CDF

Internal Format
Description

Version 3.9, January 27, 2023

Space Physics Data Facility
NASA / Goddard Space Flight Center

Common Data Format (CDF)

Space Physics Data Facility
NASA/Goddard Space Flight Center
Greenbelt, Maryland 20771 (U.S.A.)
https://cdf.gsfc.nasa.gov

This software may be copied or redistributed as long as it is not sold for profit, but it can be incorporated into any other
substantive product with or without modifications for profit or non-profit. If the software is modified, it must include
the following notices:

- The software is not the original (for protection of the original author’s reputations from any problems introduced
by others)

- Change history (e.g. date, functionality, etc.)

This copyright notice must be reproduced on each copy made. This software is provided as is without any express or
implied warranties whatsoever.

Internet - nasa-cdf-support@nasa.onmicrosoft.com

mailto:nasa-cdf-support@nasa.onmicrosoft.comv

Contents

DU 170 000 Yo 11 U0 11) IR |
P21 011 @ D) T O 1 13)

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13

IMAGIC INUIMIDETSetteeiiie ettt et e et ettt e et e e sttt e sttt e s saeesaseeessseeasseesssaeesasaeeasseesnsseesnsaeennsaeensseesnsseesnsseennseeennnes 6
CDF DeSCIIPtOr RECOTAvviiiiiiiiiiiie ettt ettt ettt et e et e et e e e beeeebeeestbeeessaeessseeesseeesseesnseeesnseeas 6
Global DeSCriptor RECOTAcccuuiiiiiiiiiiiiiciit ettt st ettt et esbee e eeneeneen 8
Attribute Descriptor RECOTM.........coiuiiiiiiiiiiie ettt e e e st e e stb e e e staeeenbeeessseeensseeensseennnes 10
Attribute Entry Descriptor RECOTAoiiiiiiiiiiiie ettt et ettt 12
Variable Descriptor RECOTcooviiiiiiiiiiie ettt e e e et e et eetae e et eesnseeesseeennaeennnes 14
Variable INdeX RECOTA.c.uiiiiiiiiiiie e ettt e ebt e et e st e e et eebbeeenbeeesnes 17
Variable Values RECOTA........cooiiiiiiiiiiiiiie ettt e e ettt e e e e itb e e e e e saabeeeeeatbaeeeesnsseeaaennssaeeens 19
Compressed CDF RECOIMvviiiiiiiiiiieciie ettt ettt e et e vt e e stb e e et eeesbeeessbeeessseeessseesnseeessseeesseesnsaens 19
Compressed Parameters RECOTA.oiiiuiiiiiiiiiie ettt e e e 20
Sparseness Parameters RECOTTcouiiiiiiiiiiieiiii ettt et e e e et e e ssbaeessbaeeeseeensaeennnes 21
Compressed Variable Values RECOTAcoccuuiiiiiiiiiiiiiiiiie ettt e e e e s eevee e e eetraeeesennaes 22
Unused Internal RECOTAcc.coiiiiiiiiiiii ettt ettt e 22

RIEYE: 1 5 £:1 1) (0 O 1 L PP 7.
4 Variable RECOTUS . .ccceeuerenierereereecrencereecereecsreecsssssssssssssssssssssssssssessssesssssssssssssse 20
5 ENCOAINES..ccciiiiiiiiiiiirrrsssrss 29

5.1 Data REPIESENTATIONSuuieeviieriieeiiieeiieestteerteesstteestaeesseeesseessaeesssaeassseesssseesssseesssesasssesssssesssesessseennsseennses 29
0 0 T 3 USSR 29
T B 2) 1 O PO PP UPPPPPUPPPRRNS 29
T G T 1 7<) ¢ PP UPPRPPPRRRN: 29
5.104 FlOAtINZ-POINT.iiiiiiieiie ettt ettt et et e ettt e et e e s aeeeeaneee s aeeeeateeeanteeenseesnneeeenseeeanseesneeanas 30
5.2 Control INFOIMMAtION.ccuiiitiiiiiiiit ettt ettt et et e s bt st et e nbeesaeeea bt e bt e saaesabeenbeenaees 33
52,1 INEEEET VALUES.eeeiiiieiiie ettt ettt ettt e et e et e et e e e aaee e eat e e s ae e e e ateeeentee e b e e eteeeenteeeenteeeneeeas 33
5.2.2 CRATACET STIANES ..eeouvvieeiiieeiiieeiteeeiteeette ettt e ettt essee e sseeeaseeesseeessseesssseesnsseesnsaeessseessseesnsseesnsessnsseesnsseenns 33
T BN o) o) S 1o 1 1033 1 D 1 ;SR UUURRPPSRRN 33

Preface

This document will present the physical file layout used by the Common Data Format (CDF) for CDF Version 3.2. No
attempt will be made to teach the concepts of CDF. For that please refer to the CDF User's Guide, CDF C Reference
Manual, CDF Fortran Reference Manual and CDF Perl Reference Manual, or the CDF Java APIs online . This
document will assume that you are familiar with rVariables, zVariables, attributes, gEntries, rEntries, zEntries, and all
of the other CDF concepts. Using the contents of this document, you should be able to rewrite the CDF library in your
spare time.

Chapter 1

1 Introduction

A CDF may have one of two formats: single-file or multi-file. A single-file CDF contains everything in one file having
an extension of .cdf. A multi-file CDF stores everything except variable values in one file (with an extension of .cdf).
The variable values are stored in separate files - one per variable. Variable files are described in Chapter 3. The .cdf
file of a CDF will be referred to as the dotCDF file throughout this document.

The dotCDF file of a CDF contains magic numbers and numerous internal records are used to organize information
about the contents of the CDF (for both single-file and multi-file CDFs). Chapter 2 describes the magic numbers and
the various internal records. The data encodings used by CDF are described in Chapter 5. The file attributes of a
dotCDF or variable file are not an issue on UNIX-based systems, the PC, or the Macintosh' because all files on those
platforms are simply treated as a sequence of bytes. On OpenVMS-based systems, however, file attributes are very
much an issue. The file attributes of a dotCDF or variable file created by the CDF library on an OpenVMS-based
system are as follows:

File organization: Sequential

Record format: Fixed length 512 byte records
Record attributes: None

RMS attributes: None

These are also the file attributes for a file that has been FTPed to an OpenVMS-based system in binary mode. With
these file attributes the CDF library is able to read the file as if it simply consisted of a sequence of bytes. Transferring
a CDF file to an OpenVMS-based systems as a text file will result in a different set of file attributes as well as the
insertion of additional bytes into the file (because the file system thinks there are suppose to be lines of text). CDF files
transferred in this way will not be readable by the CDF library.

CDFs created while running the POSIX Shell on a DEC Alpha (running OpenVMS), however, will have a different set
of file attributes when the POSIX Shell is not being used. These file attributes are:

File organization: Sequential

Record format: Stream LF, maximum 32256 bytes
Record attributes: Carriage return carriage control
RMS attributes: None

A CDF file with these attributes appears to be readable by the CDF library on current versions of OpenVMS for a DEC
Alpha. Some older version of OpenVMS apparently treats these file attributes differently and may cause a problem for
the CDF library.

! On a Macintosh only the data fork of a file is used in a dotCDF or variable file.

Chapter 2

2 dotCDF File

This chapter will describe the contents of the CDF post-V3.0 dotCDF file?. The dotCDF file contains a magic number
and two or more internal records (IRs) that are used to organize the contents of a CDF. Different types of internal
records are used to store information about various aspects and/or objects in the CDF. Each internal record contains
two or more fields. The first field (at internal record offset® 0x0), referred to as the RecordSize field, is an 8-byte
unsigned integer containing the size of the internal record in bytes. The second field (at internal record offset 0x8),
referred to as the RecordType field, is a 4-byte signed integer containing the type of internal record. Fields from the
third through the last depend on the type of internal record. Each field is stored contiguously, however, and some fields
may not be present in a particular instance of a type of internal record. Note that internal record fields are also referred
to as “internal values.”

Table 2.1 lists the types of internal records, the associated RecordType values, and brief descriptions. Detailed
descriptions are found in the corresponding sections.

All dotCDF files contain a CDF Descriptor Record (CDR) and a Global Descriptor Record (GDR). Other internal
records will be present depending on the contents of the CDF. The CDR is always at file offset*
0x0000000000000008, which immediately follows the magic number(s), described in Section 2.1. The file offset of
the GDR is stored in the CDR.

The only internal record at a fixed location in the dotCDF file is the CDR. All other internal records (including the
GDR) may be present in any order (which generally depends on the order in which the contents of the CDF were
created by an application). File offsets are used to “point" to other internal records. Linked lists of internal records are
implemented by storing the file offset of the first internal record on the linked list, having that internal record store the
file offset of the next internal record on the linked list, and so on. Figure 2.1 shows a possible arrangement of internal
records in an "uncompressed" dotCDF file. Note that the GDR “points" to the first zZVDR that in turn “points" to the
next zZVDR. File offsets as described in the sections to follow are used to implement this linked list. Keep in mind that
this is only an example of how a dotCDF file might be arranged. The internal records shown could be ordered in a
number of different ways depending on how the CDF was written by the application. Figure 2.2 shows a possible
arrangement of internal records in a dotCDF file, which has a variable, compressed. Figure 2.3 shows the file
arrangement of internal records in a fully compressed dotCDF file.

2 CDF V3.* file structure is similar to V2.6/2.7. The only differences are the fields for record sizes and offsets. They
are 8-bytes, instead of 4-bytes.

3 The offset in (hexadecimal) bytes from the beginning of the internal record.

4 The offset in (hexadecimal) bytes from the beginning of the file.

Type of
Internal Record

RecordTypeField
Internal Value

Purpose/Contents

CDR

GDR

rVDR

ADR

AgrEDR

VXR

VVR

zVDR

AzEDR

CCR

CPR

SPR

CVVR

UIR

MDS5 Checksum

1

10

11

12

13

CDF Descriptor Record.
General information about the CDF (see Section 2.2).

Global Descriptor Record.
Additional general information about the CDF (see Section 2.3).

rVariable Descriptor Record.
Information about an rVariable (see Section 2.6).

Attribute Descriptor Record.
Information about an attribute (see Section 2.4).

Attribute g/rEntry Descriptor Record.
Information about a gEntry or rEntry of an attribute (see Section 2.5).

Variable Index Record.
Indexing information for a variable (see Section 2.7).

Variable Values Record.
One or more variable records (see Section 2.8).

zVariable Descriptor Record.
Information about a zVariable (see Section 2.6).

Attribute zEntry Descriptor Record.
Information about a zEntry of an attribute (see Section 2.5).

Compressed CDF Record.
Information about a compressed CDF/variable (see Section 2.9).

Compression Parameters Record.
Information about the compression used for a CDF/variable (see
Section 2.10).

Sparseness Parameters Record.
Information about the specified sparseness array (see Section 2.11).

Compressed Variable Values Record.
Information for the compressed CDF/variable (see Section 2.12).

Unused Internal Record.
An internal record not currently being used (see Section 2.13).

Not considered as a CDF Internal Record. This is an optional field,
located at the end of the CDF file, if the MDS5 checksum option is
chosen. This field is 16-byte long, but is not included in the eof field in
GDR, which represents the CDF file size.

Table 2.1: Internal Records

Magic number 1

Magic number 2

CDR

=N

GDR

i

zVDR

ADR

oL

F 3

Y

VXR

VVR

AzEDR

F

L}

VVR

AzEDR

3}

zVDR

F 3

Figure 2.1: Example of an Uncompressed dotCDF File Arrangement

Magic number 1
Magic number 2
CDR
]
"l DR
=]
T 2VDR
= =
]
ADR i
[e] =
"TVxR
| =1 [
| ovvr
AzEDR,
[
T evvR
AzEDR)
]
" VDR
(]
]
| cpr

Figure 2.2: Example of a File Arrangement of a dotCDF File with a Compressed Variable

Magic number 1

Magic number 2
CCR.

= |

CPR

Figure 2.3: Example of a File Arrangement of a Fully Compressed dotCDF File

2.1 Magic Numbers’®

CDF Version 3.0, just like V2.6 or 2.7, uses two magic numbers.® The first one is 0xCDF300017 at the file offset
0x0000000000000000 stored as a 4-byte, unsigned integer with big-endian byte ordering. The second one, another 4-
byte unsigned integer of 0x0000FFFF for a regular CDF file® or 0xCCCC0001 for a compressed CDF file’ at the file
offset 0x0000000000000004, follows it. The first internal record is stored at file offset 0x0000000000000008.

2.2 CDF Descriptor Record

All dotCDF files contain a single CDF Descriptor Record (CDR) at file offset 0x00000008. The CDR contains general
information about the CDF (as does the GDR described in Section 2.3).

The CDR, as shown in Figure 2.4, contains the following contiguous fields...

RecordSize Signed 8-byte integer, big-endian byte ordering.
The size in bytes of this CDR (including this field).

RecordType Signed 4-byte integer, big-endian byte ordering.
The value 1 which identifies this as the CDR.

GDRoffset Signed 8-byte integer, big-endian byte ordering.
The file offset of the GDR. The GDR is described in Section 2.3.

5 For older versions, the first magic number is 0x0000FFFF for pre-V2.6 or 0xCDF26002 for V2.6/7. The second
magic number is 0x0000FFFF for pre-V2.6 or V2.6/7 if uncompressed, or 0xCCCC0001 for compressed for V2.6/7.
® They don't seem like magic to me but looking at these values is how you would determine the identity of a file.

7 Pre-V2.6, it is 0x0000FFFF.

8 That means an uncompressed CDF or a CDF with a selected variable(s) compressed

 Compression is not available for Pre-V2.6 CDFs. For Pre-V2.6, it is 0x0000FFFF, repeated from the first number.
The magic numbers for V2.7 are identical to V2.6.

Version

Release

Encoding

Flags

rfuA

rfuB

Increment

Identifier

rfuE

Copyright

Signed 4-byte integer, big-endian byte ordering.

The version of the CDF distribution (library) that created this CDF. CDF distributions are
identified with four values: version, release, increment, and sub-increment. For example,
CDF V2.5.8a is CDF version 2, release 5, and increment 8, sub-increment ‘a’. Note that the
sub-increment is not stored in a CDF.

Signed 4-byte integer, big-endian byte ordering.
The release of the CDF distribution that created this CDF. See the Version field above.

Signed 4-byte integer, big-endian byte ordering.
The data encoding for attribute entry and variable values. Section 5.3 describes the
supported data encodings and their corresponding internal values.

Signed 4-byte integer, big-endian byte ordering.
Boolean flags, one per bit, describing some aspect of the CDF. Bit numbering is described in
Chapter 5. The meaning of each bit is as follows...

0 The majority of variable values within a variable record. Variable records are
described in Chapter 4. Set indicates row-majority. Clear indicates column-
majority.

1 The file format of the CDF. Set indicates single-file. Clear indicates multi-
file.

2 The checksum of the CDF. Set indicates a checksum method is used.

3 The MDS5 checksum method indicator. Set indicates MDS5 method is used for

the checksum. Bit 2 must be set.

4 Reserved for another checksum method. Bit 2 must be set and bit 3 must be
clear .

5-31 Reserved for future use. These bits are always clear .

Signed 4-byte integer, big-endian byte ordering.
Reserved for future use. Always set to zero (0).

Signed 4-byte integer, big-endian byte ordering.
Reserved for future use. Always set to zero (0).

Signed 4-byte integer, big-endian byte ordering.
The increment of the CDF distribution that created this CDF. See the Version field above.
Prior to CDF V2.1 this field was always set to zero (0).

Signed 4-byte integer, big-endian byte ordering.

This field indicates how the file was created. A value of negative one (-1) means the file was
created by the normal way through the CDF’s C-based library. It has a value of one (1) if the
file was created directly by Java without the use of the library. A values of two (2) indicates
that the file was created by Python without the use of the library.

Signed 4-byte integer, big-endian byte ordering.
Reserved for future use. Always set to negative one (-1).

Character string, ASCII character set.

The CDF copyright notice.!? This consists of a string of characters containing one or more
lines of text with each line of text separated by a newline character (0x0A). If the total
number of characters in the copyright is less than the size of this field, a NUL character
(0x00) will be used to terminate the string. In that case, the characters beyond the NUL-
terminator (up to the size of this field) are undefined. This field may be one of two sizes.
Prior to CDF V2.5, this field consisted of 1945 characters (bytes).!! Since the release of
CDF V2.5, this field has been reduced to 256 characters (bytes).

Field Size Comments

RecordSize 8 bytes Offset:0

RecordType 4 bytes Offset:8

GDRoffset 8 bytes Offset:12

Version 4 bytes Offset:20

Release 4 bytes Offset:24

Encoding 4 bytes Offset:28

Flags 4 bytes Offset:32

rfuA 4 bytes Offset:36

rfuB 4 bytes Offset:40

Increment 4 bytes Offset:44

Identifier 4 bytes Offset:48

rfuE 4 bytes Offset:52

Copyright variable Offset:56. 1945 or 256 bytes in length depending on the CDF
distribution that created/modified the CDF.

Figure 2.4: CDF Descriptor Record (CDR)

2.3 Global Descriptor Record

All dotCDF files contain a single Global Descriptor Record (GDR) at the file offset contained in the GDRoffset field of
the CDR (described in Section 2.2). The GDR contains general information about the CDF (as does the CDR).

The GDR, shown in Figure 2.5, contains the following contiguous fields...

RecordSize Signed 8-byte integer, big-endian byte ordering.
The size in bytes of this GDR (including this field).

RecordType Signed 4-byte integer, big-endian byte ordering.
The value 2, which identifies this as the GDR.

rVDRhead Signed 8-byte integer, big-endian byte ordering.
The file offset of the first rVariable Descriptor Record (rVDR). The first rVDR contains a
file offset to the next rVDR and so on. An rVDR will exist for each rVariable in the CDF.
This field will contain 0x0000000000000000 if the CDF contains no rVariables. Beginning
with CDF V2.1 the last rVDR will contain a file offset of 0x0000000000000000 for the file
offset of the next rVDR (to indicate the end of the rVDRs). Prior to CDF V2.1 the “next
VDR file offset in the last rVDR is undefined. rVDRs are described in Section 2.6.

zVDRhead Signed 8-byte integer, big-endian byte ordering.

10 Well, sort of a copyright.
' Much of which was space reserved for future use. That future use never occurred.

ADRhead

eof

NrVars

NumAttr

rMaxRec

rNumDims

NzVars

UIRhead

rfuC

The file offset of the first zVariable Descriptor Record (zZVDR). The first zZVDR contains a
file offset to the next zZVDR and so on. A zVDR will exist for each zVariable in the CDF.
Because zVariables were not supported by CDF until CDF V2.2, prior to CDF V2.2 this
field is undefined. Beginning with CDF V2.2 this field will contain either a file offset to the
first zZVDR or 0x0000000000000000 if the CDF contains no zVariables. The last zZVDR will
always contain 0x0000000000000000 for the file offset of the next zZVDR (to indicate the
end of the zZVDRs). zVDRs are described in Section 2.6.

Signed 8-byte integer, big-endian byte ordering.

The file offset of the first Attribute Descriptor Record (ADR). The first ADR contains a file
offset to the next ADR and so on. An ADR will exist for each attribute in the CDF. This
field will contain 0x0000000000000000 if the CDF contains no attributes. Beginning with
CDF V2.1 the last ADR will contain a file offset of 0x0000000000000000 for the file offset
of the next ADR (to indicate the end of the ADRs). Prior to CDF V2.1 the “next ADR" file
offset in the last ADR is undefined. ADRs are described in Section 2.4.

Signed 8-byte integer, big-endian byte ordering.

The end-of-file (EOF) position in the dotCDF file. This is the file offset of the byte that is
one beyond the last byte of the last internal record. (This value is also the total number of
bytes used in the dotCDF file.) Prior to CDF V2.1, this field is undefined.

Signed 4-byte integer, big-endian byte ordering.
The number of rVariables in the CDF. This will correspond to the number of rVDRs in the
dotCDF file.

Signed 4-byte integer, big-endian byte ordering.
The number of attributes in the CDF. This will correspond to the number of ADRs in the
dotCDF file.

Signed 4-byte integer, big-endian byte ordering.

The maximum rVariable record number in the CDF. Note that variable record numbers are
numbered beginning with zero (0). If no rVariable records exist, this value will be negative
one (-1).

Signed 4-byte integer, big-endian byte ordering.
The number of dimensions for rVariables.

Signed 4-byte integer, big-endian byte ordering.
The number of zVariables in the CDF. This will correspond to the number of zZVDRs in the
dotCDF file. Prior to CDF V2.2 this value will always be zero (0).

Signed 8-byte integer, big-endian byte ordering.

The file offset of the first Unused Internal Record (UIR). The first UIR contains the file
offset of the next UIR and so on. The last UIR contains a file offset of
0x0000000000000000 for the file offset of the next UIR (indicating the end of the UIRs).

Signed 4-byte integer, big-endian byte ordering.
Reserved for future use. Always set to zero (0).

LeapSecondLastUpdated Signed 4-byte integer, big-endian byte ordering.

rfuE

The date of the last entry in the leap second table (in YYYYMMDD form). It is negative
one (-1) for the previous version. A value of zero (0) is also accepted, which means a CDF

was not created based on a leap second table. This field is applicable to CDFs with
CDF_TIME TT2000 data type.

Signed 4-byte integer, big-endian byte ordering.

Reserved for future use. Always set to negative one (-1).

rDimSizes Signed 4-byte integers, big-endian byte ordering within each.
Zero or more contiguous rVariable dimension sizes depending on the value of the
rNumDims field described above.

Field Size Comments

RecordSize 8 bytes Offset:0

RecordType 4 bytes Offset:8

rVDRhead 8 bytes Offset:12

zVDRhead 8 bytes Offset:20

ADRhead 8 bytes Offset:28

eof 8 bytes Offset:36

NrVars 4 bytes Offset:44

NumAttr 4 bytes Offset:48

rMaxRec 4 bytes Offset:52

rNumDims 4 bytes Offset:56

NzVars 4 bytes Offset:60

UIRhead 8 bytes Offset:64

rfuC 4 bytes Offset:72

LeapSecondLastUpdated | 4 bytes | Offset:76

rfuE 4 bytes Offset:80

rDimSizes variable Offset:84. Size depends on rNumDims field. If zero rVariable
dimensions, this field will not be present.

Figure 2.5: Global Descriptor Record (GDR)

2.4 Attribute Descriptor Record

An Attribute Descriptor Record (ADR) contains a description of an attribute in a CDF. There will be one ADR per
attribute. The ADRhead field of the GDR contains the file offset of the first ADR.

Each ADR, as shown in Figure 2.6, contains the following contiguous fields...

RecordSize Signed 8-byte integer, big-endian byte ordering.
The size in bytes of this ADR (including this field).

RecordType Signed 4-byte integer, big-endian byte ordering.
The value 4, which identifies this as an ADR.

ADRnext Signed 8-byte integer, big-endian byte ordering.
The file offset of the next ADR. Beginning with CDF V2.1 the last ADR will contain a file
offset of 0x0000000000000000 in this field (to indicate the end of the ADRs). Prior to CDF
V2.1 this file offset is undefined in the last ADR.

AgrEDRhead Signed 8-byte integer, big-endian byte ordering.
The file offset of the first Attribute g/rEntry Descriptor Record (AgrEDR) for this attribute.
The first AgrEDR contains a file offset to the next AgrEDR and so on. An AgrEDR will
exist for each g/rEntry for this attribute. This field will contain 0x0000000000000000 if the
attribute has no g/rEntries. Beginning with CDF V2.1 the last AgrEDR will contain a file
offset of 0x0000000000000000 for the file offset of the next AgrEDR (to indicate the end of

Scope

Num

NgrEntries

MAXgrEntry

rfuA

AzEDRhead

NzEntries

MAXzEntry

rfuE

Name

the AgrEDRs). Prior to CDF V2.1 the “next AgrEDR" file offset in the last AgrEDR is
undefined.

Note that the term g/rEntry is used to refer to an entry that may be either a gEntry or an
rEntry. The type of entry described by an AgrEDR depends on the scope of the
corresponding attribute. AgrEDRs of a global-scoped attribute describe gEntries. AgrEDRs
of a variable-scoped attribute describe rEntries.

Signed 4-byte integer, big-endian byte ordering.
The intended scope of this attribute. The following internal values are possible...

1 Global scope.
2 Variable scope.
3 Global scope assumed.
4 Variable scope assumed.
Note that assumed scopes only exist prior to CDF V2.5.

Signed 4-byte integer, big-endian byte ordering.
This attribute's number. Attributes are numbered beginning with zero (0).

Signed 4-byte integer, big-endian byte ordering.
The number of g/rEntries for this attribute.

Signed 4-byte integer, big-endian byte ordering.
The maximum numbered g/rEntry for this attribute. g/rEntries are numbered beginning
with zero (0). If there are no g/rEntries, this field will contain negative one (-1).

Signed 4-byte integer, big-endian byte ordering.
Reserved for future used. Always set to zero (0).

Signed 8-byte integer, big-endian byte ordering.

The file offset of the first Attribute zEntry Descriptor Record (AzEDR) for this attribute.
The first AZEDR contains a file offset to the next AZEDR and so on. An AzEDR will exist
for each zEntry for this attribute. This field will contain 0x0000000000000000 if this
attribute has no zEntries. The last AZEDR will contain a file offset of
0x0000000000000000 for the file offset of the next AZEDR (to indicate the end of the
AzEDRs).

Signed 4-byte integer, big-endian byte ordering.
The number of zEntries for this attribute. Prior to CDF V2.2 this field will always contain a
value of zero (0).

Signed 4-byte integer, big-endian byte ordering.

The maximum numbered zEntry for this attribute. zEntries are numbered
beginning with zero (0). Prior to CDF V2.2 this field will always contain
a value of negative one (-1).

Signed 4-byte integer, big-endian byte ordering.
Reserved for future use. Always set to negative one (-1).

Character string, ASCII character set.
The name of this attribute. This field is always 256 bytes in length. If the

number of characters in the name is less than 256, a NUL character (0x00)
will be used to terminate the string. In that case, the characters beyond
the NUL-terminator (up to the size of this field) are undefined.

Field Size Comments
RecordSize 8 bytes Offset:0
RecordType 4 bytes Offset:8
ADRnext 8 bytes Offset:12
AgrEDRhead 8 bytes Offset:20
Scope 4 bytes Offset:28
Num 4 bytes Offset:32
NegrEntries 4 bytes Offset:36
MAXgrEntry 4 bytes Offset:40
rfuA 4 bytes Offset:44
AzEDRhead 8 bytes Offset:48
NzEntries 4 bytes Offset:56
MAXzEntry 4 bytes Offset:60
rfuE 4 bytes Offset:64
Name 256 bytes Offset:68. Was 64 bytes in earlier V2.*

Figure 2.6: Attribute Descriptor Record (ADR)

2.5 Attribute Entry Descriptor Record

An Attribute Entry Descriptor Record (AEDR) contains a description of an attribute entry. There are two types of
AEDRs: AgrEDRs describing g/rEntries and AzZEDRs describing zEntries.'?> The AgrEDRhead field of an ADR
contains the file offset of the first AgrEDR for the corresponding attribute. Likewise, the AzZEDRhead field of an ADR
contains the file offset of the first AZEDR. The linked lists of AEDRs starting at AgrEDRhead and AzEDRhead will
contain only AEDRs of that type - AgrEDRs or AzEDRSs, respectively.

Note that the term g/rEntry is used to refer to an entry that may be either a gEntry or an rEntry. The type of entry
described by an AgrEDR depends on the scope of the corresponding attribute. AgrEDRs of a global-scoped attribute
describe gEntries. AgrEDRs of a variable-scoped attribute describe rEntries. The scope of an attribute is stored in the
Scope field of the corresponding ADR.

Each AEDR, as shown in Figure 2.7, contains the following contiguous fields...

RecordSize Signed 8-byte integer, big-endian byte ordering.
The size in bytes of this AEDR (including this field).

RecordType Signed 4-byte integer, big-endian byte ordering.
Either the value 5 which identifies this as an AgrEDR or the value 9 if
an AzEDR. Because zEntries were not supported until CDF V2.2, prior to
CDF V2.2 AzEDRs will not occur in a dotCDF file.

AEDRnext Signed 8-byte integer, big-endian byte ordering.
The file offset of the next AEDR. Beginning with CDF V2.1 the last AEDR
will contain a file offset of 0x0000000000000000 in this field (to indicate the end of

12 Because the only difference between AgrEDRs and AzEDRs is the value of the RecordType field, they will be
referred to as AEDRs throughout this document.

AttrNum

DataType

Num

NumElems

NumStrings '3

rfuB

rfuC

rfuD

rfuE

Value

the AEDRs).

Signed 4-byte integer, big-endian byte ordering.
The attribute number to which this entry corresponds. Attributes are numbered beginning
with zero (0).

Signed 4-byte integer, big-endian byte ordering.
The data type of this entry. The possible data type internal values are described in Section
5.3.

Signed 4-byte integer, big-endian byte ordering.
This entry's number: an entry number in a global attribute, or the variable number for an
rVariable or zVariable in a variable attribute . Entries are numbered beginning with zero

(0).

Signed 4-byte integer, big-endian byte ordering.

The number of elements of the data type (specified by the DataType field) for this entry. For
character type, i.e., CDF_CHAR or CDF_UCHAR, it’s the length of the string. For numeric
type, it’s the number of items, which is 1 for most cases. However, it can be multiple items.
This field cannot be zero (0) or less.

Signed 4-byte integer, big-endian byte ordering.

The number of strings in the Value field. This applies only for string-type data from variable
entry. Strings are delimited by “\\N “, a three-character string, in the Value field. This field
shows the number of strings concatenated into a single one at the Value field. A value of 0
(from pre-3.7.0) or 1 indicates that the Value field contains a single string. For non-string
data, it should be 0.

Signed 4-byte integer, big-endian byte ordering.
Reserved for future used. Always set to zero (0).

Signed 4-byte integer, big-endian byte ordering.
Reserved for future used. Always set to zero (0).

Signed 4-byte integer, big-endian byte ordering.
Reserved for future used. Always set to negative one (-1).

Signed 4-byte integer, big-endian byte ordering.
Reserved for future used. Always set to negative one (-1).

This entry's value. This consists of the number of elements (specified by the NumElems
field) of the data type (specified by the DataType field). This can be thought of as a 1-
dimensional array of values (stored contiguously). The size of this field is the product of the
number of elements and the size in bytes of each element. The encoding of the elements
depends on the data encoding of the CDF (which is contained in the Encoding field of the
CDR). The possible encodings are described in Section 5.3. For a string type entry, it can
have a null value, which it contains a single byte of \x00, along with NumElems being 1.

13 In pre-3.7.0 versions, this field is identified as rfuA, a reserved field, with a value of 0.

Field Size Comments
RecordSize 8 bytes Offset:0
RecordType 4 bytes Offset:8
AEDRnext 8 bytes Offset:12
AttrNum 4 bytes Offset:20
DataType 4 bytes Offset:24
Num 4 bytes Offset:28
NumElems 4 bytes Offset:32
NumStrings 4 bytes Offset:36
rfuB 4 bytes Offset:40
rfuC 4 bytes Offset:44
rfuD 4 bytes Offset:48
rfuE 4 bytes Offset:52
Value Variable Offset:56. Size depends on the DataType and NumElems fields.

Figure 2.7: Attribute Entry Descriptor Record (AEDR)

2.6 Variable Descriptor Record

A Variable Descriptor Record (VDR) contains a description of a variable in a CDF. There are two types of VDRs:
rVDRs describing rVariables and zZVDRs describing zVariables.'* The rVDRhead field of the GDR contains the file
offset of the first rVDR. Likewise, the zVDRhead field of the GDR contains the file offset of the first ZVDR. The
linked lists of VDRs starting at rVDRhead and zZVDRhead will contain only VDRs of that type - rVDRs or zVDRs,
respectively. If this variable is compressed, a pointer to a Compressed Parameters Record (CPR) is set in the
CPRorSPRoffset field.

Each VDR, as shown in Figure 2.8, contains the following contiguous fields..."3

RecordSize Signed 8-byte integer, big-endian byte ordering.
The size in bytes of this VDR (including this field).
RecordType Signed 4-byte integer, big-endian byte ordering.
Either the value 3, which identifies this as an rVDR or the value 8 if a zZVDR.
VDRnext Signed 8-byte integer, big-endian byte ordering.
The file offset of the next VDR.
DataType Signed 4-byte integer, big-endian byte ordering.
The data type of this entry. The possible data type internal values are described in Section
5.3.
MaxRec Signed 4-byte integer, big-endian byte ordering.

The maximum record number physically written to this variable. This is the last written
record number. More records might be allocated after this record so future written record(s)
can be in contiguous form to eliminate the potential data fragmentation. Variable records are
numbered beginning at zero (0). If no records have been written to this variable, this field
will contain negative one (-1).

!4 The term VDR is used when something applies to both rVDRs and zZVDRs. The terms rVDR and zVDR will be used
when a distinction must be made.
15 With the exceptions for rVariables being noted.

VXRhead

VXRtail

Flags

sRecords

rfuB

rfuC

Signed 8-byte integer, big-endian byte ordering.

The file offset of the first Variable Index Record (VXR). VXRs are used in single-file CDFs
to store the locations of Variable Value Records (VVRs). VVRs are used to store variable
records in single-file CDFs. VXRs are described in Section 2.7 and VVRs are described in
Section 2.8. The first VXR contains the file offset of the next VXR and so on. The last
VXR contains a file offset of 0x00000000 for the file offset of the next VXR (to indicate the
end of the VXRs). In single-file CDFs, if no records have been written to this variable, this
field will contain a file offset of 0x0000000000000000.

For multi-file CDFs variable records are stored in separate files and this field will always
contain a file offset of 0x00000000. The variable files of a multi-file CDF are described in
Chapter 3.

Signed 8-byte integer, big-endian byte ordering.
The file offset of the last VXR. See the VXRhead field above for a description of VXRs.

Signed 4-byte integer, big-endian byte ordering.
Boolean flags, one per bit, describing some aspect of this variable. Bit numbering is
described in Chapter 5. The meaning of each bit is as follows...

0 The record variance of this variable. Set indicates a TRUE record variance.
Clear indicates a FALSE record variance.

1 Whether or not a pad value is specified for this variable. Set indicates that a
pad value has been specified. Clear indicates that a pad value has not been
specified. The PadValue field described below is only present if a pad value
has been specified.

2 Whether or not a compression method might be applied to this variable data.
Set indicates that a compression is chosen by the user and the data might be
compressed, depending on the data size and content. If the compressed data
becomes larger than its uncompressed data, no compression is applied and the
data are stored as uncompressed, even the compression bit is set. The
compressed data is stored in Compressed Variable Value Record (CVVR)
while uncompressed data go into Variable Value Record (VVR). Clear
indicates that a compression will not be used. The CPRorSPRoffset field
described below provides the offset of the Compressed Parameters Record if
this compression bit is set and the compression used.

3-31 Reserved for future use. These bits are always clear.

Signed 4-byte integer, big-endian byte ordering.

Type of sparse records: no sparserecords, padded sparserecords (using the default/defined
pad value), or previous sparserecords (using the last written value). When reading a
record(s) from a variable with sparserecords that is not written, data value(s) will be returned
based on the type of sparse records. In this case, a non-zero, but postive status code will be
returned, indicating a virtual record(s) is involved. A variable with sparserecords tends to be
less efficient than a variable of non-sparserecords. Try to limit the number of sparserecords
if possible.

Signed 4-byte integer, big-endian byte ordering.
Reserved for future use. Always set to zero (0).

Signed 4-byte integer, big-endian byte ordering.
Reserved for future use. Always set to negative one (-1).

rfuF Signed 4-byte integer, big-endian byte ordering.
Reserved for future use. Always set to negative one (-1).

NumElems Signed 4-byte integer, big-endian byte ordering.
The number of elements of the data type (specified by the DataType field)
for this variable at each value. For character type, i.e., CDF _CHAR or CDF_UCHAR, it’s
the length of the string. For numeric type, it’s the number of items, which is 1 for most
cases. However, it can be multiple items. This field can not be zero (0) or less.

Num Signed 4-byte integer, big-endian byte ordering.
This variable's number. Variables are numbered beginning with zero (0).
Note that rVariables and zVariables are each numbered beginning with zero
(0) and are considered two separate groups of variables.

CPRorSPRoffset Signed 8-byte integer, big-endian byte ordering.
CPR/SPR offset depending on bits set in 'Flags' and compression used. If neither
compression
nor sparse arrays, set to OXFFFFFFFFFFFFFFFF.

BlockingFactor Signed 4-byte integer, big-endian byte ordering.
Blocking factor for this variable.

Name Character string, ASCII character set.
The name of this variable. This field is always 256 bytes in length. If the
number of characters in the name is less than 256, a NUL character (0x00)
will be used to terminate the string. In that case, the characters beyond
the NUL-terminator (up to the size of this field) are undefined.

zNumDims Signed 4-byte integer, big-endian byte ordering.
The number of dimensions for this zVariable. This field will not be present if this is an
rVDR (rVariable).

zDimSizes Signed 4-byte integers, big-endian byte ordering within each.

Zero or more contiguous dimension sizes for this zVariable depending on the value of the
zNumDims field. This field will not be present if this is an rVDR (rVariable).

DimVarys Signed 4-byte integers, big-endian byte ordering within each.
Zero or more contiguous dimension variances. If this is an r'VDR, the number of
dimension variances will correspond to the value of the rNumDims field of the GDR. If this
is a ZVDR, the number of dimension variances will correspond to the value of the
zNumDims field in this ZVDR. A value of negative one (-1) indicates a TRUE dimension
variance and a value of zero (0) indicates a FALSE dimension variance.

PadValue The variable's pad value. If bit 1 of the Flags field of this VDR is clear, then a pad value has
not been specified for this variable and this field will not be present. If a pad value has been
specified, the size of this field depends on the number of elements and the size of the data
type. The encoding of the elements depends on the encoding of the CDF (which is
contained in the Encoding field of the CDR). The possible encodings are described in
Section 5.3.

Field Size Comments

RecordSize 8 bytes Offset:0

RecordType 4 bytes Offset:8

VDRnext 8 bytes Offset:12

DataType 4 bytes Offset:20

MaxRec 4 bytes Offset:24

VXRhead 8 bytes Offset:28

VXRtail 8 bytes Offset:36

Flags 4 bytes Offset:44

SRecords 4 bytes Offset:48

rfuB 4 bytes Offset:52

rfuC 4 bytes Offset:56

rfuF 4 bytes Offset:60

NumElems 4 bytes Offset:64

Num 4 bytes Offset:68

CPRorSPRoffset 8 bytes Offset:72

BlockingFactor 4 bytes Offset:80

Name 256 bytes Offset:84. Was 64 bytes in earlier V2.*

zNumDims 4 bytes Offset:340 if a zZVDR. Not present if an rVDR.

zDimSizes 4 bytes Offset:344. Size depends on the zZNumDims field if a zZVDR (but not
present if zero dimensions). Not present if an rVDR.

DimVarys 4 bytes Size depends on the zZNumDims field if a zZVDR (but not present if zero
dimensions). Size depends on the rNumDims field of the GDR if an
rVDR (but not present if zero dimensions). Offset:340 if an rVDR.

PadValue Variable Size depends on DataType and NumElems fields. Not present if bit 1 of
Flags field is not set.

Figure 2.8: Variable Descriptor Record (VDR)

2.7 Variable Index Record

Variable Index Records (VXRs) are used in single-file CDFs to store the file offsets of any lower level of VXRs,
Variable Values Records (VVRs), or Compressed Variable Value Records (CVVRs). A VXR ftree structure is present
if a VXR points to another VXR(s). This can happen when a CDF file becomes very fragmented. At the lowest levels,
the offsets in VXRs point to VVRs. To make a CDF file cleaner, keep VXRs, and their levels, as few as possible. The
best performer is one (1) VXR and one (1) VVR for a variable’s whole records.

VVRs contain a group of records written to a variable and are described in Section 2.8. VXRs (and VVRs) will not
exist in the dotCDF file of a multi-file CDF (because the variable records are stored in separate files as described in
Chapter 3).

The VXRhead field of a VDR in a single-file CDF contains the file offset of the first VXR for the corresponding
variable. The first VXR contains the file offset of the next VXR and so on. As many VXRs as are necessary will exist
(depending on the number of VVRs for the variable). The VXRtail field of a VDR contains the file offset of the last
VXR for the corresponding variable.

Each VXR, as shown in Figure 2.9, contains the following contiguous fields...

RecordSize Signed 8-byte integer, big-endian byte ordering.
The size in bytes of this VXR (including this field).

RecordType Signed 4-byte integer, big-endian byte ordering.
The value 6, which identifies this as a VXR.

VXRnext Signed 8-byte integer, big-endian byte ordering.
The file offset of the next VXR. The last VXR will contain a file offset of
0x0000000000000000 in this field (to indicate the end of the VXRs).

Nentries Signed 4-byte integer, big-endian byte ordering.
The number of index entries in this VXR. This is the maximum number of
VVRs that may be indexed using this VXR.!6

NusedEntries Signed 4-byte integer, big-endian byte ordering.
The number of index entries actually used in this VXR.

First Signed 4-byte integers, big-endian byte ordering within each.
This is a contiguous array of variable record numbers with each record number being the
first variable record in the corresponding VVR or lower level VXRs. The size of this array
depends on the value of the Nentries field. The nth entry in this array corresponds to the nth
entry in the Last and Offset fields. Unused entries in this array contain OxXFFFFFFFF. Note
that variable records are numbered beginning with zero (0).

Last Signed 4-byte integers, big-endian byte ordering within each.
This is a contiguous array of variable record numbers with each record number being the last
variable record in the corresponding VVR or lower level VXRs. The size of this array
depends on the value of the Nentries field. The nth entry in this array corresponds to the nth
entry in the First and Offset fields. Unused entries in this array contain OXFFFFFFFF. Note
that variable records are numbered beginning with zero (0).

Offset Signed 8-byte integers, big-endian byte ordering within each.
This is a contiguous array of file offsets with each being the file offset of the corresponding
VVR, CVVR or a lower level of VXR. If the offset is pointing to a VXR, the prior,
corresponding first/last fields are the record range this VXR tree will hold. The size of this
array depends on the value of the Nentries field. The nth entry in this array corresponds to
the nth entry in the First and Last fields. Unused entries in this array contain

OxFFFFFFFFFFFFFFFF.
Field Size Comments
RecordSize 8 bytes Offset:0
RecordType 4 bytes Offset:8
VXRnext 8 bytes Offset:12
Nentries 4 bytes Offset:20
NusedEntries 4 bytes Offset:24
First variable Offset:28. Size depends on the Nentries field.
Last variable Offset:28+4*Nentries. Size depends on the Nentries field.
Offset variable Offset:28+8*Nentries. Size depends on the Nentries field.

Figure 2.9: Variable Index Record (VXR)
Consider the following example VXR contents (for a variable having only one VXR)...

RecordSize: 140

RecordType: 6

VXRnext: 0x0000000000000000
Nentries: 7

16 Since using the hierarchical scheme for the VXR indexing in V2.6, the maximum number of entries has been set as 7.
Prior version has it as 10.

NusedEntries: 2

First: 0, 100, OxFFFFFFFF, OxFFFFFFFF, ...

Last: 99, 149, OxFFFFFFFF, OxFFFFFFFF, ...

Offset: 0x000000000000A400, 0x000000000000B554, OXFFFFFFFFFFFFFFFF,
OxFFFFFFFFFFFFFFFF, ...

There are two index entries being used. The first indicates that variable records 0 through 99 are stored in the VVR at
file offset 0x0000A400 and the second indicates that variable records 100 through 149 are stored in the VVR at file
offset 0x0000B554.

2.8 Variable Values Record

Variable Value Records (VVRs) are used to store one or more variable records in a single-file CDF. VVRs will not
exist in multi-file CDFs (where variable records are stored in separate files). The contents of a variable record are
described in Chapter 4.

Each VVR, as shown in Figure 2.10, contains the following contiguous fields...

RecordSize Signed 8-byte integer, big-endian byte ordering.
The size in bytes of this VVR (including this field).

RecordType Signed 4-byte integer, big-endian byte ordering.
The value 7, which identifies this as a VVR.

Records A group of one or more variable records. The record numbers in this group will be
contiguous. The size of this field depends on the number of variable records in the group
and the size of each record. The size of each record will be the same and depends on the
dimensionality, dimension variances, data type, and number of elements per value of the
corresponding variable. These properties are discussed in Chapter 4. The encoding of the
values in each variable record depends on the encoding of the CDF (which is stored in the
Encoding field of the CDR). The possible encodings are described in Chapter 5.

Field Size Comments

RecordSize 8 bytes Offset:0

RecordType 4 bytes Offset:8

Records variable Offset:12. Size depends on the number of variable records in this VVR
and the variable's data type, number of elements per value,
dimensionality, and dimension variances.

Figure 2.10: Variable Values Record (VVR)

2.9 Compressed CDF Record

A Compressed CDF Record (CCR) is used to store the data from a compressed single-file CDF. A CCR is created
when the whole CDF is compressed. It will not be created if only variables (some or even all) are compressed. Only
two internal records exist in a fully compressed CDF. Other than a CCR, another record is a Compression Parameters
Record (CPR), which is pointed to by the CCR. The CPR provides the compression information, e.g., compression
method and level, etc., used to compress the CDF file. A CCR will not exist in multi-file CDFs.

Each CCR, as shown in Figure 2.11, contains the following contiguous fields...

RecordSize Signed 8-byte integer, big-endian byte ordering.
The size in bytes of this CCR (including this field).
RecordType Signed 4-byte integer, big-endian byte ordering.
The value 10, which identifies this as a CCR.
CPRoffset Signed 8-byte integer, big-endian byte ordering.
File offset to the Compressed Parameters Record (CPR) (bytes).
uSize Signed 8-byte integer, big-endian byte ordering.
Size of the CDF in its uncompressed form. This byte count does NOT include the 8-byte
magic numbers, and 16-byte checksum if it exists.
rfuA Signed 4-byte integer, big-endian byte ordering.
Reserved for future use. Set to zero.
data The compressed CDF data begins.
Field Size Comments
RecordSize 8 bytes Offset:0
RecordType 4 bytes Offset:8
CPRoffset 8 bytes Offset:12
uSize 8 bytes Offset:20
rfuA 4 bytes Offset:28
data variable Offset:32. Compressed data size is RecordSize - 32 bytes.

Figure 2.11: Compressed CDF Record (CCR)

2.10 Compressed Parameters Record

A Compressed Parameters Record (CPR) is used to keep the information as the compression method and level used to
create a CDF or variable. This record is pointed to by either a CCR or a VDR. When a compression is applied to the
whole CDF, the CPR is pointed to by the CCR. If a compression is only applied to a variable, a CPR is pointed to by a
VDR. Currently, only Run-Length Encoding (RLE), Huffman (HUFF), Adaptive Huffman (AHUFF) and GNU GZIP
compression algorithms are supported.'”

Each CPR, as shown in Figure 2.12, contains the following contiguous fields...

RecordSize

RecordType

cType

Signed 8-byte integer, big-endian byte ordering.
The size in bytes of this CPR (including this field).

Signed 4-byte integer, big-endian byte ordering.
The value 11, which identifies this as a CPR.

Signed 4-byte integer, big-endian byte ordering.

17 Due to a huge memory requirement, the GZIP compression is disabled for the PCs running the 16-bit DOS/Windows

3.x.

Type of compression: NO_COMPRESSION (0), RLE_ COMPRESSION (1),
HUFF_COMPRESSION (2), AHUFF_COMPRESSION (3) and GZIP_ COMPRESSION

)

rfuA Signed 4-byte integer, big-endian byte ordering.
Reserved for future use. Set to zero.

pCount Signed 4-byte integer, big-endian byte ordering.
Compression parameter count. Currently, itis 1.

cParms Signed 4-byte integer, big-endian byte ordering.
Compression level. For RLE, HUFF and AHUFF, cParms[0] is 0. For GZIP, it is
between 1 and 9.

Field Size Comments

RecordSize 8 bytes Offset:0

RecordType 4 bytes Offset:8

cType 4 bytes Offset:12

rufA 4 bytes Offset:16

pCount 4 bytes Offset:20

cParms variable Offset:24. Size depends on pCount

Figure 2.12: Compressed Parameters Record (CPR)

2.11 Sparseness Parameters Record

A Sparseness parameters Record (SPR) is used to store sparse array information used by a variable record in a CDF.
Currently, it has not yet been implemented in the V2.6, V2.7 or V3.0 distribution. This record is not being
implemented.

Each SPR, as shown in Figure 2.13, contains the following contiguous fields...

RecordSize Signed 8-byte integer, big-endian byte ordering.
The size in bytes of this SPR (including this field).

RecordType Signed 4-byte integer, big-endian byte ordering.
The value 12, which identifies this as a SPR.

sArraysType Signed 4-byte integer, big-endian byte ordering.
include the magic numbers.

rfuA Signed 4-byte integer, big-endian byte ordering.
Reserved for future use. Set to zero.

pCount Signed 4-byte integer, big-endian byte ordering.
Sparseness parameter count.

sArraysParms Signed 4-byte integer, big-endian byte ordering.
Parameters for sparseness arrays.

Field Size Comments

RecordSize 8 bytes

RecordType 4 bytes

sArraysType 4 bytes

rufA 4 bytes

pCount 4 bytes

sArraysParms variable Size depends on pCount

Figure 2.13: Sparseness Parameters Record (SPR)

2.12 Compressed Variable Values Record

A Compressed Variable Values Record (CVVR) is used to store one section of compressed variable values records
(VVRs) for a variable in a single-file CDF. This section of VVRs while uncompressed are contiguous in the physical
file or scratch temporary file. CVVRs will not exist in multi-file CDFs.

Each CVVR, as shown in Figure 2.14, contains the following contiguous fields...

RecordSize Signed 8-byte integer, big-endian byte ordering.
The size in bytes of this CVVR (including this field).
RecordType Signed 4-byte integer, big-endian byte ordering.
The value 13, which identifies this as a CVVR.
rfuA Signed 4-byte integer, big-endian byte ordering.
Reserved for future use. Set to zero.
cSize Signed 8-byte integer, big-endian byte ordering.
Size in bytes of the post-compressed data, which follows.
data Compressed data.
Field Size Comments
RecordSize 8 bytes Offset:0
RecordType 4 bytes Offset:8
rufA 4 bytes Offset:12
cSize 8 bytes Offset: 16
data variable Offset:24. Size is specified in cSize

Figure 2.14: Compressed Variable Values Record (CVVR)

2.13 Unused Internal Record

Internal records in the dotCDF file of a CDF may become unused due to a number of reasons. When that occurs, the
internal record is marked as being unused and is placed on a double-linked list of Unused Internal Records (UIRs). The
UlIRhead field of the GDR contains the file offset of the first UIR. The first UIR contains the file offset of the next UIR
and so on. The last UIR contains a file offset of 0x00000000 as the file offset of the next UIR (to indicate the end of

the UIRs). Likewise, the last UIR contains the file offset of the previous UIR and so on. The first UIR contains a file
offset of 0x00000000 as the file offset of the previous UIR (to indicate the start of the UIRs).

Each UIR, as shown in Figure 2.15, contains the following contiguous fields...

RecordSize Signed 8-byte integer, big-endian byte ordering.
The size in bytes of this UIR (including this field).

RecordType Signed 4-byte integer, big-endian byte ordering.
The value -1, which identifies this as a UIR. (See the section on UUIRs below for a slight
complication.)

NextUIR Signed 8-byte integer, big-endian byte ordering.
The file offset of the next UIR. The last UIR will contain a file offset of 0x00000000 in this
field (to indicate the end of the UIRs).

PrevUIR Signed 8-byte integer, big-endian byte ordering.
The file offset of the previous UIR. The first UIR will contain a file offset of 0x00000000 in
this field (to indicate the start of the UIRs).

Remainder Zero or more unused bytes, which constitute the remainder of the UIR.
The contents of this field are undefined.

Field Size Comments

RecordSize 8 bytes Offset:0

RecordType 4 bytes Offset:8

NextUIR 8 bytes Offset: 12

PrevUIR 8 bytes Offset:20

Remainder variable Offset:28. Size depends on the size of this UIR.

Figure 2.15: Unused Internal Record (UIR)

It is possible to have internal records in the dotCDF file of a CDF that are unused but are not considered UIRs. Let's
call them Unsociable Unused Internal Records (UUIRs) because they are not on the double-linked list of UIRs that
begins at the file offset contained in the UIRhead field of the GDR. Beginning with CDF V2.5, UUIRs may also exist
due to special circumstances (e.g., if an internal record that is no longer needed is less than 16 bytes which means that it
is too small to be made a UIR).

Each UUIR, as shown in Figure 2.16, contains the following contiguous fields...

RecordSize Signed 8-byte integer, big-endian byte ordering.
The size in bytes of this UUIR (including this field).

RecordType Signed 4-byte integer, big-endian byte ordering.
The value -1, which identifies this as a UUIR. Unfortunately this is the same value as that
used for UIRs. UUIRs are distinguished from UIRs by the fact that they are not on the
double-linked list of UIRs.

Remainder Zero or more unused bytes that constitute the remainder of the UUIR.
The contents of this field are undefined.

Field Size Comments

RecordSize 8 bytes Offset:0

RecordType 4 bytes Offset:8

Remainder variable Offset:12. Size depends on the size of this UUIR.

Figure 2.16: Unsociable Unused Internal Record (UUIR)

Chapter 3

3 Variable Files

In multi-file CDFs, variable records are stored in separate files - one per variable. Assuming a base name of
<cdfname>, the CDF would consist of the file named <cdfname>.cdf,'® a file named <cdfname>.v<i> for each
rVariable (where <i> is the rVariable number), and a file named <cdfname>.z<j> for each zVariable (where <j> is the
zVariable number). Note that variables are numbered beginning with zero (0). For example, a multi-file CDF named
sample having three rVariables would consist of the files sample.cdf, sample.v0, sample.v1, and sample.v2.

Within each variable file are stored the corresponding variable records. The variable records are stored contiguously
beginning with record number zero (0) with no gaps in the record numbering. The number of records will correspond
to the MaxRec field of the variable's VDR (described in Section 2.6). The size of each variable record will be the same
and depends on the dimensionality, dimension variances, data type, and number of elements per value of the
corresponding variable. These properties are discussed in Chapter 4. The encoding of the values in each variable
record depends on the encoding of the CDF (which is stored in the Encoding field of the CDR). The possible encodings
are described in Chapter 5.

18 On VMS and DOS systems, the file names/extensions would be uppercase.

Chapter 4

4 Variable Records

Variable records contain the values written to a variable. Each variable record contains one variable array. The
physical layout of a variable array depends on the dimensionality and dimension variances of the variable and the
variable majority of the CDF. The dimensionality of an rVariable is contained in the rNumDims and rDimSizes fields
of the GDR. The dimensionality of a zVariable is contained in the zZNumDims and rDimSizes fields of the
corresponding zVDR. Dimension variances are contained in the DimVarys field of the corresponding rVDR/zVDR.
The CDF's variable majority is contained in bit 0 of the Flags field of the CDR. Note also that each variable array value
consists of some number of elements of the variable's data type. A variable's data type and number of elements of that
data type at each variable value are contained in the DataType and NumElems fields of the corresponding
rVDR/zVDR.

Dimension variances allow a conceptual view of a physical variable array. For each array dimension, if the
corresponding dimension variance is TRUE, then the dimension actually exists. If the dimension variance is FALSE,
then the dimension is virtual and is not physically stored. This would probably be a good time for an example.
Assume a variable with the following characteristics...

Data Type CDF_REAILA4
Number of Elements 1

Number of Dimensions 2

Dimension Sizes 3,5

Dimension Variances TRUE,FALSE

The conceptual view of this variable array is that of a 3 by 5 2-dimensional array (represented by the syntax 2:[3,5]).
The TRUE,FALSE dimension variances indicate that the first dimension is real (physically stored) but that the second
dimension is virtual (not physically stored). When an application accesses a value in this variable array two dimension
indices are specified, one per dimension (represented by the syntax (i,j) where i and j are the dimension indices). The
first index is used to physically position to a value in the array (because the corresponding dimension variance is
TRUE). The second index, however, is essentially ignored because the corresponding dimension variance of FALSE
indicates that the second dimension is virtual and is not physically stored. Conceptually, all values along the second
dimension are the same (and are the one value which is physically stored). This means that (i,0), (i,1), (i,2), (i,3), and
(1,4) all map to the same physical location in the variable array for any given first dimension index (i). For this variable
record stored at a file offset of n (in the dotCDF file or a variable file), the conceptual values would map to the physical
values as follows...

File Offset of Physical Value Indices of Conceptual Value(s)

n (0,0),(0,1),(0,2),(0,3),(0,4)
n+4 (1,0),(1,1),(1,2),(1,3),(1,4)
nt8 (2,0),(2,1),(2,2),(2,3),(2,4)

Note that only three values are physically stored with each consisting of four bytes (which is the size of one element of
the CDF_REALA4 data type).

Had the dimension variances been FALSE, TRUE instead, the conceptual to physical mapping would be as
follows...

File Offset of Physical Value Indices of Conceptual Value(s)
n (0,0),(1,0),(2,0)
nt+4 (0,1),(1,1),(2,1)
n+8 (0,2),(1,2),(2,2)
n+12 (0,3),(1,3),(2,3)
n+16 (0,4),(1,4),(2,4)

In this case five values are physically stored and it is along the first dimension that all values are conceptually the same.

It is not until two or more of the dimensions are physically stored (having dimension variances of TRUE) that the
variable majority of the CDF has an effect. Row majority means that the first dimension changes slowest in the
physical storage of the array and column majority means that the last dimension changes the slowest. Assume that in
our example the dimension variances are TRUE,TRUE. The physical layout of the array values for each variable
majority would be as follows...

File Offset of Indices of Conceptual Indices of Conceptual
Physical Value Value(s), Row Majority Value(s), Column Majority
n (0,0) (0,0)
nt+4 (0,1) (1,0)
n+8 (0,2) (2,0)
nt+12 (0,3) 0,1)
n+16 (0,4) (1,1)
n+20 (1,0) 2,1)
n+24 (1,1) (0,2)
n+28 (1,2) (1,2)
n+32 (1,3) (2,2)
n+36 (1,4) (0,3)
n+40 (2,0) (1,3)
n+44 2,1) (2,3)
n+48 (2,2) 0,4)
n+52 (2,3) (1,4)
n+56 (2,4) 2,4)

Note that an application's conceptual view of the variable array does not depend on the variable majority. When an
application accesses the value at indices (i,j) the proper value will be accessed. The physical location of that value,
however, depends very much on the variable majority of the CDF.

0-dimensional and 1-dimensional variables are relatively simple. The variable array of a 0-dimesional variable consists
of one physically stored value. 1-dimensional variable arrays are stored as a vector of one or more physical values
when the dimension variance is TRUE or just a single physically stored value when the dimension variance is FALSE
(with all of the values along the dimension being conceptually the same).

When a variable value consists of more than one element (e.g., character data having the CDF_CHAR data type), all
of the elements of that value are stored contiguously with the first element being at the lowest file offset.

The size in bytes of a variable record is the product of the size in bytes of the data type, the number of elements of the
data type at each variable value, and the size of each dimension having a variance of TRUE.

As a final example consider a variable with the following characteristics...

Data Type

number of Elements
number of Dimensions

Dimension Sizes

Dimension Variances

CDF_CHAR
5

3

23,4

TRUE,FALSE,TRUE

The conceptual value to physical value mapping for each majority would be as follows...

File Offset of
Physical Value

Indices of Conceptual
Value(s), Row Majority

Indices of Conceptual
Value(s), Column Majority

n
n+5
n+10
n+15
n+20
n+25
n+30
n+35

(0,0,0),(0,1,0),(0,2,0)
(0,0,1),(0,1,1),(0,2,1)
(0,0,2),(0,1,2),(0,2,2)
(0,0,3),(0,1,3),(0,2,3)
(1,0,0),(1,1,0),(1,2,0)
(1,0,1),(1,1,1),(1,2,1)
(1,0,2),(1,1,2),(1,2,2)
(1,0,3),(1,1,3),(1,2,3)

(0,0,0),(0,1,0),(0,2,0)
(1,0,0),(1,1,0),(1,2,0)
(0,0,1),(0,1,1),(0,2,1)
(1,0,1),(1,1,1),(1,2,1)
(0,0,2),(0,1,2),(0,2,2)
(1,0,2),(1,1,2),(1,2,2)
(0,0,3),(0,1,3),(0,2,3)
(1,0,3),(1,1,3),(1,2,3)

In this example each variable record would consist of 40 bytes (which is the product of the size in bytes of one element
of the data type [1], the number of elements of the data type at each variable value [5], the size of the first dimension
[2], and the size of the last dimension [4]).

Chapter 5

S Encodings

5.1 Data Representations

5.1.1 Bits

The following sections will refer to fields of one or more bits. In all cases the lowest numbered bit is the least
significant.

5.1.2 Bytes

A byte consists of eight bits numbered 0 through 7 (with bit 0 being the least significant). When values consisting of
more than one byte are referenced, the lowest numbered byte is stored at the lowest file offset. (The lowest numbered
byte is not necessarily the least significant byte.)

5.1.3 Integers

Integers consist of one, two, four, and eight bytes. 1-byte integers contain eight bits numbered 0 through 7. 2-byte
integers contain 16 bits numbered 0 through 15. 4-byte integers contain 32 bits numbered 0 through 31. . 8-byte
integers contain 64 bits numbered 0 through 63. In each case bit 0 is the least significant bit.

Signed integers are stored in two's-complement binary notation. For 1-byte integers this provides a range of values
from -128 through 127. For 2-byte integers this provides a range of values from -32768 through 32767. For 4-byte
integers this provides a range of values from -2147483648 through 2147483647. For 8-byte integers this provides a
range of values from -9223372036854775808 through 9223372036854775807.

Unsigned integers are stored in binary notation. For 1-byte integers this provides a range of values from 0 through 255.
For 2-byte integers this provides a range of values from 0 through 65535. For 4-byte integers this provides a range of
values from 0 through 4294967295.

Little-endian integers are stored with the least-significant byte first (i.e., at the lowest file offset) and big-endian
integers are stored with the most-significant byte first. Table 5.1 illustrates little-endian and big-endian byte orderings.

Little-Endian Big-Endian
Byte/Offset Contents Byte/Offset Contents
2-byte 0 bits 0-7 0 bits 8-15
integer 1 bits 8-15 1 bits 0-7
0 bits 0-7 0 bits 24-31
4-byte 1 bits 8-15 1 bits 16-23
integer 2 bits 16-23 2 bits 8-15
3 bits 24-31 3 bits 0-7
0 bits 0-7 0 bits 56-63
8-byte 1 bits 8-15 1 bits 48-55
integer 2 bits 16-23 2 bits 40-47
3 bits 24-31 3 bits 32-39
4 bits 32-39 4 bits 24-31
5 bits 40-47 5 bits 16-23
6 bits 48-55 6 bits 8-15
7 bits:56-63 7 bits 0-7

Table 5.1: Little-Endian vs. Big-Endian

5.14 Floating-Point

Several floating-point encodings are possible in a CDF. Each is described in the following sections. Note that a loss of
precision may occur when converting between the various encodings because of differences in the number of mantissa
bits. Likewise, there are differences in the minimum and maximum magnitudes that may be represented because of
differences in the number of exponent bits. Appendix A illustrates how the different single-precision floating-point
encodings map to actual floating-point values and Appendix B illustrates the same for double-precision floating-point
encodings.

IEEE 754 Single-Precision Floating-Point

IEEE " 754 single-precision floating-point values consist of four bytes containing one sign bit, eight exponent bits
(numbered O through 7), and 23 mantissa bits (numbered 0 through 22). IEEE 754 single-precision floating-point
values are stored in one of two ways: little-endian or big-endian. The arrangements of the bits are shown in Tables 5.2
and 5.3, respectively.

Byte/Offset Bit(s) Contents
0 0-7 mantissa bits 0-7
1 0-7 mantissa bits 8-15
2 0-6 mantissa bits 16-22
7 exponent bit 0
3 0-6 exponent bits 1-7
7 sign bit (negative if set)

Table 5.2: 1EEE 754, Single-Precision Floating-Point, Little-Endian

Digital's F FLOAT Single-Precision Floating-Point

19 The Institute of Electrical and Electronics Engineers, Inc.

Digital's?® F_FLOAT single-precision floating-point values consist of four bytes containing one sign bit, eight
exponent bits (numbered 0 through 7), and 23 mantissa bits (numbered 0 through 22). The arrangement of the bits is
shown in Table 5.4.

Byte/Offset Bit(s) Contents
0 0-6 exponent bits 1-7
7 sign bit (negative if set)
1 0-6 mantissa bits 16-22
7 exponent bit 0
2 0-7 mantissa bits 8-15
3 0-7 mantissa bits 0-7

Table 5.3: 1IEEE 754, Single-Precision Floating-Point, Big-Endian

Byte/Offset Bit(s) Contents
0 0-6 mantissa bits 16-22
7 exponent bit 0
1 0-6 exponent bits 1-7
7 sign bit (negative if set)
2 0-7 mantissa bits 0-7
3 0-7 mantissa bits 8-15

Table 5.4: Digital's F FLOAT, Single-Precision Floating-Point

IEEE 754 Double-Precision Floating-Point

IEEE 754 double-precision floating-point values consist of eight bytes containing one sign bit, eleven exponent bits
(numbered 0 through 10), and 52 mantissa bits (numbered 0 through 51). IEEE 754 double-precision floating-point
values are stored in one of two ways: little-endian or big-endian. The arrangements of the bits are shown in Tables 5.5
and 5.6, respectively.

Byte/Offset Bit(s) Contents

0 0-7 mantissa bits 0-7

1 0-7 mantissa bits 8-15

2 0-7 mantissa bits 16-23

3 0-7 mantissa bits 24-31

4 0-7 mantissa bits 32-39

5 0-7 mantissa bits 40-47

6 0-3 mantissa bits 48-51
4-7 exponent bits 0-3

7 0-6 exponent bits 4-10
7 sign bit (negative if set)

Table 5.5: IEEE 754, Double-Precision Floating-Point, Little-Endian

20 Digital Equipment Corporation

Byte/Offset Bit(s) Contents

0 0-6 exponent bits 4-10
7 sign bit (negative if set)

1 0-3 mantissa bits 48-51
4-7 exponent bits 0-3

2 0-7 mantissa bits 40-47

3 0-7 mantissa bits 32-39

4 0-7 mantissa bits 24-31

5 7-7 mantissa bits 16-23

6 0-7 mantissa bits 8-15

7 0-7 mantissa bits 0-7

Table 5.6: 1EEE 754, Double-Precision Floating-Point, Big-Endian

Digital's D_FLOAT Double-Precision Floating-Point

Digital's D FLOAT double-precision floating-point values consist of eight bytes containing one sign bit, eight
exponent bits (numbered 0 through 7), and 55 mantissa bits (numbered 0 through 54). The arrangement of the bits is

shown in Table 5.7.

Byte/Offset Bit(s) Contents
0 0-6 mantissa bits 48-54
7 exponent bit 0
1 0-6 exponent bits 1-7
7 sign bit (negative if set)
2 0-7 mantissa bits 32-39
3 0-7 mantissa bits 40-47
4 0-7 mantissa bits 16-23
5 7-7 mantissa bits 24-31
6 0-7 mantissa bits 0-7
7 0-7 mantissa bits 8-15

Table 5.7: Digital's D FLOAT, Double-Precision Floating-Point

Digital's G_FLOAT Double-Precision Floating-Point

Digital's G_ FLOAT double-precision floating-point values consist of eight bytes containing one sign bit, eleven
exponent bits (numbered 0 through 10), and 52 mantissa bits (numbered 0 through 51). The arrangement of the bits is

shown in Table 5.8.

Byte/Offset Bit(s) Contents

0 0-3 mantissa bits 48-51
4-7 exponent bits 0-3

1 0-6 exponent bits 4-10
7 sign bit (negative if set)

2 0-7 mantissa bits 32-39

3 0-7 mantissa bits 40-47

4 0-7 mantissa bits 16-23

5 7-7 mantissa bits 24-31

6 0-7 mantissa bits 0-7

7 0-7 mantissa bits 8-15

Table 5.8: Digital's G_FLOAT, Double-Precision Floating-Point

5.2 Control Information

Two types of data are stored in a CDF - control information and application data. Control information is used to
manage the application data stored in a CDF. A user application generally does not have access to the control
information.?! Throughout this document, individual pieces of control information will also be referred to as “internal
values."

5.2.1 Integer Values

Integer control information is stored in 4-byte or 8-byte signed or unsigned integers with big-endian byte ordering.
Two's-complement is used for signed integers.

5.2.2 Character Strings

Character string control information is stored using the Unicode character set with UTF-8 encoding. The character
strings are NUL-terminated?? unless the number of bytes is exactly equal to the size of the field containing the character
string. For a UTF-8 encoded string, the number of characters may not be the same as the number of bytes.

5.3 Application Data

Application data consists of attribute entry values (commonly referred to as “metadata") and variable values (simply
referred to as “data"). Note that some of the control information stored in a CDF could also be considered application
metadata (e.g., attribute and variable names, the CDF's data encoding and variable majority, and variable
dimensionalities). For the purpose of this document, however, these internal values will be considered control
information.

21 An exception to this would be the indexing statistics provided to an application by the CDF library for variables in a
single-file CDF.
22 The ASCII NUL character (an integer value of 0x00).

Application data values are stored according to the data encoding of the CDF. A CDF's data encoding is stored in the
CDF Descriptor Record (CDR) described in Section 2.2. Application data values are also stored as one of the supported
CDF data types. Table 5.9 lists the supported data types and the corresponding internal values used to identify each
data type.

The possible data encodings for a CDF correspond to the platforms on which the CDF software distribution is
supported. Table 5.10 lists the currently supported data encodings along with the corresponding internal values used to
identify each data encoding.

Table 5.11 shows how each of the supported data types are stored for a particular data encoding. Note that many of
the data encodings are actually stored in the same way. Table 5.11 shows the equivalent data encodings.

Data Type Internal Value Description

CDF INTI 1 1-byte, signed integer.

CDF_INT2 2 2-byte, signed integer.

CDF _INT4 4 4-byte, signed integer.

CDF_INTS 8 8-byte, signed integer.

CDF _UINTI1 11 1-byte, unsigned integer.

CDF_UINT2 12 2-byte, unsigned integer.

CDF_UINT4 14 4-byte, unsigned integer.

CDF BYTE? 41 1-byte, signed integer.

CDF _REAL4 21 4-byte, single-precision floating-point.
CDF REALS 22 8-byte, double-precision floating-point.
CDF _FLOAT?* 44 4-byte, single-precision floating-point.
CDF_DOUBLE?® 45 8-byte, double-precision floating-point.
CDF_EPOCH?® 31 8-byte, double-precision floating-point.
CDF_EPOCH16% 32 2 8-byte, double-precision floating-point.
CDF_TIME TT2000 33 8-bye, signed integer.?®

CDF_CHAR 51 1-byte, signed character (ASCII).?
CDF UCHAR 52 1-byte, unsigned character (ASCII)

Table 5.9: Supported Data Types

Data Encoding Internal Value Description

NETWORK ENCODING eXternal Data Representation
SUN_ENCODING Sun representation

VAX ENCODING VAX representation
DECSTATION_ENCODING DECstation representation
SGi ENCODING SGi representation

(O I VS R S

23 CDF_BYTE values are equivalent to CDF_INT1 values.

24 CDF_FLOAT values are equivalent to CDF_REAL4 values.

25 CDF_DOUBLE values are equivalent to CDF_REALS values.

26 CDF_EPOCH values are equivalent to CDF_REALS values. CDF_EPOCH is used to store date/time values (as the
number of milliseconds since 0000-01-01T00:00:00.000 as its integer portion and sub-milliseconds as fraction. All C
functions, e.g., breakdown, compute, etc., only handle the integer part.).

27 CDF_EPOCH]16 values use 2 CDF_REALS values. While it is similar to CDF_EPOCH, it can store much higher
resolution in a fraction of a second, down to pico-seconds.

28 CDF_TIME_TT2000 values, in 8-byte signed long, are nano-seconds from J2000 (2000-01-
01T12:00)00.000000000) with leap seconds included.

29 Both signed and unsigned character data types are provided for applications that may want to distinguish between the
two. Note that attribute entries and variable values of this type are never NUL-terminated.

IBMPC_ENCODING 6 Intel Windows, Linux, Mac OS Intel and Solaris
Intel representation
IBMRS ENCODING 7 IBM RS-6000 representation
PPC_ENCODING 9 Macintosh Power PC representation
HP_ENCODING 11 HP 9000 series representation
NeXT ENCODING 12 NeXT representation
ALPHAOSF1_ENCODING 13 DEC Alpha/OSF1 representation
ALPHAVMSd ENCODING 14 DEC Alpha/OpenVMS representation.
Double-precision floating-point values in D_FLOAT
encoding.
ALPHAVMSg ENCODING 15 DEC Alpha/OpenVMS representation.
Double-precision floating-point values in G_ FLOAT
encoding.
ALPHAVMSi ENCODING 16 DEC Alpha/OpenVMS representation.
Single/Double-precision floating-point values in
IEEE 754 encoding.
ARM_LITTLE ENCODING 17 ARM little-endian representation.
ARM BIG_ENCODING 18 ARM big-endian representation.
[IA64VMSi ENCODING 19 Itanium 64 on OpenVMS representation.
Single/Double-precision floating-point values in
IEEE 754 encoding.
IA64VMSd _ENCODING 20 Itanium 64 on OpenVMS representation.
Single/Double-precision floating-point values in
Digital D FLOAT encoding.
[A64VMSg ENCODING 21 Itanium 64 on OpenVMS representation.
Single/Double-precision floating-point values in
Digital G FLOAT encoding.
Data
Encoding(s) CDF_INT8 CDF_BYTE | CDF_INT2 | CDF_INT4 CDF_REAL4 CDF_REALS CDF_CHAR
CDF_TIME_ | CDF_INTI CDF_UINT2 | CDF_UINT4 | CDF_FLOAT CDF_DOUBLE CDF_UCHAR
TT2000 CDF_UINTI CDF_EPOCH
CDF_EPOCH16
NETWORK_ENCODING 8-byte 1-byte 2-byte 4-byte IEEE 754 IEEE 754 ASCII character set
SUN_ENCODING integer, integer integer, integer, Single- Double-
NeXT ENCODING big- big- big-endian precision precision
MAC ENCODING endian endian floating-point, floating-point,
SGi_ENCODING big-endian big-endian
IBMRS_ENCODING
ARM BIG ENCODING
DECSTATION_ENCODING 8-byte 1-byte 2-byte 4-byte IEEE 754 IEEE 754 ASCII character set
IBMPC ENCODING integer, integer integer, integer, Single- Double-
ALPHAOSF1 ENCODING little- little- little- precision precision
ALPHAVMSi ENCODING endian endian endian floating-point, floating-point,
ARMiLlTTLEiENCODlNG little-endian little-endian
1A64VMSi_ENCODING
VAX_ENCODING 8-byte 1-byte 2-byte 4-byte Digital’s Digital’s ASCII character set
ALPHAVMSd_ENCODING integer, integer integer, integer, F_FLOAT D_FLOAT
1A64VMSd ENCODING little- little- little- Single- Double-
B endian endian endian precision precision
floating-point floating-point
ALPHAVMSg_ENCODING 8-bye l-byte 2-byte 4-byte Digital’s Digital’s ASCII character set
1A64VMSg_ENCODING integer, integer integer, integer, F_FLOAT G_FLOAT
little- little- little- Single- Double-
endian endian endian precision precision
floating-point floating-point
No index entries found.
Table 5.11: Data Encodings vs. Data Types

Appendix A

A.1 Single-Precision Floating-Point

This appendix presents the exponent and mantissa values for a variety of single-precision floating-point values using
Digital's F_ FLOAT and the IEEE 754 encoding. The sign bit is not shown but when the sign bit is clear (0x0) the
floating-point value is positive and when the sign bit is set (0x1) the value is negative. Section 5.1.4 illustrates how
these exponent and mantissa values are arranged in a particular single-precision floating-point value.

Digital’s F_ FLOAT IEEE 754
Value Exponent Mantissa Exponent Mantissa
0.0000000000e+00 0x00 0x0000003° 0x00 0x000000
0.0000000000e+00 0x00 0x000001
0.0000000000e+00 0x00 0x000002
0.0000000000e+00 0x00 0x7FFFFE
0.0000000000e+00 0x00 O0x7FFFFF
1.4012984643e-45 0x00 0x000001
2.8025969286¢-45 0x00 0x000002
4.2038953930e-45 0x00 0x000003
5.6051938573e-45 0x00 0x000004
2.9387302719¢-39 0x00 Ox1FFFFC
2.9387316732e-39 0x00 O0x1FFFFD
2.9387330745e-39 0x00 Ox1FFFFE
2.9387344758e-39 0x00 Ox1FFFFF
2.9387358771e-39 0x01 0x000000 0x00 0x200000
2.9387362274e-39 0x01 0x000001

30 If the sign bit is set (-0.0), a %SYSTEM-F-ROPRAnD fatal error (on VAXes running VMS/OpenVMS) or a
%SYSTEM-F-HPARITH fatal error (on DEC Alphas running OpenVMS) will occur if the value is used.

2.9387365777e-39
2.9387369280e-39
2.9387372784e-39
2.9387376287¢e-39
2.9387379790e-39
2.9387383293¢-39
2.9387386797e-39

5.8774689515e-39
5.8774693018e-39
5.8774696522e-39
5.8774700025e-39
5.8774703528e-39
5.8774707031e-39
5.8774710535e-39
5.8774714038e-39

5.8774717541e-39
5.8774724548e-39
5.8774731554e-39
5.8774738561e-39
5.8774745567¢-39

1.1754939304e-38
1.1754940005¢-38
1.1754940706e-38
1.1754941406e-38
1.1754942107e-38
1.1754942808e-38

1.1754943508e-38
1.1754944910e-38
1.1754946311e-38
1.1754947712e-38

1.7014114290e+38
1.7014115304e+38
1.7014116318e+38
1.7014117332e+38

1.7014118346e+38
1.7014120374e+38
1.7014122403e+38
1.7014124431e+38

0x01
0x01
0x01
0x01
0x01
0x01
0x01

0x01
0x01
0x01
0x01
0x01
0x01
0x01
0x01

0x02
0x02
0x02
0x02
0x02

0x02
0x02
0x02
0x02
0x02
0x02

0x03
0x03
0x03
0x03

0xFF
0xFF
O0xFF
O0xFF

0x000002
0x000003
0x000004
0x000005
0x000006
0x000007
0x000008

Ox7FFFF8
0x7FFFF9
0x7FFFFA
O0x7FFFFB
O0x7FFFFC
0x7FFFFD
O0x7FFFFE
O0x7FFFFF

0x000000
0x000001
0x000002
0x000003
0x000004

O0x7FFFFA
O0x7FFFFB
O0x7FFFFC
0x7FFFFD
0x7FFFFE
O0x7FFFFF

0x000000
0x000001
0x000002
0x000003

0x7FFFFC
0x7FFFFD
0x7FFFFE
Ox7FFFFF

0x00

0x00

0x00

0x00

0x00

0x00

0x00

0x00

0x00

0x00

0x01
0x01
0x01
0x01

0xFD
0xFD
0xFD
0xFD

0xFE
0xFE
0xFE
0xFE

0x200001

0x200002

O0x3FFFFE

0x3FFFFF

0x400000

0x400001

0x400002

0x7FFFFD

0x7FFFFE

Ox7FFFFF

0x000000
0x000001
0x000002
0x000003

0x7FFFFC
O0x7FFFFD
O0x7FFFFE
Ox7FFFFF

0x000000
0x000001
0x000002
0x000003

3.4028228579e+38 OxFE 0x7FFFFC

3.4028230607e+38 OxFE 0x7FFFFD
3.4028232636e+38 O0xFE O0x7FFFFE
3.4028234664e+38 O0xFE Ox7FFFFF
Infinity OxFF 0x0000002
NaN OxFF 0x0000013!
NaN OxFF 0x0000023*
NaN OxFF O0x7FFFFF3
NaN OxFF Ox7FFFFF3

Note that not all single-precision floating-point values can be represented in both encodings. Several ranges
of floating-point values, as well as some individual values, are of interest...

0.0000000000e+00
When an F_ FLOAT value has an exponent of 0x00, the floating-point value represented is
0.0000000000e+00 regardless of the value of the mantissa.

1.4012984643e-45 through 2.9387344758e-39
These values can only be represented with the IEEE 754 encoding. Their magnitudes are too small for the
F _FLOAT encoding.

2.9387358771e-39 through 5.8774714038e-39
The F_FLOAT encoding has more precision in this range. Four times as many F_FLOAT values fall into
this range as do IEEE 754 values.

5.8774717541e-39 through 1.1754942808e-38
The F_FLOAT encoding also has more precision in this range. Twice as many F_FLOAT values fall into
this range as do IEEE 754 values.

1.1754943508¢-38 through 1.7014117332¢+38
The F_FLOAT and IEEE 754 encodings have equal precision through this range.

1.7014118346¢+38 through 3.4028234664¢+38
These values can only be represented with the IEEE 754 encoding. Their magnitudes are too large for the
F_FLOAT encoding.

Infinity
This value exists only in the IEEE 754 encoding.

NaN
Not a number. These non-values exist only in the IEEE 754 encoding.

3! _Infinity if the sign bit is set.
32 _NaN if the sign bit is set.

Appendix B

B.1 Double-Precision Floating-Point

This appendix presents the exponent and mantissa values for a variety of double-precision floating-point values using
Digital's G_FLOAT, Digital's D_FLOAT, and the IEEE 754 encoding. The sign bit is not shown but when the sign bit
is clear (0x0) the floating-point value is positive and when the sign bit is set (0x1) the value is negative. Section 5.1.4
illustrates how these exponent and mantissa values are arranged in a particular double-precision floating-point value.

Digital's G_FLOAT Digital's G_FLOAT IEEE 754
Value Exponent Mantissa Exponent Mantissa Exponent Mantissa
0.00000000000000000e+000 0x000 0x00000000000000% 0x000 0x00000000000000 0x000 0x00000000000000
0.00000000000000000e+000 0x000 0x00000000000001 0x000 0x000000000000013*
0.00000000000000000e+000 0x000 0x00000000000002 0x000 0x00000000000002
0.00000000000000000e+000 0x000 OxFFFFFFFFFFFFE 0x000 Ox7FFFFFFFFFFFFE
0.00000000000000000e+000 0x000 OxFFFFFFFFFFFFF 0x000 0x7FFFFFFFFFFFFF
4.94065645841246544e-324 0x000 0x00000000000001
9.88131291682493088¢-324 0x000 0x00000000000002
5.56268464626799358e-309 0x000 Ox3FFFFFFFFFFFE
5.56268464626799852¢-309 0x000 Ox3FFFFFFFFFFFF
5.56268464626800346¢-309 0x001 0x0000000000000 0x000 0x4000000000000
5.56268464626800469¢-309 0x001 0x0000000000001
5.56268464626800593¢-309 0x001 0x0000000000002
5.56268464626800716¢-309 0x001 0x0000000000003
5.56268464626800840e-309 0x001 0x0000000000004 0x000 0x4000000000001
5.56268464626800963¢-309 0x001 0x0000000000005
5.56268464626801087¢-309 0x001 0x0000000000006
5.56268464626801210e-309 0x001 0x0000000000007
5.56268464626801334¢-309 0x001 0x0000000000008 0x000 0x4000000000002

33 If the sign bit is set (-0.0), a %SYSTEM-F-ROPRAnD fatal error (on VAXes running VMS/OpenVMS) or a
%SYSTEM-F-HPARITH fatal error (on DEC Alphas running OpenVMS) will occur if the value is used.
34 Even if the sign bit is clear, a %SYSTEM-F-HPARITH fatal error will occur if the value is used on a DEC Alpha

running OpenVMS.

1.11253692925359970e-308
1.11253692925359983¢-308
1.11253692925359995¢-308
1.11253692925360007¢-308
1.11253692925360020e-308
1.11253692925360032¢-308
1.11253692925360044¢-308
1.11253692925360057¢-308

1.11253692925360069¢-308
1.11253692925360094¢-308
1.11253692925360119¢-308
1.11253692925360143¢-308
1.11253692925360168e-308

2.22507385850719990e-308
2.22507385850720015€-308
2.22507385850720039¢-308
2.22507385850720064e-308
2.22507385850720089¢-308
2.22507385850720114e-308

2.22507385850720138¢-308
2.22507385850720188e-308

2.93873587705571812¢-039
2.93873587705571844e-039

2.93873587705571877¢-039
2.93873587705571885e-039
2.93873587705571893e-039
2.93873587705571901e-039
2.93873587705571910e-039
2.93873587705571918e-039
2.93873587705571926e-039
2.93873587705571934e-039
2.93873587705571942e-039
2.93873587705571950e-039
2.93873587705571959¢-039
2.93873587705571967e-039
2.93873587705571975e-039
2.93873587705571983e-039
2.93873587705571991e-039
2.93873587705571999¢-039
2.93873587705572007e-039
2.93873587705572016e-039
2.93873587705572024¢-039
2.93873587705572032e-039
2.93873587705572040e-039

5.87747175411143623¢-039
5.87747175411143632¢-039
5.87747175411143640e-039
5.87747175411143648¢-039
5.87747175411143656e-039
5.87747175411143664¢-039
5.87747175411143672¢-039

0x001
0x001
0x001
0x001
0x001
0x001
0x001
0x001

0x002
0x002
0x002
0x002
0x002

0x002
0x002
0x002
0x002
0x002
0x002

0x003
0x003

0x380
0x380

0x381

0x381

0x381

0x381

OxFFFFFFFFFFFF8
OxFFFFFFFFFFFF9
OxFFFFFFFFFFFFA
OxFFFFFFFFFFFFB
OxFFFFFFFFFFFFC
OxFFFFFFFFFFFFD
OxFFFFFFFFFFFFE
OxFFFFFFFFFFFFF

0x0000000000000
0x0000000000001
0x0000000000002
0x0000000000003
0x0000000000004

OxFFFFFFFFFFFFA
OxFFFFFFFFFFFFB
OxFFFFFFFFFFFFC
OxFFFFFFFFFFFFD
OxFFFFFFFFFFFFE
OxFFFFFFFFFFFFF

0x0000000000000
0x0000000000001

OxFFFFFFFFFFFFE
OxFFFFFFFFFFFFF

0x0000000000000

0x0000000000001

0x0000000000002

OxFFFFFFFFFFFFE

0x001
0x001
0x001
0x001
0x001
0x001
0x001
0x001
0x001

0x001
0x001
0x001
0x001
0x001
0x001
0x001

0x00000000000000
0x00000000000001
0x00000000000002
0x00000000000003
0x00000000000004
0x00000000000005
0x00000000000006
0x00000000000007
0x00000000000008
0x00000000000009
0x0000000000000A
0x0000000000000B
0x0000000000000C
0x0000000000000D
0x0000000000000E
0x0000000000000F
0x00000000000010
0x00000000000011
0x00000000000012
0x00000000000013
0x00000000000014

0x7FFFFFFFFFFFFO
0x7FFFFFFFFFFFF1
0x7FFFFFFFFFFFF2
Ox7FFFFFFFFFFFF3
0x7FFFFFFFFFFFF4
0x7FFFFFFFFFFFF5
O0x7FFFFFFFFFFFF6

0x000

0x000

0x000

0x000

0x000

0x000

0x000

0x000

0x001
0x001

0x37E
0x37E

0x37F

0x37F

0x37F

0x37F

0x7FFFFFFFFFFFE

O0x7FFFFFFFFFFFF

0x8000000000000

0x8000000000001

0x8000000000002

OxFFFFFFFFFFFFD

OxFFFFFFFFFFFFE

OxFFFFFFFFFFFFF

0x0000000000000
0x0000000000001

OxFFFFFFFFFFFFE
OxFFFFFFFFFFFFF

0x0000000000000

0x0000000000001

0x0000000000020

OxFFFFFFFFFFFFE

5.87747175411143681e-039
5.87747175411143689¢-039
5.87747175411143697¢-039
5.87747175411143705e-039
5.87747175411143713e-039
5.87747175411143721e-039
5.87747175411143730e-039
5.87747175411143738e-039
5.87747175411143746e-039

1.70141183460469182e+038
1.70141183460469185e+038
1.70141183460469187¢+038
1.70141183460469189¢+038
1.70141183460469192e+038
1.70141183460469194e+038
1.70141183460469196e+038
1.70141183460469199¢+038
1.70141183460469201e+038
1.70141183460469203e+038
1.70141183460469206e+038
1.70141183460469208e+038
1.70141183460469210e+038
1.70141183460469213e+038
1.70141183460469215e+038
1.70141183460469218e+038

1.70141183460469220e+038
1.70141183460469222e+038
1.70141183460469225e+038
1.70141183460469227¢+038
1.70141183460469229¢+038

1.70141183460469232¢+038
1.70141183460469270e+038

8.98846567431157754e+307
8.98846567431157854e+307

8.98846567431157954e+307
8.98846567431158153e+307

1.79769313486231551e+308
1.79769313486231571e+308

Infinity

NaN
NaN

NaN
NaN

0x381

0x47F

0x47F

0x480
0x480

0x7FF
0x7FF

OxFFFFFFFFFFFFF

OxFFFFFFFFFFFFE

OxFFFFFFFFFFFFE

0x0000000000000
0x0000000000001

OxFFFFFFFFFFFFE
OxFFFFFFFFFFFFF

0x001
0x001
0x001
0x001
0x001
0x001
0x001
0x001
0x001

0x0FF
0xOFF
0x0FF
0x0FF
0xOFF
0x0FF
0x0FF
0xOFF
0x0FF
0x0FF
0xOFF
0x0FF
0x0FF
0xOFF
0xOFF
0x0FF

0x0FF
0x0FF
0xOFF
0x0FF
0x0FF

Ox7FFFFFFFFFFFF7
0x7FFFFFFFFFFFF8
0x7FFFFFFFFFFFF9
O0x7FFFFFFFFFFFFA
0x7FFFFFFFFFFFFB
0x7FFFFFFFFFFFFC
0x7FFFFFFFFFFFFD
0x7FFFFFFFFFFFFE
Ox7FFFFFFFFFFFFF

0x7FFFFFFFFFFFEB
0x7FFFFFFFFFFFEC
0x7FFFFFFFFFFFED
0x7FFFFFFFFFFFEE
O0x7FFFFFFFFFFFEF
0x7FFFFFFFFFFFFO
0x7FFFFFFFFFFFF1

0x7FFFFFFFFFFFF2
Ox7FFFFFFFFFFFF3

0x7FFFFFFFFFFFF4
0x7FFFFFFFFFFFF5

O0x7FFFFFFFFFFFFo
0x7FFFFFFFFFFFF7
0x7FFFFFFFFFFFF8
O0x7FFFFFFFFFFFF9
0x7FFFFFFFFFFFFA

35

Ox7FFFFFFFFFFFFB
0x7FFFFFFFFFFFFC
0x7FFFFFFFFFFFFD
Ox7FFFFFFFFFFFFE
0x7FFFFFFFFFFFFF

0x37F

0x47D

0x47D

0x47E
0x47E

0x7FD
0x7FD

0x7FE
0x7FE

0xF7E
0xF7E

O0xFFF

O0xFFF
OxFFF

O0xFFF
O0xFFF

OxFFFFFFFFFFFFF

OxFFFFFFFFFFFFE

OxFFFFFFFFFFFFF

0x0000000000000
0x0000000000001

OxFFFFFFFFFFFFE
OxFFFFFFFFFFFFF

0x0000000000000
0x0000000000001

OxFFFFFFFFFFFFE
OxFFFFFFFFFFFFF

0x00000000000003¢

0x0000000000001 7
0x0000000000002

OxFFFFFFFFFFFFE
OxFFFFFFFFFFFFF

33 31f the sign bit is set or clear, a %SYSTEM-F-HPARITH fatal error will occur if the value is used on a DEC Alpha

running OpenVMS.

36 _Infinity if the sign bit is set.

37 .NaN if the sign bit is set.

Note that not all double-precision floating-point values can be represented in all encodings. Several ranges of floating-
point values, as well as some individual values, are of interest...

0.0000000000e+00
When a G_FLOAT or D FLOAT value has an exponent of 0x00, the floating-point value represented is
0.00000000000000000e+00 regardless of the value of the mantissa.

4.94065645841246544¢e-324 through 5.56268464626799852¢-309
These values can only be represented with the IEEE 754 encoding. Their magnitudes are too small for the
G _FLOAT and D_FLOAT encodings.

5.56268464626800346e-309 through 1.11253692925360057e-308
These values can only be represented with the G_ FLOAT and IEEE 754 encodings. Their magnitudes are
too small for the D FLOAT encoding. In this range the G FLOAT encoding has more precision than the
IEEE 754 encoding. Four times as many G_FLOAT values fall into this range as do IEEE 754 values.

1.11253692925360069¢-308 through 2.22507385850720114e-308
These values can only be represented with the G FLOAT and IEEE 754 encodings. Their magnitudes are
too small for the D FLOAT encoding. In this range the G FLOAT encoding has more precision than the
IEEE 754 encoding. Twice as many G_FLOAT values fall into this range as do IEEE 754 values.

2.22507385850720138e-308 through 2.93873587705571844e-039
These values can only be represented with the G FLOAT and IEEE 754 encodings. Their magnitudes are
too small for the D FLOAT encoding. In this range the G_FLOAT and IEEE 754 encodings have equal
precision.

2.93873587705571877e-039 through 1.70141183460469229¢+038
Through this range the D FLOAT encoding has more precision. Eight times as many D_FLOAT values fall
into this range as do G_FLOAT or IEEE 754 values. The G_ FLOAT and IEEE 754 encodings have equal
precision through this range.

1.70141183460469232¢+038 through 8.98846567431157854e+307
These values can only be represented with the G_ FLOAT and IEEE 754 encodings. Their magnitudes are
too large for the D FLOAT encoding. In this range the G FLOAT and IEEE 754 encodings have equal
precision.

8.98846567431157954e+307 through 1.79769313486231571e+308
These values can only be represented with the IEEE 754 encoding. Their magnitudes are too large for the
G FLOAT and D FLOAT encodings.

Infinity
This value exists only in the IEEE 754 encoding.

NaN
Not a number. These non-values exist only in the IEEE 754 encoding.

	NASA / Goddard Space Flight Center
	1 Introduction
	2 dotCDF File
	2.1 Magic Numbers4F
	2.2 CDF Descriptor Record
	2.3 Global Descriptor Record
	2.4 Attribute Descriptor Record
	2.5 Attribute Entry Descriptor Record
	2.6 Variable Descriptor Record
	2.7 Variable Index Record
	2.8 Variable Values Record
	2.9 Compressed CDF Record
	2.10 Compressed Parameters Record
	2.11 Sparseness Parameters Record
	2.12 Compressed Variable Values Record
	2.13 Unused Internal Record

	3 Variable Files
	4 Variable Records
	5 Encodings
	5.1 Data Representations
	5.1.1 Bits
	5.1.2 Bytes
	5.1.3 Integers
	5.1.4 Floating-Point

	5.2 Control Information
	5.2.1 Integer Values
	5.2.2 Character Strings

	5.3 Application Data
	Appendix A
	A.1 Single-Precision Floating-Point

	Appendix B
	B.1 Double-Precision Floating-Point

