INCLUDE '<path>cdf

INTEGER*4 id
INTEGER*4 status

INTEGER*4 num elements

INTEGER*2 TMPvalid

DATA TMPvalids/15/

num elements = 1

.inc'

! CDF identifier.

! Returned status code.

! Number of elements (of data type).
! Value of VALIDs attribute.

CALL CDF put attr gentry (id, CDF get attr num(id, 'VALIDs'), 2,

1

CDF INTZ2, num elements, TMPvalid, status)

IF (status .NE. CDF OK) CALL UserStatusHandler (status)

207

6.4.36 CDF _put_attr _rentry

SUBROUTINE CDF put attr rentry (

INTEGER*4 id, !
INTEGER*4 attr num, !
INTEGER*4 entry num, !
INTEGER*4 data_type, !
INTEGER*4 num_elements, !
<type> value, !
INTEGER*4 status) !

in
in
in --
in
in --
in
out --

CDF identifier.

Variable attribute number.

Entry number.

Data type of this entry.

Number of elements (of the data type).

Value (<type> is dependent on the data type of the enrty).
Completion status

CDF put attr rentry is used to write an entry, corresponding to an rVariable, (rEntry) to a variable attribute in a CDF.
The entry may or may not already exist. If it does exist, it is overwritten. The data type and number of elements (of that
data type) may be changed when overwriting an existing entry.

The arguments to CDF_put attr rentry are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to
CDF _create_cdf or CDF_open_cdf.

attr num Attribute number. This number may be determined with a call to CDF_get_attr num
(see Section 6.4.17).

entry _num Entry number. The attribute must be variable in scope. This is the number of the
associated rVariable (the rVariable being described in some way by the zEntry).

data_type Data type of the specified entry. Specify one of the data types defined in Section 4.5.

num_elements Number of elements of the data type. For character data types (CDF_CHAR and
CDF_UCHAR), this is the number of characters in the string (an array of characters).
For all other data types this is the number of elements in an array of that data type.

value Value(s) to write. The entry value is written to the CDF from memory address value.

WARNING: If the entry has one of the character data types (CDF_CHARor
CDF_UCHAR), then value must be a CHARACTER Fortran variable. If the entry
does not have one of the character data types, then value must NOT be a
CHARACTER Fortran variable.

status Completion status code. Chapter 8 explains how to interpret status codes.

6.4.36.1. Example(s)

The following example writes one variable attribute’s rEntry. It is to the variable scope attribute VALIDs for the rEntry
that corresponds to the zVariable TMP. This entry has two (2) elements, each one is of CDF_INT2 type.

208

INCLUDE '<path>cdf.inc

INTEGER*4 id

INTEGER*4 status
INTEGER*4 num elements
INTEGER*2 TMPvalids (2)

DATA TMPvalids/15,30/

num_elements = 2

CDF identifier.

Returned status code.
Number of elements (of data type).
Value (s) of VALIDs attribute,

CALL CDF put attr rentry (id, CDF get attr num(id, 'VALIDs'),

1
2

IF (status .NE. CDF OK) CA

CDF_get var num(id, 'TMP'),
CDF_INT2, num elements, TMPvalids, status)
LL UserStatusHandler (status)

6.4.37 CDF_put_attr zentry

SUBROUTINE CDF put attr zentry (

INTEGER*4 id, !
INTEGER*4 attr num, !
INTEGER*4 entry num, !
INTEGER*4 data_type, !
INTEGER*4 num_elements, !
<type> value, !
INTEGER*4 status) !

CDF put attr zentry is used to write an entry, corresponding to a zVariable, (zEntry) to a variable attribute in a CDF.
The entry may or may not already exist. If it does exist, it is overwritten. The data type and number of elements (of that

in
in
in
in
in
in
out --

CDF identifier.

Variable attribute number.

Entry number.

Data type of this entry.

Number of elements (of the data type).

Value (<type> is dependent on the data type of the enrty).
Completion status

data type) may be changed when overwriting an existing entry.

The arguments to CDF_put attr zentry are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to

attr num

entry_num

data_type

num_elements

CDF create_cdf or CDF_open_cdf.

Attribute number. This number may be determined with a call to CDF_get_attr num
(see Section 6.4.17).

Entry number. The attribute must be variable in scope. This is the number of the
associated zVariable (the zVariable being described in some way by the zEntry).

Data type of the specified entry. Specify one of the data types defined in Section 4.5.
Number of elements of the data type. For character data types (CDF_CHAR and

CDF_UCHAR), this is the number of characters in the string (an array of characters).
For all other data types this is the number of elements in an array of that data type.

209

value

status

6.4.37.1.

Value(s) to write. The entry value is written to the CDF from memory address value.

WARNING: If the entry has one of the character data types (CDF_CHARor
CDF_UCHAR), then value must be a CHARACTER Fortran variable. If the entry
does not have one of the character data types, then value must NOT be a
CHARACTER Fortran variable.

Completion status code. Chapter 8 explains how to interpret status codes.

Example(s)

The following example writes one variable attribute’s zEntry. It is to the variable scope attribute VALIDs for the zEntry
that corresponds to the zVariable TMP. This entry has two (2) elements, each one is of CDF_INT2 type.

INCLUDE '<path>cdf.inc'

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*2

id

status

num elements
TMPvalids (2)

DATA TMPvalids/15,30/

num_elements = 2
CALL CDF put attr zentry (id, CDF get attr num(id, 'VALIDs'),

1
2

IF (status

CDF identifier.

Returned status code.

Number of elements (of data type).
Value (s) of VALIDs attribute,

CDF_get var num(id, 'TMP'),
CDF_INT2, num elements, TMPvalids, status)

.NE. CDF _OK) CALL UserStatusHandler (status)

6.4.38 CDF rename_attr

SUBROUTINE CDF rename_attr (

INTEGER*4 1id,

INTEGER*4 num_attr,
CHARACTER attr_name*(*),
INTEGER*4 status)

in -- CDF identifier.

in -- Attribute number.
in -- New attribute name.
out -- Completion status.

CDF rename_attr is used to rename an existing attribute. An attribute with the new name must not already exist in the

CDF.

The arguments to CDF_rename_attr are defined as follows:

210

id Identifier of the CDF. This identifier must have been initialized by a call to CDF create cdf
or CDF open_cdf.

attr num Number of the attribute to rename. This number may be determined with a call to
CDF _get attr num (see Section 6.4.17).

attr_ name New attribute name. This may be at most CDF_ATTR NAME LEN256 characters.
Attribute names are case-sensitive.

status Completion status code. Chapter 8 explains how to interpret status codes.

6.4.38.1. Example(s)

In the following example the attribute named LAT is renamed to LATITUDE.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.
INTEGER*4 status ! Returned status code.

CALL CDF rename attr (id, CDF get attr num(id, 'LAT'), 'LATITUDE', status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

6.4.39 CDF set attr gentry dataspec

SUBROUTINE CDF _set attr _gentry dataspec (

INTEGER*4 id, ! in-- CDF identifier.

INTEGER*4 attr num, !' in -- Global attribute number.

INTEGER*4 entry num, ! in -- gEntry number.

INTEGER*4 data_type, ! in -- Data type.

INTEGER*4 status) ! out -- Completion status

CDF set _attr gentry dataspec respecifies the data specification (data type and number of elements) of a gEntry of a
global attribute in a CDF. The only part of the data specification that can be changed is the data type. However, the new
and old data type must be equivalent. Refer to the CDF User’s Guide for the descriptions of equivalent data types.

The arguments to CDF_set_attr gentry dataspec are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF _create cdf
or CDF _open_cdf.

attr num Global attribute number.

entry_num gEntry number.

211

data_type Data type.

status Completion status code. Chapter 8 explains how to interpret status codes.

6.4.39.1. Example(s)

The following example modifies a gEntry’s (numbered 2) data specification in the global attribute “MY_ATTR” in a
CDF. It will change its original data type from CDF_INT2 to CDF_UINT2.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.

INTEGER*4 entry num ! gEntry number.

INTEGER*4 status ! Returned status code.

entry num = 2

CALL CDF _set attr gentry dataspec (id, CDF_get attr num(id, ‘MY ATTR'),
1 entry num, CDF UINT2Z, status)

IF (status .NE. CDF OK) CALL UserStatusHandler (status)

6.4.40 CDF _set attr_rentry_dataspec

SUBROUTINE CDF set _attr rentry dataspec (

INTEGER*4 id, ! in-- CDF identifier.
INTEGER*4 attr num, ! in -- Variable attribute number.
INTEGER*4 entry num, ! in -- rEntry number.
INTEGER*4 data_type, ! in -- Data type.

INTEGER*4 status) ! out-- Completion status

CDF _set_attr rentry dataspec respecifies the data specification (data type and number of elements) of an rEntry,
corresponding to an rVariable, of a variable attribute in a CDF. The only part of the data specification that can be changed
is the data type. However, the new and old data type must be equivalent. Refer to the CDF User’s Guide for the
descriptions of equivalent data types.

The arguments to CDF _set attr rentry dataspec are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF_create cdf
or CDF_open_cdf.

attr num Variable attribute number.

entry _num rEntry number.

212

data_type Data type.

status Completion status code. Chapter 8 explains how to interpret status codes.

6.4.40.1. Example(s)

The following example modifies an rEntry’s (corresponding to rVariable “MY_VAR”) data specification in the variable
attribute “MY_ATTR” in a CDF. It will change its original data type from CDF_INT2 to CDF_UINT2.

INCLUDE '<path>cdf.inc'

INTEGER*4 id
INTEGER*4 status

! CDF identifier.
! Returned status code.

CALL CDF _set attr rentry dataspec (id, CDF_get attr num(id, ‘MY ATTR'),

1
2

CDF get var num(id, ‘MY VAR'),
CDF_UINTZ, status)

IF (status .NE. CDF OK) CALL UserStatusHandler (status)

6.4.41 CDF set attr scope

SUBROUTINE CDF set_attr scope (

INTEGER*4 1id, !
INTEGER*4 attr num, !
INTEGER*4 scope, !
INTEGER*4 status) !

in -- CDF identifier.

in -- Attribute number.
in -- Attribute scope.

out -- Completion status

CDF set_attr scope respecifies the scope of an attribute in a CDF. Specify one of the scopes described in Section 4.12.
Global-scoped attributes will contain only gEntries, while variable-scoped attributes can hold rEntries and zEntries.

The arguments to CDF _set attr scope are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF _create cdf
or CDF_open_cdf.

attr num Attribute number.
scope Attribute scope.
status Completion status code. Chapter 8 explains how to interpret status codes.

213

6.4.41.1. Example(s)

The following example respecifies the scope to VARIABLE SCOPE (from its original GLOBAL SCOPE) for attribute
“MY_ATTR” in a CDF.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.
INTEGER*4 status ! Returned status code.

CALL CDF set attr scope (id, CDF get attr num(id, ‘MY ATTR’), VARIABLE SCOPE,
1 status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

6.4.42 CDF _set_attr_zentry_dataspec

SUBROUTINE CDF set attr zentry dataspec (

INTEGER*4 1id, ! in -- CDF identifier.
INTEGER*4 attr num, ! in -- Variable attribute number.
INTEGER*4 entry num, ! in -- zEntry number.
INTEGER*4 data type, ! in -- Data type.

INTEGER*4 status) ! out -- Completion status

CDF _set_attr zentry dataspec respecifies the data specification (data type and number of elements) of a zEntry,
corresponding to a zVariable, of a variable attribute in a CDF. The only part of the data specification that can be changed
is the data type. However, the new and old data type must be equivalent. Refer to the CDF User’s Guide for the
descriptions of equivalent data types.

The arguments to CDF_set_attr zentry dataspec are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDF _create cdf
or CDF _open_cdf.

attr num Variable attribute number.

entry_num zEntry number.

data type Data type.

num_elems Number of elements.

status Completion status code. Chapter 8 explains how to interpret status codes.

214

6.4.42.1. Example(s)

The following example modifies a zEntry’s (corresponding to zVariable “MY_VAR?”) data specification in the variable
attribute “MY_ATTR” in a CDF. It will change its original data type from CDF INT2 to CDF UINT?2.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.
INTEGER*4 status ! Returned status code.

CALL CDF set attr zentry dataspec (id, CDF _get attr num(id, ‘MY ATTR'),
1 CDF_get var num(id, ‘MY VAR'),
2 CDF UINT2, status)

IF (status .NE. CDF OK) CALL UserStatusHandler (status)

215

Chapter 7

7 Internal Interface — CDF _lib

The Internal interface consists of only one routine, CDF _1ib.2¢ CDF _lib can be used to perform all possible operations
on a CDF. In fact, all of the Standard Interface functions are implemented using the Internal Interface. CDF_lib must
be used to perform operations not possible with the Standard Interface functions. These operations would involve CDF
features added after the Standard Interface functions had been defined (e.g., specifying a single-file format for a CDF,
accessing zVariables, or specifying a pad value for an rVariable or zVariable). Note that CDF lib can also be used to
perform certain operations more efficiently than with the Standard Interface functions.

CDF _lib takes a variable number of arguments that specify one or more operations to be performed (e.g., opening a CDF,
creating an attribute, or writing a variable value). The operations are performed according to the order of the arguments.
Each operation consists of a function being performed on an item. An item may be either an object (e.g., a CDF, variable,
or attribute) or a state (e.g., a CDF's format, a variable's data specification, or a CDF's current attribute). The possible
functions and corresponding items (on which to perform those functions) are described in Section 7.6.

7.1 Example(s)

The easiest way to explain how to use CDF _lib would be to start with a few examples. The following example shows
how a CDF would be created with the single-file format (assuming multi-file is the default).

INCLUDE '<path>cdf.inc'

CDF identifier.
Returned status code.
Name of the CDF.
Number of dimensions.
Dimension sizes.
Format of CDF.

INTEGER*4 id
INTEGER*4 status
CHARACTER CDF name*5
INTEGER*4 num_ dims
INTEGER*4 dim sizes (1)
INTEGER*4 format

DATA CDF name/'testl'/, num dims/0/, dim sizes/0/,

26 See section 6.5.1 for an ugly exception to this.

217

format/SINGLE FILE/

CALL CDF create cdf (CDF name, id, status)
.NE. CDF_OK) CALL UserStatusHandler (status)

IF

status = CDF _1lib

2
IF

(status

(status

(PUT , CDF_FORMAT , format,
NULL , status)

.NE. CDF OK) CALL UserStatusHandler (status)

The call to CDF _create created the CDF as expected but with a format of multi-file (assuming that is the default). The
call to CDF _lib is then used to change the format to single-file (which must be done before any variables are created in
the CDF).

The arguments to CDF _lib in this example are explained as follows:

PUT_

CDF_FORMAT

format

NULL _

status

The first function to be performed. in this case An item is going to be put to the “current”
CDF (a new format). PUT is defined in cdf.inc (as are all CDF constants). It was not
necessary to select a current CDF since the call to CDF_create implicitly selected the CDF
created as the current CDF.2” This is the case since all of the Standard Interface functions
actually call the Internal Interface to perform their operations.

The item to be put. In this case it is the CDF's format.

The actual format for the CDF. Depending on the item being put, one or more arguments
would have been necessary. In this case only one argument is necessary.

This argument could have been one of two things. It could have been another item to put
(followed by the arguments required for that item) or it could have been a new function
to perform. In this case it is a new function to perform - the NULL function. NULL
indicates the end of the call to CDF _lib. Specifying NULL at the end of the argument
list is required because not all compilers/operating systems provide the ability for a called
function to determine how many arguments were passed in by the calling function.

Completion status code. Note that CDF_lib also returns the completion status code.?
Chapter 8 explains how to interpret status codes.

The next example shows how the same CDF could have been created using only one call to CDF_lib. (The declarations

would be the same.)

status = CDF _lib

1
2
IF

(status

.NE.

(CREATE , CDF_, CDF name, num dims, dim sizes, id,
PUT , CDF_FORMAT , format,
NULL , status)

CDF _OK) CALL UserStatusHandler (status)

The purpose of each argument is as follows:

27 In previous releases of CDF, it was required that the current CDF be selected in each call to CDF_lib. That requirement
has been eliminated. The CDF library now maintains the current CDF from one call to the next of CDF _lib.
28 Section 6.5 explains why it does both.

218

CREATE _ The first function to be performed. In this case something will be created.

CDF The item to be created - a CDF in this case. There are four required arguments that
must follow. When a CDF is created (with CDF _lib), the format, encoding, and
majority default to values specified when your CDF distribution was built and
installed. Consult your system manager for these defaults.

CDF_name The file name of the CDF.

num_dims Number of dimensions in the CDF.

dim_sizes Dimension sizes.

id Identifier to be used when referencing the created CDF in subsequent operations.

PUT _ This argument could have been one of two things. Another item to create or a new
function to perform. In this case it is another function to perform - something will be
put to the CDF.

CDF_FORMAT _ Once again this argument could have been either another item to put or a new function

to perform. It is another item to put - the CDF's format.

format The format to be put to the CDF.

NULL This argument could have been either another item to put or a new function to perform.
Here it is another function to perform - the NULL function that ends the call to
CDF lib.

status Completion status code. Note that CDF _lib also returns the completion status code.

Chapter 8 explains how to interpret status codes.

Note that the operations are performed in the order that they appear in the argument list. The CDF had to be created
before the encoding, majority, and format could be specified (put).

7.2 Current Objects/States (Items)

The use of CDF _lib requires that an application be aware of the current objects/states maintained by the CDF library.
The following current objects/states are used by the CDF library when performing operations.

CDF (object)
A CDF operation is always performed on the current CDF. The current CDF is implicitly selected whenever a CDF
is opened or created. The current CDF may be explicitly selected using the <SELECT ,CDF_>%° operation. There
is no current CDF until one is opened or created (which implicitly selects it) or until one is explicitly selected.

rVariable (object)
An rVariable operation is always performed on the current rVariable in the current CDF. For each open CDF a
current rVariable is maintained. This current rVariable is implicitly selected when an rVariable is created (in the

29 This notation is used to specify a function to be performed on an item. The syntax is <function_,item_ >.
30 In previous releases of CDF, it was required that the current CDF be selected in each call to CDF_lib. That
requirement no longer exists. The CDF library now maintains the current CDF from one call to the next of CDF _lib.

219

current CDF) or it may be explicitly selected with the <SELECT ,rVAR > or <SELECT ,r'VAR NAME >
operations. There is no current rVariable in a CDF until one is created (which implicitly selects it) or until one is
explicitly selected.

zVariable (object)

A zVariable operation is always performed on the current zVariable in the current CDF. For each open CDF a
current zVariable is maintained. This current zVariable is implicitly selected when a zVariable is created (in the
current CDF) or it may be explicitly selected with the <SELECT ,zZVAR > or <SELECT ,zZVAR NAME >
operations. There is no current zVariable in a CDF until one is created (which implicitly selects it) or until one is
explicitly selected.

attribute (object)

An attribute operation is always performed on the current attribute in the current CDF. For each open CDF a current
attribute is maintained. This current attribute is implicitly selected when an attribute is created (in the current CDF)
or it may be explicitly selected with the <SELECT ,ATTR > or <SELECT ,ATTR NAME > operations. There
is no current attribute in a CDF until one is created (which implicitly selects it) or until one is explicitly selected.

gEntry number (state)

A gAttribute gEntry operation is always performed on the current gEntry number in the current CDF for the current
attribute in that CDF. For each open CDF a current gEntry number is maintained. This current gEntry number
must be explicitly selected with the <SELECT ,gENTRY > operation. (There is no implicit or default selection
of the current gEntry number for a CDF.) Note that the current gEntry number is maintained for the CDF (not each
attribute) - it applies to all of the attributes in that CDF.

rEntry number (state)

A vAttribute rEntry operation is always performed on the current rEntry number in the current CDF for the current
attribute in that CDF. For each open CDF a current rEntry number is maintained. This current rEntry number must
be explicitly selected with the <SELECT ,tENTRY > operation. (There is no implicit or default selection of the
current rEntry number for a CDF.) Note that the current rEntry number is maintained for the CDF (not each
attribute) - it applies to all of the attributes in that CDF.

zEntry number (state)

A vAttribute zEntry operation is always performed on the current zEntry number in the current CDF for the current
attribute in that CDF. For each open CDF a current zEntry number is maintained. This current zEntry number
must be explicitly selected with the <SELECT ,ZENTRY > operation. (There is no implicit or default selection
of the current zEntry number for a CDF.) Note that the current zEntry number is maintained for the CDF (not each
attribute) - it applies to all of the attributes in that CDF.

record number, rVariables (state)

An rVariable read or write operation is always performed at (for single and multiple variable reads and writes) or
starting at (for hyper reads and writes) the current record number for the rVariables in the current CDF. When a
CDF is opened or created, the current record number for its rVariables is initialized to zero (0). It may then be
explicitly selected using the <SELECT ,rVARs RECNUMBER > operation. Note that the current record number
for rVariables is maintained for a CDF (not each rVariable) - it applies to all of the rVariables in that CDF.

record count, rVariables (state)

An rVariable hyper read or write operation is always performed using the current record count for the rVariables in
the current CDF. When a CDF is opened or created, the current record count for its rVariables is initialized to one
(1). It may then be explicitly selected using the <SELECT ,rVARs RECCOUNT > operation. Note that the
current record count for rVariables is maintained for a CDF (not each rVariable) - it applies to all of the rVariables
in that CDF.

record interval, rVariables (state)

An rVariable hyper read or write operation is always performed using the current record interval for the rVariables
in the current CDF. When a CDF is opened or created, the current record interval for its rVariables is initialized to
one (1). It may then be explicitly selected using the <SELECT ,rVARs RECINTERVAL > operation. Note that

220

the current record interval for rVariables is maintained for a CDF (not each rVariable) - it applies to all of the
rVariables in that CDF.

dimension indices, rVariables (state)
An rVariable read or write operation is always performed at (for single reads and writes) or starting at (for hyper
reads and writes) the current dimension indices for the rVariables in the current CDF. When a CDF is opened or
created, the current dimension indices for its rVariables are initialized to zeroes (0,0,...). They may then be
explicitly selected using the <SELECT ,rVARs DIMINDICES > operation. Note that the current dimension
indices for rVariables are maintained for a CDF (not each rVariable) - they apply to all of the rVariables in that
CDF. For 0-dimensional rVariables the current dimension indices are not applicable.

dimension counts, rVariables (state)
An rVariable hyper read or write operation is always performed using the current dimension counts for the
rVariables in the current CDF. When a CDF is opened or created, the current dimension counts for its rVariables
are initialized to the dimension sizes of the rVariables (which specifies the entire array). They may then be
explicitly selected using the <SELECT ,rVARs DIMCOUNTS > operation. Note that the current dimension
counts for rVariables are maintained for a CDF (not each rVariable) - they apply to all of the rVariables in that
CDF. For 0-dimensional rVariables the current dimension counts are not applicable.

dimension intervals, rVariables (state)
An rVariable hyper read or write operation is always performed using the current dimension intervals for the
rVariables in the current CDF. When a CDF is opened or created, the current dimension intervals for its rVariables
are initialized to ones (1,1,...). They may then be explicitly selected wusing the
<SELECT ,rVARs DIMINTERVALS > operation. Note that the current dimension intervals for rVariables are
maintained for a CDF (not each rVariable) - they apply to all of the rVariables in that CDF. For 0-dimensional
rVariables the current dimension intervals are not applicable.

sequential value, rVariable (state)
An rVariable sequential read or write operation is always performed at the current sequential value for that
rVariable. When an rVariable is created (or for each rVariable in a CDF being opened), the current sequential value
is set to the first physical value (even if no physical values exist yet). It may then be explicitly selected using the
<SELECT ,rVAR SEQPOS > operation. Note that a current sequential value is maintained for each rVariable in
a CDF.

record number, zVariable (state)

A zVariable read or write operation is always performed at (for single reads and writes) or starting at (for hyper
reads and writes) the current record number for the current zVariable in the current CDF. A multiple variable read
or write operation is performed at the current record number of each of the zVariables involved. (The record
numbers do not have to be the same.) When a zVariable is created (or for each zVariable in a CDF being opened),
the current record number for that zVariable is initialized to zero (0). It may then be explicitly selected using the
<SELECT ,zZVAR RECNUMBER > operation (which only affects the current zVariable in the current CDF).
Note that a current record number is maintained for each zVariable in a CDF.

record count, zVariable (state)
A zVariable hyper read or write operation is always performed using the current record count for the current
zVariable in the current CDF. When a zVariable created (or for each zVariable in a CDF being opened), the current
record count for that zVariable is initialized to one (1). It may then be explicitly selected using the
<SELECT ,zZVAR RECCOUNT > operation (which only affects the current zVariable in the current CDF). Note
that a current record count is maintained for each zVariable in a CDF.

record interval, zVariable (state)
A zVariable hyper read or write operation is always performed using the current record interval for the current
zVariable in the current CDF. When a zVariable is created (or for each zVariable in a CDF being opened), the
current record interval for that zVariable is initialized to one (1). It may then be explicitly selected using the
<SELECT ,zVAR _RECINTERVAL > operation (which only affects the current zVariable in the current CDF).
Note that a current record interval is maintained for each zVariable in a CDF.

221

dimension indices, zVariable (state)

A zVariable read or write operation is always performed at (for single reads and writes) or starting at (for hyper
reads and writes) the current dimension indices for the current zVariable in the current CDF. When a zVariable is
created (or for each zVariable in a CDF being opened), the current dimension indices for that zVariable are
initialized to zeroes (0,0,...). They may then be explicitly selected using the <SELECT ,zVAR DIMINDICES >
operation (which only affects the current zVariable in the current CDF). Note that current dimension indices are
maintained for each zVariable in a CDF. For 0-dimensional zVariables the current dimension indices are not
applicable.

dimension counts, zVariable (state)
A zVariable hyper read or write operation is always performed using the current dimension counts for the current
zVariable in the current CDF. When a zVariable is created (or for each zVariable in a CDF being opened), the
current dimension counts for that zVariable are initialized to the dimension sizes of that zVariable (which specifies
the entire array). They may then be explicitly selected using the <SELECT ,zZVAR DIMCOUNTS > operation
(which only affects the current zVariable in the current CDF). Note that current dimension counts are maintained
for each zVariable in a CDF. For 0-dimensional zVariables the current dimension counts are not applicable.

dimension intervals, zVariable (state)
A zVariable hyper read or write operation is always performed using the current dimension intervals for the current
zVariable in the current CDF. When a zVariable is created (or for each zVariable in a CDF being opened), the
current dimension intervals for that zVariable are initialized to ones (1,1,...). They may then be explicitly selected
using the <SELECT ,zVAR DIMINTERVALS > operation (which only affects the current zVariable in the
current CDF). Note that current dimension intervals are maintained for each zVariable in a CDF. For 0-dimensional
zVariables the current dimension intervals are not applicable.

sequential value, zVariable (state)
A zVariable sequential read or write operation is always performed at the current sequential value for that zVariable.
When a zVariable is created (or for each zVariable in a CDF being opened), the current sequential value is set to
the first physical value (even if no physical values exist yet). It may then be explicitly selected using the
<SELECT ,zVAR _SEQPOS > operation. Note that a current sequential value is maintained for each zVariable in
a CDF.

status code (state)
When inquiring the explanation of a CDF status code, the text returned is always for the current status code. One
current status code is maintained for the entire CDF library (regardless of the number of open CDFs). The current

status code may be selected using the <SELECT ,CDF _STATUS > operation. There is no default current status
code. Note that the current status code is NOT the status code from the last operation performed. !

7.3 Returned Status

CDF _lib returns a status code of type INTEGER*4 in the last argument given.*? Since more than one operation may be
performed with a single call to CDF _lib, the following rules apply:

1. The first error detected aborts the call to CDF _lib, and the corresponding status code is returned.
2. In the absence of any errors, the status code for the last warning detected is returned.

3. In the absence of any errors or warnings, the status code for the last informational condition is returned.

31 The CDF library now maintains the current status code from one call to the next of CDF_lib.
32 CDF _lib has been changed from a subroutine to a function and now also returns the status code.

222

4. In the absence of any errors, warnings, or informational conditions, CDF_OK is returned.

Chapter 8 explains how to interpret status codes. Appendix A lists the possible status codes and the type of each: error,
warning, or informational.

7.4 Indentation/Style

Indentation should be used to make calls to CDF _lib readable. The following example shows a call to CDF _lib using
proper indentation.

status = CDF_1lib (CREATE , CDF , CDF name, num dims, dim sizes, id,
PUT , CDF_FORMAT , format,
CDF_MAJORITY , majority,
CREATE , ATTR , attr name, scope, attr num,
rVAR , var name, data type, num elements,
rec vary, dim varys, var_ num,

o U W N

NULL , status)

Note that the functions (CREATE, PUT , and NULL) are indented the same and that the items (CDF ,
CDF _FORMAT , CDF _MAJORITY , ATTR , and rVAR) are indented the same under their corresponding functions.

The following example shows the same call to CDF _lib without the proper indentation.

status = CDF_1lib (CREATE , CDF , CDF name, num dims, dim sizes, id, PUT_,

1 CDF_FORMAT , format, CDF MAJORITY , majority, CREATE ,
2 ATTR , attr name, scope, attr num, rVAR , var name,

3 data_ type, num elements, rec vary, dim varys, var_num,
4 NULL , status)

The need for proper indentation to ensure the readability of your applications should be obvious.

7.5 Syntax

CDF _lib takes a variable number of arguments. There must always be at least one argument. The maximum number of
arguments is not limited by CDF but rather the Fortran compiler and operating system being used. Under normal
circumstances that limit would never be reached (or even approached). Note also that a call to CDF _lib with a large
number of arguments can always be broken up into two or more calls to CDF _lib with fewer arguments.

The syntax for CDF _lib is as follows:

status = CDF_1lib (fncl, iteml, argl, arg2, ...argN,
+ item2, argl, arg2, ...argN,
+ itemN, argl, arg2, ...argN,
+ fnc2, iteml, argl, arg2, ...argN,
+ item2, argl, arg2, ...argN,

223

+ itemN, argl, arg2, ...argN,

+ fncN, iteml, argl, arg2, ...argN,

+ item2, argl, arg2, ...argN,
+ itemN, argl, arg2, ...argl,
+ NULL , status)

where fncx is a function to perform, itemx is the item on which to perform the function, and argx is a required argument
for the operation. The NULL _function must be used to end the call to CDF lib. Completion status, status, is returned.

Previously, CDF _lib was a subroutine. It was changed to a function which returns the completion status code (and still
stores it in the last argument) to ease the debugging of calls to CDF_lib.>} Ifin a call to CDF lib an unknown function
or item is specified, or if an operation's argument is missing, the status argument would never be reached (and

BAD FNC OR_ITEM would not be stored). By returning the completion status code this situation should not occur.
Note that the same Fortran variable can be used to receive the status code and as the last argument in the call to

CDF lib.

7.5.1 Macintosh, MPW Fortran

The MPW Fortran compiler does not allow variable length argument lists such as those used by CDF _lib.3* For that
reason, a number of additional Internal Interface functions are available named CDF lib 4, CDF lib 5, etc. Each of
these functions expects the number of arguments indicated by their names. The maximum number of arguments is at
least 25 (corresponding to CDF lib_25) but can be increased if necessary by contacting CDF support. Using these
functions, the second example shown in this section would be as follows:

status = CDF 1lib 15 (CREATE , CDF _, CDF name, num dims, dim sizes, id,

1 PUT , CDF ENCODING , encoding,
2 CDF MAJORITY , majority,
3 CDF_FORMAT , format,

4 NULL , status)

IF (status .NE. CDF OK) CALL UserStatusHandler (status)

Note that CDF_lib may still be used but with the same number of arguments for each occurrence.

7.6 Operations. ..

An operation consists of a function being performed on an item. The supported functions are as follows:

33 Current applications do not have to be changed because the completion status code is still stored in the last argument.
34 If you know of a way to make MPW Fortran accept variable length argument lists, by all means let us know. We
don't like having to do this any more than you do.

224

CLOSE Used to close an item.

CONFIRM _ Used to confirm the value of an item.

CREATE _ Used to create an item.

DELETE Used to delete an item.

GET _ Used to get (read) something from an item.

NULL Used to signal the end of the argument list of an internal interface call.
OPEN _ Used to open an item.

PUT Used to put (write) something to an item.

SELECT Used to select the value of an item.

For each function the supported items, required arguments, and required preselected objects/states are listed below. The
required preselected objects/states are those objects/states that must be selected (typically with the SELECT _ function)
before a particular operation may be performed. Note that some of the required preselected objects/states have default
values as described at Section 7.2.
<CLOSE ,CDF >
Closes the current CDF. When the CDF is closed, there is no longer a current CDF. A CDF must be closed to
ensure that it will be properly written to disk.
There are no required arguments.

The only required preselected object/state is the current CDF.

<CLOSE _,rVAR >
Closes the current rVariable (in the current CDF). This operation is only applicable to multi-file CDFs.

There are no required arguments.
The required preselected objects/states are the current CDF and its current rVariable.

<CLOSE ,zZVAR >
Closes the current zVariable (in the current CDF). This operation is only applicable to multi-file CDFs.

There are no required arguments.
The required preselected objects/states are the current CDF and its current zVariable.

<CONFIRM_,ATTR >
Confirms the current attribute (in the current CDF). Required arguments are as follows:

out: INTEGER*4 attr num
Attribute number.
The only required preselected object/state is the current CDF.
<CONFIRM ,ATTR EXISTENCE >
Confirms the existence of the named attribute (in the current CDF). If the attribute does not exist, an error code
will be returned. in any case the current attribute is not affected. Required arguments are as follows:
in: CHARACTER attr_name*(*)

The attribute name. This may be at most CDF_ATTR NAME LEN256 characters.

The only required preselected object/state is the current CDF.

225

<CONFIRM_,CDF >
Confirms the current CDF. Required arguments are as follows:

out: INTEGER*4 id
The current CDF.
There are no required preselected objects/states.
<CONFIRM ,CDF_ACCESS >
Confirms the accessibility of the current CDF. If a fatal error occurred while accessing the CDF the error code
NO MORE_ACCESS will be returned. If this is the case, the CDF should still be closed.
There are no required arguments.
The only required preselected object/state is the current CDF.
<CONFIRM ,CDF CACHESIZE >
Confirms the number of cache buffers being used for the dotCDF file (for the current CDF). The Concepts chapter
in the CDF User's Guide describes the caching scheme used by the CDF library. Required arguments are as
follows:
out: INTEGER*4 num_buffers
The number of cache buffers being used.

The only required preselected object/state is the current CDF.

<CONFIRM_,CDF_DECODING >
Confirms the decoding for the current CDF. Required arguments are as follows:

out: INTEGER*4 decoding
The decoding. The decodings are described in Section 4.7.
The only required preselected object/state is the current CDF.

<CONFIRM_,CDF NAME >
Confirms the file name of the current CDF. Required arguments are as follows:

out: CHARACTER CDF_name*(CDF_PATHNAME LEN)
File name of the CDF.
The only required preselected object/state is the current CDF.

<CONFIRM_,CDF_NEGtoPOSfp0_MODE >
Confirms the -0.0 to 0.0 mode for the current CDF. Required arguments are as follows:

out: INTEGER*4 mode
The -0.0 to 0.0 mode. The -0.0 to 0.0 modes are described in Section 4.15.

The only required preselected object/state is the current CDF.

226

<CONFIRM_,CDF READONLY MODE >
Confirms the read-only mode for the current CDF. Required arguments are as follows:

out: INTEGER*4 mode
The read-only mode. The read-only modes are described in Section 4.13.
The only required preselected object/state is the current CDF.
<CONFIRM_,CDF_STATUS >
Confirms the current status code. Note that this is not the most recently returned status code but rather the most
recently selected status code (see the <SELECT ,CDF STATUS > operation).
Required arguments are as follows:
out: INTEGER*4 status
The status code.

The only required preselected object/state is the current status code.

<CONFIRM_,zZMODE >
Confirms the zMode for the current CDF. Required arguments are as follows:

out: INTEGER*4 mode
The zMode. The zModes are described in Section 4.14.
The only required preselected object/state is the current CDF.
<CONFIRM ,COMPRESS CACHESIZE >
Confirms the number of cache buffers being used for the compression scratch file (for the current CDF). The
Concepts chapter in the CDF User's Guide describes the caching scheme used by the CDF library. Required
arguments are as follows:
out: INTEGER*4 num_buffers
The number of cache buffers being used.
The only required preselected object/state is the current CDF.
<CONFIRM_,CUREENTRY_ EXISTENCE >
Confirms the existence of the gEntry at the current gEntry number for the current attribute (in the current CDF).
If the gEntry does not exist, an error code will be returned.
There are no required arguments.
The required preselected objects/states are the current CDF, its current attribute, and its current gEntry number.
NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.
<CONFIRM ,CURrENTRY EXISTENCE >
Confirms the existence of the rEntry at the current rEntry number for the current attribute (in the current CDF). If

the rEntry does not exist, an error code will be returned.

There are no required arguments.

227

The required preselected objects/states are the current CDF, its current attribute, and its current rEntry number.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
<CONFIRM_,CURZENTRY_EXISTENCE >

Confirms the existence of the zEntry at the current zEntry number for the current attribute (in the current CDF).

If the zEntry does not exist, an error code will be returned.

There are no required arguments.

The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<CONFIRM ,gENTRY >
Confirms the current gEntry number for all attributes in the current CDF. Required arguments are as follows:

out: INTEGER*4 entry num
The gEntry number.
The only required preselected object/state is the current CDF.
<CONFIRM_,gENTRY_ EXISTENCE >

Confirms the existence of the specified gEntry for the current attribute (in the current CDF). If the gEntry does
not exist, an error code will be returned. in any case the current gEntry number is not affected. Required arguments
are as follows:

in: INTEGER*4 entry_num

The gEntry number.

The required preselected objects/states are the current CDF and its current attribute.

NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.

<CONFIRM_,rENTRY >
Confirms the current rEntry number for all attributes in the current CDF. Required arguments are as follows:

out: INTEGER*4 entry num
The rEntry number.
The only required preselected object/state is the current CDF.
<CONFIRM _,rENTRY_EXISTENCE >

Confirms the existence of the specified rEntry for the current attribute (in the current CDF). If the rEntry does not
exist, An error code will be returned. in any case the current rEntry number is not affected. Required arguments
are as follows:

in: INTEGER*4 entry_num

The rEntry number.

The required preselected objects/states are the current CDF and its current attribute.

228

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<CONFIRM ,rVAR >
Confirms the current rVariable (in the current CDF). Required arguments are as follows:

out: INTEGER*4 var num
rVariable number.
The only required preselected object/state is the current CDF.
<CONFIRM_,rVAR_CACHESIZE >
Confirms the number of cache buffers being used for the current rVariable's file (of the current CDF). This
operation is not applicable to a single-file CDF. The Concepts chapter in the CDF User's Guide describes the
caching scheme used by the CDF library. Required arguments are as follows:
out: INTEGER*4 num_buffers
The number of cache buffers being used.
The required preselected objects/states are the current CDF and its current rVariable.
<CONFIRM _,rVAR EXISTENCE >
Confirms the existence of the named rVariable (in the current CDF). If the rVariable does not exist, an error code
will be returned. in any case the current rVariable is not affected. Required arguments are as follows:
in: CHARACTER var_name*(*)
The rVariable name. This may be at most CDF_ VAR NAME LEN256 characters.
The only required preselected object/state is the current CDF.
<CONFIRM_,r'VAR_PADVALUE >
Confirms the existence of an explicitly specified pad value for the current rVariable (in the current CDF). If An
explicit pad value has not been specified, the informational status code NO PADVALUE_SPECIFIED will be
returned.
There are no required arguments.
The required preselected objects/states are the current CDF and its current rVariable.
<CONFIRM ,rVAR RESERVEPERCENT >
Confirms the reserved percentage being used for the current rVariable (of the current CDF). This operation is
only applicable to compressed rVariables. The Concepts chapter in the CDF User's Guide describes the reserve
percentage scheme used by the CDF library. Required arguments are as follows:
out: INTEGER*4 percent
The reserved percentage.

The required preselected objects/states are the current CDF and its current rVariable.

<CONFIRM_,rVAR_SEQPOS_>

229

Confirms the current sequential value for sequential access for the current rVariable (in the current CDF). Note
that a current sequential value is maintained for each rVariable individually. Required arguments are as follows:

out: INTEGER*4 rec num
Record number.
out: INTEGER*4 indices(CDF_MAX DIMS)

Dimension indices. Each element of indices receives the corresponding dimension index. For 0-
dimensional rVariables this argument is ignored (but must be present).

The required preselected objects/states are the current CDF and its current rVariable.
<CONFIRM_,r'VARs DIMCOUNTS_>
Confirms the current dimension counts for all rVariables in the current CDF. For 0-dimensional rVariables this
operation is not applicable. Required arguments are as follows:
out: INTEGER*4 counts(CDF _MAX DIMS)
Dimension counts. Each element of counts receives the corresponding dimension count.
The only required preselected object/state is the current CDF.
<CONFIRM_,rVARs DIMINDICES >
Confirms the current dimension indices for all rVariables in the current CDF. For 0-dimensional rVariables this
operation is not applicable. Required arguments are as follows:
out: INTEGER*4 indices(CDF_MAX DIMS)
Dimension indices. Each element of indices receives the corresponding dimension index.
The only required preselected object/state is the current CDF.
<CONFIRM_,rVARs DIMINTERVALS >
Confirms the current dimension intervals for all rVariables in the current CDF. For 0-dimensional rVariables this
operation is not applicable. Required arguments are as follows:
out: INTEGER*4 intervals(CDF _MAX DIMS)
Dimension intervals. Each element of intervals receives the corresponding dimension interval.

The only required preselected object/state is the current CDF.

<CONFIRM_,rVARs RECCOUNT >
Confirms the current record count for all rVariables in the current CDF. Required arguments are as follows:

out: INTEGER*4 rec count
Record count.
The only required preselected object/state is the current CDF.

<CONFIRM ,rVARs RECINTERVAL >
Confirms the current record interval for all rVariables in the current CDF. Required arguments are as follows:

230

out: INTEGER*4 rec_interval
Record interval.
The only required preselected object/state is the current CDF.

<CONFIRM_,rVARs RECNUMBER >
Confirms the current record number for all rVariables in the current CDF. Required arguments are as follows:

out: INTEGER*4 rec num
Record number.
The only required preselected object/state is the current CDF.
<CONFIRM ,STAGE CACHESIZE >
Confirms the number of cache buffers being used for the staging scratch file (for the current CDF). The Concepts
chapter in the CDF User's Guide describes the caching scheme used by the CDF library. Required arguments are
as follows:
out: INTEGER*4 num_buffers
The number of cache buffers being used.

The only required preselected object/state is the current CDF.

<CONFIRM_,zZENTRY >
Confirms the current zEntry number for all attributes in the current CDF. Required arguments are as follows:

out: INTEGER*4 entry num
The zEntry number.
The only required preselected object/state is the current CDF.
<CONFIRM ,zENTRY EXISTENCE >

Confirms the existence of the specified zEntry for the current attribute (in the current CDF). If the zEntry does
not exist, an error code will be returned. in any case the current zEntry number is not affected. Required arguments
are as follows:

in: INTEGER*4 entry num

The zEntry number.

The required preselected objects/states are the current CDF and its current attribute.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<CONFIRM_,zVAR >
Confirms the current zVariable (in the current CDF). Required arguments are as follows:

out: INTEGER*4 var num
zVariable number.

The only required preselected object/state is the current CDF.

231

<CONFIRM ,zVAR CACHESIZE >
Confirms the number of cache buffers being used for the current zVariable's file (of the current CDF). This
operation is not applicable to a single-file CDF. The Concepts chapter in the CDF User's Guide describes the
caching scheme used by the CDF library. Required arguments are as follows:

out: INTEGER*4 num_buffers
The number of cache buffers being used.
The required preselected objects/states are the current CDF and its current zVariable.
<CONFIRM_,zVAR_DIMCOUNTS >
Confirms the current dimension counts for the current zVariable in the current CDF. For 0-dimensional zVariables
this operation is not applicable. Required arguments are as follows:
out: INTEGER*4 counts(CDF MAX DIMS)
Dimension counts. Each element of counts receives the corresponding dimension count.
The required preselected objects/states are the current CDF and its current zVariable.
<CONFIRM_,zVAR DIMINDICES >
Confirms the current dimension indices for the current zVariable in the current CDF. For 0-dimensional
zVariables this operation is not applicable. Required arguments are as follows:
out: INTEGER*4 indices(CDF_MAX DIMS)
Dimension indices. Each element of indices receives the corresponding dimension index.
The required preselected objects/states are the current CDF and its current zVariable.
<CONFIRM_,zVAR DIMINTERVALS >
Confirms the current dimension intervals for the current zVariable in the current CDF. For 0-dimensional
zVariables this operation is not applicable. Required arguments are as follows:
out: INTEGER*4 intervals(CDF_MAX DIMS)
Dimension intervals. Each element of intervals receives the corresponding dimension interval.
The required preselected objects/states are the current CDF and its current zVariable.
<CONFIRM_,zVAR _EXISTENCE >
Confirms the existence of the named zVariable (in the current CDF). If the zVariable does not exist, an error code
will be returned. in any case the current zVariable is not affected. Required arguments are as follows:
in:. CHARACTER var_name™*(*)
The zVariable name. This may be at most CDF. VAR NAME LEN256 characters.
The only required preselected object/state is the current CDF.
<CONFIRM_,zVAR PADVALUE >
Confirms the existence of an explicitly specified pad value for the current zVariable (in the current CDF). If An

explicit pad value has not been specified, the informational status code NO PADVALUE SPECIFIED will be
returned.

232

There are no required arguments.
The required preselected objects/states are the current CDF and its current zVariable.

<CONFIRM _,zVAR RECCOUNT >
Confirms the current record count for the current zVariable in the current CDF. Required arguments are as follows:

out: INTEGER*4 rec count
Record count.
The required preselected objects/states are the current CDF and its current zVariable.
<CONFIRM_,zVAR_RECINTERVAL >
Confirms the current record interval for the current zVariable in the current CDF. Required arguments are as
follows:
out: INTEGER*4 rec_interval
Record interval.
The required preselected objects/states are the current CDF and its current zVariable.
<CONFIRM_,zVAR_RECNUMBER >
Confirms the current record number for the current zVariable in the current CDF. Required arguments are as
follows:
out: INTEGER*4 rec num
Record number.
The required preselected objects/states are the current CDF and its current zVariable.
<CONFIRM ,zVAR RESERVEPERCENT >
Confirms the reserved percentage being used for the current zVariable (of the current CDF). This operation is
only applicable to compressed zVariables. The Concepts chapter in the CDF User's Guide describes the reserve
percentage scheme used by the CDF library. Required arguments are as follows:
out: INTEGER*4 percent
Reserved percentage.
The required preselected objects/states are the current CDF and its current zVariable.
<CONFIRM_,zVAR_SEQPOS_>
Confirms the current sequential value for sequential access for the current zVariable (in the current CDF). Note
that a current sequential value is maintained for each zVariable individually. Required arguments are as follows:
out: INTEGER*4 rec num

Record number.

out: INTEGER*4 indices(CDF_MAX DIMS)

233

Dimension indices. Each element of indices receives the corresponding dimension index. For 0-
dimensional zVariables this argument is ignored (but must be present).

The required preselected objects/states are the current CDF and its current zVariable.
<CREATE ,ATTR >

A new attribute will be created in the current CDF. An attribute with the same name must not already exist in the
CDF. The created attribute implicitly becomes the current attribute (in the current CDF). Required arguments are
as follows:

in:. CHARACTER attr name*(*)

Name of the attribute to be created. This can be at most CDF_ ATTR NAME LEN256 characters.
Attribute names are case-sensitive.

in: INTEGER*4 scope

Scope of the new attribute. Specify one of the scopes described in Section 4.12.

out: INTEGER*4 attr num

Number assigned to the new attribute. This number must be used in subsequent CDF function calls
when referring to this attribute.

An existing attribute's number may also be determined with the
<GET ,ATTR NUMBER > operation.
The only required preselected object/state is the current CDF.
<CREATE ,CDF >

A new CDF will be created. It is illegal to create a CDF that already exists. The created CDF implicitly becomes
the current CDF. Required arguments are as follows:

in:. CHARACTER CDF _name*(*)

File name of the CDF to be created. (Do not append an extension.) This can be at most
CDF_PATHNAME LEN characters. A CDF file name may contain disk and directory specifications

that conform to the conventions of the operating system being used (including logical names on VMS
systems and environment variables on UNIX systems).

UNIX: File names are case-sensitive.

in: INTEGER*4 num_dims

Number of dimensions for the rVariables. This can be as few as zero (0) and at most CDF. MAX DIMS
Note that this must be specified even if the CDF will contain only zVariables.

in: INTEGER*4 dim_sizes(*)

Dimension sizes for the rVariables. Each element of dim_sizes specifies the corresponding dimension
size. Each dimension size must be greater than zero (0). For O-dimensional rVariables this argument
is ignored (but must be present). Note that this must be specified even if the CDF will contain only
zVariables.

out: INTEGER*4 id

CDF identifier to be used in subsequent operations on the CDF.

234

A CDF is created with the default format, encoding, and variable majority as specified in the configuration file of
your CDF distribution. Consult your system manager to determine these defaults. These defaults can then be
changed with the corresponding <PUT _,CDF_FORMAT >, <PUT ,CDF _ENCODING >, and
<PUT ,CDF_MAIJORITY > operations if necessary.

A CDF must be closed with the <CLOSE ,CDF > operation to ensure that the CDF will be correctly written to
disk.

There are no required preselected objects/states.

<CREATE ,rVAR >
A new rVariable will be created in the current CDF. A variable (rVariable or zVariable) with the same name must
not already exist in the CDF. The created rVariable implicitly becomes the current rVariable (in the current CDF).
Required arguments are as follows:

in: CHARACTER var_name™*(*)

Name of the rVariable to be created. This can be at most CDF_ VAR NAME LEN256 characters
(excluding the NUL). Variable names are case-sensitive.

in: INTEGER*4 data_type
Data type of the new rVariable. Specify one of the data types described in Section 4.5.
in: INTEGER*4 num_elements

Number of elements of the data type at each value. For character data types (CDF_CHAR and
CDF_UCHAR), this is the number of characters in each string (an array of characters). A string exists
at each value of the variable. For the non-character data types this must be one (1) - multiple elements
are not allowed for non-character data types.

in: INTEGER*4 rec vary
Record variance. Specify one of the variances described in Section 4.9.
in: INTEGER*4 dim_varys(*)
Dimension variances. Each element of dim_varys specifies the corresponding dimension variance. For

each dimension specify one of the variances described in Section 4.9. For 0-dimensional rVariables this
argument is ignored (but must be present).

out: INTEGER*4 var num

Number assigned to the new rVariable. This number must be used in subsequent CDF function calls
when referring to this rVariable. An existing rVariable's number may also be determined with the
<GET ,rVAR NUMBER > operation.

The only required preselected object/state is the current CDF.

<CREATE ,zVAR >
A new zVariable will be created in the current CDF. A variable (rVariable or zVariable) with the same name must
not already exist in the CDF. The created zVariable implicitly becomes the current zVariable (in the current CDF).
Required arguments are as follows:

in: CHARACTER var name*(*)

235

in

in:

in:

Name of the zVariable to be created. This can be at most CDF_ VAR NAME LEN256 characters.
Variable names are case-sensitive.

: INTEGER*4 data_type

Data type of the new zVariable. Specify one of the data types described in Section 4.5.

: INTEGER*4 num_elements

Number of elements of the data type at each value. For character data types (CDF_CHAR and
CDF_UCHAR), this is the number of characters in each string (an array of characters). A string exists
at each value of the variable. For the non-character data types this must be one (1) - multiple elements
are not allowed for non-character data types.

: INTEGER*4 num_dims

Number of dimensions for the zVariable. This may be as few as zero and at most CDF. MAX DIMS.

: INTEGER*4 dim_sizes(*)

The dimension sizes. Each element of dim_sizes specifies the corresponding dimension size. Each
dimension size must be greater than zero (0). For a 0-dimensional zVariable this argument is ignored
(but must be present).

: INTEGER*4 rec vary

Record variance. Specify one of the variances described in Section 4.9.
INTEGER*4 dim_varys(*)
Dimension variances. Each element of dim_varys specifies the corresponding dimension variance. For

each dimension specify one of the variances described in Section 4.9. For a 0-dimensional zVariable
this argument is ignored (but must be present).

out: INTEGER*4 var num

Number assigned to the new zVariable. This number must be used in subsequent CDF function calls
when referring to this zVariable. An existing zVariable's number may also be determined with the
<GET ,zZVAR NUMBER > operation.

The only required preselected object/state is the current CDF.

<DELETE ,ATTR >
Deletes the current attribute (in the current CDF). Note that the attribute's entries are also deleted. The attributes

which numerically follow the attribute being deleted are immediately renumbered. When the attribute is deleted,
there is no longer a current attribute.

There are no required arguments.

The required preselected objects/states are the current CDF and its current attribute.

<DELETE ,CDF >
Deletes the current CDF. A CDF must be opened before it can be deleted. When the CDF is deleted, there is no

longer a

current CDF.

There are no required arguments.

236

The only required preselected object/state is the current CDF.

<DELETE ,gENTRY >
Deletes the gEntry at the current gEntry number of the current attribute (in the current CDF). Note that this does
not affect the current gEntry number.

There are no required arguments.
The required preselected objects/states are the current CDF, its current attribute, and its current gEntry number.
NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.
<DELETE ,rENTRY >
Deletes the rEntry at the current rEntry number of the current attribute (in the current CDF). Note that this does
not affect the current rEntry number.
There are no required arguments.
The required preselected objects/states are the current CDF, its current attribute, and its current rEntry number.
NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
<DELETE ,rVAR >
Deletes the current rVariable (in the current CDF). Note that the rVariable's corresponding rEntries are also deleted
(from each vAttribute). The rVariables which numerically follow the rVariable being deleted are immediately
renumbered. The rEntries which numerically follow the rEntries being deleted are also immediately renumbered.
When the rVariable is deleted, there is no longer a current rVariable. NOTE: This operation is only allowed on
single-file CDFs.
There are no required arguments.
The required preselected objects/states are the current CDF and its current rVariable.
<DELETE ,rVAR RECORDS >
Deletes the specified range of records from the current rVariable (in the current CDF). If the rVariable has sparse
records a gap of missing records will be created. If the rVariable does not have sparse records, the records
following the range of deleted records are immediately renumbered beginning with the number of the first deleted
record. NOTE: This operation is only allowed on single-file CDFs.
Required arguments are as follows:
in: INTEGER*4 first record
The record number of the first record to be deleted.
in: INTEGER*4 last record
The record number of the last record to be deleted.
The required preselected objects/states are the current CDF and its current rVariable.
<DELETE ,rVAR RECORDS RENUMBER >

Deletes the specified range of records from the current rVariable (in the current CDF). If the rVariable has sparse
records a gap of missing records will be created. If the rVariable does not have sparse records, the records

237

following the range of deleted records are immediately renumbered beginning with the number of the first deleted
record. NOTE: This operation is only allowed on single-file CDFs.

Required arguments are as follows:
in: INTEGER*4 first record
The record number of the first record to be deleted.
in: INTEGER*4 last record
The record number of the last record to be deleted.
The required preselected objects/states are the current CDF and its current rVariable.
<DELETE ,zZENTRY >
Deletes the zEntry at the current zEntry number of the current attribute (in the current CDF). Note that this does
not affect the current zEntry number.
There are no required arguments.
The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.
NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
<DELETE ,zVAR >
Deletes the current zVariable (in the current CDF). Note that the zVariable's corresponding zEntries are also
deleted (from each vAttribute). The zVariables which numerically follow the zVariable being deleted are
immediately renumbered. The rEntries which numerically follow the rEntries being deleted are also immediately
renumbered. When the zVariable is deleted, there is no longer a current zVariable. NOTE: This operation is
only allowed on single-file CDFs.
There are no required arguments.

The required preselected objects/states are the current CDF and its current rVariable.

<DELETE_,zVAR_RECORDS >
Deletes the specified range of records from the current zVariable (in the current CDF). If the zVariable has sparse
records a gap of missing records will be created. If the zVariable does not have sparse records, the records
following the range of deleted records are immediately renumbered beginning with the number of the first deleted
record. NOTE: This operation is only allowed on single-file CDFs. Required arguments are as follows:

in: INTEGER*4 first record
The record number of the first record to be deleted.
in: INTEGER*4 last record
The record number of the last record to be deleted.
The required preselected objects/states are the current CDF and its current zVariable.
<DELETE ,zZVAR RECORDS RENUMBER >

Deletes the specified range of records from the current zVariable (in the current CDF). If the zVariable has sparse
records a gap of missing records will be created. If the zVariable does not have sparse records, the records

238

following the range of deleted records are immediately renumbered beginning with the number of the first deleted
record. NOTE: This operation is only allowed on single-file CDFs. Required arguments are as follows:

in: INTEGER*4 first_record
The record number of the first record to be deleted.
in: INTEGER*4 last record
The record number of the last record to be deleted.
The required preselected objects/states are the current CDF and its current zVariable.
<GET ,ATTR_MAXgENTRY >
Inquires the maximum gEntry number used for the current attribute (in the current CDF). This does not necessarily
correspond with the number of gEntries for the attribute. Required arguments are as follows:

out: INTEGER*4 max_entry

The maximum gEntry number for the attribute. If no gEntries exist, then a value of —1 will be passed
back.

The required preselected objects/states are the current CDF and its current attribute.

NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.
<GET_,ATTR_MAXrENTRY >

Inquires the maximum rEntry number used for the current attribute (in the current CDF). This does not necessarily

correspond with the number of rEntries for the attribute. Required arguments are as follows:

out: INTEGER*4 max_ entry

The maximum rEntry number for the attribute. If no rEntries exist, then a value of —1 will be passed
back.

The required preselected objects/states are the current CDF and its current attribute.
NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
<GET ,ATTR MAXzENTRY >
Inquires the maximum zEntry number used for the current attribute (in the current CDF). This does not necessarily
correspond with the number of zEntries for the attribute. Required arguments are as follows:

out: INTEGER*4 max_entry

The maximum zEntry number for the attribute. If no zEntries exist, then a value of —1 will be passed
back.

The required preselected objects/states are the current CDF and its current attribute.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<GET _,ATTR NAME >
Inquires the name of the current attribute (in the current CDF). Required arguments are as follows:

out: CHARACTER attr name*(CDF_ATTR NAME LEN256)

239

Attribute name. This character string will be blank padded if necessary.
UNIX: For the proper operation of CDF _lib, attr name MUST be a Fortran CHARACTER variable
or constant.
The required preselected objects/states are the current CDF and its current attribute.

<GET ,ATTR NUMBER >

Gets the number of the named attribute (in the current CDF). Note that this operation does not select the current
attribute. Required arguments are as follows:

in:. CHARACTER attr name*(*)

Attribute name. This may be at most CDF_ ATTR NAME LEN256 characters.

UNIX: For the proper operation of CDF _lib, attr name MUST be a Fortran CHARACTER variable or
constant.

out: INTEGER*4 attr num
The attribute number.

The only required preselected object/state is the current CDF.

<GET_,ATTR_NUMgENTRIES >

Inquires the number of gEntries for the current attribute (in the current CDF). This does not necessarily correspond
with the maximum gEntry number used. Required arguments are as follows:

out: INTEGER*4 num_entries
The number of gEntries for the attribute.

The required preselected objects/states are the current CDF and its current attribute.

NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.
<GET _,ATTR NUMrENTRIES >

Inquires the number of rEntries for the current attribute (in the current CDF). This does not necessarily correspond
with the maximum rEntry number used. Required arguments are as follows:

out: INTEGER*4 num_entries
The number of rEntries for the attribute.

The required preselected objects/states are the current CDF and its current attribute.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
<GET_,ATTR NUMzENTRIES >

Inquires the number of zEntries for the current attribute (in the current CDF). This does not necessarily correspond
with the maximum zEntry number used. Required arguments are as follows:
out: INTEGER*4 num_entries

The number of zEntries for the attribute.

240

The required preselected objects/states are the current CDF and its current attribute.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
<GET_,ATTR_SCOPE >
Inquires the scope of the current attribute (in the current CDF). Required arguments are as follows:

out: INTEGER*4 scope

Attribute scope. The scopes are described in Section 4.12.

The required preselected objects/states are the current CDF and its current attribute.

<GET_,CDF_CHECKSUM >

Inquires the checksum mode of the current CDF. Required arguments are as follows:

out: INTEGER*4 checksum

Checksum. The checksum is described in Section 4.19.

The only required preselected object/state is the current CDF.

<GET_,CDF_COMPRESSION >

Inquires the compression type/parameters of the current CDF. This refers to the compression of the CDF - not of
any compressed variables. Required arguments are as follows:

out: INTEGER*4 c type
The compression type. The types of compressions are described in Section 4.10.

out: INTEGER*4 ¢ parms(CDF_MAX PARMS)

The compression parameters. The compression parameters are described in Section 4.10.

out: INTEGER*4 ¢ pct

If compressed, the percentage of the uncompressed size of the CDF needed to store the compressed
CDF.

The only required preselected object/state is the current CDF.
<GET ,CDF COPYRIGHT >

Reads the copyright notice for the CDF library that created the current CDF. Required arguments are as follows:

out: CHARACTER copy_right*(CDF_COPYRIGHT LEN)

CDF copyright text. The character string will be padded if necessary.

UNIX: For the proper operation of CDF _lib, copy right MUST be a Fortran CHARACTER variable
or constant.

The only required preselected object/state is the current CDF.

<GET_,CDF_ENCODING >

241

Inquires the data encoding of the current CDF. Required arguments are as follows:
out: INTEGER*4 encoding
Data encoding. The encodings are described in Section 4.6.
The only required preselected object/state is the current CDF.

<GET_,CDF_FORMAT >
Inquires the format of the current CDF. Required arguments are as follows:

out: INTEGER*4 format
CDF format. The formats are described in Section 4.4.
The only required preselected object/state is the current CDF.
<GET_,CDF_INCREMENT >
Inquires the incremental number of the CDF library that created the current CDF. Required arguments are as
follows:
out: INTEGER*4 increment
Incremental number.
The only required preselected object/state is the current CDF.
<GET ,CDF INFO >
Inquires the compression type/parameters of a CDF without having to open the CDF. This refers to the
compression of the CDF - not of any compressed variables. Required arguments are as follows:
in:. CHARACTER CDF _name*(*)
File name of the CDF to be inquired. (Do not append an extension.) This can be at most
CDF_PATHNAME LEN characters. A CDF file name may contain disk and directory specifications
that conform to the conventions of the operating system being used (including logical names on VMS
systems and environment variables on UNIX systems).
UNIX: File names are case-sensitive.
UNIX: For the proper operation of CDF_lib, CDF_name MUST be a Fortran CHARACTER variable
or constant.
out: INTEGER*4 ¢ type
The CDF compression type. The types of compressions are described in Section 4.10.
out: INTEGER*4 ¢ parms(CDF _MAX PARMS)
The compression parameters. The compression parameters are described in Section 4.10.

out: INTEGER*8% ¢_size

If compressed, size in bytes of the dotCDF file. If not compressed, set to zero (0).

35 You need to have a Fortran compiler supporting 8-byte integer.

242

out: INTEGER*8!? u_size

If compressed, size in bytes of the dotCDF file when decompressed. If not compressed, size in bytes
of the dotCDF file.

There are no required preselected objects/states.
<GET _,CDF_LEAPSECONDLASTUPDATED >
Inquires the date hat the last leap second was added to the leap second table, which the CDF is based on. Required
arguments are as follows:
out: INTEGER*4 lastupdated
The date that the last leap second was added to the leap second table.

The only required preselected object/state is the current CDF.

<GET ,CDF _MAIJORITY >
Inquires the variable majority of the current CDF. Required arguments are as follows:

out: INTEGER*4 majority
Variable majority. The majorities are described in Section 4.8.
The only required preselected object/state is the current CDF.

<GET_,CDF_NUMATTRS >
Inquires the number of attributes in the current CDF. Required arguments are as follows:

out: INTEGER*4 num_attrs
Number of attributes.
The only required preselected object/state is the current CDF.

<GET ,CDF NUMgATTRS >
Inquires the number of gAttributes in the current CDF. Required arguments are as follows:

out: INTEGER*4 num_attrs
Number of gAttributes.
The only required preselected object/state is the current CDF.
<GET_,CDF_NUMrVARS >
Inquires the number of rVariables in the current CDF. Required arguments are as follows:
out: INTEGER*4 num _vars
Number of rVariables.

The only required preselected object/state is the current CDF.

243

<GET _,CDF_NUMVATTRS >
Inquires the number of vAttributes in the current CDF. Required arguments are as follows:

out: INTEGER*4 num_attrs
Number of vAttributes.
The only required preselected object/state is the current CDF.

<GET_,CDF_NUMZzVARS >
Inquires the number of zVariables in the current CDF. Required arguments are as follows:

out: INTEGER*4 num _vars
Number of zVariables.
The only required preselected object/state is the current CDF.

<GET ,CDF RELEASE >
Inquires the release number of the CDF library that created the current CDF. Required arguments are as follows:

out: INTEGER*4 release
Release number.
The only required preselected object/state is the current CDF.

<GET ,CDF_VERSION >
Inquires the version number of the CDF library that created the current CDF. Required arguments are as follows:

out: INTEGER*4 version
Version number.
The only required preselected object/state is the current CDF.

<GET ,DATATYPE_SIZE >
Inquires the size (in bytes) of an element of the specified data type. Required arguments are as follows:

in: INTEGER*4 data type
Data type.
out: INTEGER*4 num_bytes
Number of bytes per element.
There are no required preselected objects/states.
<GET ,gENTRY DATA >
Reads the gEntry data value from the current attribute at the current gEntry number (in the current CDF). Required

arguments are as follows:

out: <type> value

244

Value. This buffer must be large to hold the value. (<type> is dependent on the data type of the gEnrty).
The value is read from the CDF and placed into memory at address value.

WARNING: If the gEntry has one of the character data types (CDF_CHAR or CDF_UCHAR), then
value must be a CHARACTER Fortran variable. If the gEntry does not have one of the character
data types, then value must NOT be a CHARACTER Fortran variable.

The required preselected objects/states are the current CDF, its current attribute, and its current gEntry number.
NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.
<GET _,gENTRY_DATATYPE >

Inquires the data type of the gEntry at the current gEntry number for the current attribute (in the current CDF).
Required arguments are as follows:

out: INTEGER*4 data_type

Data type. The data types are described in Section 4.5.

The required preselected objects/states are the current CDF, its current attribute, and its current gEntry number.
NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.

<GET_,gENTRY NUMELEMS_>

Inquires the number of elements (of the data type) of the gEntry at the current gEntry number for the current
attribute (in the current CDF). Required arguments are as follows:

out: INTEGER*4 num_elements

Number of elements of the data type. For character data types (CDF_CHAR and CDF_UCHAR) this
is the number of characters in the string (an array of characters). For all other data types this is the
number of elements in an array of that data type.

The required preselected objects/states are the current CDF, its current attribute, and its current gEntry number.

NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.

<GET __,LIB_COPYRIGHT >
Reads the copyright notice of the CDF library being used. Required arguments are as follows:

out: CHARACTER copy_right*(CDF_COPYRIGHT LEN)

CDF library copyright text.

UNIX: For the proper operation of CDF _lib, copy_right MUST be a Fortran CHARACTER variable
or constant.

There are no required preselected objects/states.

<GET _,LIB_INCREMENT >
Inquires the incremental number of the CDF library being used. Required arguments are as follows:

out: INTEGER*4 increment

Incremental number.

245

There are no required preselected objects/states.

<GET ,LIB RELEASE >
Inquires the release number of the CDF library being used. Required arguments are as follows:

out: INTEGER*4 release
Release number.
There are no required preselected objects/states.

<GET __,LIB_subINCREMENT >
Inquires the subincremental character of the CDF library being used. Required arguments are as follows:

out: CHARACTER*1 *subincrement
Subincremental character.

UNIX: For the proper operation of CDF lib, subincrement MUST be a Fortran CHARACTER
variable or constant.

There are no required preselected objects/states.

<GET_,LIB_VERSION >
Inquires the version number of the CDF library being used. Required arguments are as follows:

out: INTEGER*4 version
Version number.
There are no required preselected objects/states.
<GET _,rENTRY_DATA >
Reads the rEntry data value from the current attribute at the current rEntry number (in the current CDF). Required
arguments are as follows:

out: <type> value

Value. This buffer must be large to hold the value. <type> is dependent on the data type of the rEnrty.
The value is read from the CDF and placed into memory at address value.

WARNING: If the rEntry has one of the character data types (CDF_CHAR or CDF_UCHAR), then
value must be a CHARACTER Fortran variable. If the rEntry does not have one of the character data
types, then value must NOT be a CHARACTER Fortran variable.

The required preselected objects/states are the current CDF, its current attribute, and its current rEntry number.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<GET _,tENTRY_DATATYPE >
Inquires the data type of the rEntry at the current rEntry number for the current attribute (in the current CDF).
Required arguments are as follows:

out: INTEGER*4 data_type

Data type. The data types are described in Section 4.5.

246

The required preselected objects/states are the current CDF, its current attribute, and its current rEntry number.
NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
<GET_,rENTRY_NUMELEMS >
Inquires the number of elements (of the data type) of the rEntry at the current rEntry number for the current
attribute (in the current CDF). Required arguments are as follows:
out: INTEGER*4 num_elements
Number of elements of the data type. For character data types (CDF_CHAR and CDF_UCHAR)
this is the number of characters in the string (an array of characters). For all other data types this is the
number of elements in an array of that data type.
The required preselected objects/states are the current CDF, its current attribute, and its current rEntry number.
NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
<GET_,rVAR_ALLOCATEDFROM >
Inquires the next allocated record at or after a given record for the current rVariable (in the current CDF). Required
arguments are as follows:

in: INTEGER*4 start record

The record number at which to begin searching for the next allocated record. If this record exists, it will
be considered the next allocated record.

out: INTEGER*4 next record
The number of the next allocated record.
The required preselected objects/states are the current CDF and its current rVariable.
<GET_,rVAR_ALLOCATEDTO >
Inquires the last allocated record (before the next unallocated record) at or after a given record for the current
rVariable (in the current CDF). Required arguments are as follows:
in: INTEGER*4 start record
The record number at which to begin searching for the last allocated record.
out: INTEGER*4 next record
The number of the last allocated record.
The required preselected objects/states are the current CDF and its current rVariable.
<GET_,rVAR_BLOCKINGFACTOR >3
Inquires the blocking factor for the current rVariable (in the current CDF). Blocking factors are described in the

Concepts chapter in the CDF User's Guide. Required arguments are as follows:

out: INTEGER*4 blocking factor

3¢ The item TVAR_BLOCKINGFACTOR was previously named rVAR_EXTENDRECS.

247

The blocking factor. A value of zero (0) indicates that the default blocking factor is being used.
The required preselected objects/states are the current CDF and its current rVariable.
<GET _,rVAR COMPRESSION >
Inquires the compression type/parameters of the current rVariable (in the current CDF). Required arguments are
as follows:
out: INTEGER*4 ¢ type
The compression type. The types of compressions are described in Section 4.10.
out: INTEGER*4 ¢ parms(CDF_MAX PARMS)
The compression parameters. The compression parameters are described in Section 4.10.

out: INTEGER*4 ¢ pct

If compressed, the percentage of the uncompressed size of the rVariable's data values needed to store
the compressed values.

The required preselected objects/states are the current CDF and its current rVariable.

<GET ,rVAR DATA >
Reads a value from the current rVariable (in the current CDF). The value is read at the current record number and
current dimension indices for the rVariables (in the current CDF). Required arguments are as follows:

out: <type> value

Value. This buffer must be large to hold the value. <type> is dependent on the data type of the
rVariable. The value is read from the CDF and placed into memory at address value.

WARNING: If the rVariable has one of the character data types (CDF_CHAR or CDF_UCHAR),
then value must be a CHARACTER Fortran variable. If the rVariable does not have one of the
character data types, then value must NOT be a CHARACTER Fortran variable.

The required preselected objects/states are the current CDF, its current rVariable, its current record number for
rVariables, and its current dimension indices for rVariables.

<GET ,rVAR DATATYPE >
Inquires the data type of the current rVariable (in the current CDF). Required arguments are as follows:

out: INTEGER*4 data type
Data type. The data types are described in Section 4.5.
The required preselected objects/states are the current CDF and its current rVariable.
<GET _,rVAR_DIMVARYS >
Inquires the dimension variances of the current rVariable (in the current CDF). For 0-dimensional rVariables this
operation is not applicable. Required arguments are as follows:

out: INTEGER*4 dim varys(CDF _MAX DIMS)

Dimension variances. Each element of dim_varys receives the corresponding dimension variance. The
variances are described in Section 4.9.

248

The required preselected objects/states are the current CDF and its current rVariable.

<GET ,rVAR HYPERDATA >

Reads one or more values from the current rVariable (in the current CDF). The values are read based on the
current record number, current record count, current record interval, current dimension indices, current dimension

counts, and current dimension intervals for the rVariables (in the current CDF). Required arguments are as
follows:

out: <type> buffer

Value. This buffer must be large to hold the value. <type> is dependent on the data type of the
rVariable. The value is read from the CDF and placed into memory at address value.

WARNING: If the rVariable has one of the character data types (CDF_CHAR or CDF_UCHAR),
then value must be a CHARACTER Fortran variable. If the rVariable does not have one of the
character data types, then value must NOT be a CHARACTER Fortran variable.

The required preselected objects/states are the current CDF, its current rVariable, its current record number, record

count, and record interval for rVariables, and its current dimension indices, dimension counts, and dimension
intervals for rVariables.

<GET_,rVAR MAXallocREC >

Inquires the maximum record number allocated for the current rVariable (in the current CDF). Required arguments
are as follows:

out: INTEGER*4 max_rec
Maximum record number allocated.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,rVAR_MAXREC >

Inquires the maximum record number for the current rVariable (in the current CDF). For rVariables with a record

variance of NOVARY, this will be at most zero (0). A value of negative one (-1) indicates that no records have
been written. Required arguments are as follows:

out: INTEGER*4 max rec
Maximum record number.

The required preselected objects/states are the current CDF and its current rVariable.

<GET ,r'VAR NAME >
Inquires the name of the current rVariable (in the current CDF). Required arguments are as follows:

out: CHARACTER var name*(CDF_VAR NAME LEN256

Name of the rVariable. This character string will be padded if necessary.

UNIX: For the proper operation of CDF _lib, var name MUST be a Fortran CHARACTER variable
or constant.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,rVAR_nINDEXENTRIES >

249

Inquires the number of index entries for the current rVariable (in the current CDF). This only has significance for
rVariables that are in single-file CDFs. The Concepts chapter in the CDF User's Guide describes the indexing
scheme used for variable records in a single-file CDF. Required arguments are as follows:

out: INTEGER*4 num_entries

Number of index entries.

The required preselected objects/states are the current CDF and its current rVariable.

<GET _,rVAR nINDEXLEVELS >

Inquires_ the number of index levels for the current rVariable (in the current CDF). This only has significance for
rVariables that are in single-file CDFs. The Concepts chapter in the CDF User's Guide describes the indexing
scheme used for variable records in a single-file CDF. Required arguments are as follows:

out: INTEGER*4 num _levels
Number of index levels.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,rVAR_nINDEXRECORDS_>

Inquires the number of index records for the current rVariable (in the current CDF). This only has significance
for rVariables that are in single-file CDFs. The Concepts chapter in the CDF User's Guide describes the indexing
scheme used for variable records in a single-file CDF. Required arguments are as follows:

out: INTEGER*4 num records
Number of index records.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,rVAR NUMallocRECS >

Inquires the number of records allocated for the current rVariable (in the current CDF). The Concepts chapter in

the CDF User's Guide describes the allocation of variable records in a single-file CDF. Required arguments are
as follows:

out: INTEGER*4 num records
Number of allocated records.

The required preselected objects/states are the current CDF and its current rVariable.

<GET _,rVAR_NUMBER_>
Gets the number of the named rVariable (in the current CDF). Note that this operation does not select the current
rVariable. Required arguments are as follows:

in: CHARACTER var name*(*)

The rVariable name. This may be at most CDF VAR NAME LEN256 characters.

UNIX: For the proper operation of CDF _lib, var name MUST be a Fortran CHARACTER variable or
constant.

out: INTEGER*4 var num

250

The rVariable number.
The only required preselected object/state is the current CDF.

<GET ,rVAR NUMELEMS >
Inquires the number of elements (of the data type) for the current rVariable (in the current CDF). Required
arguments are as follows:

out: INTEGER*4 num_elements

Number of elements of the data type at each value. For character data types (CDF_CHAR and
CDF_UCHAR) this is the number of characters in the string. (Each value consists of the entire string.)
For all other data types this will always be one (1) — multiple elements at each value are not allowed
for non-character data types.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,rVAR_NUMRECS >
Inquires the number of records written for the current rVariable (in the current CDF). This may not correspond to
the maximum record written (see <GET ,rVAR MAXREC >) if the rVariable has sparse records. Required
arguments are as follows:

out: INTEGER*4 num _records
Number of records written.
The required preselected objects/states are the current CDF and its current rVariable.
<GET ,rVAR PADVALUE >

Inquires the pad value of the current rVariable (in the current CDF). If a pad value has not been explicitly specified
for the rVariable (see <PUT ,rVAR PADVALUE >), the informational status code
NO PADVALUE_SPECIFIED will be returned and the default pad value for the rVariable's data type will be
placed in the pad value buffer provided. Required arguments are as follows:

out: <type> value

Pad value. This buffer must be large to hold the value. <type> is dependent on the data type of the pad
value. The value is read from the CDF and placed into memory at address value.

WARNING: If the rVariable has one of the character data types (CDF_CHAR or CDF_UCHAR),
then value must be a CHARACTER Fortran variable. If the rVariable does not have one of the
character data types, then value must NOT be a CHARACTER Fortran variable.

The required preselected objects/states are the current CDF and its current rVariable.

<GET ,rVAR RECVARY >
Inquires the record variance of the current rVariable (in the current CDF). Required arguments are as follows:

out: INTEGER*4 rec vary
Record variance. The variances are described in Section 4.9.
The required preselected objects/states are the current CDF and its current rVariable.

<GET_,rVAR_SEQDATA >

251

Reads one value from the current rVariable (in the current CDF) at the current sequential value for that rVariable.
After the read the current sequential value is automatically incremented to the next value (crossing a record
boundary If necessary). An error is returned if the current sequential value is past the last record for the rVariable.
Required arguments are as follows:

out: <type> value

Value. This buffer must be large to hold the value. <type> is dependent on the data type of the
rVariable. The value is read from the CDF and placed into memory at address value.

WARNING: If the rVariable has one of the character data types (CDF_CHAR or CDF_UCHAR),
then value must be a CHARACTER Fortran variable. If the rVariable does not have one of the
character data types, then value must NOT be a CHARACTER Fortran variable.
The required preselected objects/states are the current CDF, its current rVariable, and the current sequential value
for the rVariable. Note that the current sequential value for an rVariable increments automatically as values are
read.
<GET ,rVAR SPARSEARRAYS >
Inquires the sparse arrays type/parameters of the current rVariable (in the current CDF). Required arguments are
as follows:
out: INTEGER*4 s arrays_type
The sparse arrays type. The types of sparse arrays are described in Section 4.11.
out: INTEGER*4 a arrays parms(CDF_ MAX PARMS)
The sparse arrays parameters. The sparse arrays parameters are described in Section 4.11.

out: INTEGER*4 a arrays pct

If sparse arrays, the percentage of the non-sparse size of the rVariable's data values needed to store the
sparse values.

The required preselected objects/states are the current CDF and its current rVariable.

<GET ,rVAR SPARSERECORDS >
Inquires the sparse records type of the current rVariable (in the current CDF). Required arguments are as follows:

out: INTEGER*4 s records_type
The sparse records type. The types of sparse records are described in Section 4.11.
The required preselected objects/states are the current CDF and its current rVariable.
<GET _,rVARs DIMSIZES >
Inquires the size of each dimension for the rVariables in the current CDF. For 0-dimensional rVariables this
operation is not applicable. Required arguments are as follows:
out: INTEGER*4 dim_sizes(CDF_MAX DIMS)

Dimension sizes. Each element of dim_sizes receives the corresponding dimension size.

The only required preselected object/state is the current CDF.

252

<GET_,rVARs MAXREC >
Inquires the maximum record number of the rVariables in the current CDF. Note that this is not the number of
records but rather the maximum record number (which is one less than the number of records). A value of negative
one (-1) indicates that the rVariables contain no records. The maximum record number for an individual rVariable
may be inquired using the <GET ,rVAR MAXREC > operation. Required arguments are as follows:

out: INTEGER*4 max rec
Maximum record number.
The only required preselected object/state is the current CDF.

<GET ,rVARs NUMDIMS >
Inquires the number of dimensions for the rVariables in the current CDF. Required arguments are as follows:

out: INTEGER*4 num_dims
Number of dimensions.
The only required preselected object/state is the current CDF.

<GET_,rVARs RECDATA >
Reads full-physical records from one or more rVariables (in the current CDF). The full-physical records are read
at the current record number for rVariables. This operation does not affect the current rVariable (in the current
CDF). Required arguments are as follows:

in: INTEGER*4 num_vars
The number of rVariables from which to read. This must be at least one (1).
in: INTEGER*4 var_nums(*)

The rVariables from which to read. This array, whose size is determined by the value of num_vars,
contains rVariable numbers. The rVariable numbers can be listed in any order.

out: <type> buffer

The buffer into which the full-physical rVariable records being read are to be placed. This buffer must
be large enough to hold the full-physical records. <type> must be a Fortran variable that will be
passed by reference and cannot be of type CHARACTER. (The CDF library is expecting an address at
which to place the full-physical records being read.) The order of the full-physical rVariable records
in this buffer will correspond to the rVariable numbers listed in varNums, and this buffer will be
contiguous --- there will be no spacing between full-physical rVariable records. Be careful if using
Fortran STRUCTUREsS to receive multiple full-physical rVariable records. Fortran compilers on some
operating systems will pad between the elements of a STRUCTURE in order to prevent memory
alignment errors (i.e., the elements of a STRUCTURE may not be contiguous). See the Concepts
chapter in the CDF User's Guide for more details on how to create this buffer.

The required preselected objects/states are the current CDF and its current record number for rVariables. 37

<GET_,STATUS_TEXT >
Inquires the explanation text for the current status code. Note that the current status code is NOT the status from
the last operation performed. Required arguments are as follows:

37 A Standard Interface at Section 5.13 provides the same functionality.

253

out: CHARACTER text*(CDF_STATUSTEXT LEN)

Text explaining the status code.

UNIX: For the proper operation of CDF lib, text MUST be a Fortran CHARACTER variable or
constant.

The only required preselected object/state is the current status code.

<GET_,zENTRY DATA >

Reads the zEntry data value from the current attribute at the current zEntry number (in the current CDF). Required
arguments are as follows:

out: <type> value

Value. This buffer must be large to hold the value. <type> is dependent on the data type of the zEnrty.
The value is read from the CDF and placed into memory at address value.

WARNING: If the zEntry has one of the character data types (CDF_CHAR or CDF_UCHAR), then
value must be a CHARACTER Fortran variable. If the zEntry does not have one of the character
data types, then value must NOT be a CHARACTER Fortran variable.

The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<GET_,zENTRY_DATATYPE >

Inquires the data type of the zEntry at the current zEntry number for the current attribute (in the current CDF).
Required arguments are as follows:

out: INTEGER*4 data type

Data type. The data types are described in Section 4.5.
The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<GET_,zENTRY _NUMELEMS_>

Inquires the number of elements (of the data type) of the zEntry at the current zEntry number for the current
attribute (in the current CDF). Required arguments are as follows:

out: INTEGER*4 num_elements

Number of elements of the data type. For character data types (CDF_CHAR and CDF_UCHAR) this
is the number of characters in the string (an array of characters). For all other data types this is the
number of elements in an array of that data type.

The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<GET_,zVAR_ALLOCATEDFROM >

Inquires the next allocated record at or after a given record for the current zVariable (in the current CDF). Required
arguments are as follows:

254

in: INTEGER*4 start record

The record number at which to begin searching for the next allocated record. If this record exists, it will
be considered the next allocated record.

out: INTEGER*4 next record
The number of the next allocated record.
The required preselected objects/states are the current CDF and its current zVariable.
<GET ,zZVAR ALLOCATEDTO >
Inquires the last allocated record (before the next unallocated record) at or after a given record for the current
zVariable (in the current CDF). Required arguments are as follows:
in: INTEGER*4 start record
The record number at which to begin searching for the last allocated record.
out: INTEGER*4 next record
The number of the last allocated record.
The required preselected objects/states are the current CDF and its current zVariable.
<GET_,zVAR_BLOCKINGFACTOR >
Inquires the blocking factor for the current zVariable (in the current CDF). Blocking factors are described in the
Concepts chapter in the CDF User’s Guide. Required arguments are as follows:
out: INTEGER*4 blocking_factor
The blocking factor. A value of zero (0) indicates that the default blocking factor is being used.
The required preselected objects/states are the current CDF and its current zVariable.
<GET ,zZVAR_COMPRESSION >
Inquires the compression type/parameters of the current zVariable (in the current CDF). Required arguments are
as follows:

out: INTEGER*4 c type

The compression type. The types of compressions are described in Section 4.10.

out: INTEGER*4 ¢ parms(CDF_MAX PARMS)
The compression parameters. The compression parameters are described in Section 4.10.
out: INTEGER*4 ¢ pct

If compressed, the percentage of the uncompressed size of the zVariable's data values
needed to store the compressed values.

The required preselected objects/states are the current CDF and its current zVariable.

38 The item zZVAR_BLOCKINGFACTOR was previously named zZVAR_EXTENDRECS .

255

<GET ,zVAR DATA >
Reads a value from the current zVariable (in the current CDF). The value is read at the current record number and
current dimension indices for that zVariable (in the current CDF). Required arguments are as follows:

out: <type> value

Value. This buffer must be large to hold the value. <type> is dependent on the data type of the
zVariable. The value is read from the CDF and placed into memory at address value.

WARNING: If the zVariable has one of the character data types (CDF_CHAR or CDF_UCHAR),
then value must be a CHARACTER Fortran variable. If the zVariable does not have one of the
character data types, then value must NOT be a CHARACTER Fortran variable.

The required preselected objects/states are the current CDF, its current zVariable, the current record number for
the zVariable, and the current dimension indices for the zVariable.

<GET_,zZVAR DATATYPE >
Inquires the data type of the current zVariable (in the current CDF). Required arguments are as follows:

out: INTEGER*4 data_type
Data type. The data types are described in Section 4.5.
The required preselected objects/states are the current CDF and its current zVariable.
<GET_,zZVAR_DIMSIZES >
Inquires the size of each dimension for the current zVariable in the current CDF. For 0-dimensional zVariables
this operation is not applicable. Required arguments are as follows:
out: INTEGER*4 dim_sizes(CDF_MAX DIMS)
Dimension sizes. Each element of dim_sizes receives the corresponding dimension size.
The required preselected objects/states are the current CDF and its current zVariable.
<GET _,zZVAR_DIMVARYS >
Inquires the dimension variances of the current zVariable (in the current CDF). For 0-dimensional zVariables this
operation is not applicable. Required arguments are as follows:

out: INTEGER*4 dim varys(CDF _MAX DIMS)

Dimension variances. Each element of dim_varys receives the corresponding dimension variance. The
variances are described in Section 4.9.

The required preselected objects/states are the current CDF and its current zVariable.

<GET _,zVAR_HYPERDATA >
Reads one or more values from the current zVariable (in the current CDF). The values are read based on the
current record number, current record count, current record interval, current dimension indices, current dimension
counts, and current dimension intervals for that zVariable (in the current CDF). Required arguments are as

follows:

out: <type> buffer

256

Value. This buffer must be large to hold the value. <type> is dependent on the data type of the
zVariable. The value is read from the CDF and placed into memory at address value.

WARNING: If the zVariable has one of the character data types (CDF_CHAR or CDF_UCHAR),
then value must be a CHARACTER Fortran variable. If the zVariable does not have one of the
character data types, then value must NOT be a CHARACTER Fortran variable.

The required preselected objects/states are the current CDF, its current zVariable, the current record number,
record count, and record interval for the zVariable, and the current dimension indices, dimension counts, and
dimension intervals for the zVariable.

<GET_,zVAR_MAXallocREC_>

Inquires the maximum record number allocated for the current zVariable (in the current CDF). Required
arguments are as follows:

out: INTEGER*4 max_rec
Maximum record number allocated.

The required preselected objects/states are the current CDF and its current zVariable.

<GET ,zZVAR_MAXREC >
Inquires the maximum record number for the current zVariable (in the current CDF). For zVariables with a record

variance of NOVARY, this will be at most zero (0). A value of negative one (-1) indicates that no records have
been written. Required arguments are as follows:
out: INTEGER*4 max_rec

Maximum record number.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zZVAR NAME >
Inquires the name of the current zVariable (in the current CDF). Required arguments are as follows:

out: CHARACTER var name*(CDF_VAR NAME LEN256)

Name of the zVariable.

UNIX: For the proper operation of CDF _lib, var name MUST be a Fortran CHARACTER variable
or constant.

The required preselected objects/states are the current CDF and its current zVariable.

<GET ,zVAR nINDEXENTRIES >

Inquires_ the number of index entries for the current zVariable (in the current CDF). This only has significance for
zVariables that are in single-file CDFs. The Concepts chapter in the CDF User's Guide describes the indexing
scheme used for variable records in a single-file CDF. Required arguments are as follows:

out: INTEGER*4 num_entries
Number of index entries.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zVAR nINDEXLEVELS >

257

Inquires the number of index levels for the current zVariable (in the current CDF). This only has significance for

zVariables that are in single-file CDFs. The Concepts chapter in the CDF User's Guide describes the indexing
scheme used for variable records in a single-file CDF. Required arguments are as follows:

out: INTEGER*4 num_levels

Number of index levels.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zVAR nINDEXRECORDS >

Inquires_ the number of index records for the current zVariable (in the current CDF). This only has significance

for zVariables that are in single-file CDFs. The Concepts chapter in the CDF User's Guide describes the indexing
scheme used for variable records in a single-file CDF. Required arguments are as follows:

out: INTEGER*4 num_records

Number of index records.

The required preselected objects/states are the current CDF and its current zVariable.

<GET ,zVAR NUMallocRECS >

Inquires the number of records allocated for the current zVariable (in the current CDF). The Concepts chapter in
the CDF User's Guide describes the allocation of variable records in a single-file CDF. Required arguments are
as follows:

out: INTEGER*4 num records
Number of allocated records.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zVAR_NUMBER >

Gets the number of the named zVariable (in the current CDF). Note that this operation does not select the current
zVariable. Required arguments are as follows:

in:. CHARACTER var name*(*)
The zVariable name. This may be at most CDF_ VAR NAME LEN256 characters.
UNIX: For the proper operation of CDF _lib, var name MUST be a Fortran CHARACTER variable or
constant.
out: INTEGER*4 var num
The zVariable number.

The only required preselected object/state is the current CDF.

<GET_,zVAR_NUMDIMS_>

Inquires the number of dimensions for the current zVariable in the current CDF. Required arguments are as
follows:

out: INTEGER*4 num_dims

Number of dimensions.

258

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zVAR_NUMELEMS_>

Inquires_ the number of elements (of the data type) for the current zVariable (in the current CDF). Required
arguments are as follows:

out: INTEGER*4 num_elements

Number of elements of the data type at each value. For character data types (CDF _CHAR and
CDF_UCHAR) this is the number of characters in the string. (Each value consists of the entire string.)
For all other data types this will always be one (1) — multiple elements at each value are not allowed
for non-character data types.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zVAR_NUMRECS >
Inquires the number of records written for the current zVariable (in the current CDF). This may not correspond

to the maximum record written (see <GET ,zZVAR _MAXREC >) if the zVariable has sparse records. Required
arguments are as follows:

out: INTEGER*4 num records
Number of records written.
The required preselected objects/states are the current CDF and its current zVariable.

<GET ,zVAR PADVALUE >
Inquires the pad value of the current zVariable (in the current CDF). If a pad value has not been explicitly specified
for the zVariable (see <PUT ,zZVAR PADVALUE >), the informational status code
NO PADVALUE SPECIFIED will be returned and the default pad value for the zVariable's data type will be
placed in the pad value buffer provided. Required arguments are as follows:

out: <type> value

Pad value. This buffer must be large to hold the value. <type> is dependent on the data type of the
zVariable. The value is read from the CDF and placed into memory at address value.

WARNING: If the zVariable has one of the character data types (CDF_CHAR or CDF_UCHAR),
then value must be a CHARACTER Fortran variable. If the zVariable does not have one of the
character data types, then value must NOT be a CHARACTER Fortran variable.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zZVAR_RECVARY >
Inquires the record variance of the current zVariable (in the current CDF). Required arguments are as follows:

out: INTEGER*4 rec vary
Record variance. The variances are described in Section 4.9.
The required preselected objects/states are the current CDF and its current zVariable.
<GET_,zVAR _SEQDATA >

Reads one value from the current zVariable (in the current CDF) at the current sequential value for that zVariable.
After the read the current sequential value is automatically incremented to the next value (crossing a record

259

boundary If necessary). An error is returned if the current sequential value is past the last record for the zVariable.
Required arguments are as follows:

out: <type> value

Value. This buffer must be large enough to hold the value. The value is read from the CDF and placed
into memory at address value.

The required preselected objects/states are the current CDF, its current zVariable, and the current sequential value
for the zVariable. Note that the current sequential value for a zVariable increments automatically as values are
read.

<GET ,zVAR SPARSEARRAYS >
Inquires the sparse arrays type/parameters of the current zVariable (in the current CDF). Required arguments are
as follows:
out: INTEGER*4 s arrays type
The sparse arrays type. The types of sparse arrays are described in Section 4.11.

out: INTEGER*4 a_arrays parms(CDF_MAX PARMS)

The sparse arrays parameters. The sparse arrays parameters are described in Sec-
tion 4.11.

out: INTEGER*4 a arrays pct

If sparse arrays, the percentage of the non-sparse size of the zVariable's data values needed to store the
sparse values.

The required preselected objects/states are the current CDF and its current zVariable.

<GET ,zVAR SPARSERECORDS >
Inquires the sparse records type of the current zVariable (in the current CDF). Required arguments are as follows:

out: INTEGER*4 s records_type
The sparse records type. The types of sparse records are described in Section 4.11.
The required preselected objects/states are the current CDF and its current zVariable.
<GET_,zVARs MAXREC >
Inquires the maximum record number of the zVariables in the current CDF. Note that this is not the number of
records but rather the maximum record number (which is one less than the number of records). A value of negative
one (-1) indicates that the zVariables contain no records. The maximum record number for an individual zVariable
may be inquired using the <GET ,zZVAR MAXREC > operation. Required arguments are as follows:
out: INTEGER*4 max rec
Maximum record number.
The only required preselected object/state is the current CDF.
<GET _,zVARs RECDATA >

Reads full-physical records from one or more zVariables (in the current CDF). The full-physical record for a
particular zVariable is read at the current record number for that zVariable. (The record numbers do not have to

260

be the same but in most cases probably will be.) This operation does not affect the current zVariable (in the current
CDF). Required arguments are as follows:

in: INTEGER*4 num_vars
The number of zVariables from which to read. This must be at least one (1).
in: INTEGER*4 var nums(*)

The zVariables from which to read. This array, whose size is determined by the value of num_vars,
contains zVariable numbers. The zVariable numbers can be listed in any order.

out: <type> buffer

The buffer into which the full-physical zVariable records being read are to be placed. This buffer
must be large enough to hold the full-physical records. <type> must be a Fortran variable that will be
passed by reference and cannot be of type CHARACTER. (The CDF library is expecting an address at
which to place the full-physical records being read.) The order of the full-physical zVariable records
in this buffer will correspond to the zVariable numbers listed in varNums, and this buffer will be
contiguous --- there will be no spacing between full-physical zVariable records. Be careful if using
Fortran STRUCTURE:S to receive multiple full-physical zVariable records. Fortran compilers on
some operating systems will pad between the elements of a STRUCTURE in order to prevent memory
alignment errors (i.e., the elements of a STRUCTURE may not be contiguous). See the Concepts
chapter in the CDF User's Guide for more details on how to create this buffer.

The required preselected objects/states are the current CDF and the current record number for each of the
zVariables specified. A convenience operation exists, <SELECT ,zZVARs RECNUMBER >, that allows the
current record number for each zVariable to be selected at one time (as opposed to selecting the current record
numbers one at a time using <SELECT ,zZVAR_RECNUMBER_>). ¥

<NULL_>

Marks the end of the argument list that is passed to An internal interface call. No other arguments are allowed
after it.

<OPEN ,CDF >
Opens the named CDF. The opened CDF implicitly becomes the current CDF. Required arguments are as follows:

in:. CHARACTER CDF_name*(*)
File name of the CDF to be opened. (Do not append an extension.) This can be at most
CDF PATHNAME LEN characters. A CDF file name may contain disk and directory specifications
that conform to the conventions of the operating system being used (including logical names on VMS
systems and environment variables on UNIX systems).

UNIX: File names are case-sensitive.

UNIX: For the proper operation of CDF_lib, CDF_name MUST be a Fortran CHARACTER variable
or constant.

out: INTEGER*4 id
CDF identifier to be used in subsequent operations on the CDF.

There are no required preselected objects/states.

39 A Standard Interface at Section 5.14 provides the same functionality.

261

<PUT_,ATTR _NAME >

Renames the current attribute (in the current CDF). An attribute with the same name must not already exist in the
CDF. Required arguments are as follows:

in:. CHARACTER attr name*(*)

New attribute name. This may be at most CDF_ ATTR NAME LEN256 characters.

UNIX: For the proper operation of CDF _lib, attr name MUST be a Fortran CHARACTER variable or
constant.

The required preselected objects/states are the current CDF and its current attribute.

<PUT_,ATTR_SCOPE_>

Respecifies the scope for the current attribute (in the current CDF). Required arguments are as follows:

in: INTEGER*4 scope

New attribute scope. Specify one of the scopes described in Section 4.12.

The required preselected objects/states are the current CDF and its current attribute.
<PUT ,CDF _CHECKSUM >
Respecifies the checksum mode for the current CDF. Required arguments are as follows:

in: INTEGER*4 checksum

New checksum. The checksum is described in Section 4.19.

The only required preselected object/state is the current CDF.
<PUT_,CDF_COMPRESSION >

Specifies the compression type/parameters for the current CDF. This refers to the compression of the CDF - not
of any variables. Required arguments are as follows:

in: INTEGER*4 cType

The compression type. The types of compressions are described in Section 4.10.

in: INTEGER*4 ¢ _parms(*)

The compression parameters. The compression parameters are described in Section 4.10.
The only required preselected object/state is the current CDF.

<PUT ,CDF_ENCODING >

Respecifies the data encoding of the current CDF. A CDF's data encoding may not be changed after any variable
values (including the pad value) or attribute entries have been written. Required arguments are as follows:

in: INTEGER*4 encoding

New data encoding. Specify one of the encodings described in Section 4.6.

The only required preselected object/state is the current CDF.

262

<PUT_,CDF_FORMAT >

Respecifies the format of the current CDF. A CDF’s format may not be changed after any variables have been
created. Required arguments are as follows:

in: INTEGER*4 format

New CDF format. Specify one of the formats described in Section 4.4.
The only required preselected object/state is the current CDF.

<PUT ,CDF _LEAPSECONDLASTUPDATED >

Respecifies the date that the last leap second was added to the leap second table, which this CDF is built upon.
Normally, this is done for the older CDFs that have not had this information set.

in: INTEGER*4 lastupdated

lastupdated, in YYYYMMDD form, has to be a valid entry in the currently used leap second table, or
zero (0).

The only required preselected object/state is the current CDF.

<PUT_,CDF_MAIJORITY >

Respecifies the variable majority of the current CDF. A CDF's variable majority may not be changed after any
variable values have been written. Required arguments are as follows:

in: INTEGER*4 majority

New variable majority. Specify one of the majorities described in Section 4.8.
The only required preselected object/state is the current CDF.

<PUT_,gENTRY DATA >

Writes a gEntry to the current attribute at the current gEntry number (in the current CDF). An existing gEntry
may be overwritten with a new gEntry having the same data specification (data type and number of elements) or
a different data specification. Required arguments are as follows:

in: INTEGER*4 data_type

Data type of the gEntry. Specify one of the data types described in Section 4.5.

in: INTEGER*4 num_elements

Number of elements of the data type. This may be greater than one (1) for any of the supported data
types. For character data types (CDF_CHAR and CDF_UCHAR) this is the number of characters in the

string (an array of characters). For all other data types this is the number of elements in an array of that
data type.

in: <type> value
Value. <type>is dependent on the data type of the gEnrty. The value is written to the CDF from value.

WARNING: If the gEntry has one of the character data types (CDF_CHAR or CDF_UCHAR), then
value must be a CHARACTER Fortran variable. If the gEntry does not have one of the character data
types, then value must NOT be a CHARACTER Fortran variable.

263

The required preselected objects/states are the current CDF, its current attribute, and its current gEntry number.

NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.

<PUT_,gENTRY DATASPEC >

Modifies the data specification (data type and number of elements) of the gEntry at the current gEntry number of
the current attribute (in the current CDF). The new and old data types must be equivalent, and the number of

elements must not be changed. Equivalent data types are described in the Concepts chapter in the CDF User’s
Guide. Required arguments are as follows:

in: INTEGER*4 data_type

New data type of the gEntry. Specify one of the data types described in Section 4.5.

in: INTEGER*4 num_eclements
Number of elements of the data type.

The required preselected objects/states are the current CDF, its current attribute, and its current gEntry number.

NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.

<PUT_rENTRY DATA >

Writes an rEntry to the current attribute at the current rEntry number (in the current CDF). An existing rEntry

may be overwritten with a new rEntry having the same data specification (data type and number of elements) or a
different data specification. Required arguments are as follows:

in: INTEGER*4 data_type

Data type of the rEntry. Specify one of the data types described in Section 4.5.

in: INTEGER*4 num_elements

Number of elements of the data type. This may be greater than one (1) for any of the supported data
types. For character data types (CDF_CHAR and CDF_UCHAR) this is the number of characters in the

string (an array of characters). For all other data types this is the number of elements in an array of that
data type.

in: <type> value

Value. <type>is dependent on the data type of the rEnrty. The value is written to the CDF from value.

WARNING: If the rEntry has one of the character data types (CDF_CHAR or CDF_UCHAR), then
value must be a CHARACTER Fortran variable. If the rEntry does not have one of the character data
types, then value must NOT be a CHARACTER Fortran variable.

The required preselected objects/states are the current CDF, its current attribute, and its current rEntry number.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<PUT_rENTRY _DATASPEC >

Modifies the data specification (data type and number of elements) of the rEntry at the current rEntry number of
the current attribute (in the current CDF). The new and old data types must be equivalent, and the number of

elements must not be changed. Equivalent data types are described in the Concepts chapter in the CDF User’s
Guide. Required arguments are as follows:

264

in: INTEGER*4 data_type
New data type of the rEntry. Specify one of the data types described in Section 4.5.
in: INTEGER*4 num_elements
Number of elements of the data type.
The required preselected objects/states are the current CDF, its current attribute, and its current rEntry number.
NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
<PUT ,rVAR ALLOCATEBLOCK >
Specifies a range of records to allocate for the current rVariable (in the current CDF). This operation is only
applicable to uncompressed rVariables in single-file CDFs. The Concepts chapter in the CDF User's Guide
describes the allocation of variable records. Required arguments are as follows:
in: INTEGER*4 first record
The first record number to allocate.
in: INTEGER*4 last record
The last record number to allocate.
The required preselected objects/states are the current CDF and its current rVariable.
<PUT ,rVAR ALLOCATERECS >
Specifies the number of records to allocate for the current rVariable (in the current CDF). The records are allocated
beginning at record number 0 (zero). This operation is only applicable to uncompressed rVariables in single-file
CDFs. The Concepts chapter in the CDF User's Guide describes the allocation of variable records. Required
arguments are as follows:
in: INTEGER*4 num_records
Number of records to allocate.
The required preselected objects/states are the current CDF and its current rVariable.
<PUT_,rVAR_BLOCKINGFACTOR >%
Specifies the blocking factor for the current rVariable (in the current CDF). The Concepts chapter in the CDF
User's Guide describes a variable's blocking factor. NOTE: The blocking factor has no effect for NRV variables
or multi-file CDFs. Required arguments are as follows:
in: INTEGER*4 blockingFactor
The blocking factor. A value of zero (0) indicates that the default blocking factor should be used.
The required preselected objects/states are the current CDF and its current rVariable.
<PUT ,rVAR COMPRESSION >

Specifies the compression type/parameters for the current rVariable (in current CDF). Required arguments are as
follows:

40 The item r'VAR_BLOCKINGFACTOR was previously named rVAR_EXTENDRECS .

265

in: INTEGER*4 cType

The compression type. The types of compressions are described in Section 4.10.
in: INTEGER*4 ¢ _parms(*)
The compression parameters. The compression parameters are described in Section 4.10.

The required preselected objects/states are the current CDF and its current rVariable.

<PUT ,rVAR DATA >
Writes one value to the current rVariable (in the current CDF). The value is written at the current record number
and current dimension indices for the rVariables (in the current CDF). Required arguments are as follows:

in: <type> value

Value. <type> is dependent on the data type of the rVariable. The value is written to the CDF from
value.

WARNING: If the rVariable has one of the character data types (CDF_CHAR or CDF_UCHAR),
then value must be a CHARACTER Fortran variable. If the rVariable does not have one of the
character data types, then value must NOT be a CHARACTER Fortran variable.

The required preselected objects/states are the current CDF, its current rVariable, its current record number for
rVariables, and its current dimension indices for rVariables.

<PUT_,rVAR_DATASPEC >

Respecifies the data specification (data type and number of elements) of the current rVariable (in the current CDF).
An rVariable's data specification may not be changed If the new data specification is not equivalent to the old data
specification and any values (including the pad value) have been written. Data specifications are considered
equivalent If the data types are equivalent (see the Concepts chapter in the CDF User's Guide) and the number of
elements are the same. Required arguments are as follows:

in: INTEGER*4 data_type

New data type. Specify one of the data types described in Section 4.5.

in: INTEGER*4 num_eclements

Number of elements of the data type at each value. For character data types (CDF _CHAR and
CDF_UCHAR), this is the number of characters in each string (an array of characters). A string exists
at each value. For the non-character data types this must be one (1) - arrays of values are not allowed
for non-character data types.

The required preselected objects/states are the current CDF and its current rVariable.

<PUT ,rVAR DIMVARYS >
Respecifies the dimension variances of the current rVariable (in the current CDF). An rVariable's dimension
variances may not be changed if any values have been written (except for an explicit pad value - it may have been
written). For 0-dimensional rVariables this operation is not applicable. Required arguments are as follows:

in: INTEGER*4 dim_varys(*)
New dimension variances. Each element of dim_varys specifies the corresponding dimension variance.

For each dimension specify one of the variances described in Section 4.9.

266

The required preselected objects/states are the current CDF and its current rVariable.

<PUT_,rVAR_HYPERDATA >
Writes one or more values to the current rVariable (in the current CDF). The values are written based on the
current record number, current record count, current record interval, current dimension indices, current dimension
counts, and current dimension intervals for the rVariables (in the current CDF). Required arguments are as
follows:

in: <type> buffer

Value. <type> is dependent on the data type of the rVariable. The values in buffer are written to the
CDF.

WARNING: If the rVariable has one of the character data types (CDF_CHAR or CDF_UCHAR),
then value must be a CHARACTER Fortran variable. If the rVariable does not have one of the
character data types, then value must NOT be a CHARACTER Fortran variable.

The required preselected objects/states are the current CDF, its current rVariable, its current record number, record
count, and record interval for rVariables, and its current dimension indices, dimension counts, and dimension
intervals for rVariables.

<PUT_,rVAR INITIALRECS >
Specifies the number of records to initially write to the current rVariable (in the current CDF). The records are
written beginning at record number 0 (zero). This may be specified only once per rVariable and before any other
records have been written to that rVariable. If a pad value has not yet been specified, the default is used (see the
Concepts chapter in the CDF User’s Guide). If a pad value has been explicitly specified, that value is written to
the records. The Concepts chapter in the CDF User's Guide describes initial records. Required arguments are as
follows:

in: INTEGER*4 num records
Number of records to write.
The required preselected objects/states are the current CDF and its current rVariable.
<PUT_,rVAR NAME >
Renames the current rVariable (in the current CDF). A variable (rVariable or zVariable) with the same name must
not already exist in the CDF. Required arguments are as follows:
in:. CHARACTER var name*(*)

New name of the rVariable. This may consist of at most CDF_ VAR NAME LEN256 characters.

UNIX: For the proper operation of CDF _lib, var name MUST be a Fortran CHARACTER variable or
constant.

The required preselected objects/states are the current CDF and its current rVariable.

<PUT_,rVAR PADVALUE >
Specifies the pad value for the current rVariable (in the current CDF). An rVariable's pad value may be specified
(or respecified) at any time without affecting already written values (including where pad values were used). The

Concepts chapter in the CDF User's Guide describes variable pad values. Required arguments are as follows:

in: <type> value

267

Pad value. <type> is dependent on the data type of the rVariable. The pad value is written to the CDF
from value.

WARNING: If the rVariable has one of the character data types (CDF_CHAR or CDF_UCHAR),
then value must be a CHARACTER Fortran variable. If the rVariable does not have one of the
character data types, then value must NOT be a CHARACTER Fortran variable.

The required preselected objects/states are the current CDF and its current rVariable.

<PUT_,rVAR_RECVARY >
Respecifies the record variance of the current rVariable (in the current CDF). AnrVariable's record variance may
not be changed if any values have been written (except for an explicit pad value - it may have been written).
Required arguments are as follows:

in: INTEGER*4 rec vary
New record variance. Specify one of the variances described in Section 4.9.
The required preselected objects/states are the current CDF and its current rVariable.

<PUT_,rVAR _SEQDATA >
Writes one value to the current rVariable (in the current CDF) at the current sequential value for that rVariable.
After the write the current sequential value is automatically incremented to the next value (crossing a record
boundary if necessary). If the current sequential value is past the last record for the rVariable, the rVariable is
extended as necessary. Required arguments are as follows:

in: <type> value

Value. <type> is dependent on the data type of the rVariable. The value is written to the CDF from
value.

WARNING: If the rVariable has one of the character data types (CDF_CHAR or CDF_UCHAR),
then value must be a CHARACTER Fortran variable. If the rVariable does not have one of the
character data types, then value must NOT be a CHARACTER Fortran variable.

The required preselected objects/states are the current CDF, its current rVariable, and the current sequential value
for the rVariable. Note that the current sequential value for an rVariable increments automatically as values are
written.
<PUT_,rVAR_SPARSEARRAYS >
Specifies the sparse arrays type/parameters for the current rVariable (in the current CDF). Required arguments
are as follows:
in: INTEGER*4 s_arrays_type
The sparse arrays type. The types of sparse arrays are described in Section 4.11.
in: INTEGER*4 a arrays parms(*)
The sparse arrays parameters. The sparse arrays parameters are described in Section 4.11.

The required preselected objects/states are the current CDF and its current rVariable.

<PUT_,rVAR SPARSERECORDS >
Specifies the sparse records type for the current rVariable (in the current CDF). Required arguments are as follows:

268

in: INTEGER*4 s records_type

The sparse records type. The types of sparse records are described in Section 4.11.
The required preselected objects/states are the current CDF and its current rVariable.

<PUT_,rVARs RECDATA >

Writes full-physical records to one or more rVariables (in the current CDF). The full-physical records are written

at the current record number for rVariables. This operation does not affect the current rVariable (in the current
CDF). Required arguments are as follows:

in: INTEGER*4 num_vars

The number of rVariables to which to write. This must be at least one (1).

in: INTEGER*4 var_nums(*)

The rVariables to which to write. This array, whose size is determined by the value of num_vars,
contains rVariable numbers. The rVariable numbers can be listed in any order.

in: <type> buffer

The buffer of full-physical rVariable records to be written. <type> must be a Fortran variable that will
be passed by reference and cannot be of type CHARACTER. (The CDF library is expecting an address
at which to get the full-physical records being written.) The order of the full-physical rVariable
records in this buffer must agree with the rVariable numbers listed in varNums and this buffer must be
contiguous --- there can be no spacing between full-physical rVariable records. Be careful if using
Fortran STRUCTURE:S to store multiple full-physical rVariable records. Fortran compilers on some
operating systems will pad between the elements of a STRUCTURE in order to prevent memory
alignment errors (i.e., the elements of a STRUCTURE may not be contiguous). See the Concepts
chapter in the CDF User's Guide for more details on how to create this buffer.

The required preselected objects/states are the current CDF and its current record number for rVariables. *!

<PUT_,zENTRY_DATA >

Writes a zEntry to the current attribute at the current zEntry number (in the current CDF). An existing zEntry may

be overwritten with a new zEntry having the same data specification (data type and number of elements) or a
different data specification. Required arguments are as follows:

in: INTEGER*4 data_type

Data type of the zEntry. Specify one of the data types described in Section 4.5.

in: INTEGER*4 num_elements

Number of elements of the data type. This may be greater than one (1) for any of the supported data
types. For character data types (CDF_CHAR and CDF_UCHAR) this is the number of characters in the

string (an array of characters). For all other data types this is the number of elements in an array of that
data type.

in: <type> value

The value(s). <type> depends on the data type of the zEntry. The value is written to the CDF from
value.

4l A Standard Interface at Section 5.17 provides the same functionality.

269

WARNING: Ifthe zEntry has one of the character data types (CDF_CHAR or CDF_UCHAR), then
value must be a CHARACTER Fortran variable. If the zEntry does not have one of the character data
types, then value must NOT be a CHARACTER Fortran variable.

The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.
NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<PUT_,zZENTRY_DATASPEC >
Modifies the data specification (data type and number of elements) of the zEntry at the current zEntry number of
the current attribute (in the current CDF). The new and old data types must be equivalent, and the number of
elements must not be changed. Equivalent data types are described in the Concepts chapter in the CDF User’s
Guide. Required arguments are as follows:
in: INTEGER*4 data_type

New data type of the zEntry. Specify one of the data types described in Section 4.5.
in: INTEGER*4 num_elements
Number of elements of the data type.
The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.
NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<PUT_,zVAR_ALLOCATEBLOCK >
Specifies a range of records to allocate for the current zVariable (in the current CDF). This operation is only
applicable to uncompressed zVariables in single-file CDFs. The Concepts chapter in the CDF User's Guide
describes the allocation of variable records. Required arguments are as follows:
in: INTEGER*4 first_record
The first record number to allocate.
in: INTEGER*4 last record

The last record number to allocate.

The required preselected objects/states are the current CDF and its current zVariable.

<PUT_,zVAR_ALLOCATERECS >
Specifies the number of records to allocate for the current zVariable (in the current CDF). The records are allocated
beginning at record number 0 (zero). This operation is only applicable to uncompressed zVariables in single-file
CDFs. The Concepts chapter in the CDF User's Guide describes the allocation of variable records. Required
arguments are as follows:
in: INTEGER*4 num_ records

Number of records to allocate.

The required preselected objects/states are the current CDF and its current zVariable.

270

<PUT _,zZVAR_BLOCKINGFACTOR >
Specifies the blocking factor for the current zVariable (in the current CDF). The Concepts chapter in the CDF
User's Guide describes a variable's blocking factor. NOTE: The blocking factor has no effect for NRV variables
or multi-file CDFs. Required arguments are as follows:

in: INTEGER*4 blockingFactor
The blocking factor. A value of zero (0) indicates that the default blocking factor should be used.
The required preselected objects/states are the current CDF and its current zVariable.

<PUT_,zZVAR_COMPRESSION >
Specifies the compression type/parameters for the current zVariable (in current CDF). Required arguments are as
follows:

in: INTEGER*4 cType
The compression type. The types of compressions are described in Section 4.10.
in: INTEGER*4 c¢_parms(¥*)
The compression parameters. The compression parameters are described in Section 4.10.
The required preselected objects/states are the current CDF and its current zVariable.

<PUT ,zZVAR DATA >
Writes one value to the current zVariable (in the current CDF). The value is written at the current record number
and current dimension indices for that zVariable (in the current CDF). Required arguments are as follows:

in: <type> value

Value. <type> is dependent on the data type of the zVariable. The value is written to the CDF from
value.

WARNING: If the zVariable has one of the character data types (CDF_CHAR or CDF_UCHAR),
then value must be a CHARACTER Fortran variable. If the zVariable does not have one of the
character data types, then value must NOT be a CHARACTER Fortran variable.

The required preselected objects/states are the current CDF, its current zVariable, the current record number for
the zVariable, and the current dimension indices for the zVariable.

<PUT_,zZVAR DATASPEC >
Respecifies the data specification (data type and number of elements) of the current zVariable (in the current CDF).
A zVariable's data specification may not be changed If the new data specification is not equivalent to the old data
specification and any values (including the pad value) have been written. Data specifications are considered
equivalent If the data types are equivalent (see the Concepts chapter in the CDF User's Guide) and the number of
elements are the same. Required arguments are as follows:

in: INTEGER*4 data_type
New data type. Specify one of the data types described in Section 4.5.

in: INTEGER*4 num_eclements

42 The item zVAR_BLOCKINGFACTOR was previously named zZVAR_EXTENDRECS .

271

Number of elements of the data type at each value. For character data types (CDF_CHAR and
CDF _UCHAR), this is the number of characters in each string (an array of characters). A string exists
at each value. For the non-character data types this must be one (1) - arrays of values are not allowed
for non-character data types.

The required preselected objects/states are the current CDF and its current zVariable.

<PUT_,zVAR_DIMVARYS >
Respecifies the dimension variances of the current zVariable (in the current CDF). A zVariable's dimension
variances may not be changed if any values have been written (except for an explicit pad value - it may have been
written). For 0-dimensional zVariables this operation is not applicable. Required arguments are as follows:

in: INTEGER*4 dim_varys(¥*)

New dimension variances. Each element of dim_varys specifies the corresponding dimension variance.
For each dimension specify one of the variances described in Section 4.9.

The required preselected objects/states are the current CDF and its current zVariable.

<PUT _,zVAR INITIALRECS >
Specifies the number of records to initially write to the current zVariable (in the current CDF). The records are
written beginning at record number 0 (zero). This may be specified only once per zVariable and before any other
records have been written to that zVariable. If a pad value has not yet been specified, the default is used (see the
Concepts chapter in the CDF User’s Guide). If a pad value has been explicitly specified, that value is written to
the records. The Concepts chapter in the CDF User's Guide describes initial records. Required arguments are as
follows:

in: INTEGER*4 num_records
Number of records to write.
The required preselected objects/states are the current CDF and its current zVariable.

<PUT_,zVAR_HYPERDATA >
Writes one or more values to the current zVariable (in the current CDF). The values are written based on the
current record number, current record count, current record interval, current dimension indices, current dimension
counts, and current dimension intervals for that zVariable (in the current CDF). Required arguments are as
follows:

in: <type> buffer

Value. <type> is dependent on the data type of the zVariable. The value is written to the CDF from
value.

WARNING: If the zVariable has one of the character data types (CDF_CHAR or CDF_UCHAR),
then value must be a CHARACTER Fortran variable. If the zVariable does not have one of the
character data types, then value must NOT be a CHARACTER Fortran variable.

The required preselected objects/states are the current CDF, its current zVariable, the current record number,
record count, and record interval for the zVariable, and the current dimension indices, dimension counts, and
dimension intervals for the zVariable.

<PUT_,zVAR_NAME_>

Renames the current zVariable (in the current CDF). A variable (rVariable or zVariable) with the same name must
not already exist in the CDF. Required arguments are as follows:

272

in:. CHARACTER var name*(*)
New name of the zVariable. This may consist of at most CDF VAR NAME LEN256 characters.
The required preselected objects/states are the current CDF and its current zVariable.

<PUT_,zVAR_PADVALUE >
Specifies the pad value for the current zVariable (in the current CDF). A zVariable's pad value may be specified
(or respecified) at any time without affecting already written values (including where pad values were used). The
Concepts chapter in the CDF User's Guide describes variable pad values. Required arguments are as follows:

in: <type> value

Pad value. <type> is dependent on the data type of the zVariable. The value is written to the CDF
from value.

WARNING: If the zVariable has one of the character data types (CDF_CHAR or CDF_UCHAR),
then value must be a CHARACTER Fortran variable. If the zVariable does not have one of the
character data types, then value must NOT be a CHARACTER Fortran variable.

The required preselected objects/states are the current CDF and its current zVariable.

<PUT_,zZVAR_RECVARY >
Respecifies the record variance of the current zVariable (in the current CDF). A zVariable's record variance may
not be changed if any values have been written (except for an explicit pad value - it may have been written).
Required arguments are as follows:

in: INTEGER*4 rec_vary
New record variance. Specify one of the variances described in Section 4.9.
The required preselected objects/states are the current CDF and its current zVariable.

<PUT_,zZVAR_SEQDATA >
Writes one value to the current zVariable (in the current CDF) at the current sequential value for that zVariable.
After the write the current sequential value is automatically incremented to the next value (crossing a record
boundary if necessary). If the current sequential value is past the last record for the zVariable, the zVariable is
extended as necessary. Required arguments are as follows:

in: <type> value

Value. <type> is dependent on the data type of the zVariable. The value is written to the CDF from
value.

WARNING: If the zVariable has one of the character data types (CDF_CHAR or CDF_UCHAR),
then value must be a CHARACTER Fortran variable. If the zVariable does not have one of the
character data types, then value must NOT be a CHARACTER Fortran variable.

The required preselected objects/states are the current CDF, its current zVariable, and the current sequential value
for the zVariable. Note that the current sequential value for a zVariable increments automatically as values are
written.

<PUT ,zVAR SPARSEARRAYS >

Specifies the sparse arrays type/parameters for the current zVariable (in the current CDF). Required arguments
are as follows:

273

in: INTEGER*4 s_arrays_type

The sparse arrays type. The types of sparse arrays are described in Section 4.11.
in: INTEGER*4 a arrays parms(*)
The sparse arrays parameters. The sparse arrays parameters are described in Section 4.11.

The required preselected objects/states are the current CDF and its current zVariable.

<PUT_,zVAR_SPARSERECORDS >

Specifies the sparse records type for the current zVariable (in the current CDF). Required arguments are as
follows:

in: INTEGER*4 s records_type

The sparse records type. The types of sparse records are described in Section 4.11.
The required preselected objects/states are the current CDF and its current zVariable.

<PUT_,zVARs RECDATA >
Writes full-physical records to one or more zVariables (in the current CDF). The full-physical record for a
particular zVariable is written at the current record number for that zVariable. (The record numbers do not have

to be the same but in most cases probably will be.) This operation does not affect the current zVariable (in the
current CDF). Required arguments are as follows:

in: INTEGER*4 num_vars

The number of zVariables to which to write. This must be at least one (1).

in: INTEGER*4 var_nums(*)

The zVariables to which to write. This array, whose size is determined by the value of num_vars,
contains zVariable numbers. The zVariable numbers can be listed in any order.

in: <type> buffer

The buffer of full-physical zVariable records to be written. <type> must be a Fortran variable that will
be passed by reference and cannot be of type CHARACTER. (The CDF library is expecting an address
at which to get the full-physical records being written.) The order of the full-physical zVariable
records in this buffer must agree with the zVariable numbers listed in varNums and this buffer must be
contiguous --- there can be no spacing between full-physical zVariable records. Be careful if using
Fortran STRUCTURE:S to store multiple full-physical zVariable records. Fortran compilers on some
operating systems will pad between the elements of a STRUCTURE in order to prevent memory
alignment errors (i.e., the elements of a STRUCTURE may not be contiguous). See the Concepts
chapter in the CDF User's Guide for more details on how to create this buffer.

The required preselected objects/states are the current CDF and the current record number for each of the
zVariables specified. A convenience operation exists, <SELECT ,zZVARs RECNUMBER >, that allows the
current record number for each zVariable to be selected at one time (as opposed to selecting the current record
numbers one at a time using <SELECT ,zZVAR RECNUMBER >). 4

<SELECT ,ATTR >
Explicitly selects the current attribute (in the current CDF) by number. Required arguments are as follows:

43 A Standard Interface at Section 5.18 provides the same functionality.

274

in: INTEGER*4 attr num

Attribute number.

The only required preselected object/state is the current CDF.

<SELECT ,ATTR_NAME >

Explicitly selects the current attribute (in the current CDF) by name. NOTE: Selecting the current attribute by
number (see <SELECT ,ATTR >) is more efficient. Required arguments are as follows:

in:. CHARACTER attr_name*(*)

Attribute name. This may be at most CDF_ ATTR NAME LEN256 characters.

UNIX: For the proper operation of CDF _lib, attr name MUST be a Fortran CHARACTER variable or
constant.

The only required preselected object/state is the current CDF.
<SELECT ,CDF >

Explicitly selects the current CDF. Required arguments are as follows:

in: INTEGER*4 id

Identifier of the CDF. This identifier must have been initialized by a successful <CREATE ,CDF > or
<OPEN ,CDF > operation.

There are no required preselected objects/states.

<SELECT ,CDF _CACHESIZE >

Selects the number of cache buffers to be used for the dotCDF file (for the current CDF). The Concepts chapter

in the CDF User's Guide describes the caching scheme used by the CDF library. Required arguments are as
follows:

in: INTEGER*4 num_buffers

The number of cache buffers to be used.

The only required preselected object/state is the current CDF.

<SELECT_,CDF_DECODING >

Selects a decoding (for the current CDF). Required arguments are as follows:

in: INTEGER*4 decoding

The decoding. Specify one of the decodings described in Section 4.7.
The only required preselected object/state is the current CDF.

<SELECT ,CDF NEGtoPOSfp0 MODE >
Selects a -0.0 to 0.0 mode (for the current CDF). Required arguments are as follows:

in: INTEGER*4 mode

The -0.0 to 0.0 mode. Specify one of the -0.0 to 0.0 modes described in Section 4.15.

275

The only required preselected object/state is the current CDF.

<SELECT ,CDF READONLY MODE >
Selects a read-only mode (for the current CDF). Required arguments are as follows:

in: INTEGER*4 mode

The read-only mode. Specify one of the read-only modes described in Section 4.13.
The only required preselected object/state is the current CDF.

<SELECT ,CDF _SCRATCHDIR >

Selects a directory to be used for scratch files (by the CDF library) for the current CDF. The Concepts chapter in
the CDF User’s Guide describes how the CDF library uses scratch files. This scratch directory will override the
directory specified by the CDF$TMP logical name (on VMS systems) or CDF TMP environment variable (on
UNIX and MS-DOS systems). Required arguments are as follows:

in: CHARACTER scratch_dir*(*)

The directory to be used for scratch files. The length of this directory specification is limited only by
the operating system being used.

UNIX: For the proper operation of CDF _lib, scratch_dir MUST be a Fortran CHARACTER variable
or constant.

The only required preselected object/state is the current CDF.

<SELECT ,CDF STATUS >
Selects the current status code. Required arguments are as follows:

in: INTEGER*4 status
CDF status code.

There are no required preselected objects/states.

<SELECT ,CDF_zMODE >
Selects a zMode (for the current CDF). Required arguments are as follows:

in: INTEGER*4 mode
The zMode. Specify one of the zZModes described in Section 4.14.

The only required preselected object/state is the current CDF.

<SELECT_,COMPRESS_CACHESIZE >

Selects the number of cache buffers to be used for the compression scratch file (for the current CDF). The

Concepts chapter in the CDF User's Guide describes the caching scheme used by the CDF library. Required
arguments are as follows:

in: INTEGER*4 num_buffers
The number of cache buffers to be used.

The only required preselected object/state is the current CDF.

276

<SELECT ,gENTRY >
Selects the current gEntry number for all gAttributes in the current CDF. Required arguments are as follows:

in: INTEGER*4 entry_num
gEntry number.

The only required preselected object/state is the current CDF.
<SELECT ,rENTRY >
Selects the current rEntry number for all vAttributes in the current CDF. Required arguments are as follows:

in: INTEGER*4 entry num

rEntry number.

The only required preselected object/state is the current CDF.

<SELECT ,tfENTRY_NAME >

Selects the current rEntry number for all vAttributes (in the current CDF) by rVariable name. The number of the
named rVariable becomes the current rEntry number. (The current rVariable is not changed.) NOTE: Selecting
the current rEntry by number (see <SELECT ,rENTRY >) is more efficient. Required arguments are as follows:

in:. CHARACTER var name*(*)

rVariable name. This may be at most CDF_ VAR NAME LEN256 characters.

UNIX: For the proper operation of CDF _lib, var name MUST be a Fortran CHARACTER variable or
constant.

The only required preselected object/state is the current CDF.
<SELECT ,rVAR >
Explicitly selects the current rVariable (in the current CDF) by number. Required arguments are as follows:

in: INTEGER*4 var num
rVariable number.

The only required preselected object/state is the current CDF.

<SELECT ,rVAR CACHESIZE >
Selects the number of cache buffers to be used for the current rVariable's file (of the current CDF). This operation

is not applicable to a single-file CDF. The Concepts chapter in the CDF User's Guide describes the caching scheme
used by the CDF library. Required arguments are as follows:

in: INTEGER*4 num_buffers
The number of cache buffers to be used.

The required preselected objects/states are the current CDF and its current rVariable.
<SELECT ,rVAR NAME >

Explicitly selects the current rVariable (in the current CDF) by name. NOTE: Selecting the current rVariable by
number (see <SELECT ,rVAR_>) is more efficient. Required arguments are as follows:

277

in: CHARACTER var name*(*)

rVariable name. This may be at most CDF_ VAR NAME LEN256 characters.

UNIX: For the proper operation of CDF _lib, var name MUST be a Fortran CHARACTER variable or
constant.

The only required preselected object/state is the current CDF.

<SELECT_,rVAR_RESERVEPERCENT >

Selects the reserve percentage to be used for the current rVariable (in the current CDF). This operation is only
applicable to compressed rVariables. The Concepts chapter in the CDF User's Guide describes the reserve
percentage scheme used by the CDF library. Required arguments are as follows:

in: INTEGER*4 percent

The reserved percentage.

The required preselected objects/states are the current CDF and its current rVariable.
<SELECT ,rVAR_SEQPOS_>

Selects the current sequential value for sequential access for the current rVariable (in the current CDF). Note that
a current sequential value is maintained for each rVariable individually. Required arguments are as follows:

in: INTEGER*4 rec num
Record number.

in: INTEGER*4 indices(*)

Dimension indices. Each element of indices specifies the corresponding dimension index. For 0-
dimensional rVariables this argument is ignored (but must be present).

The required preselected objects/states are the current CDF and its current rVariable.
<SELECT ,rVARs CACHESIZE >

Selects the number of cache buffers to be used for all of the rVariable files (of the current CDF). This operation
is not applicable to a single-file CDF. The Concepts chapter in the CDF User's Guide describes the caching scheme
used by the CDF library. Required arguments are as follows:

in: INTEGER*4 num_buffers
The number of cache buffers to be used.

The only required preselected object/state is the current CDF.

<SELECT_,rVARs DIMCOUNTS_>

Selects the current dimension counts for all rVariables in the current CDF. For 0-dimensional rVariables this
operation is not applicable. Required arguments are as follows:

in: INTEGER*4 counts(*)

Dimension counts. Each element of counts specifies the corresponding dimension count.

The only required preselected object/state is the current CDF.

278

<SELECT ,rVARs_DIMINDICES >
Selects the current dimension indices for all rVariables in the current CDF. For 0-dimensional rVariables this
operation is not applicable. Required arguments are as follows:
in: INTEGER*4 indices(*)
Dimension indices. Each element of indices specifies the corresponding dimension index.
The only required preselected object/state is the current CDF.
<SELECT ,rVARs DIMINTERVALS >
Selects the current dimension intervals for all rVariables in the current CDF. For 0-dimensional rVariables this
operation is not applicable. Required arguments are as follows:
in: INTEGER*4 intervals(*)
Dimension intervals. Each element of intervals specifies the corresponding dimension interval.

The only required preselected object/state is the current CDF.

<SELECT_,rVARs RECCOUNT >
Selects the current record count for all rVariables in the current CDF. Required arguments are as follows:

in: INTEGER*4 rec_count
Record count.
The only required preselected object/state is the current CDF.

<SELECT ,rVARs RECINTERVAL >
Selects the current record interval for all rVariables in the current CDF. Required arguments are as follows:

in: INTEGER*4 rec_interval
Record interval.
The only required preselected object/state is the current CDF.

<SELECT ,rVARs RECNUMBER >
Selects the current record number for all rVariables in the current CDF. Required arguments are as follows:

in: INTEGER*4 rec num
Record number.
The only required preselected object/state is the current CDF.
<SELECT ,STAGE CACHESIZE >
Selects the number of cache buffers to be used for the staging scratch file (for the current CDF). The Concepts
chapter in the CDF User's Guide describes the caching scheme used by the CDF library. Required arguments are
as follows:

in: INTEGER*4 num_buffers

The number of cache buffers to be used.

279

The only required preselected object/state is the current CDF.
<SELECT ,zZENTRY >
Selects the current zEntry number for all vAttributes in the current CDF. Required arguments are as follows:

in: INTEGER*4 entry num
zEntry number.

The only required preselected object/state is the current CDF.

<SELECT ,2ENTRY NAME >

Selects the current zEntry number for all vAttributes (in the current CDF) by zVariable name. The number of the
named zVariable becomes the current zEntry number. (The current zVariable is not changed.) NOTE: Selecting
the current zEntry by number (see <SELECT ,zZENTRY >) is more efficient. Required arguments are as follows:

in:. CHARACTER var_name™*(*)

zVariable name. This may be at most CDF_ VAR NAME LEN256 characters.

UNIX: For the proper operation of CDF _lib, var name MUST be a Fortran CHARACTER variable or
constant.

The only required preselected object/state is the current CDF.
<SELECT ,zZVAR >
Explicitly selects the current zVariable (in the current CDF) by number. Required arguments are as follows:

in: INTEGER*4 var num

zVariable number.

The only required preselected object/state is the current CDF.

<SELECT_,zVAR_CACHESIZE >

Selects the number of cache buffers to be used for the current zVariable's file (of the current CDF). This operation
is not applicable to a single-file CDF. The Concepts chapter in the CDF User's Guide describes the caching scheme
used by the CDF library. Required arguments are as follows:

in: INTEGER*4 num_buffers
The number of cache buffers to be used.

The required preselected objects/states are the current CDF and its current zVariable.

<SELECT_,zVAR_DIMCOUNTS_>

Selects the current dimension counts for the current zVariable in the current CDF. For 0-dimensional zVariables
this operation is not applicable. Required arguments are as follows:

in: INTEGER*4 counts(*)

Dimension counts. Each element of counts specifies the corresponding dimension count.

The required preselected objects/states are the current CDF and its current zVariable.

280

<SELECT_,zVAR_DIMINDICES >

Selects the current dimension indices for the current zVariable in the current CDF. For 0-dimensional zVariables
this operation is not applicable. Required arguments are as follows:

in: INTEGER*4 indices(*)

Dimension indices. Each element of indices specifies the corresponding dimension index.

The required preselected objects/states are the current CDF and its current zVariable.

<SELECT_,zVAR_DIMINTERVALS_>

Selects the current dimension intervals for the current zVariable in the current CDF. For 0-dimensional zVariables this
operation is not applicable. Required arguments are as follows:

in: INTEGER*4 intervals(*)

Dimension intervals. Each element of intervals specifies the corresponding dimension interval.
The required preselected objects/states are the current CDF and its current zVariable.

<SELECT_,zVAR_NAME >

Explicitly selects the current zVariable (in the current CDF) by name. NOTE: Selecting the current zVariable by
number (see <SELECT ,zZVAR >) is more efficient. Required arguments are as follows:

in:. CHARACTER var name*(*)

zVariable name. This may be at most CDF_ VAR NAME LEN256 characters.

UNIX: For the proper operation of CDF _lib, var name MUST be a Fortran CHARACTER variable or
constant.

The only required preselected object/state is the current CDF.

<SELECT ,zZVAR RECCOUNT >
Selects the current record count for the current zVariable in the current CDF. Required arguments are as follows:

in: INTEGER*4 rec_count

Record count.

The required preselected objects/states are the current CDF and its current zVariable.
<SELECT ,zVAR_RECINTERVAL >
Selects the current record interval for the current zVariable in the current CDF. Required arguments are as follows:

in: INTEGER*4 rec_interval

Record interval.

The required preselected objects/states are the current CDF and its current zVariable.

<SELECT ,zZVAR_RECNUMBER >
Selects the current record number for the current zVariable in the current CDF. Required arguments are as follows:

in: INTEGER*4 rec num

281

Record number.
The required preselected objects/states are the current CDF and its current zVariable.
<SELECT ,zVAR RESERVEPERCENT >
Selects the reserved percentage to be used for the current zVariable (in the current CDF). This operation is only
applicable to compressed zVariables. The Concepts chapter in the CDF User's Guide describes the reserve
percentage scheme used by the CDF library. Required arguments are as follows:
in: INTEGER*4 percent
The reserved percentage.
The required preselected objects/states are the current CDF and its current zVariable.
<SELECT ,zVAR SEQPOS >
Selects the current sequential value for sequential access for the current zVariable (in the current CDF). Note that
a current sequential value is maintained for each zVariable individually. Required arguments are as follows:
in: INTEGER*4 rec num
Record number.

in: INTEGER*4 indices(*)

Dimension indices. Each element of indices specifies the corresponding dimension index. For 0-
dimensional zVariables this argument is ignored (but must be present).

The required preselected objects/states are the current CDF and its current zVariable.
<SELECT ,zVARs CACHESIZE >
Selects the number of cache buffers to be used for all of the zVariable files (of the current CDF). This operation
is not applicable to a single-file CDF. The Concepts chapter in the CDF User's Guide describes the caching scheme
used by the CDF library. Required arguments are as follows:
in: INTEGER*4 num_buffers
The number of cache buffers to be used.
The only required preselected object/state is the current CDF.
<SELECT ,zVARs RECNUMBER >
Selects the current record number for each zVariable in the current CDF. This operation is provided to simplify
the selection of the current record numbers for the zVariables involved in a multiple variable access operation
(see the Concepts chapter in the CDF User’s Guide). Required arguments are as follows:
in: INTEGER*4 rec num

Record number.

The only required preselected object/state is the current CDF.

282

7.7 More Examples

Several more examples of the use of CDF _lib follow. in each example it is assumed that the current CDF has already
been selected (either implicitly by creating/opening the CDF or explicitly with <SELECT ,CDF >).

7.7.1 Creation

In this example an rVariable will be created with a pad value being specified; initial records will be written; and the
rVariable's blocking factor will be specified. Note that the pad value was specified before the initial records. This results
in the specified pad value being written. Had the pad value not been specified first, the initial records would have been
written with the default pad value. It is assumed that the current CDF has already been selected.

INCLUDE '<path>cdf.inc'

INTEGER*4 status
INTEGER*4 dim varys(2)
INTEGER*4 var num
REAL*4 pad value

Status returned from CDF library.
Dimension variances.

rVariable number.

Pad value.

DATA pad value/-999.9/

dim varys(l) = VARY

dim varys(2) = VARY
status = CDF lib (CREATE , rVAR , 'HUMIDITY', CDF REAL4, 1, VARY,
1 dim varys, var num,

2 PUT , rVAR PADVALUE , pad value,

3 rVAR INITIALRECS , 500,

4 rVAR BLOCKINGFACTOR , 50,

5 NULL , status)

IF (status .NE. CDF OK) CALL UserStatusHandler (status)

7.7.2 zVariable Creation (Character Data Type)

In this example a zVariable with a character data type will be created with a pad value being specified. It is assumed that
the current CDF has already been selected.

INCLUDE '<path>CDF.INC'

INTEGER*4 status ! Status returned from CDF library.

INTEGER*4 dim varys (1) ! Dimension variances.
INTEGER*4 var num ! zVariable number.

283

INTEGER*4 num dims
INTEGER*4 dim sizes (1)
INTEGER*4 num elems
CHARACTER*10 pad value

Number of
Dimension
Number of

DATA pad value/'****xkxxkx1/,

0 num dims/1/,
1 dim sizes/20/,
2 num elems/10/

dim varys(l) = VARY
status = CDF 1lib (CREATE , zVAR ,
2 PUT ,
3 NULL , status)
IF (status .NE. CDF OK)

7.7.3 Hyper Read with Subsampling

Pad value.

'Station',
1 dim_sizes,
zVAR PADVALUE , pad value,

CALL UserStatusHandler

dimension.
sizes.

elements (of the data type).

CDF_CHAR, num _elems, num dims,
NOVARY, dim varys, var_num,

(status)

In this example an rVariable will be subsampled in a CDF whose rVariables are 2-dimensional and have dimension sizes
[100,200]. The CDF is column major, and the data type of the rVariable is CDF_UINT2. It is assumed that the current

CDF has already been selected.

INCLUDE '<path>CDF.INC'

INTEGER*4

status Status returned from CDF library.
INTEGER*2 wvalues (50,100) Buffer to receive values.
INTEGER*4 rec_count Record count, one record per hyper get.
INTEGER*4 rec interval Record interval, set to one to indicate

contiguous records

(really meaningless

since record count is one).

INTEGER*4 indices (2)

INTEGER*4 counts (2)

Dimension indices,

Dimension counts,

start each read

half of the values along

each dimension will be read.

INTEGER*4 intervals (2)

Dimension intervals,

every other value

INTEGER*4
INTEGER*4

DATA rec count/1/,

1 intervals/2,2/
status = CDF_lib (SELECT ,
1

rec_num
max rec

rec interval/l/,

rVAR _NAME |,
rVARs RECCOUNT ,

|
|

|

|

|

|

|

! at 1,1 of the array.
|

|

|

! along each dimension will be read.

! Record number.

! Maximum rVariable record in the

! CDF - this was determined with a call
! to CDF _inquire.

indices/1,1/, counts/50,100/,

'BRIGHTNESS',
rec_count,

284

2 rVARs RECINTERVAL , rec interval,
3 rVARs DIMINDICES , indices,

4 rVARs DIMCOUNTS , counts,

5 rVARs DIMINTERVALS , intervals,

6 NULL , status)

IF (status .NE. CDF OK) CALL UserStatusHandler (status)

DO rec num = 1, max rec
status = CDF_lib (SELECT , rVARs RECNUMBER , rec num,
1 GET , rVAR HYPERDATA , values,
2 NULL , status)

IF (status .NE. CDF OK) CALL UserStatusHandler (status)
! process values

END DO

7.7.4 Attribute Renaming
In this example the attribute named Tmp will be renamed to TMP. It is assumed that the current CDF has already been

selected.

INCLUDE '<path>CDF.INC'
INTEGER*4 status ! Status returned from CDF library.

status = CDF_lib (SELECT , ATTR NAME , 'Tmp',

1 PUT , ATTR NAME, 'TMP',

2 NULL , status)

IF (status .NE. CDF OK) CALL UserStatusHandler (status)

7.7.5 Sequential Access

In this example the values for a zVariable will be averaged. The values will be read using the sequential access method
(see the Concepts chapter in the CDF User's Guide). Each value in each record will be read and averaged. It is assumed
that the data type of the zVariable has been determined to be CDF _REALA4. It is assumed that the current CDF has
already been selected.

INCLUDE '<path>CDF.INC'

285

INTEGER*4

status ! Status returned from CDF library.

INTEGER*4 var num ! zVariable number.
INTEGER*4 rec num ! Record number, start at first record.
INTEGER*4 indices (2) ! Dimension indices.
REAL*4 value ! Value read.
REAL*8 sum ! Sum of all values.
INTEGER*4 count ! Number of wvalues.
REAL*4 ave ! Average value.
DATA indices/1,1/, sum/0.0/, count/0/, rec num/1/
status = CDF _1lib (GET_, zVAR NUMBER , 'FLUX', var num,
1 NULL , status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)
status = CDF_lib (SELECT , zVAR , var_num,
1 zZVAR_SEQPOS , rec num, indices,
2 GET , zVAR SEQDATA , value,
3 NULL , status)
DO WHILE (status .GE. CDF_ OK)

sum = sum + value

count = count + 1

status = CDF_lib (GET , zVAR SEQDATA , value,

1 NULL , status)
END DO
IF (status .NE. END OF VAR) CALL UserStatusHandler (status)
ave = sum / count

7.7.6 Attribute rEntry Writes

In this example a set of attribute rEntries for a particular rVariable will be written. It is assumed that the current CDF

has already been selected.

INCLUDE '<path>CDF.INC'
INTEGER*4 status
REAL*4 scale (2)

DATA scale/-90.0,90.0/

status = CDF_lib (SELECT ,

! Status returned from CDF library.
! Scale, minimum/maximum.

rENTRY NAME , 'LATITUDE',

286

1 ATTR NAME , 'FIELDNAM',

2 PUT , rENTRY DATA , CDF CHAR, 20, 'Latitude',

3 SELECT , ATTR NAME , 'SCALE',

4 PUT , rENTRY DATA , CDF REAL4, 2, scale,

5 SELECT , ATTR NAME , 'UNITS',

6 PUT , rENTRY DATA , CDF CHAR, 20, 'Degrees north',
7 NULL , status)

IF (status .NE. CDF OK) CALL UserStatusHandler (status)

7.7.7 Multiple zVariable Write

In this example full-physical records will be written to the zVariables in a CDF. Note the ordering of the zVariables (see
the Concepts chapter in the CDF User's Guide). It is assumed that the current CDF has already been selected.

INCLUDE '<path>CDF.INC'

INTEGER*4 status
INTEGER*2 time

Status returned from CDF library.
"Time' value.

BYTE vector _a(3) ‘vectorA' values.

REAL*8 vector b (5) “vectorB' wvalues.

INTEGER*4 rec number Record number.

BYTE buffer (45) Buffer of full-physical records.

INTEGER*4 var numbers (3) Variable numbers.
EQUIVALENCE (vector b, buffer (1))

EQUIVALENCE (time, buffer (41))

EQUIVALENCE (vector a, buffer(43))

status = CDF_1lib (GET_, zVAR NUMBER , 'vectorB', var numbers(l),
1 zZzVAR_NUMBER , 'time', wvar numbers(2),

2 zVAR NUMBER , 'vectorA', var numbers(3),
3 NULL , status);

IF (status .NE. CDF OK) CALL UserStatusHandler (status)

DO rec number = 1, 100
/* read values from input file */

status = CDF lib (SELECT , zVARs RECNUMBER , rec number,

1 PUT , zVARs RECDATA , 3L, var_ numbers, buffer,
2 NULL , status);
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

END DO

287

Chapter 8

8 Interpreting CDF Status Codes

Most CDF functions return a status code of type INTEGER*4. The symbolic names for these codes are defined in cdf.inc
and should be used in your applications rather than using the true numeric values. Appendix A explains each status code.
When the status code returned from a CDF function is tested, the following rules apply.

status > CDF_OK Indicates successful completion but some additional information is
provided. These are informational codes.

status = CDF_OK Indicates successful completion.

CDF_WARN <status < CDF_OK Indicates that the function completed but probably not as expected.
These are warning codes.

status < CDF_WARN Indicates that the function did not complete. These are error codes.
The following example shows how you could check the status code returned from CDF functions.
INTEGER*4 status
CALL CDF function (..., status) ! any CDF function returning status
IF (status .NE. CDF OK) THEN
CALL UserStatusHandler (status, ...)
END IF

In your own status handler you can take whatever action is appropriate to the application. An example status handler
follows. Note that no action is taken in the status handler if the status is CDF_OK.

INCLUDE '<path>cdf.inc'

SUBROUTINE UserStatusHandler (status)
INTEGER*4 status

CHARACTER message* (CDF_STATUSTEXT LEN)

288

IF (status .LT. CDF_WARN) THEN
WRITE (6,10)
10 FORMAT (' ','An error has occurred, halting...')
CALL CDF _error (status, message)
WRITE (6,11) message
11 FORMAT (' ',A)
STOP
ELSE
IF (status .LT. CDF_OK) THEN
WRITE (6,12)
12 FORMAT (' ', '"Warning, function may not have completed as expected...')
CALL CDF_error (status, message)
WRITE (6,13) message
13 FORMAT (' ',A)
ELSE
IF (status .GT. CDF_OK) THEN
WRITE (6,14)
14 FORMAT (' ', 'Function completed successfully, but be advised that..."')
CALL CDF _error (status, message)
WRITE (6,15) message

15 FORMAT (' ',R)
END IF
END IF
END IF
RETURN
END

Explanations for all CDF status codes are available to your applications through the function CDF error. CDF _error
encodes in a text string an explanation of a given status code.

289

Chapter 9

9 EPOCH Utility Routines

Several subroutines exist that compute, decompose, parse, and encode CDF_ EPOCH and CDF_EPOCH]16 values. These
functions may be called by applications using the CDF_EPOCH and CDF_EPOCH]16 data types and are included in the
CDF library. Function prototypes for these functions may be found in the include file cdf.h. The Concepts chapter in
the CDF User's Guide describes EPOCH values. The date/time components for CDF EPOCH and CDF_EPOCH16 are
UTC-based, without leap seconds.

The CDF_EPOCH and CDF_EPOCH]16 data types are used to store time values referenced from a particular epoch. For

CDF that epoch values for CDF_EPOCH and CDF EPOCHI16 are milliseconds from 01-Jan-0000 00:00:00.000 and
pico-seconds from 01-Jan-0000 00:00:00.000.000.000.000, respectively.

9.1 compute EPOCH

compute EPOCH calculates a CDF_EPOCH value given the individual components. If an illegal component is
detected, the value returned will be ILLEGAL EPOCH VALUE.

SUBROUTINE compute EPOCH (

INTEGER*4 year, lin -- Year (AD, e.g., 1994).
INTEGER*4 month, !'in -- Month.

INTEGER*4 day, l'in -- Day.

INTEGER*4 hour, !'in -- Hour.

INTEGER*4 minute, !'in -- Minute.

INTEGER*4 second, 'in -- Second.

INTEGER*4 msec, !'in -- Millisecond.

REAL*8 epoch) ! out-- CDF_EPOCH value

NOTE: Previously, fields for month, day, hour, minute, second and msec should have a valid ranges, mainly 1-12 for
month, 1-31 for day, 0-23 for hour, 0-59 for minute and second, and 0-999 for msec. However, there are two variations
on how computeEPOCH can be used. The month argument is allowed to be 0 (zero), in which case, the day argument is
assumed to be the day of the year (DOY) having a range of 1 through 366. Also, if the hour, minute, and second arguments
are all Os (zero), then the msec argument is assumed to be the millisecond of the day, having a range of 0 through
86400000. The modified computeEPOCH, since the CDF V3.3.1, allows month, day, hour minute, second and msec to
be any values, even negative ones, without range checking as long as the comulative date is after 0AD. Any cumulative
date before 0AD will cause this function to return ILLEGAL EPOCH_ VALUE (-1.0) By not checking the range of dta

290

fields, the epoch will be computed from any given values for month, day, hour, etc. For example, the epoch can be
computed by passing a Unix-time (seconds from 1970-1-1) in a set of arguments of “1970, 1, 1, 0, 0, unix-time, 0”. While
the second field is allowed to have a value of 60 (or greater), the CDF epoch still does not support of leap second. An
input of 60 for the second field will automatically be interpreted as 0 (zero) second in the following minute. If the month
field is 0, the day field is still considered as DOY. If the day field is 0, the date will fall back to the last day of the previous
month, e.g., a date 0f 2010-2-0 becoming 2010-1-31. The following table shows how the year, month and day components
of the epoch will be interpreted by the following EPOCHbreakdown function when the month and/or day field is passed
in with 0 or negative value to computeEPOCH function.

Year Month Day Year Month Day

2010 0 0 > 2009 12 31 Last day of the previous year

2010 1 0 > 2009 11 30 Last day of November of the previous
year

2010 0 1 > 2010 1 1 First day of the year

2010 1 0 > 2009 12 31 Last day of the previous year

2010 0 1 > 2009 12 30 Two days before January 1% of current
year

2010 1 1 > 2009 11 29 Two months and two days before

January 1% of current year
Input Year/Month/Day Interpreted Year/Month/Day

9.2 EPOCH _breakdown

EPOCH_breakdown decomposes a CDF_EPOCH value into the individual components.

SUBROUTINE EPOCH_breakdown (
REAL*8 epoch,

INTEGER*4 year,

INTEGER*4 month,

INTEGER*4 day,

INTEGER*4 hour,

INTEGER*4 minute,

INTEGER*4 second,

INTEGER*4 msec)

in -- The CDF EPOCH value.
out -- Year (AD, e.g., 1994).
out -- Month (1-12).

out -- Day (1-31).

out -- Hour (0-23).

out -- Minute (0-59).

out -- Second (0-59).

out -- Millisecond (0-999).

9.3 toencode EPOCH

toencode EPOCH encodes a CDF_EPOCH value into the standard date/time character string, based on the passed style.
The fomats of the string are:
- Style 0: dd-mmm-yyyy hh:mm:ss.ccc where dd is the day of the month (1-31), mmm is the month (Jan,
Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, or Dec), yyyy is the year, hh is the hour (0-23), mm is
the minute (0-59), ss is the second (0-59), and ccc is the millisecond (0-999).
- Style 1: yyyymmdd.ttttttt where yyyy is the year, mm is the month (1-12), dd is the day of the month (1-
31), and ttttttt is the fraction of the day (e.g., 5000000 is 12 o'clock noon).
- Style 2: yyyymmddhhmmss where yyyy is the year, mm is the month (01-12), dd is the day of the month
(1-31), hh is the hour (0-23), mm is the minute (0-59), and ss is the second (0-59).

291

- Style 3: yyyy-mm-ddThh:mm:ss.cccZ where yyyy is the year, mm is the month (01-12), dd is the day of
the month (1-31), hh is the hour (0-23), mm is the minute (0-59), ss is the second (0-59), and ccc is the
millisecond (0-999).

- Style 4*: yyyy-mm-ddThh:mm:ss.ccec where yyyy is the year, mm is the month (01-12), dd is the day of
the month (1-31), hh is the hour (0-23), mm is the minute (0-59), ss is the second (0-59), and ccc is the
millisecond (0-999).

SUBROUTINE toencode EPOCH (

REAL*8 epoch, !'in -- The CDF_EPOCH value.
INTEGER*4 style, !'in -- The encoded string style.
CHARACTER epString*(EPOCH_STRING_LEN) ! out -- The standard date/time character string.

EPOCH_STRING LEN, the maximum of the possible string, is defined in cdf.inc.

9.4 encode EPOCH

encode EPOCH encodes a CDF_EPOCH value into the standard date/time character string. The format of the string is
dd-mmm-yyyy hh:mm:ss.ccc where dd is the day of the month (1-31), mmm is the month (Jan, Feb, Mar, Apr, May,
Jun, Jul, Aug, Sep, Oct, Nov, or Dec), yyyy is the year, hh is the hour (0-23), mm is the minute (0-59), ss is the second
(0-59), and ccc is the millisecond (0-999).

SUBROUTINE encode EPOCH (

REAL*8 epoch, !'in -- The CDF_EPOCH value.
CHARACTER epString*(EPOCH_STRING_LEN)) ! out -- The standard date/time character string.

EPOCH _STRING LEN is defined in cdf.inc.

9.5 encode EPOCH1

encode EPOCHI encodes a CDF_EPOCH value into an alternate date/time character string. The format of the string is
yyyymmdd.ttttttt, where yyyy is the year, mm is the month (1-12), dd is the day of the month (1-31), and ttttttt is the
fraction of the day (e.g., 5000000 is 12 o'clock noon).

SUBROUTINE encode EPOCHI(

REAL*8 epoch, !'in -- The CDF_EPOCH value.
CHARACTER epString*(EPOCH1_STRING_LEN)) ! out -- The alternate date/time character string.

EPOCHI_STRING LEN is defined in cdf.inc.

44 If the style is invalid (not in 0-4 range), then style 4 is the default.

292

9.6 encode EPOCH2

encode EPOCH2 encodes a CDF_EPOCH value into an alternate date/time character string. The format of the string is
yyyymoddhhmmss where yyyy is the year, mo is the month (1-12), dd is the day of the month (1-31), hh is the hour (0-
23), mm is the minute (0-59), and ss is the second (0-59).

SUBROUTINE encode EPOCH2 (

REAL*8 epoch, !'in -- The CDF_EPOCH value.
CHARACTER epString*(EPOCH2_STRING LEN)) ! out -- The alternate date/time character string.

EPOCH2 STRING LEN is defined in cdf.inc.

9.7 encode EPOCH3

encode EPOCH3 encodes a CDF_EPOCH value into an alternate date/time character string. The format of the string is
yyyy-mo-ddThh:mm:ss.cccZ where yyyy is the year, mo is the month (1-12), dd is the day of the month (1-31), hh is the
hour (0-23), mm is the minute (0-59), ss is the second (0-59), and ccc is the millisecond (0-999).

SUBROUTINE encode EPOCH3 (

REAL*8 epoch, !in -- The CDF_EPOCH value.
CHARACTER epString*(EPOCH3_STRING LEN)) ! out -- The alternate date/time character string.

EPOCH3 STRING_LEN is defined in cdf.inc.

9.8 encode EPOCH4

encode EPOCH4 encodes a CDF_EPOCH value into an alternate, ISO 8601 date/time character string. The format of

the string is yyyy-mo-ddThh:mm:ss.ccc where yyyy is the year, mo is the month (1-12), dd is the day of the month (1-

31), hh is the hour (0-23), mm is the minute (0-59), ss is the second (0-59), and ccc is the millisecond (0-999).
SUBROUTINE encode EPOCH4 (

REAL*8 epoch, !'in -- The CDF_EPOCH value.
CHARACTER epString*(EPOCH4 STRING LEN)) ! out -- The ISO 8601 date/time character string.

EPOCH4 STRING LEN is defined in cdf.inc.

9.9 encode EPOCHXx

encode EPOCHx encodes a CDF_EPOCH value into a custom date/time character string. The format of the encoded
string is specified by a format string.

293

SUBROUTINE encode EPOCHXx (

REAL*8 epoch, !in -- The CDF_EPOCH value.
CHARACTER format*(EPOCHx FORMAT MAX)), ! in -- The format string.
CHARACTER encoded*(EPOCHx_STRING MAX)) ! out -- The custom date/time character string.

The format string consists of EPOCH components which are encoded and text which is simply copied to the encoded
custom string. Components are enclosed in angle brackets and consist of a component token and an optional width. The
syntax of a component is: <token[.width]>. If the optional width contains a leading zero, then the component will be
encoded with leading zeroes (rather than leading blanks).

The supported component tokens and their default widths are as follows. . .

Token Meaning Default
dom Day of month (1-31) <dom.0>
doy Day of year (001-366) <doy.03>
month Month ("Jan', Feb',...,"Dec') <month>
mm Month (1,2,...,12) <mm.0>
year Year (4-digit) <year.04>
yr Year (2-digit) <yr.02>
hour Hour (00-23) <hour.02>
min Minute (00-59) <min.02>
sec Second (00-59) <sec.02>
fos Fraction of second. <fos.3>
fod Fraction of day. <fod.8>

Note that a width of zero indicates that as many digits as necessary should be used to encoded the component. The
<month> component is always encoded with three characters. The <fos> and <fod> components are always encoded
with leading zeroes.

If a left angle bracket is desired in the encoded string, then simply specify two left angle brackets (<<) in the format string
(character stuffing).

For example, the format string used to encode the standard EPOCH date/time character string (see Section 9.3) would
be. ..

<dom.02>-<month>-<year> <hour>:<min>:<sec>.<fos>

EPOCHx FORMAT LEN and EPOCHx STRING MAX are defined in cdf.inc.

9.10 toparse EPOCH

toparse EPOCH parses a standard date/time character string and returns a CDF_EPOCH value. The format of the string
can be one of valid styles used by the encoding functions described in Section 9.3-9.8. If an illegal field is detected in
the string the value returned will be ILLEGAL EPOCH_VALUE.

SUBROUTINE parse EPOCH (
CHARACTER epString*(EPOCH_STRING_LEN), ! in -- The standard date/time character string.
REAL*8 epoch) ! out-- CDF_EPOCH value

EPOCH _STRING LEN is defined in cdf.inc.

294

9.11 parse EPOCH

parse EPOCH parses a standard date/time character string and returns a CDF_EPOCH value. The format of the string
is that produced by the encode EPOCH function described in Section 9.3. If an illegal field is detected in the string the
value returned will be ILLEGAL EPOCH VALUE.

SUBROUTINE parse EPOCH (

CHARACTER epString*(EPOCH_STRING_LEN), ! in -- The standard date/time character string.

REAL*8 epoch) ! out -- CDF_EPOCH value

EPOCH_STRING LEN is defined in cdf.inc.

9.12 parse EPOCHI1

parse EPOCHI1 parses an alternate date/time character string and returns a CDF_EPOCH value. The format of the
string is that produced by the encode EPOCH1 function described in Section 9.5. If an illegal field is detected in the
string the value returned will be ILLEGAL EPOCH_VALUE.

SUBROUTINE parse EPOCHI (

CHARACTER epString*(EPOCH1_STRING LEN), ! in -- The alternate date/time character string.

REAL*8 epoch) ! out -- CDF_EPOCH value

EPOCHI_STRING LEN is defined in cdf.inc.

9.13 parse EPOCH2

parse EPOCH2 parses an alternate date/time character string and returns a CDF_EPOCH value. The format of the
string is that produced by the encode EPOCH2 function described in Section 9.6. If an illegal field is detected in the
string the value returned will be ILLEGAL EPOCH_VALUE.

SUBROUTINE parse EPOCH2 (

CHARACTER epString*(EPOCH2 STRING LEN), ! in -- The alternate date/time character string.

REAL*8 epoch) ! out -- CDF_EPOCH value

EPOCH2 STRING LEN is defined in cdf.inc.

9.14 parse EPOCH3

parse EPOCH3 parses an alternate date/time character string and returns a CDF_EPOCH value. The format of the
string is that produced by the encode EPOCH3 function described in Section 9.7. If an illegal field is detected in the
string the value returned will be ILLEGAL EPOCH_VALUE.

SUBROUTINE parse EPOCH3 (

295

CHARACTER epString*(EPOCH3 _STRING_LEN), ! in -- The alternate date/time character string.
REAL*8 epoch) ! out-- CDF_EPOCH value

EPOCH3 STRING LEN is defined in cdf.inc.

9.15 parse EPOCH4

parse EPOCH4 parses an alternate, ISO 8601 date/time character string and returns a CDF_EPOCH value. The format
of the string is that produced by the encode EPOCH3 function described in Section 9.8. If an illegal field is detected in
the string the value returned will be ILLEGAL EPOCH_VALUE.

SUBROUTINE parse EPOCH4 (

CHARACTER epString*(EPOCH4 STRING LEN), ! in -- The ISO 8601 date/time string.

REAL*8 epoch) ! out-- CDF_EPOCH value

EPOCH4 STRING LEN is defined in cdf.inc.

9.16 compute EPOCH16

compute EPOCH16 calculates a CDF_EPOCH16 value given the individual components. If An illegal component is
detected, the value returned will be ILLEGAL EPOCH_ VALUE.

SUBROUTINE compute EPOCH16 (

INTEGER*4 year, lin -- Year (AD, e.g., 1994).
INTEGER*4 month, !'in -- Month.

INTEGER*4 day, l'in -- Day.

INTEGER*4 hour, !'in -- Hour.

INTEGER*4 minute, !'in -- Minute.

INTEGER*4 second, !in -- Second.

INTEGER*4 msec, !'in -- Millisecond.
INTEGER*4 usec, !'in -- Microsecond.
INTEGER*4 nsec, !'in -- Nanosecond.
INTEGER*4 psec, !'in -- Picosecond.

REAL*8 epoch(2)) ! out-- CDF_EPOCH16 value

Similar to computeEPOCH, this function no longer performs range checks for each individual componenet as long as the
cumulative date is after 0AD.

9.17 EPOCHI16_breakdown

EPOCHI16 breakdown decomposes a CDF_EPOCH]16 value into the individual components.

SUBROUTINE EPOCH_breakdown (
REAL*8 epoch(2), !in -- The CDF_EPOCHI6 value.

296

INTEGER*4 vyear, out -- Year (AD, e.g., 1994).
INTEGER*4 month, out -- Month (1-12).
INTEGER*4 day, out -- Day (1-31).
INTEGER*4 hour, out -- Hour (0-23).
INTEGER*4 minute, out -- Minute (0-59).
INTEGER*4 second, out -- Second (0-59).

INTEGER*4 msec,
INTEGER*4 usec,
INTEGER*4 nsec,
INTEGER*4 psec)

out -- Millisecond (0-999).
out -- Microsecond (0-999).
out -- Nanosecond (0-999).
out -- Picosecond (0-999).

9.18 toencode EPOCHI16

toencode EPOCH16 encodes a CDF_EPOCH]16 value into the standard date/time character string, based on the passed
style. The fomats of the string are:
- Style 0: dd-mmm-yyyy hh:mm:ss.mmm.uuu.nnn.ppp where dd is the day of the month (1-31), mmm is
the month (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, or Dec), yyyy is the year, hh is the hour
(0-23), mm is the minute (0-59), ss is the second (0-59), and mmm is the millisecond (0-999), uuu is the
microsecond (0-999), nnn is the nanosecond (0-999), and ppp is the picosecond (0-999).
- Style 1: yyyymmdd.ttttttttttttttt where yyyy is the year, mm is the month (1-12), dd is the day of the month
(1-31), and ttttttttttttttt is the fraction of the day (e.g., 5000000 is 12 o'clock noon).
- Style 2: yyyymmddhhmmss where yyyy is the year, mm is the month (01-12), dd is the day of the month
(1-31), hh is the hour (0-23), mm is the minute (0-59), and ss is the second (0-59).
- Style 3: yyyy-mm-ddThh:mm:ss.mmm.uuu.nnn.pppZ where yyyy is the year, mm is the month (01-12),
dd is the day of the month (1-31), hh is the hour (0-23), mm is the minute (0-59), ss is the second (0-59),
and mmm is the millisecond (0-999), uuu is the microsecond (0-999), nnn is the nanosecond (0-999), and
ppp is the picosecond (0-999).
- Style 4*5: yyyy-mm-ddThh:mm:ss.mmmuuunnnppp where yyyy is the year, mm is the month (01-12),
dd is the day of the month (1-31), hh is the hour (0-23), mm is the minute (0-59), ss is the second (0-59),
and mmm is the millisecond (0-999), uuu is the microsecond (0-999), nnn is the nanosecond (0-999), and
ppp is the picosecond (0-999).

SUBROUTINE toencode EPOCH16(
REAL*8 epoch(2); /* in -- The CDF_EPOCH16 value. */
INTEGER*4 style; /* in -- The string style. */
CHARACTER epString(EPOCH16_STRING LEN+1); /* out -- The date/time character string. */

EPOCH16 _STRING_LEN (happens to be the largest string length among all styles) is defined in cdf.h.

9.19 encode EPOCHI16

encode EPOCH16 encodes a CDF_EPOCH]16 value into the standard date/time character string. The format of the string
is dd-mmm-yyyy hh:mm:ss.ccc.uuu.nnn.ppp where dd is the day of the month (1-31), mmm is the month (Jan, Feb,
Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, or Dec), yyyy is the year, hh is the hour (0-23), mm is the minute (0-59),
ss is the second (0-59), ccc is the millisecond (0-999), uuu is the microsecond (0-999), nnn is the nanosecond (0-999),
and ppp is the picosecond (0-999).

SUBROUTINE encode EPOCH16 (
REAL*8 epoch(2), ! in -- The CDF_EPOCHI16 value.

4 If the style is invalid (not in 0-4 range), then style 4 is the default.

297

CHARACTER epString*(EPOCH16_STRING LEN)) ! out-- The standard date/time string.

EPOCHI16 STRING LEN is defined in cdf.inc.

9.20 encode EPOCHI16 1

encode EPOCH16_1 encodes a CDF_EPOCH16 value into an alternate date/time character string. The format of the
string is yyyymmdad.ttttttttttttttt, where yyyy is the year, mm is the month (1-12), dd is the day of the month (1-31), and
tttttttettttttt is the fraction of the day (e.g., 500000000000000 is 12 o'clock noon).

SUBROUTINE encode EPOCH16 1(
REAL*8 epoch(2), !'in -- The CDF_EPOCHI16 value.
CHARACTER epString*(EPOCH16 1 STRING LEN)) ! out -- The date/time string.

EPOCHI16 1 STRING LEN is defined in cdf.inc.

9.21 encode EPOCHI16 2

encode EPOCH16_2 encodes a CDF_EPOCH16 value into an alternate date/time character string. The format of the
string is yyyymoddhhmmss where yyyy is the year, mo is the month (1-12), dd is the day of the month (1-31), hh is the
hour (0-23), mm is the minute (0-59), and ss is the second (0-59).

SUBROUTINE encode EPOCHI16 2 (
REAL*8 epoch(2), !'in -- The CDF_EPOCHI16 value.
CHARACTER epString*(EPOCH16 2 STRING LEN)) ! out -- The date/time string.

EPOCH16 2 STRING LEN is defined in cdf.inc.

9.22 encode EPOCHI16 3

encode EPOCH16_3 encodes a CDF_EPOCH16 value into an alternate date/time character string. The format of the
string is yyyy-mo-ddThh:mm:ss.ccc.uuu.nnn.pppZ where yyyy is the year, mo is the month (1-12), dd is the day of the
month (1-31), hh is the hour (0-23), mm is the minute (0-59), ss is the second (0-59), ccc is the millisecond (0-999), uuu
is the microsecond (0-999), nnn is the nanosecond (0-999), and ppp is the picosecond (0-999).

SUBROUTINE encode EPOCHI16 3 (
REAL*8 epoch(2), !'in -- The CDF_EPOCHI16 value.
CHARACTER epString*(EPOCH16 3 STRING LEN)) ! out -- The date/time string.

EPOCH16 3 STRING LEN is defined in cdf.inc.

298

9.23 encode EPOCH16 4

encode EPOCH16_4 encodes a CDF_EPOCH16 value into an alternate, ISO 8601 date/time character string. The format
of the string is yyyy-mo-ddThh:mm:ss.cccuuunnnppp where yyyy is the year, mo is the month (1-12), dd is the day of
the month (1-31), hh is the hour (0-23), mm is the minute (0-59), ss is the second (0-59), ccc is the millisecond (0-999),
uuu is the microsecond (0-999), nnn is the nanosecond (0-999), and ppp is the picosecond (0-999).

SUBROUTINE encode EPOCH16 4 (
REAL*8 epoch(2), !'in -- The CDF_EPOCHI16 value.
CHARACTER epString*(EPOCH16 4 STRING LEN)) ! out -- The ISO 8601 date/time string.

EPOCH16 4 STRING_LEN is defined in cdf.inc.

9.24 encode EPOCH16 x

encode EPOCH16_x encodes a CDF_EPOCHI16 value into a custom date/time character string. The format of the
encoded string is specified by a format string.

SUBROUTINE encode EPOCH16_x (

REAL*8 epoch(2); !'in -- The CDF_EPOCHI16 value.
CHARACTER format*(EPOCHx_FORMAT MAX) ! in -- The format string.
CHARACTER encoded*(EPOCHx_STRING MAX)) ! out -- The custom date/time character string.

The format string consists of EPOCH components which are encoded and text which is simply copied to the encoded
custom string. Components are enclosed in angle brackets and consist of a component token and an optional width. The
syntax of a component is: <token[.width]>. If the optional width contains a leading zero, then the component will be
encoded with leading zeroes (rather than leading blanks).

The supported component tokens and their default widths are as follows.

Token Meaning Default
dom Day of month (1-31) <dom.0>
doy Day of year (001-366) <doy.03>
month Month ("Jan', Feb',...,"Dec') <month>
mm Month (1,2,...,12) <mm.0>
year Year (4-digit) <year.04>
yr Year (2-digit) <yr.02>
hour Hour (00-23) <hour.02>
min Minute (00-59) <min.02>
sec Second (00-59) <sec.02>
msc Millisecond (000-999) <msc.3>
usc Microsecond (000-999) <usc.3>
nsc Nanosecond (000-999) <nsc.3>
psc Picosecond (000-999) <psc.3>
fos Fraction of second. <fos.3>
fod Fraction of day. <fod.8>

Note that a width of zero indicates that as many digits as necessary should be used to encoded the component. The
<month> component is always encoded with three characters. The <fos> and <fod> components are always encoded
with leading zeroes.

299

If a left angle bracket is desired in the encoded string, then simply specify two left angle brackets (<<) in the format string
(character stuffing).

For example, the format string used to encode the standard EPOCH16 date/time character string (see Section 9.18) would
be. ..

<dom.02>-<month>-<year> <hour>:<min>:<sec>.<msc>.<usc>.<nsc>.<psc>.<fos>

EPOCHx FORMAT LEN and EPOCHx STRING MAX are defined in cdf.inc.

9.25 toparse EPOCHI16

toparse EPOCH16 parses a standard date/time character string and returns a CDF_EPOCH16 value. The format of the
string can be one of valid styles used by the encoding functions described in Section 9.18-9.23. 1If an illegal field is
detected in the string the value returned will be ILLEGAL EPOCH VALUE.

SUBROUTINE toparse EPOCH16 (
CHARACTER epString*(EPOCH16_STRING LEN), ! in -- The date/time string.
REAL*8 epoch(2)) ! out -- CDF_EPOCH]16 value

EPOCHI16 STRING_LEN is defined in cdf.inc.

9.26 parse EPOCHI16

parse EPOCH16 parses a standard date/time character string and returns a CDF_EPOCH16 value. The format of the
string is that produced by the encode EPOCH16 function. If an illegal field is detected in the string the value returned
will be ILLEGAL EPOCH_VALUE.

SUBROUTINE parse EPOCH16 (
CHARACTER epString*(EPOCH16_STRING_LEN), ! in -- The date/time string.
REAL*8 epoch(2)) ! out-- CDF_EPOCH]16 value

EPOCHI16 STRING LEN is defined in cdf.inc.

9.27 parse EPOCHI16 1

parse EPOCHI16 1 parses an alternate date/time character string and returns a CDF_EPOCH16 value. The format of
the string is that produced by the encode EPOCH16 1 function. If an illegal field is detected in the string the value
returned will be ILLEGAL EPOCH_VALUE.

SUBROUTINE parse EPOCH16_1 (

CHARACTER epString*(EPOCH16 1 STRING LEN), ! in -- The date/time string.
REAL*8 epoch(2)) ! out -- CDF_EPOCH]16 value

300

EPOCH16 1 STRING LEN is defined in cdf.inc.

9.28 parse EPOCHI16 2

parse EPOCH16_2 parses an alternate date/time character string and returns a CDF_EPOCH16 value. The format of
the string is that produced by the encode EPOCH16 2 function. If an illegal field is detected in the string the value
returned will be ILLEGAL EPOCH_VALUE.

SUBROUTINE parse EPOCH16 2 (

CHARACTER epString*(EPOCH16_2 STRING LEN), ! in -- The date/time string.

REAL*8 epoch(2)) ! out-- CDF_EPOCH]16 value

EPOCH16 2 STRING LEN is defined in cdf.inc.

9.29 parse EPOCH16 3

parse EPOCH16 3 parses an alternate date/time character string and returns a CDF_EPOCH16 value. The format of
the string is that produced by the encode. EPOCH16 3 function. If an illegal field is detected in the string the value
returned will be ILLEGAL EPOCH_VALUE.

SUBROUTINE parse EPOCH16 3 (

CHARACTER epString*(EPOCH16_3 STRING LEN), ! in -- The date/time string.

REAL*8 epoch(2)) ! out -- CDF_EPOCH]16 value

EPOCH16 3 STRING LEN is defined in cdf.inc.

9.30 parse EPOCHI16 4

parse EPOCH16 4 parses an alternate, ISO 8601 date/time character string and returns a CDF_EPOCH16 value. The
format of the string is that produced by the encode EPOCH16 4 function. If an illegal field is detected in the string the
value returned will be ILLEGAL EPOCH_VALUE.

SUBROUTINE parse EPOCHI16 4 (

CHARACTER epString*(EPOCH16 4 STRING LEN), ! in -- The date/time string.

REAL*8 epoch(2)) ! out-- CDF_EPOCH]16 value

EPOCH16 4 STRING LEN is defined in cdf.inc.

9.31 EPOCH _to UnixTime

301

EPOCH_to_UnixTime converts epoch times of CDF_EPOCH type into Unix times. A CDF_EPOCH epoch, a double, is
milliseconds from 0000-01-01T00:00:00.000 while Unix time, also a double, is seconds from 1970-01-01T00:00:00.000.
The Unix time can have sub-second, with a time resolution of microseconds, in its fractional part.

SUBROUTINE EPOCH_to UnixTime (

REAL*8 epoch, ! in -- CDF_EPOCH epoch times
REAL*8 unixTime, ! out -- Unix times
INTEGER numTimes) ! in -- # of times to be converted

9.32 UnixTime to EPOCH

UnixTime to EPOCH converts Unix times into epoch times of CDF_EPOCH type. A Unix time, a double, is seconds
from 1970-01-01T00:00:00.000 while a CDF EPOCH epoch, also a double, is milliseconds from 0000-01-
01T00:00:00.000. The Unix time can have sub-second, with a time resolution of microseconds, in its fractional part.
Converting the Unix time to EPOCH will only keep the resolution to milliseconds.

SUBROUTINE UnixTime_to EPOCH (

REALS unixTime, ! in -- Unix times
REAL*8 epoch, !'out -- CDF_EPOCH epoch times
INTEGER numTimes) ! in --# of times to be converted

9.33 EPOCHI16_to UnixTime

EPOCH16 _to UnixTime converts epoch times of CDF_EPOCH16 type into Unix times. A CDF_EPOCH16 epoch, a
two-double, is picoseconds from 0000-01-01T00:00:00.000.000.000.000 while Unix time, a double, is seconds from
1970-01-01T00:00:00.000. The Unix time can have sub-second, with a time resolution of microseconds, in its fractional
part. Note: As CDF _EPOCH16 has much higher time resolution, sub-microseconds portion of its time might get lost
during the conversion.

SUBROUTINE EPOCH16 to UnixTime (

REAL*8 epoch, ! in -- CDF_EPOCH16 epoch times
REAL*8 unixTime, ! out -- Unix times
INTEGER numTimes) ! in --# of times to be converted

9.34 UnixTime to EPOCH16

UnixTime to EPOCH16 converts Unix times into epoch times of CDF_EPOCH]16 type. A Unix time, a double, is
seconds from 1970-01-01T00:00:00.000 while a CDF_EPOCH16 epoch, a two-double, is picoseconds from 0000-01-
01T00:00:00.000.000.000.000. The Unix time can have sub-second, with a time resolution of microseconds, in its
fractional part. Sub-microseconds will be filled with 0’s when converting from Unix time to EPOCH16.

SUBROUTINE UnixTime to EPOCH16 (

REAL*8 unixTime, ! in -- Unix times
REAL*8 epoch, !'out -- CDF_EPOCH16 epoch times
INTEGER numTimes) ! in -- # of times to be converted

302

10 TT2000 Utility Routines

Several subroutines exist that compute, decompose, parse, and encode CDF_TIME TT2000 values. These functions
may be called by applications using the CDF_TIME TT2000 data type and are included in the CDF library. Function
prototypes for these functions may be found in the include file cdf.h. The Concepts chapter in the CDF User's Guide
describes TT2000 values. The date/time components for CDF_TIME_TT2000 are UTC-based, with leap seconds.

The CDF _TIME TT2000 data type is used to store time values referenced from J2000 (2000-01-

01T12:00:00.000000000). Values in CDF_TIME TT2000 are nanoseconds from J2000 with leap seconds included.
TT2000 data can cover years between 1707 and 2292.

10.1 compute TT2000

compute TT2000 calculates a CDF_TIME TT2000 value given the individual UTC-based time components. If an
illegal component is detected, e.g., date is outside the range that TT2000 can cover, the value returned will be
ILLEGAL TT2000 VALUE.

SUBROUTINE compute TT2000 (

INTEGER*4 year, l'in -- Year (AD, e.g., 1994).
INTEGER*4 month, !in -- Month.

INTEGER*4 day, l'in -- Day.

INTEGER*4 hour, !in -- Hour.

INTEGER*4 minute, !'in -- Minute.

INTEGER*4 second, !'in -- Second.

INTEGER*4 msec, !'in -- Millisecond.
INTEGER*4 usec, !'in -- Microsecond.
INTEGER*4 nsec, 'in -- Nanosecond.
INTEGER*8 tt2000) ! out-- CDF_TIME_TT2000 value

The “INTEGER*8” for returned TT2000 value is just a symbol and not a true Fortran type. This symbol is used in the
following sections as well. It should be an 8-byte integer type. Refer to Section 4.21. It can be defined as follows

INCLUDE ‘CDF.INC
INTEGER (KIND=KIND_ INTS) tt2000

The day componment can be presented as day of the month or day of the year (DOY). If DOY form is used, the month
componment must have a value of one (1).

10.2 TT2000 breakdown

TT2000_breakdown decomposes a CDF_TIME_TT2000 value into the individual UTC-based time components.

SUBROUTINE TT2000_ breakdown (
INTEGER*8 tt2000, !'in -- The CDF _TIME TT2000 value.

303

INTEGER*4 year,
INTEGER*4 month,
INTEGER*4 day,
INTEGER*4 hour,
INTEGER*4 minute,
INTEGER*4 second,
INTEGER*4 msec,
INTEGER*4 usec,
INTEGER*4 nsec)

10.3

out -- Year (1707-2292).

out -- Month (1-12).

out -- Day (1-31).

out -- Hour (0-23).

out -- Minute (0-59).

out -- Second (0-59 or 60 if leap second).
out -- Millisecond (0-999).

out -- Microsecond (0-999).

out -- Nanosecond (0-999).

toencode_TT200046

toencode_TT2000 encodes a CDF_TIME_ TT2000 value into the standard UTC-based date/time character string, based
on the passed in style. The fomats of the string are:

Style 0: dd-mmm-yyyy hh:mm:ss.mmm.uuu.nnn where dd is the day of the month (1-31), mmm is the
month (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, or Dec), yyyy is the year, hh is the hour (0-
23), mm is the minute (0-59), ss is the second (0-59/60), and mmm is the millisecond (0-999), uuu is the
microsecond (0-999), and nnn is the nanosecond (0-999).

Style 1: yyyymmdd.ttttttttttttttt where yyyy is the year, mm is the month (1-12), dd is the day of the month
(1-31), and ttttttttttttttt is the fraction of the day (e.g., 5000000 is 12 o'clock noon).

Style 2: yyyymmddhhmmss where yyyy is the year, mm is the month (01-12), dd is the day of the month
(1-31), hh is the hour (0-23), mm is the minute (0-59), and ss is the second (0-59/60).

Style 3: yyyy-mm-ddThh:mm:ss.mmmuuunnn where yyyy is the year, mm is the month (01-12), dd is
the day of the month (1-31), hh is the hour (0-23), mm is the minute (0-59), ss is the second (0-59/60), and
mmm is the millisecond (0-999), uuu is the microsecond (0-999), and nnn is the nanosecond (0-999).

Style 4: yyyy-mm-ddThh:mm:ss.mmmuuunnnZ where yyyy is the year, mm is the month (01-12), dd is
the day of the month (1-31), hh is the hour (0-23), mm is the minute (0-59), ss is the second (0-59/60), and
mmm is the millisecond (0-999), uuu is the microsecond (0-999), and nnn is the nanosecond (0-999).

void toencode TT200047(

10.4

INTEGER*8 tt2000, ! in -- The CDF_TIME TT2000 value. */
INTEGER*4 style, ! in -- encoded UTC string style */
CHARACTER epString*(TT2000_* STRING LEN)) !'out -- The encoded date/time string.

encode TT2000

encode_TT2000 encodes a CDF_TIME_TT2000 value into the standard date/time UTC-based time character string.

SUBROUTINE encode EPOCH (

INTEGER*8 tt2000, ! in -- The CDF _TIME TT2000 value.
INTEGER*4 style, ! in -- The output string format (0-4)
CHARACTER epString*(TT2000_* STRING LEN)) ! out -- The date/time character string.

TT2000_* STRING LEN (where * is 0-4) is defined in cdf.inc.

For style value 0, the encoded UTC string is DD-Mon-YYYY hh:mm:ss.mmmuuunnn, where DD is the day of the
month (1-31), Mon is the month (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, or Dec), YYYY is the year,

46 To compliment other CDF epoch data typoes: toencode EPOCH and toencode EPOCH16.
47 The default encoding style is 3 for CDF_TIME_TT2000 data type for the date/time string

304

hh is the hour (0-23), mm is the minute (0-59 or 0-60 if leap second), ss is the second (0-59), mmm is the millisecond
(0-999), uuu is the microsecond (0-999), and nnn is the nanosecond (0-999). The encoded string has a length of
TT2000 0 STRING LEN (30).

For style value 1, the encoded UTC string is YYYYMMDD.ttttttttt, where YYYY is the year, MM is the month (1-
12) DD is the day of the month (1-31), and ttttttttt is sub-day.(0-999999999). The encoded string has a length of
TT2000 1 STRING LEN (19).

For style value 2, the encoded UTC string is YYYYMMDDhhmmss, where YYYY is the year, MM is the month (1-
12) DD is the day of the month (1-31), hh is the hour (0-23), mm is the minute (0-59),and ss is the second (0-59 or 0-
60 if leap second). The encoded string has a length of TT2000 2 STRING LEN (14).

For style value 3, the encoded UTC string is in ISO 8601 form: YYYY-MM-DDThh:mm:ss.mmmuuunnn, where
YYYY is the year, MM is the month (1-12), DD is the day of the month (1-31), hh is the hour (0-23), mm is the minute
(0-59 or 0-60 if leap second), ss is the second (0-59), mmm is the millisecond (0-999), uuu is the microsecond (0-999),
and nnn is the nanosecond (0-999). The encoded string has a length of TT2000 3 STRING LEN (29)

For style value 4, the encoded UTC string is in ISO 8601 form: YYYY-MM-DDThh:mm:ss.mmmuuunnnZ, where
YYYY is the year, MM is the month (1-12), DD is the day of the month (1-31), hh is the hour (0-23), mm is the minute
(0-59 or 0-60 if leap second), ss is the second (0-59), mmm is the millisecond (0-999), uuu is the microsecond (0-999),
and nnn is the nanosecond (0-999). The encoded string has a length of TT2000_ 4 STRING LEN (30)

10.5 toparse TT20004

toparse_TT2000 parses a standard UTC-based date/time string and returns a CDF_TIME TT2000 value. The format of
the string is one of the strings produced by toencode TT2000 or other encoding functions described in this Section. If
the epoch is outside the range for TT2000, the value returned will be ILLEGAL TT2000 VALUE.

SUBROUTINE toparse_TT2000(
CHARACTER epString*(TT2000_* STRING LEN), ! in -- The standard date/time character string.
INTEGER*8 tt2000) ! out-- CDF_TIME TT2000 value

TT2000 * STRING LEN (* is 0-4) is defined in cdf.inc.

10.6 parse TT2000

parse_TT2000 parses a standard UTC-based date/time character string and returns a CDF_TIME TT2000 value. The
format of the string is one of the strings produced by the encode TT2000 function described in Section 9.3. If an illegal
field is detected in the string the value returned will be ILLEGAL TT2000 VALUE.

SUBROUTINE parse TT2000 (
CHARACTER epString*(TT2000_* STRING_LEN), ! in -- The standard date/time character string.
INTEGER*8 tt2000) ! out-- CDF_TIME TT2000 value

TT2000 * STRING LEN (* is 0-4) is defined in cdf.inc.

8 To compliment to other CDF epoch data types: toparse. EPOCH and toparse EPOCH16.

305

10.7 TT2000 from EPOCH

TT2000 from EPOCH converts a value in CDF_EPOCH type to CDF_TIME TT2000 type. If the epoch is outside the
range for TT2000, the value returned will be ILLEGAL TT2000 VALUE. If the epoch is a predefined, filled dummy
value, DUMMY TT2000 VALUE is returned.

SUBROUTINE TT2000 from EPOCH(

REAL*8 epoch, ! in -- CDF_EPOCH value. */
INTEGER*8 tt2000) ! out-- CDF_TIME TT2000 value

Both microsecond and nanosecond fields for TT2000 are zero-filled.

10.8 TT2000 to EPOCH

TT2000 to EPOCH converts a value in CDF_TIME TT2000 type to CDF_EPOCH type.
SUBROUTINE TT2000 _to EPOCH(
INTEGER*8 tt2000, ! in -- The CDF_TIME TT2000 value.
REAL*8 epoch) ! out -- The CDF_EPOCH value

The microsecond and nanosecond fields in TT2000 are ignored. As the CDF_EPOCH type does not have leap seconds,
the date/time falls on a leap second in TT2000 type will be converted to the zero (0) second of the next day.

109 TT2000 from EPOCHI16

TT2000 from EPOCHI16 converts a data value in CDF_EPOCH]16 type to CDF_TT2000 type. If the epoch is outside
the range for TT2000, the value returned will be ILLEGAL TT2000 VALUE. If the epoch is a predefined, filled dummy
value, DUMMY TT2000 VALUE is returned.
SUBROUTINE TT2000_from EPOCH16(
REAL*8 epochl6(2), ! in -- The CDF_EPOCH16 value.
INTEGER*8 tt2000) ! out -- CDF_TIME TT2000 value returned.

The picoseconds from CDF_EPOCH16 is ignored.

10.10 TT2000 to EPOCHI16

TT2000 to EPOCH16 converts a data value in CDF_TIME_TT2000 type to CDF_EPOCH16 type.
SUBROUTINE TT2000 to EPOCHI16(

INTEGER*8 tt2000; ! in -- The CDF_TIME TT2000 value.
REAL*8 epoch16(2)) ! out -- CDF_EPOCH16 value

306

The picoseconds to CDF_EPOCH]16 are zero(0)-filled. As the CDF_EPOCHI16 does not have leap seconds, the
date/time falls on a leap second in TT2000 type will be converted to the zero (0) second of the next day.

10.11 TT2000 to UnixTime

TT2000 to UnixTime converts epoch times of CDF TIME TT2000 (TT2000) type into Unix times. A
CDF _TIME TT2000 epoch, a 8-byte integer, is nanoseconds from J2000 with leap seconds while Unix time, a double,
is seconds from 1970-01-01T00:00:00.000. The Unix time can have sub-second, with a time resolution of microseconds,
in its fractional part. Note: As CDF_TIME TT2000 has much higher time resolution, sub-microseconds portion of its
time might get lost during the conversion. Also, TT2000’s leap seconds will get lost after the conversion.

SUBROUTINE TT2000 to UnixTime (

INTEGER*S epoch, ! in -- CDF_TIME_TT2000 epoch times. */
REAL*8 unixTime, ! out -- Unix times. */
INTEGER numTimes) ! in -- Number of times to be converted. */

10.12 UnixTime to TT2000

UnixTime to TT2000 converts Unix times into epoch times of CDF _TIME TT2000 (TT2000) type. A Unix time, a
double, is seconds from 1970-01-01T00:00:00.000 while a CDF_TIME TT2000 epoch, a 8-byte integer, is nanoseconds
from J2000 with leap seconds. The Unix time can have sub-second, with a time resolution of microseconds, in its
fractional part. Sub-microseconds will be filled with 0’s when converting from Unix time to TT2000.

SUBROUTINE UnixTime to TT2000 (

REAL*8 unixTime, ! in -- Unix times
INTEGER*S epoch, !'out -- CDF_TIME_TT2000 epoch times
INTEGER numTimes) ! in -- Number of times to be converted

307

308

Appendix A

A.1 Introduction

A status code is returned from most CDF functions. The cdf.inc (for C) and CDF.INC (for Fortran) include files contain
the numerical values (constants) for each of the status codes (and for any other constants referred to in the explanations).
The CDF library Standard Interface functions CDFerror (for C) and CDF _error (for Fortran) can be used within a program
to inquire the explanation text for a given status code. The Internal Interface can also be used to inquire explanation text.

There are three classes of status codes: informational, warning, and error. The purpose of each is as follows:

Informational Indicates success but provides some additional information that may be of interest to an
application.

Warning Indicates that the function completed but possibly not as expected.

Error Indicates that a fatal error occurred and the function aborted.

Status codes fall into classes as follows:
Error codes < CDF_WARN < Warning codes < CDF_OK < Informational codes

CDF_OK indicates an unqualified success (it should be the most commonly returned status code). CDF_WARN is
simply used to distinguish between warning and error status codes.

A.2 Status Codes and Messages

The following list contains an explanation for each possible status code. Whether a particular status code is considered
informational, a warning, or an error is also indicated.

ATTR _EXISTS Named attribute already exists - cannot create or rename. Each
attribute in a CDF must have a unique name. Note that trailing
blanks are ignored by the CDF library when comparing attribute
names. [Error]

ATTR_NAME TRUNC Attribute name truncated to CDF _ATTR NAME LEN256
characters. The attribute was created but with a truncated name.
[Warning]

309

BAD ALLOCATE RECS

BAD ARGUMENT

BAD ATTR NAME

BAD ATTR _NUM

BAD BLOCKING _FACTOR¥

BAD_CACHESIZE

BAD_CDF_EXTENSION

BAD_CDF_ID

BAD _CDF_NAME

BAD CDFSTATUS

BAD CHECKSUM

BAD_COMPRESSION_PARM

BAD DATA TYPE

BAD DECODING

BAD DIM_COUNT

BAD DIM_INDEX

An illegal number of records to allocate for a variable was
specified. For RV variables the number must be one or greater.
For NRV variables the number must be exactly one. [Error]

An illegal/undefined argument was passed. Check that all
arguments are properly declared and initialized. [Error]

[llegal attribute name specified. Attribute names must contain at
least one character, and each character must be printable. [Error]

Illegal attribute number specified. Attribute numbers must be zero
(0) or greater for C applications and one (1) or greater for Fortran
applications. [Error]

An illegal blocking factor was specified. Blocking factors must be
at least zero (0). [Error]

An illegal number of cache buffers was specified. The value must
be at least zero (0). [Error]

An illegal file extension was specified for a CDF. In general, do
not specify an extension except possibly for a single-file CDF
which has been renamed with a different file extension or no file
extension. [Error]

CDF identifier is unknown or invalid. The CDF identifier
specified is not for a currently open CDF. [Error]

[llegal CDF name specified. CDF names must contain at least one
character, and each character must be printable. Trailing blanks
are allowed but will be ignored. [Error]

Unknown CDF status code received. The status code specified is
not used by the CDF library. [Error]

An illegal checksum mode received. It is invlid or currently not
supported. [Error]

An illegal compression parameter was specified. [Error]

An unknown data type was specified or encountered. The CDF
data types are defined in cdf.inc for C applications and in cdf.inc
for Fortran applications. [Error]

An unknown decoding was specified. The CDF decodings are
defined in cdf.inc for C applications and in cdf.inc for Fortran
applications. [Error]

Illegal dimension count specified. A dimension count must be at
least one (1) and not greater than the size of the dimension. [Error]

One or more dimension index is out of range. A valid value must
be specified regardless of the dimension variance. Note also that

4 The status code BAD_BLOCKING FACTOR was previously named BAD EXTEND RECS.

310

BAD_DIM_INTERVAL

BAD DIM_SIZE

BAD_ENCODING

BAD_ENTRY_NUM

BAD FNC OR_ITEM

BAD FORMAT

BAD INITIAL RECS

BAD _MAIJORITY

BAD MALLOC

BAD NEGtoPOSfp0 MODE

BAD _NUM _DIMS

BAD NUM _ELEMS

BAD NUM_VARS

BAD READONLY MODE

the combination of dimension index, count, and interval must not
specify an element beyond the end of the dimension. [Error]

Illegal dimension interval specified. Dimension intervals must be
at least one (1). [Error]

Illegal dimension size specified. A dimension size must be at least
one (1). [Error]

Unknown data encoding specified. The CDF encodings are
defined in cdfiinc for C applications and in cdf.inc for Fortran
applications. [Error]

Illegal attribute entry number specified. Entry numbers must be at
least zero (0) for C applications and at least one (1) for Fortran
applications. [Error]

The specified function or item is illegal. Check that the proper
number of arguments are specified for each operation being
performed. Also make sure that NULL is specified as the last
operation. [Error]

Unknown format specified. The CDF formats are defined in
cdf.inc for C applications and in cdf.inc for Fortran applications.
[Error]

An illegal number of records to initially write has been specified.
The number of initial records must be at least one (1). [Error]

Unknown variable majority specified. @~ The CDF variable
majorities are defined in cdf.inc for C applications and in cdf.inc
for Fortran applications. [Error]

Unable to allocate dynamic memory - system limit reached.
Contact CDF User Support if this error occurs. [Error]

An illegal -0.0 to 0.0 mode was specified. The -0.0 to 0.0 modes
are defined in cdf.inc for C applications and in cdf.inc for Fortran
applications. [Error]

The number of dimensions specified is out of the allowed range.
Zero (0) through CDF_MAX DIMS dimensions are allowed. If
more are needed, contact CDF User Support. [Error]

The number of elements of the data type is illegal. The number of
elements must be at least one (1). For variables with a non-
character data type, the number of elements must always be one
(1). [Error]

Illegal number of variables in a record access operation. [Error]
Illegal read-only mode specified. The CDF read-only modes are

defined in cdf.inc for C applications and in cdf.inc for Fortran
applications. [Error]

311

BAD REC_COUNT

BAD REC_INTERVAL

BAD REC NUM

BAD_SCOPE

BAD_SCRATCH_DIR

BAD SPARSEARRAYS PARM

BAD VAR NAME

BAD VAR NUM

BAD_zMODE

CANNOT_ALLOCATE_RECORDS

CANNOT _CHANGE

[llegal record count specified. A record count must be at least one
(1). [Error]

Illegal record interval specified. A record interval must be at least
one (1). [Error]

Record number is out of range. Record numbers must be at least
zero (0) for C applications and at least one (1) for Fortran
applications. Note that a valid value must be specified regardless
of the record variance. [Error]

Unknown attribute scope specified. The attribute scopes are
defined in cdf.inc for C applications and in cdf.inc for Fortran
applications. [Error]

An illegal scratch directory was specified. The scratch directory
must be writeable and accessible (if a relative path was specified)
from the directory in which the application has been executed.
[Error]

An illegal sparse arrays parameter was specified. [Error]

Illegal variable name specified. Variable names must contain at
least one character and each character must be printable. [Error]

Illegal variable number specified. Variable numbers must be zero
(0) or greater for C applications and one (1) or greater for Fortran
applications. [Error]

Illegal zMode specified. The CDF zModes are defined in cdf.inc
for C applications and in cdf.inc for Fortran applications. [Error]

Records cannot be allocated for the given type of variable (e.g., a
compressed variable). [Error]

Because of dependencies on the value, it cannot be changed. Some
possible causes of this error follow:

1. Changing a CDF's data encoding after a variable value
(including a pad value) or an attribute entry has been
written.

[\

. Changing a CDF's format after a variable has been created
or if a compressed single-file CDF.

W

. Changing a CDF's variable majority after a variable value
(excluding a pad value) has been written.

4. Changing a variable's data specification after a value
(including the pad value) has been written to that variable
or after records have been allocated for that variable.

5. Changing a variable's record variance after a value

(excluding the pad value) has been written to that variable
or after records have been allocated for that variable.

312

CANNOT_COMPRESS

CANNOT_SPARSEARRAYS

CANNOT _SPARSERECORDS

CDF_CLOSE _ERROR

CDF_CREATE ERROR

CDF _DELETE ERROR

CDF_EXISTS

CDF_INTERNAL ERROR

CDF_NAME_TRUNC

CDF_OK

CDF OPEN_ERROR

6. Changing a variable's dimension variances after a value
(excluding the pad value) has been written to that variable
or after records have been allocated for that variable.

7. Writing “initial" records to a variable after a value
(excluding the pad value) has already been written to that
variable.

*®

Changing a variable's blocking factor when a compressed
variable and a value (excluding the pad value) has been
written or when a variable with sparse records and a value
has been accessed.

Ne)

. Changing an attribute entry's data specification where the
new specification is not equivalent to the old specification.

The CDF or variable cannot be compressed. For CDFs, this occurs
if the CDF has the multi-file format. For variables, this occurs if
the variable is in a multi-file CDF, values have been written to the
variable, or if sparse arrays have already been specified for the
variable. [Error]

Sparse arrays cannot be specified for the variable. This occurs if
the variable is in a multi-file CDF, values have been written to the
variable, records have been allocated for the variable, or if
compression has already been specified for the variable. [Error]

Sparse records cannot be specified for the variable. This occurs if
the variable is in a multi-file CDF, values have been written to the
variable, or records have been allocated for the variable. [Error]

Error detected while trying to close CDF. Check that sufficient
disk space exists for the dotCDF file and that it has not been
corrupted. [Error]

Cannot create the CDF specified - error from file system. Make
sure that sufficient privilege exists to create the dotCDF file in the
disk/directory location specified and that an open file quota has not

already been reached. [Error]

Cannot delete the CDF specified - error from file system.
Insufficient privileges exist the delete the CDF file(s). [Error]

The CDF named already exists - cannot create it. The CDF library
will not overwrite an existing CDF. [Error]

An unexpected condition has occurred in the CDF library. Report
this error to CDFsupport. [Error]

CDF file name truncated to CDF_ PATHNAME LEN characters.
The CDF was created but with a truncated name. [Warning]

Function completed successfully.

Cannot open the CDF specified - error from file system. Check
that the dotCDF file is not corrupted and that sufficient privilege

313

CDF_READ ERROR

CDF_WRITE ERROR

CHECKSUM_ERROR

CHECKSUM NOT ALLOWED

COMPRESSION_ERROR

CORRUPTED V2 CDF

DECOMPRESSION_ERROR

DID NOT_COMPRESS

EMPTY COMPRESSED CDF

END_OF VAR

FORCED PARAMETER

IBM_PC_OVERFLOW

ILLEGAL EPOCH VALUE

ILLEGAL FOR_SCOPE

ILLEGAL IN_zMODE

exists to open it. Also check that an open file quota has not already
been reached. [Error]

Failed to read the CDF file - error from file system. Check that the
dotCDF file is not corrupted. [Error]

Failed to write the CDF file - error from file system. Check that
the dotCDF file is not corrupted. [Error]

The data integrity verification through the checksum failed.
[Error]

The checksum is not allowed for old versioned files. [Error]

An error occurred while compressing a CDF or block of variable
records. This is an internal error in the CDF library. Contact CDF
User Support. [Error]

This Version 2 CDF is corrupted. An error has been detected in
the CDF's control information. If the CDF file(s) are known to be
valid, please contact CDF User Support. [Error]

An error occurred while decompressing a CDF or block of variable
records. The most likely cause is a corrupted dotCDF file. [Error]

For a compressed variable, a block of records did not compress to
smaller than their uncompressed size. They have been stored
uncompressed. This can result If the blocking factor is set too
low or if the characteristics of the data are such that the
compression algorithm chosen is unsuitable. [Informational]

The compressed CDF being opened is empty. This will result if a
program which was creating/modifying the CDF abnormally
terminated. [Error]

The sequential access current value is at the end of the variable.
Reading beyond the end of the last physical value for a variable is
not allowed (when performing sequential access). [Error]

A specified parameter was forced to an acceptable value (rather
than an error being returned). [Warning]

An operation involving a buffer greater than 64k bytes in size has
been specified for PCs running 16-bit DOS/Windows 3.*. [Error]

Illegal component is detected in computing an epoch value or an
illegal epoch value is provided in decomposing an epoch value.
[Error]

The operation is illegal for the attribute's scope. For example, only
gEntries may be written for gAttributes - not rEntries or zEntries.

[Error]

The attempted operation is illegal while in zMode. Most
operations involving rVariables or rEntries will be illegal. [Error]

314

ILLEGAL ON_V1 _CDF

ILLEGAL TT2000 VALUE

MULTI FILE FORMAT

NA_FOR_VARIABLE

NEGATIVE_FP_ZERO

NO_ATTR SELECTED

NO_CDF_SELECTED

NO DELETE_ACCESS

NO_ENTRY_ SELECTED

NO_MORE_ACCESS

NO _PADVALUE SPECIFIED

NO _STATUS SELECTED

NO_SUCH_ATTR

NO SUCH_CDF

NO_SUCH_ENTRY
NO_SUCH_RECORD

NO_SUCH_VAR

The specified operation (i.e., opening) is not allowed on Version 1
CDFs. [Error]

Illegal component is detected in computing an epoch value or an
illegal epoch value is provided in decomposing an epoch value.
[Error]

The specified operation is not applicable to CDFs with the multi-
file format. For example, it does not make sense to inquire
indexing statistics for a variable in a multi-file CDF (indexing is
only used in single-file CDFs). [Informational]

The attempted operation is not applicable to the given variable.
[Warning]

One or more of the values read/written are -0.0 (An illegal value
on VAXes and DEC Alphas running OpenVMS). [Warning]

An attribute has not yet been selected. First select the attribute on
which to perform the operation. [Error]

A CDF has not yet been selected. First select the CDF on which
to perform the operation. [Error]

Deleting is not allowed (read-only access). Make sure that delete
access is allowed on the CDF file(s). [Error]

An attribute entry has not yet been selected. First select the entry
number on which to perform the operation. [Error]

Further access to the CDF is not allowed because of a severe error.
If the CDF was being modified, an attempt was made to save the
changes made prior to the severe error. in any event, the CDF
should still be closed. [Error]

A pad value has not yet been specified. The default pad value is
currently being used for the variable. The default pad value was

returned. [Informational]

A CDF status code has not yet been selected. First select the status
code on which to perform the operation. [Error]

The named attribute was not found. Note that attribute names are
case-sensitive. [Error]

The specified CDF does not exist. Check that the file name
specified is correct. [Error]

No such entry for specified attribute. [Error]
The specified record does not exist for the given variable. [Error]

The named variable was not found. Note that variable names are
case-sensitive. [Error]

315

NO_VAR_SELECTED

NO_VARS_IN_CDF

NO_WRITE_ACCESS

NOT_A_CDF

PRECEEDING_RECORDS ALLOCATED

READ ONLY DISTRIBUTION

READ _ONLY MODE

SCRATCH CREATE ERROR

SCRATCH_DELETE_ERROR
SCRATCH_READ ERROR
SCRATCH_WRITE_ERROR

SINGLE FILE FORMAT

SOME_ALREADY_ALLOCATED

TOO_MANY_PARMS

TOO_MANY_VARS

UNKNOWN_COMPRESSION

A variable has not yet been selected. First select the variable on
which to perform the operation. [Error]

This CDF contains no rVariables. The operation performed is not
applicable to a CDF with no rVariables. [Informational]

Write access is not allowed on the CDF file(s). Make sure that the
CDF file(s) have the proper file system privileges and ownership.
[Error]

Named CDF is corrupted or not actually a CDF. This can also
occur if an older CDF distribution is being used to read a CDF
created by a more recent CDF distribution. Contact CDF User
Support if you are sure that the specified file is a CDF that should
be readable by the CDF distribution being used. CDF is backward
compatible but not forward compatible. [Error]

Because of the type of variable, records preceding the range of
records being allocated were automatically allocated as well.
[Informational]

Your CDF distribution has been built to allow only read access to
CDFs. Check with your system manager if you require write
access. [Error]

The CDF is in read-only mode - modifications are not allowed.
[Error]

Cannot create a scratch file - error from file system. If a scratch
directory has been specified, ensure that it is writable. [Error]

Cannot delete a scratch file - error from file system. [Error]
Cannot read from a scratch file - error from file system. [Error]
Cannot write to a scratch file - error from file system. [Error]
The specified operation is not applicable to CDFs with the single-
file format. For example, it does not make sense to close a variable

in a single-file CDF. [Informational]

Some of the records being allocated were already allocated.
[Informational]

A type of sparse arrays or compression was encountered having
too many parameters. This could be causes by a corrupted CDF or
if the CDF was created/modified by a CDF distribution more
recent than the one being used. [Error]

A multi-file CDF on a PC may contain only a limited number of
variables because of the 8.3 file naming convention of MS-DOS.
This consists of 100 rVariables and 100 zVariables. [Error]

An unknown type of compression was specified or encountered.
[Error]

316

UNKNOWN_SPARSENESS

UNSUPPORTED_OPERATION
VAR_ALREADY_ CLOSED

VAR CLOSE ERROR

VAR CREATE ERROR

VAR _DELETE_ERROR

VAR _EXISTS

VAR _NAME_TRUNC

VAR OPEN ERROR

VAR _READ_ERROR

VAR_WRITE_ERROR

VIRTUAL _RECORD DATA

An unknown type of sparseness was specified or encountered.
[Error]

The attempted operation is not supported at this time. [Error]
The specified variable is already closed. [Informational]

Error detected while trying to close variable file. Check that
sufficient disk space exists for the variable file and that it has not
been corrupted. [Error]

An error occurred while creating a variable file in a multi-file CDF.
Check that a file quota has not been reached. [Error]

An error occurred while deleting a variable file in a multi-file CDF.
Check that sufficient privilege exist to delete the CDF files.
[Error]

Named variable already exists - cannot create or rename. Each
variable in a CDF must have a unique name (rVariables and
zVariables can not share names). Note that trailing blanks are
ignored by the CDF library when comparing variable names.
[Error]

Variable name truncated to CDF VAR NAME LEN256
characters. The variable was created but with a truncated name.
[Warning]

An error occurred while opening variable file. Check that
sufficient privilege exists to open the variable file. Also make sure
that the associated variable file exists. [Error]

Failed to read variable as requested - error from file system. Check
that the associated file is not corrupted. [Error]

Failed to write variable as requested - error from file system.
Check that the associated file is not corrupted. [Error]

One or more of the records are virtual (never actually written to
the CDF). Virtual records do not physically exist in the CDF file(s)
but are part of the conceptual view of the data provided by the CDF
library. Virtual records are described in the Concepts chapter in
the CDF User's Guide. [Informational]

317

Appendix B

B.1 Original Standard Interface

SUBROUTINE CDF attr create (id, attr name, attr_scope, attr num, status)

INTEGER*4 id !'in
CHARACTER attr name*(*) !'in
INTEGER*4 attr_scope 'in
INTEGER*4 attr num ! out
INTEGER*4 status ! out

SUBROUTINE CDF attr entry inquire (id, attr num, entry num, data_type, num_elements,

1 status)

INTEGER*4 id in
INTEGER*4 attr num 'in
INTEGER*4 entry num !'in
INTEGER*4 data_type ! out
INTEGER*4 num_elements ! out
INTEGER*4 status ! out

SUBROUTINE CDF attr get (id, attr num, entry num, value, status)

INTEGER*4 id !'in
INTEGER*4 attr num in
INTEGER*4 entry _num !'in
<type> value ! out
INTEGER*4 status ! out

SUBROUTINE CDF attr inquire (id, attr num, attr name, attr_scope, max_entry, status)

INTEGER*4 id !'in
INTEGER*4 attr num in
CHARACTER attr name*(*) ! out
INTEGER*4 attr_scope ! out
INTEGER*4 max_entry ! out
INTEGER*4 status ! out

INTEGER*4 FUNCTION CDF attr num (id, attr_name)

INTEGER*4 id !'in
CHARACTER attr name*(*) !'in
SUBROUTINE CDF attr put (id, attr num, entry num, data type, num_elements, value,

1 status)

INTEGER*4 id !'in

INTEGER*4

attr_ num

!'in

INTEGER*4 entry _num !'in

INTEGER*4 data_type in
INTEGER*4 num_elements !'in
<type> value 'in
INTEGER*4 status ! out

SUBROUTINE CDF attr rename (id, attr_num, attr name, status)

INTEGER*4 id !'in
INTEGER*4 attr num 'in
CHARACTER attr name*(*) !'in
INTEGER*4 status ! out

SUBROUTINE CDF close (id, status)
INTEGER*4 id l'in
INTEGER*4 status ! out

SUBROUTINE CDF _create (CDF_name, num_dims, dim_sizes, encoding, majority, id, status)
CHARACTER CDF_name*(*) lin
INTEGER*4 num_dims in
INTEGER*4 dim_sizes(*) !
INTEGER*4 encoding !
INTEGER*4 majority !'in

!

!

INTEGER*4 id out
INTEGER*4 status out
SUBROUTINE CDF delete (id, status)

INTEGER*4 id !'in
INTEGER*4 status ! out
SUBROUTINE CDF doc (id, version, release, text, status)

INTEGER*4 id in
INTEGER*4 version out

!
!
INTEGER*4 release ! out
!
!

CHARACTER text*(CDF_DOCUMENT LEN) out
INTEGER*4 status out
SUBROUTINE CDF _error (status, message, status)

INTEGER*4 status lin
CHARACTER message*(CDF_STATUSTEXT LEN) ! out
INTEGER*4 status ! out
SUBROUTINE CDF_getrvarsrecorddata (id, num_var, var _nums, rec_num,

1 buffer, status)

INTEGER*4 id lin
INTEGER*4 num_var 'in
INTEGER*4 var_nums(*) !'in
INTEGER*4 rec_num 'in
<type> buffer ! out
INTEGER*4 status ! out
SUBROUTINE CDF _getzvarsrecorddata (id, num_var, var nums, rec_num,

1 buffer, status)

INTEGER*4 id !'in
INTEGER*4 num_var 'in
INTEGER*4 var_nums(*) lin
INTEGER*4 rec_num !'in

320

<‘[ype>
INTEGER*4

SUBROUTINE CDF _inquire (id, num_dims, dim_sizes, encoding, majority, max_rec,
num_vars, num_attrs, status)

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

buffer
status

id
num_dims

dim_sizes(CDF_MAX DIMS)

encoding
majority
max_rec
num_vars
num_attrs
status

SUBROUTINE CDF_open (CDF_name, id, status)

CHARACTER CDF name*(*)

INTEGER*4
INTEGER*4

SUBROUTINE CDF _putrvarsrecorddata (id, num_var, var nums, rec_num,

1
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
<type>
INTEGER*4

SUBROUTINE CDF_putzvarsrecorddata (id, num_var, var nums, rec_num,

1
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
<type>
INTEGER*4

id
status

id

num_var
var_nums(*)
rec_num
buffer

status

id

num_var
var_nums(*)
rec_num
buffer

status

buffer, status)

buffer, status)

SUBROUTINE CDF_var close (id, var num, status)

INTEGER*4
INTEGER*4
INTEGER*4

id
var_num
status

! out
! out

!'in

! out
! out
! out
! out
! out
! out
! out
! out

!'in
! out
! out

!'in
!'in
!'in
!'in
!'in
! out

!'in
'in
!'in
''in
!'in
! out

!'in
!'in
! out

SUBROUTINE CDF _var create (id, var_name, data_type, num_elements, rec_variances,

1
INTEGER*4

CHARACTER

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

SUBROUTINE CDF var get (id, var num, rec_num, indices, value, status)

INTEGER*4

id

var_name*(*)

data_type

num_elements

rec_variance

dim_variances(*)

var_num
status

id

dim_variances, var_num, status)

321

!'in
!'in
!'in
!'in
!'in
!'in
! out
! out

INTEGER*4
INTEGER*4
INTEGER*4
<type>

INTEGER*4

SUBROUTINE CDF var hyper get (id, var num, rec start, rec_count, rec_interval,

1
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
<type>
INTEGER*4

SUBROUTINE CDF _var _hyper put (id, var num, rec start, rec_count, rec_interval,

1
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
<type>

INTEGER*4

SUBROUTINE CDF _var_inquire (id, var_num, var name, data_type, num_elements,
rec_variance, dim_variances, status)

1
INTEGER*4
INTEGER*4

CHARACTER

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

var_num
rec_num
indices(*)
value
status

id;
var_num
rec_start
rec_count
rec_interval
indices(*)
counts(*)
intervals(*)
buffer
status

id

var_num
rec_start
rec_count
rec_interval
indices(*)
counts(*)
intervals(*)
buffer
status

id
var_num

indices, counts, intervals, buffer, status)

indices, counts, intervals, buffer, status)

var_name*(CDF_VAR NAME LEN256)

data_type

num_elements

rec_variance

dim_variances(CDF_MAX DIMS)

status

INTEGER*4 FUNCTION CDF var num (id, var name)

INTEGER*4

CHARACTER

id

var_name*(*)

SUBROUTINE CDF var put (id, var num, rec num, indices, value, status)

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
<type>

INTEGER*4

id
var_num
rec_num
indices(*)
value
status

SUBROUTINE CDF_var rename (id, var num, var name, status)

322

!'in

!'in
! out
!

in
in
out
out
out
out

out

! out

INTEGER*4 id !'in

INTEGER*4 var_num in
CHARACTER var name*(*) !'in
INTEGER*4 status ! out

323

B.2 Extended Standard Interface

SUBROUTINE CDF close cdf (id, status)

INTEGER*4
INTEGER*4

SUBROUTINE CDF close zvar (id, var_num, status)

INTEGER*4
INTEGER*4
INTEGER*4

INTEGER*4 FUNCTION CDF confirm attr existence (id, attr name)

INTEGER*4
CHARACTER

INTEGER*4 FUNCTION CDF confirm gentry existence (id, attr num, entry num)

INTEGER*4
INTEGER*4
INTEGER*4

INTEGER*4 FUNCTION CDF confirm rentry existence (id, attr num, entry num)

INTEGER*4
INTEGER*4
INTEGER*4

INTEGER*4 FUNCTION CDF confirm_zentry existence (id, attr num, entry num)

INTEGER*4
INTEGER*4
INTEGER*4

INTEGER*4 FUNCTION CDF confirm zvar existence (id, var name)

INTEGER*4
CHARACTER

INTEGER*4 FUNCTION CDF confirm zvar padvalue exist (id, var num)

INTEGER*4
INTEGER*4

SUBROUTINE CDF create attr (id, attr_name, attr_scope, attr_num, status)

INTEGER*4
CHARACTER
INTEGER*4
INTEGER*4
INTEGER*4

SUBROUTINE CDF create cdf (CDF_name, id, status)

CHARACTER
INTEGER*4
INTEGER*4

id
status

id
var_num
status

id
attr name*(*)

id
attr num
entry_num

id
attr_num
entry_num

id
attr_num
entry_num

id
var_name*(*)

id

var num

id

attr name*(*)
attr_scope
attr num
status

CDF_name*(*)
id
status

!'in
! out

! out
! out

!'in
! out
! out

SUBROUTINE CDF create zvar (id, var name, data_type, num_elements, num_dims,

1 dim_sizes, rec_variances, dim_variances, var_num, status)
INTEGER*4 id in
CHARACTER var_name*(*) lin
INTEGER*4 data_type !'in
INTEGER*4 num_elements 'in
INTEGER*4 num_dims in
INTEGER*4 dim_sizes(*) !'in
INTEGER*4 rec_variance 'in
INTEGER*4 dim_variances(*) !'in
INTEGER*4 var_num ! out
INTEGER*4 status ! out
SUBROUTINE CDF delete attr (id, attr num, status)

INTEGER*4 id in
INTEGER*4 attr num 'in
INTEGER*4 status ! out
SUBROUTINE CDF delete attr gentry (id, attr num, entry num, status)

INTEGER*4 id lin
INTEGER*4 attr num 'in
INTEGER*4 entry num !'in
INTEGER*4 status ! out
SUBROUTINE CDF _delete attr rentry (id, attr num, entry num, status)

INTEGER*4 id !'in
INTEGER*4 attr num !'in
INTEGER*4 entry _num 'in
INTEGER*4 status ! out
SUBROUTINE CDF delete attr zentry (id, attr num, entry num, status)

INTEGER*4 id lin
INTEGER*4 attr num 'in
INTEGER*4 entry num !'in
INTEGER*4 status ! out
SUBROUTINE CDF _delete cdf (id, status)

INTEGER*4 id !'in
INTEGER*4 status ! out
SUBROUTINE CDF delete zvar (id, var num, status)

INTEGER*4 id !'in
INTEGER*4 var_num lin
INTEGER*4 status ! out
SUBROUTINE CDF _delete zvar recs (id, var_num, start _rec, end_rec, status)
INTEGER*4 id !'in
INTEGER*4 var_num !'in
INTEGER*4 start_rec lin
INTEGER*4 end rec in
INTEGER*4 status ! out

SUBROUTINE CDF delete zvar recs renumber (id, var num, start rec, end rec, status)

INTEGER*4
INTEGER*4
INTEGER*4

id
var_num
start_rec

!'in
!'in
!'in

326

INTEGER*4 end_rec !'in
INTEGER*4 status ! out
SUBROUTINE CDF _get attr gentry datatype (id, attr_num, entry _num, data_type, status)
INTEGER*4 id !'in
INTEGER*4 attr num 'in
INTEGER*4 entry num in
INTEGER*4 data_type ! out
INTEGER*4 status ! out
SUBROUTINE CDF _get attr gentry numelems (id, attr num, entry _num, num_elems, status)
INTEGER*4 id !'in
INTEGER*4 attr_num lin
INTEGER*4 entry num in
INTEGER*4 num_elems ! out
INTEGER*4 status ! out
SUBROUTINE CDF _get attr gentry (id, attr_ num, entry num, value, status)

INTEGER*4 id !'in
INTEGER*4 attr num !'in
INTEGER*4 entry _num 'in
<type> value ! out
INTEGER*4 status ! out
SUBROUTINE CDF _get attr max gentry (id, attr num, entry num, status)

INTEGER*4 id !'in
INTEGER*4 attr num !'in
INTEGER*4 entry _num ! out
INTEGER*4 status ! out
SUBROUTINE CDF get attr max rentry (id, attr num, entry num, status)

INTEGER*4 id lin
INTEGER*4 attr num 'in
INTEGER*4 entry num ! out
INTEGER*4 status ! out
SUBROUTINE CDF _get attr max_zentry (id, attr num, entry num, status)

INTEGER*4 id !'in
INTEGER*4 attr num !'in
INTEGER*4 entry _num ! out
INTEGER*4 status ! out
SUBROUTINE CDF get attr name (id, attr num, attr name, status)

INTEGER*4 id lin
INTEGER*4 attr num 'in
CHARACTER attr name*(*) ! out
INTEGER*4 status ! out
INTEGER*4 FUNCTION CDF _get attr num (id, attr_name, status)

INTEGER*4 id !'in
CHARACTER attr name*(*) !'in
INTEGER*4 status ! out
SUBROUTINE CDF _get attr num_gentries (id, attr_num, entries, status)

INTEGER*4 id !'in
INTEGER*4 attr num !'in

327

INTEGER*4
INTEGER*4

SUBROUTINE CDF_get attr num_rentries (id, attr_num, entries, status)

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

SUBROUTINE CDF get attr num_zentries (id, attr num, entries, status)

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

SUBROUTINE CDF _get attr rentry (id, attr num, entry_num, value, status)

INTEGER*4
INTEGER*4
INTEGER*4
<type>

INTEGER*4

entries
status

id

attr num
entries
status

id
attr_num
entries
status

id
attr_num
entry num
value
status

! out
! out

!'in
l'in
! out
! out

!'in
!'in
! out
! out

!'in
''in
!'in
! out
! out

SUBROUTINE CDF _get attr rentry datatype (id, attr_num, entry num, data_type, status)

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

id

attr num
entry num
data_type
status

!'in
!'in
!'in
! out
! out

SUBROUTINE CDF _get attr rentry numelems (id, attr num, entry num, num_elems, status)

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

SUBROUTINE CDF_get attr_scope (id, attr_num, scope, status)

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

SUBROUTINE CDF get attr zrentry (id, attr num, entry num, value, status)

INTEGER*4
INTEGER*4
INTEGER*4
<type>

INTEGER*4

id

attr num
entry num
num_elems
status

id

attr num
scope
status

id
attr_num
entry_num
value
status

!'in
!'in
'in
! out
! out

!'in
!'in
! out
! out

!'in
'in
!'in
! out
! out

SUBROUTINE CDF get attr zentry datatype (id, attr num, entry num, data type, status)

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

id
attr_num
entry_num
data_type
status

328

!'in
'in
!'in
! out
! out

SUBROUTINE CDF _get attr zentry numelems (id, attr num, entry num, num_elems, status)

INTEGER*4 id !'in
INTEGER*4 attr num !'in
INTEGER*4 entry _num 'in
INTEGER*4 num_elems ! out
INTEGER*4 status ! out
SUBROUTINE CDF _get cachesize (id, num_buffers, status)

INTEGER*4 id !'in
INTEGER*4 num_buffers ! out
INTEGER*4 status ! out
SUBROUTINE CDF_get checksum (id, checksum, status)

INTEGER*4 id !'in
INTEGER*4 checksum ! out
INTEGER*4 status ! out
SUBROUTINE CDF_get compress_cachesize (id, num_buffers, status)

INTEGER*4 id !'in
INTEGER*4 num_buffers ! out
INTEGER*4 status ! out
SUBROUTINE CDF_get compression (id, ctype, cparms, cpercent, status)

INTEGER*4 id !'in
INTEGER*4 ctype ! out
INTEGER*4 cparms(*) ! out
INTEGER*4 cpercent ! out
INTEGER*4 status ! out
SUBROUTINE CDF_get compression_info (cdf name, compress_type, compress_parms,

1 compres_size, decompress_size, status)
CHARACTER cdf name*(*) !'in
INTEGER*4 compress_type ! out
INTEGER*4 compress_parms(*) ! out
INTEGER*8 compress_size ! out
INTEGER*8 decompress_size ! out
INTEGER*4 status ! out
SUBROUTINE CDF _get copyright (id, copyright, status)

INTEGER*4 id !'in
CHARACTER copyright*(*) ! out
INTEGER*4 status ! out
SUBROUTINE CDF_get datatype_size (data_type, size, status)

INTEGER*4 date_type 'in
INTEGER*4 size ! out
INTEGER*4 status ! out
SUBROUTINE CDF_get decoding (id, decoding, status)

INTEGER*4 id !'in
INTEGER*4 decoding ! out
INTEGER*4 status ! out
SUBROUTINE CDF_get encoding (id, encoding, status)

INTEGER*4 id !'in
INTEGER*4 encoding ! out

329

INTEGER*4 status ! out

SUBROUTINE CDF_get filebackward (backwwardmode)
INTEGER*4 backwardmode ! out

SUBROUTINE CDF _get format (id, format, status)

INTEGER*4 id !'in
INTEGER*4 format ! out
INTEGER*4 status ! out

SUBROUTINE CDF _get leapsecondlastupdated (id, lastupdated, status)

INTEGER*4 id !in
INTEGER*4 lastupdated ! out
INTEGER*4 status ! out

SUBROUTINE CDF _get lib_copyright (copyright, status)
CHARACTER copyright*(*) ! out
INTEGER*4 status ! out

SUBROUTINE CDF _get lib_version (version, release, increment, sub_increment, status)

INTEGER*4 version ! out
INTEGER*4 release ! out
INTEGER*4 increment ! out
CHARACTER sub_increment®(*) ! out
INTEGER*4 status ! out

SUBROUTINE CDF_get majority (id, majority, status)

INTEGER*4 id !'in
INTEGER*4 majority ! out
INTEGER*4 status ! out

SUBROUTINE CDF_get name (id, name, status)

INTEGER*4 id !'in
CHARACTER name*(*) ! out
INTEGER*4 status ! out

SUBROUTINE CDF_get negtoposfp0_mode (id, negtoposfp0, status)

INTEGER*4 id !'in
INTEGER*4 negtoposfp0 ! out
INTEGER*4 status ! out

SUBROUTINE CDF _get num_attrs (id, num_attrs, status)

INTEGER*4 id !'in
INTEGER*4 num_attrs ! out
INTEGER*4 status ! out

SUBROUTINE CDF_get num_gattrs (id, num_attrs, status)

INTEGER*4 id !'in
INTEGER*4 num_attrs ! out
INTEGER*4 status ! out

SUBROUTINE CDF_get num_rvars (id, num_vars, status)

INTEGER*4 id in
INTEGER*4 num_vars ! out
INTEGER*4 status ! out

330

SUBROUTINE CDF_get num_vattrs (id, num_attrs, status)

INTEGER*4 id !'in
INTEGER*4 num_attrs ! out
INTEGER*4 status ! out

SUBROUTINE CDF_get num_zvars (id, num_vars, status)

INTEGER*4 id !'in
INTEGER*4 num_vars ! out
INTEGER*4 status ! out

SUBROUTINE CDF_get readonly mode (id, readonly, status)

INTEGER*4 id in
INTEGER*4 readonly ! out
INTEGER*4 status ! out

SUBROUTINE CDF _get stage cachesize (id, num_buffers, status)

INTEGER*4 id in
INTEGER*4 num_buffers ! out
INTEGER*4 status ! out

SUBROUTINE CDF _get status text (statusid, text, status)

INTEGER*4 statusid !'in
CHARACTER text*(¥*) ! out
INTEGER*4 status ! out

SUBROUTINE CDF get var allrecords varname (id, var _name, buffer, status)

INTEGER*4 id 'in
CHARACTER var_name*(*) lin
<type> buffer ! out
INTEGER*4 status ! out

INTEGER*4 FUNCTION CDF_get var num (id, var_name)

INTEGER*4 id !'in
INTEGER*4 var_name*(*) !'in
SUBROUTINE CDF get var rangerecords name (id, var name, start rec, stop_rec, buffer, status)
INTEGER*4 id lin
CHARACTER var name*(*) in
INTEGER*4 start_rec in
INTEGER*4 stop_rec 'in
<type> buffer ! out
INTEGER*4 status ! out

SUBROUTINE CDF_get vars maxwrittenrecnums (id, max_rvars_recnum,

1 max_zvars recnum, status)

INTEGER*4 id in
INTEGER*4 max_rvars_recnum ! out
INTEGER*4 max_zvars_recnum ! out
INTEGER*4 status ! out

SUBROUTINE CDF_get version (id, version, release, increment, status)

INTEGER*4 id !'in

INTEGER*4 version ! out
INTEGER*4 release ! out
INTEGER*4 increment ! out
INTEGER*4 status ! out

331

SUBROUTINE CDF get zmode (id, zmode, status)

INTEGER*4
INTEGER*4
INTEGER*4

SUBROUTINE CDF get zvar allrecords varid (id, var_num, buffer, status)

INTEGER*4
INTEGER*4
<type>

INTEGER*4

SUBROUTINE CDF _get zvar allocrecs (id, var num, num_recs, status)

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

id
zmode
status

id
var_num
buffer
status

id
var_num
num_recs
status

SUBROUTINE CDF get zvar blockingfactor (id, var num, bf, status)

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

SUBROUTINE CDF _get zvar cachesize (id, var num, num_buffers, status)

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

id
var_num
bf

status

id

var_num
num_buffers
status

!'in
! out
! out

!'in
'in
! out
! out

!'in
!'in
! out
! out

!'in
'in
! out
! out

!'in
!'in
! out
! out

SUBROUTINE CDF get zvar compression (id, var num, compress_type, compress_parms,

1

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

SUBROUTINE CDF _get zvar data (id, var num, rec_num, indices, value, status)

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
<type>

INTEGER*4

SUBROUTINE CDF get zvar datatype (id, var num, data type, status)

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

SUBROUTINE CDF _get zvar dimsizes (id, var num, dim_sizes, status)

INTEGER*4
INTEGER*4

id

var_num
compress_type
compress_parms(*)
compress_percent
status

id
var_num
rec_num
indices(*)
value
status

id
var_num
data_type
status

id
var_num

compress_percent, status)

332

!'in
!'in
! out
! out
! out
! out

!'in
!'in
!'in
!'in
! out
! out

!'in
!'in
! out
! out

!'in
!'in

INTEGER*4 dim_sizes(*) ! out
INTEGER*4 status ! out

SUBROUTINE CDF_get zvar dimvariances (id, var num, dim_varys, status)

INTEGER*4 id !'in
INTEGER*4 var_num 'in
INTEGER*4 dim_varys(*) ! out
INTEGER*4 status ! out

SUBROUTINE CDF get zvar maxallocrecnum (id, var num, rec num, status)
INTEGER*4 id
INTEGER*4 var_num

n
in

INTEGER*4 rec_num out
INTEGER*4 status out
SUBROUTINE CDF_get zvar maxwrittenrecnum (id, var_num, rec_num, status)
INTEGER*4 id !'in
INTEGER*4 var_num 'in
INTEGER*4 rec_num ! out
INTEGER*4 status ! out
SUBROUTINE CDF get zvar name (id, var num, var name, status)

INTEGER*4 id !'in
INTEGER*4 var_num !'in
CHARACTER var name*(*) ! out
INTEGER*4 status ! out
SUBROUTINE CDF_get zvar numdims (id, var num, num_dims, status)

INTEGER*4 id !'in
INTEGER*4 var_num 'in
INTEGER*4 num_dims ! out
INTEGER*4 status ! out
SUBROUTINE CDF get zvar numelems (id, var num, num_elems, status)

INTEGER*4 id !'in
INTEGER*4 var_num !'in
INTEGER*4 num_elems ! out
INTEGER*4 status ! out
SUBROUTINE CDF_get zvar numrecs (id, var num, num_recs, status)

INTEGER*4 id !'in
INTEGER*4 var_num 'in
INTEGER*4 num_recs ! out
INTEGER*4 status ! out
SUBROUTINE CDF_get zvar padvalue (id, var num, pad value, status)

INTEGER*4 id !'in
INTEGER*4 var_num !'in
<type> pad_value ! out
INTEGER*4 status ! out

SUBROUTINE CDF _get zvar rangerecords varid (id, var_num, start_rec, stop_rec, buffer, status)

INTEGER*4 id !'in
INTEGER*4 var_num 'in
INTEGER*4 start_rec lin
INTEGER*4 stop_rec !'in

333

<type> buffer ! out
INTEGER*4 status ! out

SUBROUTINE CDF _get zvar recorddata (id, var num, rec_num, record data, status)

INTEGER*4 id !'in

INTEGER*4 var_num 'in

INTEGER*4 rec_num in

<type> record data ! out
!

INTEGER*4 status

SUBROUTINE CDF _get zvar recvariance (id, var num, rec_vary, status)
INTEGER*4 id !
INTEGER*4 var_num !'in
INTEGER*4 rec_vary !
INTEGER*4 status !

SUBROUTINE CDF get zvar reservepercent (id, var num, reserve percent, status)

INTEGER*4 id !

INTEGER*4 var_num !

INTEGER*4 reserve_percent ! out
!

INTEGER*4 status out
SUBROUTINE CDF _get zvar seqdata (id, var num, value, status)

INTEGER*4 id !'in
INTEGER*4 var_num !'in
<type> value ! out
INTEGER*4 status ! out

SUBROUTINE CDF get zvar seqpos (id, var num, rec num, indices, status)
INTEGER*4 id !
INTEGER*4 var_num !
INTEGER*4 rec_num ! out
!
!

INTEGER*4 indices(*) out
INTEGER*4 status out
SUBROUTINE CDF get zvars maxwrittenrecnum (id, rec_ num, status)

INTEGER*4 id !'in
INTEGER*4 rec_num ! out
INTEGER*4 status ! out

SUBROUTINE CDF_get zvar_sparserecords (id, var_num, srecords, status)

INTEGER*4 id !

INTEGER*4 var_num !

INTEGER*4 srecords ! out
!

INTEGER*4 status out
SUBROUTINE CDF _get zvars_recorddata (id, num_var, var nums, rec_num,

1 buffer, status)

INTEGER*4 id lin
INTEGER*4 num_var in
INTEGER*4 var_nums(*) !'in
INTEGER*4 rec_num 'in
<type> buffer ! out
INTEGER*4 status ! out

SUBROUTINE CDF_hyper get zvar data (id, var num, rec_start, rec_count, rec_interval,

334

1
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
<type>
INTEGER*4

id;
var_num
rec_start
rec_count
rec_interval
indices(*)
counts(*)
intervals(*)
buffer
status

indices, counts, intervals, buffer, status)

!'in
!'in
!'in
!'in
!'in
!'in
!'in
!'in
! out
! out

SUBROUTINE CDF _hyper put zvar data (id, var num, rec_start, rec_count, rec interval,

1
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
<type>

INTEGER*4

id

var_num
rec_start
rec_count
rec_interval
indices(*)
counts(*)
intervals(*)
buffer
status

indices, counts, intervals, buffer, status)

SUBROUTINE CDF inquire attr (id, attr num, attr name, attr_scope, max_gentry,
max_rentry, max_zentry, status)

1
INTEGER*4
INTEGER*4

CHARACTER

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

id

attr_num

attr name*(*)
attr_scope
max_gentry
max_rentry
max_zentry
status

!'in
!'in
!'in
!'in
!'in
!'in
!'in
!'in
!'in
! out

'in

!'in

! out
! out
! out
! out
! out
! out

SUBROUTINE CDF inquire attr gentry (id, attr num, entry num, data_type, num_elements,

1

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

id
attr_num
entry_num
data_type

num_elements

status

status)

!'in
'in
!'in
! out
! out
! out

SUBROUTINE CDF inquire attr rentry (id, attr num, entry num, data type, num_elements,

1 status)

INTEGER*4 id !'in
INTEGER*4 attr_num lin
INTEGER*4 entry num in
INTEGER*4 data type ! out
INTEGER*4 num_elements ! out
INTEGER*4 status ! out

SUBROUTINE CDF inquire attr zentry (id, attr num, entry num, data type, num_elements,
1 status)

335

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

id

attr num
entry_num
data_type

num_elements

status

!'in
!'in
!'in
! out
! out
! out

SUBROUTINE CDF inquire cdf (id, num_dims, dim_sizes, encoding, majority, max_rrec,

1

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

SUBROUTINE CDF inquire zvar (id, var num, var name, data type, num_elements,
dim_sizes, rec_variance, dim_variances, status)

1
INTEGER*4
INTEGER*4

CHARACTER

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

SUBROUTINE CDF_open_cdf (CDF_name, id, status)
CHARACTER CDF_name*(*)

INTEGER*4
INTEGER*4

num_rvars, max_zrec, num_zvars, num_attrs, status)

id
num_dims

dim_sizes(CDF_MAX DIMS)

encoding
majority
max_rrec
num_rvars
max_Zzrec
num_zvars
num_attrs
status

id
var_num

var_name*(CDF_VAR NAME LEN256)

data_type

num_elements

num_dims

dim_sizes(CDF_MAX DIMS)

rec_variance

dim_variances(CDF_MAX DIMS)

status

id
status

SUBROUTINE CDF _select_cdf (id, status)

INTEGER*4
INTEGER*4

id
status

!'in

! out
! out
! out
! out
! out
! out
! out
! out
! out
! out

num_dims,

!'in

!'in

! out
! out
! out
! out
! out
! out
! out
! out

!'in
! out
! out

!'in
! out

SUBROUTINE CDF put attr gentry (id, attr num, entry num, data type, num_elements, value,

1
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
<type>
INTEGER*4

id
attr_num
entry_num
data_type

num_elements

value
status

status)

!'in
!'in
!'in
!'in
!'in
!'in
! out

SUBROUTINE CDF put attr rentry (id, attr_ num, entry num, data_type, num_elements, value,

1
INTEGER*4

id

status)

!'in

INTEGER*4 attr_num lin

INTEGER*4 entry num in
INTEGER*4 data_type !'in
INTEGER*4 num_elements 'in
<type> value !'in
INTEGER*4 status ! out

SUBROUTINE CDF put attr zentry (id, attr num, entry num, data type, num_elements, value,

1 status)

INTEGER*4 id in
INTEGER*4 attr num 'in
INTEGER*4 entry num !'in
INTEGER*4 data_type !'in
INTEGER*4 num_elements in
<type> value in
INTEGER*4 status ! out

SUBROUTINE CDF _put var allrecords varname (id, var name, num_recs, value, status)

INTEGER*4 id !'in
CHARACTER var_name*(*) !'in
INTEGER*4 num_recs 'in
<type> value in
INTEGER*4 status ! out

SUBROUTINE CDF put var rangerecords name (id, var name, start rec, stop_rec, value, status)

INTEGER*4 id !'in
CHARACTER var name*(*) !'in
INTEGER*4 start_rec 'in
INTEGER*4 stop_rec !'in
<type> value 'in
INTEGER*4 status ! out

SUBROUTINE CDF put zvar allrecords varid (id, var_num, num_recs, value, status)

INTEGER*4 id in
INTEGER*4 var_num 'in
INTEGER*4 num_recs !'in
<type> value lin
INTEGER*4 status ! out

SUBROUTINE CDF _put zvar data (id, var num, rec_num, indices, value, status)

INTEGER*4 id !'in
INTEGER*4 var_num 'in
INTEGER*4 rec_num lin
INTEGER*4 indices(*) !'in
<type> value 'in
INTEGER*4 status ! out

SUBROUTINE CDF put zvar rangerecords varid (id, var num, start rec, stop_rec, value, status)

INTEGER*4 id lin
INTEGER*4 var_num in
INTEGER*4 start_rec in
INTEGER*4 stop_reci 'in
<type> value !'in
INTEGER*4 status ! out

SUBROUTINE CDF _put_zvar recorddata (id, var num, rec_num, values, status)

337

INTEGER*4 id
INTEGER*4 var_num
INTEGER*4 rec_num
<type> values
INTEGER*4 status

SUBROUTINE CDF put zvar seqdata (id, var num, value, status)
INTEGER*4 id

INTEGER*4 var_num

<type> value

INTEGER*4 status

SUBROUTINE CDF put zvars recorddata (id, num_var, var nums, rec_num,
1 buffer, status)

INTEGER*4 id

INTEGER*4 num_var

INTEGER*4 var_nums(*)

INTEGER*4 rec_num

<type> buffer

INTEGER*4 status

SUBROUTINE CDF_rename_attr (id, attr_num, attr_name, status)
INTEGER*4 id

INTEGER*4 attr num

CHARACTER attr name*(*)

INTEGER*4 status

SUBROUTINE CDF _rename zvar (id, var num, var_name, status)
INTEGER*4 id

INTEGER*4 var_num

CHARACTER var name*(*)

INTEGER*4 status

!'in

I out

in
in
in
out

!'in
''in
!'in
! out

SUBROUTINE CDF _set attr gentry dataspec (id, attr num, entry _num, data_type, status)

INTEGER*4 id
INTEGER*4 attr num
INTEGER*4 entry _num
INTEGER*4 data_type
INTEGER*4 num_elems
INTEGER*4 status

!'in
!'in
!'in
!'in
!'in
! out

SUBROUTINE CDF set attr rentry dataspec (id, attr num, entry num, data_type, status)

INTEGER*4 id
INTEGER*4 attr num
INTEGER*4 entry _num
INTEGER*4 data type
INTEGER*4 num_elems
INTEGER*4 status

SUBROUTINE CDF set attr scope (id, attr num, scope, status)
INTEGER*4 id

INTEGER*4 attr num

INTEGER*4 scope

INTEGER*4 status

!'in
!'in
!'in
!'in
!'in
! out

!'in
'in
!'in
! out

SUBROUTINE CDF set attr zenty dataspec (id, attr num, entry num, data_type, status)

338

INTEGER*4 id lin
INTEGER*4 attr num in
INTEGER*4 entry num
INTEGER*4 data_type
INTEGER*4 num_elems

INTEGER*4 status out
SUBROUTINE CDF _set cachesize (id, num_buffers, status)

INTEGER*4 id l'in
INTEGER*4 num_buffers !'in
INTEGER*4 status ! out
SUBROUTINE CDF _set checksum (id, checksum, status)

INTEGER*4 id l'in
INTEGER*4 checksum in
INTEGER*4 status ! out
SUBROUTINE CDF set compress cachesize (id, num_buffers, status)

INTEGER*4 id l'in
INTEGER*4 num_buffers !'in
INTEGER*4 status ! out

SUBROUTINE CDF set compression (id, compress_type, compress_parms, status)
INTEGER*4 id !
INTEGER*4 compress_type !'in
INTEGER*4 compress_parms(*) !

!

INTEGER*4 status out
SUBROUTINE CDF _set decoding (id, decoding, status)

INTEGER*4 id l'in
INTEGER*4 decoding in
INTEGER*4 status ! out
SUBROUTINE CDF _set_encoding (id, encoding, status)

INTEGER*4 id l'in
INTEGER*4 encoding !'in
INTEGER*4 status ! out
SUBROUTINE CDF _set _filebackward (backwardmode)

INTEGER*4 backwardmode 'in
SUBROUTINE CDF set format (id, format, status)

INTEGER*4 id l'in
INTEGER*4 format lin
INTEGER*4 status ! out
SUBROUTINE CDF _set leapsecondlastupdated (id, lastupdated, status)

INTEGER*4 id l'in
INTEGER*4 lastupdated lin
INTEGER*4 status ! out
SUBROUTINE CDF _set majority (id, majority, status)

INTEGER*4 id l'in
INTEGER*4 majority l'in
INTEGER*4 status ! out

339

SUBROUTINE CDF _set negtoposfp0_mode (id, negtoposfp0, status)

INTEGER*4 id !'in
INTEGER*4 negtoposfp0 !'in
INTEGER*4 status ! out
SUBROUTINE CDF _set readonly mode (id, readonly, status)

INTEGER*4 id !'in
INTEGER*4 readonly lin
INTEGER*4 status ! out
SUBROUTINE CDF set stage cachesize (id, num_buffers, status)

INTEGER*4 id !'in
INTEGER*4 num_buffers !'in
INTEGER*4 status ! out
SUBROUTINE CDF _set validate (validate)

INTEGER*4 validate lin
SUBROUTINE CDF set zmode (id, zmode, status)

INTEGER*4 id lin
INTEGER*4 zmode !'in
INTEGER*4 status ! out
SUBROUTINE CDF _set zvar allocblockrecs (id, var num, start rec, end _rec, status)
INTEGER*4 id lin
INTEGER*4 var_num in
INTEGER*4 start rec in
INTEGER*4 end rec 'in
INTEGER*4 status ! out
SUBROUTINE CDF set zvar allocrecs (id, var num, num_recs, status)

INTEGER*4 id lin
INTEGER*4 var_num 'in
INTEGER*4 num_recs in
INTEGER*4 status ! out
SUBROUTINE CDF _set zvar blockingfactor (id, var_num, bf, status)

INTEGER*4 id !'in
INTEGER*4 var_num !'in
INTEGER*4 bf !'in
INTEGER*4 status ! out
SUBROUTINE CDF set zvar cachesize (id, var num, num_buffers, status)

INTEGER*4 id lin
INTEGER*4 var_num in
INTEGER*4 num_buffers !'in
INTEGER*4 status ! out
SUBROUTINE CDF _set_zvar compression (id, var num, compress_type, compress_parms, status)
INTEGER*4 id !'in
INTEGER*4 var_num !'in
INTEGER*4 compress_type 'in
INTEGER*4 compress_parms(*) !'in
INTEGER*4 status ! out

SUBROUTINE CDF _set zvar dataspec (id, var_num, data_type, status)

340

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

id
var_num
data_type
num_elems
status

SUBROUTINE CDF set zvar dimvariances (id, var num, dimvarys, status)

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

id

var_num
dimvarys(*)
status

SUBROUTINE CDF _set zvar initialrecs (id, var num, num_recs, status)

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

id
var_num
num_recs
status

SUBROUTINE CDF set zvar padvalue (id, var num, value, status)

INTEGER*4
INTEGER*4
<type>

INTEGER*4

id
var_num
value
status

SUBROUTINE CDF _set zvar recvariance (id, var_num, rec_vary, status)

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

id
var_num
rec_vary
status

SUBROUTINE CDF set zvar reservepercent (id, var num, reserve percent, status)

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

id

var_num
reserve_percent
status

SUBROUTINE CDF _set zvars cachesize (id, num_buffers, status)

INTEGER*4
INTEGER*4
INTEGER*4

id
num_buffers
status

SUBROUTINE CDF set zvar seqpos (id, var_num, rec_num, indices, status)

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

id
var_num
rec_num
indices(*)
status

SUBROUTINE CDF _set zvar sparserecords (id, var_num, sparse records, status)

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

id

var_num
sparse_records
status

341

!'in

!'in
! out

B.3

INTEGER*4 FUNCTION CDF lib (fnc, ..., status)

INTEGER*4 fnc

Internal Interface

INTEGER*4 status
CLOSE _

CDF_
VAR
ZVAR_

CONFIRM

ATTR
ATTR_EXISTENCE
CDF_
CDF_ACCESS_
CDF_CACHESIZE _
CDF_DECODING _
CDF_NAME _

CDF_NEGtoPOSfp0_MODE _
CDF_READONLY MODE _
CDF_STATUS_
CDF_zMODE _
COMPRESS_CACHESIZE
CUREENTRY EXISTENCE
CURrENTRY_EXISTENCE _
CURZENTRY_EXISTENCE_
gENTRY _

gENTRY EXISTENCE
rENTRY _

rENTRY EXISTENCE
VAR

rVAR_CACHESIZE
rVAR_EXISTENCE_
rVAR_PADVALUE_
rVAR_RESERVEPERCENT
rVAR_SEQPOS_

rVARs DIMCOUNTS
rVARs_DIMINDICES
rVARs DIMINTERVALS
rVARs RECCOUNT
rVARs RECINTERVAL
rVARs RECNUMBER
STAGE_CACHESIZE _
zENTRY _
zENTRY_EXISTENCE _
zVAR

INTEGER*4

CHARACTER

INTEGER*4

INTEGER*4
INTEGER*4

CHARACTER

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

CHARACTER

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

342

attr num
attr name*(*)
id

num_buffers
decoding

! out

! out
!'in
! out

! out
! out

CDF_name*(CDF_PATHNAME_LEN)

mode
mode
status
mode
num_buffers

entry num
entry _num
entry num
entry _num
var_num
num_buffers
var_name*(*)

percent

rec_num
indices(CDF_MAX DIMS)
counts(CDF_MAX DIMS)
indices(CDF_MAX DIMS)
intervals(CDF_ MAX DIMS)
rec_count

rec_interval

rec_num

num_buffers

entry _num

entry num

var_num

! out
! out
! out
! out
! out
! out

! out
!'in
! out
!'in
! out
! out
!'in

! out
! out
! out
! out
! out
! out
! out
! out
! out
! out
! out
!'in

! out

ZVAR_CACHESIZE
ZVAR_DIMCOUNTS _
ZVAR_DIMINDICES_
ZVAR_DIMINTERVALS
ZVAR_EXISTENCE _
ZVAR_PADVALUE_
ZVAR_RECCOUNT_
ZVAR_RECINTERVAL
ZVAR_RECNUMBER _
ZVAR_RESERVEPERCENT
ZVAR_SEQPOS_

CREATE_

ATTR

CDF_

VAR

ZVAR_

DELETE_

ATTR_
CDF_

gENTRY _
rENTRY _

VAR
rVAR_RECORDS

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
CHARACTER

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

CHARACTER
INTEGER*4
INTEGER*4

CHARACTER
INTEGER*4
INTEGER*4
INTEGER*4

CHARACTER
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

CHARACTER
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

INTEGER*4
INTEGER*4

rVAR RECORDS RENUMBER INTEGER*4

zENTRY _
zVAR
zVAR RECORDS

INTEGER*4

INTEGER*4
INTEGER*4

zVAR_RECORDS RENUMBER INTEGER*4

INTEGER*4

343

num_buffers
counts(CDF_ MAX DIMS)
indices(CDF_MAX DIMS)
intervals(CDF_MAX DIMS)
var_name*(*)

rec_count

rec_interval

rec_num

percent

rec_num
indices(CDF_MAX DIMS)

attr name*(*)
scope
attr_ num

CDF_name*(*)
num_dims
dim_sizes(*)

id

var_name*(*)
data_type
num_elements
rec_vary
dim_varys(*)
var_num

var_name™*(*)
data_type
num_elements
num_dims
dim_sizes(*)
rec_vary
dim_varys(*)
var_num

first record
last record
first record
last_record

first_record
last record
first_record
last_record

out
out
out
out
in

out
out
out
out
out
out

GET

ATTR_MAXgENTRY _
ATTR_MAXtENTRY _
ATTR_MAXzENTRY _
ATTR_NAME _

ATTR_NUMBER _

ATTR_NUMgENTRIES
ATTR_NUMENTRIES
ATTR_NUMZzENTRIES_
ATTR_SCOPE _
CDF_CHECKSUM _
CDF_COMPRESSION _

CDF_COPYRIGHT

CDF_ENCODING _
CDF_FORMAT _
CDF_INCREMENT _
CDF_INFO_

CDF_MAIJORITY _
CDF_NUMATTRS _
CDF_NUMgATTRS _
CDF_NUMIVARS_
CDF_NUMVATTRS_
CDF_NUMzVARS_
CDF_RELEASE _
CDF_VERSION
DATATYPE_SIZE

gENTRY DATA
gENTRY DATATYPE_
gENTRY NUMELEMS_
LIB_COPYRIGHT _

LIB_INCREMENT _
LIB_RELEASE
LIB_subINCREMENT _
LIB_VERSION

rENTRY DATA_
rENTRY_DATATYPE_
rENTRY NUMELEMS_
rVAR_ALLOCATEDFROM _

rVAR ALLOCATEDTO

rVAR_BLOCKINGFACTOR _
rVAR_COMPRESSION _

INTEGER*4
INTEGER*4
INTEGER*4

CHARACTER

CHARACTER

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

CHARACTER

INTEGER*4
INTEGER*4
INTEGER*4

CHARACTER

INTEGER*4
INTEGER*4
INTEGER*8
INTEGER*8
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
<type>

INTEGER*4
INTEGER*4

CHARACTER

INTEGER*4
INTEGER*4

CHARACTER

INTEGER*4
<type>

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

344

max_entry
max_entry
max_entry

! out
! out
! out

attr_name*(CDF_ATTR_NAME_LEN256)

attr_ name*(*)

attr num

num_entries

num_entries

num_entries

scope

checksum

c_type

¢ _parms(CDF_MAX PARMS)

¢ pct

! out
!'in

! out
! out
! out
! out
! out
! out
! out
! out
! out

copy_right*(CDF_COPYRIGHT LEN)

encoding
format
increment
CDF_name*(*)
c_type

¢ parms(CDF_MAX PARMS)
Cc_size

u_size
majority
num_attrs
num_attrs
num_vars
num_attrs
num_vars
release
version
data_type
num_bytes
value
data_type
num_elements

! out
! out
! out
! out
!'in

! out
! out
! out
! out
! out
! out
! out
! out
! out
! out
! out
! out
!'in

! out
! out
! out
! out

copy_right*(CDF_COPYRIGHT LEN)

increment
release
subincrement®1
version

value
data_type
num_elements
start_record
next record
start_record
last record
blocking_factor
c_type

¢ parms(CDF_MAX PARMS)
¢ pct

! out
! out
! out
! out
! out
! out
! out
! out
!'in

! out
!'in

! out
! out
! out
! out
! out

rVAR DATA

rVAR DATATYPE
rVAR DIMVARYS
rVAR HYPERDATA
rVAR MAXallocREC
rVAR MAXREC
rVAR NAME

rVAR nINDEXENTRIES
rVAR nINDEXLEVELS
rVAR nINDEXRECORDS
rVAR NUMallocRECS
rVAR NUMBER

rVAR_NUMELEMS _
rVAR_NUMRECS_
rVAR_PADVALUE _
rVAR_RECVARY
rVAR_SEQDATA_
rVAR_SPARSEARRAYS

rVAR_SPARSERECORDS_
rVARs DIMSIZES

rVARs MAXREC_

rVARs NUMDIMS _
rVARs RECDATA_

STATUS_TEXT_
ZENTRY DATA_

ZENTRY _DATATYPE_
ZENTRY _NUMELEMS_
ZVAR_ALLOCATEDFROM _

zVAR _ALLOCATEDTO _

ZVAR_BLOCKINGFACTOR
ZVAR_COMPRESSION _

zVAR DATA

zVAR DATATYPE
zVAR DIMSIZES
zVAR DIMVARYS
zVAR_HYPERDATA
zVAR MAXallocREC
zVAR MAXREC
zVAR NAME

zVAR nINDEXENTRIES
zVAR nINDEXLEVELS
zVAR nINDEXRECORDS
zVAR NUMallocRECS
zVAR NUMBER

<‘[ype>
INTEGER*4
INTEGER*4
<type>
INTEGER*4
INTEGER*4

CHARACTER

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

CHARACTER

INTEGER*4
INTEGER*4
INTEGER*4
<type>

INTEGER*4
<type>

INTEGER*4
INTEGER*4

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
<type>

CHARACTER

<type>

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
<type>

INTEGER*4
INTEGER*4
INTEGER*4
<type>

INTEGER*4
INTEGER*4

CHARACTER

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

value

data_type

dim varys(CDF_MAX DIMS)
buffer

max_rec

max_rec

! out
! out
! out
! out
! out
! out

var_ name*(CDF_VAR NAME LEN256)

num_entries
num_levels
num_records
num_records
var_name*(*)
var_num
num_elements
num_records
value
rec_vary
value

s _arrays_type

! out
! out
! out
! out
! out
!'in

! out
! out
! out
! out
! out
! out
! out

a_arrays_parms(CDF_MAX PARMS)

a_arrays_pct

s_records_type
dim_sizes(CDF_MAX DIMS)
max_rec

num_dims

num_vars

var_nums(*)

buffer

text*(CDF_STATUSTEXT LEN)

value

data_type

num_elements

start_record

next_record

start_record

last_record

blocking_factor

c type

¢ parms(CDF_MAX PARMS)
c_pct

value

data_type
dim_sizes(CDF_MAX DIMS)
dim varys(CDF_MAX DIMS)
buffer

max_rec

max_rec

! out
! out
! out
! out
! out
! out
!'in

!'in

! out
! out
! out
! out
! out
!'in

! out
!'in

! out
! out
! out
! out
! out
! out
! out
! out
! out
! out
! out
! out

var_ name*(CDF_VAR NAME LEN256)

num_entries
num_levels

num_records
num_records

CHARACTER var_name*(*)

345

! out
! out
! out
! out
! out
!'in

NULL_

OPEN_

PUT

ZVAR_NUMDIMS_
ZVAR_NUMELEMS _
ZVAR_NUMRECS_
ZVAR_PADVALUE _
ZVAR_RECVARY _
ZVAR_SEQDATA

ZVAR_SPARSEARRAYS

zVAR SPARSERECORDS

ZVARs MAXREC_
ZVARs RECDATA_

CDF _

ATTR_NAME _
ATTR_SCOPE_
CDF_CHECKSUM
CDF_COMPRESSION _

CDF_ENCODING _
CDF_FORMAT_
CDF_MAIJORITY _
gENTRY DATA
gENTRY DATASPEC_

rENTRY DATA_

rENTRY DATASPEC

rVAR ALLOCATEBLOCK

rVAR_ALLOCATERECS
rVAR_BLOCKINGFACTOR _
rVAR_COMPRESSION _

rVAR_DATA _
rVAR_DATASPEC

rVAR_DIMVARYS_
rVAR_HYPERDATA
rVAR_INITIALRECS
rVAR_NAME _
rVAR_PADVALUE_
rVAR_RECVARY
rVAR_SEQDATA_

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
<type>

INTEGER*4
<type>

INTEGER*4
INTEGER*4

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
<type>

CHARACTER
INTEGER*4

CHARACTER
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
<type>
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
<type>
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
<type>
INTEGER*4
INTEGER*4
INTEGER*4
<type>
INTEGER*4
CHARACTER
<type>
INTEGER*4
<type>

346

var_num
num_dims
num_elements
num_records
value
rec_vary
value
s_arrays_type

! out
! out
! out
! out
! out
! out
! out
! out

a_arrays_parms(CDF_MAX PARMS)

a_arrays_pct
s_records_type
max_rec
num_vars
var_nums(*)
buffer

CDF_name*(*)
id

attr name*(*)
scope
checksum
cType
c_parms(*)
encoding
format
majority
data_type
num_elements
value
data_type
num_elements
data type
num_elements
value
data_type
num_elements
first record
last record
numRecords
blockingFactor
cType
c_parms(*)
value

data type
num_elements
dim_varys(*)
buffer
num_records
var_name*(*)
value
rec_vary
value

! out
! out
! out
! out
!'in

!'in

! out

rVAR_SPARSEARRAYS
rVAR_SPARSERECORDS_
rVARs RECDATA

ZENTRY _DATA_

zENTRY DATASPEC
zVAR ALLOCATEBLOCK

zVAR ALLOCATERECS

zVAR BLOCKINGFACTOR

ZVAR_COMPRESSION _

ZVAR_DATA_
ZVAR_DATASPEC_

ZVAR_DIMVARYS_
ZVAR_INITIALRECS
ZVAR_HYPERDATA _
ZVAR_NAME _
ZVAR_PADVALUE
ZVAR_RECVARY _
ZVAR_SEQDATA _
ZVAR_SPARSEARRAYS_

ZVAR_SPARSERECORDS
ZVARs RECDATA_

SELECT

ATTR

ATTR NAME

CDF_

CDF_CACHESIZE
CDF_DECODING _

CDF NEGtoPOSfp0 MODE
CDF_READONLY_MODE
CDF_SCRATCHDIR
CDF_STATUS_
CDF_zMODE

COMPRESS CACHESIZE
gENTRY

rENTRY _

rENTRY NAME

rVAR

rVAR_CACHESIZE _

rVAR NAME

rVAR RESERVEPERCENT
rVAR_SEQPOS_

rVARs CACHESIZE
rVARs DIMCOUNTS _

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
<type>

INTEGER*4
INTEGER*4
<type>

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
<type>

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
<type>

CHARACTER

<type>
INTEGER*4
<type>
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
<type>

INTEGER*4

CHARACTER

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

CHARACTER

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

CHARACTER

INTEGER*4
INTEGER*4

CHARACTER

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

347

s_arrays_type
a_arrays_parms(*)
s records_type
num_vars
var_nums(*)
buffer
data_type
num_elements
value
data_type
num_elements
first record
last_record
numRecords
blockingFactor
cType
c_parms(*)
value
data_type
num_elements
dim_varys(*)
num_records
buffer
var_name
value
rec_vary
value

s arrays_type
a_arrays_parms(*)
s _records_type
num_vars
var_nums(*)
buffer

attr_ num
attr_name*(*)
id
num_buffers
decoding
mode

mode

dir name*(*)
status

mode
num_buffers
entry _num
entry num
var_name*(*)
var_num
num_buffers
var_name*(*)
percent
rec_num
indices(*)
num_buffers
counts(*)

rVARs DIMINDICES
rVARs_DIMINTERVALS
rVARs RECCOUNT
rVARs RECINTERVAL
rVARs RECNUMBER _
STAGE_CACHESIZE _
ZENTRY _

ZENTRY NAME_
ZVAR_
ZVAR_CACHESIZE
ZVAR_DIMCOUNTS _
ZVAR_DIMINDICES_
ZVAR_DIMINTERVALS
ZVAR_NAME _
ZVAR_RECCOUNT _
ZVAR_RECINTERVAL
ZVAR_RECNUMBER _

zVAR_RESERVEPERCENT _

ZVAR_SEQPOS_

ZVARs_CACHESIZE
ZVARs RECNUMBER _

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
CHARACTER
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
CHARACTER
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

348

indices(*)
intervals(*)
rec_count
rec_interval
rec_num
num_buffers
entry num
var_name*(*)
var_num
num_buffers
counts(*)
indices(*)
intervals(*)
var_name™*(*)
rec_count
rec_interval
rec_num
percent
rec_num
indices(*)
num_buffers
rec_num

B.4 EPOCH Utility Routines

SUBROUTINE compute EPOCH (year, month, day, hour, minute, second, msec, epoch)

INTEGER*4 year !'in
INTEGER*4 month !'in
INTEGER*4 day !'in
INTEGER*4 hour 'in
INTEGER*4 minute !'in
INTEGER*4 second 'in
INTEGER*4 msec !'in
REAL*4 epoch ! out
SUBROUTINE EPOCH_breakdown (epoch, year, month, day, hour, minute, second, msec)
REAL*4 epoch lin
INTEGER*4 year ! out
INTEGER*4 month ! out
INTEGER*4 day ! out
INTEGER*4 hour ! out
INTEGER*4 minute ! out
INTEGER*4 second ! out
INTEGER*4 msec ! out

SUBROUTINE toencode EPOCH (epoch, style, epString)

REAL*8 epoch 'in
INTEGER*4 style !'in
CHARACTER epString*(EPOCH_STRING_LEN) ! out
SUBROUTINE encode EPOCH (epoch, epString)

REAL*8 epoch 'in
CHARACTER epString*(EPOCH_STRING LEN) ! out
SUBROUTINE encode EPOCHI (epoch, epString)

REAL*8 epoch lin
CHARACTER epString*(EPOCH1_STRING LEN) ! out
SUBROUTINE encode EPOCH2 (epoch, epString)

REAL*8 epoch lin
CHARACTER epString*(EPOCH2_STRING_LEN) ! out
SUBROUTINE encode EPOCH3 (epoch, epString)

REAL*8 epoch in
CHARACTER epString*(EPOCH3 STRING LEN) ! out
SUBROUTINE encode EPOCH4 (epoch, epString)

REAL*8 epoch lin
CHARACTER epString*(EPOCH4 STRING LEN) ! out
SUBROUTINE encode EPOCHx (epoch, format, epString)

REAL*8 epoch lin
CHARACTER format*(EPOCHx_FORMAT MAX) !'in
CHARACTER epString*(EPOCHx STRING MAX) ! out
SUBROUTINE toparse EPOCH (epString, epoch)

CHARACTER epString*(EPOCH_STRING LEN) lin
REAL*8 epoch ! out

349

SUBROUTINE parse EPOCH (epString, epoch)
CHARACTER epString*(EPOCH_STRING LEN)

REAL*8

epoch

SUBROUTINE parse EPOCHI1 (epString, epoch)
CHARACTER epString*(EPOCH1_STRING_LEN)

REAL*8

epoch

SUBROUTINE parse EPOCH2 (epString, epoch)
CHARACTER epString*(EPOCH2_STRING LEN)

REAL*8

epoch

SUBROUTINE parse EPOCH3 (epString, epoch)
CHARACTER epString*(EPOCH3 STRING LEN)

REAL*8

epoch

SUBROUTINE parse EPOCH4 (epString, epoch)
CHARACTER epString*(EPOCH4 STRING_LEN)

REAL*8

SUBROUTINE compute EPOCH16 (year, month, day, hour, minute, second, msec, epoch)

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
REAL*4

epoch

year
month
day
hour
minute
second
msec

epoch(2)

!'in
! out

!'in
! out

!'in
! out

!'in
! out

!'in
! out

!'in
!'in
!'in
!'in
!'in
!'in
!'in
! out

SUBROUTINE EPOCHI16 breakdown (epoch, year, month, day, hour, minute, second, msec)

REAL*4

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

epoch(2)

year
month
day
hour
minute
second
msec

SUBROUTINE toencode EPOCHI16 (epoch, style, epString)

REAL*8
INTEGER*4

epoch(2)
style

CHARACTER epString*(EPOCH16_STRING_LEN)

SUBROUTINE encode EPOCHI16 (epoch, epString)

REAL*8

epoch(2)

CHARACTER epString*(EPOCH16_STRING LEN)

SUBROUTINE encode EPOCH16 1 (epoch, epString)

REAL*8

epoch(2)

CHARACTER epString*(EPOCH16_1_STRING_LEN)

SUBROUTINE encode EPOCH16 2 (epoch, epString)

REAL*8

epoch(2)

350

!'in

! out
! out
! out
! out
! out
! out
! out

!'in
!'in
! out

!'in
! out

!'in
! out

CHARACTER epString*(EPOCH16_2 STRING LEN)

SUBROUTINE encode EPOCH16 3 (epoch, epString)
REAL*8 epoch(2)
CHARACTER epString*(EPOCH16 3 STRING LEN)

SUBROUTINE encode EPOCH16 4 (epoch, epString)
REAL*8 epoch(2)
CHARACTER epString*(EPOCH16 4 STRING LEN)

SUBROUTINE encode EPOCHI16 x (epoch, format, epString)

REAL*8 epoch(2)
CHARACTER format*(EPOCHx_FORMAT MAX)
CHARACTER epString*(EPOCHx STRING MAX)

SUBROUTINE toparse EPOCH16 (epString, epoch)
CHARACTER epString*(EPOCH16_STRING LEN)
REAL*8 epoch(2)

SUBROUTINE parse EPOCHI16 (epString, epoch)
CHARACTER epString*(EPOCH16_STRING LEN)
REAL*8 epoch(2)

SUBROUTINE parse EPOCHI16 1 (epString, epoch)
CHARACTER epString*(EPOCH16 1 STRING LEN)
REAL*8 epoch(2)

SUBROUTINE parse EPOCH16 2 (epString, epoch)
CHARACTER epString*(EPOCH16 2 STRING LEN)
REAL*8 epoch

SUBROUTINE parse EPOCH16 3 (epString, epoch)
CHARACTER epString*(EPOCH16 3 STRING LEN)
REAL*8 epoch(2)

SUBROUTINE parse EPOCHI16 4 (epString, epoch)
CHARACTER epString®*(EPOCH16 4 STRING LEN)
REAL*8 epoch(2)

SUBROUTINE EPOCH_to UnixTime (epoch, unixtime, numtimes)

REAL*8 epoch
REAL*8 unixtime
INTEGER numtimes

SUBROUTINE EPOCHI16 to UnixTime (epoch, unixtime, numtimes)

REAL*8 epoch
REAL*8 unixtime
INTEGER numtimes

SUBROUTINE UnixTime to EPOCH (unixtime, epoch, numtimes)

REAL*8 unixtime
REAL*8 epoch
INTEGER numtimes

SUBROUTINE UnixTime to EPOCHI16 (unixtime, epoch, numtimes)

REAL*8 unixtime

351

! out

!'in
! out

!'in
! out

!'in
!'in
! out

!'in
! out

!'in
! out

!'in
! out

!'in
! out

!'in
! out

!'in
! out
!'in

!'in
! out
!'in

!'in
! out
!'in

REAL*8 epoch ! out
INTEGER numtimes !'in

352

B.5 TT2000 Utility Routines

SUBROUTINE compute TT2000 (year, month, day, hour, minute, second, msec, epoch)

INTEGER*4 year in
INTEGER*4 month !'in
INTEGER*4 day !'in
INTEGER*4 hour !'in
INTEGER*4 minute !'in
INTEGER*4 second !'in
INTEGER*4 msec !'in
INTEGER*4 usec !'in
INTEGER*4 nsec !'in
INTEGER*8 tt2000 ! out
SUBROUTINE TT2000 breakdown (tt2000, year, month, day, hour, minute, second, msec)
INTEGER*8 tt2000 !'in
INTEGER*4 year ! out
INTEGER*4 month ! out
INTEGER*4 day ! out
INTEGER*4 hour ! out
INTEGER*4 minute ! out
INTEGER*4 second ! out
INTEGER*4 msec ! out
INTEGER*4 usec ! out
INTEGER*4 nsec ! out

SUBROUTINE toencode TT2000 (tt2000, style, epString)

INTEGER*8 tt2000 !'in

INTEGER*4 style !'in

CHARACTER epString*(TT2000_* STRING LEN) ! out
SUBROUTINE encode TT2000 (tt2000, style, epString)

INTEGER*8 tt2000 !'in

INTEGER*4 style, !'in

CHARACTER epString*(TT2000_* STRING LEN) ! out
SUBROUTINE parse TT2000 (epString, tt2000)

CHARACTER epString*(TT2000 * STRING LEN) !'in

INTEGER*8 2000 ! out

SUBROUTINE toparse_ TT2000 (epString, tt2000)

CHARACTER epString*(TT2000 * STRING LEN) !'in
INTEGER*8 tt2000 ! out
SUBROUTINE TT2000 to EPOCH (tt2000, epoch)

INTEGER*8 tt2000 !'in
REAL*8 epoch, ! out
SUBROUTINE TT2000 from EPOCH (epoch, tt2000)

REAL*8 epoch !'in
INTEGER*8 tt2000 ! out

SUBROUTINE TT2000 to EPOCHI6 (12000, epoch16)

353

INTEGER*8 tt2000

REAL*8

SUBROUTINE TT2000_from EPOCH16 (epochl6, tt2000)

REAL*8

epoch16(2)

epoch16(2)

INTEGER*8 tt2000

SUBROUTINE TT2000 to UnixTime (tt2000, unixtime, numtimes)

INTEGER*8 tt2000

REAL*8
INTEGER

SUBROUTINE UnixTime to TT2000 (unixtime, tt2000, numtimes)

REAL*8

unixtime
numtimes

unixtime

INTEGER*8 tt2000

INTEGER

numtimes

354

!'in
! out

!'in
! out

!'in
! out
!'in

!'in
! out
!'in

Index

ALPHAOSF1_DECODING
ALPHAOSF1 ENCODING
ALPHAVMSd _DECODING
ALPHAVMSd _ENCODING
ALPHAVMSg DECODING
ALPHAVMSg ENCODING
ALPHAVMSi DECODING
ALPHAVMSi_ENCODING
ARM_BIG_DECODING
ARM BIG_ENCODING
ARM_LITTLE_DECODING
ARM_LITTLE ENCODING
Attribute
gEntry
Number of Elements
accessing
Attribute
gEntry
Data Type
accessing
Attribute
name
inquiring
attributes
numbering
inquiring
attributes
creating
entries
data specification
changing
data type
inquiring
number of elements
inquiring
maximum
inquiring
reading
writing
naming
inquiring
renaming
number of
inquiring
numbering
inquiring
scopes
constants
GLOBAL SCOPE
VARIABLE_SCOPE
inquiring
attributes

17
16
17
16
17
16
17
16
17
16
17
16

182

181

185

186

27,175

34
28
28

31
30
34
22,27, 175
32
35

46
14
33

20
20
20
31

355

rEntry
reading
attributes
zEntry
reading
attributes
entries
maximum
inquiring
attributes
scopes
inquiring
attributes
naming
inquiring
attributes
gEntries
data specification
changing
attributes
gEntries
writing
attributes
rEntries
data specification
changing
attributes
rEntries
writing
attributes
zEntries
data specification
changing
attributes
zEntries
writing
attributes
gEntries
data specification
changing
attributes
current
attributes
entries
current
attributes
entries
current
attributes
entries
current
attributes

190

194

200

200

200

206

206

208

208

209

209

211

220

220

220

220

current
confirming
attributes
existence, determining
attributes
entries
current
confirming
attributes
entries
current
confirming
attributes
entries
existence, determining
attributes
entries
current
confirming
attributes
entries
existence, determining
attributes
entries
current
confirming
attributes
entries
existence, determining
attributes
creating
attributes
deleting
attributes
entries
deleting
attributes
entries
deleting
attributes
entries
deleting
attributes
entries
maximum
inquiring
attributes
entries
maximum
inquiring
attributes
entries
maximum
inquiring
attributes
naming
inquiring
attributes
numbering
inquiring
attributes
entries

225

225

227

228

228

228

228

231

231

234

236

237

237

238

239

239

239

240

240

356

number of
inquiring
attributes
entries
number of
inquiring
attributes
entries
number of
inquiring
attributes
scopes
inquiring
attributes
number of
inquiring
attributes
entries
reading
attributes
entries
data specification
data type
inquiring
attributes
entries
data specification
number of elements
inquiring
attributes
entries
reading
attributes
entries
data specification
data type
inquiring
attributes
entries
data specification
number of elements
inquiring
attributes
entries
reading
attributes
entries
data specification
data type
inquiring
attributes
entries
data specification
number of elements
inquiring
attributes
naming
renaming
attributes
scopes
changing
attributes

240

240

241

241

243

245

245

245

246

247

247

254

254

254

262

262

entries
writing
attributes
entries
writing
attributes
entries
data specification
changing
attributes
entries
writing
attributes
entries
data specification
changing
attributes
current
selecting
by number
attributes
current
selecting
by name
attributes
entries
current
selecting
by number
attributes
entries
current
selecting
by name
attributes
entries
current
selecting
by number
attributes
entries
current
selecting
by name
Attributes
deleting
gEntries
data specification
data type
inquiring
number of elements
inquiring
number of
inquiring
reading
gEntry
deleting
Maximum entry
name
renaming
number of
global attributes

263

264

265

269

270

275

275

277

277

280

280

176

202

202

187
179

177
183

210

357

inquiring
inquiring
variable attributes
inquiring
rEntries
data specification
data type
inquiring
number of elements
inquiring
number of
inquiring
rEntry
data specification
changing
data type
inquiring
deleting
Maximum entry
number of elements
inquiring
scope
changing
inquiring
zEntries
data specification
data type
inquiring
number of elements
inquiring
number of
inquiring
zEntry
data specification
changing
data type
inquiring
deleting
Maximum entry
number of elements
inquiring
CDF
backward file
backward file flag
getting
setting
Checksum
Checksum mode
setting
copyright
inquiring
Long Integer
Validation
CDF library
copy right notice
max length
reading
Extended Standard Interface
Internal Interface
modes
-0.0t0 0.0
confirming

198
89, 198

199

203
203

188

212
191
177
183
192

213
193

205
205

189

214

196
178
184

197
22

23

22

23
24,25
79

26
25

22
245
67
217

226

constants
NEGtoPOSfpOoff
NEGtoPOS{pOon
selecting
decoding
confirming
constants
ALPHAOSF1_DECODING
ALPHAVMSd DECODING
ALPHAVMSg DECODING
ALPHAVMSi_DECODING
ARM BIG DECODING
ARM_LITTLE_DECODING
DECSTATION_DECODING
HOST_DECODING
HP_DECODING
IA64VMSd DECODING
IA64VMSg_DECODING
TA64VMSi_DECODING
IBMPC DECODING
IBMRS_DECODING
MAC_DECODING
NETWORK_DECODING
NeXT_DECODING
SGi_ DECODING
SUN_DECODING
VAX DECODING
selecting
read-only
confirming
constants
READONLYoff
READONLYon
selecting
zMode
confirming
constants
zMODEoff
zMODEon1
zMODEon2
selecting
Original Standard Interface
shared CDF library
version
inquiring
CDFSLIB
cdfiinc
CDF _ get stage cachesize
CDF attr create
CDF _attr_entry_inquire
CDF _attr get
CDF attr_inquire
CDF_ATTR NAME LEN256
CDF attr num
CDF _attr put
CDF _attr rename
CDF_BYTE
CDF_CHAR
CDF_close
CDF close cdf
CDF close zvar
CDF _confirm_attr existence

21
21
276

226

17
17
17
17
17
17
17
17
17
17
18
17
17
17
17
17
17
17
17
17
276

227

20
20
20,276

227

21
21
21
21,277

246

13
86
27,175

30
31
22
33
34
35
14
14
36
71
104
171

358

CDF _confirm_gentry existence
CDF_confirm_rentry existence
CDF_confirm_zentry_existence
CDF _confirm_zvar_existence

CDF _confirm zvar padvalue existence

CDF_COPYRIGHT LEN
CDF create

CDF create cdf

CDF _create zvar

CDF delete

CDF _delete_attr

CDF _delete_attr_gentry

CDF delete attr rentry

CDF _delete attr zentry

CDF delete cdf

CDF delete zvar

CDF _delete_zvar recs

CDF doc

CDF_DOUBLE
CDF_EPOCH
CDF_EPOCHI16

CDF _error

CDF error or CDF_error
CDF_FLOAT

CDF get attr gentry

CDF get attr gentry datatype
CDF_get attr gentry numelems
CDF get attr max gentry
CDF_get attr max_rentry
CDF _get attr max_zentry
CDF _get attr name
CDF_get_attr num

CDF _get attr num_gentries
CDF _get_attr num_rentries
CDF_get_attr num_zentries
CDF get attr rentry

CDF _get attr_rentry datatype
CDF get attr rentry numelems
CDF _get attr scope
CDF_get_attr zentry

CDF _get attr zentry datatype
CDF _get attr zentry numelems
CDF _get cachesize

CDF_get _checksum

CDF_get compress_cachesize
CDF_get_compression
CDF_get compression_info
CDF_get_copyright

CDF _get datatype size
CDF_get_decoding
CDF_get_encoding

CDF_get format
CDF_get_lib_copyright
CDF_get lib_version
CDF_get majority

CDF_get name

CDF_get negtoposfp0_mode
CDF_get num_attrs

CDF _get num_gattrs
CDF_get num_vattrs
CDF_get num zvars

CDF _get readonly mode

172
173
174
105
106
22
37
72
107
39
176
177
177
178
73
109
110, 111
39
15
15
15
41
311
15
179
181
182
183
183
184
185
186
187
188
189
190
191
192
193
194
196
197
74
75
76
77
78
79
68

80
81,82
68
69
83
83
84
198
198
199
112
85

CDF_get_status_text

CDF _get validate

CDF _get var allrecords varname
CDF get var num

CDF _get var rangerecords name
CDF_get vars_maxwrittenrecnums
CDF _get version
CDF_get_zmode
CDF_get zvar allocrecs

CDF _get zvar allrecords_varid
CDF_get_zvar blockingfactor
CDF _get zvar cachesize

CDF _get zvar _compression

CDF _get zvar data

CDF _get zvar datatype

CDF _get zvar dimsizes

CDF _get zvar dimvariances
CDF_get zvar maxallocrecnum
CDF_get zvar maxwrittenrecnum
CDF_get zvar name
CDF_get zvar numdims

CDF _get zvar numelems
CDF_get zvar numrecs
CDF_get zvar_padvalue

CDF _get zvar rangerecords varid
CDF get zvar recorddata

CDF _get zvar recvariance
CDF_get_zvar_reservepercent
CDF _get zvar seq

CDF _get zvar seqpos

CDF get zvar_sparserecords
CDF_get zvars_maxwrittenrecnum
CDF get zvars recorddata

CDF _getrvarsrecorddata
CDF_getzvarsrecorddata

CDF _hyper get zvar data

CDF _hyper put zvar data

CDF inquire

CDF inquire_attr

CDF _inquire_attr_gentry

CDF _inquire_attr_rentry

CDF inquire attr zentry

CDF _inquire_cdf

CDF inquire zvar

CDF_INT1

CDF_INT2

CDF_INT4

CDF_INT8

CDF _lib

CDF_LIB

CDF _MAX DIMS
CDF_MAX_PARMS

CDF_OK

CDF open

CDF open_cdf

CDF _PATHNAME LEN

CDF put attr _gentry

CDF put_attr_rentry

CDF put attr zentry

CDF put var allrecords varname
CDF _put var rangerecords name
CDF put_zvar_allrecords varid

70

87
113
114
115
116

87

88
118
117
119
120
121
122
123
124
125
126
127
128
128
129
130
131
132
133
134
135
136
137
139
138
140

42

44
141
143

46
200
202
203
205

89
145

14

15

15

15
217

21
21
14
47
91
21
206
208
209
147
148
149

359

CDF put zvar data
CDF _put_zvar_rangerecords_varid
CDF_put_zvar_recorddata
CDF put zvar seqdata
CDF _put zvars_recorddata
CDF _putrvarsrecorddata
CDF _putzvarsrecorddata
CDF_REAL4
CDF_REALS
CDF rename_attr
CDF _rename zvar
CDF select_cdf
CDF set_attr_gentry dataspec
CDF _set_attr_rentry dataspec
CDF set_attr scope
CDF set_attr zentry dataspec
CDF _set_blockingfactor
CDF _set_cachesize
CDF _set_checksum
CDF _set_compression
CDF _set_compression_cachesize
CDF _set_decoding
CDF _set_encoding
CDF _set_format
CDF _set_majority
CDF _set_negtoposfp0_mode
CDF _set_readonly mode
CDF set stage cachesize
CDF _set_validate
CDF _set_zmode
CDF _set_zvar_allocblockrecs
CDF _set_zvar_allocrecs
CDF set zvar cachesize
CDF _set_zvar_compression
CDF _set_zvar dataspec
CDF set zvar dimvariances
CDF _set_zvar initialrecs
CDF set zvar padvalue
CDF _set_zvar recvariance
CDF set_zvar reservepercent
CDF _set_zvar seqpos
CDF _set_zvar sparserecords
CDF set_zvars_cachesize
CDF_STATUSTEXT_LEN
CDF_TIME_TT2000
CDF_UCHAR
CDF_UINTI1
CDF_UINT2
CDF_UINT4
CDF _var_close
CDF var create
CDF var get
CDF_var_hyper get
CDF var hyper put
CDF _var_inquire
CDF VAR NAME LEN256
CDF_var num
CDF_var put
CDF var rename
CDF_WARN
CDFs

accessing

150
152
153
154
155
48
50
15
15
210
157
92
211
212
213
214
160
93
93
95
94
96
97
98,99
99
100
101
102
103
103
158
159
161
162
163
164
164
165
166
167
169
170
168
22
15
14
14
15
15
52
53
55
56
58
60
22
61
63
64
14

47,91, 92,226

browsing
cache buffers

20

confirming 226,227,229,231,232
selecting 275,277,278, 279, 280, 281, 282
cache size
inquiring 74
resetting 93
stage
resetting 102
staging
inquiring 86
checksum
inquiring 75
checksum
resetting 93
checksum
reading 241
checksum
reading 262
closing 36,71, 225
compression
cache size
inquiring 76
resetting 94
inquiring 77,78, 241, 248, 255
resetting 95
specifying 262
compression types/parameters 19
copy right notice
max length 22
reading 40, 241
corrupted 37,72
creating 37,772,234
current 219
confirming 226
selecting 275
decoding
inquiring 79
resetting 96
deleting 39, 73,237
encoding
changing 263
constants 15
ALPHAOSF1_ENCODING 16
ALPHAVMSd ENCODING 16
ALPHAVMSg ENCODING 16
ALPHAVMSi_ENCODING 16
ARM_BIG_ENCODING 16
ARM_LITTLE_ENCODING 16
DECSTATION_ENCODING 16
HOST ENCODING 15
HP_ENCODING 16
TIA64VMSd _ENCODING 16
IA64VMSg_ENCODING 16
IA64VMSi_ENCODING 16
IBMPC_ENCODING 16
IBMRS_ENCODING 16
MAC _ENCODING 16
NETWORK ENCODING 15
NeXT_ENCODING 16
SGi_ ENCODING 16
SUN_ENCODING 16

VAX_ENCODING
default
inquiring
resetting

format
changing
constants

MULTI_FILE

SINGLE_FILE
default
inquiring
inquiring
resetting

majority
inquiring
resetting
mode
postoposfp0
resetting
read only
resetting
name
inquiring
naming
negtoposfp0 mode
inquiring
nulling
opening
overwriting
readonly mode
inquiring
scratch directory
specifying
selecting
status
text
inquiring
validate
resetting
validation
inquiring
version
inquiring
zmode
resetting
zMode
inquiring
zVariables
records
maximum written
Ckecksum
COLUMN_MAJOR
Compiling
compression
CDF
inquiring
specifying
types/parameters
variables
inquiring
reserve percentage
confirming

15

15
46, 80, 89, 242
97
263
14

14

14
81, 82
242
98,99
83

99
100
101

83
21,37,47,72,91

84

261
47,91, 261
37,72

85

276

92

70

103

87

40, 87, 242, 244
103

88

138
75,93

241,242
262

19

248, 255

229,233

selecting
specifying
compute EPOCH
compute EPOCH16
compute TT2000
confirm
existence
attribute
gEntry
rEntry
zEntry
zVariable
padValue
data type
size
inquiring
data types
constants
CDF _BYTE
CDF_CHAR
CDF_DOUBLE
CDF_EPOCH
CDF_EPOCHI16
CDF_FLOAT
CDF_INTI
CDF_INT2
CDF_INT4
CDF_INT8
CDF_REAL4
CDF_REALSR
CDF_TIME_TT2000
CDF_UCHAR
CDF _UINTI
CDF_UINT2
CDF _UINT4
inquiring size
DECSTATION_DECODING
DECSTATION_ENCODING
definitions file
DEFINITIONS.COM
dimensions
limit
numbering
encode EPOCH
encode EPOCHI1
encode EPOCHI16
encode EPOCH16 1
encode EPOCH16 2
encode EPOCH16 3
encode EPOCH16 4
encode EPOCH16 x
encode EPOCH2
encode EPOCH3
encode EPOCH4
encode EPOCHx
encode TT2000
encodeEPOCH
EPOCH
computing
decomposing
encoding
ISO 8601

278,282
266,271
291
297
304

171
172
173
174
105
106

68

14
14
14
15
15
15
15
14
15
15
15
15
15
15
14
14
15
15
244
17
16
5
5

21
14
292,293
293
298
299
299
299
300
300
294
294
294
294
305
298

291

292

292,293, 294, 298
294,297,300, 302, 303, 308

361

parsing
utility routines
compute EPOCH
compute EPOCH16
encode EPOCH
encode EPOCH1
encode EPOCHI16
encode EPOCH16 1
encode EPOCH16 2
encode EPOCH16 3
encode EPOCH16 4
encode EPOCH16 x
encode EPOCH2
encode EPOCH3
encode EPOCH4
encode EPOCHx
encodeEPOCH
EPOCH_breakdown
EPOCH16_breakdown
parse EPOCH
parse EPOCH1
parse EPOCHI16
parse EPOCHI16 1
parse EPOCH16 2
parse EPOCH16 3
parse EPOCH16 4
parse EPOCH2
parse EPOCH3
parse EPOCH4
parse_TT2000
parseEPOCH16 4
EPOCH_breakdown
EPOCHI16
computing
decomposing
encoding
parsing
EPOCH16_breakdown
examples
accessing
Attribute
rEntry
Maximum entry
zEntry
Maximum entry
accessing
Attribute
gEntry
Data Type
Maximum entry
Number of Elements
allocating
zVariable
records
changing
attribute
rEntry
data specification
scope
zEntry
data specification
CDF

295, 296, 297, 302, 303, 308
291

291

297
292,293
293

298

299

299

299

300

300

294

294

294

294

298

292

297
295,296
296

301

301

302

302

302

296

296

297

306
302, 303, 308
292

297
297
298, 299, 300

301, 302
297

184

185

181
183
182

158, 159

213
214

215

cache size
stage
checksum
compression
cache size
decoding
encoding
format
majority
mode
negtoposfp0
read only
validate
zmode
zVariable
attribute
data specification
zVariable
blocking factor
cache size
data specification
dimension variances
record variance
reserve percentage
sparse records
closing
CDF
rVariable
zVariable
confirm
existence
gEntry
rEntry
zEntry
zVariable
padValue
confirm
existence
attribute
creating
attribute
CDF
rVariable
zVariable
deleting
Attribute
gEntry
rEntry
zEntry
CDF
zVariable
records
get
Attribute
name
inquiring
attribute
entry
gEntry
number
rEntry
zEntry

93
102
94

96

95

96

97
98,99
100

101
102
103
104
162

212

160
161
163
164
167
168
171

37,72
52,53
104, 105

172
173
174
106
106

172

28,175
38,73,217
54,283
108, 284

176
177

178

179
39,74
110
111,112

186

32,201
29

202
33,187
204
205

Attribute
rEntry
number of elements
scope
zEntry
data type
number of elements
Attributes
gEntries
number of attributes
number of gAttributes
number of vAttributes
rEntries
zEntries
CDF
cache size
checksum
compression
cache size
copyright
decoding
encoding
format
majority
name
negtoposfp0 mode
number of zVariables
readonly mode
staging cache size
validation
version
zMode
zVariables
records
maximum written
data type
size
error code explanation text
library
copyright
Library
version
rVariable
variable
number
Variable
number
Variables
records
maximum written
zVariable
allocated records
blocking factor
cache size
compression
data type
dimension sizes
dimension variances
name
number of dimensions
number of elements
record variance

362

192, 193
194

196
197

187
198
199
200
188
189
40, 47,90
74

75
77,78
76

79

80

81
81, 82
83

84

85
112
85

86

87

88

89

138

68
41,70

69

70
61

62

114

117
146
118
119
120
121
124
124
125
128
129
130
134

records

maximum allocated
maximum written

written
reserve percentage
sequential position
sparse records type
Internal Interface
interpreting
status codes
opening
CDF
reading
attribute
gEntry
rEntry
zEntry
attribute entry
rVariable values
hyper
single
rVariables
rVariables full record
Variable
range records
zVariable
all records
pad value
range records
zVariable values
full record
hyper
sequential
single
zVariables
zVariables full record
renaming
attribute
attributes
rVariable
zVariable
resetting
zVariable
pad value
selecting
CDF
seting
zVariable
sequential position
setting
zVariables
cache size
status handler
writing
attribute
gEntry
rEntry
zEntry
zVariable
rVariable values
hyper
single

126
127
131
135
137
139
217,283

289

48,91

180
190
195

30

57,284
55
42
43

113,116

117
132
133

134
143
136, 286
122
44, 140
44, 140

211
36, 285
64

157

166

92

170

169
289

35,207
35,208, 287
210

165

59
63

363

rVariables
rVariables full record
Variable
range records
zVariable
all records
range records
zVariable values
full record
hyper
multiple variable
sequential
single
zVariables
zVariables full record
Extended Standard Interface
GLOBAL_SCOPE
HOST DECODING
HOST _ENCODING
HP_DECODING
HP_ENCODING
1A64VMSd DECODING
[IA64VMSd _ENCODING
1A64VMSg DECODING
T1A64VMSg ENCODING
IA64VMSi_DECODING
TA64VMSi_ENCODING
IBMPC_DECODING
IBMPC_ENCODING
IBMRS DECODING
IBMRS _ENCODING
Interfaces
Extended Standard
Internal
Original Standard
Internal Interface
currnt objects/states
attribute
attribute entries
CDF
records/dimensions
sequential value
status code
variables
examples
Indentation/Style
Operations
status codes, returned
syntax
argument list
limitations
item referencing
libcdf.a
LIBCDF.OLB
Library
copyright
inquiring
version
inquiring
limits
attribute name
copyright text

48
49

148

150
149, 152

153
144
287
154
151
50, 155
51,155
67
20
17
15
17
16
17
16
18
16
17
16
17
16
17
16

67

217

27

217

219

220

220

219
220,221,222
221,222
222

220
217,283
223

225

222

223

223

223

14

6

5,6

68

69

22
22

dimensions
explanation/status text
file name
parameters
variable name
linking
shareable CDF library
MAC_DECODING
MAC_ENCODING
MULTI_FILE
NEGtoPOSfpOoff
NEGtoPOSfpOon
NETWORK_DECODING
NETWORK_ENCODING
NeXT DECODING
NeXT_ENCODING
NO_COMPRESSION
NO_SPARSEARRAYS
NO_SPARSERECORDS
NOVARY
Original Standard Interface
PAD SPARSERECORDS
parse EPOCH
parse EPOCH1
parse EPOCHI16
parse EPOCH16 1
parse EPOCH16_2
parse EPOCH16 3
parse EPOCH16 4
parse EPOCH2
parse EPOCH3
parse EPOCH4
parse_TT2000
parseEPOCH16 4
PREV_SPARSERECORDS
programming interface
compiling
linking
READONLY off
READONLYon
ROW_MAIJOR
rVariables
closing
creating
data specification
data type
inquiring
number of elements
inquiring
dimensionality
inquiring
full record
reading
writing
multiple values
accessing
writing
naming
inquiring
renaming
number of
inquiring

21
22
21
21
22
5

9
17
16
14
21
21
17
15
17
16
19
20
20
18
27
20
295,296
296
301
301
302
302
302
296
296
297
306
302, 303, 308
20
13

1

5
20
20
18

52
53
60
60
46, 89

42
48

56
58

60
64

46

364

records
maximum
inquiring
single value
accessing
writing
scratch directory
specifying
SGi_DECODING
SGi_ENCODING
SINGLE_FILE
sparse arrays
inquiring
specifying
types
sparse records
inquiring
specifying
types
status codes
constants
CDF_OK
CDF_WARN
current
confirming
selecting
error
explanation text
inquiring
max length
explanation text
informational
interpreting
status handler, example
warning
SUN_DECODING
SUN_ENCODING
TT2000
computing
conversion
decomposing
encoding
parsing
utility routines
compute TT2000
encode TT2000
TT2000_ breakdown
TT2000_ from EPOCH

TT2000 from EPOCHI16

TT2000_to_ EPOCH
TT2000 to EPOCH16
TT2000_breakdown
TT2000_from EPOCH
TT2000_from EPOCH16
TT2000_to_ EPOCH
TT2000 to EPOCH16
VARIABLE_SCOPE
variables
aparse arrays
inquiring
closing
compression

46

55
63

276
17
16
14

252,260
269,274
20

252,260
269,274
20

14,289
14

14

222
227
276
311

41,254
22

311
311
289,311
287

311

17

16

304
307
304
305
306
304
304
305
304
307
307
307
307
304
307
307
307
307

20

252,260, 269, 274
104, 225

confirming
inquiring
selecting
specifying
types/parameters
creating
current
confirming
selecting
by name
by number
data specification
changing
data type
inquiring
number of elements
inquiring
deleting
dimension counts
current
confirming
selecting
dimension indices, starting
current
confirming
selecting
dimension intervals
current
confirming
selecting
dimensionality
inquiring
existence, determining
indices
numbering
majority
changing
considering
constants
COLUMN_MAIJOR
ROW_MAIJOR
default
inquiring
naming
inquiring
max length
renaming
number of, inquiring
numbering
inquiring
pad value
confirming
inquiring
specifying
reading
record count
current
confirming
selecting
record interval
current
confirming

229,233
241,248, 255
278,282
266,271

19

235,236

220

229,232

278, 281
277,280

266,272
248, 256

251,259
237,238

221,222
230,232
279, 281

221,222
230, 232
279,281

221,222
230,232
279, 281

253,259
229,232

14

263

18

18

18

18

235

243
53,107
249,257
22
267,273
243,244
14

250, 258

229,233
251,259
268,273
248,249, 256, 257

220,221
230,233
279, 281

221
231, 233

365

selecting

record number, starting

current
confirming
selecting
records
allocated
inquiring
specifying
blocking factor
inquiring
specifying
deleting
indexing
inquiring
initial
writing
maximum
inquiring
number of
inquiring
numbering
sparse
inquiring
specifying
sparse arrays
types
variances
constants
NOVARY
VARY
dimensional
inquiring
specifying
record
changing
inquiring
writing
Variables
all records
reading
writing
number of
inquiring
numbering
inquiring
range records
reading
writing
records
maximum
inquiring

maximum written

inquiring

VARY
VAX DECODING
VAX ENCODING
zMODEoff
zMODEon1
zMODEon2
zVariabels

records

279, 282

220,221
231,233
280, 282

247,250, 255, 258
265,270,271

248,255
266, 271
237,238,239

250,258
267,272
249,253,257, 260

251, 259
14
20
252,260
269,274

20

18
18
18

249, 256
267,272

268,273
251, 259
267,272

113
147

89
61,114

115
148

89

116
18
17
15
21
21
21

allocating
zVariables
accessing
full record
hyper values
sequential value
single value
all records
reading
writing
blocking factor
inquiring
resetting
cache size
inquiring
resetting
compression
inquiring
resetting
creating
data specification
data type
inquiring
number of elements
inquiring
resetting
data type
inquiring
deleting
dimension sizes
inquiring
dimension variances
inquiring
resetting
full record
reading
writing
name
inquiring
renaming
naming
inquiring
number of

161,

158

133
141
136
122

117
149

119
160

120
168

121
162
107
145

145
163

123
109

124

125
164

44
50

128
157

145

366

inquiring
number of dimensions
inquiring
number of elements
inquiring
pad value
accessing
resetting
range records
reading
writing
reading
full record
record variance
inquiring
resetting
records
allocated
inquiring
allocation
deleting
maximum allocated
inquiring
maximum written
inquiring
written
inquiring
written initially
reserve percentage
inquiring
resetting
sequential position
inquiring
setting
sparse records type
inquiring
resetting
writing
full record
hyper values
sequential value
single value

110,

112

128

129

131
165

132
152

140

134
166

118
159
111

126

127

130
164

135
167

137
169

139
170
155
153
143
154
150

	CDF
	Fortran Reference Manual
	NASA / Goddard Space Flight Center
	1 Compiling
	1.1 VMS/OpenVMS Systems

	1.2 UNIX Systems

	1.3 Windows Systems, Digital Visual Fortran

	2 Linking
	2.1 VAX/VMS & VAX/OpenVMS Systems
	2.2 DEC Alpha/OpenVMS Systems
	2.3 UNIX Systems
	2.3.1 Combining the Compile and Link

	2.4 Windows Systems, Digital Visual Fortran

	3 Linking Shared CDF Library
	3.1 VAX (VMS & OpenVMS)
	3.2 DEC Alpha (OpenVMS)
	3.3 SUN (SOLARIS)
	3.4 HP 9000 (HP-UX)
	3.5 IBM RS6000 (AIX)
	3.6 DEC Alpha (OSF/1)
	3.7 SGi (IRIX 6.x)
	3.8 Linux (X86 & Power PC)
	3.9 Windows
	3.10 Mac OS (X86_64 & ARM)

	4 Programming Interface
	4.1 Argument Passing
	4.2 Item Referencing
	4.3 Status Code Constants

	These constants are of type INTEGER*4.
	4.4 CDF Formats
	4.5 CDF Data Types

	One of the following constants must be used when specifying a CDF data type for an attribute entry or variable.
	4.6 Data Encodings

	DECSTATION_ENCODING
	4.7 Data Decodings
	4.8 Variable Majorities
	4.9 Record/Dimension Variances

	Record and dimension variances affect how variable data values are physically stored.
	4.10 Compressions
	4.11 Sparseness
	4.11.1 Sparse Records

	The following types of sparse records for variables are supported.
	4.11.2 Sparse Arrays

	The following types of sparse arrays for variables are supported.13F
	4.12 Attribute Scopes
	4.13 Read-Only Modes
	4.14 zModes
	4.15 -0.0 to 0.0 Modes
	4.16 Operational Limits

	These are limits within the CDF library. If you reach one of these limits, please contact CDF User Support.
	4.17 Limits of Names and Other Character Strings
	4.18 Backward File Compatibility with CDF 2.7

	By default, a CDF file created by CDF V3.0 or a later release is not readable by any of the CDF releases before CDF V3.0 (e.g. CDF 2.7.x, 2.6.x, 2.5.x, etc.). The file incompatibility is due to the 64-bit file offset used in CDF 3.0 and later release...
	There are two ways to create a file that’s backward compatible with CDF 2.7 and 2.6, but not 2.5. Fortran subroutine, CDF_set_FileBackward, can be called to control the backward compatibility from an application before a CDF file is created (i.e. CDF...
	The following example uses the Internal Interface routine to create two CDF files: “MY_TEST1.cdf” is a V3.* file while “MY_TEST2.cdf” a V2.7 file. Alternatively, the Standard Interface routine CDF_create_CDF can be used for the file creation.
	Another method is through an environment variable and no function call is needed (and thus no code change involved in any existing applications). The environment variable, CDF_FILEBACKWARD on all Unix platforms and Windows, or CDF$FILEBACKWARD on Ope...
	4.19 Checksum

	To ensure the data integrity while transferring CDF files from/to different platforms at different locations, the checksum feature was added in CDF V3.2 as an option for the single-file format CDF files (not for the multi-file format). By default, th...
	If the checksum bit is turned on, a 16-byte signature message (a.k.a. message digest) is computed from the entire file and appended to the end of the file when the file is closed (after any create/write/update activities). Every time such file is ope...
	There are several ways to add or remove the checksum bit. One way is to use the Interface call (Standard or Internal) with a proper checksum mode. Another way is through the environment variable. Finally, CDFedit and CDFconvert (CDF tools included ...
	See Section 6.2.5 and 6.2.26 for the Standards Interface functions and Section 7.6 for the Internal Interface functions. The environment variable method requires no function calls (and thus no code change is involved for existing applications). The ...
	The following example uses the Internal Interface to set one new CDF file with the MD5 checksum and set another existing file’s checksum to none.
	Alternatively, the Standard Interface function CDF_set_Checksum can be used for the same purpose.
	The following example uses the Internal Interface to get the checksum mode used in a CDF.
	Alternatively, the Standard Interface function CDF_get_Checksum can be used for the same purpose.
	4.20 Data Validation

	This This validation feature is controlled by setting/unsetting the environment variable CDF_VALIDATE on all Unix platforms, Mac OS X and Windows, or CDF$VALIDATE on Open/VMS. If its value is not set or set to “yes”, all CDF files are subjected to the...
	The following example sets the data validation on when it opens the CDF file, “TEST”.
	The following example turns off the data validation when it opens the CDF file, “TEST”.
	4.21 8-Byte Integer

	5 Standard Interface
	5.1 CDF_attr_create

	SUBROUTINE CDF_attr_create (
	5.1.1 Example(s)
	5.2 CDF_attr_entry_inquire

	SUBROUTINE CDF_attr_entry_inquire (
	5.2.1 Example(s)

	ELSE
	END IF
	END DO
	5.3 CDF_attr_get

	SUBROUTINE CDF_attr_get (
	5.3.1 Example(s)

	IF (data_type .EQ. CDF_CHAR) THEN
	END IF
	5.4 CDF_attr_inquire

	SUBROUTINE CDF_attr_inquire (
	5.4.1 Example(s)

	ELSE
	WRITE (6,10) attr_name
	END IF
	END DO
	5.5 CDF_attr_num

	INTEGER*4 FUNCTION CDF_attr_num (
	5.5.1 Example(s)
	5.6 CDF_attr_put

	SUBROUTINE CDF_attr_put (
	5.6.1 Example(s)
	5.7 CDF_attr_rename

	SUBROUTINE CDF_attr_rename (
	5.7.1 Example(s)

	In the following example the attribute named LAT is renamed to LATITUDE.
	5.8 CDF_close
	5.8.1 Example(s)

	The following example will close an open CDF.
	5.9 CDF_create

	SUBROUTINE CDF_create (
	UNIX: File names are case-sensitive.
	NOTE: CDF_close must be used to close the CDF before your application exits to ensure that the CDF will
	5.9.1 Example(s)

	The following example will create a CDF named test1 with network encoding and row majority.
	5.10 CDF_delete

	SUBROUTINE CDF_delete (
	5.10.1 Example(s)

	The following example will open and then delete an existing CDF.
	ELSE
	END IF
	5.11 CDF_doc

	SUBROUTINE CDF_doc (
	5.11.1 Example(s)

	The following example will inquire and display the version/release and copyright notice.
	END DO
	END IF
	END DO
	END IF
	5.12 CDF_error

	SUBROUTINE CDF_error (
	5.12.1 Example(s)

	The following example displays the explanation text if an error code is returned from a call to CDF_open.
	END DO
	END IF
	5.13 CDF_getrvarsrecorddata

	SUBROUTINE CDF_getrvarsrecorddata(
	5.13.1 Example(s)

	INCLUDE '<path>cdf.inc'
	5.14 CDF_getzvarsrecorddata

	SUBROUTINE CDF_getzvarsrecorddata(
	5.14.1 Example(s)

	INCLUDE '<path>cdf.inc'
	5.15 CDF_inquire

	SUBROUTINE CDF_inquire(
	5.15.1 Example(s)

	The following example will inquire the basic information about a CDF.
	5.16 CDF_open

	SUBROUTINE CDF_open (
	UNIX: File names are case-sensitive.
	5.16.1 Example(s)

	The following example will open a CDF named NOAA1.
	5.17 CDF_putrvarsrecorddata

	SUBROUTINE CDF_putrvarsrecorddata(
	5.17.1 Example(s)

	INCLUDE '<path>cdf.inc'
	2 30.0, 50.0/
	COMMON /BLK/time, longitude, latitude, temperature
	5.18 CDF_putzvarsrecorddata

	SUBROUTINE CDF_putzvarsrecorddata(
	5.18.1 Example(s)

	INCLUDE '<path>cdf.inc'
	2 30, 40,
	3 50, 60/
	COMMON /BLK/delta, time, temperature, longitude, name
	5.19 CDF_var_close

	SUBROUTINE CDF_var_close (
	5.19.1 Example(s)

	The following example will close an rVariable in a multi-file CDF.
	5.20 CDF_var_create

	SUBROUTINE CDF_var_create (
	5.20.1 Example(s)
	5.21 CDF_var_get

	SUBROUTINE CDF_var_get (
	5.21.1 Example(s)

	END DO
	END DO
	END DO
	5.22 CDF_var_hyper_get

	SUBROUTINE CDF_var_hyper_get (
	5.22.1 Example(s)
	5.23 CDF_var_hyper_put

	SUBROUTINE CDF_var_hyper_put (
	5.23.1 Example(s)
	5.24 CDF_var_inquire

	SUBROUTINE CDF_var_inquire (
	5.24.1 Example(s)
	5.25 CDF_var_num

	INTEGER*4 FUNCTION CDF_var_num (
	5.25.1 Example(s)

	In the following example CDF_var_num is used as an embedded function call when inquiring about an rVariable.
	5.26 CDF_var_put

	SUBROUTINE CDF_var_put (
	5.26.1 Example(s)

	END DO
	5.27 CDF_var_rename

	SUBROUTINE CDF_var_rename (
	5.27.1 Example(s)

	ELSE
	END IF
	6 Extended Standard Interface
	6.1 Library
	6.1.1 CDF_get_datatype_size

	SUBROUTINE CDF_get_datatype_size (
	6.1.1.1. Example(s)

	The following example acquires the size (in bytes) of CDF data type CDF_INT4 (it should be 4 bytes).
	6.1.2 CDF_get_lib_copyright

	SUBROUTINE CDF_get_lib_copyright (
	6.1.2.1. Example(s)

	The following example acquires the CDF library’s copyright notice.
	6.1.3 CDF_get_lib_version

	SUBROUTINE CDF_get_lib_version (
	6.1.3.1. Example(s)

	The following example acquires the CDF library’s version/release information.
	6.1.4 CDF_get_status_text

	SUBROUTINE CDF_get_status_text (
	6.1.4.1. Example(s)

	The following example displays the explanation text if an error code is returned from a call to CDF_open_cdf.
	END DO
	END IF
	6.2 CDF
	6.2.1 CDF_close_cdf
	6.2.1.1. Example(s)

	The following example will close an open CDF.
	6.2.2 CDF_create_cdf

	SUBROUTINE CDF_create_cdf (
	UNIX: File names are case-sensitive.
	NOTE: CDF_close_cdf must be used to close the CDF before your application exits to ensure that the CDF will
	6.2.2.1. Example(s)

	The following example will create a CDF named test1 with default encoding and majority.
	6.2.3 CDF_delete_cdf

	SUBROUTINE CDF_delete_cdf (
	6.2.3.1. Example(s)

	The following example will open and then delete an existing CDF.
	ELSE
	END IF
	6.2.4 CDF_get_cachesize

	SUBROUTINE CDF_get_cachesize (
	6.2.4.1. Example(s)

	The following example acquires the number of cache buffers used for a CDF.
	6.2.5 CDF_get_checksum

	SUBROUTINE CDF_get_checksum (
	6.2.5.1. Example(s)

	The following example acquires the checksum mode for a CDF.
	6.2.6 CDF_get_compress_cachesize

	SUBROUTINE CDF_get_compress_cachesize (
	6.2.6.1. Example(s)

	The following example acquires the number of cache buffers used for the compression scratch CDF file.
	6.2.7 CDF_get_compression

	SUBROUTINE CDF_get_compression (
	6.2.7.1. Example(s)

	The following example acquires the compression information from a CDF.
	6.2.8 CDF_get_compression_info

	SUBROUTINE CDF_get_compression_info (
	6.2.8.1. Example(s)

	The following example acquires the compression information from a CDF named “MYCDF.cdf”.
	6.2.9 CDF_get_copyright

	SUBROUTINE CDF_get_copyright (
	6.2.9.1. Example(s)

	The following example acquires the copyright notice from a CDF.
	6.2.10 CDF_get_decoding

	SUBROUTINE CDF_get_decoding (
	6.2.10.1. Example(s)

	The following example acquires the decoding code for a CDF.
	6.2.11 CDF_get_encoding

	SUBROUTINE CDF_get_encoding (
	6.2.11.1. Example(s)

	The following example acquires the encoding code used in a CDF.
	6.2.12 CDF_get_format

	SUBROUTINE CDF_get_format (
	6.2.12.1. Example(s)

	The following example acquires the file format for a CDF.
	6.2.13 CDF_get_leapsecondlastupdated

	SUBROUTINE CDF_get_leapsecondlastupdated (
	6.2.13.1. Example(s)

	The following example acquires the file format for a CDF.
	6.2.14 CDF_get_majority

	SUBROUTINE CDF_get_majority (
	6.2.14.1. Example(s)

	The following example acquires the variable majority of a CDF.
	6.2.15 CDF_get_name

	SUBROUTINE CDF_get_name (
	6.2.15.1. Example(s)

	The following example acquires the name of a CDF.
	6.2.16 CDF_get_negtoposfp0_mode

	SUBROUTINE CDF_get_negtoposfp0_mode (
	6.2.16.1. Example(s)

	The following example acquires the –0.0 to 0.0 mode of a CDF.
	6.2.17 CDF_get_readonly_mode

	SUBROUTINE CDF_get_readonly_mode (
	6.2.17.1. Example(s)

	The following example acquires the read-only mode of a CDF.
	6.2.18 CDF_get_stage_cachesize

	SUBROUTINE CDF_get_stage_cachesize (
	6.2.18.1. Example(s)
	6.2.19 CDF_get_validate

	FUNCTION CDF_get_validate () ! out -- Validation indicator
	6.2.19.1. Example(s)
	6.2.20 CDF_get_version

	SUBROUTINE CDF_get_version (
	6.2.20.1. Example(s)
	6.2.21 CDF_get_zmode

	SUBROUTINE CDF_get_zmode (
	6.2.21.1. Example(s)
	6.2.22 CDF_inquire_cdf

	SUBROUTINE CDF_inquire_cdf (
	6.2.22.1. Example(s)

	The following example inquires the basic information about a CDF.
	6.2.23 CDF_open_cdf

	SUBROUTINE CDF_open_cdf (
	UNIX: File names are case-sensitive.
	6.2.23.1. Example(s)

	The following example will open a CDF named NOAA1.
	6.2.24 CDF_select_cdf

	SUBROUTINE CDF_select_cdf (
	6.2.24.1. Example(s)

	The following example will select a CDF named “NOAA1.cdf” as the current CDF while another file “NOAA2.cdf” is also opened.
	6.2.25 CDF_set_cachesize

	SUBROUTINE CDF_set_cachesize (
	6.2.25.1. Example(s)

	The following example sets the number of cache buffers to 10 to be used for a CDF.
	6.2.26 CDF_set_checksum

	SUBROUTINE CDF_set_checksum (
	6.2.26.1. Example(s)

	The following example sets checksum mode for a CDF.
	6.2.27 CDF_set_compress_cachesize

	SUBROUTINE CDF_set_compress_cachesize (
	6.2.27.1. Example(s)

	The following example sets the number of cache buffers to 10 to be used for the compression scratch CDF file.
	6.2.28 CDF_set_compression

	SUBROUTINE CDF_set_compression (
	6.2.28.1. Example(s)

	The following example uses GZIP.6 compression for a CDF.
	6.2.29 CDF_set_decoding

	SUBROUTINE CDF_set_decoding (
	6.2.29.1. Example(s)

	The following example sets the decoding to NETWORK_DECODING for a CDF.
	6.2.30 CDF_set_encoding

	SUBROUTINE CDF_set_encoding (
	6.2.30.1. Example(s)

	The following example sets the encoding code to NETWORK_ENCODING to be used for a CDF.
	6.2.31 CDF_set_format

	SUBROUTINE CDF_set_format (
	6.2.31.1. Example(s)

	The following example sets the file format to MULTI_FILE_FORMAT for a CDF.
	6.2.32 CDF_set_leapsecondlastupdated

	SUBROUTINE CDF_set_leapsecondlastupdated (
	6.2.32.1. Example(s)

	The following example sets the file’s last leap second updated date.
	6.2.33 CDF_set_majority

	SUBROUTINE CDF_set_majority (
	6.2.33.1. Example(s)

	The following example sets the variable majority to ROW_MAJOR for a CDF.
	6.2.34 CDF_set_negtoposfp0_mode

	SUBROUTINE CDF_set_negtoposfp0_mode (
	6.2.34.1. Example(s)

	The following example sets the –0.0 to 0.0 mode to NEGtoPOSfp0off for a CDF.
	6.2.35 CDF_set_readonly_mode

	SUBROUTINE CDF_set_readonly_mode (
	6.2.35.1. Example(s)

	The following example sets the read-only mode to READONLYoff (to allow read/write) for a CDF.
	6.2.36 CDF_set_stage_cachesize

	SUBROUTINE CDF_set_stage_cachesize (
	6.2.36.1. Example(s)
	6.2.37 CDF_set_validate

	SUBROUTINE CDF_set_validate (
	6.2.37.1. Example(s)
	6.2.38 CDF_set_zmode

	SUBROUTINE CDF_set_zmode (
	6.2.38.1. Example(s)
	6.3 Variable
	6.3.1 CDF_close_zvar
	6.3.1.1. Example(s)

	The following example closes an open zVariable “MY_VAR” in a CDF.
	6.3.2 CDF_confirm_zvar_existence
	6.3.2.1. Example(s)

	The following example will check the existence of zVariable “MY_VAR” in a CDF.
	6.3.3 CDF_confirm_zvar_padvalue_exist
	6.3.3.1. Example(s)

	The following example will check the existence of the pad value for zVariable “MY_VAR” in a CDF.
	6.3.4 CDF_create_zvar

	SUBROUTINE CDF_create_zvar (
	6.3.4.1. Example(s)
	6.3.5 CDF_delete_zvar

	SUBROUTINE CDF_delete_zvar (
	6.3.5.1. Example(s)

	The following example will delete the zVariable “MY_VAR” in a CDF.
	6.3.6 CDF_delete_zvar_recs

	SUBROUTINE CDF_delete_zvar_recs (
	6.3.6.1. Example(s)

	The following example will delete 10 records (from record number 10 to 19) from the zVariable “MY_VAR” in a CDF.
	6.3.7 CDF_delete_zvar_recs_renumber

	SUBROUTINE CDF_delete_zvar_recs_renumber (
	6.3.7.1. Example(s)

	The following example will delete 10 records (from record number 10 to 19) from the zVariable “MY_VAR” in a CDF. If the last record number is 100, then after the deletion, the record will be 89.
	6.3.8 CDF_get_num_zvars

	SUBROUTINE CDF_get_num_zvars (
	6.3.8.1. Example(s)

	The following example acquires the total number of zVariables in a CDF.
	6.3.9 CDF_get_var_allrecords_varname

	SUBROUTINE CDF_get_var_allrecords_varname (
	6.3.9.1. Example(s)

	The following example reads the while records for zVariable “MY_VAR” in a CDF. Assuming there are 100 records, and each record is 1-dimension with 3 REAL*8 value.
	6.3.10 CDF_get_var_num

	INTEGER*4 FUNCTION CDF_get_var_num (
	6.3.10.1. Example(s)

	In the following example CDF_get_var_num is used as an embedded function call when inquiring about an rVariable and a zVariable.
	6.3.11 CDF_get_var_rangerecords_name

	SUBROUTINE CDF_get_var_rangerecords_name (
	6.3.11.1. Example(s)

	The following example reads 100 records, from record 10 to 109, for zVariable “MY_VAR” in a CDF. Assuming that each record is 1-dimension with 3 REAL*8 value.
	6.3.12 CDF_get_vars_maxwrittenrecnums

	SUBROUTINE CDF_get_vars_maxwrittenrecnums (
	6.3.12.1. Example(s)
	6.3.13 CDF_get_zvar_allrecords_varid

	SUBROUTINE CDF_get_zvar_allrecords_varid (
	6.3.13.1. Example(s)

	The following example reads the whole record data for zVariable “MY_VAR” in a CDF. Assuming that there are 100 records, and each record is 1-dimension with 3 REAL*8 value.
	6.3.14 CDF_get_zvar_allocrecs

	SUBROUTINE CDF_get_zvar_allocrecs (
	6.3.14.1. Example(s)

	The following example acquires the number of records allocated for zVariable “MY_VAR” in a CDF.
	6.3.15 CDF_get_zvar_blockingfactor

	SUBROUTINE CDF_get_zvar_blockingfactor (
	6.3.15.1. Example(s)

	The following example acquires the blocking factor for zVariable “MY_VAR” in a CDF.
	6.3.16 CDF_get_zvar_cachesize

	SUBROUTINE CDF_get_zvar_cachesize (
	6.3.16.1. Example(s)

	The following example acquires the number of cache buffers used for zVariable “MY_VAR” in a CDF.
	6.3.17 CDF_get_zvar_compression

	SUBROUTINE CDF_get_zvar_compression (
	6.3.17.1. Example(s)

	The following example acquires the compression type/parameters for zVariable “MY_VAR” in a CDF.
	6.3.18 CDF_get_zvar_data

	SUBROUTINE CDF_get_zvar_data (
	6.3.18.1. Example(s)

	END DO
	END DO
	END DO
	6.3.19 CDF_get_zvar_datatype

	SUBROUTINE CDF_get_zvar_datatype (
	6.3.19.1. Example(s)
	6.3.20 CDF_get_zvar_dimsizes

	SUBROUTINE CDF_get_zvar_dimsizes (
	6.3.20.1. Example(s)
	6.3.21 CDF_get_zvar_dimvariances

	SUBROUTINE CDF_get_zvar_dimvariances (
	6.3.21.1. Example(s)
	6.3.22 CDF_get_zvar_maxallocrecnum

	SUBROUTINE CDF_get_zvar_maxallocrecnum (
	6.3.22.1. Example(s)
	6.3.23 CDF_get_zvar_maxwrittenrecnum

	SUBROUTINE CDF_get_zvar_maxwrittenrecnum (
	6.3.23.1. Example(s)
	6.3.24 CDF_get_zvar_name

	SUBROUTINE CDF_get_zvar_name (
	6.3.24.1. Example(s)
	6.3.25 CDF_get_zvar_numdims

	SUBROUTINE CDF_get_zvar_numdims (
	6.3.25.1. Example(s)
	6.3.26 CDF_get_zvar_numelems

	SUBROUTINE CDF_get_zvar_numelems (
	6.3.26.1. Example(s)
	6.3.27 CDF_get_zvar_numrecs_written

	SUBROUTINE CDF_get_zvar_numrecs (
	6.3.27.1. Example(s)
	6.3.28 CDF_get_zvar_padvalue

	SUBROUTINE CDF_get_zvar_padvalue (
	6.3.28.1. Example(s)
	6.3.29 CDF_get_zvar_rangerecords_varid

	SUBROUTINE CDF_get_zvar_arangerecords_varid (
	6.3.29.1. Example(s)

	The following example reads 100 records, from record number 10 to 109, for zVariable “MY_VAR” in a CDF. Assuming that there are 100 records, and each record is 1-dimension with 3 REAL*8 value.
	6.3.30 CDF_get_zvar_recorddata

	SUBROUTINE CDF_get_zvar_recorddata (
	6.3.30.1. Example(s)
	6.3.31 CDF_get_zvar_recvariance

	SUBROUTINE CDF_get_zvar_recvariance (
	6.3.31.1. Example(s)
	6.3.32 CDF_get_zvar_reservepercent

	SUBROUTINE CDF_get_zvar_reservepercent (
	6.3.32.1. Example(s)
	6.3.33 CDF_get_zvar_seqdata

	SUBROUTINE CDF_get_zvar_seqdata (
	6.3.33.1. Example(s)
	6.3.34 CDF_get_zvar_seqpos

	SUBROUTINE CDF_get_zvar_seqpos (
	6.3.34.1. Example(s)
	6.3.35 CDF_get_zvars_maxwrittenrecnum

	SUBROUTINE CDF_get_zvars_maxwrittenrecnum (
	6.3.35.1. Example(s)
	6.3.36 CDF_get_zvar_sparserecords

	SUBROUTINE CDF_get_zvar_sparserecords (
	6.3.36.1. Example(s)
	6.3.37 CDF_get_zvars_recorddata

	SUBROUTINE CDF_get_zvars_recorddata(
	6.3.37.1. Example(s)

	INCLUDE '<path>cdf.inc'
	6.3.38 CDF_hyper_get_zvar_data

	SUBROUTINE CDF_hyper_get_zvar_data (
	6.3.38.1. Example(s)
	6.3.39 CDF_hyper_put_zvar_data

	SUBROUTINE CDF_hyper_put_zvar_data (
	6.3.39.1. Example(s)
	6.3.40 CDF_inquire_zvar

	SUBROUTINE CDF_inquire_zvar (
	6.3.40.1. Example(s)
	6.3.41 CDF_put_var_allrecords_varname

	SUBROUTINE CDF_put_var_allrecords_varname (
	6.3.41.1. Example(s)

	The following example writes 100 records for zVariable “MY_VAR” in a CDF. Assuming that each record is 1-dimension with 3 REAL*8 value.
	6.3.42 CDF_put_var_rangerecords_name

	SUBROUTINE CDF_put_var_rangerecords_name (
	6.3.42.1. Example(s)

	The following example writes 100 records, from record number 10 to 109, for zVariable “MY_VAR” in a CDF. Assuming that there are 100 records, and each record is 1-dimension with 3 REAL*8 value.
	6.3.43 CDF_put_zvar_allrecords_varid

	SUBROUTINE CDF_put_zvar_allrecords_varid (
	6.3.43.1. Example(s)

	The following example writes out a total of 100 records for zVariable “MY_VAR” in a CDF. Assuming that there are 100 records, and each record is 1-dimension with 3 REAL*8 value.
	6.3.44 CDF_put_zvar_data

	SUBROUTINE CDF_put_zvar_data (
	6.3.44.1. Example(s)

	END DO
	END DO
	END DO
	6.3.45 CDF_put_zvar_rangerecords_varid

	SUBROUTINE CDF_put_zvar_rangerecords_varid (
	6.3.45.1. Example(s)

	The following example writes 100 records, from record number 10 to 109, for zVariable “MY_VAR” in a CDF. Assuming that there are 100 records, and each record is 1-dimension with 3 REAL*8 value.
	6.3.46 CDF_put_zvar_recorddata

	SUBROUTINE CDF_put_zvar_recorddata (
	6.3.46.1. Example(s)
	6.3.47 CDF_put_zvar_seqdata

	SUBROUTINE CDF_put_zvar_seqdata (
	6.3.47.1. Example(s)
	6.3.48 CDF_put_zvars_recorddata

	SUBROUTINE CDF_put_zvars_recorddata(
	6.3.48.1. Example(s)

	INCLUDE '<path>cdf.inc'
	2 30, 40,
	3 50, 60/
	COMMON /BLK/delta, time, temperature, longitude, name
	6.3.49 CDF_rename_zvar

	SUBROUTINE CDF_rename_zvar (
	6.3.49.1. Example(s)

	ELSE
	END IF
	6.3.50 CDF_set_zvar_allocblockrecs

	SUBROUTINE CDF_set_zvar_allocblockrecs (
	6.3.50.1. Example(s)

	The following example allocates 100 records, from record number 21 to 120, for zVariable “MY_VAR” in a CDF.
	6.3.51 CDF_set_zvar_allocrecs

	SUBROUTINE CDF_set_zvar_allocrecs (
	6.3.51.1. Example(s)

	The following example allocates 100 records (record number 1 to 100) for zVariable “MY_VAR” in a CDF.
	6.3.52 CDF_set_zvar_blockingfactor

	SUBROUTINE CDF_set_zvar_blockingfactor (
	6.3.52.1. Example(s)

	The following example sets the blocking factor to 100 records for zVariable “MY_VAR” in a CDF.
	6.3.53 CDF_set_zvar_cachesize

	SUBROUTINE CDF_set_zvar_cachesize (
	6.3.53.1. Example(s)

	The following example sets the number of cache buffers to 10 to be used for zVariable “MY_VAR” in a multi-file CDF.
	6.3.54 CDF_set_zvar_compression

	SUBROUTINE CDF_set_zvar_compression (
	6.3.54.1. Example(s)

	The following example uses GZIP.6 compression for zVariable “MY_VAR” in a CDF.
	6.3.55 CDF_set_zvar_dataspec

	SUBROUTINE CDF_set_zvar_dataspec (
	6.3.55.1. Example(s)
	6.3.56 CDF_set_zvar_dimvariances

	SUBROUTINE CDF_set_zvar_dimvariances (
	6.3.56.1. Example(s)
	6.3.57 CDF_set_zvar_initialrecs

	SUBROUTINE CDF_set_zvar_initialrecs (
	6.3.57.1. Example(s)

	The following example writes initially 100 records (record number 1 to 100) for zVariable “MY_VAR” in a CDF.
	6.3.58 CDF_set_zvar_padvalue

	SUBROUTINE CDF_set_zvar_padvalue (
	6.3.58.1. Example(s)
	6.3.59 CDF_set_zvar_recvariance

	SUBROUTINE CDF_set_zvar_recvariance (
	6.3.59.1. Example(s)
	6.3.60 CDF_set_zvar_reservepercent

	SUBROUTINE CDF_set_zvar_reservepercent (
	6.3.60.1. Example(s)
	6.3.61 CDF_set_zvars_cachesize

	SUBROUTINE CDF_set_zvars_cachesize (
	6.3.61.1. Example(s)

	The following example sets the number of cache buffers to 10 for all zVariables in a CDF.
	6.3.62 CDF_set_zvar_seqpos

	SUBROUTINE CDF_set_zvar_seqpos (
	6.3.62.1. Example(s)
	6.3.63 CDF_set_zvar_sparserecords

	SUBROUTINE CDF_set_zvar_sparserecords (
	6.3.63.1. Example(s)
	6.4 Attributes/Entries
	6.4.1 CDF_confirm_attr_existence
	6.4.1.1. Example(s)

	The following example checks whether the attribute by the name of “ATTR_NAME1” is in a CDF.
	6.4.2 CDF_confirm_gentry_existence
	6.4.2.1. Example(s)

	The following example will check the existence of gEntry numbered 1 for attribute “MY_ATTR” in a CDF.
	6.4.3 CDF_confirm_rentry_existence
	6.4.3.1. Example(s)

	The following example will check the existence of the rEntry corresponding to rVariable “MY_VAR” for attribute “MY_ATTR” in a CDF.
	6.4.4 CDF_confirm_zentry_existence
	6.4.4.1. Example(s)

	The following example will check the existence of the zEntry corresponding to zVariable “MY_VAR” for attribute “MY_ATTR” in a CDF.
	6.4.5 CDF_ create_attr

	SUBROUTINE CDF_ create_attr (
	6.4.5.1. Example(s)
	6.4.6 CDF_delete_attr

	SUBROUTINE CDF_delete_attr (
	6.4.6.1. Example(s)

	The following example will delete attribute “MY_ATTR” in a CDF.
	6.4.7 CDF_delete_attr_gentry

	SUBROUTINE CDF_delete_attr_gentry (
	6.4.7.1. Example(s)

	The following example will delete gEntry numbered 2 from the global attribute “MY_ATTR” in a CDF.
	6.4.8 CDF_delete_attr_rentry

	SUBROUTINE CDF_delete_attr_rentry (
	6.4.8.1. Example(s)

	The following example will delete the entry for rVariable “MY_VAR” from the variable attribute “MY_ATTR” in a CDF.
	6.4.9 CDF_delete_attr_zentry

	SUBROUTINE CDF_delete_attr_zentry (
	6.4.9.1. Example(s)

	The following example will delete the entry for zVariable “MY_VAR” from the variable attribute “MY_ATTR” in a CDF.
	6.4.10 CDF_get_attr_gentry

	SUBROUTINE CDF_get_attr_gentry (
	6.4.10.1. Example(s)

	IF (data_type .EQ. CDF_CHAR) THEN
	END IF
	6.4.11 CDF_get_attr_gentry_datatype

	SUBROUTINE CDF_get_attr_gentry_datatype (
	6.4.11.1. Example(s)

	The following example acquires the data type for gEntry numbered 5 in the global attribute “MY_ATTR” in a CDF.
	6.4.12 CDF_get_attr_gentry_numelems

	SUBROUTINE CDF_get_attr_gentry_numelems (
	6.4.12.1. Example(s)

	The following example acquires the number of elements for gEntry numbered 5 in the global attribute “MY_ATTR” in a CDF.
	6.4.13 CDF_get_attr_max_gentry

	SUBROUTINE CDF_get_attr_max_gentry (
	6.4.13.1. Example(s)

	The following example acquires the last gEntry number from the global attribute “MY_ATTR” in a CDF.
	6.4.14 CDF_get_attr_max_rentry

	SUBROUTINE CDF_get_attr_max_rentry (
	6.4.14.1. Example(s)

	The following example acquires the last rEntry number from the variable attribute “MY_ATTR” in a CDF.
	6.4.15 CDF_get_attr_max_zentry

	SUBROUTINE CDF_get_attr_max_zentry (
	6.4.15.1. Example(s)

	The following example acquires the last zEntry number from the variable attribute “MY_ATTR” in a CDF.
	6.4.16 CDF_get_attr_name

	SUBROUTINE CDF_get_attr_name (
	6.4.16.1. Example(s)

	The following example acquires the name of the attribute number 2 in a CDF.
	6.4.17 CDF_get_attr_num

	INTEGER*4 FUNCTION CDF_get_attr_num (
	6.4.17.1. Example(s)
	6.4.18 CDF_get_attr_num_gentries

	SUBROUTINE CDF_get_attr_num_gentries (
	6.4.18.1. Example(s)
	6.4.19 CDF_get_attr_num_rentries

	SUBROUTINE CDF_get_attr_num_rentries (
	6.4.19.1. Example(s)
	6.4.20 CDF_get_attr_num_zentries

	SUBROUTINE CDF_get_attr_num_zentries (
	6.4.20.1. Example(s)
	6.4.21 CDF_get_attr_rentry

	SUBROUTINE CDF_get_attr_rentry (
	6.4.21.1. Example(s)

	IF (data_type .EQ. CDF_CHAR) THEN
	END IF
	6.4.22 CDF_get_attr_rentry_datatype

	SUBROUTINE CDF_get_attr_rentry_datatype (
	6.4.22.1. Example(s)

	The following example acquires the data type for rEntry, corresponding to rVariable “MY_VAR” in the variable attribute “MY_ATTR” in a CDF.
	6.4.23 CDF_get_attr_rentry_numelems

	SUBROUTINE CDF_get_attr_rentry_numelems (
	6.4.23.1. Example(s)

	The following example acquires the number of elements for rEntry, corresponding to rVariable “MY_VAR”, in the variable attribute “MY_ATTR” in a CDF.
	6.4.24 CDF_get_attr_scope

	SUBROUTINE CDF_get_attr_scope (
	6.4.24.1. Example(s)

	The following example acquires the scope for the attribute “MY_ATTR” in a CDF.
	6.4.25 CDF_get_attr_zentry

	SUBROUTINE CDF_get_attr_zentry (
	6.4.25.1. Example(s)

	IF (data_type .EQ. CDF_CHAR) THEN
	END IF
	6.4.26 CDF_get_attr_zentry_datatype

	SUBROUTINE CDF_get_attr_zentry_datatype (
	6.4.26.1. Example(s)

	The following example acquires the data type for zEntry, corresponding to zVariable “MY_VAR” in the variable attribute “MY_ATTR” in a CDF.
	6.4.27 CDF_get_attr_zentry_numelems

	SUBROUTINE CDF_get_attr_rentry_numelems (
	6.4.27.1. Example(s)

	The following example acquires the number of elements for zEntry corresponding to zVariable “MY_VAR” in the variable attribute “MY_ATTR” in a CDF.
	6.4.28 CDF_get_num_attrs

	SUBROUTINE CDF_get_num_attrs (
	6.4.28.1. Example(s)

	The following example acquires the total number of attributes in a CDF.
	6.4.29 CDF_get_num_gattrs

	SUBROUTINE CDF_get_num_gattrs (
	6.4.29.1. Example(s)

	The following example acquires the total number of global attributes in a CDF.
	6.4.30 CDF_get_num_vattrs

	SUBROUTINE CDF_get_num_vattrs (
	6.4.30.1. Example(s)

	The following example acquires the total number of variable attributes in a CDF.
	6.4.31 CDF_inquire_attr

	SUBROUTINE CDF_inquire_attr (
	6.4.31.1. Example(s)

	ELSE
	WRITE (6,10) attr_name
	END IF
	END DO
	6.4.32 CDF_inquire_attr_gentry

	SUBROUTINE CDF_inquire_attr_gentry (
	6.4.32.1. Example(s)

	ELSE
	END IF
	END DO
	6.4.33 CDF_inquire_attr_rentry

	SUBROUTINE CDF_inquire_attr_rentry (
	6.4.33.1. Example(s)

	ELSE
	END IF
	END DO
	6.4.34 CDF_inquire_attr_zentry

	SUBROUTINE CDF_inquire_attr_zentry (
	6.4.34.1. Example(s)

	ELSE
	END IF
	END DO
	6.4.35 CDF_put_attr_gentry

	SUBROUTINE CDF_put_attr_gentry (
	6.4.35.1. Example(s)
	6.4.36 CDF_put_attr_rentry

	SUBROUTINE CDF_put_attr_rentry (
	6.4.36.1. Example(s)
	6.4.37 CDF_put_attr_zentry

	SUBROUTINE CDF_put_attr_zentry (
	6.4.37.1. Example(s)
	6.4.38 CDF_rename_attr

	SUBROUTINE CDF_rename_attr (
	6.4.38.1. Example(s)

	In the following example the attribute named LAT is renamed to LATITUDE.
	6.4.39 CDF_set_attr_gentry_dataspec

	SUBROUTINE CDF_set_attr_gentry_dataspec (
	6.4.39.1. Example(s)

	The following example modifies a gEntry’s (numbered 2) data specification in the global attribute “MY_ATTR” in a CDF. It will change its original data type from CDF_INT2 to CDF_UINT2.
	6.4.40 CDF_set_attr_rentry_dataspec

	SUBROUTINE CDF_set_attr_rentry_dataspec (
	6.4.40.1. Example(s)

	The following example modifies an rEntry’s (corresponding to rVariable “MY_VAR”) data specification in the variable attribute “MY_ATTR” in a CDF. It will change its original data type from CDF_INT2 to CDF_UINT2.
	6.4.41 CDF_set_attr_scope

	SUBROUTINE CDF_set_attr_scope (
	6.4.41.1. Example(s)

	The following example respecifies the scope to VARIABLE_SCOPE (from its original GLOBAL_SCOPE) for attribute “MY_ATTR” in a CDF.
	6.4.42 CDF_set_attr_zentry_dataspec

	SUBROUTINE CDF_set_attr_zentry_dataspec (
	6.4.42.1. Example(s)

	The following example modifies a zEntry’s (corresponding to zVariable “MY_VAR”) data specification in the variable attribute “MY_ATTR” in a CDF. It will change its original data type from CDF_INT2 to CDF_UINT2.
	7 Internal Interface – CDF_lib
	7.1 Example(s)
	7.2 Current Objects/States (Items)
	7.3 Returned Status
	7.4 Indentation/Style

	The following example shows the same call to CDF_lib without the proper indentation.
	The need for proper indentation to ensure the readability of your applications should be obvious.
	7.5 Syntax
	7.5.1 Macintosh, MPW Fortran

	Note that CDF_lib may still be used but with the same number of arguments for each occurrence.
	7.6 Operations. . .

	There are no required arguments.
	The only required preselected object/state is the current CDF.
	There are no required arguments.
	The required preselected objects/states are the current CDF and its current rVariable.
	There are no required arguments.
	The required preselected objects/states are the current CDF and its current zVariable.
	Attribute number.
	The only required preselected object/state is the current CDF.
	The attribute name. This may be at most CDF_ATTR_NAME_LEN256 characters.
	The only required preselected object/state is the current CDF.
	The current CDF.
	There are no required preselected objects/states.
	There are no required arguments.
	The only required preselected object/state is the current CDF.
	The number of cache buffers being used.
	The only required preselected object/state is the current CDF.
	The decoding. The decodings are described in Section 4.7.
	The only required preselected object/state is the current CDF.
	File name of the CDF.
	The only required preselected object/state is the current CDF.
	The -0.0 to 0.0 mode. The -0.0 to 0.0 modes are described in Section 4.15.
	The only required preselected object/state is the current CDF.
	The read-only mode. The read-only modes are described in Section 4.13.
	The only required preselected object/state is the current CDF.
	The status code.
	The only required preselected object/state is the current status code.
	The zMode. The zModes are described in Section 4.14.
	The only required preselected object/state is the current CDF.
	The number of cache buffers being used.
	The only required preselected object/state is the current CDF.
	There are no required arguments.
	The required preselected objects/states are the current CDF, its current attribute, and its current gEntry number.
	NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.
	There are no required arguments.
	The required preselected objects/states are the current CDF, its current attribute, and its current rEntry number.
	NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
	There are no required arguments.
	The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.
	NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
	The gEntry number.
	The only required preselected object/state is the current CDF.
	The gEntry number.
	The required preselected objects/states are the current CDF and its current attribute.
	NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.
	The rEntry number.
	The only required preselected object/state is the current CDF.
	The rEntry number.
	The required preselected objects/states are the current CDF and its current attribute.
	NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
	The only required preselected object/state is the current CDF.
	The number of cache buffers being used.
	The required preselected objects/states are the current CDF and its current rVariable.
	The rVariable name. This may be at most CDF_VAR_NAME_LEN256 characters.
	The only required preselected object/state is the current CDF.
	There are no required arguments.
	The required preselected objects/states are the current CDF and its current rVariable.
	The reserved percentage.
	The required preselected objects/states are the current CDF and its current rVariable.
	Record number.
	The required preselected objects/states are the current CDF and its current rVariable.
	Dimension counts. Each element of counts receives the corresponding dimension count.
	The only required preselected object/state is the current CDF.
	Dimension indices. Each element of indices receives the corresponding dimension index.
	The only required preselected object/state is the current CDF.
	Dimension intervals. Each element of intervals receives the corresponding dimension interval.
	The only required preselected object/state is the current CDF.
	Record count.
	The only required preselected object/state is the current CDF.
	Record interval.
	The only required preselected object/state is the current CDF.
	Record number.
	The only required preselected object/state is the current CDF.
	The number of cache buffers being used.
	The only required preselected object/state is the current CDF.
	The zEntry number.
	The only required preselected object/state is the current CDF.
	The zEntry number.
	The required preselected objects/states are the current CDF and its current attribute.
	NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
	The only required preselected object/state is the current CDF.
	The number of cache buffers being used.
	The required preselected objects/states are the current CDF and its current zVariable.
	Dimension counts. Each element of counts receives the corresponding dimension count.
	The required preselected objects/states are the current CDF and its current zVariable.
	Dimension indices. Each element of indices receives the corresponding dimension index.
	The required preselected objects/states are the current CDF and its current zVariable.
	Dimension intervals. Each element of intervals receives the corresponding dimension interval.
	The required preselected objects/states are the current CDF and its current zVariable.
	The zVariable name. This may be at most CDF_VAR_NAME_LEN256 characters.
	The only required preselected object/state is the current CDF.
	There are no required arguments.
	The required preselected objects/states are the current CDF and its current zVariable.
	Record count.
	The required preselected objects/states are the current CDF and its current zVariable.
	Record interval.
	The required preselected objects/states are the current CDF and its current zVariable.
	Record number.
	The required preselected objects/states are the current CDF and its current zVariable.
	Reserved percentage.
	The required preselected objects/states are the current CDF and its current zVariable.
	Record number.
	The required preselected objects/states are the current CDF and its current zVariable.
	Scope of the new attribute. Specify one of the scopes described in Section 4.12.
	The only required preselected object/state is the current CDF.
	UNIX: File names are case-sensitive.
	CDF identifier to be used in subsequent operations on the CDF.
	There are no required preselected objects/states.
	Data type of the new rVariable. Specify one of the data types described in Section 4.5.
	Record variance. Specify one of the variances described in Section 4.9.
	The only required preselected object/state is the current CDF.
	Data type of the new zVariable. Specify one of the data types described in Section 4.5.
	Number of dimensions for the zVariable. This may be as few as zero and at most CDF_MAX_DIMS.
	Record variance. Specify one of the variances described in Section 4.9.
	The only required preselected object/state is the current CDF.
	There are no required arguments.
	The required preselected objects/states are the current CDF and its current attribute.
	There are no required arguments.
	The only required preselected object/state is the current CDF.
	There are no required arguments.
	The required preselected objects/states are the current CDF, its current attribute, and its current gEntry number.
	NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.
	There are no required arguments.
	The required preselected objects/states are the current CDF, its current attribute, and its current rEntry number.
	NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
	There are no required arguments.
	The required preselected objects/states are the current CDF and its current rVariable.
	The record number of the first record to be deleted.
	The record number of the last record to be deleted.
	The required preselected objects/states are the current CDF and its current rVariable.
	The record number of the first record to be deleted.
	The record number of the last record to be deleted.
	The required preselected objects/states are the current CDF and its current rVariable.
	There are no required arguments.
	The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.
	NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
	There are no required arguments.
	The required preselected objects/states are the current CDF and its current rVariable.
	The record number of the first record to be deleted.
	The record number of the last record to be deleted.
	The required preselected objects/states are the current CDF and its current zVariable.
	The record number of the first record to be deleted.
	The record number of the last record to be deleted.
	The required preselected objects/states are the current CDF and its current zVariable.
	The required preselected objects/states are the current CDF and its current attribute.
	NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.
	The required preselected objects/states are the current CDF and its current attribute.
	NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
	The required preselected objects/states are the current CDF and its current attribute.
	NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
	The required preselected objects/states are the current CDF and its current attribute.
	Attribute name. This may be at most CDF_ATTR_NAME_LEN256 characters.
	The attribute number.
	The only required preselected object/state is the current CDF.
	The number of gEntries for the attribute.
	The required preselected objects/states are the current CDF and its current attribute.
	NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.
	The number of rEntries for the attribute.
	The required preselected objects/states are the current CDF and its current attribute.
	NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
	The number of zEntries for the attribute.
	The required preselected objects/states are the current CDF and its current attribute.
	NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
	Attribute scope. The scopes are described in Section 4.12.
	The required preselected objects/states are the current CDF and its current attribute.
	Checksum. The checksum is described in Section 4.19.
	The only required preselected object/state is the current CDF.
	The compression type. The types of compressions are described in Section 4.10.
	The compression parameters. The compression parameters are described in Section 4.10.
	The only required preselected object/state is the current CDF.
	CDF copyright text. The character string will be padded if necessary.
	The only required preselected object/state is the current CDF.
	Data encoding. The encodings are described in Section 4.6.
	The only required preselected object/state is the current CDF.
	CDF format. The formats are described in Section 4.4.
	The only required preselected object/state is the current CDF.
	Incremental number.
	The only required preselected object/state is the current CDF.
	The CDF compression type. The types of compressions are described in Section 4.10.
	The compression parameters. The compression parameters are described in Section 4.10.
	If compressed, size in bytes of the dotCDF file. If not compressed, set to zero (0).
	There are no required preselected objects/states.
	The date that the last leap second was added to the leap second table.
	The only required preselected object/state is the current CDF.
	Variable majority. The majorities are described in Section 4.8.
	The only required preselected object/state is the current CDF.
	Number of attributes.
	The only required preselected object/state is the current CDF.
	Number of gAttributes.
	The only required preselected object/state is the current CDF.
	Number of rVariables.
	The only required preselected object/state is the current CDF.
	Number of vAttributes.
	The only required preselected object/state is the current CDF.
	Number of zVariables.
	The only required preselected object/state is the current CDF.
	Release number.
	The only required preselected object/state is the current CDF.
	Version number.
	The only required preselected object/state is the current CDF.
	Data type.
	Number of bytes per element.
	There are no required preselected objects/states.
	The required preselected objects/states are the current CDF, its current attribute, and its current gEntry number.
	NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.
	Data type. The data types are described in Section 4.5.
	The required preselected objects/states are the current CDF, its current attribute, and its current gEntry number.
	NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.
	The required preselected objects/states are the current CDF, its current attribute, and its current gEntry number.
	NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.
	CDF library copyright text.
	There are no required preselected objects/states.
	Incremental number.
	There are no required preselected objects/states.
	Release number.
	There are no required preselected objects/states.
	Subincremental character.
	There are no required preselected objects/states.
	Version number.
	There are no required preselected objects/states.
	The required preselected objects/states are the current CDF, its current attribute, and its current rEntry number.
	NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
	Data type. The data types are described in Section 4.5.
	The required preselected objects/states are the current CDF, its current attribute, and its current rEntry number.
	NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
	The required preselected objects/states are the current CDF, its current attribute, and its current rEntry number.
	NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
	The number of the next allocated record.
	The required preselected objects/states are the current CDF and its current rVariable.
	The record number at which to begin searching for the last allocated record.
	The number of the last allocated record.
	The required preselected objects/states are the current CDF and its current rVariable.
	The blocking factor. A value of zero (0) indicates that the default blocking factor is being used.
	The required preselected objects/states are the current CDF and its current rVariable.
	The compression type. The types of compressions are described in Section 4.10.
	The compression parameters. The compression parameters are described in Section 4.10.
	The required preselected objects/states are the current CDF and its current rVariable.
	Data type. The data types are described in Section 4.5.
	The required preselected objects/states are the current CDF and its current rVariable.
	The required preselected objects/states are the current CDF and its current rVariable.
	Maximum record number allocated.
	The required preselected objects/states are the current CDF and its current rVariable.
	Maximum record number.
	The required preselected objects/states are the current CDF and its current rVariable.
	Name of the rVariable. This character string will be padded if necessary.
	The required preselected objects/states are the current CDF and its current rVariable.
	Number of index entries.
	The required preselected objects/states are the current CDF and its current rVariable.
	Number of index levels.
	The required preselected objects/states are the current CDF and its current rVariable.
	Number of index records.
	The required preselected objects/states are the current CDF and its current rVariable.
	Number of allocated records.
	The required preselected objects/states are the current CDF and its current rVariable.
	The rVariable name. This may be at most CDF_VAR_NAME_LEN256 characters.
	The rVariable number.
	The only required preselected object/state is the current CDF.
	The required preselected objects/states are the current CDF and its current rVariable.
	Number of records written.
	The required preselected objects/states are the current CDF and its current rVariable.
	The required preselected objects/states are the current CDF and its current rVariable.
	Record variance. The variances are described in Section 4.9.
	The required preselected objects/states are the current CDF and its current rVariable.
	The sparse arrays type. The types of sparse arrays are described in Section 4.11.
	The sparse arrays parameters. The sparse arrays parameters are described in Section 4.11.
	The required preselected objects/states are the current CDF and its current rVariable.
	The sparse records type. The types of sparse records are described in Section 4.11.
	The required preselected objects/states are the current CDF and its current rVariable.
	Dimension sizes. Each element of dim_sizes receives the corresponding dimension size.
	The only required preselected object/state is the current CDF.
	Maximum record number.
	The only required preselected object/state is the current CDF.
	Number of dimensions.
	The only required preselected object/state is the current CDF.
	The number of rVariables from which to read. This must be at least one (1).
	The required preselected objects/states are the current CDF and its current record number for rVariables. 40F
	Text explaining the status code.
	The only required preselected object/state is the current status code.
	The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.
	NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
	Data type. The data types are described in Section 4.5.
	The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.
	NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
	The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.
	NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
	The number of the next allocated record.
	The required preselected objects/states are the current CDF and its current zVariable.
	The record number at which to begin searching for the last allocated record.
	The number of the last allocated record.
	The required preselected objects/states are the current CDF and its current zVariable.
	The blocking factor. A value of zero (0) indicates that the default blocking factor is being used.
	The required preselected objects/states are the current CDF and its current zVariable.
	The compression type. The types of compressions are described in Section 4.10.
	The compression parameters. The compression parameters are described in Section 4.10.
	If compressed, the percentage of the uncompressed size of the zVariable's data values
	The required preselected objects/states are the current CDF and its current zVariable.
	Data type. The data types are described in Section 4.5.
	The required preselected objects/states are the current CDF and its current zVariable.
	Dimension sizes. Each element of dim_sizes receives the corresponding dimension size.
	The required preselected objects/states are the current CDF and its current zVariable.
	The required preselected objects/states are the current CDF and its current zVariable.
	Maximum record number allocated.
	The required preselected objects/states are the current CDF and its current zVariable.
	Maximum record number.
	The required preselected objects/states are the current CDF and its current zVariable.
	Name of the zVariable.
	The required preselected objects/states are the current CDF and its current zVariable.
	Number of index entries.
	The required preselected objects/states are the current CDF and its current zVariable.
	Number of index levels.
	The required preselected objects/states are the current CDF and its current zVariable.
	Number of index records.
	The required preselected objects/states are the current CDF and its current zVariable.
	Number of allocated records.
	The required preselected objects/states are the current CDF and its current zVariable.
	The zVariable name. This may be at most CDF_VAR_NAME_LEN256 characters.
	The zVariable number.
	The only required preselected object/state is the current CDF.
	Number of dimensions.
	The required preselected objects/states are the current CDF and its current zVariable.
	The required preselected objects/states are the current CDF and its current zVariable.
	Number of records written.
	The required preselected objects/states are the current CDF and its current zVariable.
	The required preselected objects/states are the current CDF and its current zVariable.
	Record variance. The variances are described in Section 4.9.
	The required preselected objects/states are the current CDF and its current zVariable.
	The sparse arrays type. The types of sparse arrays are described in Section 4.11.
	The required preselected objects/states are the current CDF and its current zVariable.
	The sparse records type. The types of sparse records are described in Section 4.11.
	The required preselected objects/states are the current CDF and its current zVariable.
	Maximum record number.
	The only required preselected object/state is the current CDF.
	The number of zVariables from which to read. This must be at least one (1).
	UNIX: File names are case-sensitive.
	CDF identifier to be used in subsequent operations on the CDF.
	There are no required preselected objects/states.
	New attribute name. This may be at most CDF_ATTR_NAME_LEN256 characters.
	The required preselected objects/states are the current CDF and its current attribute.
	New attribute scope. Specify one of the scopes described in Section 4.12.
	The required preselected objects/states are the current CDF and its current attribute.
	New checksum. The checksum is described in Section 4.19.
	The only required preselected object/state is the current CDF.
	The compression type. The types of compressions are described in Section 4.10.
	The compression parameters. The compression parameters are described in Section 4.10.
	The only required preselected object/state is the current CDF.
	New data encoding. Specify one of the encodings described in Section 4.6.
	The only required preselected object/state is the current CDF.
	New CDF format. Specify one of the formats described in Section 4.4.
	The only required preselected object/state is the current CDF.
	lastupdated, in YYYYMMDD form, has to be a valid entry in the currently used leap second table, or zero (0).
	The only required preselected object/state is the current CDF.
	New variable majority. Specify one of the majorities described in Section 4.8.
	The only required preselected object/state is the current CDF.
	Data type of the gEntry. Specify one of the data types described in Section 4.5.
	The required preselected objects/states are the current CDF, its current attribute, and its current gEntry number.
	NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.
	New data type of the gEntry. Specify one of the data types described in Section 4.5.
	Number of elements of the data type.
	The required preselected objects/states are the current CDF, its current attribute, and its current gEntry number.
	NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.
	Data type of the rEntry. Specify one of the data types described in Section 4.5.
	The required preselected objects/states are the current CDF, its current attribute, and its current rEntry number.
	NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
	New data type of the rEntry. Specify one of the data types described in Section 4.5.
	Number of elements of the data type.
	The required preselected objects/states are the current CDF, its current attribute, and its current rEntry number.
	NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
	The first record number to allocate.
	The last record number to allocate.
	The required preselected objects/states are the current CDF and its current rVariable.
	Number of records to allocate.
	The required preselected objects/states are the current CDF and its current rVariable.
	The blocking factor. A value of zero (0) indicates that the default blocking factor should be used.
	The required preselected objects/states are the current CDF and its current rVariable.
	The compression type. The types of compressions are described in Section 4.10.
	The compression parameters. The compression parameters are described in Section 4.10.
	The required preselected objects/states are the current CDF and its current rVariable.
	New data type. Specify one of the data types described in Section 4.5.
	The required preselected objects/states are the current CDF and its current rVariable.
	The required preselected objects/states are the current CDF and its current rVariable.
	Number of records to write.
	The required preselected objects/states are the current CDF and its current rVariable.
	New name of the rVariable. This may consist of at most CDF_VAR_NAME_LEN256 characters.
	The required preselected objects/states are the current CDF and its current rVariable.
	The required preselected objects/states are the current CDF and its current rVariable.
	New record variance. Specify one of the variances described in Section 4.9.
	The required preselected objects/states are the current CDF and its current rVariable.
	The sparse arrays type. The types of sparse arrays are described in Section 4.11.
	The sparse arrays parameters. The sparse arrays parameters are described in Section 4.11.
	The required preselected objects/states are the current CDF and its current rVariable.
	The sparse records type. The types of sparse records are described in Section 4.11.
	The required preselected objects/states are the current CDF and its current rVariable.
	The number of rVariables to which to write. This must be at least one (1).
	The required preselected objects/states are the current CDF and its current record number for rVariables. 44F
	Data type of the zEntry. Specify one of the data types described in Section 4.5.
	7.7 More Examples
	7.7.1 Creation
	7.7.2 zVariable Creation (Character Data Type)
	7.7.3 Hyper Read with Subsampling

	.
	7.7.4 Attribute Renaming
	7.7.5 Sequential Access

	
DO WHILE (status .GE. CDF_OK)
 sum = sum + value
 count = count + 1
 status = CDF_lib (GET_, zVAR_SEQDATA_, value,
 1 NULL_, status)
	7.7.6 Attribute rEntry Writes
	7.7.7 Multiple zVariable Write

	.
	IF (status .NE. CDF_OK) CALL UserStatusHandler (status)
	8 Interpreting CDF Status Codes
	IF (status .LT. CDF_WARN) THEN
 WRITE (6,10)
	WRITE (6,11) message
	11 FORMAT (' ',A)
	STOP
	ELSE
	IF (status .LT. CDF_OK) THEN
	WRITE (6,12)
	WRITE (6,13) message
	13 FORMAT (' ',A)
	ELSE
	IF (status .GT. CDF_OK) THEN
	WRITE (6,14)
	WRITE (6,15) message
	15 FORMAT (' ',A)
	END IF
	END IF
	9 EPOCH Utility Routines
	9.1 compute_EPOCH
	9.2 EPOCH_breakdown
	9.3 toencode_EPOCH
	9.4 encode_EPOCH
	9.5 encode_EPOCH1
	9.6 encode_EPOCH2
	9.7 encode_EPOCH3
	9.8 encode_EPOCH4
	9.9 encode_EPOCHx
	9.10 toparse_EPOCH
	9.11 parse_EPOCH
	9.12 parse_EPOCH1
	9.13 parse_EPOCH2
	9.14 parse_EPOCH3
	9.15 parse_EPOCH4
	9.16 compute_EPOCH16
	9.17 EPOCH16_breakdown
	9.18 toencode_EPOCH16

	EPOCH16_STRING_LEN (happens to be the largest string length among all styles) is defined in cdf.h.
	9.19 encode_EPOCH16
	9.20 encode_EPOCH16_1
	9.21 encode_EPOCH16_2
	9.22 encode_EPOCH16_3
	9.23 encode_EPOCH16_4
	9.24 encode_EPOCH16_x
	9.25 toparse_EPOCH16
	9.26 parse_EPOCH16
	9.27 parse_EPOCH16_1
	9.28 parse_EPOCH16_2
	9.29 parse_EPOCH16_3
	9.30 parse_EPOCH16_4
	9.31 EPOCH_to_UnixTime
	9.32 UnixTime_to_EPOCH
	9.33 EPOCH16_to_UnixTime
	9.34 UnixTime_to_EPOCH16

	10 TT2000 Utility Routines
	10.1 compute_TT2000
	10.2 TT2000_breakdown
	10.3 toencode_TT200049F
	10.4 encode_TT2000
	10.5 toparse_TT200051F
	10.6 parse_TT2000
	10.7 TT2000_from_EPOCH
	10.8 TT2000_to_EPOCH

	TT2000_to_EPOCH converts a value in CDF_TIME_TT2000 type to CDF_EPOCH type.
	10.9 TT2000_from_EPOCH16

	The picoseconds from CDF_EPOCH16 is ignored.
	10.10 TT2000_to_EPOCH16
	10.11 TT2000_to_UnixTime
	10.12 UnixTime_to_TT2000
	Appendix A
	A.1 Introduction
	A.2 Status Codes and Messages

	Appendix B
	B.1 Original Standard Interface
	B.2 Extended Standard Interface
	B.3 Internal Interface

	INTEGER*4 status ! out
	CLOSE_
	DELETE_
	ATTR_
	<type> buffer ! out
	INTEGER*4 id ! out
	<type> buffer ! in
	B.4 EPOCH Utility Routines
	B.5 TT2000 Utility Routines

