

CDF

C Reference Manual

Version 3.9.1, September 1, 2023

Space Physics Data Facility
NASA / Goddard Space Flight Center

Space Physics Data Facility
NASA/Goddard Space Flight Center
Greenbelt, Maryland 20771 (U.S.A.)

This software may be copied or redistributed as long as it is not sold for profit, but it can be incorporated into any other
substantive product with or without modifications for profit or non-profit. If the software is modified, it must include
the following notices:

- The software is not the original (for protection of the original author’s reputations from any problems introduced
by others)

- Change history (e.g. date, functionality, etc.)

This Copyright notice must be reproduced on each copy made. This software is provided as is without any express or
implied warranties whatsoever.

Internet: nasa-cdf-support@nasa.onmicrosoft.com

mailto:gsfc-cdf-support@lists.nasa.gov

Contents

1 Compiling ... 1

1.1 Specifying cdf.h Location in the Compile Command ... 1
1.1.1 OpenVMS Systems .. 1
1.1.2 UNIX Systems (including Mac OS X and ARM) ... 2
1.1.3 Windows Systems, Microsoft Visual C++ or Microsoft Visual C++ .Net ... 2

1.2 Specifying cdf.h Location in the Source File .. 3

2 Linking ... 5

2.1 OpenVMS Systems ... 5
2.1.1 Combining the Compile and Link .. 6

2.2 Windows Systems, Microsoft Visual C++ or Microsoft Visual C++ .NET ... 6

3 Linking Shared CDF Library ... 7

3.1 DEC VAX & Alpha (OpenVMS) .. 7
3.2 SUN (Solaris) .. 8
3.3 HP 9000 (HP-UX) ... 8
3.4 IBM RS6000 (AIX) ... 8
3.5 DEC Alpha (OSF/1) .. 9
3.6 SGi (IRIX 6.x) ... 9
3.7 Linux (PC & Power PC & ARM) .. 9
3.8 Windows ... 9
3.9 Macintosh OS X .. 9

4 Programming Interface ... 11

4.1 Item Referencing ..11
4.2 Defined Types ..11
4.3 CDFstatus Constants ..11
4.4 CDF Formats ..12
4.5 CDF Data Types ...12
4.6 Data Encodings ..13
4.7 Data Decodings ..14
4.8 Variable Majorities ...16
4.9 Record/Dimension Variances ...16
4.10 Compressions ...16
4.11 Sparseness ..17

4.11.1 Sparse Records ...17
4.11.2 Sparse Arrays ...18

4.12 Attribute Scopes ...18
4.13 Read-Only Modes ..18
4.14 zModes ...18
4.15 -0.0 to 0.0 Modes..19
4.16 Operational Limits ..19
4.17 Limits of Names and Other Character Strings ...19
4.18 Backward File Compatibility with CDF 2.7 ..20
4.19 Checksum...21
4.20 Data Validation ..23
4.21 8-Byte Integer ..24
4.22 UTF-8 Encoding ...24

5 Standard Interface ... 25

5.1 CDFattrCreate ..25
5.1.1 Example(s) ...26

5.2 CDFattrEntryInquire...27
5.2.1 Example(s) ...27

5.3 CDFattrGet ...28
5.3.1 Example(s) ...29

5.4 CDFattrInquire ...29
5.4.1 Example(s) ...30

5.5 CDFattrNum ..31
5.5.1 Example(s) ...31

5.6 CDFattrPut ...32
5.6.1 Example(s) ...32

5.7 CDFattrRename..33
5.7.1 Example(s) ...34

5.8 CDFclose ...34
5.8.1 Example(s) ...34

5.9 CDFcreate ..35
5.9.1 Example(s) ...36

5.10 CDFdelete ..36
5.10.1 Example(s) ...36

5.11 CDFdoc ..37
5.11.1 Example(s) ...37

5.12 CDFerror ..38
5.12.1 Example(s) ...38

5.13 CDFgetrVarsRecordData ..39
5.13.1 Example(s) ...39

5.14 CDFgetzVarsRecordData ...40
5.14.1 Example(s) ...41

5.15 CDFinquire ..42
5.15.1 Example(s) ...43

5.16 CDFopen ..44
5.16.1 Example(s) ...44

5.17 CDFputrVarsRecordData ...45
5.17.1 Example(s) ...45

5.18 CDFputzVarsRecordData ...47
5.18.1 Example(s) ...47

5.19 CDFvarClose ..48
5.19.1 Example(s) ...49

5.20 CDFvarCreate ..49
5.20.1 Example(s) ...50

5.21 CDFvarGet ...51
5.21.1 Example(s) ...51

5.22 CDFvarHyperGet ...52
5.22.1 Example(s) ...52

5.23 CDFvarHyperPut ..53
5.23.1 Example(s) ...54

5.24 CDFvarInquire ...54
5.24.1 Example(s) ...55

5.25 CDFvarNum ...56
5.25.1 Example(s) ...56

5.26 CDFvarPut ...57
5.26.1 Example(s) ...57

5.27 CDFvarRename ..58
5.27.1 Example(s) ...58

6 Exended Standard Interface.. 61

6.1 Library Information ..61
6.1.1 CDFgetDataTypeSize ...61
6.1.2 CDFgetLibraryCopyright ..62
6.1.3 CDFgetLibraryVersion ...63
6.1.4 CDFgetStatusText ..64

6.2 CDF ...64
6.2.1 CDFcloseCDF ..65
6.2.2 CDFcreateCDF ...65
6.2.3 CDFdeleteCDF ...67
6.2.4 CDFgetCacheSize ...67
6.2.5 CDFgetChecksum ...68
6.2.6 CDFgetCompression ...69
6.2.7 CDFgetCompressionCacheSize ..70
6.2.8 CDFgetCompressionInfo ..71
6.2.9 CDFgetCopyright ...72
6.2.10 CDFgetDecoding ..72
6.2.11 CDFgetEncoding ..73
6.2.12 CDFgetFileBackward ...74
6.2.13 CDFgetFormat ..74
6.2.14 CDFgetLeapSecondLastUpdated ..75
6.2.15 CDFgetMajority ...76
6.2.16 CDFgetName ..77
6.2.17 CDFgetNegtoPosfp0Mode ..77
6.2.18 CDFgetReadOnlyMode ..78
6.2.19 CDFgetStageCacheSize ..79
6.2.20 CDFgetValidate ..80
6.2.21 CDFgetVersion ...80
6.2.22 CDFgetzMode ..81
6.2.23 CDFinquireCDF ...82
6.2.24 CDFopenCDF ...83
6.2.25 CDFsetCacheSize ...84
6.2.26 CDFsetChecksum ...85
6.2.27 CDFsetCompression ...86
6.2.28 CDFsetCompressionCacheSize ...87
6.2.29 CDFsetDecoding ..88
6.2.30 CDFsetEncoding ...88
6.2.31 CDFsetFileBackward ..89
6.2.32 CDFsetFormat ..90
6.2.33 CDFsetLeapSecondLastUpdated ...91
6.2.34 CDFsetMajority ..91
6.2.35 CDFsetNegtoPosfp0Mode ..92
6.2.36 CDFsetReadOnlyMode ...93
6.2.37 CDFsetStageCacheSize...94
6.2.38 CDFsetValidate ..94
6.2.39 CDFsetzMode ...95

6.3 Variable..96
6.3.1 CDFclosezVar ..96
6.3.2 CDFconfirmzVarExistence ...97
6.3.3 CDFconfirmzVarPadValueExistence ..98
6.3.4 CDFcreatezVar ...98
6.3.5 CDFdeletezVar ... 100
6.3.6 CDFdeletezVarRecords .. 101
6.3.7 CDFdeletezVarRecordsRenumber .. 102
6.3.8 CDFgetMaxWrittenRecNums ... 103

6.3.9 CDFgetNumrVars ... 104
6.3.10 CDFgetNumzVars .. 105
6.3.11 CDFgetVarAllRecordsByVarName .. 105
6.3.12 CDFgetVarNum .. 107
6.3.13 CDFgetVarRangeRecordsByVarName ... 108
6.3.14 CDFgetzVarAllocRecords .. 110
6.3.15 CDFgetzVarAllRecordsByVarID .. 110
6.3.16 CDFgetzVarBlockingFactor ... 112
6.3.17 CDFgetzVarCacheSize ... 113
6.3.18 CDFgetzVarCompression ... 114
6.3.19 CDFgetzVarData .. 115
6.3.20 CDFgetzVarDataType .. 116
6.3.21 CDFgetzVarDimSizes .. 117
6.3.22 CDFgetzVarDimVariances ... 117
6.3.23 CDFgetzVarMaxAllocRecNum .. 118
6.3.24 CDFgetzVarMaxWrittenRecNum ... 119
6.3.25 CDFgetzVarName .. 120
6.3.26 CDFgetzVarNumDims ... 120
6.3.27 CDFgetzVarNumElements ... 121
6.3.28 CDFgetzVarNumRecsWritten... 122
6.3.29 CDFgetzVarPadValue .. 123
6.3.30 CDFgetzVarRangeRecordsByVarID ... 124
6.3.31 CDFgetzVarRecordData ... 125
6.3.32 CDFgetzVarRecVariance.. 126
6.3.33 CDFgetzVarReservePercent.. 127
6.3.34 CDFgetzVarSeqData .. 128
6.3.35 CDFgetzVarSeqPos .. 129
6.3.36 CDFgetzVarsMaxWrittenRecNum ... 130
6.3.37 CDFgetzVarSparseRecords... 131
6.3.38 CDFgetzVarSpec .. 131
6.3.39 CDFgetzVarsRecordDatabyNumbers .. 132
6.3.40 CDFhyperGetzVarData... 134
6.3.41 CDFhyperPutzVarData ... 136
6.3.42 CDFinquirezVar ... 137
6.3.43 CDFinsertrVarRecordsByVarID ... 139
6.3.44 CDFinsertVarRecordsByVarName ... 140
6.3.45 CDFinsertzVarRecordsByVarID ... 141
6.3.46 CDFputVarAllRecordsByVarName .. 142
6.3.47 CDFputVarRangeRecordsByVarName ... 143
6.3.48 CDFputzVarAllRecordsByVarID ... 144
6.3.49 CDFputzVarData .. 145
6.3.50 CDFputzVarRangeRecordsByVarID .. 147
6.3.51 CDFputzVarRecordData ... 148
6.3.52 CDFputzVarSeqData .. 149
6.3.53 CDFputzVarsRecordDatabyNumbers ... 150
6.3.54 CDFrenamezVar ... 152
6.3.55 CDFsetzVarAllocBlockRecords.. 153
6.3.56 CDFsetzVarAllocRecords ... 153
6.3.57 CDFsetzVarBlockingFactor .. 154
6.3.58 CDFsetzVarCacheSize .. 155
6.3.59 CDFsetzVarCompression.. 156
6.3.60 CDFsetzVarDataSpec ... 157
6.3.61 CDFsetzVarDimVariances .. 158
6.3.62 CDFsetzVarInitialRecs ... 158
6.3.63 CDFsetzVarPadValue ... 159
6.3.64 CDFsetzVarRecVariance .. 160

6.3.65 CDFsetzVarReservePercent .. 161
6.3.66 CDFsetzVarsCacheSize .. 162
6.3.67 CDFsetzVarSeqPos... 163
6.3.68 CDFsetzVarSparseRecords ... 163

6.4 Attributes/Entries ... 164
6.4.1 CDFconfirmAttrExistence .. 164
6.4.2 CDFconfirmgEntryExistence .. 165
6.4.3 CDFconfirmrEntryExistence ... 166
6.4.4 CDFconfirmzEntryExistence .. 167
6.4.5 CDFcreateAttr .. 168
6.4.6 CDFdeleteAttr .. 169
6.4.7 CDFdeleteAttrgEntry .. 170
6.4.8 CDFdeleteAttrrEntry .. 170
6.4.9 CDFdeleteAttrzEntry .. 171
6.4.10 CDFgetAttrgEntry .. 172
6.4.11 CDFgetAttrgEntryDataType ... 174
6.4.12 CDFgetAttrgEntryNumElements .. 175
6.4.13 CDFgetAttrrEntry ... 176
6.4.14 CDFgetAttrMaxgEntry ... 177
6.4.15 CDFgetAttrMaxrEntry .. 178
6.4.16 CDFgetAttrMaxzEntry ... 179
6.4.17 CDFgetAttrName.. 179
6.4.18 CDFgetAttrNum ... 180
6.4.19 CDFgetAttrrEntryDataType .. 181
6.4.20 CDFgetAttrrEntryNumElements ... 182
6.4.21 CDFgetAttrScope ... 183
6.4.22 CDFgetAttrStrgEntry .. 184
6.4.23 CDFgetAttrStrrEntry .. 185
6.4.24 CDFgetAttrStrzEntry .. 186
6.4.25 CDFgetAttrWStrgEntry .. 187
6.4.26 CDFgetAttrWStrrEntry ... 188
6.4.27 CDFgetAttrWStrzEntry .. 190
6.4.28 CDFgetAttrzEntry .. 191
6.4.29 CDFgetAttrzEntryDataType ... 192
6.4.30 CDFgetAttrzEntryNumElements .. 193
6.4.31 CDFgetNumAttrgEntries .. 194
6.4.32 CDFgetNumAttributes .. 195
6.4.33 CDFgetNumAttrrEntries ... 196
6.4.34 CDFgetNumAttrzEntries .. 197
6.4.35 CDFgetNumgAttributes .. 198
6.4.36 CDFgetNumvAttributes .. 198
6.4.37 CDFinquireAttr... 199
6.4.38 CDFinquireAttrgEntry .. 201
6.4.39 CDFinquireAttrrEntry ... 202
6.4.40 CDFinquireAttrzEntry .. 203
6.4.41 CDFputAttrgEntry .. 205
6.4.42 CDFputAttrrEntry ... 206
6.4.43 CDFputAttrStrgEntry.. 207
6.4.44 CDFputAttrStrrEntry .. 208
6.4.45 CDFputAttrStrzEntry .. 209
6.4.46 CDFputAttrWStrgEntry .. 210
6.4.47 CDFputAttrWStrrEntry... 211
6.4.48 CDFputAttrWStrzEntry .. 212
6.4.49 CDFputAttrzEntry .. 213
6.4.50 CDFrenameAttr .. 214
6.4.51 CDFsetAttrgEntryDataSpec .. 215

6.4.52 CDFsetAttrrEntryDataSpec... 216
6.4.53 CDFsetAttrScope .. 217
6.4.54 CDFsetAttrzEntryDataSpec .. 218

6.5 Simplified CDFread Functions ... 219
6.5.1 CDFreadgAttrEntry .. 219
6.5.2 CDFreadzAttrEntry... 220
6.5.3 CDFreadzVarPadValue... 221
6.5.4 CDFreadzVarAllByVarID .. 222
6.5.5 CDFreadzVarDataByVarID .. 223
6.5.6 CDFreadzVarRangeDataByVarID .. 224
6.5.7 CDFreadzVarAllByVarName ... 225
6.5.8 CDFreadzVarDataByVarName ... 226
6.5.9 CDFreadzVarRangeDataByVarName ... 227
6.5.10 CDF_Free_String.. 228

6.6 UTF-8 encode/decode .. 229
6.6.1 UnicodetoUTF8 .. 229
6.6.2 UTF8toUnicode .. 230

7 Internal Interface - CDFlib ... 233

7.1 Example(s) ... 233
7.2 Current Objects/States (Items) .. 235
7.3 Returned Status .. 239
7.4 Indentation/Style .. 239
7.5 Syntax .. 239
7.6 Operations. 240
7.7 More Examples .. 297

7.7.1 rVariable Creation .. 297
7.7.2 zVariable Creation (Character Data Type) .. 297
7.7.3 Hyper Read with Subsampling .. 298
7.7.4 Attribute Renaming .. 299
7.7.5 Sequential Access ... 299
7.7.6 Attribute rEntry Writes ... 300
7.7.7 Multiple zVariable Write .. 301

7.8 A Potential Mistake We Don't Want You to Make .. 302
7.9 Custom C Functions ... 302

8 Interpreting CDF Status Codes ... 305

9 EPOCH Utility Routines .. 307

9.1 computeEPOCH ... 307
9.2 EPOCHbreakdown ... 308
9.3 toEncodeEPOCH .. 308
9.4 encodeEPOCH ... 309
9.5 encodeEPOCH1 ... 309
9.6 encodeEPOCH2 ... 310
9.7 encodeEPOCH3 ... 310
9.8 encodeEPOCH4 ... 310
9.9 encodeEPOCHx ... 310
9.10 toParseEPOCH ... 311
9.11 parseEPOCH .. 312
9.12 parseEPOCH1 .. 312
9.13 parseEPOCH2 .. 312
9.14 parseEPOCH3 .. 312
9.15 parseEPOCH4 .. 313
9.16 computeEPOCH16 ... 313

9.17 EPOCH16breakdown ... 313
9.18 toEncodeEPOCH16 .. 314
9.19 encodeEPOCH16 ... 314
9.20 encodeEPOCH16_1 .. 315
9.21 encodeEPOCH16_2 .. 315
9.22 encodeEPOCH16_3 .. 315
9.23 encodeEPOCH16_4 .. 316
9.24 encodeEPOCH16_x .. 316
9.25 toParseEPOCH16 ... 317
9.26 parseEPOCH16 .. 317
9.27 parseEPOCH16_1 .. 317
9.28 parseEPOCH16_2 .. 318
9.29 parseEPOCH16_3 .. 318
9.30 parseEPOCH16_4 .. 318
9.31 EPOCHtoUnixTime ... 319
9.32 UnixTimetoEPOCH ... 319
9.33 EPOCH16toUnixTime.. 319
9.34 UnixTimetoEPOCH16.. 319

10 TT2000 Utility Routines .. 321

10.1 computeTT2000 (aka CDF_TT2000_from_UTC_parts) ... 321
10.2 breakdownTT2000 (aka CDF_TIME_to_UTC_parts or TT2000breakdown) .. 322
10.3 toEncodeTT2000 .. 324
10.4 encodeTT2000 (aka CDF_TT2000_to_UTC_string) ... 324
10.5 toParseTT2000 ... 325
10.6 parseTT2000 (aka CDF_TT2000_from_UTC_string) ... 325
10.7 CDF_TT2000_from_UTC_EPOCH ... 326
10.8 CDF_TT2000_to_UTC_EPOCH .. 326
10.9 CDF_TT2000_from_UTC_EPOCH16 .. 326
10.10 CDF_TT2000_to_UTC_EPOCH16 .. 327
10.11 TT2000toUnixTime .. 327
10.12 UnixTimetoTT2000 .. 327

1

Chapter 1

1 Compiling

Each source file that calls the CDF library or references CDF parameters must include cdf.h. On OpenVMS systems a
logical name, CDF$INC, that specifies the location of cdf.h is defined in the definitions file, DEFINITIONS.COM,
provided with the CDF distribution. On UNIX systems (including Mac OS X) an environment variable, CDF_INC, that
serves the same purpose is defined in the definitions file definitions.<shell-type> where <shell-type> is the type of shell
being used: C for the C-shell (csh and tcsh), K for the Korn (ksh), BASH, and POSIX shells, and B for the Bourne
shell (sh). This section assumes that you are using the appropriate definitions file on those systems. The location of
cdf.h is specified as described in the appropriate sections for those systems.

The CDF file’s offset and size in V 3.0 use the data type off_t (__int64 on Windows)1, instead of 32-bit long. One or
certain predefined macros needs to be defined to the C compiler to make it 64-bit long.

One of two methods may be used to include cdf.h. They are described in the following sections.

1.1 Specifying cdf.h Location in the Compile Command

The first method involves including the following line at/near the top of each source file:

#include "cdf.h"

Since the file name of the disk/directory containing cdf.h was not specified, it must be specified when the source file is
compiled.

1.1.1 OpenVMS Systems

An example of the command to compile a source file on OpenVMS systems would be as follows:

$ CC/INCLUDEFIDIRECTORY=CDF$INC/DEFINE=_LARGEFILE <source-name>

1 We use OFF_T to represent either off_t or __int64 as the 64-bit data type in the following section.

2

where <source-name> is the name of the source file being compiled. (The .C extension does not have to be specified.)
The object module created will be named <source-name>.OBJ. Use /DEFINE=_LARGEFILE to make OFF_T 64-bit
long.

NOTE: If you are running OpenVMS on a DEC Alpha and are using a CDF distribution built for a default double-
precision floating-point representation of IEEE_FLOAT, you will also have to specify /FLOAT=IEEE_FLOAT on the
CC command line in order to correctly process double-precision floating-point values. If you are running OpenVMS on
a Itanium 64 and are using a CDF distribution built for a default double-precision floating-point representation of
IEEE_FLOAT, you will also have to specify /FLOAT=IEEE_FLOAT on the CC command line in order to correctly
process double-precision floating-point values.

1.1.2 UNIX Systems (including Mac OS X and ARM)

An example of the command to compile a source file on UNIX flavored systems would be as follows:

% cc -c -I${CDF_INC} -D_FILE_OFFSET_BITS=64 -D_LARGEFILE64_SOURCE
 -D_LARGEFILE_SOURCE <source-name>.c

where <source-name>.c is the name of the source file being compiled (the .c extension is required). The -c option
specifies that only an object module is to be produced. (The link step is described in Section 2.2.) The object module
created will be named <source-name>.o. Note that in a “makefile” where CDF_INC is imported, $(CDF_INC) would
be specified instead of ${CDF_INC}. The defined Macros, _FILE_OFFSET_BITS=64, _LARGEFILE64_SOURCE
and _LARGEFILE_SOURCE, are needed to make the data type OFF_T 64-bit long. 2

1.1.3 Windows Systems, Microsoft Visual C++ or Microsoft Visual C++ .Net

An example of the command to compile a source file on Windows systems using Microsoft Visual C++ would be as
follows. It is extracted from an NMAKE file, generated by Microsoft Visual C++, to compile the CDF library source
code.

C:\> CL /c /nologo /W3 /Gm /GX /ZI /Od /D "WIN32" /D "_FILE_OFFSET_BITS=64"
 /D "_LARGEFILE_SOURCE" /D "_LARGEFILE64_SOURCE" /I<inc-path> <source-name>.c

where <source-name>.c is the name of the source file being compiled (the .c extension is required) and <inc-path> is the
file name of the directory containing cdf.h. You will need to know where on your system cdf.h has been installed. <inc-
path> may be either an absolute or relative file name.

You may also need to specify the location of system include files. For Microsoft Visual C++ this is usually accomplished
by setting MS-DOS environment variables, e.g., execute VCVARS32.BAT for VC++.

The /c option specifies that only an object module is to be produced. The object module will be named <source-
name>.obj.

The /nologo option specifies that the Copyright message is suppressed.

The /W3 option specifies the warning level for compiling.

2 You may not need to define these all three macros on a certain Unix platform. But defining all of them should work
on all compilers that support 64-bit off_t data type.

3

The /Gm option specifies that minimal rebuild is enabled.

The /GX option specifies that C++ EH is enabled.

The /ZI option specifies that edit/continue debug information is enabled.

The /Od option specifies that optimization is disabled.

WIN32, _FILE_OFFSET_BITS=64, _LARGEFILE_SOURCE and _LARGEFILE64_SOURCE are defined macros.

Consult the documents for Microsoft Visual C++ or contact nasa-cdf-support@nasa.onmicrosoft.com for inquiries.

All distributed libraries (static and dynamic) as well as the executables for the toolkit programs for WIN32 are created
by the Microsoft Visual C++.

1.2 Specifying cdf.h Location in the Source File

The second method involves specifying the file name of the directory containing cdf.h in the actual source file. The
following line would be included at/near the top of each source file:

#include "<inc-path>cdf.h"

where <inc-path> is the file name of the directory containing cdf.h. The source file would then be compiled as shown in
Section 1.1 but without specifying the location of cdf.h on the command line (where applicable).

On OpenVMS systems CDF$INC: may be used for <inc-path>. On UNIX, MS-DOS, and Macintosh systems, <inc-path>
must be a relative or absolute file name. (An environment variable may not be used for <inc-path> on UNIX systems.)
You will need to know where on your system the cdf.h file has been installed. on Macintosh systems, file names are
constructed by separating volume/folder names with colons.

5

Chapter 2

2 Linking

Your applications must be linked with the CDF library.3 Both the Standard and Internal interfaces for C applications are
built into the CDF library. On OpenVMS systems, a logical name, CDF$LIB, which specifies the location of the CDF
library, is defined in the definitions file, DEFINITIONS.COM, provided with the CDF distribution. On UNIX systems
(including Mac OS X) an environment variable, CDF_LIB, which serves the same purpose, is defined in the definitions
file definitions.<shell-type> where <shell-type> is the type of shell being used: C for the C-shell (csh and tcsh), K for
the Korn (ksh), BASH, and POSIX shells, and B for the Bourne shell (sh). This section assumes that you are using the
appropriate definitions file on those systems. The location of the CDF library is specified as described in the appropriate
sections for those systems.

2.1 OpenVMS Systems

An example of the command to link your application with the CDF library (LIBCDF.OLB) on DEC Alpha/OpenVMS
systems would be as follows:

$ LINK <object-file(s)>, CDF$LIB:LIBCDF/LIBRARY, SYS$LIBRARY:<crtl>/LIBRARY

where <object-file(s)> is your application's object module(s) (the .OBJ extension is not necessary) and <crtl> is
VAXCRTL if your CDF distribution is built for a default double-precision floating-point representation of G_FLOAT or
VAXCRTLD for a default of D_FLOAT or VAXCRTLT for a default of IEEE_FLOAT. The name of the executable
created will be the name part of the first object file listed with .EXE appended. A different executable name may be
specified by using the /EXECUTABLE qualifier.

UNIX Systems (including Mac OS X)
An example of the command to link your application with the CDF library (libcdf.a) on UNIX flavored systems would
be as follows:

3 A shareable version of the CDF library is also available on Open/VMS and some flavors of UNIX. Its use is described
in Chapter 3. A dynamic link library (DLL), LIBCDF.DLL, is available on Window NT/2000/XP. Consult the Microsoft
documentation for details on using a DLL. Note that the DLL for Microsoft is created using Microsoft VC ++.

6

% cc <object-file(s)>.o ${CDF_LIB}/libcdf.a

where <object-file(s)>.o is your application's object module(s). (The .o extension is required.) The name of the
executable created will be a.out by default. It may also be explicitly specified using the –o option. Some UNIX systems
may also require that -lc (the C run-time library), -lm (the math library), and/or -ldl (the dynamic linker library) be
specified at the end of the command line. This may depend on the particular release of the operating system being used.

2.1.1 Combining the Compile and Link

On UNIX systems the compile and link may be combined into one step as follows:

% cc -I${CDF_INC} -D_FILE_OFFSET_BITS=64 -D_LARGEFILE64_SOURCE
 -D_LARGEFILE_SOURCE <source-name(s)>.c ${CDF_LIB}/libcdf.a

where <source-name(s)>.c is the name of the source file(s) being compiled/linked. (The .c extension is required.) Some
UNIX systems may also require that -lc, -lm, and/or -ldl be specified at the end of the command line.

2.2 Windows Systems, Microsoft Visual C++ or Microsoft Visual
C++ .NET

An example of the command to link your application with the CDF library (LIBCDF.LIB) on Windows systems using
Microsoft Visual C++ or Microsoft Visual C++ .NET would be as follows:4

> LINK /nologo /nodefaultlib:libcd /nodefaultlib:libcmt /nodefaultlib:msvcrt \
/output:where_to.exe <objs> <lib-path>\libcdf.lib

where <objs> is your application's object module(s); <where_to.exe> is the name of the executable file to be created
(with an extension of .exe); and <lib-path> is the file name of the directory containing the CDF library. You will need
to know where on your system the CDF library has been installed. <lib-path> may be either an absolute or relative
directory name that contains libcdf.lib.

Consult the manuals for Microsoft Visual C++ to set up the proper project/workspace to compile/link your applications.

4 This example is extracted from an NMAKE file, created by Microsoft Developer Studio, for compiling/linking the
toolkit programs.

7

Chapter 3

3 Linking Shared CDF Library

A shareable version of the CDF library is also available on OpenVMS systems, some flavors of UNIX5 and Windows
NT/2000/XP6. The shared version is put in the same directory as the non-shared version and is named as follows:

Machine/Operating System Shared CDF Library
DEC VAX & Alpha & IA64 (OpenVMS) LIBCDF.EXE
Sun (SunOS)3 libcdf.so
Sun (Solaris) libcdf.so
HP 9000 (HP-UX)7 libcdf.sl
IBM RS6000 (AIX)3 libcdf.o
DEC Alpha (OSF/1) libcdf.so
SGi (IRIX 6.x) libcdf.so
Linux (PC & Power PC) libcdf.so
Windows NT/2000/XP dllcdf.dll
Macintosh OS X
ARM

libcdf.dylib
libcdf.so

The commands necessary to link to a shareable library vary among operating systems. Examples are shown in the
following sections.

3.1 DEC VAX & Alpha (OpenVMS)

$ ASSIGN CDF$LIB:LIBCDF.EXE CDF$LIBCDFEXE
$ LINK <object-file(s)>, SYS$INPUT:/OPTIONS
 CDF$LIBCDFEXE/SHAREABLE
 SYS$LIBRARY:<crtl>/LIBRARY
 <Control-Z>

5 On UNIX systems, when executing a program linked to the shared CDF library, the environment variable
LD_LIBRARY_PATH must be set to include the directory containing libcdf.so or libcdf.sl.
6 When executing a program linked to the dynamically linked CDF library (DLL), the environment variable PATH must
be set to include the directory containing dllcdf.dll.

7 Not yet tested. Please contact nasa-cdf-support@nasa.onmicrosoft.com to coordinate a test.

mailto:gsfc-cdf-support@lists.nasa.gov

8

$ DEASSIGN CDF$LIBCDFEXE

where <object-file(s)> is your application's object module(s) (the .OBJ extension is not necessary) and <crtl> is
VAXCRTL if your CDF distribution is built for a default double-precision floating-point representation of G_FLOAT or
VAXCRTLD for a default of D_FLOAT or VAXCRTLT for a default of IEEE_FLOAT. The name of the executable
created will be the name part of the first object file listed with .EXE appended. A different executable name may be
specified by using the /EXECUTABLE qualifier.

NOTE: On DEC Alpha/OpenVMS systems the shareable CDF library may also be installed in SYS$SHARE. If that is
the case, the link command would be as follows:

$ LINK <object-file(s)>, SYS$INPUT:/OPTIONS
 SYS$SHARE:LIBCDF/SHAREABLE
 SYS$LIBRARY:<crtl>/LIBRARY
 <Control-Z>

3.2 SUN (Solaris)

% cc -o <exe-file> <object-file(s)>.o ${CDF_LIB}/libcdf.so -lc -lm

where <object-file(s)>.o is your application's object module(s) (the .o extension is required) and <exe-file> is the name
of the executable file created. Note that in a “makefile” where CDF_LIB is imported, $(CDF_LIB) would be specified
instead of ${CDF_LIB}.

3.3 HP 9000 (HP-UX)8

% cc -o <exe-file> <object-file(s)>.o ${CDF_LIB}/libcdf.sl -lc -lm

where <object-file(s)>.o is your application's object module(s) (the .o extension is required) and <exe-file> is the name
of the executable file created. Note that in a “makefile” where CDF_LIB is imported, $(CDF_LIB) would be specified
instead of ${CDF_LIB}.

3.4 IBM RS6000 (AIX)4

% cc -o <exe-file> <object-file(s)>.o -L${CDF_LIB} ${CDF_LIB}/libcdf.o -lc -lm

where <object-file(s)>.o is your application's object module(s) (the .o extension is required) and <exe-file> is the name
of the executable file created. Note that in a “makefile” where CDF_LIB is imported, $(CDF_LIB) would be specified
instead of ${CDF_LIB}.

8 Yet to be tested.

9

3.5 DEC Alpha (OSF/1)

% cc -o <exe-file> <object-file(s)>.o ${CDF_LIB}/libcdf.so -lm -lc

where <object-file(s)>.o is your application's object module(s) (the .o extension is required) and <exe-file> is the name
of the executable file created. Note that in a “makefile” where CDF_LIB is imported, $(CDF_LIB) would be specified
instead of ${CDF_LIB}.

3.6 SGi (IRIX 6.x)

% cc -o <exe-file> <object-file(s)>.o ${CDF_LIB}/libcdf.so -lm -lc

where <object-file(s)>.o is your application's object module(s) (the .o extension is required) and <exe-file> is the name
of the executable file created. Note that in a “makefile” where CDF_LIB is imported, $(CDF_LIB) would be specified
instead of ${CDF_LIB}.

3.7 Linux (X86 & Power PC & ARM)

% cc -o <exe-file> <object-file(s)>.o ${CDF_LIB}/libcdf.so -lm -lc

where <object-file(s)>.o is your application's object module(s) (the .o extension is required) and <exe-file> is the name
of the executable file created. Note that in a “makefile” where CDF_LIB is imported, $(CDF_LIB) would be specified
instead of ${CDF_LIB}.

3.8 Windows

% link /out:<exe-file>.exe <object-file(s)>.obj <lib-path>dllcdf.lib
 /nodefaultlib:libcd

where <object-file(s)>.obj is your application's object module(s) (the .obj extension is required) and <exe-file>.exe is the
name of the executable file created, and <lib-path> may be either an absolute or relative directory name that has dllcdf.lib.
The environment variable LIB has to set to the directory that contains LIBC.LIB. Your PATH environment variable
needs to be set to include the directory that contains dllcdf.dll when the executable is run.

3.9 Macintosh OS X (X86_64 or ARM)

% clang -o <exe-file> <object-file(s)>.o ${CDF_LIB}/libcdf.dylib -lm

10

where <object-file(s)>.o is your application's object module(s) (the .o extension is required) and <exe-file> is the name
of the executable file created. Note that in a “makefile” where CDF_LIB is imported, $(CDF_LIB) would be specified
instead of ${CDF_LIB}.

11

Chapter 4

4 Programming Interface
4.1 Item Referencing

The following sections describe various aspects of the C programming interface for CDF applications. These include
constants and types defined for use by all CDF application programs written in C. These constants and types are defined
in cdf.h. The file cdf.h should be #include'd in all application source files referencing CDF routines/parameters.

For C applications all items are referenced starting at zero (0). These include variable, attribute, and attribute entry
numbers, record numbers, dimensions, and dimension indices. Note that both rVariables and zVariables are numbered
starting at zero (0).

4.2 Defined Types

The following typedef's are provided. They should be used when declaring or defining the corresponding items.

CDFstatus All CDF functions, except CDFvarNum, CDFgetVarNum, CDFattrNum and
CDFgetAttrNum, are of type CDFstatus. They return a status code indicating the
completion status of the function. The CDFerror function can be used to inquire the
meaning of any status code. Appendix A lists the possible status codes along with
their explanations. Chapter 8 describes how to interpret status codes.

CDFid An identifier (or handle) for a CDF that must be used when referring to a CDF. A

new CDFid is established whenever a CDF is created or opened, establishing a
connection to that CDF on disk. The CDFid is used in all subsequent operations on
a particular CDF. The CDFid must not be altered by an application.

4.3 CDFstatus Constants

These constants are of type CDFstatus.

CDF_OK A status code indicating the normal completion of a CDF function.

12

CDF_WARN Threshold constant for testing severity of non-normal CDF status codes.

Chapter 8 describes how to use these constants to interpret status codes.

4.4 CDF Formats

SINGLE_FILE The CDF consists of only one file. This is the default file format.

MULTI_FILE The CDF consists of one header file for control and attribute data and one additional

file for each variable in the CDF.

4.5 CDF Data Types

One of the following constants must be used when specifying a CDF data type for an attribute entry or variable.

CDF_BYTE 1-byte, signed integer.

CDF_CHAR 1-byte, signed character.

CDF_INT1 1-byte, signed integer.

CDF_UCHAR 1-byte, unsigned character.

CDF_UINT1 1-byte, unsigned integer.

CDF_INT2 2-byte, signed integer.

CDF_UINT2 2-byte, unsigned integer.

CDF_INT4 4-byte, signed integer.

CDF_UINT4 4-byte, unsigned integer.

CDF_INT8 8-byte, signed integer.

CDF_REAL4 4-byte, floating point.

CDF_FLOAT 4-byte, floating point.

CDF_REAL8 8-byte, floating point.

CDF_DOUBLE 8-byte, floating point.

CDF_EPOCH 8-byte, floating point.

CDF_EPOCH16 two 8-byte, floating point.

CDF_TIME_TT2000 8-byte, signed integer.

13

CDF_CHAR and CDF_UCHAR are considered interchangeable character data types. These are significant because only
variables of these data types may have more than one element per value (where each element is a character under ASCII
set).

Once the support for character expands to Unicode of UTF-8 encoding, starting from CDF V3.8.1, a character no longer
has just a single byte. It could be a multibyte form, up to 4 bytes. The number of elements for a UTF-8 encoding string
is the total byte count of the character string. C’s strlen function will return the correct byte count of a nul-terminating
string. Mis-using the character count as the number of elements will cause the string data being mis-handled.

C’s wchar_t type, wide-character data type, could be used for character string for attribute in the CDF. However, on
Windows, it only covers a portion of UTF-8 characters as it is only 2-byte long.

Both CDF_INT8 and CDF_TIME_TT2000, 8-byte integer, can be presented in “long long” in C.

NOTE: When using a 64-bit OS, e.g., DEC Alpha running OSF/1, or Linux running 64-bit Intel, keep in mind that a
long is 8 bytes and that an int is 4 bytes. Use int C variables with the CDF data types CDF_INT4 and CDF_UINT4 rather
than long C variables.

NOTE: When using an PC (MS-DOS) keep in mind that an int is 2 bytes and that a long is 4 bytes. Use long C variables
with the CDF data types CDF_INT4 and CDF_UINT4 rather than int C variables.

4.6 Data Encodings

A CDF's data encoding affects how its attribute entry and variable data values are stored (on disk). Attribute entry and
variable values passed into the CDF library (to be written to a CDF) should always be in the host machine's native
encoding. Attribute entry and variable values read from a CDF by the CDF library and passed out to an application will
be in the currently selected decoding for that CDF (see the Concepts chapter in the CDF User's Guide).

HOST_ENCODING Indicates host machine data representation (native). This is the default
encoding, and it will provide the greatest performance when reading/writing
on a machine of the same type.

NETWORK_ENCODING Indicates network transportable data representation (XDR).

VAX_ENCODING Indicates VAX data representation. Double-precision floating-point values

are encoded in Digital's D_FLOAT representation.

ALPHAVMSd_ENCODING Indicates DEC Alpha running OpenVMS data representation. Double-

precision floating-point values are encoded in Digital's D_FLOAT
representation.

ALPHAVMSg_ENCODING Indicates DEC Alpha running OpenVMS data representation. Double-

precision floating-point values are encoded in Digital's G_FLOAT
representation.

ALPHAVMSi_ENCODING Indicates DEC Alpha running OpenVMS data representation. Double-

precision floating-point values are encoded in IEEE representation.

ALPHAOSF1_ENCODING Indicates DEC Alpha running OSF/1 data representation.

14

SUN_ENCODING Indicates SUN data representation.

SGi_ENCODING Indicates Silicon Graphics Iris and Power Series data representation.

DECSTATION_ENCODING
 Indicates DECstation data representation.

IBMRS_ENCODING Indicates IBMRS data representation (IBM RS6000 series).

HP_ENCODING Indicates HP data representation (HP 9000 series).

IBMPC_ENCODING Indicates Intel i386 data representation.

NeXT_ENCODING Indicates NeXT data representation.

MAC_ENCODING Indicates Macintosh data representation.

ARM_LITTLE_ENCODING Indicates ARM architecture in little-endian data representation.

ARM_BIG_ENCODING Indicates ARM architecture in big-endian data representation.

IA64VMSi_ENCODING Indicates Itanium 64 running OpenVMS data representation. Double-

precision floating-point values are encoded in IEEE representation.

IA64VMSd_ENCODINGError! Bookmark not defined. Indicates Itanium 64 running OpenVMS data

representation. Double-precision floating-point values are encoded in
Digital's D_FLOAT representation.

IA64VMSg_ENCODING Indicates Itanium 64 running OpenVMS data representation. Double-

precision floating-point values are encoded in Digital's G_FLOAT
representation.

When creating a CDF (via the Standard interface) or respecifying a CDF's encoding (via the Internal Interface), you
may specify any of the encodings listed above. Specifying the host machine's encoding explicitly has the same effect
as specifying HOST_ENCODING.

When inquiring the encoding of a CDF, either NETWORK_ENCODING or a specific machine encoding will be returned.
(HOST_ENCODING is never returned.)

4.7 Data Decodings

A CDF's decoding affects how its attribute entry and variable data values are passed out to a calling application. The
decoding for a CDF may be selected and reselected any number of times while the CDF is open. Selecting a decoding
does not affect how the values are stored in the CDF file(s) - only how the values are decoded by the CDF library. Any
decoding may be used with any of the supported encodings. The Concepts chapter in the CDF User's Guide describes a
CDF's decoding in more detail.

HOST_DECODING Indicates host machine data representation (native). This is the default
decoding.

NETWORK_DECODING Indicates network transportable data representation (XDR).

15

VAX_DECODING Indicates VAX data representation. Double-precision floating-point values

will be in Digital's D_FLOAT representation.

ALPHAVMSd_DECODING Indicates DEC Alpha running OpenVMS data representation. Double-

precision floating-point values will be in Digital's D_FLOAT
representation.

ALPHAVMSg_DECODING Indicates DEC Alpha running OpenVMS data representation. Double-

precision floating-point values will be in Digital's G_FLOAT
representation.

ALPHAVMSi_DECODING Indicates DEC Alpha running OpenVMS data representation. Double-

precision floating-point values will be in IEEE representation.

ALPHAOSF1_DECODING Indicates DEC Alpha running OSF/1 data representation.

SUN_DECODING Indicates SUN data representation.

SGi_DECODING Indicates Silicon Graphics Iris and Power Series data representation.

DECSTATION_DECODING Indicates DECstation data representation.

IBMRS_DECODING Indicates IBMRS data representation (IBM RS6000 series).

HP_DECODING Indicates HP data representation (HP 9000 series).

IBMPC_DECODING Indicates Intel i386 data representation.

NeXT_DECODING Indicates NeXT data representation.

MAC_DECODING Indicates Macintosh data representation.

ARM_LITTLE_DECODING Indicates ARM architecture in little-endian data representation.

ARM_BIG_DECODING Indicates ARM architecture in big-endian data representation.

IA64VMSi_DECODING Indicates Itanium 64 running OpenVMS data representation. Double-

precision floating-point values are encoded in IEEE representation.

IA64VMSd_DECODING Indicates Itanium 64 running OpenVMS data representation. Double-

precision floating-point values are encoded in Digital's D_FLOAT
representation.

IA64VMSg_DECODING Indicates Itanium 64 running OpenVMS data representation. Double-

precision floating-point values are encoded in Digital's G_FLOAT
representation.

The default decoding is HOST_DECODING. The other decodings may be selected via the Internal Interface with the
<SELECT_,CDF_DECODING_> operation. The Concepts chapter in the CDF User's Guide describes those situations
in which a decoding other than HOST_DECODING may be desired.

16

4.8 Variable Majorities

A CDF's variable majority determines the order in which variable values (within the variable arrays) are stored in the
CDF file(s). The majority is the same for rVariable and zVariables.

ROW_MAJOR C-like array ordering for variable storage. The first dimension in each
variable array varies the slowest. This is the default.

COLUMN_MAJOR Fortran-like array ordering for variable storage. The first dimension in each

variable array varies the fastest.

Knowing the majority of a CDF's variables is necessary when performing hyper reads and writes. During a hyper read
the CDF library will place the variable data values into the memory buffer in the same majority as that of the variables.
The buffer must then be processed according to that majority. Likewise, during a hyper write, the CDF library will expect
to find the variable data values in the memory buffer in the same majority as that of the variables.

The majority must also be considered when performing sequential reads and writes. When sequentially reading a
variable, the values passed out by the CDF library will be ordered according to the majority. When sequentially writing
a variable, the values passed into the CDF library are assumed (by the CDF library) to be ordered according to the
majority.

As with hyper reads and writes, the majority of a CDF's variables affect multiple variable reads and writes. When
performing a multiple variable write, the full-physical records in the buffer passed to the CDF library must have the
CDF's variable majority. Likewise, the full-physical records placed in the buffer by the CDF library during a multiple
variable read will be in the CDF's variable majority.

For C applications the compiler-defined majority for arrays is row major. The first dimension of multi-dimensional
arrays varies the slowest in memory.

4.9 Record/Dimension Variances

Record and dimension variances affect how variable data values are physically stored.

VARY True record or dimension variance.

NOVARY False record or dimension variance.

If a variable has a record variance of VARY, then each record for that variable is physically stored. If the record variance
is NOVARY, then only one record is physically stored. (All of the other records are virtual and contain the same values.)

If a variable has a dimension variance of VARY, then each value/subarray along that dimension is physically stored. If
the dimension variance is NOVARY, then only one value/subarray along that dimension is physically stored. (All other
values/subarrays along that dimension are virtual and contain the same values.)

4.10 Compressions

17

The following types of compression for CDFs and variables are supported. For each, the required parameters are also
listed. The Concepts chapter in the CDF User's Guide describes how to select the best compression type/parameters for
a particular data set. Among the avaialable compression types, GZIP provides the best result.

NO_COMPRESSION No compression.

RLE_COMPRESSION Run-length encoding compression. There is one parameter.

1. The style of run-length encoding. Currently, only the run-length
encoding of zeros is supported. This parameter must be set to
RLE_OF_ZEROs.

HUFF_COMPRESSION Huffman compression. There is one parameter.

1. The style of Huffman encoding. Currently, only optimal encoding trees
are supported. An optimal encoding tree is determined for each block
of bytes being compressed. This parameter must be set to
OPTIMAL_ENCODING_TREES.

AHUFF_COMPRESSION Adaptive Huffman compression. There is one parameter.

1. The style of adaptive Huffman encoding. Currently, only optimal
encoding trees are supported. An optimal encoding tree is determined
for each block of bytes being compressed. This parameter must be set
to OPTIMAL_ENCODING_TREES.

GZIP_COMPRESSION Gnu's “zip" compression.9 There is one parameter.

1. The level of compression. This may range from 1 to 9. 1 provides the

least compression and requires less execution time. 9 provide the most
compression but require the most execution time. Values in-between
provide varying compromises of these two extremes. 6 likely provides a
better balance between compression and execution.

4.11 Sparseness

4.11.1 Sparse Records

The following types of sparse records for variables are supported.

NO_SPARSERECORDS No sparse records.

PAD_SPARSERECORDS Sparse records - the variable's pad value is used when reading values from

a missing record.

PREV_SPARSERECORDS Sparse records - values from the previous existing record are used when
reading values from a missing record. If there is no previous existing record
the variable's pad value is used.

9 Disabled for PC running 16-bit DOS/Windows 3.x.

18

4.11.2 Sparse Arrays

The following types of sparse arrays for variables are supported.10

NO_SPARSEARRAYS No sparse arrays.

4.12 Attribute Scopes

Attribute scopes are simply a way to explicitly declare the intended use of an attribute by user applications (and the CDF
toolkit).

GLOBAL_SCOPE Indicates that an attribute's scope is global (applies to the CDF as a whole).

VARIABLE_SCOPE Indicates that an attribute's scope is by variable. (Each rEntry or zEntry

corresponds to an rVariable or zVariable, respectively.)

4.13 Read-Only Modes

Once a CDF has been opened, it may be placed into a read-only mode to prevent accidental modification (such as when
the CDF is simply being browsed). Read-only mode is selected via the Internal Interface using the
<SELECT_,CDF_READONLY_MODE_> operation. When read-only mode is set, all metadata is read into memory for
future reference. This improves overall metadata access performance but is extra overhead if metadata is not needed.
Note that if the CDF is modified while not in read-only mode, subsequently setting read-only mode in the same session
will not prevent future modifications to the CDF.

READONLYon Turns on read-only mode.

READONLYoff Turns off read-only mode.

4.14 zModes

Once a CDF has been opened, it may be placed into one of two variations of zMode. zMode is fully explained in the
Concepts chapter in the CDF User's Guide. A zMode is selected for a CDF via the Internal Interface using the
<SELECT_,CDF_zMODE_> operation.

zMODEoff Turns off zMode.

zMODEon1 Turns on zMode/1.

10 Obviously, sparse arrays are not (and will not be) supported.

19

zMODEon2 Turns on zMode/2.

4.15 -0.0 to 0.0 Modes
Once a CDF has been opened, the CDF library may be told to convert -0.0 to 0.0 when read from or written to that CDF.
This mode is selected via the Internal Interface using the <SELECT_,CDF_NEGtoPOSfp0_MODE_> operation.

NEGtoPOSfp0on Convert -0.0 to 0.0 when read from or written to a CDF.

NEGtoPOSfp0off Do not convert -0.0 to 0.0 when read from or written to a CDF.

4.16 Operational Limits

These are limits within the CDF library. If you reach one of these limits, please contact CDF User Support.

CDF_MAX_DIMS Maximum number of dimensions for the rVariables or a zVariable.

CDF_MAX_PARMS Maximum number of compression or sparseness parameters.

The CDF library imposes no limit on the number of variables, attributes, or attribute entries that a CDF may have. on the
PC, however, the number of rVariables and zVariables will be limited to 100 of each in a multi-file CDF because of the
8.3 naming convention imposed by MS-DOS.

4.17 Limits of Names and Other Character Strings

CDF_PATHNAME_LEN Maximum length of a CDF file name (excluding the NUL11 terminator and
the .cdf or .vnn appended by the CDF library to construct file names). A
CDF file name may contain disk and directory specifications that conform
to the conventions of the operating systems being used (including logical
names on OpenVMS systems and environment variables on UNIX
systems).

CDF_VAR_NAME_LEN256 Maximum length of a variable name (excluding the NUL terminator).

CDF_ATTR_NAME_LEN256 Maximum length of an attribute name (excluding the NUL terminator).

CDF_COPYRIGHT_LEN Maximum length of the CDF Copyright text (excluding the NUL

terminator).

CDF_STATUSTEXT_LEN Maximum length of the explanation text for a status code (excluding the

NUL terminator).

11 The ASCII null character, 0x0.

20

4.18 Backward File Compatibility with CDF 2.7

By default, a CDF file created by CDF V3.0 or a later release is not readable by any of the CDF releases before CDF
V3.0 (e.g. CDF 2.7.x, 2.6.x, 2.5.x, etc.). The file incompatibility is due to the 64-bit file offset used in CDF 3.0 and later
releases (to allow for files greater than 2G bytes). Note that before CDF 3.0, 32-bit file offset was used.

There are two ways to create a file that’s backward compatible with CDF 2.7 and 2.6, but not 2.5. Function
CDFsetFileBackward, can be called to control the backward compatibility from an application before a CDF file is
created (e.g. via CDFcreateCDF). This function takes an argument to control the backward file compatibility. Passing
a flag value of BACKWARDFILEon, defined in cdf.h, to the function will make the new files being created to be
backward compatible. The created files are of version V2.7.2, not V3.*. This option is useful for those who wish to
create and share files with colleagues who still use a CDF V2.6/V2.7 library. If this option is specified, the maximum
file size is limited to 2G bytes. Passing a flag value of BACKWARDFILEoff, also defined in cdf.h, will use the default
file creation mode and the newly created files will not be backward compatible with older libraries. The created files are
of version 3.* and thus their file sizes can be greater than 2G bytes. Not calling this function has the same effect of
calling the function with an argument value of BACKWARDFILEoff.

The following example uses the Internal Interface to create two CDF files: “MY_TEST1.cdf” is a V3.* file while
“MY_TEST2.cdf” a V2.7 file. Alternatively, the Standard Interface function CDFcreateCDF can be used for the file
creation.

.

.
#include "cdf.h"
.
.
CDFid id1, id2; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long numDims = 0; /* Number of dimensions. */
long dimSizes[1] = {0}; /* Dimension sizes. */
.
.
status = CDFlib (CREATE_, CDF_, “MY_TEST1”, numDims, dimSizes, &id1,
 NULL_);
if (status != CDF_OK) UserStatusHandler (status);
.
.
CDFsetFileBackward(BACKWARDFILEon);
status = CDFlib (CREATE_, CDF_, “MY_TEST2”, numDims, dimSizes, &id2,
 NULL_);
if (status != CDF_OK) UserStatusHandler (status);
.
.

Another method is through an environment variable and no function call is needed (and thus no code change involved in
any existing applications). The environment variable, CDF_FILEBACKWARD on all Unix platforms and Windows,
or CDF$FILEBACKWARD on Open/VMS, is used to control the CDF file backward compatibility. If its value is set
to “TRUE”, all new CDF files are backward compatible with CDF V2.7 and 2.6. This applies to any applications or
CDF tools dealing with creation of new CDFs. If this environment variable is not set, or its value is set to anything other
than “TRUE”, any files created will be of the CDF 3.* version and these files are not backward compatible with the CDF
2.7.2 or earlier versions .

21

Normally, only one method should be used to control the backward file compatibility. If both methods are used, the
function call through CDFsetFileBackward will take the precedence over the environment variable.

You can use the CDFgetFileBackward function to check the current value of the backward-file-compatibility flag. It
returns 1 if the flag is set (i.e. create files compatible with V2.7 and 2.6) or 0 otherwise.

#include "cdf.h"
.
.
CDFstatus status; /* Returned status code. */
.
flag = CDFgetFileBackward();

4.19 Checksum

To ensure the data integrity while transferring CDF files from/to different platforms at different locations, the checksum
feature was added in CDF V3.2 as an option for the single-file format CDF files (not for the multi-file format). By
default, the checksum feature is not turned on for new files. Once the checksum bit is turned on for a particular file, the
data integrity check of the file is performed every time it is open; and a new checksum is computed and stored when it is
closed. This overhead (performance hit) may be noticeable for large files. Therefore, it is strongly encouraged to turn
off the checksum bit once the file integrity is confirmed or verified.

If the checksum bit is turned on, a 16-byte signature message (a.k.a. message digest) is computed from the entire file and
appended to the end of the file when the file is closed (after any create/write/update activities). Every time such file is
open, other than the normal steps for opening a CDF file, this signature, serving as the authentic checksum, is used for
file integrity check by comparing it to the re-computed checksum from the current file. If the checksums match, the file’s
data integrity is verified. Otherwise, an error message is issued. Currently, the valid checksum modes are:
NO_CHECKSUM and MD5_CHECKSUM, both defined in cdf.h. With MD5_CHECKSUM, the MD5 algorithm is
used for the checksum computation. The checksum operation can be applied to CDF files that were created with V2.7
or later.

There are several ways to add or remove the checksum bit. One way is to use the Interface call (Standard or Internal)
with a proper checksum mode. Another way is through the environment variable. Finally, CDFedit and CDFconvert
(CDF tools included as part of the standard CDF distribution package) can be used for adding or removing the checksum
bit. Through the Interface call, you can set the checksum mode for both new or existing CDF files while the environment
variable method only allows to set the checksum mode for new files.

See Section 6.2.5 and 6.2.26 for the Standards Interface functions and Section 7.6 for the Internal Interface functions.
The environment variable method requires no function calls (and thus no code change is involved for existing
applications). The environment variable CDF_CHECKSUM on all Unix platforms and Windows, or
CDF$CHECKSUM on Open/VMS, is used to control the checksum option. If its value is set to “MD5”, all new CDF
files will have their checksum bit set with a signature message produced by the MD5 algorithm. If the environment
variable is not set or its value is set to anything else, no checksum is set for the new files.

The following example uses the Internal Interface to set a new CDF file with the MD5 checksum and set another existing
file’s checksum to none.

.

.
#include "cdf.h"
.
.
CDFid id1, id2; /* CDF identifier. */
CDFstatus status; /* Returned status code. */

22

long numDims = 0; /* Number of dimensions. */
long dimSizes[1] = {0}; /* Dimension sizes. */
long checksum; /* Checksum code. */
.
.
status = CDFlib (CREATE_, CDF_, “MY_TEST1”, numDims, dimSizes, &id1,
 NULL_);
if (status != CDF_OK) UserStatusHandler (status);
.
.
checksum = MD5_CHECKSUM;
status = CDFlib (SELECT_, CDF_, id1,
 PUT_, CDF_CHECKSUM_, checksum,
 NULL_);
if (status != CDF_OK) UserStatusHandler (status);
.
status = CDFlib (OPEN_, CDF_, “MY_TEST2”, &id2,
 NULL_);
if (status != CDF_OK) UserStatusHandler (status);
.
.
checksum = NO_CHECKSUM;
status = CDFlib (SELECT_, CDF_, id2,
 PUT_, CDF_CHECKSUM_, checksum,
 NULL_);
if (status != CDF_OK) UserStatusHandler (status);
.
.

Alternatively, the Standard Interface function CDFsetChecksum can be used for the same purpose.

The following example uses the Internal Interface whether the checksum mode is enabled for a CDF.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long checksum; /* Checksum code. */
.
.
status = CDFlib (OPEN_, CDF_, “MY_TEST1”, &id,
 NULL_);
if (status != CDF_OK) UserStatusHandler (status);
.
.
status = CDFlib (SELECT_, CDF_, id,
 GET_, CDF_CHECKSUM_, &checksum,
 NULL_);
if (status != CDF_OK) UserStatusHandler (status);
if (checksum == MD5_CHECKSUM) {
 …..
}

23

.

Alternatively, the Standard Interface function CDFgetChecksum can be used for the same purpose.

4.20 Data Validation

To ensure the data integrity from CDF files and secure operation of CDF-based applications, a data validaion feature is
added while a CDF file is opened. This process, as the default, performs sanity checks on the data fields in the CDF
internal data structures to make sure that the values are within ranges and consistnent with the defined
values/types/entries. It also tries to ensure that the linked lists.within the file that connect the attributes and variables are
not broken or short-circuited. Any compromised CDF files, if not validated properly, could cause applications to function
unexpectedly, e.g., segmentation fault due to a buffer overflow. The main purpose of this feature is to safe-guard the CDF
operations: catch any bad data in the file and end the application gracefully if any bad data is identified. An overhead
(performance hit) is expected and it may be noticeable for large or very fragmented files. Therefore, it is advised that this
feature be turned off once a file’s integrity is confirmed or verified. Or, the file in question may need a file conversion,
which will consolidate the interna; data structures and eliminate the fragmentations. Check the cdfconvert tool program
in the CDF User’s Guide.12

This validation feature is controlled by the setting /unseting the environment variable CDF_VALIDATE on all Unix
platforms, Mac OS X and Windows, or CDF$VALIDATE on Open/VMS. If its value is not set or set to “yes”, all open
CDF files are subjected to this data validation process. If the environment variable is set to “no”, then no validation is
perfomed. The environment variable can be set at logon or through command line, which becomes in effective during
terminal session, or by an application, which is good only while the application is run. Setting the environment variable,
CDFsetValidate, at application level will overwrite the setup from the command line. The validation is set to be on
when VALIDATEFILEon is passed into as the argument. VALIDATEFILEoff will set off the validation.
CDFgetValidate will return the validation mode, 1 (one) means data being validated, o (zero) otherwise. If the
environment variable is not set, the default is to have the data validated when a CDF file is open.

The following example sets the data validation on when the CDF file, “TEST”, is open.

.
#include ‘cdf.h’
.
.
CDFid id /* CDF identifier. */
CDFstatus status /* Returned status code. */
.
.
CDFsetValidate (VALIDATEFILEon)
status = CDF_lib (OPEN_, CDF_, “TEST”, &id,

 NULL_)
if (status .NE. CDF_OK) UserStatusHandler (status)

.
.

The following example turns off the data validation when the CDF file, “TEST” is open.
.
.
#include ‘cdf.h`
.
.

12 The data validation during the open process will not check the variable data. It is still possible that data could be
corrupted, especially compression is involved. To fully validate a CDF file, use cdfdump tool with “-detect” switch.

24

CDFid id /* CDF identifier. */
CDFstatus status /* Returned status code. */
.
.
CDFsetValidate (VALIDATEFILEoff)
status = CDF_lib (OPEN_, CDF_, “TEST”, &id,

 NULL_)
if (status .NE. CDF_OK) UserStatusHandler (status)

.

4.21 8-Byte Integer

Both data types of CDF_INT8 and CDF_TIME_TT2000 use 8-byes signed integer. While there are several ways to define
such integer by various C compilers on various platforms, “long long” appears to be accepted by all ports that support
CDF. This is the data type that CDF library uses for these two CDF data types.

4.22 UTF-8 Encoding

From CDF V3.8.1, the character support in CDF has been expanded from ASCII only to Unicode with UTF-8 encoding.
The character string is still in “char *” form with either CDF_CHAR or CDF_UCHAR data type. The number of
elements becomes the number of bytes (returned from C’s strlen function from a NUL-terminating string), not the
number of characters. It is expected that the string data writing to CDF is in UTF-8 encoding form. However, it is not
currently enforced in case users still use character data type for binary data (instead of CDF_UINT1 or
CDF_BYTE/CDF_INT1).

In order to display non-ASCII characters from CDF, the locale needs to be properly set in C applications. On Linux/Mac
OS, the environment variable for LANG is defined as “en_US.UTF-8” or something similar. To set the locale to use this
default, have this statement:

setlocale (LC_CTYPE, “”);
in the application. Or, use the specified locale in the statement.

On Windows, to show the UTF-8 encoded characters, set the code page to 65001 and have this statement in the
application:

setlocale (LC_CTYPE, “.UTF8”);

On Windows command terminal, not all UTF-8 characters will be displayed properly. Installing Microsoft’s newer
Windows Terminal application (on Windows 10), a different terminal that fully supports UTF-8 encoding, will resolve
the display problem. This application is freely available from Microsoft store or GitHub. It will run on PowerShell. The
CDF binary distribution will include several .ps1 scripts, different flavors of .bat for command Windows, to help set up
proper system input/output, enviromnet variables within PowerShell to allow easy access the tool programs and other
libraries.

25

Chapter 5

5 Standard Interface

The Standard Interface functions described in this chapter represents the original Standard Interface functions. As most
of them were developed when CDF was first introduced in early 90’s and they only provide a very limited functionality
within the CDF library. For example, it can not handle zVariables thoroughly and has no access to attribute’s entry
corresponding to the zVariables (zEntries). If you want to create or access zVariables and zEntries, you must use the
newer Standard Interface functions (a new feature in CDF Version 3.1) in Chapter 6 or the Internal Interface described
in Chapter 7.

Standard Interface functions are easier-to-use and require a much shorter learning curve than the Internal Interface, but
they are not as efficient as Internal Interface. If you are not familiar with Internal Interface, the use of Standard Interface
is recommended.

There are two types of variables (rVariable and zVariable) in CDF, and they can happily coexist in a CDF: Every
rVariable in a CDF must have the same number of dimensions and dimension sizes while each zVariable can have its
own dimensionality. Since all the rVariables in a CDF must have the same dimensions and dimension sizes, there'll be
a lot of disk space wasted if a few variables need big arrays and many variables need small arrays. Since zVariable is
more efficient in terms of storage and offers more functionality than rVariable, use of zVariable is strongly
recommended. As a matter of fact, there’s no reason to use rVariables at all if you are creating a CDF file from scratch.
One may wonder why there are rVariables and zVariables, not just zVariables. When CDF was first introduced, only
rVariables were available. The inefficiencies with rVariables were quickly realized and addressed with the introduction
of zVariables in later CDF releases.

The following sections describe the original Standard Interface functions callable from C applications. Most functions
return a status code of type CDFstatus (see Chapter 8). The Internal Interface is described in Chapter 7. An application
can use either or both interfaces when necessary.

Each section begins with a function prototype for the routine being described. The include file cdf.h contains the same
function prototypes (as well as function prototypes for the Internal Interface and EPOCH utility routines). Note that
many of the Standard Interface functions in this chapter are implemented as macros (which call the Internal Interface).

5.1 CDFattrCreate13

CDFstatus CDFattrCreate(/* out -- Completion status code. */

13 Same as CDFcreateAttr.

26

CDFid id, /* in -- CDF identifier. */
char *attrName, /* in -- Attribute name. */
long attrScope, /* in -- Scope of attribute. */
long *attrNum); /* out -- Attribute number. */

CDFattrCreate creates an attribute in the specified CDF. An attribute with the same name must not already exist in the
CDF.

The arguments to CDFattrCreate are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

attrName Name of the attribute to create. This may be at most CDF_ATTR_NAME_LEN256

characters (excluding the NUL terminator). Attribute names are case-sensitive.

attrScope Scope of the new attribute. Specify one of the scopes described in Section 4.12.

attrNum Number assigned to the new attribute. This number must be used in subsequent CDF

function calls when referring to this attribute. An existing attribute's number may be
determined with the CDFgetAttrNum function.

5.1.1 Example(s)

The following example creates two attributes. The TITLE attribute is created with global scope - it applies to the entire
CDF (most likely the title of the data set stored in the CDF). The Units attribute is created with variable scope - each
entry describes some property of the corresponding variable (in this case the units for the data).

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
static char UNITSattrName[] = {"Units"}; /* Name of "Units" attribute. */
long UNITSattrNum; /* "Units" attribute number. */
long TITLEattrNum; /* "TITLE" attribute number. */
static long TITLEattrScope = GLOBAL_SCOPE; /* "TITLE" attribute scope. */
.
.
status = CDFattrCreate (id, "TITLE", TITLEattrScope, &TITLEattrNum);
if (status != CDF_OK) UserStatusHandler (status);
status = CDFattrCreate (id, UNITSattrName, VARIABLE_SCOPE, &UNITSattrnum);
if (status != CDF_OK) UserStatusHandler (status);
.
.

27

5.2 CDFattrEntryInquire

CDFstatus CDFattrEntryInquire(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long attrNum, /* in -- Attribute number. */
long entryNum, /* in -- Entry number. */
long *dataType, /* out -- Data type. */
long *numElements); /* out -- Number of elements (of the data type). */

CDFattrEntryInquire is used to inquire about a specific attribute entry. To inquire about the attribute in general, use
CDFattrInquire. CDFattrEntryInquire would normally be called before calling CDFattrGet in order to determine the data
type and number of elements (of that data type) for an entry. This would be necessary to correctly allocate enough
memory to receive the value read by CDFattrGet.

The arguments to CDFattrEntryInquire are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

attrNum Attribute number for which to inquire an entry. This number may be determined with a

call to CDFattrNum (see Section 5.5).

entryNum Entry number to inquire. If the attribute is global in scope, this is simply the gEntry number

and has meaning only to the application. If the attribute is variable in scope, this is the
number of the associated rVariable (the rVariable being described in some way by the
rEntry).

dataType Data type of the specified entry. The data types are defined in Section 4.5.

NumElements Number of elements of the data type. For character data types (CDF_CHAR and

CDF_UCHAR), this is the number of characters in the string (An array of characters). For
all other data types this is the number of elements in an array of that data type.

5.2.1 Example(s)

The following example returns each entry for an attribute. Note that entry numbers need not be consecutive - not every
entry number between zero (0) and the maximum entry number must exist. For this reason NO_SUCH_ENTRY is an
expected error code. Note also that if the attribute has variable scope, the entry numbers are actually rVariable numbers.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long attrN; /* attribute number. */
long entryN; /* Entry number. */
char attrName[CDF_ATTR_NAME_LEN256+1];

/* attribute name, +1 for NUL terminator. */
long attrScope; /* attribute scope. */
long maxEntry; /* Maximum entry number used. */

28

long dataType; /* Data type. */
long numElems; /* Number of elements (of the data type). */
.
.
attrN = CDFgetAttrNum (id, "TMP");
if (attrN < CDF_OK) UserStatusHandler (attrN);
status = CDFattrInquire (id, attrN, attrName, &attrScope, &maxEntry);
if (status != CDF_OK) UserStatusHandler (status);

for (entryN = 0; entryN <= maxEntry; entryN++) {
 status = CDFattrEntryInquire (id, attrN, entryN, &dataType, &numElems);
 if (status < CDF_OK) {
 if (status != NO_SUCH_ENTRY) UserStatusHandler (status);
 }
 else {
 /* process entries */
 .
 .
 }
}

5.3 CDFattrGet14

CDFstatus CDFattrGet(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long attrNum, /* in -- Attribute number. */
long entryNum, /* in -- Entry number. */
void *value); /* out -- Attribute entry value. */

CDFattrGet is used to read an attribute entry from a CDF. In most cases it will be necessary to call CDFattrEntryInquire
before calling CDFattrGet in order to determine the data type and number of elements (of that data type) for the entry.

The arguments to CDFattrGet are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

attrNum Attribute number. This number may be determined with a call to CDFattrNum (Section 5.5).

entryNum Entry number. If the attribute is global in scope, this is simply the gEntry number and has

meaning only to the application. If the attribute is variable in scope, this is the number of the
associated rVariable (the rVariable being described in some way by the rEntry).

value Value read. This buffer must be large enough to hold the value. The function

CDFattrEntryInquire would be used to determine the entry data type and number of elements
(of that data type). The value is read from the CDF and placed into memory at address value.

14 An original Standard Interface function. While it is still available in V3.1, CDFgetAttrgEntry or CDFgetAttrrEntry is
the preferred name for it.

29

5.3.1 Example(s)

The following example displays the value of the UNITS attribute for the rEntry corresponding to the PRES_LVL
rVariable (but only if the data type is CDF_CHAR). Note that the CDF library does not automatically NUL terminate
character data (when the data type is CDF_CHAR or CDF_UCHAR) for attribute entries (or variable values).

.

.

#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long attrN; /* Attribute number. */
long entryN; /* Entry number. */
long dataType; /* Data type. */
long numElems; /* Number of elements (of data type). */
void *buffer; /* Buffer to receive value. */
.
.
attrN = CDFattrNum (id, "UNITS");
if (attrN < CDF_OK) UserStatusHandler (attrN);
entryN = CDFvarNum (id, "PRES_LVL"); /* The rEntry number is the rVariable number. */

if (entryN < CDF_OK) UserStatusHandler (entryN);
status = CDFattrEntryInquire (id, attrN, entryN, &dataType, &numElems);

if (status != CDF_OK) UserStatusHandler (status);
if (dataType == CDF_CHAR) {
 buffer = (char *) malloc (numElems + 1);
 if (buffer == NULL)...

 status = CDFattrGet (id, attrN, entryN, buffer);
 if (status != CDF_OK) UserStatusHandler (status);

 buffer[numElems] = '\0'; /* NUL terminate. */

 printf ("Units of PRES_LVL variable: %s\n", buffer);

 free (buffer);
}
.
.

5.4 CDFattrInquire15

15 An original Standard Interface function. While it is still available in V3.1, CDFinquireAttr is the preferred name for
it.

30

CDFstatus CDFattrInquire(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long attrNum, /* in -- Attribute number. */
char *attrName, /* out -- Attribute name. */
long *attrScope, /* out -- Attribute scope. */
long *maxEntry); /* out -- Maximum gEntry or rEntry number. */

CDFattrInquire is used to inquire about the specified attribute. To inquire about a specific attribute entry, use
CDFattrEntryInquire.

The arguments to CDFattrInquire are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

attrNum Number of the attribute to inquire. This number may be determined with a call to

CDFattrNum (see Section 5.5).

attrName Attribute's name. This character string must be large enough to hold

CDF_ATTR_NAME_LEN256 + 1 characters (including the NUL terminator).

attrScope Scope of the attribute. Attribute scopes are defined in Section 4.12.

maxEntry For gAttributes this is the maximum gEntry number used. For vAttributes this is the

maximum rEntry number used. In either case this may not correspond with the number of
entries (if some entry numbers were not used). The number of entries actually used may be
inquired with the CDFlib function (see Section 7). If no entries exist for the attribute, then a
value of -1 will be passed back.

5.4.1 Example(s)

The following example displays the name of each attribute in a CDF. The number of attributes in the CDF is first
determined using the function CDFinquire. Note that attribute numbers start at zero (0) and are consecutive.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long numDims; /* Number of dimensions. */
long dimSizes[CDF_MAX_DIMS]; /* Dimension sizes (allocate to allow the maximum

 number of dimensions). */
long encoding; /* Data encoding. */
long majority; /* Variable majority. */
long maxRec; /* Maximum record number in CDF. */
long numVars; /* Number of variables in CDF. */
long numAttrs; /* Number of attributes in CDF. */
long attrN; /* attribute number. */
char attrName[CDF_ATTR_NAME_LEN256+1];

/* attribute name -- +1 for NUL terminator. */
long attrScope; /* attribute scope. */

31

long maxEntry; /* Maximum entry number. */
.
.
status = CDFinquire (id, &numDims, dimSizes, &encoding, &majority, &maxRec, &numVars, &numAttrs);
if (status != CDF_OK) UserStatusHandler (status);
for (attrN = 0; attrN < numAttrs; attrN++) {
 status = CDFattrInquire (id, attrN, attrName, &attrScope, &maxEntry);
 if (status < CDF_OK) /* INFO status codes ignored. */
 UserStatusHandler (status);
 else
 printf ("%s\n", attrName);
}
.
.

5.5 CDFattrNum16

long CDFattrNum(/* out -- attribute number. */
CDFid id, /* in -- CDF id */
char *attrName); /* in -- Attribute name */

CDFattrNum is used to determine the attribute number associated with a given attribute name. If the attribute is found,
CDFattrNum returns its number - which will be equal to or greater than zero (0). If an error occurs (e.g., the attribute
name does not exist in the CDF), an error code (of type CDFstatus) is returned. Error codes are less than zero (0).

The arguments to CDFattrNum are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

attrName Name of the attribute for which to search. This may be at most CDF_ATTR_NAME_LEN256

characters (excluding the NUL terminator). Attribute names are case-sensitive.

CDFattrNum may be used as an embedded function call when an attribute number is needed.

5.5.1 Example(s)

In the following example the attribute named pressure will be renamed to PRESSURE with CDFattrNum being used as
an embedded function call. Note that if the attribute pressure did not exist in the CDF, the call to CDFattrNum would
have returned an error code. Passing that error code to CDFattrRename as an attribute number would have resulted in
CDFattrRename also returning an error code.

.

.
#include "cdf.h"
.

16 An original Standard Interface function. While it is still available in V3.1, CDFgetAttrNum is the preferred name for
it.

32

.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
.
.
status = CDFattrRename (id, CDFattrNum(id,"pressure"), "PRESSURE");
if (status != CDF_OK) UserStatusHandler (status);

5.6 CDFattrPut

CDFstatus CDFattrPut(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long attrNum, /* in -- Attribute number. */
long entryNum, /* in -- Entry number. */
long dataType, /* in -- Data type of this entry. */
long numElements, /* in -- Number of elements (of the data type). */
void *value); /* in -- Attribute entry value. */

CDFattrPut is used to write an entry to a global or rVariable attribute in a CDF. The entry may or may not already exist.
If it does exist, it is overwritten. The data type and number of elements (of that data type) may be changed when
overwriting an existing entry.

The arguments to CDFattrPut are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopen.

attrNum Attribute number. This number may be determined with a call to CDFgetAttrNum.

entryNum Entry number. If the attribute is global in scope, this is simply the gEntry number and

has meaning only to the application. If the attribute is variable in scope, this is the
number of the associated rVariable (the rVariable being described in some way by the
rEntry).

dataType Data type of the specified entry. Specify one of the data types defined in Section 4.5.

numElements Number of elements of the data type. For character data types (CDF_CHAR and

CDF_UCHAR), this is the number of characters in the string (an array of characters).
For all other data types this is the number of elements in an array of that data type.

value Value(s) to write. The entry value is written to the CDF from memory address value.

5.6.1 Example(s)

The following example writes two attribute entries. The first is to gEntry number zero (0) of the gAttribute TITLE. The
second is to the variable scope attribute VALIDs for the rEntry that corresponds to the rVariable TMP.

.

.

33

#include "cdf.h"
.
.
#define TITLE_LEN 10 /* Length of CDF title. */
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long entryNum; /* Entry number. */
long numElements; /* Number of elements (of data type). */
static char title[TITLE_LEN+1] = {"CDF title."}; /* Value of TITLE attribute, entry number 0. */

static short TMPvalids[2] = {15,30}; /* Value(s) of VALIDs attribute,

 rEntry for rVariable TMP. */
.
.
entryNum = 0;
status = CDFattrPut (id, CDFgetAttrNum(id,"TITLE"), entryNum, CDF_CHAR, TITLE_LEN, title);
if (status != CDF_OK) UserStatusHandler (status);
.
.
numElements = 2;
status = CDFattrPut (id, CDFgetAttrNum(id,"VALIDs"), CDFgetVarNum(id,"TMP"),
 CDF_INT2, numElements, TMPvalids);
if (status != CDF_OK) UserStatusHandler (status);
.
.

5.7 CDFattrRename17

CDFstatus CDFattrRename(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long attrNum, /* in -- Attribute number. */
char *attrName); /* in -- New attribute name. */

CDFattrRename is used to rename an existing attribute. An attribute with the new name must not already exist in the
CDF.

The arguments to CDFattrRename are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

attrNum Number of the attribute to rename. This number may be determined with a call to

CDFattrNum (see Section 5.5).

attrName New attribute name. This may be at most CDF_ATTR_NAME_LEN256 characters

(excluding the NUL terminator). Attribute names are case-sensitive.

17 An original Standard Interface function. While it is still available in V3.1, CDFrenameAttr is the preferred name for
it.

34

5.7.1 Example(s)

In the following example the attribute named LAT is renamed to LATITUDE.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
.
.
status = CDFattrRename (id, CDFgetAttrNum(id,"LAT"), "LATITUDE");
if (status != CDF_OK) UserStatusHandler (status);
.
.

5.8 CDFclose

CDFstatus CDFclose(/* out -- Completion status code. */
CDFid id); /* in -- CDF identifier. */

CDFclose closes the specified CDF. The CDF's cache buffers are flushed; the CDF's open file is closed (or files in the
case of a multi-file CDF); and the CDF identifier is made available for reuse.

NOTE: You must close a CDF with CDFclose to guarantee that all modifications you have made will actually be written
to the CDF's file(s). If your program exits, normally or otherwise, without a successful call to CDFclose, the CDF's cache
buffers are left unflushed.

The arguments to CDFclose are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

5.8.1 Example(s)

The following example will close an open CDF.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */

35

.

.
status = CDFclose (id);
if (status != CDF_OK) UserStatusHandler (status);
.
.

5.9 CDFcreate

CDFstatus CDFcreate(/* out -- Completion status code. */
char *CDFname, /* in -- CDF file name. */
long numDims, /* in -- Number of dimensions, rVariables. */
long dimSizes[], /* in -- Dimension sizes, rVariables. */
long encoding, /* in -- Data encoding. */
long majority, /* in -- Variable majority. */
CDFid *id); /* out -- CDF identifier. */

CDFcreate creates a CDF as defined by the arguments. A CDF cannot be created if it already exists. (The existing CDF
will not be overwritten.) If you want to overwrite an existing CDF, you must first open it with CDFopen, delete it with
CDFdelete, and then recreate it with CDFcreate. If the existing CDF is corrupted, the call to CDFopen will fail. (An
error code will be returned.) In this case you must delete the CDF at the command line. Delete the dotCDF file (having
an extension of .cdf), and if the CDF has the multi-file format, delete all of the variable files (having extensions of .v0,.v1,.
. . and .z0,.z1,.. .).

The arguments to CDFcreate are defined as follows:

CDFname The file name of the CDF to create. (Do not specify an extension.) This may be at most
CDF_PATHNAME_LEN characters (excluding the NUL terminator). A CDF file name may
contain disk and directory specifications that conform to the conventions of the operating
system being used (including logical names on OpenVMS systems and environment variables
on UNIX systems).

UNIX: File names are case-sensitive.

numDims Number of dimensions the rVariables in the CDF are to have. This may be as few as zero (0)

and at most CDF_MAX_DIMS.

dimSizes Size of each dimension. Each element of dimSizes specifies the corresponding dimension

size. Each size must be greater then zero (0). For 0-dimensional rVariables this argument is
ignored (but must be present).

encoding The encoding for variable data and attribute entry data. Specify one of the encodings

described in Section 4.6.

majority The majority for variable data. Specify one of the majorities described in Section 4.8.

id Identifier for the created CDF. This identifier must be used in all subsequent operations on

the CDF.

When a CDF is created, both read and write access are allowed. The default format for a CDF created with CDFcreate
is specified in the configuration file of your CDF distribution. Consult your system manager for this default. The CDFlib
function (Internal Interface) may be used to change a CDF's format.

36

NOTE: CDFclose must be used to close the CDF before your application exits to ensure that the CDF will be correctly
written to disk (see Section 5.8).

5.9.1 Example(s)

The following example creates a CDF named “test1.cdf” with network encoding and row majority.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
static long numDims = 3; /* Number of dimensions, rVariables. */
static long dimSizes[3] = {180,360,10}; /* Dimension sizes, rVariables. */
static long majority = ROW_MAJOR; /* Variable majority. */
.
.
status = CDFcreate ("test1", numDims, dimSizes, NETWORK_ENCODING, majority, &id);
if (status != CDF_OK) UserStatusHandler (status);
.
.

ROW_MAJOR and NETWORK_ENCODING are defined in cdf.h.

5.10 CDFdelete

CDFstatus CDFdelete(/* out -- Completion status code. */
CDFid id); /* in -- CDF identifier. */

CDFdelete deletes the specified CDF. The CDF files deleted include the dotCDF file (having an extension of .cdf), and
if a multi-file CDF, the variable files (having extensions of .v0,.v1,. . . and .z0,.z1,.. .).

You must open a CDF before you are allowed to delete it. If you have no privilege to delete the CDF files, they will not
be deleted. If the CDF is corrupted and cannot be opened, the CDF file(s) must be deleted at the command line.

The arguments to CDFdelete are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

5.10.1 Example(s)

The following example will open and then delete an existing CDF.

37

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
.
.
status = CDFopen ("test2", &id);
if (status < CDF_OK) /* INFO status codes ignored. */
 UserStatusHandler (status);
else {
 status = CDFdelete (id);
 if (status != CDF_OK) UserStatusHandler (status);
}
.
.

5.11 CDFdoc
CDFstatus CDFdoc(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long *version, /* out -- Version number. */
long *release, /* out -- Release number. */
char *Copyright); /* out -- Copyright. */

CDFdoc is used to inquire general information about a CDF. The version/release of the CDF library that created the
CDF is provided (e.g., CDF V3.1 is version 3, release 1) along with the CDF Copyright notice. The Copyright notice is
formatted for printing without modification.

The arguments to CDFdoc are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

version The version number of the CDF library that created the CDF.

release The release number of the CDF library that created the CDF.

Copyright The Copyright notice of the CDF library that created the CDF. This character string must be

large enough to hold CDF_COPYRIGHT_LEN + 1 characters (including the NUL
terminator). This string will contain a newline character after each line of the Copyright
notice.

5.11.1 Example(s)

The following example returns and displays the version/release and Copyright notice.

.

38

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long version; /* CDF version number. */
long release; /* CDF release number. */
char Copyright[CDF_COPYRIGHT_LEN+1]; /* Copyright notice -- +1 for NUL terminator. */
.
.
status = CDFdoc (id, &version, &release, Copyright);
if (status < CDF_OK) /* INFO status codes ignored */
 UserStatusHandler (status);
else {
 printf ("CDF V%d.%d\n", version, release);
 printf("%s\n", Copyright);
}
.
.

5.12 CDFerror18

CDFstatus CDFerror(/* out -- Completion status code. */
CDFstatus status, /* in -- Status code. */
char *message); /* out -- Explanation text for the status code. */

CDFerror is used to inquire the explanation of a given status code (not just error codes). Chapter 8 explains how to
interpret status codes and Appendix A lists all of the possible status codes.

The arguments to CDFerror are defined as follows:

status Status code to check.

message The explanation of the status code. This character string must be large enough to

hold CDF_STATUSTEXT_LEN + 1 characters (including the NUL terminator).

5.12.1 Example(s)

The following example displays the explanation text if an error code is returned from a call to CDFopen.

.

.
#include "cdf.h"
.
.

18 An original Standard Interface function. While it is still available in V3.1, CDFgetStatusText is the preferred name
for it.

39

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
char text[CDF_STATUSTEXT_LEN+1]; /* Explanation text.+1 added for NUL terminator. */
.
.
status = CDFopen ("giss_wetl", &id);
if (status < CDF_WARN) { /* INFO and WARNING codes ignored. */
 CDFerror (status, text);
 printf ("ERROR> %s\n", text);
}
.
.

5.13 CDFgetrVarsRecordData19

CDFstatus CDFgetrVarsRecordData(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long varsNum, /* in -- The number of variables involved. */
char *varNames[], /* in -- The names of variables involved. */
long recNum, /* in -- The record number. */
void *buffer); /* out -- The data holding buffer. */

CDFgetrVarsRecordData reads an entire record from a specified record number for a number of the specified rVariables
in a CDF. This function provides an easier and higher level interface to acquire data for a group of variables, instead of
doing it one variable at a time if calling the lower-level function. The retrieved record data from the rVariable group is
added to the buffer. The specified variables are identified by their names. Use CDFgetrVarsRecordDatabyNumbers
function to perform the similar operation by providing the variable numbers, instead of the names.

The arguments to CDFgetrVarsRecordData are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopen.

varsNum Number of variables in the operation.

varNames Names of variables in the operation.

recNum Record number.

buffer Data holding buffer.

5.13.1 Example(s)

The following example will read an entire single record data for a group of rVariables. The CDF's rVariables are 2-
dimensional with sizes [2,2]. The rVariables involved in the read are Time, Longitude, Latitude, Temperature and
NAME. The record to be read is 4. Since the dimension variances for Time are [NONVARY,NONVARY], a scalar
variable of type int is allocated for its data type CDF INT4. For Longitude, a 1-dimensional array of type float (size

19 An original Standard Interface function.

40

[2]) is allocated for its dimension variances [VARY,NONVARY] and data type CDF REAL4. A similar allocation is
done for Latitude for its [NONVARY,VARY] dimension variances and CDF REAL4 data type. For Temperature,
since its [VARY,VARY] dimension variances and CDF REAL4 data type, a 2-dimensional array of type float is
allocated. For NAME, a 2-dimensional array of type char (size [2,10]) is allocated for its [VARY,NONVARY]
dimension variances and CDF CHAR data type with the number of element 10.

 .
 .
 #include "cdf.h"
 .
 .

 CDFid id; /* CDF identifier. */
 CDFstatus status; /* Returned status code. */
 long numVars = 5; /* Number of rVariables to read. */
 long varRecNum = 4; /* The record number to read data. */
 char *rVar1 = "Time", /* Names of the rVariables to read. */
 *rVar2 = "Longitude",
 *rVar3 = "Latitude",
 *rVar4 = "Temperature",
 *rVar5 = "NAME";
 char *varNames[5];

 void *buffer; /* Array of buffer pointers. */
 int time; /* rVariable: Time; Datatype: INT4. */
 /* Dim/Rec Variances: T/FF. */
 float longitude[2]; /* rVariable: Longitude; Datatype: REAL4. */
 /* Dim/Rec Variances: T/TF. */
 float latitude[2]; /* rVariable: Latitude; Datatype: REAL4. */
 /* Dim/Rec Variances: T/FT. */
 float temperature[2][2]; /* rVariable: Temperature; Datatype: REAL4. */
 /* Dim/Rec Variances: T/TT. */
 char name[2][10]; /* rVariable: Name; Datatype: CHAR/10. */
 /* Dim/Rec Variances: T/TF. */

 varNames[0] = rVar1; /* Name of each rVariable. */
 varNames[1] = rVar2;
 varNames[2] = rVar3;
 varNames[3] = rVar4;
 varNames[4] = rVar5;

 buffer = (void *) malloc(sizeof(time) + sizeof(longitude) + sizeof(latitude) + sizeof(temperature) + sizeof(name));

 status = CDFgetrVarsRecordData(id, numVars, varNames, varRecNum, buffer);
 if (status != CDF_OK) UserStatusHandler (status);

5.14 CDFgetzVarsRecordData
CDFstatus CDFgetzVarsRecordData(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long numVars, /* in -- Number of zVariables. */
char *varNames[], /* in -- Names of zVariables. */
long varRecNum, /* in -- Number of record. */

41

void *buffers[]; /* out – Array of buffers for holding data. */

CDFgetzVarsRecordData reads an entire record of the specified record number from the specified zVariables in a CDF.
This function provides an easier and higher level interface to acquire data from a group of variables, instead of reading
data one variable at a time. The retrieved record data from the zVariable group is put into the respective buffer. The
specified variables are identified by their names. Use the CDFgetzVarsRecordDatabyNumbers function to perform the
similar operation by providing the variable numbers, instead of the variable names.

The arguments to CDFgetzVarsRecordData are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate, CDFopen
or a similar CDF creation or opening functionality from the Internal Interface.

numVars Number of the zVariables in the group involved this read operation.

varNames Names of the zVariables from which to read data.

varRecNum Record number at which to read data.

buffers An array of buffers, each holding the retrieved data for the given zVariables. Each buffer should
be big enough to allow full physical record data to fill.

5.14.1 Example(s)

The following example will read an entire single record data for a group of zVariables: Time, Longitude, Delta and
Name. The record to be read is the sixth record that is record number 5 (record number starts at 0). For Longitude, a 1-
dimensional array of type short (size [3]) is given based on its dimension variance [VARY] and data type CDF_INT2.
For Delta, it is 2-dimensional of type int (sizes [3,2]) for its dimension variances [VARY,VARY] and data type
CDF_INT4. For zVariable Time, a 2-dimensional array of type unsigned int (size [3,2]) is needed. It has dimension
variances [VARY,VARY] and data type CDF_UINT4. For Name, a 2-dimensional array of type char (size [2,10]) is
allocated for its [VARY] dimension variances and CDF_CHAR data type with the number of element 10.

 .
 .
 #include "cdf.h"
 .
 .

 CDFid id; /* CDF identifier. */
 CDFstatus status; /* Returned status code. */
 long numVars = 4; /* Number of zVariables to read. */
 long varRecNum = 5; /* The record number to read data – 6th record */
 char *zVar1 = "Longitude", /* Names of the zVariables to read. */
 *zVar2 = "Delta",
 *zVar3 = "Time",
 *zVar4 = "Name";
 void **varNames; /* Nariable names array. */
 void **buffers; /* Array of buffers to hold the returned data. */
 unsigned int time[3][2]; /* zVariable: Time; Datatype: UINT4. */
 /* Dimensions: 2:[3,2]; Dim/Rec Variances: T/TT. */
 short longitude[3]; /* zVariable: Longitude; Datatype: INT2. */
 /* Dimensions: 1:[3]; Dim/Rec Variances: T/T. */
 int delta[3][2]; /* zVariable: Delta; Datatype: INT4. */

42

 /* Dimensions: 2:[3,2], Dim/Rec Variances: T/TT. */
 char name[2][10]; /* zVariable: Name; Datatype: CHAR/10. */
 /* Dimensions: 1:[2]; Dim/Rec Variances: T/T. */
 int i;

 varNames = (void **) malloc (4 * sizeof(char *));
 for (I = 0; I < 4; ++I)
 varNames[I] = (char *) malloc (CDF_VAR_NAME_LEN256+1);

 strcpy(varNames[0], zVar1); /* Name of each zVariable. */
 strcpy(varNames[1], zVar2);
 strcpy(varNames[2], zVar3);
 strcpy(varNames[3], zVar4);

 buffers = (void **) malloc(4 * (sizeof(void *));
 buffers[0] = time;
 buffers[1] = longitude;
 buffers[2] = delta;
 buffers[3] = name;

 status = CDFgetzVarsRecordData(id, numVars, varNames, varRecNum, buffers);
 if (status != CDF_OK) UserStatusHandler (status);
 .
 .
 for (i = 0; i < 4; ++i)
 free (varNames[i]);
 free (varNames);
 free (buffers);

5.15 CDFinquire

CDFstatus CDFinquire(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier */
long *numDims, /* out -- Number of dimensions, rVariables. */
long dimSizes[CDF_MAX_DIMS], /* out -- Dimension sizes, rVariables. */
long *encoding, /* out -- Data encoding. */
long *majority, /* out -- Variable majority. */
long *maxRec, /* out -- Maximum record number in the CDF, rVariables. */
long *numVars, /* out -- Number of rVariables in the CDF. */
long *numAttrs); /* out -- Number of attributes in the CDF. */

CDFinquire returns the basic characteristics of a CDF. An application needs to know the number of rVariable dimensions
and their sizes before it can access rVariable data (since all rVariables’ dimension and dimension size are the same).
Knowing the variable majority can be used to optimize performance and is necessary to properly use the variable hyper
functions (for both rVariables and zVariables).

The arguments to CDFinquire are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

numDims Number of dimensions for the rVariables in the CDF.

43

dimSizes Dimension sizes of the rVariables in the CDF. dimSizes is a 1-dimensional array containing

one element per dimension. Each element of dimSizes receives the corresponding
dimension size. For 0-dimensional rVariables this argument is ignored (but must be
present).

encoding The encoding of the variable data and attribute entry data. The encodings are defined in

Section 4.6.

majority The majority of the variable data. The majorities are defined in Section 4.8.

maxRec Maximum record number written to an rVariable in the CDF. Note that the maximum record

number written is also kept separately for each rVariable in the CDF. The value of maxRec
is the largest of these. Some rVariables may have fewer records actually written. Use
CDFrVarMaxWrittenRecNum to inquire the maximum record written for an individual
rVariable.

numVars Number of rVariables in the CDF.

numAttrs Number of attributes in the CDF.

5.15.1 Example(s)

The following example returns the basic information about a CDF.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long numDims; /* Number of dimensions, rVariables. */
long dimSizes[CDF_MAX_DIMS]; /* Dimension sizes, rVariables (allocate to allow the

 maximum number of dimensions). */
long encoding; /* Data encoding. */
long majority; /* Variable majority. */
long maxRec; /* Maximum record number, rVariables. */
long numVars; /* Number of rVariables in CDF. */
long numAttrs; /* Number of attributes in CDF. */
.
.
status = CDFinquire (id, &numDims, dimSizes, &encoding, &majority,
 &maxRec, &numVars, &numAttrs);
if (status != CDF_OK) UserStatusHandler (status);
.
.

44

5.16 CDFopen

CDFstatus CDFopen(/* out -- Completion status code. */
char *CDFname, /* in -- CDF file name. */
CDFid *id); /* out -- CDF identifier. */

CDFopen opens an existing CDF. The CDF is initially opened with only read access. This allows multiple applications
to read the same CDF simultaneously. When an attempt to modify the CDF is made, it is automatically closed and
reopened with read/write access. (The function will fail if the application does not have or cannot get write access to the
CDF.)

The arguments to CDFopen are defined as follows:

CDFname The file name of the CDF to open. (Do not specify an extension.) This may be at most
CDF_PATHNAME_LEN characters (excluding the NUL terminator). A CDF file name may
contain disk and directory specifications that conform to the conventions of the operating
system being used (including logical names on OpenVMS systems and environment variables
on UNIX systems).

UNIX: File names are case-sensitive.

id Identifier for the opened CDF. This identifier must be used in all subsequent operations on

the CDF.

NOTE: CDFclose must be used to close the CDF before your application exits to ensure that the CDF will be correctly
written to disk.

5.16.1 Example(s)

The following example will open a CDF named “NOAA1.cdf”.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
static char CDFname[] = { "NOAA1" }; /* file name of CDF. */
.
.
status = CDFopen (CDFname, &id);
if (status != CDF_OK) UserStatusHandler (status);
.
.

45

5.17 CDFputrVarsRecordData20

CDFstatus CDFputrVarsRecordData(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long numVars, /* in -- Number of rVariables. */
char *varNames[], /* in -- Names of rVariables. */
long varRecNum, /* in -- Number of record. */
void *buffers[]; /* in -- Array of buffers for input data. */

CDFputrVarsRecordData is used to write a whole record data at a specific record number for a group of rVariables in a
CDF. It expects that the each buffer matches up to the total full physical record size of its corresponding rVariables to be
written. Passed record data is filled into its respective rVariable’s buffer. This function provides an easier and higher
level interface to write data for a group of variables, instead of doing it one variable at a time if calling the lower-level
function. The specified variables are identified by their names. Use CDFputrVarsRecordDatabyNumbers function to
perform the similar operation by providing the variable numbers, instead of the names.

The arguments to CDFputrVarsRecordData are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate, CDFopen
or a similar CDF creation or opening functionality from the Internal Interface.

numVars Number of the rVariables in the group involved this write operation.

varNames Names of the rVariables involved for which to write a whole record data.

varRecNum The record number at which to write the whole record data for the group of rVariables.

buffers The array of buffers, each holding the output data for the full record of a given rVariables.

5.17.1 Example(s)

The following example will write an entire single record data for a group of rVariables. The CDF's rVariables are 2-
dimensional with sizes [2,2]. The rVariables involved in the write are Time, Longitude, Latitude and Temperature. The
record to be written is 4. Since the dimension variances for Time are [NONVARY,NONVARY], a scalar variable of
type int is allocated for its data type CDF_INT4. For Longitude, a 1-dimensional array of type float (size [2]) is
allocated as its dimension variances are [VARY,NONVARY] with data type CDF_REAL4. A similar 1-dimensional
array is provided for Latitude for its [NONVARY,VARY] dimension variances and CDF_REAL4 data type. For
Temperature, since its [VARY,VARY] dimension variances and CDF_REAL4 data type, a 2-dimensional array of type
float is provided. For NAME, a 2-dimensional array of type char (size [2,10]) is allocated due to its [VARY,
NONVARY] dimension variances and CDF_CHAR data type with the number of element 10.

#include "cdf.h"
 .
 .
 /* Dim/Rec Variances: T/TF. */
 CDFid id; /* CDF identifier. */
 CDFstatus status; /* Returned status code. */
 long numVars = 5; /* Number of rVariables to write. */
 long varRecNum = 4; /* The record number to write data. */

20 An original Standard Interface function.

46

 char *rVar1 = "Time", /* Names of the rVariables to write. */
 *rVar2 = "Longitude",
 *rVar3 = "Latitude",
 *rVar4 = "Temperature",
 *rVar5 = "NAME";
 void *buffer; /* The ouput buffer. */
 void bufferptr; /* Buffer place keeper */
 int time = {123} /* rVariable: Time; Datatype: INT4. */

/* Dim/Rec Variances: T/FF. */
 float longitude[2] = /* rVariable: Longitude; Datatype: REAL4. */
 {11.1, 22.2}; /* Dim/Rec Variances: T/TF. */
 float latitute[2] = /* rVariable: Latitude; Datatype: REAL4. */
 {-11.1, -22.2}; /* Dim/Rec Variances: T/FT. */
 float temperature[2][2] = /* rVariable: Temperature; Datatype: REAL4. */
 {100.0, 200.0, /* Dim/Rec Variances: T/TT. */
 300.0, 400.0};
 char name[2][10] = /* rVariable: NAME; Datatype: CHAR/10. */

/* Dim/Rec Variances: T/TF. */
 {'1', '3', '5', '7', '9', '2', '4', '6', '8', '0',
 'z', 'Z', 'y', 'Y', 'x', 'X', 'w', 'W', 'v', 'V'};

 int i;

 varNames = (void **) malloc(4 * sizeof (char *));
 for (i = 0; i < 4; ++i)
 varNames[i] = (char *) malloc(CDF_VAR_NAME_Len256+1]);

 strcpy (varName[0], rVar1); /* Name of each rVariable. */
 strcpy (varNames[1], rVar2);
 strcpy (varNames[2], rVar3);
 strcpy (varNames[3], rVar4);

 buffers = (void **) malloc (4 * sizeof(void *));
 buffers[0] = (void *) malloc(sizeof(longtitude);
 memcpy(buffers[0], (void *) longitude, sizeof(longitude));
 buffers[1] = (void *) malloc(sizeof(delta));
 memcpy(buffers[1], (void *) delta, sizeof(delta));
 buffers[2] = (void *) malloc(sizeof(time);
 memcpy(buffers[2], (void *) time, sizeof(time));
 buffers[3] = (void *) malloc(sizeof(name));
 memcpy(buffers[3], (void *) name, sizeof(name));

 status = CDFputrVarsRecordData(id, numVars, varNames, varRecNum, buffers);
 if (status != CDF_OK) UserStatusHandler (status);

 for (i = 0; i < 4; ++i) {
 free (varNames[i]);
 free (buffers[i]);
 }
 free (varNames);
 free (buffers);

47

5.18 CDFputzVarsRecordData

CDFstatus CDFputzVarsRecordData(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long numVars, /* in -- Number of zVariables. */
char *varNames[], /* in -- Names of zVariables. */
long recNum, /* in -- Record number. */
void *buffers[]; /* in -- Array of buffers for input data. */

CDFputzVarsRecordData is used to write a whole record data at a specific record number for a group of zVariables in a
CDF. It expects that the each data buffer matches up to the total full physical record size for its corresponding
zVariable. Passed record data is filled into its respective zVariable. Use CDFputzVarsRecordDatabyNumbers function
to perform the similar operation by providing the variable numbers, instead of the names.

The arguments to CDFputzVarsRecordData are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate, CDFopen
or a similar CDF creation or opening functionality from the Internal Interface.

numVars Number of the zVariables in the group involved this write operation.

varNames Names of the zVariables involved for which to write a whole record data.

recNum The record number at which to write the whole record data for the group of zVariables.

buffers An array of buffers, each holding the output data for a full record of a given zVariables.

5.18.1 Example(s)

The following example will write an entire single record data for a group of zVariables. The zVariables involved in the
write are Time, Longitude, Delta and Name. The record to be written is 5. For Longitude, a 1-dimensional array of
type short (size [3]) is provided for its dimension variance [VARY] and data type CDF_INT2. For Delta, a 2-
dimensional array of type int (size [3,2]) is provided as its dimension variances are [VARY,VARY] with data type
CDF_INT4. For Time, it is 2-dimensional of type unsigned int (sizes [3,2]) for its dimension variances
[VARY,VARY] and data type CDF_UINT4. For Name, a 2-dimensional array of type char (size [2,10]) is provided
due to its [VARY] dimension variances and CDF_CHAR data type with the number of element 10.

 .
 .
 #include "cdf.h"
 .
 .

 CDFid id; /* CDF identifier. */
 CDFstatus status; /* Returned status code. */
 long numVars = 4; /* Number of zVariables to write. */
 long varRecNum = 5; /* The record number to write data. */
 char *zVar1 = "Longitude", /* Names of the zVariables to write. */
 *zVar2 = "Delta",
 *zVar3 = "Time",
 *zVar4 = "Name";

48

 char **varNames; /* Variable names. */
 void **buffers; /* Array of buffer pointers. */
 short longitude[3] = /* zVariable: Longitude; Datatype: INT2. */
 {50, 100, 125}; /* Dimensions: 1:[3]; Dim/Rec Variances: T/T. */
 int delta[3][2] = /* zVariable: Delta; Datatype: INT4. */
 {-100, -200, /* Dimensions: 2:[3,2], Dim/Rec Variances: T/TT. */
 -400, -800,
 -1000, -2000};
 unsigned int time[3][2] = /* zVariable: Time; Datatype: UINT4. */
 {123, 234, /* Dimensions: 2:[3,2]; Dim/Rec Variances: T/TT. */
 345, 456,
 567, 789};
 char name[2][10] = /* zVariable: Name; Datatype: CHAR/10. */

/* Dimensions: 1:[2]; Dim/Rec Variances: T/T. */
 {'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j',
 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J'};
 int i;

 varNames = (char **) malloc(4 * sizeof (char *));
 varName[0] = zVar1; /* Name of each zVariable. */
 varNames[1] = zVar2;
 varNames[2] = zVar3;
 varNames[3] = zVar4;

 buffers = (void **) malloc (4 * sizeof(void *));
 buffers[0] = longtitude;
 buffers[1] = delta;
 buffers[2] = time;
 buffers[3] = name;

 status = CDFputzVarsRecordData(id, numVars, varNames, varRecNum, buffers);
 if (status != CDF_OK) UserStatusHandler (status);

 free (varNames);
 free (buffers);

This function can be a replacement for the similar functionality
provided from the Internal Interface as <PUT_, zVARs_RECDATA_>.

5.19 CDFvarClose21

CDFstatus CDFvarClose(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long varNum); /* in -- rVariable number. */

CDFvarClose closes the specified rVariable file from a multi-file format CDF. The variable's cache buffers are flushed
before the variable's open file is closed. However, the CDF file is still open.

21 An original Standard Interface function, handling rVariables only.

49

NOTE: You must close all open variable files to guarantee that all modifications you have made will actually be written
to the CDF's file(s). If your program exits, normally or otherwise, without a successful call to CDFclose, the CDF's cache
buffers are left unflushed.

The arguments to CDFclose are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

varNum Variable number for the open rVariable’s file. This identifier must have been initialized by a call to

CDFgetVarNum.

5.19.1 Example(s)

The following example will close an open rVariable in a multi-file CDF.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
.
.
status = CDFvarClose (id, CDFvarNum (id, “Flux”));
if (status != CDF_OK) UserStatusHandler (status);
.
.

5.20 CDFvarCreate22

CDFstatus CDFvarCreate(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
char *varName, /* in -- rVariable name. */
long dataType, /* in -- Data type. */
long numElements, /* in -- Number of elements (of the data type). */
long recVariance, /* in -- Record variance. */
long dimVariances[], /* in -- Dimension variances. */
long *varNum); /* out -- rVariable number. */

CDFvarCreate is used to create a new rVariable in a CDF. A variable (rVariable or zVariable) with the same name must
not already exist in the CDF.

The arguments to CDFvarCreate are defined as follows:

22 An original Standard Interface function, handling rVariables only.

50

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or

CDFcreateCDF) or CDFopen.

varName Name of the rVariable to create. This may be at most CDF_VAR_NAME_LEN256

characters (excluding the NUL terminator). Variable names are case-sensitive.

dataType Data type of the new rVariable. Specify one of the data types defined in Section 4.5.

numElements Number of elements of the data type at each value. For character data types (CDF_CHAR

and CDF_UCHAR), this is the number of characters in the string (each value consists of
the entire string). For all other data types this must always be one (1) - multiple elements
at each value are not allowed for non-character data types.

recVariance rVariable's record variance. Specify one of the variances defined in Section 4.9.

dimVariances rVariable's dimension variances. Each element of dimVariances specifies the

corresponding dimension variance. For each dimension specify one of the variances
defined in Section 4.9. For 0-dimensional rVariables this argument is ignored (but must
be present).

varNum Number assigned to the new rVariable. This number must be used in subsequent CDF

function calls when referring to this rVariable. An existing rVariable's number may be
determined with the CDFvarNum or CDFgetVarNum function.

5.20.1 Example(s)

The following example will create several rVariables in a 2-dimensional CDF.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
static long EPOCHrecVary = {VARY}; /* EPOCH record variance. */
static long LATrecVary = {NOVARY}; /* LAT record variance. */
static long LONrecVary = {NOVARY}; /* LON record variance. */
static long TMPrecVary = {VARY}; /* TMP record variance. */
static long EPOCHdimVarys[1] = {NOVARY,NOVARY}; /* EPOCH dimension variances. */
static long LATdimVarys[2] = {VARY,VARY}; /* LAT dimension variances. */
static long LONdimVarys[2] = {VARY,VARY}; /* LON dimension variances. */
static long TMPdimVarys[2] = {VARY,VARY}; /* TMP dimension variances. */
long EPOCHvarNum; /* EPOCH zVariable number. */
long LATvarNum; /* LAT zVariable number. */
long LONvarNum; /* LON zVariable number. */
long TMPvarNum; /* TMP zVariable number. */
.
.
status = CDFvarCreate (id, "EPOCH", CDF_EPOCH, 1,
 EPOCHrecVary, EPOCHdimVarys, &EPOCHvarNum);
if (status != CDF_OK) UserStatusHandler (status);

51

status = CDFvarCreate (id, "LATITUDE", CDF_INT2, 1,
 LATrecVary, LATdimVarys, &LATvarNum);
if (status != CDF_OK) UserStatusHandler (status);

status = CDFvarCreate (id, "LONGITUDE", CDF_INT2, 1,
 LONrecVary, LONdimVarys, &LONvarNum);
if (status != CDF_OK) UserStatusHandler (status);

status = CDFvarCreate (id, "TEMPERATURE", CDF_REAL4, 1,
 TMPrecVary, TMPdimVarys, &TMPvarNum);
if (status != CDF_OK) UserStatusHandler (status);
.
.

5.21 CDFvarGet23

CDFstatus CDFvarGet(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long varNum, /* in -- rVariable number. */
long recNum, /* in -- Record number. */
long indices[], /* in -- Dimension indices. */
void *value); /* out -- Value. */

CDFvarGet is used to read a single value from an rVariable.

The arguments to CDFvarGet are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopen.

varNum rVariable number from which to read data.

recNum Record number at which to read.

indices Dimension indices within the record.

value Data value read. This buffer must be large enough to hold the value.

5.21.1 Example(s)

The following example returns two data values, the first and the fifth element, in Record 0 from an rVariable named
MY_VAR, a 2-dimensional (2 by 3) CDF_DOUBLE type variable, in a row-major CDF.

.

.
#include "cdf.h"

23 An original Standard Interface function, handling rVariables only.

52

.

.
CDFid id; /* CDF identifier. */
long varNum; /* rVariable number. */
long recNum; /* The record number. */
long indices[2]; /* The dimension indices. */
double value1, value2; /* The data values. */
.
.
varNum = CDFvarNum (id, “MY_VAR”);
if (varNum < CDF_OK) Quit (“….”);
recNum = 0L;
indices[0] = 0L;
indices[1] = 0L;
status = CDFvarGet (id, varNum, recNum, indices, &value1);
if (status != CDF_OK) UserStatusHandler (status);
indices[0] = 1L;
indices[1] = 1L;
status = CDFvarGet (id, varNum, recNum, indices, &value2);
if (status != CDF_OK) UserStatusHandler (status);
.
.

5.22 CDFvarHyperGet24

CDFstatus CDFvarHyperGet(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long varNum, /* in -- rVariable number. */
long recStart, /* in -- Starting record number. */
long recCount, /* in -- Number of records. */
long recInterval, /* in -- Subsampling interval between records. */
long indices[], /* in -- Dimension indices of starting value. */
long counts[], /* in -- Number of values along each dimension. */
long intervals[], /* in -- Subsampling intervals along each dimension. */
void *buffer); /* out -- Buffer of values. */

CDFvarHyperGet is used to fill a buffer of one or more values from the specified rVariable. It is important to know the
variable majority of the CDF before using CDFvarHyperGet because the values placed into the buffer will be in that
majority. CDFinquire can be used to determine the default variable majority of a CDF distribution. The Concepts chapter
in the CDF User's Guide describes the variable majorities.

5.22.1 Example(s)

The following example will read an entire record of data from an rVariable. The CDF’s rVariables are 3-dimensional
with sizes [180,91,10] and CDF’s variable majority is ROW_MAJOR. For the rVariable the record variance is VARY,
the dimension variances are [VARY,VARY,VARY], and the data type is CDF_REAL4. This example is similar to the
example provided for CDFvarGet except that it uses a single call to CDFvarHyperGet rather than numerous calls to
CDFvarGet.

24 An original Standard Interface function, handling rVariables only.

53

.
.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
float tmp[180][91][10]; /* Temperature values. */
long varN; /* rVariable number. */
long recStart = 13; /* Record number. */
long recCount = 1; /* Record counts. */
long recInterval = 1; /* Record interval. */
static long indices[3] = {0,0,0}; /* Dimension indices. */
static long counts[3] = {180,91,10}; /* Dimension counts. */
static long intervals[3] = {1,1,1}; /* Dimension intervals. */
.
.
varN = CDFgetVarNum (id, "Temperature");
if (varN < CDF_OK) UserStatusHandler (varN);
status = CDFgetHyperGet (id, varN, recStart, recCount, recInterval, indices, counts, intervals, tmp);
if (status != CDF_OK) UserStatusHandler (status);
.
.

Note that if the CDF's variable majority had been COLUMN_MAJOR, the tmp array would have been declared float
tmp[10][91][180] for proper indexing.

5.23 CDFvarHyperPut25

CDFstatus CDFvarHyperPut(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long varNum, /* in -- rVariable number. */
long recStart, /* in -- Starting record number. */
long recCount, /* in -- Number of records. */
long recInterval, /* in -- Interval between records. */
long indices[], /* in -- Dimension indices of starting value. */
long counts[], /* in -- Number of values along each dimension. */
long intervals[], /* in -- Interval between values along each dimension. */
void *buffer); /* in -- Buffer of values. */

CDFvarHyperPut is used to write one or more values from the data holding buffer to the specified rVariable. It is
important to know the variable majority of the CDF before using this routine because the values in the buffer to be written
must be in the same majority. CDFinquire can be used to determine the default variable majority of a CDF distribution.
The Concepts chapter in the CDF User's Guide describes the variable majorities.

25 An original Standard Interface function, handling rVariables only.

54

5.23.1 Example(s)

The following example writes values to the rVariable LATITUDE of a CDF that is an 2-dimensional array with dimension
sizes [360,181]. For LATITUDE the record variance is NOVARY, the dimension variances are [NOVARY,VARY],
and the data type is CDF_INT2. This example is similar to the CDFvarPut example except that it uses a single call to
CDvarHyperPut rather than numerous calls to CDFvarPut.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
short lat; /* Latitude value. */
short lats[181]; /* Buffer of latitude values. */
long varN; /* rVariable number. */
long recStart = 0; /* Record number. */
long recCount = 1; /* Record counts. */
long recInterval = 1; /* Record interval. */
static long indices[2] = {0,0}; /* Dimension indices. */
static long counts[2] = {1,181}; /* Dimension counts. */
static long intervals[2] = {1,1}; /* Dimension intervals. */

.
.
varN = CDFvarNum (id, "LATITUDE");
if (varN < CDF_OK) UserStatusHandler (varN);
for (lat = -90; lat <= 90; lat ++)
 lats[90+lat] = lat;

status = CDFvarHyperPut (id, varN, recStart, recCount, recInterval, indices, counts, intervals, lats);
if (status != CDF_OK) UserStatusHandler (status);
.
.

5.24 CDFvarInquire

CDFstatus CDFvarInquire(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long varNum, /* in -- rVariable number. */
char *varName, /* out -- rVariable name. */
long *dataType, /* out -- Data type. */
long *numElements, /* out -- Number of elements (of the data type). */
long *recVariance, /* out -- Record variance. */
long dimVariances[CDF_MAX_DIMS]); /* out -- Dimension variances. */

CDFvarInquire is used to inquire about the specified rVariable. This function would normally be used before reading
rVariable values (with CDFvarGet or CDFvarHyperGet) to determine the data type and number of elements (of that data
type).

55

The arguments to CDFvarInquire are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

varNum Number of the rVariable to inquire. This number may be determined with a call to

CDFvarNum (see Section 5.25).

varName rVariable's name. This character string must be large enough to hold

CDF_VAR_NAME_LEN256 + 1 characters (including the NUL terminator).

dataType Data type of the rVariable. The data types are defined in Section 4.5.

numElements Number of elements of the data type at each rVariable value. For character data types

(CDF_CHAR and CDF_UCHAR), this is the number of characters in the string. (Each
value consists of the entire string.) For all other data types, this will always be one (1) -
multiple elements at each value are not allowed for non-character data types.

recVariance Record variance. The record variances are defined in Section 4.9.

dimVariances Dimension variances. Each element of dimVariances receives the corresponding dimension

variance. The dimension variances are defined in Section 4.9. For 0-dimensional
rVariables this argument is ignored (but a placeholder is necessary).

5.24.1 Example(s)

The following example returns about an rVariable named HEAT_FLUX in a CDF. Note that the rVariable name returned
by CDFvarInquire will be the same as that passed in to CDFgetVarNum.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
char varName[CDF_VAR_NAME_LEN256+1]; /* rVariable name, +1 for NUL terminator. */
long dataType; /* Data type of the rVariable. */
long numElems; /* Number of elements (of data type). */
long recVary; /* Record variance. */
long dimVarys[CDF_MAX_DIMS]; /* Dimension variances (allocate to allow the

 maximum number of dimensions). */
.
.
status = CDFvarInquire (id, CDFgetVarNum(id,"HEAT_FLUX"), varName, &dataType,
 &numElems, &recVary, dimVarys);
if (status != CDF_OK) UserStatusHandler (status);
.
.

56

5.25 CDFvarNum26

long CDFvarNum(/* out -- Variable number. */
CDFid id, /* in -- CDF identifier. */
char *varName); /* in -- Variable name. */

CDFvarNum is used to determine the number associated with a given variable name. If the variable is found,
CDFvarNum returns its variable number - which will be equal to or greater than zero (0). If an error occurs (e.g., the
variable does not exist in the CDF), an error code (of type CDFstatus) is returned. Error codes are less than zero (0). The
returned variable number should be used in the functions of the same variable type, rVariable or zVariable. If it is an
rVariable, functions dealing with rVariables should be used. Similarly, functions for zVariables should be used for
zVariables.

The arguments to CDFvarNum are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

varName Name of the variable to search. This may be at most CDF_VAR_NAME_LEN256 characters

(excluding the NUL terminator). Variable names are case-sensitive.

5.25.1 Example(s)
In the following example CDFvarNum is used as an embedded function call when inquiring about an rVariable.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
char varName[CDF_VAR_NAME_LEN256+1]; /* Variable name. */
long dataType; /* Data type of the rVariable. */
long numElements; /* Number of elements (of the data type). */
long recVariance; /* Record variance. */
long dimVariances[CDF_MAX_DIMS]; /* Dimension variances. */
.
.
status = CDFvarInquire (id, CDFvarNum(id,"LATITUDE"), varName, &dataType,
 &numElements, &recVariance, dimVariances);
if (status != CDF_OK) UserStatusHandler (status);
.
.

In this example the rVariable named LATITUDE was inquired. Note that if LATITUDE did not exist in the CDF, the
call to CDFgetVarNum would have returned an error code. Passing that error code to CDFvarInquire as an rVariable
number would have resulted in CDFvarInquire also returning an error code. Also note that the name written into varName

26 An original Standard Interface function. It used to handle only rVariables. It has been extended to include zVariables.
While it is still available in V3.1, CDFgetVarNum is the preferred name for it.

57

is already known (LATITUDE). In some cases the rVariable names will be unknown - CDFvarInquire would be used to
determine them. CDFvarInquire is described in Section 5.24.

5.26 CDFvarPut27

CDFstatus CDFvarPut(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long varNum, /* in -- rVariable number. */
long recNum, /* in -- Record number. */
long indices[], /* in -- Dimension indices. */
void *value); /* in -- Value. */

CDFvarPut writes a single data value to an rVariable. CDFvarPut may be used to write more than one value with a single
call.

The arguments to CDFvarPut are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopen.

varNum rVariable number to which to write. This number may be determined with a call to

CDFvarNum.

recNum Record number at which to write.

indices Dimension indices within the specified record at which to write. Each element of indices

specifies the corresponding dimension index. For 0-dimensional variables, this argument is
ignored (but must be present).

value Data value to write.

5.26.1 Example(s)

The following example will write two data values (1st and 5th elements) of a 2-dimensional rVariable (2 by 3) named
MY_VAR to record number 0.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
long varNum; /* rVariable number. */
long recNum; /* The record number. */
long indices[2]; /* The dimension indices. */
double value1, value2; /* The data values. */
.

27 An original Standard Interface function, handling rVariables only.

58

.
varNum = CDFgetVarNum (id, “MY_VAR”);
if (varNum < CDF_OK) Quit (“….”);
recNum = 0L;
indices[0] = 0L;
indices[1] = 0L;
value1 = 10.1;
status = CDFvarPut (id, varNum, recNum, indices, &value1);
if (status != CDF_OK) UserStatusHandler (status);
indices[0] = 1L;
indices[1] = 1L;
value2 = 20.2;
status = CDFvarPut (id, varNum, recNum, indices, &value2);
if (status != CDF_OK) UserStatusHandler (status);
.
.

5.27 CDFvarRename28

CDFstatus CDFvarRename(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long varNum, /* in -- rVariable number. */
char *varName); /* in -- New name. */

CDFvarRename is used to rename an existing rVariable. A variable (rVariable or zVariable) name must be unique.

The arguments to CDFvarRename are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopen.

varNum rVariable number to rename. This number may be determined with a call to CDFvarNum.

varName New rVariable name. The maximum length of the new name is CDF_VAR_NAME_LEN256

characters (excluding the NUL terminator). Variable names are case-sensitive.

5.27.1 Example(s)

In the following example the rVariable named TEMPERATURE is renamed to TMP (if it exists). Note that if
CDFvarNum returns a value less than zero (0) then that value is not an rVariable number but rather a warning/error code.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */

28 An original Standard Interface function, handling rVariables only.

59

long varNum; /* rVariable number. */
.
.
varNum = CDFvarNum (id, "TEMPERATURE");
if (varNum < CDF_OK) {
 if (varNum != NO_SUCH_VAR) UserStatusHandler (varNum);
}
else {
 status = CDFvarRename (id, varNum, "TMP");
 if (status != CDF_OK) UserStatusHandler (status);
}
.
.

61

Chapter 6

6 Exended Standard Interface

The following sections describe the new, extended set of Standard Interface functions callable from C applications that
were added to CDF library since Version 3.1. Most functions return a status code of type CDFstatus (see Chapter 8).
The Internal Interface is described in Chapter 7. An application can use either or both interfaces when necessary.

The original Standard Interface only provided a very limited functionality within the CDF library. For example, it could
not handle zVariables and their attribute entries (they were only accessible via the Internal Interface). Since V3.1, the
Standard Interface has been expanded to include many new operations that are previously only available through the
Internal Interface. The new functions in this chapter that deal with variables and variable attribute entries are only
applicable to zVariables and variable attribute’s zEntries, not rVariables and rEntries. If you need to deal with rVariables
for some reason (no need to use rVariables at all unless you are dealing with a CDF file that only contains rVariables),
use the appropriate original Standard Interface routines in Chapter 5 or the Internal Interface in Chapter 7. Read Chapter
5 to understand why zVariables are recommended over the rVariables.

Each section begins with a function prototype for the routine being described. The include file cdf.h contains the same
function prototypes (as well as function prototypes for the Internal Interface and EPOCH utility routines). Note that
many of the Extended Standard Interface functions in this chapter are implemented as macros (which call the Internal
Interface).

The new functions, based on the operands, are grouped into four (4) categories: library, CDFs, variables and
attributes/entries.

6.1 Library

The functions in this section are related to the current CDF library being used for the CDF operations, and they provide
useful information such as the current library version number and Copyright notice.

6.1.1 CDFgetDataTypeSize

CDFstatus CDFgetDataTypeSize (/* out -- Completion status code. */
long dataType, /* in -- CDF data type. */

62

long *numBytes); /* out -- Number of bytes for the given CDF type. */

CDFgetDataTypeSize returns the size (in bytes) of the specified CDF data type.

The arguments to CDFgetDataTypeSize are defined as follows:

dataType CDF supported data type.

numBytes Size of dataType.

6.1.1.1. Example(s)

The following example returns the size of the data type CDF_INT4 that is 4 bytes.

.

.
#include "cdf.h"
.
.
CDFstatus status; /* Returned status code. */
long numBytes; /* Number of bytes. */
.
.
status = CDFgetDataTypeSize((long)CDF_INT4, &numBytes);
if (status != CDF_OK) UserStatusHandler (status);
.
.

6.1.2 CDFgetLibraryCopyright

CDFstatus CDFgetLibraryCopyright (/* out -- Completion status code. */
char *Copyright); /* out -- Library Copyright. */

CDFgetLibraryCopyright returns the Copyright notice of the CDF library being used.

The arguments to CDFgetLibraryCopyright are defined as follows:

Copyright The Copyright notice. This character string must be large enough to hold
CDF_COPYRIGHT_LEN + 1 characters (including the NUL terminator).

6.1.2.1. Example(s)

The following example returns the Copyright of the CDF library being used.

.

.
#include "cdf.h"
.

63

.
char Copyright[CDF_COPYRIGHT_LEN+1]; /* CDF library Copyright. */
.
.
status = CDFgetLibraryCopyright(Copyright);
if (status != CDF_OK) UserStatusHandler (status);
.
.

6.1.3 CDFgetLibraryVersion

CDFstatus CDFgetLibraryVersion (/* out -- Completion status code. */
long *version, /* out -- Library version. */
long *release, /* out -- Library release. */
long *increment, /* out -- Library increment. */
char *subIncrement); /* out -- Library sub-increment. */

CDFgetLibraryVersion returns the version and release information of the CDF library being used.

The arguments to CDFgetLibraryVersion are defined as follows:

version Library version number.

release Library release number.

increment Library incremental number.

subIncrement Library sub-incremental character.

6.1.3.1. Example(s)

The following example returns the version and release information of the CDF library that is being used.

.

.
#include "cdf.h"
.
.
long version; /* CDF library version number. */
long release; /* CDF library release number. */
long increment; /* CDF library incremental number. */
char subIncrement; /* CDF library sub-incremental character. */
.
.
status = CDFgetLibraryVersion(&version, &release, &increment, &subIncrement);
if (status != CDF_OK) UserStatusHandler (status);
.
.

64

6.1.4 CDFgetStatusText

CDFstatus CDFstatusText(/* out -- Completion status code. */
CDFstatus status, /* in -- The status code. */
char *message); /* out -- The status text description. */

CDFgetStatusText is identical to the original Standard Interface function CDFerror (see section 5.12), and the use of this
function is strongly encouraged over CDFerror as it might not be supported in the future. This function is used to inquire
the text explanation of a given status code. Chapter 8 explains how to interpret status codes and Appendix A lists all of
the possible status codes.

The arguments to CDFgetStatusText are defined as follows:

status Status code to check.

message The explanation of the status code. This character string must be large enough to

hold CDF_STATUSTEXT_LEN + 1 characters (including the NUL terminator).

6.1.4.1. Example(s)

The following example displays the explanation text for the error code that is returned from a call to CDFopenCDF.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
char text[CDF_STATUSTEXT_LEN+1]; /* Explanation text.+1 added for NUL terminator. */
.
.
status = CDFopenCDF ("giss_wetl", &id);
if (status < CDF_WARN) { /* INFO and WARNING codes ignored. */
 CDFgetStatusText (status, text);
 printf ("ERROR> %s\n", text);
}
CDFcloseCDF (id);
.
.

6.2 CDF

The functions in this section provide CDF file-specific operations. Any operations involving variables or attributes are
described in the following sections. This CDF has to be a newly created or opened from an existing one.

65

6.2.1 CDFcloseCDF

CDFstatus CDFcloseCDF (/* out -- Completion status code. */
CDFid id); /* in -- CDF identifier. */

CDFcloseCDF closes the specified CDF. This function is identical to the original Standard Interface function CDFclose
(see section 5.8), and the use of this function is strongly encouraged over CDFclose as it might not be supported in the
future. The CDF's cache buffers are flushed; the CDF's open file is closed (or files in the case of a multi-file CDF); and
the CDF identifier is made available for reuse.

NOTE: You must close a CDF with CDFcloseCDF to guarantee that all modifications you have made will actually be
written to the CDF's file(s). If your program exits, normally or otherwise, without a successful call to CDFcloseCDF,
the CDF's cache buffers are left unflushed.

The arguments to CDFcloseCDF are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreateCDF or
CDFopenCDF.

6.2.1.1. Example(s)

The following example will close an open CDF.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
.
.
status = CDFopenCDF ("giss_wetl", &id);
if (status != CDF_OK) UserStatusHandler (status);
.
.
status = CDFcloseCDF (id);
if (status != CDF_OK) UserStatusHandler (status);
.
.

6.2.2 CDFcreateCDF

CDFstatus CDFcreateCDF(/* out -- Completion status code. */
char *CDFname, /* in -- CDF file name. */
CDFid *id); /* out -- CDF identifier. */

CDFcreateCDF creates a CDF file. This function, a new and simple form of CDFcreate (see section 5.9 for details)
without the encoding and majority arguments, works just like the CDF creation function from the Internal Interface. The

66

created CDF will use the default encoding (HOST_ENCODING) and majority (ROW_MAJOR), specified in the
configuration file of your CDF distribution. A CDF cannot be created if it already exists. (The existing CDF will not be
overwritten.) If you want to overwrite an existing CDF, you can either manually delete the file or open it with
CDFopenCDF ,delete it with CDFdeleteCDF, and then recreate it with CDFcreateCDF. If the existing CDF is corrupted,
the call to CDFopenCDF will fail. (An error code will be returned.) In this case you must delete the CDF at the command
line. Delete the dotCDF file (having an extension of .cdf), and if the CDF has the multi-file format, delete all of the
variable files (having extensions of .v0,.v1,. . . and .z0,.z1,.. .).

Note that a CDF file created with CDFcreateCDF can only accept zVariables, not rVariables. But this is fine since
zVariables are more flexible than rVariables. See the third paragraph of Chapter 5 for the differences between rVariables
and zVariables.

The arguments to CDFcreateCDF are defined as follows:

CDFname The file name of the CDF to create. (Do not specify an extension.) This may be at most
CDF_PATHNAME_LEN characters (excluding the NUL terminator). A CDF file name may
contain disk and directory specifications that conform to the conventions of the operating
system being used (including logical names on OpenVMS systems and environment variables
on UNIX systems).

UNIX: File names are case-sensitive.

id Identifier for the created CDF. This identifier must be used in all subsequent operations on

the CDF.

When a CDF is created, both read and write access are allowed. The default format for a CDF created with
CDFcreateCDF is specified in the configuration file of your CDF distribution. Consult your system manager for this
default. The CDFlib function (Internal Interface) may be used to change a CDF's format.

NOTE: CDFcloseCDF must be used to close the CDF before your application exits to ensure that the CDF will be
correctly written to disk (see Section 5.8).

6.2.2.1. Example(s)

The following example creates a CDF named “test1.cdf” with the default encoding and majority.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
.
.
status = CDFcreateCDF ("test1", &id);
if (status != CDF_OK) UserStatusHandler (status);
.
.
CDFclose (id);

67

6.2.3 CDFdeleteCDF

CDFstatus CDFdelete(/* out -- Completion status code. */
CDFid id); /* in -- CDF identifier. */

CDFdeleteCDF deletes the specified CDF. This function is identical to the original Standard Interface function
CDFdelete (see section 5.10), and the use of this function is strongly encouraged over CDFdelete as it might not be
supported in the future. The CDF files deleted include the dotCDF file (having an extension of .cdf), and if a multi-file
CDF, the variable files (having extensions of .v0,.v1,. . . and .z0,.z1,.. .).

You must open a CDF before you are allowed to delete it. If you have no privilege to delete the CDF files, they will not
be deleted. If the CDF is corrupted and cannot be opened, the CDF file(s) must be deleted at the command line.

The arguments to CDFdeleteCDF are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

6.2.3.1. Example(s)

The following example will open and then delete an existing CDF.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
.
.
status = CDFopenCDF ("test2", &id);
if (status < CDF_OK) /* INFO status codes ignored. */
 UserStatusHandler (status);
else {
 status = CDFdeleteCDF (id);
 if (status != CDF_OK) UserStatusHandler (status);
}
.
.

6.2.4 CDFgetCacheSize

CDFstatus CDFgetCacheSize (/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long *numBuffers); /* out -- CDF’s cache buffers. */

68

CDFgetCacheSize returns the number of cache buffers being used for the dotCDF file when a CDF is open. Refer to the
CDF User’s Guide for description of caching scheme used by the CDF library.

The arguments to CDFgetCacheSize are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreateCDF
(or CDFcreate) or CDFopen.

numBuffers Number of cache buffers.

6.2.4.1. Example(s)

The following example returns the cache buffers for the open CDF file.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long numBuffers; /* CDF’s cache buffers. */
.
.
status = CDFgetCacheSize (id, &numBuffers);
if (status != CDF_OK) UserStatusHandler (status);
.
.

6.2.5 CDFgetChecksum

CDFstatus CDFgetChecksum (/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long *checksum); /* out -- CDF’s checksum mode. */

CDFgetChecksum returns the checksum mode of a CDF. The CDF checksum mode is described in Section 4.19.

The arguments to CDFgetChecksum are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreateCDF
(or CDFcreate) or CDFopen.

checksum The checksum mode (NO_CHECKSUM or MD5_CHECKSUM).

6.2.5.1. Example(s)

The following example returns the checksum code for the open CDF file.

69

.
.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long checksum; /* CDF’s checksum. */
.
.
status = CDFgetChecksum (id, &checksum);
if (status != CDF_OK) UserStatusHandler (status);
.
.

6.2.6 CDFgetCompression

CDFstatus CDFgetCompression (/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long *compressionType, /* out -- CDF’s compression type. */
long compressionParms[], /* out -- CDF’s compression parameters. */
long *compressionPercentage); /* out -- CDF’s compressed percentage. */

CDFgetCompression gets the compression information of the CDF. It returns the compression type (method) and, if
compressed, the compression parameters and compression percentage. The compression percentage is the result of the
compressed file size divided by its original, uncompressed file size29. CDF compression types/parameters are described
in Section 4.10.

The arguments to CDFgetCompression are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

compressionType The type of the compression.

compressionParms The parameters of the compression.

compressionPercentage The compression percentage, the percentage of a uncompressed file size to hold the

compressed data.

6.2.6.1. Example(s)

The following example returns the compression information of the open CDF file.

.

.

29 The compression ratio is (100 – compression percentage). The lower the compression percentage, the better the
compression ratio.

70

#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long compressionType; /* CDF’s compression type. */
long compressionParms[CDF_MAX_PARMS] /* CDF’s compression parameters. */
long compressionPercentage; /* CDF’s compression rate. */
.
.
status = CDFgetCompression (id, &compression, compressionParms, &compressionPercentage);
if (status != CDF_OK) UserStatusHandler (status);

if (compressionType == NO_COMPRESSION) {
 .
 .
}
.
.

6.2.7 CDFgetCompressionCacheSize

CDFstatus CDFgetCompressionCacheSize (/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long *numBuffers); /* out -- CDF’s compressed cache buffers. */

CDFgetCompressionCacheSize gets the number of cache buffers used for the compression scratch CDF file. Refer to
the CDF User’s Guide for description of caching scheme used by the CDF library.

The arguments to CDFgetCompressionCacheSize are defined as follows:

Id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

numBuffers Number of cache buffers.

6.2.7.1. Example(s)

The following example returns the number of cache buffers used for the scratch file from the compressed CDF file.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long numBuffers; /* CDF’s compression cache buffers. */
.

71

.
status = CDFgetCompressionCacheSize (id, &numBuffers);
if (status != CDF_OK) UserStatusHandler (status);
.
.

6.2.8 CDFgetCompressionInfo

CDFstatus CDFgetCompressionInfo (/* out -- Completion status code. */
char *CDFname, /* in -- CDF name. */
long *cType, /* out -- CDF compression type. */
long cParms[]. /* out -- CDF compression parameters. */
OFF_T *cSize. /* out -- CDF compressed size. */
OFF_T *uSize); /* out -- CDF decompressed size. */

CDFgetCompressionInfo returns the compression type/parameters of a CDF without having to open the CDF. This refers
to the compression of the CDF - not of any compressed variables.

The arguments to CDFgetCompressionInfo are defined as follows:

CDFname The pathname of a CDF file without the .cdf file extension.

cType CDF compression type.

cParms CDF compression parameters.

cSize The compressed CDF file size.

uSize Size of CDF when decompress the originally compressed CDF.

6.2.8.1. Example(s)

The following example returns the compression information from a “unopen” CDF named “MY_TEST.cdf”.

.

.
#include "cdf.h"
.
.
CDFstatus status; /* Returned status code. */
long cType; /* Compression type. */
long cParms[CDF_MAX_PARMS]; /* Compression parameters. */
OFF_T cSize; /* Compressed file size. */
OFF_T uSize; /* Decompressed file size. */
.
.
status = CDFgetCompressionInfo(“MY_TEST”, &cType, cParms, &cSize, &uSize);
if (status != CDF_OK) UserStatusHandler (status);
.
.

72

6.2.9 CDFgetCopyright

CDFstatus CDFgetCopyright (/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
char *Copyright); /* out -- Copyright notice. */

CDFgetCopyright gets the Copyright notice in a CDF.

The arguments to CDFgetCopyright are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

Copyright CDF Copyright. This character string must be large enough to hold

CDF_COPYRIGHT_LEN + 1 characters (including the NUL terminator).

6.2.9.1. Example(s)

The following example returns the Copyright in a CDF.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
char Copyright[CDF_COPYRIGHT_LEN+1]; /* CDF’s Copyright. */
.
.
status = CDFgetCopyright (id, Copyright);
if (status != CDF_OK) UserStatusHandler (status);
.
.

6.2.10 CDFgetDecoding

CDFstatus CDFgetDecoding (/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long *decoding); /* out -- CDF decoding. */

CDFgetDecoding returns the decoding code for the data in a CDF. The decodings are described in Section 4.7.

The arguments to CDFgetDecoding are defined as follows:

73

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

decoding Decoding of the CDF.

6.2.10.1. Example(s)

The following example returns the decoding for the CDF.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long decoding; /* Decoding. */
.
.
status = CDFgetDecoding(id, &decoding);
if (status != CDF_OK) UserStatusHandler (status);
.
.

6.2.11 CDFgetEncoding

CDFstatus CDFgetEncoding (/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long *encoding); /* out -- CDF encoding. */

CDFgetEncoding returns the data encoding used in a CDF. The encodings are described in Section 4.6.

The arguments to CDFgetEncoding are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

encoding The encoding of the CDF.

6.2.11.1. Example(s)

The following example returns the data encoding used for the given CDF.

.

.
#include "cdf.h"
.

74

.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long encoding; /* Encoding. */
.
.
status = CDFgetEncoding(id, &encoding);
if (status != CDF_OK) UserStatusHandler (status);
.
.

6.2.12 CDFgetFileBackward

int CDFgetFileBackward(/* out – File Backward Mode. */

);

CDFgetFileBackward returns the backward mode information dealing with the creation of a new CDF file. A mode of
value 1 indicates when a new CDF file is created, it will be a backward version of V2.7, not the currentl library version.

The arguments to CDFgetFileBackward are defined as follows:

N/A

6.2.12.1. Example(s)

In the following example, the CDF’s file backward mode is acquired.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
int mode; /* Backward mode. */
.
.
mode = CDFgetFileBackward ();
if (mode == 1) {
.
.

 }

6.2.13 CDFgetFormat

CDFstatus CDFgetFormat (/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */

75

long *format); /* out -- CDF format. */

CDFgetFormat returns the file format, single or multi-file, of the CDF. The formats are described in Section 4.4.

The arguments to CDFgetFormat are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

format The format of the CDF.

6.2.13.1. Example(s)

The following example returns the file format of the CDF.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long format; /* Format. */
.
.
status = CDFgetFormat(id, &format);
if (status != CDF_OK) UserStatusHandler (status);
.
.

6.2.14 CDFgetLeapSecondLastUpdated

CDstatus CDFgetLeapSecondLastUpdated(/* out -- Completion status code. */
CDFid id) /* in -- CDF identifier. */
long *lastUpdated); /* out -- The leap second last entry date in YYYYMMDD. */

CDFgetLeapSecondLastUpdated returns the last date a leap second is added to the leap second table that the CDF is
based upon. This information is only relevant to TT2000 data in the CDF.

The arguments to CDFgetLeapSecondLastUpdated are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

lastUpdated Date in YYYYMMDD at which the last leap second is added to the table.

76

6.2.14.1. Example(s)

The following example returns the file format of the CDF.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long lastUpdated; /* The last date a new leap second was added. */
.
.
status = CDFgetLeapSecondLastUpdated (id, &lastUpdated);
if (status != CDF_OK) UserStatusHandler (status);
.
.

6.2.15 CDFgetMajority

CDFstatus CDFgetMajority (/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long *majority); /* out -- Variable majority. */

CDFgetMajority returns the variable majority, row or column-major, of the CDF. The majorities are described in Section
4.8.

The arguments to CDFgetMajority are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

majority Variable majority of the CDF.

6.2.15.1. Example(s)

The following example returns the majority of the CDF.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long majority; /* Majority. */
.
.

77

status = CDFgetMajority (id, &majority);
if (status != CDF_OK) UserStatusHandler (status);
.
.

6.2.16 CDFgetName

CDFstatus CDFgetName (/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
char *name); /* out -- CDF name. */

CDFgetName returns the file name of the specified CDF.

The arguments to CDFgetName are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

name The file name of the CDF.

6.2.16.1. Example(s)

The following example returns the name of the CDF.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
char name[CDF_PATHNAME_LEN]; /* Name of the CDF. */
.
.
status = CDFgetName (id, name);
if (status != CDF_OK) UserStatusHandler (status);
.
.

6.2.17 CDFgetNegtoPosfp0Mode

CDFstatus CDFgetNegtoPosfp0Mode (/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long *negtoPosfp0); /* out -- -0.0 to 0.0 mode. */

78

CDFgetNegtoPosfp0Mode returns the –0.0 to 0.0 mode of the CDF. You can use CDFsetNegtoPosfp0 function to set the
mode. The –0.0 to 0.0 modes are described in Section 4.15.

The arguments to CDFgetNegtoPosfp0Mode are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

negtoPosfp0 The –0.0 to 0.0 mode of the CDF.

6.2.17.1. Example(s)

The following example returns the –0.0 to 0.0 mode of the CDF.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long negtoPosfp0; /* -0.0 to 0.0 mode. */
.
.
status = CDFgetNegtoPosfp0Mode (id, &negtoPosfp0);
if (status != CDF_OK) UserStatusHandler (status);
.
.

6.2.18 CDFgetReadOnlyMode

CDFstatus CDFgetReadOnlyMode(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long *readOnlyMode); /* out -- CDF read-only mode. */

CDFgetReadOnlyMode returns the read-only mode for a CDF. You can use CDFsetReadOnlyMode to set the mode of
readOnlyMode. The read-only modes are described in Section 4.13.

The arguments to CDFgetReadOnlyMode are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

readOnlyMode Read-only mode (READONLYon or READONLYoff).

6.2.18.1. Example(s)

79

The following example returns the read-only mode for the given CDF.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
long readMode; /* CDF read-only mode. */
.
.
status = CDFgetReadOnlyMode (id, &readMode);
if (status != CDF_OK) UserStatusHandler (status);
.
.

6.2.19 CDFgetStageCacheSize

CDFstatus CDFgetStageCacheSize(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long *numBuffers); /* out -- The stage cache size. */

CDFgetStageCacheSize returns the number of cache buffers being used for the staging scratch file a CDF. Refer to the
CDF User’s Guide for the description of the caching scheme used by the CDF library.

The arguments to CDFgetStageCacheSize are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

numBuffers Number of cache buffers.

6.2.19.1. Example(s)

The following example returns the number of cache buffers used in a CDF.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
long numBufffers; /* The number of cache buffers. */
.
.
status = CDFgetStageCacheSize (id, &numBuffers);
if (status != CDF_OK) UserStatusHandler (status);

.
.

80

6.2.20 CDFgetValidate

int CDFgetValidate();

CDFgetValidate returns the data validation mode. This information reflects whether when a CDF is open, its certain data
fields are subjected to a validation process. 1 is returned if the data validation is to be performed, 0 otherwise.

The arguments to CDFgetVersion are defined as follows:

N/A

6.2.20.1. Example(s)

In the following example, it gets the data validation mode.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
int validate; /* Data validation flag. */
.
.
validate = CDFgetValidate ();
.
.

6.2.21 CDFgetVersion

CDFstatus CDFgetVersion(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long *version, /* out -- CDF version. */
long *release, /* out -- CDF release. */
long *increment); /* out -- CDF increment. */

CDFgetVersion returns the version/release information for a CDF file. This information reflects the CDF library that was
used to create the CDF file.

The arguments to CDFgetVersion are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

81

version CDF version number.

release CDF release number.

increment CDF increment number.

6.2.21.1. Example(s)

In the following example, a CDF’s version/release is acquired.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long version; /* CDF version. */
long release; /* CDF release */
long increment; /* CDF increment. */
.
.
status = CDFgetVersion (id, &version, &release, &increment);
if (status != CDF_OK) UserStatusHandler (status);
.
.

6.2.22 CDFgetzMode

CDFstatus CDFgetzMode(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long *zMode); /* out -- CDF zMode. */

CDFgetzMode returns the zMode for a CDF file. The zModes are described in Section 4.14.

The arguments to CDFgetzMode are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

zMode CDF zMode.

6.2.22.1. Example(s)

In the following example, a CDF’s zMode is acquired.

82

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long zMode; /* CDF zMode. */
.
.
status = CDFgetzMode (id, &zMode);
if (status != CDF_OK) UserStatusHandler (status);
.
.

6.2.23 CDFinquireCDF

CDFstatus CDFinquireCDF(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier */
long *numDims, /* out -- Number of dimensions for rVariables. */
long dimSizes[CDF_MAX_DIMS], /* out -- Dimension sizes for rVariables. */
long *encoding, /* out -- Data encoding. */
long *majority, /* out -- Variable majority. */
long *maxrRec, /* out -- Maximum record number among rVariables in the CDF. */
long *numrVars, /* out -- Number of rVariables in the CDF. */
long *maxzRec, /* out -- Maximum record number among zVariables in the CDF. */
long *numzVars, /* out -- Number of zVariables in the CDF. */
long *numAttrs); /* out -- Number of attributes in the CDF. */

CDFinquireCDF returns the basic characteristics of a CDF. This function expands the original Standard Interface
function CDFinquire by acquiring extra information regarding the zVariables. Knowing the variable majority can be
used to optimize performance and is necessary to properly use the variable hyper-get/put functions.

The arguments to CDFinquireCDF are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

numDims Number of dimensions for the rVariables in the CDF. Note that all the rVariables’

dimensionality in the same CDF file must be the same.

dimSizes Dimension sizes of the rVariables in the CDF (note that all the rVariables’ dimension sizes

in the same CDF file must be the same). dimSizes is a 1-dimensional array containing one
element per dimension. Each element of dimSizes receives the corresponding dimension
size. For 0-dimensional rVariables this argument is ignored (but must be present).

encoding The encoding of the variable data and attribute entry data. The encodings are defined in

Section 4.6.

majority The majority of the variable data. The majorities are defined in Section 4.8.

83

maxrRec Maximum record number written to an rVariable in the CDF. Note that the maximum
record number written is also kept separately for each rVariable in the CDF. The value of
maxRec is the largest of these.

numrVars Number of rVariables in the CDF.

maxzRec Maximum record number written to a zVariable in the CDF. Note that the maximum record

number written is also kept separately for each zVariable in the CDF. The value of maxRec
is the largest of these. Some zVariables may have fewer records than actually written. Use
CDFgetzVarMaxWrittenRecNum to inquire the actual number of records written for an
individual zVariable.

numzVars Number of zVariables in the CDF.

numAttrs Number of attributes in the CDF.

6.2.23.1. Example(s)

The following example returns the basic information about a CDF.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long numDims; /* Number of dimensions, rVariables. */
long dimSizes[CDF_MAX_DIMS]; /* Dimension sizes, rVariables (allocate to allow the

 maximum number of dimensions). */
long encoding; /* Data encoding. */
long majority; /* Variable majority. */
long maxrRec; /* Maximum record number, rVariables. */
long numrVars; /* Number of rVariables in CDF. */
long maxzRec; /* Maximum record number, zVariables. */
long numzVars; /* Number of zVariables in CDF. */
long numAttrs; /* Number of attributes in CDF. */
.
.
status = CDFinquireCDF (id, &numDims, dimSizes, &encoding, &majority,
 &maxrRec, &numrVars, &maxzRec, &numzVars, &numAttrs);
if (status != CDF_OK) UserStatusHandler (status);
.
.

6.2.24 CDFopenCDF

CDFstatus CDFopenCDF(/* out -- Completion status code. */
char *CDFname, /* in -- CDF file name. */
CDFid *id); /* out -- CDF identifier. */

84

CDFopenCDF opens an existing CDF. This function is identical to the original Standard Interface function CDFopen
(see section 5.16), and the use of this function is strongly encouraged over CDFopen as it might not be supported in the
future. The CDF is initially opened with only read access. This allows multiple applications to read the same CDF
simultaneously. When an attempt to modify the CDF is made, it is automatically closed and reopened with read/write
access. The function will fail if the application does not have or cannot get write access to the CDF.

The arguments to CDFopenCDF are defined as follows:

CDFname The file name of the CDF to open. (Do not specify an extension.) This may be at most
CDF_PATHNAME_LEN characters (excluding the NUL terminator). A CDF file name may
contain disk and directory specifications that conform to the conventions of the operating
system being used (including logical names on OpenVMS systems and environment variables
on UNIX systems).

UNIX: File names are case-sensitive.

id Identifier for the opened CDF. This identifier must be used in all subsequent operations on

the CDF.

NOTE: CDFcloseCDF must be used to close the CDF before your application exits to ensure that the CDF will be
correctly written to disk.

6.2.24.1. Example(s)

The following example will open a CDF named “NOAA1.cdf”.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
static char CDFname[] = { "NOAA1" }; /* file name of CDF. */
.
.
status = CDFopenCDF (CDFname, &id);
if (status != CDF_OK) UserStatusHandler (status);
.
.

6.2.25 CDFsetCacheSize

CDFstatus CDFsetCacheSize (/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long numBuffers); /* in -- CDF’s cache buffers. */

85

CDFsetCacheSize specifies the number of cache buffers being used for the dotCDF file when a CDF is open. Refer to
the CDF User’s Guide for the description of the cache scheme used by the CDF library.

The arguments to CDFsetCacheSize are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

numBuffers Number of cache buffers.

6.2.25.1. Example(s)

The following example extends the number of cache buffers to 500 for the open CDF file. The default number is 300 for
a single-file format CDF on Unix systems.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long cacheBuffers; /* CDF’s cache buffers. */
.
.
cacheBuffers = 500L;
status = CDFsetCacheSize (id, cacheBuffers);
if (status != CDF_OK) UserStatusHandler (status);

.
.

6.2.26 CDFsetChecksum

CDFstatus CDFsetChecksum (/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long checksum); /* in -- CDF’s checksum mode. */

CDFsetChecksum specifies the checksum mode for the CDF. The CDF checksum mode is described in Section 4.19.

The arguments to CDFsetChecksum are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

checksum The checksum mode (NO_CHECKSUM or MD5_CHECKSUM).

86

6.2.26.1. Example(s)

The following example turns off the checksum flag for the open CDF file..

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long checksum; /* CDF’s checksum. */
.
.
checksum= NO_CHECKSUM;
status = CDFsetChecksum (id, checksum);
if (status != CDF_OK) UserStatusHandler (status);

.
.

6.2.27 CDFsetCompression

CDFstatus CDFsetCompression (/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long compressionType, /* in -- CDF’s compression type. */
long compressionParms[]); /* in -- CDF’s compression parameters. */

CDFsetCompression specifies the compression type and parameters for a CDF. This compression refers to the CDF, not
of any variables. The compressions are described in Section 4.10.

The arguments to CDFsetCompression are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

compressionType The compression type .

compressionParms The compression paramters.

6.2.27.1. Example(s)

The following example uses GZIP.6 to compress the CDF file.

.

.
#include "cdf.h"
.
.

87

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long compressionType; /* CDF’s compression type. */
long compressionParms[CDF_MAX_PARMS] /* CDF’s compression parameters. */
.
.
compressionType = GZIP_COMPRESSION;
compressionParms[0] = 6L;
status = CDFsetCompression (id, compressionType, compressionParms);
if (status != CDF_OK) UserStatusHandler (status);
.
.

6.2.28 CDFsetCompressionCacheSize

CDFstatus CDFsetCompressionCacheSize (/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long compressionNumBuffers); /* in -- CDF’s compressed cache buffers. */

CDFsetCompressionCacheSize specifies the number of cache buffers used for the compression scratch CDF file. Refer
to the CDF User’s Guide for the description of the cache scheme used by the CDF library.

The arguments to CDFsetCompressionCacheSize are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

compressionNumBuffers Number of cache buffers.

6.2.28.1. Example(s)

The following example extends the number of cache buffers used for the scratch file from the compressed CDF file to
100. The default cache buffers is 80 for Unix systems.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long compressionNumBuffers; /* CDF’s compression cache buffers. */
.
.
compressionNumBuffers = 100L;
status = CDFsetCompressionCacheSize (id, compressionNumBuffers);
if (status != CDF_OK) UserStatusHandler (status);
.
.

88

6.2.29 CDFsetDecoding

CDFstatus CDFsetDecoding (/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long decoding); /* in -- CDF decoding. */

CDFsetDecoding sets the decoding of a CDF. The decodings are described in Section 4.7.

The arguments to CDFsetDecoding are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

decoding Decoding of a CDF.

6.2.29.1. Example(s)

The following example sets NETWORK_DECODING to be the decoding scheme in the CDF.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long decoding; /* Decoding. */
.
.
decoding = NETWORK_DECODING;
status = CDFsetDecoding (id, decoding);
if (status != CDF_OK) UserStatusHandler (status);
.
.

6.2.30 CDFsetEncoding

CDFstatus CDFsetEncoding (/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long encoding); /* in -- CDF encoding. */

CDFsetEncoding specifies the data encoding of the CDF. A CDF’s encoding may not be changed after any variable
values have been written. The encodings are described in Section 4.6.

The arguments to CDFsetEncoding are defined as follows:

89

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate

(or CDFcreateCDF) or CDFopenCDF.

encoding The encoding of the CDF.

6.2.30.1. Example(s)

The following example sets the encoding to HOST_ENCODING for the CDF.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long encoding; /* Encoding. */
.
.
encoding = HOST_ENCODING;
status = CDFsetEncoding(id, encoding);
if (status != CDF_OK) UserStatusHandler (status);
.
.

6.2.31 CDFsetFileBackward

void CDFsetFileBackward(
long mode) /* in -- File backward Mode. */

CDFsetFileBackward sets the backward mode. When the mode is set as FILEBACKWARDon, any new CDF files
created areof version 2.7, instead of the underlining library version. If mode FILEBACKWARDoff is used, the default
for creating new CDF files, the library version is the version of the file.

The arguments to CDFsetFileBackward are defined as follows:

mode The backward mode.

6.2.31.1. Example(s)

In the following example, it sets the file backward mode to FILEBACKWARDoff, which means that any files to be
created will be of version V3.*, the same as the library version.

.

.

90

#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */

.
.
CDFsetFileBackward (FILEBACKWARDoff);

.
.

6.2.32 CDFsetFormat

CDFstatus CDFsetFormat (/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long format); /* in -- CDF format. */

CDFsetFormat specifies the file format, either single or multi-file format, of the CDF. A CDF’s format may not be
changed after any variable values have been written. The formats are described in Section 4.4.

The arguments to CDFsetFormat are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

format The file format of the CDF.

6.2.32.1. Example(s)

The following example sets the file format to MULTI_FILE for the CDF. The default is SINGLE_FILE format.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long format; /* Format. */
.
.
format = MULTI_FILE;
status = CDFsetFormat(id, format);
if (status != CDF_OK) UserStatusHandler (status);
.
.

91

6.2.33 CDFsetLeapSecondLastUpdated

CDstatus CDFsetLeapSecondLastUpdated(/* out -- Completion status code. */
CDFid id) /* in -- CDF identifier. */
long *lastUpdated); /* in -- The leap second last entry date in YYYYMMDD. */

CDFsetLeapSecondLastUpdated resets the last date a leap second is added to the leap second table that the CDF is based
upon. This information is only relevant to TT2000 data in the CDF. This value is either a valid entry date in the current
leap second table, or zero (0). It is used normally for the older files that have not had such information set.

The arguments to CDFsetLeapSecondLastUpdated are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

lastUpdated Date in YYYYMMDD at which the last leap second is added to the table.

6.2.33.1. Example(s)

The following example returns the file format of the CDF.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long lastUpdated; /* The last date a new leap second was added. */
.
.
lastUpdated = 20150701;
status = CDFsetLeapSecondLastUpdated (id, lastUpdated);
if (status != CDF_OK) UserStatusHandler (status);
.
.

6.2.34 CDFsetMajority

CDFstatus CDFsetMajority (/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long majority); /* in -- CDF variable majority. */

CDFsetMajority specifies the variable majority, either row or column-major, of the CDF. A CDF’s majority may not be
changed after any variable values have been written. The majorities are described in Section 4.8.

The arguments to CDFsetMajority are defined as follows:

92

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate

(or CDFcreateCDF) or CDFopenCDF.

majority Variable majority of the CDF.

6.2.34.1. Example(s)

The following example sets the majority to COLUMN_MAJOR for the CDF. The default is ROW_MAJOR.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long majority; /* Majority. */
.
.
majority = COLUMN_MAJOR;
status = CDFsetMajority (id, majority);
if (status != CDF_OK) UserStatusHandler (status);
.
.

6.2.35 CDFsetNegtoPosfp0Mode

CDFstatus CDFsetNegtoPosfp0Mode (/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long negtoPosfp0); /* in -- -0.0 to 0.0 mode. */

CDFsetNegtoPosfp0Mode specifies the –0.0 to 0.0 mode of the CDF. The –0.0 to 0.0 modes are described in Section
4.15.

The arguments to CDFsetNegtoPosfp0Mode are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

negtoPosfp0 The –0.0 to 0.0 mode of the CDF.

6.2.35.1. Example(s)

The following example sets the –0.0 to 0.0 mode to ON for the CDF.

.

93

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long negtoPosfp0; /* -0.0 to 0.0 mode. */
.
.
negtoPosfp0 = NEGtoPOSfp0on;
status = CDFsetNegtoPosfp0Mode (id, negtoPosfp0);
if (status != CDF_OK) UserStatusHandler (status);
.
.

6.2.36 CDFsetReadOnlyMode

CDFstatus CDFsetReadOnlyMode(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long readOnlyMode); /* in -- CDF read-only mode. */

CDFsetReadOnlyMode specifies the read-only mode for a CDF. The read-only modes are described in Section 4.13.

The arguments to CDFsetReadOnlyMode are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

readOnlyMode Read-only mode.

6.2.36.1. Example(s)

The following example sets the read-only mode to OFF for the CDF.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
long readMode; /* CDF read-only mode. */
.
.
readMode = READONLYoff;
status = CDFsetReadOnlyMode (id, readMode);
if (status != CDF_OK) UserStatusHandler (status);
.
.

94

6.2.37 CDFsetStageCacheSize

CDFstatus CDFsetStageCacheSize(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long numBuffers); /* in -- The stage cache size. */

CDFsetStageCacheSize specifies the number of cache buffers being used for the staging scratch file a CDF. Refer to the
CDF User’s Guide for the description of the caching scheme used by the CDF library.

The arguments to CDFsetStageCacheSize are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

numBuffers Number of cache buffers.

6.2.37.1. Example(s)

The following example sets the number of stage cache buffers to 10 for a CDF.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
long numBufffers; /* The number of cache buffers. */
.
.
numBufffers = 10L;
status = CDFsetStageCacheSize (id, numBuffers);
if (status != CDF_OK) UserStatusHandler (status);
.
.

6.2.38 CDFsetValidate

void CDFsetValidate(
long mode); /* in -- File Validation Mode. */

CDFsetValidate sets the data validation mode. The validation mode dedicates whether certain data in an open CDF file
will be validated. This mode should be set before the any files are opened. Refer to Data Validation Section 4.20.

95

The arguments to CDFgetVersion are defined as follows:

mode The validation mode.

6.2.38.1. Example(s)

In the following example, it sets the validation mode to be on, so any following CDF files are subjected to the data
validation process when they are open.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
.
.
CDFsetValidate (VALIDATEFILEon);

6.2.39 CDFsetzMode

CDFstatus CDFsetzMode(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long zMode); /* in -- CDF zMode. */

CDFsetzMode specifies the zMode for a CDF file. The zModes are described in Section 4.14 and see the Concepts
chapter in the CDF User’s Guide for a more detailed information on zModes. zMode is used when dealing with a CDF
file that contains 1) rVariables or 2) rVariables and zVariables. If you want to treat rVariables as zVariables, it’s highly
recommended to set the value of zMode to zMODEon2.

The arguments to CDFsetzMode are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

zMode CDF zMode.

6.2.39.1. Example(s)

In the following example, a CDF’s zMode is specified to zMODEon2: all rVariables are treated as zVariables with
NOVARY dimensions being eliminated.

.

.
#include "cdf.h"
.
.

96

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long zMode; /* CDF zMode. */
.
.
zMode = zMODEon2;
status = CDFsetzMode (id, zMode);
if (status != CDF_OK) UserStatusHandler (status);
.
.

6.3 Variable

The functions in this section provides CDF variable-specific functions. A variable is identified by its unique name in a
CDF or a variable number. Before you can perform any operation on a variable, the CDF in which it resides in must be
opened.
.

6.3.1 CDFclosezVar

CDFstatus CDFclosezVar(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long varNum) /* in -- zVariable number. */

CDFclosezVar closes the specified zVariable file from a multi-file format CDF. Note that zVariables in a single-file
CDF don’t need to be closed. The variable's cache buffers are flushed before the variable's open file is closed. However,
the CDF file is still open.

NOTE: For the multi-file CDF, you must close all open variable files to guarantee that all modifications you have made
will actually be written to the CDF's file(s). If your program exits, normally or otherwise, without a successful call to
CDFcloseCDF, the CDF's cache buffers are left unflushed.

The arguments to CDFclosezVar are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum Variable number for the open zVariable’s file. This identifier must have been initialized by a call to

CDFcreatezVar or CDFgetVarNum.

6.3.1.1. Example(s)

The following example will close an open zVariable file from a multi-file CDF.

.

.
#include "cdf.h"
.

97

.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long varNum; /* zVariable number. */
.
.
varNum = CDFgetVarNum (id, “VAR_NAME1”);
if (varNum < CDF_OK) QuitError(…….);
.
.
status = CDFclosezVar (id, varNum);
if (status != CDF_OK) UserStatusHandler (status);
.
.

6.3.2 CDFconfirmzVarExistence

CDFstatus CDFconfirmzVarExistence(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
Char *varName); /* in -- zVariable name. */

CDFconfirmzVarExistence confirms the existence of a zVariable with a given name in a CDF. If the zVariable does not
exist, an error code will be returned.

The arguments to CDFconfirmrEntryExistence are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varName zVariable name to check.

6.3.2.1. Example(s)

The following example checks the existence of zVariable “MY_VAR” in a CDF.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
.
.
status = CDFconfirmzVarExistence (id, “MY_VAR”);
if (status != CDF_OK) UserStatusHandler (status);
.
.

98

6.3.3 CDFconfirmzVarPadValueExistence

CDFstatus CDFconfirmzVarPadValueExistence(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long varNum) /* in -- zVariable number. */

CDFconfirmzVarPadValueExistence confirms the existence of an explicitly specified pad value for the specified
zVariable in a CDF. If an explicit pad value has not been specified, the informational status code
NO_PADVALUE_SPECIFIED will be returned.

The arguments to CDFconfirmzVarPadValueExistence are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

6.3.3.1. Example(s)

The following example checks the existence of the pad value of zVariable “MY_VAR” in a CDF.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long varNum; /* zVariable number. */
.
.
varNum = CDFgetVarNum(id, “MY_VAR”);
if (varNum < CDF_OK) QuitError(….);
status = CDFconfirmzVarPadValueExistence (id, varNum);
if (status != NO_PADVALUE_SPECIFIED) {
 .
 .
}
.

6.3.4 CDFcreatezVar

CDFstatus CDFcreatezVar(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
char *varName, /* in -- zVariable name. */
long dataType, /* in -- Data type. */
long numElements, /* in -- Number of elements (of the data type). */
long numDims, /* in -- Number of dimensions. */
long dimSizes[], /* in -- Dimension sizes */

99

long recVariance, /* in -- Record variance. */
long dimVariances[], /* in -- Dimension variances. */
long *varNum); /* out -- zVariable number. */

CDFcreatezVar is used to create a new zVariable in a CDF. A variable (rVariable or zVariable) with the same name
must not already exist in the CDF.

The arguments to CDFcreatezVar are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varName Name of the zVariable to create. This may be at most CDF_VAR_NAME_LEN256

characters (excluding the NUL terminator). Variable names are case-sensitive.

dataType Data type of the new zVariable. Specify one of the data types defined in Section 4.5.

numElements Number of elements of the data type at each value. For character data types (CDF_CHAR

and CDF_UCHAR), this is the number of characters in the string (each value consists of
the entire string). For all other data types this must always be one (1) - multiple elements
at each value are not allowed for non-character data types.

numDims Number of dimensions the zVariable. This may be as few as zero (0) and at most

CDF_MAX_DIMS.

dimSizes Size of each dimension. Each element of dimSizes specifies the corresponding dimension

size. Each size must be greater then zero (0). For 0-dimensional zVariables this argument is
ignored (but must be present).

recVariance zVariable's record variance. Specify one of the variances defined in Section 4.9.

dimVariances zVariable's dimension variances. Each element of dimVariances specifies the

corresponding dimension variance. For each dimension specify one of the variances
defined in Section 4.9. For 0-dimensional zVariables this argument is ignored (but must
be present).

varNum Number assigned to the new zVariable. This number must be used in subsequent CDF

function calls when referring to this zVariable. An existing zVariable's number may be
determined with the CDFgetVarNum function.

6.3.4.1. Example(s)

The following example will create several zVariables in a CDF. In this case EPOCH is a 0-dimensional, LAT and LON
are 2-diemnational, and TMP is a 1-dimensional.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
static long EPOCHrecVary = {VARY}; /* EPOCH record variance. */

100

static long LATrecVary = {NOVARY}; /* LAT record variance. */
static long LONrecVary = {NOVARY}; /* LON record variance. */
static long TMPrecVary = {VARY}; /* TMP record variance. */
static long EPOCHdimVarys[1] = {NOVARY}; /* EPOCH dimension variances. */
static long LATdimVarys[2] = {VARY,VARY}; /* LAT dimension variances. */
static long LONdimVarys[2] = {VARY,VARY}; /* LON dimension variances. */
static long TMPdimVarys[2] = {VARY,VARY}; /* TMP dimension variances. */
long EPOCHvarNum; /* EPOCH zVariable number. */
long LATvarNum; /* LAT zVariable number. */
long LONvarNum; /* LON zVariable number. */
long TMPvarNum; /* TMP zVariable number. */
static long EPOCHdimSizes[1] = {3}; /* EPOCH dimension sizes. */
static long LATLONdimSizes[2] = {2,3} /* LAT/LON dimension sizes. */
static long TMPdimSizes[1] = {3}; /* TMP dimension sizes. */
.
.
status = CDFcreatezVar (id, "EPOCH", CDF_EPOCH, 1, 0L, EPOCHdimSizes, EPOCHrecVary,
EPOCHdimVarys, &EPOCH varNum);
if (status != CDF_OK) UserStatusHandler (status);

status = CDFcreatezVar (id, "LATITUDE", CDF_INT2, 1, 2L, LATLONdimSizes,LATrecVary, LATdimVarys,
&LATvarNum);
if (status != CDF_OK) UserStatusHandler (status);

status = CDFcreatezVar (id, "LONGITUDE", CDF_INT2, 1, 2L, LATLONdimSizes, LONrecVary,
LONdimVarys, &LONvarNum);
if (status != CDF_OK) UserStatusHandler (status);

status = CDFcreatezVar (id, "TEMPERATURE", CDF_REAL4, 1, 1L, TMPdimSizes, TMPrecVary,
TMPdimVarys, &TMPvarNum);
if (status != CDF_OK) UserStatusHandler (status);
.
.

6.3.5 CDFdeletezVar

CDFstatus CDFdeletezVar(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long varNum); /* in -- zVariable identifier. */

CDFdeletezVar deletes the specified zVariable from a CDF.

The arguments to CDFdeletezVar are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum zVariable number to be deleted.

101

6.3.5.1. Example(s)

The following example deletes the zVariable named MY_VAR in a CDF.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long varNum; /* zVariable number. */
.
.
varNum = CDFgetVarNum (id, “MY_VAR”);
if (varNum < CDF_OK) QuitError(….);
status = CDFdeletezVar (id, varNum);
if (status != CDF_OK) UserStatusHandler (status);
.
.

6.3.6 CDFdeletezVarRecords

CDFstatus CDFdeletezVarRecords(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long varNum, /* in -- zVariable identifier. */
long startRec, /* in -- Starting record number. */
long endRec); /* in -- Ending record number. */

CDFdeletezVarRecords deletes a range of data records from the specified zVariable in a CDF. If this is a variable with
sparse records, the remaining records after deletion will not be renumbered.30

The arguments to CDFdeletezVarRecords are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum Identifier of the zVariable.

startRec Starting record number to delete.

endRec Ending record number to delete.

6.3.6.1. Example(s)

30 Normal variables without sparse records have contiguous physical records. Once a section of the records get deleted,
the remaining ones automatically fill the gap.

102

The following example deletes 11 records (from record numbered 11 to 21) from the zVariable “MY_VAR” in a CDF.
Note: The first record is numbered as 0.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long varNum; /* zVariable number. */
long startRec; /* Starting record number. */
long endRec; /* Ending record number. */
.
.
varNum = CDFgetVarNum (id, “MY_VAR”);
if (varNum < CDF_OK) QuitError(….);
startRec = 10L;
endRec = 20L;
status = CDFdeletezVarRecords (id, varNum, startRec, endRec);
if (status != CDF_OK) UserStatusHandler (status);

.
.

6.3.7 CDFdeletezVarRecordsRenumber

CDFstatus CDFdeletezVarRecordsRenumber(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long varNum, /* in -- zVariable identifier. */
long startRec, /* in -- Starting record number. */
long endRec); /* in -- Ending record number. */

CDFdeletezVarRecordsRenumber deletes a range of data records from the specified zVariable in a CDF. If this is a
variable with sparse records, the remaining records after deletion will be renumbered, just like non-sparse variable’s
records.

The arguments to CDFdeletezVarRecords are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum Identifier of the zVariable.

startRec Starting record number to delete.

endRec Ending record number to delete.

6.3.7.1. Example(s)

103

The following example deletes 11 records (from record numbered 11 to 21) from the zVariable “MY_VAR” in a CDF.
Note: The first record is numbered as 0. If the last record number is 100, then after the deletion, the record will be 89.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long varNum; /* zVariable number. */
long startRec; /* Starting record number. */
long endRec; /* Ending record number. */
.
.
varNum = CDFgetVarNum (id, “MY_VAR”);
if (varNum < CDF_OK) QuitError(….);
startRec = 10L;
endRec = 20L;
status = CDFdeletezVarRecordsRenumber (id, varNum, startRec, endRec);
if (status != CDF_OK) UserStatusHandler (status);

.
.

6.3.8 CDFgetMaxWrittenRecNums

CDFstatus CDFgetMaxWrittenRecNums (/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long *rVarsMaxNum, /* out -- Maximum record number among all rVariables. */
long *zVarsMaxNum); /* out -- Maximum record number among all zVariables. */

CDFgetMaxWrittenRecNums returns the maximum written record number for the rVariables and zVariables in a CDF.
The maximum record number for rVariables or zVariables is one less than the maximum number of records among all
respective variables.

The arguments to CDFgetMaxWrittenRecNums are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

rVarsMaxNum Maximum record number among all rVariables.

zVarsMaxNum Maximum record number among all zVariables.

6.3.8.1. Example(s)

The following example returns the maximum written record numbers among all rVariables and zVariables of the CDF.

.

104

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long rVarsMaxNum; /* Maximum record number among all rVariables. */
long zVarsMaxNum; /* Maximum record number among all zVariables. */
.
.
status = CDFgetMaxWrittenRecNums (id, &rVarsMaxNum, &zVarsMaxNum);
if (status != CDF_OK) UserStatusHandler (status);
.
.

6.3.9 CDFgetNumrVars

CDFstatus CDFgetNumrVars (/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long *numVars); /* out -- Total number of rVariables. */

CDFgetNumrVars returns the total number of rVariables in a CDF.

The arguments to CDFgetNumrVars are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

numVars Number of rVariables.

6.3.9.1. Example(s)

The following example returns the total number of rVariables in a CDF.

.

.
#include "cdf.h"
.
.
CDFstatus status; /* Returned status code. */
CDFid id; /* CDF identifier. */
long numVars; /* Number of zVariables. */

.
.
status = CDFgetNumrVars (id, &numVars);
if (status != CDF_OK) UserStatusHandler (status);
.
.

105

6.3.10 CDFgetNumzVars

CDFstatus CDFgetNumzVars (/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long *numVars); /* out -- Total number of zVariables. */

CDFgetNumzVars returns the total number of zVariables in a CDF.

The arguments to CDFgetNumzVars are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

numVars Number of zVariables.

6.3.10.1. Example(s)

The following example returns the total number of zVariables in a CDF.

.

.
#include "cdf.h"
.
.
CDFstatus status; /* Returned status code. */
CDFid id; /* CDF identifier. */
long numVars; /* Number of zVariables. */

.
.
status = CDFgetNumzVars (id, &numVars);
if (status != CDF_OK) UserStatusHandler (status);
.
.

6.3.11 CDFgetVarAllRecordsByVarName

CDFstatus CDFgetVarAllRecordsByVarName(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
char *varName, /* in -- Variable name. */
void *buffer); /* out – Buffer for thre returned record data. */

CDFgetVarAllRecordsByVarName reads the whole records from the specified variable in a CDF. This function provides
an easier way of getting all data from a variable. Since a variable name is unique in a CDF, this function can be used for
either an rVariable or zVariable. For zVariable, this function is similar to CDFgetzVarAllRecordsByVarID, which

106

requires the zVariable id, instead. Make sure that the buffer is big enough to hold the data. Otherwise, a segmentation
fault may happen.

The arguments to CDFgetVarAllRecordsByVarName are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varName Variable’s name.

buffer Buffer that holds the returned data.

6.3.11.1. Example(s)

The following example returns the whole record data for zVariable “MY_VAR” in a CDF.

Assuming that the variable has 100 records, each record being a 1-dimensional, with 3 elements, of double type.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
double buffer[100][3]; /* The buffer holding the data. */
.
.
status = CDFgetVarAllRecordsByVarName (id, “MY_VAR”, buffer);
if (status != CDF_OK) UserStatusHandler (status);
.
.

A more general approach: for a variable of double type, but not knowing the total number of records, number of
dimensions, etc,:

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
long varNum; /* zVariable number. */
long numRecs; /* Number of written records. */
long numDims; /* Numer of zVariable’s dimensions. */
long dimSizes[CDF_MAX_DIMS]; /* zVariable’s dimensioality. */
long numValues; /* Total numer of values. */
double *buffer; /* The buffer holding the data. */
.
.
varNum = CDFgetVarNum (id, “MY_VAR”);
if (varNum < CDF_OK) Quit (“….”);
.
status = CDFgetzVarMaxWrittenRecNum (id, varNum, &numRecs);

107

if (status != CDF_OK) ….
status = CDFgetzVarNumDims (id, varNum, &numDims);
if (status != CDF_OK) ….
status = CDFgetzVarDimSizes (id, varNum, dimSizes);
if (status != CDF_OK) ….
numValues = 1;
for (i=1; i<numDims;++i) numValues *= dimSizes[i];
numvalue *= numRecs;
buffer = (double *) malloc((sizeof(double) * (size_t) numValues);
status = CDFgetVarAllRecordsByVarName (id, “MY_VAR”, buffer);
if (status != CDF_OK) UserStatusHandler (status);
.
.
free (buffer);

6.3.12 CDFgetVarNum 31

long CDFgetVarNum(/* out -- Variable number. */
CDFid id, /* in -- CDF identifier. */
char *varName); /* in -- Variable name. */

CDFgetVarNum returns the variable number for the given variable name (rVariable or zVariable). If the variable is
found, CDFgetVarNum returns its variable number - which will be equal to or greater than zero (0). If an error occurs
(e.g., the variable does not exist in the CDF), an error code (of type CDFstatus) is returned. Error codes are less than
zero (0). The returned variable number should be used in the functions of the same variable type, rVariable or zVariable.
If it is an rVariable, functions dealing with rVariables should be used. Similarly, functions for zVariables should be used
for zVariables.

The arguments to CDFgetVarNum are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varName Name of the variable to search. This may be at most CDF_VAR_NAME_LEN256 characters

(excluding the NUL terminator). Variable names are case-sensitive.

CDFgetVarNum may be used as an embedded function call where an rVariable or zVariable number is needed.

6.3.12.1. Example(s)

In the following example CDFgetVarNum is used as an embedded function call when inquiring about a zVariable.

.

.
#include "cdf.h"
.

31 Expanded from the original Standard Interface function CDFvarNum that returns the rVariable number. Since no two
variables, either rVariable or zVariable, can have the same name, this function now returns the variable number for the
given rVariable or zVariable name (if the variable name exists in a CDF).

108

.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
char varName[CDF_VAR_NAME_LEN256+1]; /* Variable name. */
long dataType; /* Data type of the zVariable. */
long numElements; /* Number of elements (of the data type). */
long numDims; /* Number of dimensions. */
long dimSizes[CDF_MAX_DIMS]; /* Dimension sizes. */
long recVariance; /* Record variance. */
long dimVariances[CDF_MAX_DIMS]; /* Dimension variances. */
.
.
status = CDFinquirezVar (id, CDFgetVarNum(id,"LATITUDE"), varName, &dataType,
 &numElements, &numDims, dimSizes , &recVariance, dimVariances);
if (status != CDF_OK) UserStatusHandler (status);
.
.

In this example the zVariable named LATITUDE was inquired. Note that if LATITUDE did not exist in the CDF, the
call to CDFgetVarNum would have returned an error code. Passing that error code to CDFinquirezVar as a zVariable
number would have resulted in CDFinquirezVar also returning an error code. Also note that the name written into
varName is already known (LATITUDE). In some cases the zVariable names will be unknown - CDFinquirezVar would
be used to determine them. CDFinquirezVar is described in Section 6.3.42.

6.3.13 CDFgetVarRangeRecordsByVarName

CDFstatus CDFgetVarRangeRecordsByVarName(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
char *varName, /* in -- Variable name. */
long startRec, /* in – Starting record number. */
long stopRec, /* in – Stopping record number. */
void *buffer); /* out – Buffer for the returned record data. */

CDFgetVarRangeRecordsByVarName reads a range of records from the specified variable in a CDF. This function
provides an easier way of getting data from a variable. Since a variable name is unique in a CDF, this function can be
used by either an rVariable or zVaribale. For zVariable, this function is similar to CDFgetzVarRangeRecordsByVarID,
only it requires the variable’s id. Make sure that the buffer is big enough to hold the data. Otherwise, a segmentation fault
may happen.

The arguments to CDFgetVarRangeRecordsByVarName are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varName Variable name.

startRec zero-based starting record number.

stopRec zero-based stopping record number.

buffer Buffer that holds the returned data.

109

6.3.13.1. Example(s)

The following example reads the 100 record data, from record number 10 to 109 for zVariable “MY_VAR” in a CDF.
Assuming each record is a 1-dimensional, with 3 elements, of double type.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
double buffer[100][3]; /* The buffer holding the data. */
.
.
status = CDFgetVarRangeRecordsByVarName (id, “MY_VAR”, 10L, 109L, buffer);
if (status != CDF_OK) UserStatusHandler (status);
.
.

More general approach: for a variable of double type:

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
long varNum; /* zVariable number. */
long numDims; /* Numer of zVariable’s dimensions. */
long dimSizes[CDF_MAX_DIMS]; /* zVariable’s dimensioality. */
long numValues; /* Total numer of values. */
double *buffer; /* The buffer holding the data. */
.
.
varNum = CDFgetVarNum (id, “MY_VAR”);
if (varNum < CDF_OK) Quit (“….”);
.
status = CDFgetzVarNumDims (id, varNum, &numDims);
if (status != CDF_OK) ….
status = CDFgetzVarDimSizes (id, varNum, dimSizes);
if (status != CDF_OK) ….
numValues = 1;
for (i=1; i<numDims;++i) numValues *= dimSizes[i];
numvalue *= (109-10+1);
buffer = (double *) malloc((sizeof(double) * (size_t) numValues);
status = CDFgetVarRangeRecordsByVarName (id, “MY_VAR”, 10L, 109L, buffer);
if (status != CDF_OK) UserStatusHandler (status);
.
.
free (buffer);

110

6.3.14 CDFgetzVarAllocRecords

CDFstatus CDFgetzVarAllocRecords(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long varNum, /* in -- Variable number. */
long *numRecs); /* out -- Allocated number of records. */

CDFgetzVarAllocRecords returns the number of records allocated for the specified zVariable in a CDF. Refer to the
CDF User’s Guide for a description of allocating variable records in a single-file CDF.

The arguments to CDFgetzVarAllocRecords are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

numRecs Number of allocated records.

6.3.14.1. Example(s)

The following example returns the number of allocated records for zVariable “MY_VAR” in a CDF.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
long varNum; /* zVariable number. */
long numRecs; /* The allocated records. */
.
.
varNum = CDFgetVarNum (id, “MY_VAR”);
if (varNum < CDF_OK) Quit (“….”);
.
status = CDFgetzVarAllocRecords (id, varNum, &numRecs);
if (status != CDF_OK) UserStatusHandler (status);
.
.

6.3.15 CDFgetzVarAllRecordsByVarID

CDFstatus CDFgetzVarAllRecordsByVarID(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long varNum, /* in -- zVariable number. */
void *buffer); /* out – Buffer for thre returned record data. */

111

CDFgetzVarAllRecordsByVarID reads the whole records from the specified zVariable in a CDF. This function provides
an easier way of getting all data from a variable. Make sure that the buffer is big enough to hold the data. Otherwise, a
segmentation fault may happen.

The arguments to CDFgetzVarAllRecordsByVarID are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

buffer Buffer that holds the returned data.

6.3.15.1. Example(s)

The following example returns the whole record data for zVariable “MY_VAR” in a CDF.

Assuming that the variable has 100 records, each record being a 1-dimensional, with 3 elements, of double type.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
long varNum; /* zVariable number. */
double buffer[100][3]; /* The buffer holding the data. */
.
.
varNum = CDFgetVarNum (id, “MY_VAR”);
if (varNum < CDF_OK) Quit (“….”);
.
status = CDFgetzVarAllRecordsByVarID (id, varNum, buffer);
if (status != CDF_OK) UserStatusHandler (status);
.
.

More general approach: for a variable of double type, but not knowing the total number of records, number of dimensions,
etc,:

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
long varNum; /* zVariable number. */
long numRecs; /* Number of written records. */
long numDims; /* Numer of zVariable’s dimensions. */
long dimSizes[CDF_MAX_DIMS]; /* zVariable’s dimensioality. */
long numValues; /* Total numer of values. */
double *buffer; /* The buffer holding the data. */
.

112

.
varNum = CDFgetVarNum (id, “MY_VAR”);
if (varNum < CDF_OK) Quit (“….”);
.
status = CDFgetzVarMaxWrittenRecNum (id, varNum, &numRecs);
if (status != CDF_OK) ….
status = CDFgetzVarNumDims (id, varNum, &numDims);
if (status != CDF_OK) ….
status = CDFgetzVarDimSizes (id, varNum, dimSizes);
if (status != CDF_OK) ….
numValues = 1;
for (i=1; i<numDims;++i) numValues *= dimSizes[i];
numvalue *= numRecs;
buffer = (double *) malloc((sizeof(double) * (size_t) numValues);
status = CDFgetzVarAllRecordsByVarID (id, varNum, buffer);
if (status != CDF_OK) UserStatusHandler (status);
.
.
free (buffer);

6.3.16 CDFgetzVarBlockingFactor

CDFstatus CDFgetzVarBlockingFactor(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long varNum, /* in -- Variable number. */
long *bf); /* out -- Blocking factor. */

CDFgetzVarBlockingFactor returns the blocking factor for the specified zVariable in a CDF. Refer to the CDF User’s
Guide for a description of the blocking factor.

The arguments to CDFgetzVarBlockingFactor are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

bf The blocking factor. A value of zero (o) indicates that the default blocking factor will be used.

6.3.16.1. Example(s)

The following example returns the blocking factor for the zVariable “MY_VAR” in a CDF.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
long varNum; /* zVariable number. */

113

long bf; /* The blocking factor. */
.
.
varNum = CDFgetVarNum (id, “MY_VAR”);
if (varNum < CDF_OK) Quit (“….”);
.
status = CDFgetzVarBlockingFactor (id, varNum, &bf);
if (status != CDF_OK) UserStatusHandler (status);
.
.

6.3.17 CDFgetzVarCacheSize

CDFstatus CDFgetzVarCacheSize(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long varNum, /* in -- Variable number. */
long *numBuffers); /* out -- Number of cache buffers. */

CDFgetzVarCacheSize returns the number of cache buffers being for the specified zVariable in a CDF. This operation
is not applicable to a single-file CDF. Refer to the CDF User’s Guide for a description of caching scheme used by the
CDF library.

The arguments to CDFgetzVarCacheSize are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

numBuffers Number of cache buffers.

6.3.17.1. Example(s)

The following example returns the number of cache buffers for zVariable “MY_VAR” in a CDF.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
long varNum; /* zVariable number. */
long numBuffers; /* The number of cache buffers. */
.
.
varNum = CDFgetVarNum (id, “MY_VAR”);
if (varNum < CDF_OK) Quit (“….”);
.
status = CDFgetzVarCacheSize (id, varNum, &numBuffers);
if (status != CDF_OK) UserStatusHandler (status);

114

.

.

6.3.18 CDFgetzVarCompression

CDFstatus CDFgetzVarCompression(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long varNum, /* in -- Variable number. */
long *cType, /* out -- Compression type. */
long cParms[], /* out -- Compression parameters. */
long *cPct); /* out -- Compression percentage. */

CDFgetzVarCompression returns the compression type/parameters and the compression percentage of the specified
zVariable in a CDF. Refer to Section 4.10 for a description of the CDF supported compression types/parameters. The
compression percentage is the result of the compressed size from all variable records divided by its original,
uncompressed varible size.

The arguments to CDFgetzVarCompression are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

cType The compression type.

cParms The compression parameters.

cPct The percentage of the uncompressed size of zVariable’s data values needed to store the

compressed values.

6.3.18.1. Example(s)

The following example returns the compression information for zVariable “MY_VAR” in a CDF.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
long varNum; /* zVariable number. */
long cType; /* The compression type. */
long cParms[CDF_MAX_PARMS]; /* The compression parameters. */
long cPct; /* The compression percentage. */
.
.
varNum = CDFgetVarNum (id, “MY_VAR”);
if (varNum < CDF_OK) Quit (“….”);
.

115

status = CDFgetzVarCompression (id, varNum, &cType, cParms, &cPct);
if (status != CDF_OK) UserStatusHandler (status);
.
.

6.3.19 CDFgetzVarData

CDFstatus CDFgetzVarData(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long varNum, /* in -- Variable number. */
long recNum, /* in -- Record number. */
long indices[], /* in -- Dimension indices. */
void *value); /* out -- Data value. */

CDFgetzVarData returns a data value from the specified indices, the location of the element, in the given record of the
specified zVariable in a CDF.

The arguments to CDFgetzVarData are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

recNum Record number.

indices Dimension indices within the record.

value Data value.

6.3.19.1. Example(s)

The following example returns two data values, the first and the fifth element, in Record 0 from zVariable “MY_VAR”,
a 2-dimensional (2 by 3) CDF_DOUBLE type variable, in a row-major CDF.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
long varNum; /* zVariable number. */
long recNum; /* The record number. */
long indices[2]; /* The dimension indices. */
double value1, value2; /* The data values. */
.
.
varNum = CDFgetVarNum (id, “MY_VAR”);
if (varNum < CDF_OK) Quit (“….”);
recNum = 0L;

116

indices[0] = 0L;
indices[1] = 0L;
status = CDFgetzVarData (id, varNum, recNum, indices, &value1);
if (status != CDF_OK) UserStatusHandler (status);
indices[0] = 1L;
indices[1] = 1L;
status = CDFgetzVarData (id, varNum, recNum, indices, &value2);
if (status != CDF_OK) UserStatusHandler (status);
.
.

6.3.20 CDFgetzVarDataType

CDFstatus CDFgetzVarDataType(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long varNum, /* in -- Variable number. */
long *dataType); /* out -- Data type. */

CDFgetzVarDataType returns the data type of the specified zVariable in a CDF. Refer to Section 4.5 for a description
of the CDF data types.

The arguments to CDFgetzVarDataType are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

dataType Data type.

6.3.20.1. Example(s)

The following example returns the data type of zVariable “MY_VAR” in a CDF.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
long varNum; /* zVariable number. */
long dataType; /* The data type. */
.
.
varNum = CDFgetVarNum (id, “MY_VAR”);
if (varNum < CDF_OK) Quit (“….”);
status = CDFgetzVarDataType (id, varNum, &dataType);
if (status != CDF_OK) UserStatusHandler (status);
.

117

.

6.3.21 CDFgetzVarDimSizes

CDFstatus CDFgetzVarDimSizes(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long varNum, /* in -- Variable number. */
long dimSizes[]); /* out -- Dimension sizes. */

CDFgetzVarDimSizes returns the size of each dimension for the specified zVariable in a CDF. For 0-dimensional
zVariables, this operation is not applicable.

The arguments to CDFgetzVarDimSizes are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number

dimSizes Dimension sizes. Each element of dimSizes receives the corresponding dimension size.

6.3.21.1. Example(s)

The following example returns the dimension sizes for zVariable “MY_VAR” in a CDF.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
long dimSizes[CDF_MAX_DIMS]; /* The dimension sizes. */
.
.
status = CDFgetzVarDimSizes (id, CDFgetVarNum(id, “MY_VAR”), dimSizes);
if (status != CDF_OK) UserStatusHandler (status);
.
.

6.3.22 CDFgetzVarDimVariances

CDFstatus CDFgetzVarDimVariances(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long varNum, /* in -- Variable number. */
long dimVarys[]); /* out -- Dimension variances. */

118

CDFgetzVarDimVariances returns the dimension variances of the specified zVariable in a CDF. For 0-dimensional
zVariable, this operation is not applicable. The dimension variances are described in section 4.9.

The arguments to CDFgetzVarDimVariances are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

dimVarys Dimension variances.

6.3.22.1. Example(s)

The following example returns the dimension variances of the 2-dimensional zVariable “MY_VAR” in a CDF.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
long dimVarys[2]; /* The dimension variances. */
.
.
status = CDFgetzVarDimVariances (id, CDFgetVarNum (id, “MY_VAR”), dimVarys);
if (status != CDF_OK) UserStatusHandler (status);
.
.

6.3.23 CDFgetzVarMaxAllocRecNum

CDFstatus CDFgetzVarMaxAllocRecNum(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long varNum, /* in -- Variable number. */
long *maxRec); /* out -- Maximum allocated record number. */

CDFgetzVarMaxAllocRecNum returns the number of records allocated for the specified zVariable in a CDF.

The arguments to CDFgetzVarMaxAllocRecNum are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

maxRec Number of records allocated.

119

6.3.23.1. Example(s)

The following example returns the maximum allocated record number for the zVariable “MY_VAR” in a CDF.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
long maxRec; /* The maximum record number. */
.
.
status = CDFgetzVarMaxAllocRecNum (id, CDFgetVarNum (id, “MY_VAR”), &maxRec);
if (status != CDF_OK) UserStatusHandler (status);
.
.

6.3.24 CDFgetzVarMaxWrittenRecNum

CDFstatus CDFgetzVarMaxWrittenRecNum (/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long varNum, /* in -- Variable number. */
long *maxRec); /* out -- Maximum written record number. */

CDFgetzVarMaxWrittenRecNum returns the maximum record number written for the specified zVariable in a CDF.

The arguments to CDFgetzVarMaxWrittenRecNum are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

maxRec Maximum written record number.

6.3.24.1. Example(s)

The following example returns the maximum record number written for the zVariable “MY_VAR” in a CDF.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
long maxRec; /* The maximum record number. */
.
.

120

status = CDFgetzVarMaxWrittenRecNum (id, CDFgetVarNum (id, “MY_VAR”), &maxRec);
if (status != CDF_OK) UserStatusHandler (status);
.
.

6.3.25 CDFgetzVarName

CDFstatus CDFgetzVarName(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long varNum, /* in -- Variable number. */
char *varName); /* out -- Variable name. */

CDFgetzVarName returns the name of the specified zVariable, by its number, in a CDF.

The arguments to CDFgetzVarName are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

varName Name of the variable.

6.3.25.1. Example(s)

The following example returns the name of the zVariable whose variable number is 1.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
long varNum; /* zVariable number. */
char varName[CDF_VAR_NAME_LEN256]; /* The name of the variable. */
.
.
varNum = 1L;
status = CDFgetzVarName (id, varNum, varName);
if (status != CDF_OK) UserStatusHandler (status);
.
.

6.3.26 CDFgetzVarNumDims

CDFstatus CDFgetzVarNumDims(/* out -- Completion status code. */

121

CDFid id, /* in -- CDF identifier. */
long varNum, /* in -- Variable number. */
long *numDims); /* out -- Number of dimensions. */

CDFgetzVarNumDims returns the number of dimensions (dimensionality) for the specified zVariable in a CDF.

The arguments to CDFgetzVarNumDims are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number

numDims Number of dimensions.

6.3.26.1. Example(s)

The following example returns the number of dimensions for zVariable “MY_VAR” in a CDF.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
long numDims; /* The dimensionality of the variable. */
.
.
status = CDFgetzVarNumDims (id, CDFgetVarNum(id, “MY_VAR”), &numDims);
if (status != CDF_OK) UserStatusHandler (status);
.
.

6.3.27 CDFgetzVarNumElements

CDFstatus CDFgetzVarNumElements(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long varNum, /* in -- Variable number. */
long *numElems); /* out -- Number of elements. */

CDFgetzVarNumElements returns the number of elements for each data value of the specified zVariable in a CDF. For
character data type (CDF_CHAR and CDF_UCHAR), the number of elements is the number of characters in the string.
For other data types, the number of elements will always be one (1).

The arguments to CDFgetzVarNumElements are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

122

numElems Number of elements.

6.3.27.1. Example(s)

The following example returns the number of elements for the data type from zVariable “MY_VAR” in a CDF.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
long numElems; /* The number of elements. */
.
.
status = CDFgetzVarNumElements (id, CDFgetVarNum (id, “MY_VAR”), &numElems);
if (status != CDF_OK) UserStatusHandler (status);
.
.

6.3.28 CDFgetzVarNumRecsWritten

CDFstatus CDFgetzVarNumRecsWritten(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long varNum, /* in -- Variable number. */
long *numRecs); /* out -- Number of written records. */

CDFgetzVarNumRecs returns the number of records written for the specified zVariable in a CDF. This number may not
correspond to the maximum record written if the zVariable has sparse records.

The arguments to CDFgetzVarNumRecsWritten are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

numRecs Number of written records.

6.3.28.1. Example(s)

The following example returns the number of written records from zVariable “MY_VAR” in a CDF.

.

.

123

#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
long numRecs; /* The number of written records. */
.
.
status = CDFgetzVarNumRecsWritten (id, CDFgetVarNum (id, “MY_VAR”), &numRecs);
if (status != CDF_OK) UserStatusHandler (status);
.
.

6.3.29 CDFgetzVarPadValue

CDFstatus CDFgetzVarPadValue(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long varNum, /* in -- Variable number. */
void *value); /* out -- Pad value. */

CDFgetzVarPadValue returns the pad value of the specified zVariable in a CDF. If a pad value has not been explicitly
specified for the zVariable through CDFsetzVarPadValue or something similar from the Internal Interface function, the
informational status code NO_PADVALUE_SPECIFIED will be returned and the default pad value for the variable’s
data type will be placed in the pad value buffer provided.

The arguments to CDFgetzVarPadvalue are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

value Pad value.

6.3.29.1. Example(s)

The following example returns the pad value from zVariable “MY_VAR”, a CDF_INT4 type variable, in a CDF.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
int padValue; /* The pad value. */
.
.
status = CDFgetzVarPadValue (id, CDFgetVarNum (id, “MY_VAR”), &padValue);
if (status != NO_PADVALUE_SPECIFIED) {
 .
 .

124

}
.
.

6.3.30 CDFgetzVarRangeRecordsByVarID

CDFstatus CDFgetzVarRangeRecordsByVarID(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long varNum, /* in -- zVariable number. */
long startRec, /* in – Starting record number. */
long stopRec, /* in – Stopping record number. */
void *buffer); /* out – Buffer for the returned record data. */

CDFgetzVarRangeRecordsByVarID reads a range of records from the specified zVariable in a CDF. This function
provides an easier way of getting data from a variable. Make sure that the buffer is big enough to hold the data. Otherwise,
a segmentation fault may happen.

The arguments to CDFgetzVarRangeRecordsByVarID are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

startRec zero-based starting record number.

stopRec zero-based stopping record number.

buffer Buffer that holds the returned data.

6.3.30.1. Example(s)

The following example reads the 100 record data, from record number 10 to 109 for zVariable “MY_VAR” in a CDF.
Assuming each record is a 1-dimensional, with 3 elements, of double type.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
long varNum; /* zVariable number. */
double buffer[100][3]; /* The buffer holding the data. */
.
.
varNum = CDFgetVarNum (id, “MY_VAR”);
if (varNum < CDF_OK) Quit (“….”);
.
status = CDFgetzVarRangeRecordsByVarID (id, varNum, 10L, 109L, buffer);
if (status != CDF_OK) UserStatusHandler (status);

125

.

.

More general approach: for a variable of double type:

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
long varNum; /* zVariable number. */
long numDims; /* Numer of zVariable’s dimensions. */
long dimSizes[CDF_MAX_DIMS]; /* zVariable’s dimensioality. */
long numValues; /* Total numer of values. */
double *buffer; /* The buffer holding the data. */
.
.
varNum = CDFgetVarNum (id, “MY_VAR”);
if (varNum < CDF_OK) Quit (“….”);
.
status = CDFgetzVarNumDims (id, varNum, &numDims);
if (status != CDF_OK) ….
status = CDFgetzVarDimSizes (id, varNum, dimSizes);
if (status != CDF_OK) ….
numValues = 1;
for (i=1; i<numDims;++i) numValues *= dimSizes[i];
numvalue *= (109-10+1);
buffer = (double *) malloc((sizeof(double) * (size_t) numValues);
status = CDFgetzVarRangeRecordsByVarID (id, varNum, 10L, 109L, buffer);
if (status != CDF_OK) UserStatusHandler (status);
.
.
free (buffer);

6.3.31 CDFgetzVarRecordData

CDFstatus CDFgetzVarRecordData(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long varNum, /* in -- Variable number. */
long recNum, /* in -- Record number. */
void *buffer); /* out -- Record data. */

CDFgetzVarRecordData returns an entire record at a given record number for the specified zVariable in a CDF. The
buffer should be large enough to hold the entire data values form the variable.

The arguments to CDFgetzVarRecordData are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

126

recNum Record number.

buffer Buffer holding the entire record data.

6.3.31.1. Example(s)

The following example will read two full records (record numbers 2 and 5) from zVariable “MY_VAR”, a 2-dimension
(2 by 3), CDF_INT4 type variable, in a CDF. The variable’s dimension variances are all VARY.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
long varNum; /* zVariable number. */
int *buffer1; /* The data holding buffer – dynamical allocation. */
int buffer2[2][3]; /* The data holding buffer – static allocation. */
long size;
.
.
varNum = CDFgetVarNum (id, “MY_VAR”);
if (varNum < CDF_OK) Quit (“….”);
status = CDFgetDataTypeSize (CDF_INT4, &size);
buffer1 = (int *) malloc(2*3*(int)size);
status = CDFgetzVarRecordData (id, varNum, 2L, buffer1);
if (status != CDF_OK) UserStatusHandler (status);
status = CDFgetzVarRecordData (id, varNum, 5L, buffer2);
if (status != CDF_OK) UserStatusHandler (status);
.
.
free (buffer1);

6.3.32 CDFgetzVarRecVariance

CDFstatus CDFgetzVarRecVariance(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long varNum, /* in -- Variable number. */
long *recVary); /* out -- Record variance. */

CDFgetzVarRecVariance returns the record variance of the specified zVariable in a CDF. The record variances are
described in Section 4.9.

The arguments to CDFgetzVarRecVariance are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

127

recVary Record variance.

6.3.32.1. Example(s)

The following example returns the record variance for the zVariable “MY_VAR” in a CDF.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
long recVary; /* The record variance. */
.
.
status = CDFgetzVarRecVariance (id, CDFgetVarNum (id, “MY_VAR”), &recVary);
if (status != CDF_OK) UserStatusHandler (status);
.
.

6.3.33 CDFgetzVarReservePercent

CDFstatus CDFgetzVarReservePercent(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long varNum, /* in -- Variable number. */
long *percent); /* out -- Reserve percentage. */

CDFgetzVarReservePercent returns the compression reserve percentage being used for the specified zVariable in a CDF.
This operation only applies to compressed zVariables. Refer to the CDF User’s Guide for a description of the reserve
scheme used by the CDF library.

The arguments to CDFgetzVarReservePercent are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

percent The reserve percentage.

6.3.33.1. Example(s)

The following example returns the compression reserve percentage from the compressed zVariable “MY_VAR” in a
CDF.

.

128

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
long percent; /* The compression reserve percentage. */
.
.
status = CDFgetzVarReservePercent (id, CDFgetVarNum (id, “MY_VAR”), &percent);
if (status != CDF_OK) UserStatusHandler (status);
.
.

6.3.34 CDFgetzVarSeqData

CDFstatus CDFgetzVarSeqData(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long varNum, /* in -- Variable number. */
void *value); /* out -- Data value. */

CDFgetzVarSeqData reads one value from the specified zVariable in a CDF at the current sequential value (position).
After the read, the current sequential value is automatically incremented to the next value. An error is returned if the
current sequential value is past the last record of the zVariable. Use CDFsetzVarSeqPos function to set the current
sequential value (position).

The arguments to CDFgetzVarSeqData are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number from which to read data.

value Buffer to store the value.

6.3.34.1. Example(s)

The following example will read the first two data values from the beginning of record number 2 (from a 2-dimensional
zVariable whose data type is CDF_INT4) in a CDF.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
long varNum; /* The variable number from which to read data */
int value1, value2; /* The data value. */
long indices[2]; /* The indices in a record. */
long recNum; /* The record number. */
.
.

129

recNum = 2L;
indices[0] = 0L;
indices[1] = 0L;
status = CDFsetzVarSeqPos (id, varNum, recNum, indices);
if (status != CDF_OK) UserStatusHandler (status);

status = CDFgetzVarSeqData (id, varNum, &value1);
if (status != CDF_OK) UserStatusHandler (status);

status = CDFgetzVarSeqData (id, varNum, &value2);
if (status != CDF_OK) UserStatusHandler (status);
.
.

6.3.35 CDFgetzVarSeqPos

CDFstatus CDFgetzVarSeqPos(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long varNum, /* in -- Variable number. */
long *recNum, /* out -- Record number. */
long indices[]); /* out -- Indices in a record. */

CDFgetzVarSeqPos returns the current sequential value (position) for sequential access for the specified zVariable in a
CDF. Note that a current sequential value is maintained for each zVariable individually. Use CDFsetzVarSeqPos
function to set the current sequential value.

The arguments to CDFgetzVarSeqPos are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

recNum zVariable record number.

indices Dimension indices. Each element of indices receives the corresponding dimension index. For

0-dimensional zVariable, this argument is ignored, but must be presented.

6.3.35.1. Example(s)

The following example returns the location for the current sequential value (position), the record number and indices
within it, from a 2-dimensional zVariable named MY_VAR in a CDF.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
long recNum; /* The record number. */
long indices[2]; /* The indices. */

130

.

.
status = CDFgetzVarSeqPos (id, CDFgetVarNum(id, “MY_VAR”), &recNum, indices);
if (status != CDF_OK) UserStatusHandler (status);
.
.

6.3.36 CDFgetzVarsMaxWrittenRecNum

CDFstatus CDFgetzVarsMaxWrittenRecNum(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long *recNum); /* out -- Maximum record number. */

CDFgetzVarsMaxWrittenRecNum returns the maximum record number among all of the zVariables in a CDF. Note that
this is not the number of written records but rather the maximum written record number (that is one less than the number
of records). A value of negative one (-1) indicates that zVariables contain no records. The maximum record number for
an individual zVariable may be acquired using the CDFgetzVarMaxWrittenRecNum function call.

Suppose there are three zVariables in a CDF:Var1, Var2, and Var3. If Var1 contains 15 records, Var2 contains 10
records, and Var3 contains 95 records, then the value returned from CDFgetzVarsMaxWrittenRecNum would be 95.

The arguments to CDFgetzVarsMaxWrittenRecNum are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

recNum Maximum written record number.

6.3.36.1. Example(s)

The following example returns the maximum record number for all of the zVariables in a CDF.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
long recNum; /* The maximum record number. */
.
.
status = CDFgetzVarsMaxWrittenRecNum (id, &recNum);
if (status != CDF_OK) UserStatusHandler (status);
.
.

131

6.3.37 CDFgetzVarSparseRecords

CDFstatus CDFgetzVarSparseRecords(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long varNum, /* in -- The variable number. */
long *sRecordsType); /* out -- The sparse records type. */

CDFgetzVarSparseRecords returns the sparse records type of the zVariable in a CDF. Refer to Section 4.11.1 for the
description of sparse records.

The arguments to CDFgetzVarSparseRecords are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum Variable number.

sRecordsType Sparse records type.

6.3.37.1. Example(s)

The following example returns the sparse records type of the zVariable “MY_VAR” in a CDF.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
long sRecordsType; /* The sparse records type. */
.
.
status = CDFgetzVarSparseRecords (id, CDFgetVarNum(id, “MY_VAR”), &sRecordsType);
if (status != CDF_OK) UserStatusHandler (status);
.
.

6.3.38 CDFgetzVarSpec

CDFstatus CDFgetzVarSpec (/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long varNum, /* in -- The zVariable number. */
long *dataType, /* out -- The zVariable’s data type. */
long *numElements, /* out -- The zVariable’s number of elements. */
long *numDims, /* out -- The zVariable’s number of dimensions. */
long dimSizes[], /* out -- The zVariable’s dimensional sizes. */
long *recVary, /* out -- The zVariable’s record variance. */
long dimVarys[]); /* out -- The zVariable’s dimensional variances. */

132

CDFgetzVarSpec acquires a zVariable’s specification in a CDF. This functions provides a single call to collect the
information, which normally would require multiple calls to other relavant functions.

The arguments to CDFgetzVarSpec are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable’s number.

dataType zVariable’s data type.

numElements zVariable’s number of elements.

numDims zVariable’s number of dimensions.

dimSizes zVariable’s dimensional sizes.

recVary zVariable’s record variance.

dimVarys zVariable’s dimensional variances.

6.3.38.1. Example(s)

The following example acquires the specification for zVariable “MY_VAR” in a CDF.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
long dataType, numElems, numDims, recVary;
long dimSizes[CDF_MAX_DIMS], dimVarys[CDF_MAX_DIMS];
.
status = CDFgetzVarSpaec (id, CDFgetVarNum(id, “MY_VAR”), &dataType, &numElems, &numDims,
 dimSizes, &recVary, dimVarys);
if (status != CDF_OK) UserStatusHandler (status);
.
.

6.3.39 CDFgetzVarsRecordDatabyNumbers

CDFstatus CDFgetzVarsRecordDatabyNumbers(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long numVars, /* in -- Number of zVariables. */
long varNums[], /* in -- zVariables’ numbers. */
long varRecNum, /* in -- Number of record. */
void *buffer; /* out -- Buffer for holding data. */

CDFgetzVarsRecordDatabyNumbers reads an entire record of the specified record number from the specified zVariable

133

numbers in a CDF. This function provides an easier and higher level interface to acquire data for a group of variables,
instead of doing it one variable at a time if calling the lower-level function. The retrieved record data from the
zVariable group is added to the buffer. The specified variables are identified by their variable numbers. Use the
CDFgetzVarsRecordData function to perform the same operation by providing the variable names, instead of the
variable numbers.

The arguments to CDFgetzVarsRecordDatabyNumbers are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate,
CDFopenCDF or a similar CDF creation or opening functionality from the Internal Interface.

numVars Number of the zVariables in the group involved this read operation.

varNums zVariables’ numbers from which to read data.

varRecNum Record number at which to read data.

buffer Pre-allocated buffer that holds the retrieved data for the given zVariables. It should be big
enough to allow full physical record data from all variables to fill.

6.3.39.1. Example(s)

The following example will read an entire single record data for a group of zVariables: Time, Longitude, Delta and
Name. The record to be read is the sixth record that is record number 5 (record number starts at 0). For Longitude, a 1-
dimensional array of type short (size [3]) is given based on its dimension variance [VARY] and data type CDF_INT2.
For Delta, it is 2-dimensional of type int (sizes [3,2]) for its dimension variances [VARY,VARY] and data type
CDF_INT4. For zVariable Time, a 2-dimensional array of type unsigned int (size [3,2]) is needed. It has dimension
variances [VARY,VARY] and data type CDF_UINT4. For Name, a 2-dimensional array of type char (size [2,10]) is
allocated for its [VARY] dimension variances and CDF_CHAR data type with the number of element 10.

 .
 .
 #include "cdf.h"
 .
 .

 CDFid id; /* CDF identifier. */
 CDFstatus status; /* Returned status code. */
 long numVars = 4; /* Number of zVariables to read. */
 long varRecNum = 5; /* The record number to read data. */
 char *zVar1 = "Longitude", /* Names of the zVariables to read. */
 *zVar2 = "Delta",
 *zVar3 = "Time",
 *zVar4 = "Name";
 long varNums[4];
 void *buffer, *bufferptr; /* Buffer for holding retrieved data. */
 unsigned int time[3][2]; /* zVariable: Time; Datatype: UINT4. */
 /* Dimensions: 2:[3,2]; Dim/Rec Variances: T/TT. */
 short longitude[3]; /* zVariable: Longitude; Datatype: INT2. */

/* Dimensions: 1:[3]; Dim/Rec Variances: T/T. */
 int delta[3][2]; /* zVariable: Delta; Datatype: INT4. */

/* Dimensions: 2:[3,2], Dim/Rec Variances: T/TT. */
 char name[2][10]; /* zVariable: Name; Datatype: CHAR/10. */

134

/* Dimensions: 1:[2]; Dim/Rec Variances: T/T. */

 varNums[0] = CDFgetVarNum(id, zVar1); /* Number of each zVariable. */
 varNums[1] = CDFgetVarNum(id, zVar2);
 varNums[2] = CDFgetVarNum(id, zVar3);
 varNums[3] = CDFgetVarNum(id, zVar4);

 buffer = (void *) malloc(sizeof(longitude) + sizeof(delta) + sizeof(time) + sizeof(name));

 status = CDFgetzVarsRecordDatabyNumbers(id, numVars, varNums, varRecNum, buffer);
 if (status != CDF_OK) UserStatusHandler (status);
 .
 bufferptr = buffer;
 memcpy(time, bufferptr, sizeof(time));
 bufferptr += sizeof(time);
 memcpy(logitude, bufferptr, sizeof(longitude));
 bufferptr += sizeof(longitude);
 memcpy(latitude, bufferptr, sizeof(latitude));
 bufferptr += sizeof(latitude);
 memcpy(temperature, bufferptr, sizeof(temperature));
 bufferptr += sizeof(temperature);
 memcpy(name, bufferptr, sizeof(name));

 .
 free (buffer);

6.3.40 CDFhyperGetzVarData

CDFstatus CDFhyperGetzVarData(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long varNum, /* in -- zVariable number. */
long recStart, /* in -- Starting record number. */
long recCount, /* in -- Number of records. */
long recInterval, /* in -- Reading interval between records. */
long indices[], /* in -- Dimension indices of starting value. */
long counts[], /* in -- Number of values along each dimension. */
long intervals[], /* in -- Reading intervals along each dimension. */
void *buffer); /* out -- Buffer of values. */

CDFhyperGetzVarData is used to read one or more values for the specified zVariable. It is important to know the variable
majority of the CDF before using this function because the values placed into the data buffer will be in that majority.
CDFinquireCDF can be used to determine the default variable majority of a CDF distribution. The Concepts chapter in
the CDF User's Guide describes the variable majorities.

The record number starts at 0, not 1. For example, if you want to read the first 5 records, the starting record number
(recStart), the number of records to read (recCount), and the record interval (recInterval) should be 0, 5, and 1,
respectively.

The arguments to CDFhyperGetzVarData are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

135

varNum zVariable number from which to read data. This number may be determined with a call to
CDFgetVarNum.

recStart Record number at which to start reading.

recCount Number of records to read.

recInterval Reading interval between records (e.g., an interval of 2 means read every other record).

indices Dimension indices (within each record) at which to start reading. Each element of indices specifies

the corresponding dimension index. For 0-dimensional zVariable, this argument is ignored (but
must be present).

counts Number of values along each dimension to read. Each element of counts specifies the

corresponding dimension count. For 0-dimensional zVariable, this argument is ignored (but must
be present).

intervals For each dimension, the dimension interval between reading (e.g., an interval of 2 means read

every other value). Each element of intervals specifies the corresponding dimension interval. For
0-dimensional zVariable, this argument is ignored (but must be present).

buffer Data holding buffer for the read values. The majority of the values in this buffer will be the same

as that of the CDF. This buffer must be pre-allocated and large enough to hold data values.
CDFinquirezVar can be used to determine the zVariable's data type and number of elements (of
that data type) at each value.

6.3.40.1. Example(s)

The following example will read 3 records of data, starting at record number 13 (14th record), from a zVariable named
Temperature The variable is a 3-dimensional array with sizes [180,91,10] and the CDF’s variable majority is
ROW_MAJOR. The record variance is VARY, the dimension variances are [VARY,VARY,VARY], and the data type
is CDF_REAL4. This example is similar to the CDFgetzVarData example except that it uses a single call to
CDFhyperGetzVarData (rather than numerous calls to. CDFgetzVarData).

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
float tmp[3][180][91][10]; /* Temperature values. */
long varN; /* zVariable number. */
long recStart = 13; /* Start record number. */
long recCount = 3; /* Number of records to read */
long recInterval = 1; /* Record interval – read every record */
static long indices[3] = {0,0,0}; /* Dimension indices. */
static long counts[3] = {180,91,10}; /* Dimension counts. */
static long intervals[3] = {1,1,1}; /* Dimension intervals – read every value*/
.
.
varN = CDFgetVarNum (id, "Temperature");
if (varN < CDF_OK) UserStatusHandler (varN);

136

status = CDFhyperGetzVarData (id, varN, recStart, recCount, recInterval, indices, counts, intervals, tmp);
if (status != CDF_OK) UserStatusHandler (status);
.
.

Note that if the CDF's variable majority had been COLUMN_MAJOR, the tmp array would have been declared float
tmp[10][91][180][3] for proper indexing.

6.3.41 CDFhyperPutzVarData

CDFstatus CDFhyperPutzVarData(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long varNum, /* in -- zVariable number. */
long recStart, /* in -- Starting record number. */
long recCount, /* in -- Number of records. */
long recInterval, /* in -- Writing interval between records. */
long indices[], /* in -- Dimension indices of starting value. */
long counts[], /* in -- Number of values along each dimension. */
long intervals[], /* in -- Writing intervals along each dimension. */
void *buffer); /* in -- Buffer of values. */

CDFhyperPutzVarData is used to write one or more values from the data holding buffer to the specified zVariable. It is
important to know the variable majority of the CDF before using this function because the values in the data buffer will
be written using that majority. CDFinquireCDF can be used to determine the default variable majority of a CDF
distribution. The Concepts chapter in the CDF User's Guide describes the variable majorities.

The record number starts at 0, not 1. For example, if you want to write 2 records (10th and 11th record), the starting record
number (recStart), the number of records to write (recCount), and the record interval (recInterval) should be 9, 2, and 1,
respectively.

The arguments to CDFhyperPutzVarData are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum zVariable number to which write data. This number may be determined with a call to

CDFgetVarNum.

recStart Record number at which to start writing.

recCount Number of records to write.

recInterval Interval between records for writing (e.g., an interval of 2 means write every other record).

indices Indices (within each record) at which to start writing. Each element of indices specifies the

corresponding dimension index. For 0-dimensional zVariable this argument is ignored (but must
be present).

counts Number of values along each dimension to write. Each element of counts specifies the

corresponding dimension count. For 0-dimensional zVariable this argument is ignored (but must
be present).

137

intervals For each dimension, the interval between values for writing (e.g., an interval of 2 means write
every other value). Each element of intervals specifies the corresponding dimension interval. For
0-dimensional zVariable this argument is ignored (but must be present).

buffer Data holding buffer of values to write. The majority of the values in this buffer must be the same

as that of the CDF. The values starting at memory address buffer are written to the CDF.

6.3.41.1. Example(s)

The following example writes 2 records to a zVariable named LATITUDE that is a 1-dimensional array with dimension
sizes [181]. The dimension variances are [VARY], and the data type is CDF_INT2. This example is similar to the
CDFputzVarData example except that it uses a single call to CDFhyperPutzVarData rather than numerous calls to
CDFputzVarData.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
short lat; /* Latitude value. */
short i, lats[2][181]; /* Buffer of latitude values. */
long varN; /* zVariable number. */
long recStart = 0; /* Record number. */
long recCount = 2; /* Record counts. */
long recInterval = 1; /* Record interval. */
static long indices[] = {0}; /* Dimension indices. */
static long counts[] = {181}; /* Dimension counts. */
static long intervals[] = {1}; /* Dimension intervals. */

.
.
varN = CDFgetVarNum (id, "LATITUDE");

if (varN < CDF_OK) UserStatusHandler (varN); /* If less than zero (0), not a zVariable number but
rather a warning/error code. */

for (i= 0; i < 2; i ++)
 for (lat = -90; lat <= 90; lat ++)
 lats[i][90+lat] = lat;

status = CDFhyperPutzVarData (id, varN, recStart, recCount, recInterval, indices, counts, intervals, lats);
if (status != CDF_OK) UserStatusHandler (status);
.
.

6.3.42 CDFinquirezVar

CDFstatus CDFinquirezVar(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long varNum, /* in -- zVariable number. */

138

char varName, /* out -- zVariable name. */
long *dataType, /* out -- Data type. */
long *numElements, /* out -- Number of elements (of the data type). */
long *numDims, /* out -- Number of dimensions. */
long dimSizes[], /* out -- Dimension sizes */
long *recVariance, /* out -- Record variance. */
long dimVariances[]); /* out -- Dimension variances. */

CDFinquirezVar is used to inquire about the specified zVariable. This function would normally be used before reading
zVariable values (with CDFgetzVarData or CDFhyperGetzVarData) to determine the data type and number of elements
of that data type.

The arguments to CDFinquirezVar are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum Number of the zVariable to inquire. This number may be determined with a call to

CDFgetVarNum (see Section 6.3.11).

varName zVariable's name. This character string must be large enough to hold

CDF_VAR_NAME_LEN256 + 1 characters (including the NUL terminator).

dataType Data type of the zVariable. The data types are defined in Section 4.5.

numElements Number of elements of the data type at each zVariable value. For character data types

(CDF_CHAR and CDF_UCHAR), this is the number of characters in the string. (Each
value consists of the entire string.) For all other data types, this will always be one (1) -
multiple elements at each value are not allowed for non-character data types.

numDims Number of dimensions.

dimSizes Dimension sizes. It is a 1-dimensional array, containing one element per dimension. Each

element of dimSizes receives the corresponding dimension size. For 0-dimensional
zVariables this argument is ignored (but must be present).

recVariance Record variance. The record variances are defined in Section 4.9.

dimVariances Dimension variances. Each element of dimVariances receives the corresponding dimension

variance. The dimension variances are described in Section 4.9. For 0-dimensional
zVariables this argument is ignored (but a placeholder is necessary).

6.3.42.1. Example(s)

The following example returns information about an zVariable named HEAT_FLUX in a CDF.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */

139

char varName[CDF_VAR_NAME_LEN256+1]; /* zVariable name, +1 for NUL terminator. */
long dataType; /* Data type of the zVariable. */
long numElems; /* Number of elements (of data type). */
long recVary; /* Record variance. */
long numDims; /* Number of dimensions. */
long dimSizes[CDF_MAX_DIMS]; /* Dimension sizes (allocate to allow the

 maximum number of dimensions). */
long dimVarys[CDF_MAX_DIMS]; /* Dimension variances (allocate to allow the

 maximum number of dimensions). */
.
.
status = CDFinquirezVar(id, CDFgetVarNum(id,"HEAT_FLUX"), varName, &dataType,
 &numElems, &numDims, dimSizes, &recVary, dimVarys);
if (status != CDF_OK) UserStatusHandler (status);
.
.

varNum zVariable number.

6.3.43 CDFinsertrVarRecordsByVarID

CDFstatus CDFinsertrVarRecordsByVarID(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier */
long varNum, /* in -- rVariable number. */
long startRec, /* in -- Starting record number to insert. */
long numRecs, /* in -- Number of records to insert. */
void *buffer); /* in -- Data holding buffer. */

CDFinsertrVarRecordsByVarID inserts a number of records for the specified rVariable in a CDF. This function will
move down the existing records in range by the number of inserted records, as passed numRecs. The data buffer should
be big enough to hold all data values in the records. Segementation could occur if the buffer does not have enough data.
The function is only applicable to rVariables defined as non-sparsed records.

The arguments to CDFinsertrVarRecordsByVarID are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum rVariable number.

startRec Starting record to insert

numRecs Number of records to insert.

buffer Buffer that holds the full data values for the inserted records.

6.3.43.1. Example(s)

140

The following example shows how 10 records, from (zero-based) record number 5, are inserted for an rVariable “Test”,
a scalar of CDF_INT4 type, in a CDF.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long varNum; /* rVariable number. */
long startRec; /* Starting record to insert. */
long numRecs; /* Number of records to insert. */
int byffer[10]; /* Data buffer for inserted records. */
.
.
varNum = CDFvarNum (id, “Test”);
startRec = 5L;
numRecs = 10L;
….
.. fill buffer
..
status = CDFinsertrVarRecordsByVarID (id, varNum, startRec, numRecs, buffer);
if (status != CDF_OK) UserStatusHandler (status);
.
.

6.3.44 CDFinsertVarRecordsByVarName

CDFstatus CDFinsertVarRecordsByVarName(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier */
char *varName, /* in -- r/zVariable name. */
long startRec, /* in -- Starting record number to insert. */
long numRecs, /* in -- Number of records to insert. */
void *buffer); /* in -- Data holding buffer. */

CDFinsertVarRecordsByVarName inserts a number of records for the specified r/zVariable in a CDF. As a variable
name is unique in a CDF, this function can be used for both rVariables and zVariables. This function will move down
the existing records in range by the number of inserted records, as passed numRecs. The data buffer should be big enough
to hold all data values in the records. Segementation could occur if the buffer does not have enough data. The function is
only applicable to variables defined as non-sparsed records.

The arguments to CDFinsertVarRecordsByVarName are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varName r/zVariable name.

startRec Starting record to insert

numRecs Number of records to insert.

141

buffer Buffer that holds the full data values for the inserted records.

6.3.44.1. Example(s)

The following example shows how 10 records, from (zero-based) record number 5, are inserted for a zVariable “Test”, a
scalar of CDF_INT4 type, in a CDF.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long startRec; /* Starting record to insert. */
long numRecs; /* Number of records to insert. */
int byffer[10]; /* Data buffer for inserted records. */
.
.
startRec = 5L;
numRecs = 10L;
….
.. fill buffer
..
status = CDFinsertVarRecordsByVarName (id, “Test”, startRec, numRecs, buffer);
if (status != CDF_OK) UserStatusHandler (status);
.
.

6.3.45 CDFinsertzVarRecordsByVarID

CDFstatus CDFinsertzVarRecordsByVarID(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier */
long varNum, /* in -- zVariable number. */
long startRec, /* in -- Starting record number to insert. */
long numRecs, /* in -- Number of records to insert. */
void *buffer); /* in -- Data holding buffer. */

CDFinsertzVarRecordsByVarID inserts a number of records for the specified zVariable in a CDF. This function will
move down the existing records in range by the number of inserted records, as passed numRecs. The data buffer should
be big enough to hold all data values in the records. Segementation could occur if the buffer does not have enough data.
The function is only applicable to zVariables defined as non-sparsed records.

The arguments to CDFinsertzVarRecordsByVarID are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

142

varNum zVariable number.

startRec Starting record to insert

numRecs Number of records to insert.

buffer Buffer that holds the full data values for the inserted records.

6.3.45.1. Example(s)

The following example shows how 10 records, from (zero-based) record number 5, are inserted for an zVariable “Test”,
a scalar of CDF_INT4 type, in a CDF.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long varNum; /* zVariable number. */
long startRec; /* Starting record to insert. */
long numRecs; /* Number of records to insert. */
int byffer[10]; /* Data buffer for inserted records. */
.
.
varNum = CDFvarNum (id, “Test”);
startRec = 5L;
numRecs = 10L;
….
.. fill buffer
..
status = CDFinsertzVarRecordsByVarID (id, varNum, startRec, numRecs, buffer);
if (status != CDF_OK) UserStatusHandler (status);
.
.

6.3.46 CDFputVarAllRecordsByVarName

CDFstatus CDFputVarAllRecordsByVarName(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
char *varName, /* in -- Variable name. */
long numRecs, /* in – The total number of records to write. */
void *buffer); /* in – Buffer for the written record data. */

143

CDFputVarAllRecordsByVarName writes/updates32 the whole data records from the specified variable in a CDF. This
function provides an easier way of writing data from a variable. Since a variable name is unique in a CDF, this name can
be either a zVariable or rVariable. The variable shall be created before this function can be called.

The arguments to CDFputVarAllRecordsByVarName are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varName The Variable name.

numRecs Total number of records to write.

buffer Buffer that holds the written data.

6.3.46.1. Example(s)

The following example writes out a total of 100 records , for zVariable “MY_VAR” in a CDF.
Assuming each record is a 1-dimensional, with 3 elements, of double type.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
double buffer[100][3]; /* The buffer holding the data. */
.
.
… fill the buffer
…
status = CDFputVarAllRecordsByVarName (id, “MY_VAR”, 100L, buffer);
if (status != CDF_OK) UserStatusHandler (status);
.
.

6.3.47 CDFputVarRangeRecordsByVarName

CDFstatus CDFputVarRangeRecordsByVarName(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
char *varName, /* in -- Variable name. */
long startRec, /* in – The starting record to write. */
long stopRec, /* in – The stopping record to write. */
void *buffer); /* in – Buffer for the written record data. */

32 If the variable already has more records than the numRecs in this function call, those records out of the range will
stay after the call. If you want to remove those records, you can delete all records before calling this function.

144

CDFputVarRangeRecordsByVarName writes the whole data records from the specified variable in a CDF. This function
provides an easier way of writing data from a variable. Since the variable name is unique in a CDF, this name can be
either a zVariable or rVariable. The variable shall be created before this function can be called.

The arguments to CDFputVarRangeRecordsByVarName are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varName Variable name.

startRec Starting record number to write.

stopRec Stopping record number to write.

buffer Buffer that holds the written data.

6.3.47.1. Example(s)

The following example writes out a range of record data, from record 10 to 109, for zVariable “MY_VAR” in a CDF.
Assuming each record is a 1-dimensional, with 3 elements, of double type.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
double buffer[100][3]; /* The buffer holding the data. */
.
.
… fill the buffer
…
status = CDFputVarRangeRecordsByVarName (id, “MY_VAR”, 10L, 109L, buffer);
if (status != CDF_OK) UserStatusHandler (status);
.
.

6.3.48 CDFputzVarAllRecordsByVarID

CDFstatus CDFputzVarAllRecordsByVarID(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long varNum, /* in -- zVariable number. */
long numRecs, /* in – Number of records in total to write. */
void *buffer); /* in – Buffer for the written record data. */

145

CDFputzVarAllRecordsByVarID writes/updates33 the whole records from the specified zVariable in a CDF. This
function provides an easier way of writing all data from a variable. Make sure that the buffer has the enough data to cover
the records to be written. The zVariable shall be created before this function can be called.

The arguments to CDFputzVarAllRecordsByVarID are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

numRecs Total number of records to write.

buffer Buffer that holds the written data.

6.3.48.1. Example(s)

The following example writes out the whole record data for zVariable “MY_VAR” in a CDF.

Assuming that the variable has 100 records, each record being a 1-dimensional, with 3 elements, of double type.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
long varNum; /* zVariable number. */
double buffer[100][3]; /* The buffer holding the data. */
.
.
varNum = CDFgetVarNum (id, “MY_VAR”);
if (varNum < CDF_OK) Quit (“….”);
.
… fill the buffer
…
status = CDFputzVarAllRecordsByVarID (id, varNum, 100L, buffer);
if (status != CDF_OK) UserStatusHandler (status);
.
.

6.3.49 CDFputzVarData

CDFstatus CDFputzVarData(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long varNum, /* in -- Variable number. */

33 If the variable already has more records than the numRecs in this function call, those records out of the range will
stay after the call. If you want to remove those records, you can delete all records before calling this function.

146

long recNum, /* in -- Record number. */
long indices[], /* in -- Dimension indices. */
void *value); /* in -- Data value. */

CDFputzVarData writes a single data value to the specified index, the location of the element, in the given record of the
specified zVariable in a CDF.

The arguments to CDFputzVarData are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

recNum Record number.

indices Dimension indices within the record.

value Data value.

6.3.49.1. Example(s)

The following example will write two data values, the first and the fifth element, in Record 0 from zVariable “MY_VAR”,
a 2-dimensional (2 by 3), CDF_DOUBLE type variable, in a row-major CDF.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
long varNum; /* zVariable number. */
long recNum; /* The record number. */
long indices[2]; /* The dimension indices. */
double value1, value2; /* The data values. */
.
.
varNum = CDFgetVarNum (id, “MY_VAR”);
if (varNum < CDF_OK) Quit (“….”);
recNum = 0L;
indices[0] = 0L;
indices[1] = 0L;
value1 = 10.1;
status = CDFputzVarData (id, varNum, recNum, indices, &value1);
if (status != CDF_OK) UserStatusHandler (status);
indices[0] = 1L;
indices[1] = 1L;
value2 = 20.2;
status = CDFputzVarData (id, varNum, recNum, indices, &value2);
if (status != CDF_OK) UserStatusHandler (status);
.
.

147

6.3.50 CDFputzVarRangeRecordsByVarID

CDFstatus CDFputzVarRangeRecordsByVarID(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long varNum, /* in -- zVariable number. */
long startRec, /* in – The starting record to write. */
long stopRec, /* in – The stopping record to write. */
void *buffer); /* in – Buffer for the written record data. */

CDFputzVarRangeRecordsByVarID writes/updates a range of records from the specified zVariable in a CDF. This
function provides an easier way of writing data from a variable. The zVariable shall be created before this function can
be called.

The arguments to CDFputzVarRangeRecordsByVarID are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

startRec Starting record number to write.

stopRec Stopping record number to write.

buffer Buffer that holds the written data.

6.3.50.1. Example(s)

The following example writes out a range of record data, from record 10 to 109, for zVariable “MY_VAR” in a CDF.
Assuming each record is a 1-dimensional, with 3 elements, of double type.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
long varNum; /* zVariable number. */
double buffer[100][3]; /* The buffer holding the data. */
.
.
varNum = CDFgetVarNum (id, “MY_VAR”);
if (varNum < CDF_OK) Quit (“….”);
.
… fill the buffer
…
status = CDFputzVarRangeRecordsByVarID (id, varNum, 10L, 109L, buffer);
if (status != CDF_OK) UserStatusHandler (status);
.
.

148

6.3.51 CDFputzVarRecordData

CDFstatus CDFputzVarRecordData(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long varNum, /* in -- Variable number. */
long recNum, /* in -- Record number. */
void *buffer); /* in -- Record data. */

CDFputzVarRecordData writes an entire record at a given record number for the specified zVariable in a CDF. The
buffer should hold the entire data values for the variable. The data values in the buffer should be in the order that
corresponds to the variable majority defined for the CDF.

The arguments to CDFputzVarRecordData are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

recNum Record number.

buffer Buffer holding the entire record values.

6.3.51.1. Example(s)

The following example will write two full records (numbered 2 and 5) from zVariable “MY_VAR”, a 2-dimension (2 by
3), CDF_INT4 type variable, in a CDF. The variable’s dimension variances are all VARY.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
long varNum; /* zVariable number. */
int *buffer1; /* The data holding buffer – dynamical allocation. */
int buffer2[2][3]; /* The data holding buffer – static allocation. */
long size;
int i,j;
.
.
varNum = CDFgetVarNum (id, “MY_VAR”);
if (varNum < CDF_OK) Quit (“….”);
status = CDFgetDataTypeSize (CDF_INT4, &size);
buffer1 = (int *) malloc(2*3*(int)size);
for (i=0; i<6; i++) *(((int *) buffer1)+i) = I;
status = CDFputzVarRecordData (id, varNum, 2L, buffer1);
if (status != CDF_OK) UserStatusHandler (status);
for (i=0; i<2; I++)

149

 for (j=0; j<3; j++)
 buffer2[i][j] = i*j;
status = CDFputzVarRecordData (id, varNum, 5L, buffer2);
if (status != CDF_OK) UserStatusHandler (status);
.
.
free (buffer1);

6.3.52 CDFputzVarSeqData

CDFstatus CDFputzVarSeqData(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long varNum, /* in -- Variable number. */
void *value); /* in -- Data value. */

CDFputzVarSeqData writes one value to the specified zVariable in a CDF at the current sequential value (position) for
that variable. After the write, the current sequential value is automatically incremented to the next value. Use
CDFsetzVarSeqPos function to set the current sequential value (position).

The arguments to CDFputzVarSeqData are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

value Buffer holding the data value.

6.3.52.1. Example(s)

The following example will write two data values starting at record number 2 from a 2-dimensional zVariable whose
data type is CDF_INT4.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
long varNum; /* The variable number. */
int value1, value2; /* The data value. */
long indices[2]; /* The indices in a record. */
long recNum; /* The record number. */
.
.
recNum = 2L;
indices[0] = 0L;
indices[1] = 0L;
status = CDFsetzVarSeqPos (id, varNum, recNum, indices);
if (status != CDF_OK) UserStatusHandler (status);

150

status = CDFputzVarSeqData (id, varNum, &value1);
if (status != CDF_OK) UserStatusHandler (status);

status = CDFputzVarSeqData (id, varNum, &value2);
if (status != CDF_OK) UserStatusHandler (status);
.
.

6.3.53 CDFputzVarsRecordDatabyNumbers

CDFstatus CDFputzVarsRecordDatabyNumbers(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long numVars, /* in -- Number of zVariables. */
long varNums[], /* in -- zVariables’s numbers. */
long varRecNum, /* in -- Record number. */
void *buffer; /* in -- Buffer for input data. */

CDFputzVarsRecordDatabyNumbers is used to write a whole record data at a specific record number for a group of
zVariables in a CDF. It expects that the data buffer matches up to the total full physical record size of all requested
zVariables. Passed record data is filled into its respective zVariable. This function provides an easier and higher level
interface to write data for a group of variables, instead of doing it one variable at a time if calling the lower-level function.
The specified variables are identified by their variable numbers. Use CDFputzVarsRecordData function to perform the
similar operation by providing the variable names, instead of the numbers.

The arguments to CDFputzVarsRecordDatabyNumbers are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate,
CDFopenCDF or a similar CDF creation or opening functionality from the Internal Interface.

numVars Number of the zVariables in the group involved this write operation.

varNums zVariables’s numbers in the group involved this write operation.

varRecNum The record number at which to write the whole record data for the group of zVariables.

buffer A buffer that holds the output data for the given zVariables.

6.3.53.1. Example(s)

The following example will write an entire single record data for a group of zVariables. The CDF's zVariables are 2-
dimensional with sizes [2,2]. The zVariables involved in the write are Time, Longitude, Latitude and Temperature. The
record to be written is 4. Since the dimension variances for Time are [NONVARY,NONVARY], a scalar variable of
type int is allocated for its data type CDF_INT4. For Longitude, a 1-dimensional array of type float (size [2]) is
allocated as its dimension variances are [VARY,NONVARY] with data type CDF_REAL4. A similar 1-dimensional
array is provided for Latitude for its [NONVARY,VARY] dimension variances and CDF_REAL4 data type. For
Temperature, since its [VARY,VARY] dimension variances and CDF_REAL4 data type, a 2-dimensional array of type
float is provided. For NAME, a 2-dimensional array of type char (size [2,10]) is allocated due to its [VARY,
NONVARY] dimension variances and CDF_CHAR data type with the number of element 10.

#include "cdf.h"

151

 .
 .
 /* Dim/Rec Variances: T/TF. */
 CDFid id; /* CDF identifier. */
 CDFstatus status; /* Returned status code. */
 long numVars = 5; /* Number of zVariables to write. */
 long varRecNum = 4; /* The record number to write data. */
 char *zVar1 = "Time", /* Names of the zVariables to write. */
 *zVar2 = "Longitude",
 *zVar3 = "Latitude",
 *zVar4 = "Temperature",
 *zVar5 = "NAME";
 long varNums[5];
 void *buffer; /* Buffer for holding the output data */
 void *bufferptr; /* Buffer place keeper */
 int time = {123}; /* zVariable: Time; Datatype: INT4. */
 /* Dim/Rec Variances: T/FF. */
 float longitude[2] = /* zVariable: Longitude; Datatype: REAL4. */
 {11.1, 22.2}; /* Dim/Rec Variances: T/TF. */
 float latitude[2] = /* zVariable: Latitude; Datatype: REAL4. */
 {-11.1, -22.2}; /* Dim/Rec Variances: T/FT. */
 float temperature[2][2] = /* zVariable: Temperature; Datatype: REAL4. */
 {100.0, 200.0, /* Dim/Rec Variances: T/TT. */
 300.0, 400.0};
 char name[2][10] = /* zVariable: NAME; Datatype: CHAR/10. */

/* Dim/Rec Variances: T/TF. */
 {'1', '3', '5', '7', '9', '2', '4', '6', '8', '0',
 'z', 'Z', 'y', 'Y', 'x', 'X', 'w', 'W', 'v', 'V'};

 varNums[0] = CDFgetVarNum(id, zVar1); /* Number of each zVariable. */
 varNums[1] = CDFgetVarNum(id, zVar2);
 varNums[2] = CDFgetVarNum(id, zVar3);
 varNums[3] = CDFgetVarNum(id, zVar4);
 varNums[4] = CDFgetVarNum(id, zVar5);

 buffer = (void *) malloc(sizeof(time) + sizeof(longitude) + sizeof(latitude) + sizeof(temperature) + sizeof(name));
 bufferptr = buffer;
 memcpy(bufferptr, (void *) time, sizeof(time));
 bufferptr += sizeof(time);
 memcpy(bufferptr, (void *) longitude, sizeof(longitude));
 bufferptr += sizeof(longitude);
 memcpy(bufferptr, (void *) latitude, sizeof(latitude));
 bufferptr += sizeof(latitude);
 memcpy(bufferptr, (void *) temperature, sizeof(temperature));
 bufferptr += sizeof(temperature);
 memcpy(bufferptr, (void *) name, sizeof(name));

 status = CDFputzVarsRecordDatabyNumbers(id, numVars, varNums, varRecNum, buffer);
 if (status != CDF_OK) UserStatusHandler (status);
 ...
 ...
 free (buffer);

152

6.3.54 CDFrenamezVar

CDFstatus CDFrenamezVar(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long varNum, /* in -- zVariable number. */
char *varName); /* in -- New name. */

CDFrenamezVar is used to rename an existing zVariable. A variable (rVariable or zVariable) with the same name must
not already exist in the CDF.

The arguments to CDFrenamezVar are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum Number of the zVariable to rename. This number may be determined with a call to

CDFgetVarNum.

varName New zVariable name. This may be at most CDF_VAR_NAME_LEN256 characters (excluding

the NUL terminator). Variable names are case-sensitive.

6.3.54.1. Example(s)

In the following example the zVariable named TEMPERATURE is renamed to TMP (if it exists). Note that if
CDFgetVarNum returns a value less than zero (0) then that value is not an zVariable number but rather a warning/error
code.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long varNum; /* zVariable number. */
.
.
varNum = CDFgetVarNum (id, "TEMPERATURE");
if (varNum < CDF_OK) {
 if (varNum != NO_SUCH_VAR) UserStatusHandler (varNum);
}
else {
 status = CDFrenamezVar (id, varNum, "TMP");
 if (status != CDF_OK) UserStatusHandler (status);
}
.
.

153

6.3.55 CDFsetzVarAllocBlockRecords

CDFstatus CDFsetzVarAllocBlockRecords(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long varNum, /* in -- Variable number. */
long firstRec, /* in -- First record number. */
long lastRec); /* in -- Last record number. */

CDFsetzVarAllocBlockRecords specifies a range of records to be allocated (not written) for the specified zVariable in a
CDF. This operation is only applicable to uncompressed zVariable in single-file CDFs. Refer to the CDF User’s Guide
for the descriptions of allocating variable records.

The arguments to CDFsetzVarAllocBlockRecords are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

firstRec The first record number to allocate.

lastRec The last record number to allocate.

6.3.55.1. Example(s)

The following example allocates 10 records, from record numbered 10 to 19, for zVariable “MY_VAR” in a CDF.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
long firstRec, lastRec; /* The first/last record numbers. */
.
.
firstRec = 10L;
lastRec = 19L;
status = CDFsetzVarAllocBlockRecords (id, CDFgetVarNum(id, “MY_VAR”), firstRec, lastRec);
if (status != CDF_OK) UserStatusHandler (status);
.
.

6.3.56 CDFsetzVarAllocRecords

CDFstatus CDFsetzVarAllocRecords(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long varNum, /* in -- Variable number. */
long numRecs); /* in -- Number of records. */

154

CDFsetzVarAllocRecords specifies a number of records to be allocated (not written) for the specified zVariable in a
CDF. The records are allocated beginning at record number zero (0). This operation is only applicable to uncompressed
zVariable in single-file CDFs. Refer to the CDF User’s Guide for the descriptions of allocating variable records.

The arguments to CDFsetzVarAllocRecords are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

numRecs Number of records to allocate.

6.3.56.1. Example(s)

The following example allocates 100 records, from record numbered 0 to 99, for zVariable “MY_VAR” in a CDF.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
long numRecs; /* The number of records. */
.
.
numRecs = 100L;
status = CDFsetzVarAllocRecords (id, CDFgetVarNum(id, “MY_VAR”), numRecs);
if (status != CDF_OK) UserStatusHandler (status);
.
.

6.3.57 CDFsetzVarBlockingFactor

CDFstatus CDFsetzVarBlockingFactor(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long varNum, /* in -- Variable number. */
long bf); /* in -- Blocking factor. */

CDFsetzVarBlockingFactor specifies the blocking factor (number of records allocated) for the specified zVariable in a
CDF. Refer to the CDF User’s Guide for a description of the blocking factor.

The arguments to CDFsetzVarBlockingFactor are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

155

bf The blocking factor. A value of zero (0) indicates that the default blocking factor is being
used.

6.3.57.1. Example(s)

The following example sets the blocking factor to 100 records for zVariable “MY_VAR” in a CDF.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
long bf; /* The blocking factor. */
.
.
bf = 100L;
status = CDFsetzVarBlockingFactor (id, CDFgetVarNum(id, “MY_VAR”), bf);
if (status != CDF_OK) UserStatusHandler (status);
.
.

6.3.58 CDFsetzVarCacheSize

CDFstatus CDFsetzVarCacheSize(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long varNum, /* in -- Variable number. */
long numBuffers); /* in -- Number of cache buffers. */

CDFsetzVarCacheSize specifies the number of cache buffers being for the zVariable in a CDF. This operation is not
applicable to a single-file CDF. Refer to the CDF User’s Guide for description about caching scheme used by the CDF
library.

The arguments to CDFsetzVarCacheSize are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

numBuffers Number of cache buffers.

6.3.58.1. Example(s)

The following example sets the number of cache buffers to 10 for zVariable “MY_VAR” in a CDF.

.

156

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
long numBuffers; /* The number of cache buffers. */
.
.
numBuffers = 10L;
status = CDFsetzVarCacheSize (id, CDFgetVarNum(id, “MY_VAR”), numBuffers);
if (status != CDF_OK) UserStatusHandler (status);
.
.

6.3.59 CDFsetzVarCompression

CDFstatus CDFsetzVarCompression(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long varNum, /* in -- Variable number. */
long cType, /* in -- Compression type. */
long cParms[]); /* in -- Compression parameters. */

CDFsetzVarCompression specifies the compression type/parameters for the specified zVariable in a CDF. Refer to
Section 4.10 for a description of the CDF supported compression types/parameters.

The arguments to CDFsetzVarCompression are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

cType The compression type.

cParms The compression parameters.

6.3.59.1. Example(s)

The following example sets the compression to GZIP.6 for zVariable “MY_VAR” in a CDF.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
long cType; /* The compression type. */
long cParms[CDF_MAX_PARMS]; /* The compression parameters. */
.
.

157

cType = GZIP_COMPRESSION;
cParms[0] = 6L;
status = CDFsetzVarCompression (id, CDFgetVarNum (id, “MY_VAR”), cType, cParms);
if (status != CDF_OK) UserStatusHandler (status);
.
.

6.3.60 CDFsetzVarDataSpec

CDFstatus CDFsetzVarDataSpec(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long varNum, /* in -- Variable number. */
long datyeType) /* in -- Data type. */

CDFsetzVarDataSpec respecifies the data type of the specified zVariable in a CDF. The variable’s data type cannot be
changed if the new data type is not equivalent to the old data type and any values (including the pad value) have been
written. Data specifications are considered equivalent if the data types are equivalent. Refer to the CDF User’s Guide
for equivalent data types.

The arguments to CDFsetzVarDataSpec are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

dataType New data type.

6.3.60.1. Example(s)

The following example respecifies the data type to CDF_INT2 (from its original CDF_UINT2) for zVariable
“MY_VAR” in a CDF.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
long dataType; /* The data type. */
.
.
dataType = CDF_INT2;
status = CDFsetzVarDataSpec (id, CDFgetVarNum (id, “MY_VAR”), dataType);
if (status != CDF_OK) UserStatusHandler (status);
.
.

158

6.3.61 CDFsetzVarDimVariances

CDFstatus CDFsetzVarDimVariances(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long varNum, /* in -- Variable number. */
long dimVarys[]); /* in -- Dimension variances. */

CDFsetzVarDimVariances respecifies the dimension variances of the specified zVariable in a CDF. For 0-dimensional
zVariable, this operation is not applicable. The dimension variances are described in Section 4.9.

The arguments to CDFsetzVarDimVariances are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

dimVarys Dimension variances.

6.3.61.1. Example(s)

The following example resets the dimension variances to true (VARY) and false (NOVARY) for zVariable “MY_VAR”,
a 2-dimensional variable, in a CDF.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
long varNum; /* zVariable number. */
long dimVarys[2]; /* The dimension variances. */
.
.
varNum = CDFgetVarNum (id, “MY_VAR”);
if (varNum < CDF_OK) Quit (“….”);
dimVarys[0] = VARY;
dimVarys[1] = NOVARY;
status = CDFsetzVarDimVariances (id, varNum, dimVarys);
if (status != CDF_OK) UserStatusHandler (status);
.
.

6.3.62 CDFsetzVarInitialRecs

CDFstatus CDFsetzVarInitialRecs(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */

159

long varNum, /* in -- Variable number. */
long numRecs); /* in -- Number of records. */

CDFsetzVarInitialRecs specifies a number of records to initially write to the specified zVariable in a CDF. The records
are written beginning at record number 0 (zero). This may be specified only once per zVariable and before any other
records have been written to that zVariable. If a pad value has not yet been specified, the default is used (see the Concepts
chapter in the CDF User’s Guide). If a pad value has been explicitly specified, that value is written to the records. The
Concepts chapter in the CDF User's Guide describes initial records.

The arguments to CDFsetzVarInitialRecs are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

numRecs Initially written records.

6.3.62.1. Example(s)

The following example writes the initial 100 records to zVariable “MY_VAR” in a CDF.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
long varNum; /* zVariable number. */
long numRecs /* The number of records. */
.
.
varNum = CDFgetVarNum (id, “MY_VAR”);
if (varNum < CDF_OK) Quit (“….”);
numRecs = 100L;
status = CDFsetzVarInitialRecs (id, varNum, numRecs);
if (status != CDF_OK) UserStatusHandler (status);
.
.

6.3.63 CDFsetzVarPadValue

CDFstatus CDFsetzVarPadValue(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long varNum, /* in -- Variable number. */
void *value); /* in -- Pad value. */

CDFsetzVarPadValue specifies the pad value for the specified zVariable in a CDF. A zVariable's pad value may be
specified (or respecified) at any time without affecting already written values (including where pad values were used).
The Concepts chapter in the CDF User's Guide describes variable pad values.

160

The arguments to CDFsetzVarPadValue are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

value Pad value.

6.3.63.1. Example(s)

The following example sets the pad value to –9999 for zVariable “MY_VAR”, a CDF_INT4 type variable, in a CDF.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
int padValue; /* The pad value. */
.
.
padValue = -9999L;
status = CDFsetzVarPadValue (id, CDFgetVarNum (id, “MY_VAR”), &padValue);
if (status != CDF_OK) UserStatusHandler (status);
.
.

6.3.64 CDFsetzVarRecVariance

CDFstatus CDFsetzVarRecVariance(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long varNum, /* in -- Variable number. */
long recVary); /* in -- Record variance. */

CDFsetzVarRecVariance specifies the record variance of the specified zVariable in a CDF. The record variances are
described in Section 4.9.

The arguments to CDFsetzVarRecVariance are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

recVary Record variance.

161

6.3.64.1. Example(s)

The following example sets the record variance to VARY (from NOVARY) for zVariable “MY_VAR” in a CDF.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
long recVary; /* The record variance. */
.
.
recVary = VARY;
status = CDFsetzVarRecVariance (id, CDFgetVarNum (id, “MY_VAR”), recVary);
if (status != CDF_OK) UserStatusHandler (status);
.
.

6.3.65 CDFsetzVarReservePercent

CDFstatus CDFsetzVarReservePercent(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long varNum, /* in -- Variable number. */
long percent); /* in -- Reserve percentage. */

CDFsetzVarReservePercent specifies the compression reserve percentage being used for the specified zVariable in a
CDF. This operation only applies to compressed zVariables. Refer to the CDF User’s Guide for a description of the
reserve scheme used by the CDF library.

The arguments to CDFsetzVarReservePercent are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

percent The reserve percentage.

6.3.65.1. Example(s)

The following example sets the reserve percentage to 10 for zVariable “MY_VAR” in a CDF.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */

162

long percent; /* The reserve percentage. */
.
.
percent = 10L;
status = CDFsetzVarReservePercent (id, CDFgetVarNum (id, “MY_VAR”), percent);
if (status != CDF_OK) UserStatusHandler (status);

.
.

6.3.66 CDFsetzVarsCacheSize

CDFstatus CDFsetzVarsCacheSize(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long numBuffers); /* in -- Number of cache buffers. */

CDFsetzVarsCacheSize specifies the number of cache buffers to be used for all of the zVariable files in a CDF. This
operation is not applicable to a single-file CDF. The Concepts chapter in the CDF User's Guide describes the caching
scheme used by the CDF library.

The arguments to CDFsetzVarsCacheSize are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

numBuffers Number of buffers.

6.3.66.1. Example(s)

The following example sets the number of cache buffers to 10 for all zVariables in a CDF.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
long numBuffers; /* The number of cache buffers. */
.
.
numBuffers = 10L;
status = CDFsetzVarsCacheSize (id, numBuffers);
if (status != CDF_OK) UserStatusHandler (status);
.
.

163

6.3.67 CDFsetzVarSeqPos

CDFstatus CDFsetzVarSeqPos(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long varNum, /* in -- Variable number. */
long recNum, /* in -- Record number. */
long indices[]); /* in -- Indices in a record. */

CDFsetzVarSeqPos specifies the current sequential value (position) for sequential access for the specified zVariable in a
CDF. Note that a current sequential value is maintained for each zVariable individually. Use CDFgetzVarSeqPos
function to get the current sequential value.

The arguments to CDFsetzVarSeqPos are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

recNum zVariable record number.

indices Dimension indices. Each element of indices receives the corresponding dimension index. For

0-dimensional zVariable, this argument is ignored, but must be presented.

6.3.67.1. Example(s)

The following example sets the current sequential value to the first value element in record number 2 for a zVariable, a
2-dimensional variable, in a CDF.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
long varNum; /* The variable number. */
long recNum; /* The record number. */
long indices[2]; /* The indices. */
.
.
recNum = 2L;
indices[0] = 0L;
indices[1] = 0L;
status = CDFsetzVarSeqPos (id, varNum, recNum, indices);
if (status != CDF_OK) UserStatusHandler (status);
.
.

6.3.68 CDFsetzVarSparseRecords

164

CDFstatus CDFsetzVarSparseRecords(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long varNum, /* in -- The variable number. */
long sRecordsType); /* in -- The sparse records type. */

CDFsetzVarSparseRecords specifies the sparse records type of the specified zVariable in a CDF. Refer to Section 4.11.1
for the description of sparse records.

The arguments to CDFsetzVarSparseRecords are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

sRecordsType Sparse records type.

6.3.68.1. Example(s)

The following example sets the sparse records type to PAD_SPARSERECORDS from its original type for zVariable
“MY_VAR” in a CDF.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
long sRecordsType; /* The sparse records type. */
.
.
sRecordsType = PAD_ SPARSERECORDS;
status = CDFsetzVarSparseRecords (id, CDFgetVarNum(id, “MY_VAR”), sRecordsType);
if (status != CDF_OK) UserStatusHandler (status);
.
.

6.4 Attributes/Entries

This section provides functions that are related to CDF attributes or attribute entries. An attribute is identified by its
name or an number in the CDF. Before you can perform any operation on an attribute or attribute entry, the CDF in
which it resides must be opened.

6.4.1 CDFconfirmAttrExistence

CDFstatus CDFconfirmAttrExistence(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */

165

char *attrName) /* in -- Attribute name. */

CDFconfirmAttrExistence confirms whether an attribute exists for the given attribute name in a CDF. If the attribute
doesn’t exist, an error is returned.

The arguments to CDFconfirmAttrExistence are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrName Attribute name to check.

6.4.1.1. Example(s)

The following example checks whether the attribute by the name of “ATTR_NAME1” is in a CDF.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
.
.
status = CDFconfirmAttrExistence (id, “ATTR_NAME1”);
if (status != CDF_OK) UserStatusHandler (status);
.
.

6.4.2 CDFconfirmgEntryExistence

CDFstatus CDFconfirmgEntryExistence(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long attrNum, /* in -- Attribute number. */
long entryNum); /* in -- gEntry number. */

CDFconfirmgEntryExistence confirms the existence of the specified entry (gEentry), in a global attribute from a CDF.
If the gEntry does not exist, the informational status code NO_SUCH_ENTRY will be returned.

The arguments to CDFconfirmgEntryExistence are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Global attribute number.

entryNum gEntry number.

166

6.4.2.1. Example(s)

The following example checks the existence of gEntry numbered 1 for attribute “MY_ATTR” in a CDF.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long attrNum; /* Attribute number. */
long entryNum; /* gEntry number. */
.
.
attrNum = CDFgetAttrNum(id, “MY_ATTR”);
if (attrNum < CDF_OK) QuitError(….);
entryNum = 1L;
status = CDFconfirmgEntryExistence (id, attrNum, entryNum);
if (status == NO_SUCH_ENTRY) UserStatusHandler (status);
.
.

6.4.3 CDFconfirmrEntryExistence

CDFstatus CDFconfirmrEntryExistence(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long attrNum, /* in -- Attribute number. */
long entryNum); /* in -- rEntry number. */

CDFconfirmrEntryExistence confirms the existence of the specified entry (rEntry), corresponding to an rVariable, in a
variable attribute from a CDF. If the rEntry does not exist, the informational status code NO_SUCH_ENTRY will be
returned.

The arguments to CDFconfirmrEntryExistence are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Variable attribute number.

entryNum rEntry number.

6.4.3.1. Example(s)

The following example checks the existence of an rEntry, corresponding to rVariable “MY_VAR”, for attribute
“MY_ATTR” in a CDF.

.

167

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long attrNum; /* Attribute number. */
long entryNum; /* rEntry number. */
.
.
attrNum = CDFgetAttrNum(id, “MY_ATTR”);
if (attrNum < CDF_OK) QuitError(….);
entryNum = CDFgetVarNum(id, “MY_VAR”);
if (entryNum < CDF_OK) QuitError(….);
status = CDFconfirmrEntryExistence (id, attrNum, entryNum);
if (status == NO_SUCH_ENTRY) UserStatusHandler (status);
.
.

6.4.4 CDFconfirmzEntryExistence

CDFstatus CDFconfirmzEntryExistence(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long attrNum, /* in -- Attribute number. */
long entryNum); /* in -- zEntry number. */

CDFconfirmzEntryExistence confirms the existence of the specified entry (zEntry), corresponding to a zVariable, in a
variable attribute from a CDF. If the zEntry does not exist, the informational status code NO_SUCH_ENTRY will be
returned.

The arguments to CDFconfirmzEntryExistence are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Variable attribute number.

entryNum zEntry number.

6.4.4.1. Example(s)

The following example checks the existence of the zEntry corresponding to zVariable “MY_VAR” for the variable
attribute “MY_ATTR” in a CDF.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */

168

long attrNum; /* Attribute number. */
long entryNum; /* zEntry number. */
.
.
attrNum = CDFgetAttrNum(id, “MY_ATTR”);
if (attrNum < CDF_OK) QuitError(….);
entryNum = CDFgetVarNum(id, “MY_VAR”);
if (entryNum < CDF_OK) QuitError(….);
status = CDFconfirmzEntryExistence (id, attrNum, entryNum);
if (status == NO_SUCH_ENTRY) UserStatusHandler (status);
.
.

6.4.5 CDFcreateAttr

CDFstatus CDFcreateAttr(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
char *attrName, /* in -- Attribute name. */
long attrScope, /* in -- Scope of attribute. */
long *attrNum); /* out -- Attribute number. */

CDFcreateAttr creates an attribute with the specified scope in a CDF. It is identical to the original Standard Interface
function CDFattrCreate. An attribute with the same name must not already exist in the CDF.

The arguments to CDFcreateAttr are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrName Name of the attribute to create. This may be at most CDF_ATTR_NAME_LEN256

characters (excluding the NUL terminator). Attribute names are case-sensitive.

attrScope Scope of the new attribute. Specify one of the scopes described in Section 4.12.

attrNum Number assigned to the new attribute. This number must be used in subsequent CDF

function calls when referring to this attribute. An existing attribute's number may be
determined with the CDFgetAttrNum function.

6.4.5.1. Example(s)

The following example creates two attributes. The TITLE attribute is created with global scope - it applies to the entire
CDF (most likely the title of the data set stored in the CDF). The Units attribute is created with variable scope - each
entry describes some property of the corresponding variable (in this case the units for the data).

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */

169

CDFstatus status; /* Returned status code. */
static char UNITSattrName[] = {"Units"}; /* Name of "Units" attribute. */
long UNITSattrNum; /* "Units" attribute number. */
long TITLEattrNum; /* "TITLE" attribute number. */
static long TITLEattrScope = GLOBAL_SCOPE; /* "TITLE" attribute scope. */
.
.
status = CDFcreateAttr (id, "TITLE", TITLEattrScope, &TITLEattrNum);
if (status != CDF_OK) UserStatusHandler (status);
status = CDFcreateAttr (id, UNITSattrName, VARIABLE_SCOPE, &UNITSattrnum);
if (status != CDF_OK) UserStatusHandler (status);
.
.

6.4.6 CDFdeleteAttr

CDFstatus CDFdeleteAttr(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long attrNum); /* in -- Attribute identifier. */

CDFdeleteAttr deletes the specified attribute from a CDF.

The arguments to CDFdeleteAttr are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Attribute number to be deleted.

6.4.6.1. Example(s)

The following example deletes an existing attribute named MY_ATTR from a CDF.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long attrNum; /* Attribute number. */
.
.
attrNum = CDFgetAttrNum (id, “MY_ATTR”);
if (attrNum < CDF_OK) UserStatusHandler (status);
status = CDFdeleteAttr (id, attrNum);
if (status != CDF_OK) UserStatusHandler (status);

.
.

170

6.4.7 CDFdeleteAttrgEntry

CDFstatus CDFdeleteAttrgEntry(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long attrNum, /* in -- Attribute identifier. */
long entryNum); /* in -- gEntry identifier. */

CDFdeleteAttrgEntry deletes the specified entry (gEntry) in a global attribute from a CDF.

The arguments to CDFdeleteAttrgEntry are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Global attribute number from which to delete an attribute entry.

entryNum gEntry number to delete.

6.4.7.1. Example(s)

The following example deletes the entry number 5 from an existing global attribute MY_ATTR in a CDF.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long attrNum; /* Attribute number. */
long entryNum; /* gEntry number. */
.
.
attrNum = CDFgetAttrNum (id, “MY_ATTR”);
if (attrNum < CDF_OK) QuitError(….);
entryNum = 5L;
status = CDFdeleteAttrgEntry (id, attrNum, entryNum);
if (status != CDF_OK) UserStatusHandler (status);

.
.

6.4.8 CDFdeleteAttrrEntry

CDFstatus CDFdeleteAttrrEntry(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */

171

long attrNum, /* in -- Attribute identifier. */
long entryNum); /* in -- rEntry identifier. */

CDFdeleteAttrrEntry deletes the specified entry (rEntry), corresponding to an rVariable, in an (variable) attribute from
a CDF.

The arguments to CDFdeleteAttrrEntry are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Variable attribute number.

entryNum rEntry number.

6.4.8.1. Example(s)

The following example deletes the entry corresponding to rVariable “MY_VAR1” from the variable attribute
“MY_ATTR” in a CDF.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long attrNum; /* Attribute number. */
long entryNum; /* rEntry number. */
.
.
attrNum = CDFgetAttrNum (id, “MY_ATTR”);
if (attrNum < CDF_OK) QuitError(….);
entryNum = CDFgetVarNum(id, “MY_VAR1”);
if (entryNum < CDF_OK) QuitError(….);
status = CDFdeleteAttrrEntry (id, attrNum, entryNum);
if (status != CDF_OK) UserStatusHandler (status);

.
.

6.4.9 CDFdeleteAttrzEntry

CDFstatus CDFdeleteAttrzEntry(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long attrNum, /* in -- Attribute identifier. */
long entryNum); /* in -- zEntry identifier. */

CDFdeleteAttrzEntry deletes the specified entry (zEntry), corresponding to a zVariable, in an (variable) attribute from a
CDF.

172

The arguments to CDFdeleteAttrzEntry are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Identifier of the variable attribute.

entryNum zEntry number to be deleted that is the zVariable number.

6.4.9.1. Example(s)

The following example deletes the variable attribute entry named MY_ATTR that is attached to the zVariable
MY_VAR1.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long attrNum; /* Attribute number. */
long entryNum; /* zEntry number. */
.
.
attrNum = CDFgetAttrNum (id, “MY_ATTR”);
if (attrNum < CDF_OK) QuitError(….);
entryNum = CDFgetVarNum(id, “MY_VAR1”);
if (entryNum < CDF_OK) QuitError(….);
status = CDFdeleteAttrzEntry (id, attrNum, entryNum);
if (status != CDF_OK) UserStatusHandler (status);
.
.

6.4.10 CDFgetAttrgEntry

CDFstatus CDFgetAttrgEntry (/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long attrNum, /* in -- Attribute identifier. */
long entryNum, /* in -- gEntry number. */
void *value); /* out -- gEntry data. */

This function is identical to the original Standard Interface function CDFattrGet. CDFgetAttrgEntry is used to read a
global attribute entry from a CDF. In most cases it will be necessary to call CDFinquireAttrgEntry before calling
CDFgetAttrgEntry in order to determine the data type and number of elements (of that data type) for the entry.

The arguments to CDFgetAttrgEntry are defined as follows:

173

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Attribute number. This number may be determined with a call to CDFgetAttrNum.

entryNum Global attribute entry number.

value Value read. This buffer must be large enough to hold the value. The function

CDFattrEntryInquire would be used to determine the entry data type and number of elements
(of that data type). The value is read from the CDF and placed into memory at address value.

6.4.10.1. Example(s)

The following example displays the value of the global attribute called HISTORY. Note that the CDF library does not
automatically NUL terminate character data (when the data type is CDF_CHAR or CDF_UCHAR) for attribute entries
(or variable values).

.

.

#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long attrN; /* Attribute number. */
long entryN; /* Entry number. */
long dataType; /* Data type. */
long numElems; /* Number of elements (of data type). */
void *buffer; /* Buffer to receive value. */
.
.
attrN = CDFattrNum (id, "HISTORY");
if (attrN < CDF_OK) UserStatusHandler (attrN); /* If less than zero (0), then it must be a warning/error
code. */

entryN = 0;

status = CDFinquireAttrgEntry (id, attrN, entryN, &dataType, &numElems);
if (status != CDF_OK) UserStatusHandler (status);

if (dataType == CDF_CHAR) {
 buffer = (char *) malloc (numElems + 1);
 if (buffer == NULL)...

 status = CDFgetAttrgEntry (id, attrN, entryN, buffer);
 if (status != CDF_OK) UserStatusHandler (status);

 buffer[numElems] = '\0'; /* NUL terminate. */

 printf ("Units of PRES_LVL variable: %s\n", buffer);

 free (buffer);

174

}
.
.

6.4.11 CDFgetAttrgEntryDataType

CDFstatus CDFgetAttrgEntryDataType (/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long attrNum, /* in -- Attribute identifier. */
long entryNum, /* in -- gEntry number. */
long *dataType); /* out -- gEntry data type. */

CDFgetAttrgEntryDataType returns the data type of the specified global attribute and gEntry number in a CDF. The
data types are described in Section 4.5.

The arguments to CDFgetAttrgEntryDataType are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Global attribute number.

entryNum gEntry number.

dataType Data type of the gEntry.

6.4.11.1. Example(s)

The following example gets the data type for the gEntry numbered 2 from the global attribute “MY_ATTR” in a CDF.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long attrNum; /* Attribute number. */
long entryNum; /* gEntry number. */
long dataType; /* gEntry data type. */
.
.
attrNum = CDFgetAttrNum (id, “MY_ATTR”);
if (attrNum < CDF_OK) QuitError(….);
entryNum = 2L;
status = CDFgetAttrgEntryDataType (id, attrNum, entryNum, &dataType);
if (status != CDF_OK) UserStatusHandler (status);
.
.

175

6.4.12 CDFgetAttrgEntryNumElements

CDFstatus CDFgetAttrgEntryNumElements (/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long attrNum, /* in -- Attribute identifier. */
long entryNum, /* in -- gEntry number. */
long *numElems); /* out -- gEntry’s number of elements. */

CDFgetAttrgEntryNumElements returns the number of elements of the specified global attribute and gentry number in a
CDF.

The arguments to CDFgetAttrgEntryNumElements are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Identifier of the global attribute.

entryNum gEntry number.

numElems Number of elements of the gEntry.

6.4.12.1. Example(s)

The following example gets the number of elements from the gEntry numbered 2 from the global attribute “MY_ATTR”
in a CDF.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long attrNum; /* Attribute number. */
long entryNum; /* gEntry number. */
long numElements; /* gEntry’s number of elements. */
.
.
attrNum = CDFgetAttrNum (id, “MY_ATTR”);
if (attrNum < CDF_OK) QuitError(….);
entryNum = 2L;
status = CDFgetAttrgEntryNumElements (id, attrNum, entryNum, &numElements);
if (status != CDF_OK) UserStatusHandler (status);
.
.

176

6.4.13 CDFgetAttrrEntry

CDFstatus CDFgetAttrrEntry (/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long attrNum, /* in -- Attribute identifier. */
long entryNum, /* in -- Entry number. */
void *value); /* out -- Entry data. */

This function is identical to the original Standard Interface function CDFattrGet. CDFgetAttrrEntry is used to read an
rVariable attribute entry from a CDF. In most cases it will be necessary to call CDFattrEntryInquire before calling
CDFinquireAttrrEntry in order to determine the data type and number of elements (of that data type) for the entry.

The arguments to CDFgetAttrrEntry are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Attribute number. This number may be determined with a call to CDFgetAttrNum.

entryNum rVariable attribute entry number that is the rVariable number from which the attribute is read.

value Entry value read. This buffer must be large enough to hold the value. The function

CDFattrEntryInquire would be used to determine the entry data type and number of elements
(of that data type). The value is read from the CDF and placed into memory at address value.

6.4.13.1. Example(s)

The following example displays the value of the UNITS attribute for the rEntry corresponding to the PRES_LVL
rVariable (but only if the data type is CDF_CHAR). Note that the CDF library does not automatically NUL terminate
character data (when the data type is CDF_CHAR or CDF_UCHAR) for attribute entries (or variable values).

.

.

#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long attrN; /* Attribute number. */
long entryN; /* Entry number. */
long dataType; /* Data type. */
long numElems; /* Number of elements (of data type). */
void *buffer; /* Buffer to receive value. */
.
.
attrN = CDFattrNum (id, "UNITS");
if (attrN < CDF_OK) UserStatusHandler (attrN); /* If less than zero (0), then it must be a warning/error
code. */

entryN = CDFvarNum (id, "PRES_LVL"); /* The rEntry number is the rVariable number. */
if (entryN < CDF_OK) UserStatusHandler (entryN); /* If less than zero (0), then it must be a warning/error
code. */

177

status = CDFinquireAttrrEntry (id, attrN, entryN, &dataType, &numElems);

if (status != CDF_OK) UserStatusHandler (status);
if (dataType == CDF_CHAR) {
 buffer = (char *) malloc (numElems + 1);
 if (buffer == NULL)...

 status = CDFgetAttrrEntry (id, attrN, entryN, buffer);
 if (status != CDF_OK) UserStatusHandler (status);

 buffer[numElems] = '\0'; /* NUL terminate. */

 printf ("Units of PRES_LVL variable: %s\n", buffer);

 free (buffer);
}
.
.

6.4.14 CDFgetAttrMaxgEntry

CDFstatus CDFgetAttrMaxgEntry (/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long attrNum, /* in -- Attribute identifier. */
long *maxEntry); /* out -- The last gEntry number. */

CDFgetAttrMaxgEntry returns the last entry number of the specified global attribute in a CDF.

The arguments to CDFgetAttrMaxgEntry are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Identifier of the global attribute.

maxEntry The last gEntry number.

6.4.14.1. Example(s)

The following example gets the last entry number from the global attribute “MY_ATTR” in a CDF.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long attrNum; /* Attribute number. */

178

long maxEntry; /* The last gEntry number. */
.
.
attrNum = CDFgetAttrNum (id, “MY_ATTR”);
if (attrNum < CDF_OK) QuitError(….);
status = CDFgetAttrMaxgEntry (id, attrNum, &maxEntry);
if (status != CDF_OK) UserStatusHandler (status);
.
.

6.4.15 CDFgetAttrMaxrEntry

CDFstatus CDFgetAttrMaxrEntry (/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long attrNum, /* in -- Attribute identifier. */
long *maxEntry); /* out -- The maximum rEntry number. */

CDFgetAttrMaxrEntry returns the last rEntry number (rVariable number) to which the given variable attribute is attached.

The arguments to CDFgetAttrMaxrEntry are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Identifier of the variable attribute.

maxEntry The last rEntry number (rVariable number) to which attrNum is attached..

6.4.15.1. Example(s)

The following example gets the last entry, corresponding to the last rVariable number, from the variable attribute
“MY_ATTR” in a CDF.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long attrNum; /* Attribute number. */
long maxEntry; /* The last rEntry number. */
.
.
attrNum = CDFgetAttrNum (id, “MY_ATTR”);
if (attrNum < CDF_OK) QuitError(….);
status = CDFgetAttrMaxrEntry (id, attrNum, &maxEntry);
if (status != CDF_OK) UserStatusHandler (status);
.
.

179

6.4.16 CDFgetAttrMaxzEntry

CDFstatus CDFgetAttrMaxzEntry (/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long attrNum, /* in -- Attribute identifier. */
long *maxEntry); /* out -- The maximum zEntry number. */

CDFgetAttrMaxzEntry returns the last entry number, corresponding to the last zVariable number, to which the given
variable attribute is attached.

The arguments to CDFgetAttrMaxzEntry are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Identifier of the variable attribute.

maxEntry The last zEntry number (zVariable number) to which attrNum is attached..

6.4.16.1. Example(s)

The following example gets the last entry, corresponding to the last zVariable number, attached to the variable attribute
MY_ATTR in a CDF.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long attrNum; /* Attribute number. */
long maxEntry; /* The last zEntry number that is the last zVariable added */
.
.
attrNum = CDFgetAttrNum (id, “MY_ATTR”);
if (attrNum < CDF_OK) QuitError(….);
status = CDFgetAttrMaxzEntry (id, attrNum, &maxEntry);
if (status != CDF_OK) UserStatusHandler (status);
.
.

6.4.17 CDFgetAttrName

CDFstatus CDFgetAttrName (/* out -- Completion status code. */

180

CDFid id, /* in -- CDF identifier. */
long attrNum, /* in -- Attribute identifier. */
char *attrName); /* out -- The attribute name. */

CDFgetAttrName gets the name of the specified attribute (by its number) in a CDF.

The arguments to CDFgetAttrName are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Identifier of the attribute.

attrName Name of the attribute.

6.4.17.1. Example(s)

The following example retrieves the name of the attribute number 2, if it exists, in a CDF.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long attrNum; /* Attribute number. */
char attrName[CDF_ATTR_NAME_LEN256]; /* The attribute name. */
.
.
attrNum = 2L;
status = CDFgetAttrName (id, attrNum, attrName);
if (status != CDF_OK) UserStatusHandler (status);
.
.

6.4.18 CDFgetAttrNum

long CDFgetAttrNum (/* out -- Attribute number. */
CDFid id, /* in -- CDF identifier. */
char *attrName); /* in -- The attribute name. */

CDFgetAttrNum is used to determine the attribute number associated with a given attribute name. If the attribute is
found, CDFgetAttrNum returns its number - which will be equal to or greater than zero (0). If an error occurs (e.g., the
attribute name does not exist in the CDF), an error code (of type CDFstatus) is returned. Error codes are less than zero
(0).

The arguments to CDFgetAttrNum are defined as follows:

181

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrName Name of the attribute for which to search. This may be at most CDF_ATTR_NAME_LEN256

characters (excluding the NUL terminator). Attribute names are case-sensitive.

CDFgetAttrNum may be used as an embedded function call when an attribute number is needed.

6.4.18.1. Example(s)

In the following example the attribute named pressure will be renamed to PRESSURE with CDFgetAttrNum being used
as an embedded function call. Note that if the attribute pressure did not exist in the CDF, the call to CDFgetAttrNum
would have returned an error code. Passing that error code to CDFattrRename as an attribute number would have resulted
in CDFattrRename also returning an error code.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
.
.
status = CDFrenameAttr (id, CDFgetAttrNum(id,"pressure"), "PRESSURE");

 if (status != CDF_OK) UserStatusHandler (status);

6.4.19 CDFgetAttrrEntryDataType

CDFstatus CDFgetAttrrEntryDataType (/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long attrNum, /* in -- Attribute identifier. */
long entryNum, /* in -- rEntry number. */
long *dataType); /* out -- rEntry data type. */

CDFgetAttrrEntryDataType returns the data type of the rEntry from an (variable) attribute in a CDF. The data types are
described in Section 4.5.

The arguments to CDFgetAttrrEntryDataType are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Identifier of the variable attribute.

entryNum rEntry number.

dataType Data type of the rEntry.

182

6.4.19.1. Example(s)

The following example gets the data type for the entry of rVariable “MY_VAR1” in the (variable) attribute “MY_ATTR”
in a CDF.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long attrNum; /* Attribute number. */
long entryNum; /* rEntry number. */
long dataType; /* rEntry data type. */
.
.
attrNum = CDFgetAttrNum (id, “MY_ATTR”);
if (attrNum < CDF_OK) QuitError(….);
entryNum = CDFgetVarNum(id, “MY_VAR1”);
if (entryNum < CDF_OK) QuitError(….);
status = CDFgetAttrrEntryDataType (id, attrNum, entryNum, &dataType);
if (status != CDF_OK) UserStatusHandler (status);
.
.

6.4.20 CDFgetAttrrEntryNumElements

CDFstatus CDFgetAttrrEntryNumElements (/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long attrNum, /* in -- Attribute identifier. */
long startRec, /* in -- rEntry number. */
long *numElems); /* out -- rEntry’s number of elements. */

CDFgetAttrrEntryNumElements returns the number of elements of the rEntry from an (variable) attribute in a CDF.

The arguments to CDFgetAttrrEntryNumElements are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Identifier of the variable attribute.

entryNum rEntry number.

numElems Number of elements of the rEntry.

6.4.20.1. Example(s)

183

The following example gets the number of elements for the entry of rVariable “MY_VAR1” in the (variable) attribute
“MY_ATTR” in a CDF.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long attrNum; /* Attribute number. */
long entryNum; /* rEntry number. */
long numElements; /* rEntry’s number of elements. */
.
.
attrNum = CDFgetAttrNum (id, “MY_ATTR”);
if (attrNum < CDF_OK) QuitError(….);
entryNum = CDFgetVarNum(id, “MY_VAR1”);
if (entryNum < CDF_OK) QuitError(….);
status = CDFgetAttrrEntryNumElements (id, attrNum, entryNum, &numElements);
if (status != CDF_OK) UserStatusHandler (status);
.
.

6.4.21 CDFgetAttrScope

CDFstatus CDFgetAttrScope (/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long attrNum, /* in -- Attribute number. */
long *attrScope); /* out -- Attribute scope. */

CDFgetAttrScope returns the attribute scope (GLOBAL_SCOPE or VARIABLE_SCOPE) of the specified attribute in a
CDF. Refer to Section 4.12 for the description of the attribute scopes.

The arguments to CDFgetAttrScope are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Attribute number.

attrScope Scope of the attribute.

6.4.21.1. Example(s)

The following example gets the scope of the attribute “MY_ATTR” in a CDF.

.

.
#include "cdf.h"

184

.

.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long attrNum; /* Attribute number. */
long attrScope; /* Attribute scope. */
.
.
attrNum = CDFgetAttrNum (id, “MY_ATTR”);
if (attrNum < CDF_OK) QuitError(….);
status = CDFgetAttrScope (id, attrNum, &attrScope);
if (status != CDF_OK) UserStatusHandler (status);
.
.

6.4.22 CDFgetAttrStrgEntry

CDFstatus CDFgetAttrStrgEntry (/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long attrNum, /* in -- Attribute identifier. */
long entryNum, /* in -- Entry number. */
char **value); /* out -- Entry data in string. */

CDFgetAttrStrgEntry is used to read a global attribute entry in string from a CDF. The returned string will be nul-
terminated. The function will allocate the required dynamic space for the data. User is responsible to free the space to
avoid the memory leak.

The arguments to CDFgetAttrStrgEntry are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Global attribute number. This number may be determined with a call to CDFgetAttrNum.

entryNum Entry number that is to read.

value The address of the returned entry value read. Its buffer will be allocated in the function. The

address of the value is passed into the function.

6.4.22.1. Example(s)

The following example retrieves the string value from the TITLE attribute, a global attribute, for its first entry, number
0.

.

.

#include "cdf.h"
.
.

185

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long attrN; /* Attribute number. */
long entryN; /* Entry number. */
char *string; /* Buffer to receive the string value. */
.
.
attrN = CDFgetAttrNum (id, "TITLE");
if (attrN < CDF_OK) UserStatusHandler (attrN);/* If less than zero (0), then it must be a warning/error code. */

entryN = 0L;
status = CDFgetAttrStrgEntry (id, attrN, entryN, &string);

if (status != CDF_OK) UserStatusHandler (status);
…
…
free (string);
.

6.4.23 CDFgetAttrStrrEntry

CDFstatus CDFgetAttrStrrEntry (/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long attrNum, /* in -- Attribute identifier. */
long entryNum, /* in -- Entry number. */
char **value); /* out -- Entry data in string. */

CDFgetAttrStrrEntry is used to read an rVariable attribute entry in string from a CDF. The returned string will be nul-
terminated. The function will allocate the required dynamic space for the data. User is responsible to free the space to
avoid the memory leak.

The arguments to CDFgetAttrStrrEntry are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Variable attribute number. This number may be determined with a call to CDFgetAttrNum.

entryNum Entry number that is the rVariable number from which the attribute is to read.

value The address of the returned entry value read. Its buffer will be allocated in the function. The

address of the value is passed into the function.

6.4.23.1. Example(s)

The following example displays the value of the UNITS attribute for the rEntry corresponding to the PRES_LVL
rVariable (but only if the data type is CDF_CHAR or CDF_UCHAR).

.

.

186

#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long attrN; /* Attribute number. */
long entryN; /* Entry number. */
char *string; /* Buffer to receive the string value. */
.
.
attrN = CDFgetAttrNum (id, "UNITS");
if (attrN < CDF_OK) UserStatusHandler (attrN);/* If less than zero (0), then it must be a warning/error code. */

entryN = CDFgetVarNum (id, "PRES_LVL"); /* The rEntry number is the rVariable number. */
if (entryN < CDF_OK) UserStatusHandler (entryN);/* If less than zero (0), then it must be a warning/error code.
*/

status = CDFgetAttrStrrEntry (id, attrN, entryN, &string);

if (status != CDF_OK) UserStatusHandler (status);
…
…
free (string);
.

6.4.24 CDFgetAttrStrzEntry

CDFstatus CDFgetAttrStrzEntry (/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long attrNum, /* in -- Attribute identifier. */
long entryNum, /* in -- Entry number. */
char **value); /* out -- Entry data in string. */

CDFgetAttrStrzEntry is used to read a zVariable attribute entry in string from a CDF. The returned string will be nul-
terminated. The function will allocate the required dynamic space for the data. User is responsible to free the space to
avoid the memory leak.

The arguments to CDFgetAttrAtrzEntry are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Variable attribute number. This number may be determined with a call to CDFgetAttrNum.

entryNum Entry number that is the zVariable number from which the attribute is to read.

value The address of the returned entry value read. Its buffer will be allocated in the function. The

address of the value is passed into the function.

187

6.4.24.1. Example(s)

The following example displays the value of the FORMAT attribute for the zEntry corresponding to the PRES_LVL
zVariable (but only if the data type is CDF_CHAR).

.

.

#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long attrN; /* Attribute number. */
long entryN; /* Entry number. */
char *string; /* Buffer to receive the string value. */
.
.
attrN = CDFgetAttrNum (id, "FORMAT");
if (attrN < CDF_OK) UserStatusHandler (attrN);/* If less than zero (0), then it must be a warning/error code. */

entryN = CDFgetVarNum (id, "PRES_LVL"); /* The rEntry number is the rVariable number. */
if (entryN < CDF_OK) UserStatusHandler (entryN);/* If less than zero (0), then it must be a warning/error code.
*/

status = CDFgetAttrStrzEntry (id, attrN, entryN, &string);

if (status != CDF_OK) UserStatusHandler (status);
…
…
free (string);
.

6.4.25 CDFgetAttrWStrgEntry

CDFstatus CDFgetAttrWStrgEntry (/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long attrNum, /* in -- Attribute identifier. */
long entryNum, /* in -- Entry number. */
wchar_t **value, /* out -- Entry data in wide character string. */
char *locale); /* in -- The locale the entry data is based. */

CDFgetAttrWStrgEntry is used to read a global attribute entry in multibyte character string into a wide character string
from a CDF. The entry is encoded in the locale-specific encoding. The returned wide character string will be nul-
terminated. The function will allocate the required dynamic space for the data. User is responsible to free the space to
avoid the memory leak.

The arguments to CDFgetAttrWStrgEntry are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Global attribute number. This number may be determined with a call to CDFgetAttrNum.

188

entryNum Entry number that is to read.

value The address of the returned entry value read. Its buffer will be allocated in the function. The

address of the value is passed into the function.

locale The locale the entry string data is based on. If NULL is passed in, “en_US.UTF8” for non-

Windows and “.UTF8” for Windows is assumed.

6.4.25.1. Example(s)

The following example retrieves the string value from the TITLE attribute, a global attribute, for its first entry, number
0. The entry data is of UTF-8 form and is placed into a dynamically allocated wide character string.

.

.

#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long attrN; /* Attribute number. */
long entryN; /* Entry number. */
wchar_t *wstring; /* Buffer to receive the string value. */
.
.
attrN = CDFgetAttrNum (id, "TITLE");
if (attrN < CDF_OK) UserStatusHandler (attrN);/* If less than zero (0), then it must be a warning/error code. */

entryN = 0L;
status = CDFgetAttrWStrgEntry (id, attrN, entryN, &wstring, NULL);

if (status != CDF_OK) UserStatusHandler (status);
…
…
free (wstring);
.

If the entry is of Latin-1 form, then the function call could be on Windows

 status = CDFgetAttrWStrgEntry (id, attrN, entryN, &wstring, “.1252”);

6.4.26 CDFgetAttrWStrrEntry

CDFstatus CDFgetAttrWStrrEntry (/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long attrNum, /* in -- Attribute identifier. */
long entryNum, /* in -- Entry number. */
wchar_t **value, /* out -- Entry data in wide character string. */

189

char *locale); /* in -- The locale the entry data is based. */

CDFgetAttrWStrrEntry is used to read a variable attribute rEntry in multibyte character string into a wide character
string from a CDF. The entry is encoded in the locale-specific encoding. The returned wide character string will be nul-
terminated. The function will allocate the required dynamic space for the data. User is responsible to free the space to
avoid the memory leak.

The arguments to CDFgetAttrWStrrEntry are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Variable attribute number. This number may be determined with a call to CDFgetAttrNum.

entryNum Entry number that is the rVariable number from which the attribute is to read.

value The address of the returned entry value read. Its buffer will be allocated in the function. The

address of the value is passed into the function.

locale The locale the entry string data is based on. If NULL is passed in, “en_US.UTF8” for non-

Windows and “.UTF8” for Windows is assumed..

6.4.26.1. Example(s)

The following example displays the value of the UNITS attribute for an entry corresponding to the PRES_LVL rVariable
(but only if the data type is CDF_CHAR or CDF_UCHAR). The entry data is of UTF-8 form and is placed into a
dynamically allocated wide character string.

.

.

#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long attrN; /* Attribute number. */
long entryN; /* Entry number. */
wchar_t *wstring; /* Buffer to receive the string value. */
.
.
attrN = CDFgetAttrNum (id, "UNITS");
if (attrN < CDF_OK) UserStatusHandler (attrN);/* If less than zero (0), then it must be a warning/error code. */

entryN = CDFgetVarNum (id, “PRES_LVL”);
if (entryN < CDF_OK) UserStatusHandler (entryN);
status = CDFgetAttrWStrrEntry (id, attrN, entryN, &wstring, NULL);

if (status != CDF_OK) UserStatusHandler (status);
…
…
free (wstring);

190

.

6.4.27 CDFgetAttrWStrzEntry

CDFstatus CDFgetAttrWStrzEntry (/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long attrNum, /* in -- Attribute identifier. */
long entryNum, /* in -- Entry number. */
wchar_t **value, /* out -- Entry data in wide character string. */
char *locale); /* in -- The locale the entry data is based. */

CDFgetAttrWStrzEntry is used to read a variable attribute zEntry in multibyte character string into a wide character
string from a CDF. The entry is encoded in the locale-specific encoding. The returned wide character string will be nul-
terminated. The function will allocate the required dynamic space for the data. User is responsible to free the space to
avoid the memory leak.

The arguments to CDFgetAttrWStrzEntry are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Variable attribute number. This number may be determined with a call to CDFgetAttrNum.

entryNum Entry number that is the zVariable number from which the attribute is to read.

value The address of the returned entry value read. Its buffer will be allocated in the function. The

address of the value is passed into the function.

locale The locale the entry string data is based on. If NULL is passed in, “en_US.UTF8” for non-

Windows and “.UTF8” for Windows is assumed.

6.4.27.1. Example(s)

The following example displays the value of the UNITS attribute for an entry corresponding to the PRES_LVL zVariable
(but only if the data type is CDF_CHAR or CDF_UCHAR). The entry data is of UTF-8 form and is placed into a
dynamically allocated wide character string.

.

.

#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long attrN; /* Attribute number. */
long entryN; /* Entry number. */
wchar_t *wstring; /* Buffer to receive the string value. */
.

191

.
attrN = CDFgetAttrNum (id, "UNITS");
if (attrN < CDF_OK) UserStatusHandler (attrN);/* If less than zero (0), then it must be a warning/error code. */

entryN = CDFgetVarNum (id, “PRES_LVL”);
if (entryN < CDF_OK) UserStatusHandler (entryN);
status = CDFgetAttrWStrzEntry (id, attrN, entryN, &wstring, NULL);

if (status != CDF_OK) UserStatusHandler (status);
…
…
free (wstring);
.

6.4.28 CDFgetAttrzEntry

CDFstatus CDFgetAttrzEntry(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long attrNum, /* in -- Variable attribute number. */
long entryNum, /* in -- Entry number. */
void *value); /* out -- Entry value. */

CDFgetAttrzEntry is used to read zVariable’s attribute entry.. In most cases it will be necessary to call
CDFinquireAttrzEntry before calling this function in order to determine the data type and number of elements (of that
data type) for dynamical space allocation for the entry.

The arguments to CDFgetAttrzEntry are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Variable attribute number. This number may be determined with a call to CDFgetAttrNum.

entryNum Variable attribute entry number that is the zVariable number from which the attribute entry is

read

value Entry value read. This buffer must be large enough to hold the value. The function

CDFattrEntryInquire would be used to determine the entry data type and number of elements
(of that data type). The value is read from the CDF and placed into memory at address value.

6.4.28.1. Example(s)

The following example displays the value of the UNITS attribute for the PRES_LVL zVariable (but only if the data type
is CDF_CHAR). Note that the CDF library does not automatically NUL terminate character data (when the data type is
CDF_CHAR or CDF_UCHAR) for attribute entries (or variable values).

.

.

#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */

192

CDFstatus status; /* Returned status code. */
long attrN; /* Attribute number. */
long entryN; /* Entry number. */
long dataType; /* Data type. */
long numElems; /* Number of elements (of data type). */
void *buffer; /* Buffer to receive value. */
.
.
attrN = CDFgetAttrNum (id, "UNITS");
if (attrN < CDF_OK) UserStatusHandler (attrN);

entryN = CDFgetVarNum (id, "PRES_LVL"); /* The zEntry number is the zVariable number. */
if (entryN < CDF_OK) UserStatusHandler (entryN); /* If less than zero (0), then it must be a warning/error
code. */
status = CDFinquireAttrzEntry (id, attrN, entryN, &dataType, &numElems);

if (status != CDF_OK) UserStatusHandler (status);
if (dataType == CDF_CHAR) {
 buffer = (char *) malloc (numElems + 1);
 if (buffer == NULL)...

 status = CDFgetAttrzEntry (id, attrN, entryN, buffer);
 if (status != CDF_OK) UserStatusHandler (status);

 buffer[numElems] = '\0'; /* NUL terminate. */
 printf ("Units of PRES_LVL variable: %s\n", buffer);
 free (buffer);
}
.
.

6.4.29 CDFgetAttrzEntryDataType

CDFstatus CDFgetAttrzEntryDataType (/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long attrNum, /* in -- Attribute identifier. */
long entryNum, /* in -- zEntry number. */
long *dataType); /* out -- zEntry data type. */

CDFgetAttrzEntryDataType returns the data type of the zEntry for the specified variable attribute in a CDF. The data
types are described in Section 4.5.

The arguments to CDFgetAttrzEntryDataType are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Identifier of the variable attribute.

entryNum zEntry number that is the zVariable number.

dataType Data type of the zEntry.

193

6.4.29.1. Example(s)

The following example gets the data type of the attribute named MY_ATTR for the zVariable MY_VAR1 in a CDF.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long attrNum; /* Attribute number. */
long entryNum; /* zEntry number. */
long dataType; /* zEntry data type. */
.
.
attrNum = CDFgetAttrNum (id, “MY_ATTR”);
if (attrNum < CDF_OK) QuitError(….);
entryNum = CDFgetVarNum(id, “MY_VAR1”);
if (entryNum < CDF_OK) QuitError(….);
status = CDFgetAttrzEntryDataType (id, attrNum, entryNum, &dataType);
if (status != CDF_OK) UserStatusHandler (status);
.
.

6.4.30 CDFgetAttrzEntryNumElements

CDFstatus CDFgetAttrzEntryNumElements (/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long attrNum, /* in -- Attribute identifier. */
long entryNum, /* in -- zEntry number. */
long *numElems); /* out -- zEntry’s number of elements. */

CDFgetAttrzEntryNumElements returns the number of elements of the zEntry for the specified variable attribute in a
CDF.

The arguments to CDFgetAttrzEntryNumElements are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Identifier of the variable attribute.

entryNum zEntry number that is the zVariable number.

numElems Number of elements of the zEntry.

194

6.4.30.1. Example(s)

The following example returns the number of elements for attribute named MY_ATTR for the zVariable MY_VAR1 in
a CDF

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long attrNum; /* Attribute number. */
long entryNum; /* zEntry number. */
long numElements; /* zEntry’s number of elements. */
.
.
attrNum = CDFgetAttrNum (id, “MY_ATTR”);
if (attrNum < CDF_OK) QuitError(….);
entryNum = CDFgetVarNum(id, “MY_VAR1”);
if (entryNum < CDF_OK) QuitError(….);
status = CDFgetAttrzEntryNumElements (id, attrNum, entryNum, &numElements);
if (status != CDF_OK) UserStatusHandler (status);
.
.

6.4.31 CDFgetNumAttrgEntries

CDFstatus CDFgetNumAttrgEntries (/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long attrNum, /* in -- Attribute number. */
long *entries); /* out -- Total gEntries. */

CDFgetNumAttrgEntries returns the total number of entries (gEntries) written for the specified global attribute in a CDF.

The arguments to CDFgetNumAttrgEntries are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

attrNum Attribute number.

entries Number of gEntries for attrNum.

6.4.31.1. Example(s)

The following example retrieves the total number of gEntries for the global attribute MY_ATTR in a CDF.

195

.
.
#include "cdf.h"
.
.
CDFstatus status; /* Returned status code. */
CDFid id; /* CDF identifier. */
long attrNum; /* Attribute number. */
long numEntries; /* Number of entries. */
int i;
.
.
attrNum = CDFgetAttrNum(id, “MUY_ATTR”);
if (attrNum < CDF_OK) QuitError(….);
status = CDFgetNumAttrgEntries (id, attrNum, &numEntries);
if (status != CDF_OK) UserStatusHandler (status);
for (i=0; i < numEntries; i++) {
 .
 /* process an entry */
 .
}

.
.

6.4.32 CDFgetNumAttributes

CDFstatus CDFgetNumAttributes (/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long *numAttrs); /* out -- Total number of attributes. */

CDFgetNumAttributes returns the total number of global and variable attributes in a CDF.

The arguments to CDFgetNumAttributes are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

numAttrs Total number of global and variable attributes.

6.4.32.1. Example(s)

The following example returns the total number of global and variable attributes in a CDF.

.

.
#include "cdf.h"
.

196

.
CDFstatus status; /* Returned status code. */
CDFid id; /* CDF identifier. */
long numAttrs; /* Number of attributes. */

.
.
status = CDFgetNumAttributes (id, &numAttrs);
if (status != CDF_OK) UserStatusHandler (status);
.
.

6.4.33 CDFgetNumAttrrEntries

CDFstatus CDFgetNumAttrrEntries (/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long attrNum, /* in -- Attribute number. */
long *entries); /* out -- Total rEntries. */

CDFgetNumAttrrEntries returns the total number of entries (rEntries) written for the rVariables in the specified (variable)
attribute of a CDF.

The arguments to CDFgetNumAttrrEntries are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

attrNum Attribute number.

entries Total rEntries.

6.4.33.1. Example(s)

The following example returns the total number of rEntries from the variable attribute “MY_ATTR” in a CDF.

.

.
#include "cdf.h"
.
.
CDFstatus status; /* Returned status code. */
CDFid id; /* CDF identifier. */
long attrNum; /* Attribute number. */
long entries; /* Number of entries. */
.
.
attrNum = CDFgetAttrNum(id, “MY_ATTR”);
if (attrNum < CDF_OK) QuitError(….);
status = CDFgetNumAttrrEntries (id, attrNum, &entries);

197

if (status != CDF_OK) UserStatusHandler (status);
.
.

6.4.34 CDFgetNumAttrzEntries

CDFstatus CDFgetNumAttrzEntries (/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long attrNum, /* in -- Attribute number. */
long *entries); /* out -- Total zEntries. */

CDFgetNumAttrzEntries returns the total number of entries (zEntries) written for the zVariables in the specified variable
attribute in a CDF.

The arguments to CDFgetNumAttrzEntries are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

attrNum Attribute number.

entries Total zEntries.

6.4.34.1. Example(s)

The following example returns the total number of zEntries for the variable attribute MY_ATTR in a CDF.

.

.
#include "cdf.h"
.
.
CDFstatus status; /* Returned status code. */
CDFid id; /* CDF identifier. */
long attrNum; /* Attribute number. */
long entries; /* Number of entries. */
.
.
attrNum = CDFgetAttrNum(id, “MY_ATTR”);
if (attrNum < CDF_OK) QuitError(….);
status = CDFgetNumAttrzEntries (id, attrNum, &entries);
if (status != CDF_OK) UserStatusHandler (status);
.
.

198

6.4.35 CDFgetNumgAttributes

CDFstatus CDFgetNumgAttributes (/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long *numAttrs); /* out -- Total number of global attributes. */

CDFgetNumgAttributes returns the total number of global attributes in a CDF.

The arguments to CDFgetNumgAttributes are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

numAttrs Number of global attributes.

6.4.35.1. Example(s)

The following example returns the total number of global attributes in a CDF.

.

.
#include "cdf.h"
.
.
CDFstatus status; /* Returned status code. */
CDFid id; /* CDF identifier. */
long numAttrs; /* Number of global attributes. */

.
.
status = CDFgetNumgAttributes (id, &numAttrs);
if (status != CDF_OK) UserStatusHandler (status);
.
.

6.4.36 CDFgetNumvAttributes

CDFstatus CDFgetNumvAttributes (/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long *numAttrs); /* out -- Total number of variable attributes. */

CDFgetNumvAttributes returns the total number of variable attributes in a CDF.

The arguments to CDFgetNumvAttributes are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

199

numAttrs Number of variable attributes.

6.4.36.1. Example(s)

The following example returns the total number of variable attributes of a CDF.

.

.
#include "cdf.h"
.
.
CDFstatus status; /* Returned status code. */
CDFid id; /* CDF identifier. */
long numAttrs; /* Number of variable attributes. */

.
.
status = CDFgetNumvAttributes (id, &numAttrs);
if (status != CDF_OK) UserStatusHandler (status);
.
.

6.4.37 CDFinquireAttr

CDFstatus CDFinquireAttr(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long attrNum, /* in -- Attribute number. */
char *attrName, /* out -- Attribute name. */
long *attrScope, /* out -- Attribute scope. */
long *maxgEntry, /* out -- Maximum gEntry number. */
long *maxrEntry, /* out -- Maximum rEntry number. */
long *maxzEntry); /* out -- Maximum zEntry number. */

CDFinquireAttr is used to inquire information about the specified attribute. This function expands the original Standard
Interface function CDFattrInquire to provide an extra information about zEntry if the attribute has a variable scope.

The arguments to CDFinquireAttr are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Attribute number to inquire. This number may be determined with a call to CDFgetAttrNum.

attrName Attribute's name that corresponds to attrNum. This character string must be large enough to

hold CDF_ATTR_NAME_LEN256 + 1 characters (including the NUL terminator).

attrScope Scope of the attribute (GLOBAL_SCOPE or VARIABLE_SCOPE). Attribute scopes are

defined in Section 4.12.

200

maxgEntry For vAttributes, this value of this field is -1 as it doesn’t apply to global attribute entry
(gEntry). For gAttributes, this is the maximum entry (gentry) number used. This number
may not correspond with the number of entries (if some entry numbers were not used). If no
entries exist for the attribute, then the value of -1 is returned.

maxrEntry For gAttributes, this value of this field is -1 as it doesn’t apply to rVariable attribute entry

(rEntry). For vAttributes, this is the maximum rVariable attribute entry (rEntry) number
used. This number may not correspond with the number of entries (if some entry numbers
were not used). If no entries exist for the attribute, then the value of -1 is returned.

maxzEntry For gAttributes, this value of this field is -1 as it doesn’t apply to zVariable attribute entry

(zEntry). For vAttributes, this is the maximum zVariable attribute entry (zEntry) number
used. This may not correspond with the number of entries (if some entry numbers were not
used). If no entries exist for the attribute, then the value of -1 is returned.

6.4.37.1. Example(s)

The following example displays the name of each attribute in a CDF. The number of attributes in the CDF is first
determined by calling the function CDFinquireCDF. Note that attribute numbers start at zero (0) and are consecutive.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long numDims; /* Number of dimensions. */
long dimSizes[CDF_MAX_DIMS]; /* Dimension sizes (allocate to allow the maximum

 number of dimensions). */
long encoding; /* Data encoding. */
long majority; /* Variable majority. */
long maxRec; /* Maximum record number in CDF. */
long numVars; /* Number of variables in CDF. */
long numAttrs; /* Number of attributes in CDF. */
int attrN; /* attribute number. */
char attrName[CDF_ATTR_NAME_LEN256+1];

/* attribute name -- +1 for NUL terminator. */
long attrScope; /* attribute scope. */
long maxgEntry, maxrEntry, maxzEntry; /* Maximum entry numbers. */
.
.
status = CDFinquireCDF (id, &numDims, dimSizes, &encoding, &majority, &maxRec,
 &numVars, &numAttrs);
if (status != CDF_OK) UserStatusHandler (status);

for (attrN = 0; attrN < (int)numAttrs; attrN++) {
 status = CDFinquireAttr (id, (long)attrN, attrName, &attrScope, &maxgEntry, &maxrEntry, &maxzEntry);
 if (status < CDF_OK) /* INFO status codes ignored. */
 UserStatusHandler (status);
 else
 printf ("%s\n", attrName);
}

201

.

.

6.4.38 CDFinquireAttrgEntry

CDFstatus CDFinquireAttrgEntry (/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long attrNum, /* in -- Attribute number. */
long entryNum, /* in -- Entry number. */
long *dataType, /* out -- Data type. */
long *numElements); /* out -- Number of elements (of the data type). */

This function is identical to the original Standard Interface function CDFattrEntryInquire. CDFinquireAttrgEntry is used
to inquire information about a global attribute entry.

The arguments to CDFinquireAttrgEntry are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Attribute number to inquire. This number may be determined with a call to

CDFgetAttrNum.

entryNum Entry number to inquire.

dataType Data type of the specified entry. The data types are defined in Section 4.5.

NumElements Number of elements of the data type. For character data types (CDF_CHAR and

CDF_UCHAR), this is the number of characters in the string. For all other data types this
is the number of elements in an array of that data type.

6.4.38.1. Example(s)

The following example returns each entry for a global attribute named TITLE. Note that entry numbers need not be
consecutive - not every entry number between zero (0) and the maximum entry number must exist. For this reason
NO_SUCH_ENTRY is an expected error code.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long attrN; /* attribute number. */
long entryN; /* Entry number. */
char attrName[CDF_ATTR_NAME_LEN256+1];

/* attribute name, +1 for NUL terminator. */
long attrScope; /* attribute scope. */
long maxEntry; /* Maximum entry number used. */

202

long dataType; /* Data type. */
long numElems; /* Number of elements (of the data type). */
.
.
attrN = CDFgetAttrNum (id, "TITLE");
if (attrN < CDF_OK) UserStatusHandler (attrN); /* If less than zero (0), then it must be a

 warning/error code. */
status = CDFattrInquire (id, attrN, attrName, &attrScope, &maxEntry);
if (status != CDF_OK) UserStatusHandler (status);

for (entryN = 0; entryN <= maxEntry; entryN++) {
 status = CDFinquireAttrgEntry (id, attrN, entryN, &dataType, &numElems);
 if (status < CDF_OK) {
 if (status != NO_SUCH_ENTRY) UserStatusHandler (status);
 }
 else {
 /* process entries */
 .
 .
 }
}

6.4.39 CDFinquireAttrrEntry

CDFstatus CDFinquireAttrrEntry (/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long attrNum, /* in -- Attribute number. */
long entryNum, /* in -- Entry number. */
long *dataType, /* out -- Data type. */
long *numElements); /* out -- Number of elements (of the data type). */

This function is identical to the original Standard Interface function CDFattrEntryInquire. CDFinquireAttrrEntry is used
to inquire about an rVariable’s attribute entry.

The arguments to CDFinquireAttrrEntry are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Attribute number to inquire. This number may be determined with a call to

CDFgetAttrNum.

entryNum Entry number to inquire. This is the rVariable number (the rVariable being described in

some way by the rEntry).

dataType Data type of the specified entry. The data types are defined in Section 4.5.

NumElements Number of elements of the data type. For character data types (CDF_CHAR and

CDF_UCHAR), this is the number of characters in the string. For all other data types this
is the number of elements in an array of that data type.

203

6.4.39.1. Example(s)

The following example determines the data type of the “UNITS” attribute for the rVariable “Temperature”, then retrieves
and displays the value of the UNITS attribute.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long attrN; /* Attribute number. */
long entryN; /* Entry number. */
char *buffer;
long dataType; /* Data type. */
long numElems; /* Number of elements (of the data type). */
.
.
attrN = CDFgetAttrNum (id, "UNITS");
if (attrN < CDF_OK) UserStatusHandler (attrN); /* If less than zero (0), then it must be a

 warning/error code. */
entryN = CDFgetVarNum(id, "Temperature")
if (entryN < CDF_OK) UserStatusHandler (entryN);

status = CDFinquireAttrrEntry (id, attrN, entryN, &dataType, &numElems);
if (status >= CDF_OK) {
 if (dataType == CDF_CHAR) {
 buffer = (char *) malloc (numElems + 1);
 if (buffer == NULL)...

 status = CDFgetAttrrEntry (id, attrN, entryN, buffer);
 if (status != CDF_OK) UserStatusHandler (status);

 buffer[numElems] = '\0'; /* NUL terminate. */
 printf ("Units of Temperature : %s\n", buffer);
 free (buffer);
 }
}

 .
 .

6.4.40 CDFinquireAttrzEntry

CDFstatus CDFinquireAttrzEntry (/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long attrNum, /* in -- (Variable) Attribute number. */
long entryNum, /* in -- zEntry number. */
long *dataType, /* out -- Data type. */
long *numElements); /* out -- Number of elements (of the data type). */

CDFinquireAttrzEntry is used to inquire about a zVariable’s attribute entry.

204

The arguments to CDFinquireAttrzEntry are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Variable attribute number for which to inquire an entry. This number may be determined

with a call to CDFgetAttrNum (see Section 6.4.18).

entryNum Entry number to inquire. This is the zVariable number (the zVariable being described in

some way by the zEntry).

dataType Data type of the specified entry. The data types are defined in Section 4.5.

NumElements Number of elements of the data type. For character data types (CDF_CHAR and

CDF_UCHAR), this is the number of characters in the string. For all other data types this
is the number of elements in an array of that data type.

6.4.40.1. Example(s)

The following example determines the data type of the UNITS attribute for the zVariable Temperature, then retrieves
and displays the value of the UNITS attribute.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long attrN; /* attribute number. */
long entryN; /* Entry number. */
char *buffer;
long dataType; /* Data type. */
long numElems; /* Number of elements (of the data type). */
.
.
attrN = CDFgetAttrNum (id, "UNITS");
if (attrN < CDF_OK) UserStatusHandler (attrN);
entryN = CDFgetVarNum(id, "Temperature")
if (entryN < CDF_OK) UserStatusHandler (entryN);

status = CDFinquireAttrzEntry (id, attrN, entryN, &dataType, &numElems);
if (status >= CDF_OK) {
 if (dataType == CDF_CHAR) {
 buffer = (char *) malloc (numElems + 1);
 if (buffer == NULL)...

 status = CDFgetAttrzEntry (id, attrN, entryN, buffer);
 if (status != CDF_OK) UserStatusHandler (status);

 buffer[numElems] = '\0'; /* NUL terminate. */
 printf ("Units of Temperature : %s\n", buffer);

205

 free (buffer);
 }
}

 .
 .

6.4.41 CDFputAttrgEntry

CDFstatus CDFputAttrgEntry(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long attrNum, /* in -- Attribute number. */
long entryNum, /* in -- Attribute entry number. */
long dataType, /* in -- Data type of this entry. */
long numElements, /* in -- Number of elements in the entry (of the data type). */
void *value); /* in -- Attribute entry value. */

CDFputAttrgEntry is used to write a global attribute entry. The entry may or may not already exist. If it does exist, it is
overwritten. The data type and number of elements (of that data type) may be changed when overwriting an existing
entry. A global attribute can have one or more attribute entries.

The arguments to CDFputAttrgEntry are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

attrNum Attribute number. This number may be determined with a call to CDFgetAttrNum.

entryNum Attribute entry number.

dataType Data type of the specified entry. Specify one of the data types defined in Section 4.5.

numElements Number of elements of the data type. For character data types (CDF_CHAR and

CDF_UCHAR), this is the number of characters in the string (An array of characters).
For all other data types this is the number of elements in an array of that data type.

value Value(s) to write. The entry value is written to the CDF from memory address value.

6.4.41.1. Example(s)

The following example writes a global attribute entry to the global attribute called TITLE.

.

.
#include "cdf.h"
.
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long entryNum; /* Attribute entry number. */

206

static char title[] = {"CDF title."}; /* Value of TITLE attribute, entry number 0. */

.
.
entryNum = 0;
status = CDFputAttrgEntry (id, CDFgetAttrNum(id,"TITLE"), entryNum, CDF_CHAR, strlen(title), title);
if (status != CDF_OK) UserStatusHandler (status);
.
.

6.4.42 CDFputAttrrEntry

CDFstatus CDFputAttrrEntry(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long attrNum, /* in -- Attribute number. */
long entryNum, /* in – Attribute entry number. */
long dataType, /* in -- Data type. */
long numElems, /* in -- Number of elements in the entry. */
void *value); /* in -- Attribute entry value. */

This function is identical to the original Standard Interface function CDFattrPut. CDFputAttrrEntry is used to write
rVariable’s attribute entry. The entry may or may not already exist. If it does exist, it is overwritten. The data type and
number of elements (of that data type) may be changed when overwriting an existing entry.

The arguments to CDFputAttrrEntry are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

attrNum Attribute number. This number may be determined with a call to CDFgetAttrNum.

entryNum Attribute entry number that is the rVariable number to which this attribute entry belongs.

dataType Data type of the specified entry. Specify one of the data types defined in Section 4.5.

numElements Number of elements of the data type. For character data types (CDF_CHAR and

CDF_UCHAR), this is the number of characters in the string (An array of characters).
For all other data types this is the number of elements in an array of that data type.

value Value(s) to write. The entry value is written to the CDF from memory address value.

6.4.42.1. Example(s)

The following example writes to the variable scope attribute VALIDs for the entry that corresponds to the rVariable
TMP.

.

.
#include "cdf.h"
.

207

.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long entryNum; /* Entry number. */
long numElements; /* Number of elements (of data type). */

static short TMPvalids[] = {15,30}; /* Value(s) of VALIDs attribute,

 rEntry for rVariable TMP. */
.
numElements = 2;
status = CDFputAttrrEntry (id, CDFgetAttrNum(id,"VALIDs"), CDFgetVarNum(id,"TMP"),
 CDF_INT2, numElements, TMPvalids);
if (status != CDF_OK) UserStatusHandler (status);
.
.

6.4.43 CDFputAttrStrgEntry

CDFstatus CDFputAttrStrgEntry (/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long attrNum, /* in -- Attribute identifier. */
long entryNum, /* in -- Entry number. */
char *value); /* in -- Entry data in string. */

CDFputAttrStrgEntry is used to write out a global attribute entry in string into a CDF. The string has to be nul-terminated.

The arguments to CDFputAttrStrgEntry are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Attribute number. This number may be determined with a call to CDFgetAttrNum.

entryNum Entry number to write.

value Address of the string for the entry to write.

6.4.43.1. Example(s)

The following example writes a string value to the TITLE attribute, a global attribute, at its first entry, number 0.

.

.

#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long attrN; /* Attribute number. */

208

long entryN; /* Entry number. */
char *string = “NASA mission”; /* The string value. */
.
.
attrN = CDFgetAttrNum (id, "TITLE");
if (attrN < CDF_OK) UserStatusHandler (attrN);/* If less than zero (0), then it must be a warning/error code. */

entryN = 0L;
status = CDFputAttrStrgEntry (id, attrN, entryN, string);

if (status != CDF_OK) UserStatusHandler (status);
…
…
.

6.4.44 CDFputAttrStrrEntry

CDFstatus CDFputAttrStrrEntry (/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long attrNum, /* in -- Attribute identifier. */
long entryNum, /* in -- Entry number. */
char *value); /* in -- Entry data in string. */

CDFputAttrStrrEntry is used to write out a variable attribute rEntry in string into a CDF. The string has to be nul-
terminated.

The arguments to CDFputAttrStrrEntry are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Variable attribute number. This number may be determined with a call to CDFgetAttrNum.

entryNum Entry number that is the rVariable number from which the attribute is to write.

value Address of the string for the entry to write.

6.4.44.1. Example(s)

The following example writes a string value to the FORMAT attribute, a variable attribute, for rVariable “rVar1”, of
CDF_INT4 data type.

.

.

#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */

209

long attrN; /* Attribute number. */
long entryN; /* Entry number. */
char *string = “I5”; /* The string value. */
.
.
attrN = CDFgetAttrNum (id, "FORMAT");
if (attrN < CDF_OK) UserStatusHandler (attrN);/* If less than zero (0), then it must be a warning/error code. */

entryN = CDFgetVarNum (id, “rVar1”);
if (entryN < CDF_OK) UserStatusHandle (entryN);
status = CDFputAttrStrrEntry (id, attrN, entryN, string);

if (status != CDF_OK) UserStatusHandler (status);
…
…
.

6.4.45 CDFputAttrStrzEntry

CDFstatus CDFputAttrStrzEntry (/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long attrNum, /* in -- Variable attribute identifier. */
long entryNum, /* in -- Entry number. */
char *value); /* in -- Entry data in string. */

CDFputAttrStrzEntry is used to write out a variable attribute zEntry in string into a CDF. The string has to be nul-
terminated.

The arguments to CDFputAttrStrzEntry are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Variable attribute number. This number may be determined with a call to CDFgetAttrNum.

entryNum Entry number that is the zVariable number from which the attribute is to write.

value Address of the string for the entry to write.

6.4.45.1. Example(s)

The following example writes a string value to the FORMAT attribute, a variable attribute, for rVariable “zVar1”, of
CDF_INT4 data type.

.

.

#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */

210

CDFstatus status; /* Returned status code. */
long attrN; /* Attribute number. */
long entryN; /* Entry number. */
char *string = “I5”; /* The string value. */
.
.
attrN = CDFgetAttrNum (id, "FORMAT");
if (attrN < CDF_OK) UserStatusHandler (attrN);/* If less than zero (0), then it must be a warning/error code. */

entryN = CDFgetVarNum (id, “zVar1”);
if (entryN < CDF_OK) UserStatusHandle (entryN);
status = CDFputAttrStrzEntry (id, attrN, entryN, string);

if (status != CDF_OK) UserStatusHandler (status);
…
…
.

6.4.46 CDFputAttrWStrgEntry

CDFstatus CDFputAttrWStrgEntry (/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long attrNum, /* in -- Attribute identifier. */
long entryNum, /* in -- Entry number. */
wchar_t *value, /* in -- Entry data in wide character string. */
char *locale); /* in -- The locale the entry data will be based. */

CDFputAttrWStrgEntry is used to write out a global attribute entry into multibyte character string from a wide
character string to a CDF. The entry will be encoded in the locale-specific encoding. The wide character string should be
nul-terminated.

The arguments to CDFputAttrWStrgEntry are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Global attribute number. This number may be determined with a call to CDFgetAttrNum.

entryNum Entry number that is to write.

value Wide-character string to write.

locale Locale the entry string data will be based on. If NULL is passed in, “en_US.UTF8” for non-

Windows and “.UTF8” for Windows is assumed.

6.4.46.1. Example(s)

The following example writes out the string value wide-characters into UTF-8 form from the TITLE attribute, a global
attribute, for its first entry, number 0, in a CDF.

.

211

.

#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long attrN; /* Attribute number. */
long entryN; /* Entry number. */
wchar_t *wstring = L”NASA Mission”; /* Buffer to receive the string value. */
.
.
attrN = CDFgetAttrNum (id, "TITLE");
if (attrN < CDF_OK) UserStatusHandler (attrN);/* If less than zero (0), then it must be a warning/error code. */

entryN = 0L;
status = CDFputAttrWStrgEntry (id, attrN, entryN, wstring, NULL);

if (status != CDF_OK) UserStatusHandler (status);
…
…

6.4.47 CDFputAttrWStrrEntry

CDFstatus CDFputAttrWStrrEntry (/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long attrNum, /* in -- Attribute identifier. */
long entryNum, /* in -- Entry number. */
wchar_t *value, /* in -- Entry data in wide character string. */
char *locale); /* in -- The locale the entry data will be based. */

CDFputAttrWStrrEntry is used to write out a variable attribute rEntry into multibyte character string from a wide
character string to a CDF. The entry will be encoded in the locale-specific encoding. The wide character string should be
nul-terminated.

The arguments to CDFputAttrWStrrEntry are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Variable attribute number. This number may be determined with a call to CDFgetAttrNum.

entryNum Entry number that is the rVariable number from which the attribute is to write.

value Wide-character string to write.

locale Locale the entry string data will be based on. If NULL is passed in, “en_US.UTF8” for non-

Windows and “.UTF8” for Windows is assumed.

212

6.4.47.1. Example(s)

The following example writes out the value in wide-characters into UTF-8 form for the UNITS attribute of the entry
corresponding to the rvariable PRES_LVL in a CDF.

.

.

#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long attrN; /* Attribute number. */
long entryN; /* Entry number. */
wchar_t *wstring = L”Mb”; /* Buffer to receive the string value. */
.
.
attrN = CDFgetAttrNum (id, "UNITS");
if (attrN < CDF_OK) UserStatusHandler (attrN);/* If less than zero (0), then it must be a warning/error code. */

entryN = CDFgetVarNum (id, “PRES_LVL”);
if (entryN < CDF_OK) UserStatusHandler (entryN);
status = CDFputAttrWStrrEntry (id, attrN, entryN, wstring, NULL);

if (status != CDF_OK) UserStatusHandler (status);
…
…
free (wstring);
.

6.4.48 CDFputAttrWStrzEntry

CDFstatus CDFputAttrWStrzEntry (/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long attrNum, /* in -- Attribute identifier. */
long entryNum, /* in -- Entry number. */
wchar_t *value, /* in -- Entry data in wide character string. */
char *locale); /* in -- The locale the entry data will be based. */

CDFputAttrWStrzEntry is used to write out a variable attribute zEntry into multibyte character string from a wide
character string to a CDF. The entry will be encoded in the locale-specific encoding. The wide character string should be
nul-terminated.

The arguments to CDFputAttrWStrzEntry are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Variable attribute number. This number may be determined with a call to CDFgetAttrNum.

entryNum Entry number that is the zVariable number from which the attribute is to write.

213

value Wide-character string to write.

locale Locale the entry string data will be based on. If NULL is passed in, “en_US.UTF8” for non-

Windows and “.UTF8” for Windows is assumed.

6.4.48.1. Example(s)

The following example writes out the value in wide-characters into UTF-8 form for the UNITS attribute of the entry
corresponding to the zVariable PRES_LVL in a CDF.

.

.

#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long attrN; /* Attribute number. */
long entryN; /* Entry number. */
wchar_t *wstring = L”MB”; /* Buffer for the wide string value. */
.
.
attrN = CDFgetAttrNum (id, "UNITS");
if (attrN < CDF_OK) UserStatusHandler (attrN);/* If less than zero (0), then it must be a warning/error code. */

entryN = CDFgetVarNum (id, “PRES_LVL”);
if (entryN < CDF_OK) UserStatusHandler (entryN);
status = CDFputAttrWStrzEntry (id, attrN, entryN, wstring, NULL);

if (status != CDF_OK) UserStatusHandler (status);
…
…
.

6.4.49 CDFputAttrzEntry

CDFstatus CDFputAttrzEntry(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long attrNum, /* in -- Attribute number. */
long entryNum, /* in -- Attribute entry number. */
long dataType, /* in -- Data type of this entry. */
long numElements, /* in -- Number of elements in the entry (of the data type). */
void *value); /* in -- Attribute entry value. */

CDFputAttrzEntry is used to write zVariable’s attribute entry. The entry may or may not already exist. If it does exist,
it is overwritten. The data type and number of elements (of that data type) may be changed when overwriting an existing
entry.

214

The arguments to CDFputAttrzEntry are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

attrNum Variable attribute number. This number may be determined with a call to

CDFgetAttrNum (see Section 6.4.18).

entryNum Entry number that is the zVariable number to which this attribute entry belongs.

dataType Data type of the specified entry. Specify one of the data types defined in Section 4.5.

numElements Number of elements of the data type. For character data types (CDF_CHAR and

CDF_UCHAR), this is the number of characters in the string (An array of characters).
For all other data types this is the number of elements in an array of that data type.

value Value(s) to write. The entry value is written to the CDF from memory address value.

6.4.49.1. Example(s)

The following example writes a zVariable’s attribute entry. The entry has two elements (that is two values for non-
CDF_CHAR type). The zEntry in the variable scope attribute VALIDs corresponds to the zVariable TMP.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long numElements; /* Number of elements (of data type). */

static short TMPvalids[] = {15,30}; /* Value(s) of VALIDs attribute,

 zEntry for zVariable TMP. */
.
.
numElements = 2;
status = CDFputAttrzEntry (id, CDFgetAttrNum(id,"VALIDs"), CDFgetVarNum(id,"TMP"),
 CDF_INT2, numElements, TMPvalids);
if (status != CDF_OK) UserStatusHandler (status);
.
.

6.4.50 CDFrenameAttr

CDFstatus CDFrenameAttr(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long attrNum, /* in -- Attribute number. */
char *attrName); /* in -- New attribute name. */

215

This function is identical to the original Standard Interface function CDFattrRename. CDFrenameAttr renames an
existing attribute.

6.4.50.1. Example(s)

In the following example the attribute named LAT is renamed to LATITUDE.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
.
.
status = CDFrenameAttr (id, CDFgetAttrNum(id,"LAT"), "LATITUDE");
if (status != CDF_OK) UserStatusHandler (status);
.
.

6.4.51 CDFsetAttrgEntryDataSpec

CDFstatus CDFsetAttrgEntryDataSpec (/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long attrNum, /* in -- Attribute number. */
long entryNum, /* in -- gEntry number. */
long dataType) /* in -- Data type. */

CDFsetAttrgEntryDataSpec respecifies the data type of a gEntry of a global attribute in a CDF. The new and old data
type must be equivalent. Refer to the CDF User’s Guide for descriptions of equivalent data types.

The arguments to CDFsetAttrgEntryDataSpec are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

attrNum Global attribute number.

entryNum gEntry number.

dataType New data type.

6.4.51.1. Example(s)

The following example modifies the third entry’s (entry number 2) data type of the global attribute MY_ATTR in a CDF.
It will change its original data type from CDF_INT2 to CDF_UINT2.

216

.
.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long entryNum; /* gEntry number. */
long dataType; /* The new data type */
.
.
entryNum = 2L;
dataType = CDF_UINT2;
numElems = 1L;
status = CDFsetAttrgEntryDataSpec (id, CDFgetAttrNum(id, “MY_ATTR”), entryNum, dataType);
if (status != CDF_OK) UserStatusHandler (status);
.
.

6.4.52 CDFsetAttrrEntryDataSpec

CDFstatus CDFsetAttrrEntryDataSpec (/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long attrNum, /* in -- Attribute number. */
long entryNum, /* in -- rEntry number. */
long dataType, /* in -- Data type. */
long numElements); /* in -- Number of elements. */

CDFsetAttrrEntryDataSpec respecifies the data specification (data type and number of elements) of an rEntry of a
variable attribute in a CDF. The new and old data type must be equivalent, and the number of elements must not be
changed. Refer to the CDF User’s Guide for descriptions of equivalent data types.

The arguments to CDFsetAttrrEntryDataSpec are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

attrNum Variable attribute number.

entryNum rEntry number.

dataType New data type.

numElements New number of elements.

6.4.52.1. Example(s)

The following example modifies the data specification for an rEntry, corresponding to rVariable “MY_VAR”, in the
variable attribute “MY_ATTR” in a CDF. It will change its original data type from CDF_INT2 to CDF_UINT2.

217

.
.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long dataType, numElements; /* Data type and number of elements. */
.
.
dataType = CDF_UINT2;
numElems = 1L;
status = CDFsetAttrrEntryDataSpec (id, CDFgetAttrNum(id, “MY_ATTR”), CDFgetVarNum(id, “MY_VAR”),
dataType, numElems);
if (status != CDF_OK) UserStatusHandler (status);
.
.

6.4.53 CDFsetAttrScope

CDFstatus CDFsetAttrScope (/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long attrNum, /* in -- Attribute number. */
long scope); /* in -- Attribute scope. */

CDFsetAttrScope respecifies the scope of an attribute in a CDF. Specify one of the scopes described in Section 4.12.
Global-scoped attributes will contain only gEntries, while variable-scoped attributes can hold rEntries and zEntries.

The arguments to CDFsetAttrScope are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

attrNum Attribute number.

scope New attribute scope. The value should be either VARIABLE_SCOPE or GLOBAL_SCOPE.

6.4.53.1. Example(s)

The following example changes the scope of the global attribute named MY_ATTR to a variable attribute
(VARIABLE_SCOPE).

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */

218

long scope; /* New attribute scope. */
.
.
scope = VARIABLE_SCOPE;
status = CDFsetAttrScope (id, CDFgetAttrNum(id, “MY_ATTR”), scope);
if (status != CDF_OK) UserStatusHandler (status);
.
.

6.4.54 CDFsetAttrzEntryDataSpec

CDFstatus CDFsetAttrzEntryDataSpec (/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long attrNum, /* in -- Attribute number. */
long entryNum, /* in -- zEntry number. */
long dataType) /* in -- Data type. */

CDFsetAttrzEntryDataSpec modifies the data type of a zEntry of a variable attribute in a CDF. The new and old data
type must be equivalent. Refer to the CDF User’s Guide for the description of equivalent data types.

The arguments to CDFsetAttrzEntryDataSpec are defined as follows:

id Identifier of the current CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

attrNum Variable attribute number.

entryNum zEntry number that is the zVariable number.

dataType New data type.

6.4.54.1. Example(s)

The following example respecifies the data type of the attribute entry of the attribute named MY_ATTR that is associated
with the zVariable MY_VAR. It will change its original data type from CDF_INT2 to CDF_UINT2.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long dataType; /* Data type and number of elements. */
.
.
dataType = CDF_UINT2;
numElems = 1L;
status = CDFsetAttrzEntryDataSpec (id, CDFgetAttrNum(id, “MY_ATTR”),
 CDFgetVarNum(id, “MY_VAR”), dataType);

219

if (status != CDF_OK) UserStatusHandler (status);
.
.

6.5 Simplified CDFread Functions

The prior Standard Interface functions (with CDFget prefix) and the following Internal Interface function (CDFlib) all
require a pre-allocated space when doing a data read. This space allocation can be done either statically or dynamically
in the calling grograms. In either case, a prior knowledge of the data, e.g., its data type, number of elements, number of
dimensions/records involved, etc, is required in order to determine a proper space for the data. This could be a tedious
task as it might involve multiple relavant function calls before a real read can be issued.

This section presents a new set of Standard functions, all prefixed with CDFread, which can simplify the data reading
procesess. Each of the functions will dynamically allocate the required space(s), fill the data and return a pointer to it.
Variable’s relavant information can also be returned if desired. The data pointer is of data type CDFdata. Once the
operation is successfully performed, the caller is responsible for the free of the allocated space(s) by calling
CDFdataFree function. Failing to do so will result in the memory leak. A successful read will have a returned status of
zero (0). A non-zero status, especially a negative one, usually indicates an error, likely a non-exisitng variable or
memory allocation error. For CDFreadzVarAllByVarID and CDFreadzVarAllByVarName functions, the arguments for
variable’s dimensional sizes and variances need to be pre-allocated simply because they are always of long data type.

Other than the global attribute entry reading function, CDFreadgAttrEntry, all other functions are applicable only for
zVariables.

6.5.1 CDFreadgAttrEntry

CDFstatus CDFreadgAttrEntry(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long attrNum, /* in -- Global attribute number. */
long entryNum, /* in -- Entry number. */
long *dataType, /* out -- Entry’s data type. */
long *numElements, /* out -- Entry’s number of elements. */
CDFdata *data) /* out -- Entry’s data. */

CDFreadgAttrEntry reads a global attribute entry.

The arguments to CDFreadgAttrEntry are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Global attribute number.

entryNum Entry number.

dataType Entry’s data type.

numElements Entry’s number of elements.

data Entry data.

220

6.5.1.1. Example(s)

The following example reads an entry, at number 0, from the global attribute “ATTR_NAME1” in a CDF.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long dataType, numElems;
CDFdata data; /* Retrieved entry data. */
.
.
status = CDFreadgAttrEntry (id, CDFgetAttrNum(id, “ATTR_NAME1”), 0L, &dataType, &numElems, &data);
if (status != CDF_OK) UserStatusHandler (status);

.
.

 CDFdataFree (data);

6.5.2 CDFreadzAttrEntry

CDFstatus CDFreadzAttrEntry(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long attrNum, /* in -- Variable attribute number. */
long entryNum, /* in -- zVariable number. */
long *dataType, /* out -- Entry’s data type. */
long *numElements, /* out -- Entry’s number of elements. */
CDFdata *data) /* out -- Entry’s data. */

CDFreadzAttrEntry reads a variable attribute entry.

The arguments to CDFreadzAttrEntry are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum Variable attribute number.

entryNum Entry number, which is a zVariable number.

dataType Entry’s data type.

numElements Entry’s number of elements.

data Entry data.

221

6.5.2.1. Example(s)

The following example reads an entry, for zVariable “VAR1”, from the variable attribute “ATTR_NAME1” in a CDF.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long varNum, dataType, numElems;
CDFdata data; /* Retrieved entry data. */
.
.
varNum = CDFgetVarNum (id, “VAR1”);
if (varNum < 0) UserStatusHandler (status); /* no such zVariable */
status = CDFreadzAttrEntry (id, CDFgetAttrNum(id, “ATTR_NAME1”), varNum, &dataType, &numElems,
 &data);
if (status != CDF_OK) UserStatusHandler (status);

.
.

 CDFdataFree (data);

6.5.3 CDFreadzVarPadValue

CDFstatus CDFreadzVarPadValue(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long varNum, /* in -- zVariable number. */
long *dataType, /* out -- Pad value’s data type. */
long *numElements, /* out -- Pad value’s number of elements. */
CDFdata *data) /* out -- Pad value’s data. */

CDFreadzVarPadValue reads a zVariable’s pad value. This call can return a status of NO_PADVALUE_SPECIFIED
(1005) if the variable’s pad value is not set.

The arguments to CDFreadzVarPadValue are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

dataType Pad value’s data type, which is also this zVariable’s data type.

numElements value’s number of elements, which is also this zVariable’s number of elements.

data Variable’s pad value.

222

6.5.3.1. Example(s)

The following example reads the pad value for zVariable “VAR1” in a CDF.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long varNum, dataType, numElems;
CDFdata data; /* Retrieved pad value data. */
.
.
varNum = CDFgetVarNum (id, “VAR1”);
if (varNum < 0) UserStatusHandler (status); /* no such zVariable */
status = CDFreadzVarPadValue (id, varNum, &dataType, &numElems, &data);
if (status != CDF_OK) UserStatusHandler (status);

.
.

 CDFdataFree (data);

6.5.4 CDFreadzVarAllByVarID

CDFstatus CDFreadzVarAllByVarID(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long varNum, /* in -- zVariable number. */
long *numRecs, /* out -- Number of records read. */
long *dataType, /* out -- zVariable’s data type. */
long *numElements, /* out -- zVariable’s number of elements. */
long *numDims, /* out -- zVariable’s number of dimensions. */
long dimSizes[], /* out -- zVariable’s dimensional sizes. */
long *recVary, /* out -- zVariable’s record variance. */
long dimVarys[], /* out -- zVariable’s dimensional variances. */
CDFData *data) /* out -- zVariable full data. */

CDFreadzVarAllByVarID reads a zVariable’s specifications and its total data. If the variable has sparse records, then the
number of records read is the last written record number plus one (1). All virtual records are filled with values that are
dictated by the sparse record specification.

The arguments to CDFreadzVarAllByVarID are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

numRecs Number of records read from the zVariable.

dataType zVariable’s data type.

223

numElements zVariable’s number of elements.

numDims zVariable’s number of dimensions.

dimSizes zVariable’s dimensional sizes. Need to provide the proper size for holding the information.

recVary zVariable’s record variance.

dimVarys zVariable’s dimensional variances. Need to provide the proper size for holding the

information.

data Variable’s total data.

6.5.4.1. Example(s)

The following example reads the full information, specifications and data, for zVariable “VAR1” in a CDF.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long varNum, dataType, numElems, numRecs, numDims, recVary;
long dimSizes[CDF_MAX_DIMS], dimVarys[CDF_MAX_DIMS];
CDFdata data; /* Retrieved variable data. */
.
.
varNum = CDFgetVarNum (id, “VAR1”);
if (varNum < 0) UserStatusHandler (status); /* no such zVariable */
status = CDFreadzVarAllByVarID (id, varNum, &numRecs, &dataType, &numElems, &numDims, dimSizes,
 &recVary, dimVarys, &data);
if (status != CDF_OK) UserStatusHandler (status);

.
.

 CDFdataFree (data);

6.5.5 CDFreadzVarDataByVarID

CDFstatus CDFreadzVarDataByVarID(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long varNum, /* in -- zVariable number. */
long *numRecs, /* out -- Number of records read. */
long *data) /* out -- zVariable full data. */

CDFreadzVarDataByVarID reads a zVariable’s total data. This is a short version for CDFreadzVarAllByVarID, without
variable’s specification.

224

The arguments to CDFreadzVarDataByVarID are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum zVariable number.

numRecs Number of records read from the zVariable.

data Variable’s total data.

6.5.5.1. Example(s)

The following example reads the full data from zVariable “VAR1” in a CDF.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long varNum, numRecs;
CDFdata data; /* Retrieved variable data. */
.
.
varNum = CDFgetVarNum (id, “VAR1”);
if (varNum < 0) UserStatusHandler (status); /* no such zVariable */
status = CDFreadzVarDataByVarID (id, varNum, &numRecs, &data);
if (status != CDF_OK) UserStatusHandler (status);

.
.

 CDFdataFree (data);

6.5.6 CDFreadzVarRangeDataByVarID

CDFstatus CDFreadzVarRangeDataByVarID(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long varNum, /* in -- zVariable number. */
long startRec, /* in -- The starting record number to read. */
long stopRec, /* in -- The ending record number to read. */
CDFData *data) /* out -- zVariable data. */

CDFreadzVarRangeDataByVarID reads a range of zVariable’s data.

The arguments to CDFreadzVarRangeDataByVarID are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

225

varNum zVariable number.

startRec Starting record number (first record number being 0) to read.

stopRec Ending record number (first record number being 0) to read.

data Variable’s data within the range.

6.5.6.1. Example(s)

The following example reads the first 100 records, from record 0 to 99, from zVariable “VAR1” in a CDF.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long varNum;
CDFdata data; /* Retrieved variable data. */
.
.
varNum = CDFgetVarNum (id, “VAR1”);
if (varNum < 0) UserStatusHandler (status); /* no such zVariable */
status = CDFreadzVarRangeDataByVarID (id, varNum, 0L, 99L, &data);
if (status != CDF_OK) UserStatusHandler (status);

.
.

 CDFdataFree (data);

6.5.7 CDFreadzVarAllByVarName

CDFstatus CDFreadzVarAllByVarName(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
char *varName, /* in -- zVariable name. */
long *numRecs, /* out -- Number of records read. */
long *dataType, /* out -- zVariable’s data type. */
long *numElements, /* out -- zVariable’s number of elements. */
long *numDims, /* out -- zVariable’s number of dimensions. */
long dimSizes[], /* out -- zVariable’s dimensional sizes. */
long *recVary, /* out -- zVariable’s record variance. */
long dimVarys[], /* out -- zVariable’s dimensional variances. */
CDFdata *data) /* out -- zVariable full data. */

CDFreadzVarAllByVarName reads a zVariable’s specifications and its total data.

The arguments to CDFreadzVarAllByVarName are defined as follows:

226

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varName zVariable name.

numRecs Number of records read from the zVariable.

dataType zVariable’s data type.

numElements zVariable’s number of elements.

numDims zVariable’s number of dimensions.

dimSizes zVariable’s dimensional sizes. Need to provide the proper size for holding the information.

recVary zVariable’s record variance.

dimVarys zVariable’s dimensional variances. Need to provide the proper size for holding the

information.

data Variable’s total data.

6.5.7.1. Example(s)

The following example reads the full information, specifications and data, for zVariable “VAR1” in a CDF.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long dataType, numElems, numRecs, numDims, recVary;
long dimSizes[CDF_MAX_DIMS], dimVarys[CDF_MAX_DIMS];
CDFdata data; /* Retrieved variable data. */
.
.
status = CDFreadzVarAllByVarID (id, “VAR1”, &numRecs, &dataType, &numElems, &numDims, dimSizes,
 &recVary, dimVarys, &data);
if (status != CDF_OK) UserStatusHandler (status);

.
.

 CDFdataFree (data);

6.5.8 CDFreadzVarDataByVarName

CDFstatus CDFreadzVarDataByVarName(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
char *varName, /* in -- zVariable name. */

227

long *numRecs, /* out -- Number of records read. */
CDFdata *data) /* out -- zVariable full data. */

CDFreadzVarDataByVarName reads a zVariable’s total data. This is a short version for CDFreadzVarAllByVarName,
without variable’s specification.

The arguments to CDFreadzVarDataByVarName are defined as follows:

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varName zVariable name.

numRecs Number of records read from the zVariable.

data Variable’s total data.

6.5.8.1. Example(s)

The following example reads the full data from zVariable “VAR1” in a CDF.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long numRecs;
CDFdata data; /* Retrieved variable data. */
.
.
status = CDFreadzVarDataByVarName (id, “VAR1”, &numRecs, &data);
if (status != CDF_OK) UserStatusHandler (status);

.
.

 CDFdataFree (data);

6.5.9 CDFreadzVarRangeDataByVarName

CDFstatus CDFreadzVarRangeDataByVarName(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
char *varName, /* in -- zVariable name. */
long startRec, /* in -- The starting record number to read. */
long stopRec, /* in -- The ending record number to read. */
CDFdata *data) /* out -- zVariable data. */

CDFreadzVarRangeDataByVarName reads a range of zVariable’s data.

The arguments to CDFreadzVarRangeDataByVarName are defined as follows:

228

id Identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varName zVariable name.

startRec Starting record number (first record number being 0) to read.

stopRec Ending record number (first record number being 0) to read.

data Variable’s data within the range.

6.5.9.1. Example(s)

The following example reads the first 100 records, from record 0 to 99, from zVariable “VAR1” in a CDF.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
CDFdata data; /* Retrieved variable data. */
.
.
status = CDFreadzVarRangeDataByVarID (id, “VAR1”, 0L, 99L, &data);
if (status != CDF_OK) UserStatusHandler (status);

.
.

 CDFdataFree (data);

6.5.10 CDF_Free_String

CDF_Free_String(
long numStrings, /* in -- The number of strings in strings. */
char **strings) /* in -- The array of strings. */

CDF_Free_String frees the dynamically allocated space by the library call. These strings are made when the string-based
attribute entry is read from r/zENTRY_STRINGSDATA_.

The arguments to CDF_Free_String are defined as follows:

numStrings Numer of strings in the string array.

strings A array of the library allocated strings.

6.5.10.1. Example(s)

229

The following example reads the entry from the variable attribute, as attribute id 2, which is string-based from zVariable,
as variable id 0, in a CDF. After it is done, free the space.

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long numStrings; /* Number of strings in the entry data. */
char **strings; /* Retrieved attribute entry of multiple strings. */
.
.

status = CDFlib (SELECT_, CDF_, id,

 zENTRY_, 0L,
 ATTR_, 2L,
 GET_, zENTRY_STRINGSDATA_, &numStrs, &strings,
 NULL_);

if (status != CDF_OK) UserStatusHandler (status);

.
.

 CDF_Free_String (numStrings, strings);

6.6 UTF-8 encode/decode

The functions in this section are for encoding and decoding from Unicode codepoint to and back UTF-8.

6.6.1 UnicodetoUTF8

int UnicodetoUTF8 (/* out -- Number of encoded bytes. */
char *utf8, /* out – UTF-8 encoded string. */
int *codepoints, /* in -- An array of Unicode codepoints. */
int numCodePoints); /* in -- Number of Unicode codepoints. */

UnicodetoUTF8 encodes an array of Unicode codepoints to UTF-8 character string. The encoded string will be NUL-
terminated. It returns the number of encoded bytes in the string, not inclding the terminating byte. If the encoding fails,
a negative number (1-based) is returned, indicating the failure postion in the codepoints array. The UTF-8 string is pre-
allocated by the calling application and it should be large enough to hold the encoded characters.

The arguments to UnicodetoUTF8 are defined as follows:

utf8 The UTF-8 encoded character buffer.

codepoints An array of the Unicode codepoints.

230

numCodePoints Number of codepoints in the array.

6.6.1.1. Example(s)

The following example encodes an array of Unicode codepoints to UTF-8 charatcer string.

.

.
#include "cdf.h"
.
.
char utf8[100]; /* The encoded UTF-8 string. */
int numBytes; /* Number of bytes encoded in utf8. */
int numCP; /* Number of Unicode codepoints. */
int *codepoints[] = {0x0041, 0x00f6, 0x0416, 0x20ac}; /* Array of Unicode codepoints. */
.

numBytes = UnicodetoUTF8 (utf8, codepoints, numCP);
if (numBytes > 0)
 printf(“UTF8 stting: %s\n”, utf8);
else
 ……..

The output should show a string: “AöЖ€”.

6.6.2 UTF8toUnicode

int UTF8toUnicode (/* out -- Number of Unicode codepoints. */
int *codepoints, /* out -- An array of Unicode codepoints. */
char *utf8, /* in – UTF-8 encoded string. */
int numBytes); /* in -- Number of bytes in UTF-8 string. */

UTF8toUnicode decodes a UTF-8 encoded string into an array of Unicode codepoints. It returns the number of decoded
Unicode codepoints. If the decoding fails, a negative number (1-based) is returned, indicating the failure postion in the
UTF-8 byte string. The codepoints array is pre-allocated by the calling application and it should be large enough to hold
the decoded codepoints.

The arguments to UTF8toUnicode are defined as follows:

codepoints An array of the Unicode codepoints.

utf8 The UTF-8 encoded character buffer.

numBytes Number of bytes in the utf8 charatcer string.

6.6.2.1. Example(s)

The following example decodes a UTF-8 string to an array of Unicode codepoints.

231

.

.
#include "cdf.h"
.
.
char *utf8 = “AöЖ€”; /* The UTF-8 string. */
int numBytes; /* Number of bytes in utf8. */
int numCP; /* Number of codepoints in codepoints array. */
int codepoints[100]; /* Array of Unicode codepoints. */
.

numBytes = (int) strlen(utf8);
numCP = UTF8toUnicode (codepoints, utf8, numBytes);
if (numCP > 0)
 ……..
else
 ……..

233

Chapter 7

7 Internal Interface - CDFlib

The Internal interface consists of only one routine, CDFlib. CDFlib can be used to perform all possible operations on a
CDF. In fact, all of the Standard Interface functions are implemented using the Internal Interface. CDFlib must be used
to perform operations not possible with the Standard Interface functions. These operations would involve CDF features
added after the Standard Interface functions had been defined (e.g., specifying a single-file format for a CDF, accessing
zVariables, or specifying a pad value for an rVariable or zVariable). Note that CDFlib can also be used to perform certain
operations more efficiently than with the Standard Interface functions.

CDFlib takes a variable number of arguments that specify one or more operations to be performed (e.g., opening a CDF,
creating an attribute, or writing a variable value). The operations are performed according to the order of the arguments.
Each operation consists of a function being performed on an item. An item may be either an object (e.g., a CDF, variable,
or attribute) or a state (e.g., a CDF's format, a variable's data specification, or a CDF's current attribute). The possible
functions and corresponding items (on which to perform those functions) are described in Section 7.6. The function
prototype for CDFlib is as follows:

CDFstatus CDFlib (long function, ...);

This function prototype is found in the include file cdf.h.

7.1 Example(s)

The easiest way to explain how to use CDFlib would be to start with a few examples. The following example shows how
a CDF would be created with the single-file format (assuming multi-file is the default).

.

.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier (handle). */
CDFstatus status; /* Status returned from CDF library. */
static char CDFname[] = {"test1"}; /* File name of the CDF. */
long numDims = 2; /* Number of dimensions. */
static long dimSizes[2] = {100,200}; /* Dimension sizes. */
long encoding = HOST_ENCODING; /* Data encoding. */

234

long majority = ROW_MAJOR; /* Variable data majority. */
long format = SINGLE_FILE; /* Format of CDF. */
.
.
status = CDFcreate (CDFname, numDims, dimSizes, encoding, majority, &id);
if (status != CDF_OK) UserStatusHandler (status);

status = CDFlib (PUT__, CDF_FORMAT_, format, NULL_);
if (status != CDF_OK) UserStatusHandler (status);
.
.

The call to CDFcreate created the CDF as expected but with a format of multi-file (assuming that is the default). The
call to CDFlib is then used to change the format to single-file (which must be done before any variables are created in
the CDF).

The arguments to CDFlib in this example are explained as follows:

PUT_ The first function to be performed. In this case an item is going to be put to the “current"
CDF (a new format). PUT_ is defined in cdf.h (as are all CDF constants). It was not
necessary to select a current CDF since the call to CDFcreate implicitly selected the CDF
created as the current CDF.34 This is the case since all of the Standard Interface functions
actually call the Internal Interface to perform their operations.

CDF_FORMAT The item to be put. in this case it is the CDF's format.

format The actual format for the CDF. Depending on the item being put, one or more arguments

would have been necessary. In this case only one argument is necessary.

NULL_ This argument could have been one of two things. It could have been another item to put

(followed by the arguments required for that item) or it could have been a new function
to perform. In this case it is a new function to perform - the NULL_ function. NULL_
indicates the end of the call to CDFlib. Specifying NULL_ at the end of the argument list
is required because not all compilers/operating systems provide the ability for a called
function to determine how many arguments were passed in by the calling function.

The next example shows how the same CDF could have been created using only one call to CDFlib. (The declarations
would be the same.)

.

.
status = CDFlib (CREATE_, CDF_, CDFname, numDims, dimSizes, &id,
 PUT__, CDF_ENCODING_, encoding,
 CDF_MAJORITY_, majority,
 CDF_FORMAT_, format,
 NULL_);
if (status != CDF_OK) UserStatusHandler (status);
.
.

The purpose of each argument is as follows:

CREATE_ The first function to be performed. In this case something will be created.

34 In previous releases of CDF, it was required that the current CDF be selected in each call to CDFlib. That requirement
has been eliminated. The CDF library now maintains the current CDF from one call to the next of CDFlib.

235

CDF_ The item to be created - a CDF in this case. There are four required arguments that

must follow. When a CDF is created (with CDFlib), the format, encoding, and
majority default to values specified when your CDF distribution was built and
installed. Consult your system manager for these defaults.

CDFname The file name of the CDF.

numDims Number of dimensions in the CDF.

dimSizes Dimension sizes.

id Identifier to be used when referencing the created CDF in subsequent operations.

PUT_ This argument could have been one of two things. Another item to create or a new

function to perform. In this case it is another function to perform - something will be
put to the CDF.

CDF_ENCODING_ The item to be put - in this case the CDF's encoding. Note that the CDF did not have

to be selected. It was implicitly selected as the current CDF when it was created.

encoding The encoding to be put to the CDF.

CDF_MAJORITY_ This argument could have been one of two things. Another item to put or a new

function to perform. In this case it is another item to put - the CDF's majority.

majority The majority to be put to the CDF.

CDF_FORMAT_ Once again this argument could have been either another item to put or a new function

to perform. It is another item to put - the CDF's format.

format The format to be put to the CDF.

NULL_ This argument could have been either another item to put or a new function to perform.

Here it is another function to perform - the NULL_function that ends the call to
CDFlib.

Note that the operations are performed in the order that they appear in the argument list. The CDF had to be created
before the encoding, majority, and format could be specified (put).

7.2 Current Objects/States (Items)

The use of CDFlib requires that an application be aware of the current objects/states maintained by the CDF library. The
following current objects/states are used by the CDF library when performing operations.

CDF (object)

236

A CDF operation is always performed on the current CDF. The current CDF is implicitly selected whenever a CDF
is opened or created. The current CDF may be explicitly selected using the <SELECT_,CDF_>35 operation. There
is no current CDF until one is opened or created (which implicitly selects it) or until one is explicitly selected.36

rVariable (object)

An rVariable operation is always performed on the current rVariable in the current CDF. For each open CDF a
current rVariable is maintained. This current rVariable is implicitly selected when an rVariable is created (in the
current CDF) or it may be explicitly selected with the <SELECT_,rVAR_> or <SELECT_,rVAR_NAME_>
operations. There is no current rVariable in a CDF until one is created (which implicitly selects it) or until one is
explicitly selected.

zVariable (object)

A zVariable operation is always performed on the current zVariable in the current CDF. For each open CDF a
current zVariable is maintained. This current zVariable is implicitly selected when a zVariable is created (in the
current CDF) or it may be explicitly selected with the <SELECT_,zVAR_> or <SELECT_,zVAR_NAME_>
operations. There is no current zVariable in a CDF until one is created (which implicitly selects it) or until one is
explicitly selected.

attribute (object)

An attribute operation is always performed on the current attribute in the current CDF. For each open CDF a current
attribute is maintained. This current attribute is implicitly selected when an attribute is created (in the current CDF)
or it may be explicitly selected with the <SELECT_,ATTR_> or <SELECT_,ATTR_NAME_> operations. There
is no current attribute in a CDF until one is created (which implicitly selects it) or until one is explicitly selected.

gEntry number (state)

A gAttribute gEntry operation is always performed on the current gEntry number in the current CDF for the current
attribute in that CDF. For each open CDF a current gEntry number is maintained. This current gEntry number
must be explicitly selected with the <SELECT_,gENTRY_> operation. (There is no implicit or default selection
of the current gEntry number for a CDF.) Note that the current gEntry number is maintained for the CDF (not each
attribute) - it applies to all of the attributes in that CDF.

rEntry number (state)

A vAttribute rEntry operation is always performed on the current rEntry number in the current CDF for the current
attribute in that CDF. For each open CDF a current rEntry number is maintained. This current rEntry number must
be explicitly selected with the <SELECT_,rENTRY_> operation. (There is no implicit or default selection of the
current rEntry number for a CDF.) Note that the current rEntry number is maintained for the CDF (not each
attribute) - it applies to all of the attributes in that CDF.

zEntry number (state)

A vAttribute zEntry operation is always performed on the current zEntry number in the current CDF for the current
attribute in that CDF. For each open CDF a current zEntry number is maintained. This current zEntry number
must be explicitly selected with the <SELECT_,zENTRY_> operation. (There is no implicit or default selection
of the current zEntry number for a CDF.) Note that the current zEntry number is maintained for the CDF (not each
attribute) - it applies to all of the attributes in that CDF.

record number, rVariables (state)

An rVariable read or write operation is always performed at (for single and multiple variable reads and writes) or
starting at (for hyper reads and writes) the current record number for the rVariables in the current CDF. When a
CDF is opened or created, the current record number for its rVariables is initialized to zero (0). It may then be
explicitly selected using the <SELECT_,rVARs_RECNUMBER_> operation. Note that the current record number
for rVariables is maintained for a CDF (not each rVariable) - it applies to all of the rVariables in that CDF.

35 This notation is used to specify a function to be performed on an item. The syntax is <function_,item_>.
36 In previous releases of CDF, it was required that the current CDF be selected in each call to CDFlib. That
requirement no longer exists. The CDF library now maintains the current CDF from one call to the next of CDFlib.

237

record count, rVariables (state)
An rVariable hyper read or write operation is always performed using the current record count for the rVariables in
the current CDF. When a CDF is opened or created, the current record count for its rVariables is initialized to one
(1). It may then be explicitly selected using the <SELECT_,rVARs_RECCOUNT_> operation. Note that the
current record count for rVariables is maintained for a CDF (not each rVariable) - it applies to all of the rVariables
in that CDF.

record interval, rVariables (state)

An rVariable hyper read or write operation is always performed using the current record interval for the rVariables
in the current CDF. When a CDF is opened or created, the current record interval for its rVariables is initialized to
one (1). It may then be explicitly selected using the <SELECT_,rVARs_RECINTERVAL_> operation. Note that
the current record interval for rVariables is maintained for a CDF (not each rVariable) - it applies to all of the
rVariables in that CDF.

dimension indices, rVariables (state)

An rVariable read or write operation is always performed at (for single reads and writes) or starting at (for hyper
reads and writes) the current dimension indices for the rVariables in the current CDF. When a CDF is opened or
created, the current dimension indices for its rVariables are initialized to zeroes (0,0,...). They may then be
explicitly selected using the <SELECT_,rVARs_DIMINDICES_> operation. Note that the current dimension
indices for rVariables are maintained for a CDF (not each rVariable) - they apply to all of the rVariables in that
CDF. For 0-dimensional rVariables the current dimension indices are not applicable.

dimension counts, rVariables (state)

An rVariable hyper read or write operation is always performed using the current dimension counts for the
rVariables in the current CDF. When a CDF is opened or created, the current dimension counts for its rVariables
are initialized to the dimension sizes of the rVariables (which specifies the entire array). They may then be
explicitly selected using the <SELECT_,rVARs_DIMCOUNTS_> operation. Note that the current dimension
counts for rVariables are maintained for a CDF (not each rVariable) - they apply to all of the rVariables in that
CDF. For 0-dimensional rVariables the current dimension counts are not applicable.

dimension intervals, rVariables (state)

An rVariable hyper read or write operation is always performed using the current dimension intervals for the
rVariables in the current CDF. When a CDF is opened or created, the current dimension intervals for its rVariables
are initialized to ones (1,1,...). They may then be explicitly selected using the
<SELECT_,rVARs_DIMINTERVALS_> operation. Note that the current dimension intervals for rVariables are
maintained for a CDF (not each rVariable) - they apply to all of the rVariables in that CDF. For 0-dimensional
rVariables the current dimension intervals are not applicable.

sequential value, rVariable (state)

An rVariable sequential read or write operation is always performed at the current sequential value for that
rVariable. When an rVariable is created (or for each rVariable in a CDF being opened), the current sequential value
is set to the first physical value (even if no physical values exist yet). It may then be explicitly selected using the
<SELECT_,rVAR_SEQPOS_> operation. Note that a current sequential value is maintained for each rVariable in
a CDF.

record number, zVariable (state)

A zVariable read or write operation is always performed at (for single reads and writes) or starting at (for hyper
reads and writes) the current record number for the current zVariable in the current CDF. A multiple variable read
or write operation is performed at the current record number of each of the zVariables involved. (The record
numbers do not have to be the same.) When a zVariable is created (or for each zVariable in a CDF being opened),
the current record number for that zVariable is initialized to zero (0). It may then be explicitly selected using the
<SELECT_,zVAR_RECNUMBER_> operation (which only affects the current zVariable in the current CDF).
Note that a current record number is maintained for each zVariable in a CDF.

record count, zVariable (state)

238

A zVariable hyper read or write operation is always performed using the current record count for the current
zVariable in the current CDF. When a zVariable created (or for each zVariable in a CDF being opened), the current
record count for that zVariable is initialized to one (1). It may then be explicitly selected using the
<SELECT_,zVAR_RECCOUNT_> operation (which only affects the current zVariable in the current CDF). Note
that a current record count is maintained for each zVariable in a CDF.

record interval, zVariable (state)

A zVariable hyper read or write operation is always performed using the current record interval for the current
zVariable in the current CDF. When a zVariable is created (or for each zVariable in a CDF being opened), the
current record interval for that zVariable is initialized to one (1). It may then be explicitly selected using the
<SELECT_,zVAR_RECINTERVAL_> operation (which only affects the current zVariable in the current CDF).
Note that a current record interval is maintained for each zVariable in a CDF.

dimension indices, zVariable (state)

A zVariable read or write operation is always performed at (for single reads and writes) or starting at (for hyper
reads and writes) the current dimension indices for the current zVariable in the current CDF. When a zVariable is
created (or for each zVariable in a CDF being opened), the current dimension indices for that zVariable are
initialized to zeroes (0,0,...). They may then be explicitly selected using the <SELECT_,zVAR_DIMINDICES_>
operation (which only affects the current zVariable in the current CDF). Note that current dimension indices are
maintained for each zVariable in a CDF. For 0-dimensional zVariables the current dimension indices are not
applicable.

dimension counts, zVariable (state)

A zVariable hyper read or write operation is always performed using the current dimension counts for the current
zVariable in the current CDF. When a zVariable is created (or for each zVariable in a CDF being opened), the
current dimension counts for that zVariable are initialized to the dimension sizes of that zVariable (which specifies
the entire array). They may then be explicitly selected using the <SELECT_,zVAR_DIMCOUNTS_> operation
(which only affects the current zVariable in the current CDF). Note that current dimension counts are maintained
for each zVariable in a CDF. For 0-dimensional zVariables the current dimension counts are not applicable.

dimension intervals, zVariable (state)

A zVariable hyper read or write operation is always performed using the current dimension intervals for the current
zVariable in the current CDF. When a zVariable is created (or for each zVariable in a CDF being opened), the
current dimension intervals for that zVariable are initialized to ones (1,1,...). They may then be explicitly selected
using the <SELECT_,zVAR_DIMINTERVALS_> operation (which only affects the current zVariable in the
current CDF). Note that current dimension intervals are maintained for each zVariable in a CDF. For 0-dimensional
zVariables the current dimension intervals are not applicable.

sequential value, zVariable (state)

A zVariable sequential read or write operation is always performed at the current sequential value for that zVariable.
When a zVariable is created (or for each zVariable in a CDF being opened), the current sequential value is set to
the first physical value (even if no physical values exist yet). It may then be explicitly selected using the
<SELECT_,zVAR_SEQPOS_> operation. Note that a current sequential value is maintained for each zVariable in
a CDF.

status code (state)

When inquiring the explanation of a CDF status code, the text returned is always for the current status code. One
current status code is maintained for the entire CDF library (regardless of the number of open CDFs). The current
status code may be selected using the <SELECT_,CDF_STATUS_> operation. There is no default current status
code. Note that the current status code is NOT the status code from the last operation performed.37

37 The CDF library now maintains the current status code from one call to the next of CDFlib.

239

7.3 Returned Status

CDFlib returns a status code of type CDFstatus. Since more than one operation may be performed with a single call to
CDFlib, the following rules apply:

1. The first error detected aborts the call to CDFlib, and the corresponding status code is returned.

2. In the absence of any errors, the status code for the last warning detected is returned.

3. In the absence of any errors or warnings, the status code for the last informational condition is returned.

4. In the absence of any errors, warnings, or informational conditions, CDF_OK is returned.

Chapter 8 explains how to interpret status codes. Appendix A lists the possible status codes and the type of each: error ,
warning, or informational.

7.4 Indentation/Style

Indentation should be used to make calls to CDFlib readable. The following example shows a call to CDFlib using proper
indentation.

status = CDFlib (CREATE_, CDF_, CDFname, numDims, dimSizes, &id,
 PUT__, CDF_FORMAT_, format,
 CDF_MAJORITY_, majority,
 CREATE_, ATTR_, attrName, scope, &attrNum,
 rVAR_, varName, dataType, numElements,
 recVary, dimVarys, &varNum,
 NULL_);

Note that the functions (CREATE_, PUT_, and NULL_) are indented the same and that the items (CDF_,
CDF_FORMAT_, CDF_MAJORITY_, ATTR_, and rVAR_) are indented the same under their corresponding functions.

The following example shows the same call to CDFlib without the proper indentation.

status = CDFlib (CREATE_, CDF_, CDFname, numDims, dimSizes, &id, PUT__,
 CDF_FORMAT_, format, CDF_MAJORITY_, majority, CREATE_,
 ATTR_, attrName, scope, &attrNum, rVAR_, varName, dataType,
 numElements, recVary, dimVarys, &varNum, NULL_);

The need for proper indentation to ensure the readability of your applications should be obvious.

7.5 Syntax

CDFlib takes a variable number of arguments. There must always be at least one argument. The maximum number of
arguments is not limited by CDF but rather the C compiler and operating system being used. Under normal circumstances
that limit would never be reached (or even approached). Note also that a call to CDFlib with a large number of arguments
can always be broken up into two or more calls to CDFlib with fewer arguments.

240

The syntax for CDFlib is as follows:

status = CDFlib (fnc1, item1, arg1, arg2, ...argN,
 item2, arg1, arg2, ...argN,
 .
 .
 itemN, arg1, arg2, ...argN,
 fnc2, item1, arg1, arg2, ...argN,
 item2, arg1, arg2, ...argN,
 .
 .
 itemN, arg1, arg2, ...argN,
 .
 .
 fncN, item1, arg1, arg2, ...argN,
 item2, arg1, arg2, ...argN,
 .
 .
 itemN, arg1, arg2, ...argN,
 NULL_);

where fncx is a function to perform, itemx is the item on which to perform the function, and argx is a required argument
for the operation. The NULL_function must be used to end the call to CDFlib. The completion status, status, is returned.

7.6 Operations. . .

An operation consists of a function being performed on an item. The supported functions are as follows:

CLOSE_ Used to close an item.
CONFIRM_ Used to confirm the value of an item.
CREATE_ Used to create an item.
DELETE_ Used to delete an item.
GET_ Used to get (read) something from an item.
NULL_ Used to signal the end of the argument list of an internal interface call.
OPEN_ Used to open an item.
PUT_ Used to put (write) something to an item.
SELECT_ Used to select the value of an item.

For each function the supported items, required arguments, and required preselected objects/states are listed below. The
required preselected objects/states are those objects/states that must be selected (typically with the SELECT_ function)
before a particular operation may be performed. Note that some of the required preselected objects/states have default
values as described at Section 7.2.

<CLOSE_,CDF_>

Closes the current CDF. When the CDF is closed, there is no longer a current CDF. A CDF must be closed to
ensure that it will be properly written to disk.

There are no required arguments.

The only required preselected object/state is the current CDF.

241

<CLOSE_,rVAR_>
Closes the current rVariable (in the current CDF). This operation is only applicable to multi-file CDFs.

There are no required arguments.

The required preselected objects/states are the current CDF and its current rVariable.

<CLOSE_,zVAR_>

Closes the current zVariable (in the current CDF). This operation is only applicable to multi-file CDFs.

There are no required arguments.

The required preselected objects/states are the current CDF and its current zVariable.

<CONFIRM_,ATTR_>

Confirms the current attribute (in the current CDF). Required arguments are as follows:

out: long *attrNum

Attribute number.

The only required preselected object/state is the current CDF.

<CONFIRM_,ATTR_EXISTENCE_>
Confirms the existence of the named attribute (in the current CDF). If the attribute does not exist, an error code
will be returned. in any case the current attribute is not affected. Required arguments are as follows:

in: char *attrName

The attribute name. This may be at most CDF_ATTR_NAME_LEN256 characters (excluding the NUL
terminator).

The only required preselected object/state is the current CDF.

<CONFIRM_,CDF_>

Confirms the current CDF. Required arguments are as follows:

out: CDFid *id

The current CDF.

There are no required preselected objects/states.

<CONFIRM_,CDF_ACCESS_>

Confirms the accessibility of the current CDF. If a fatal error occurred while accessing the CDF the error code
NO_MORE_ACCESS will be returned. If this is the case, the CDF should still be closed.

There are no required arguments.

The only required preselected object/state is the current CDF.

<CONFIRM_,CDF_CACHESIZE_>

Confirms the number of cache buffers being used for the dotCDF file (for the current CDF). The Concepts chapter
in the CDF User's Guide describes the caching scheme used by the CDF library. Required arguments are as
follows:

242

out: long *numBuffers

The number of cache buffers being used.

The only required preselected object/state is the current CDF.

<CONFIRM_,CDF_DECODING_>

Confirms the decoding for the current CDF. Required arguments are as follows:

out: long *decoding

The decoding. The decodings are described in Section 4.7.

The only required preselected object/state is the current CDF.

<CONFIRM_,CDF_NAME_>

Confirms the file name of the current CDF. Required arguments are as follows:

out: char CDFname[CDF_PATHNAME_LEN+1]

File name of the CDF.

The only required preselected object/state is the current CDF.

<CONFIRM_,CDF_NEGtoPOSfp0_MODE_>

Confirms the -0.0 to 0.0 mode for the current CDF. Required arguments are as follows:

out: long *mode

The -0.0 to 0.0 mode. The -0.0 to 0.0 modes are described in Section 4.15.

The only required preselected object/state is the current CDF.

<CONFIRM_,CDF_READONLY_MODE_>

Confirms the read-only mode for the current CDF. Required arguments are as follows:

out: long *mode

The read-only mode. The read-only modes are described in Section 4.13.

The only required preselected object/state is the current CDF.

<CONFIRM_,CDF_STATUS_>

Confirms the current status code. Note that this is not the most recently returned status code but rather the most
recently selected status code (see the <SELECT_,CDF_STATUS_> operation).

Required arguments are as follows:

out: CDFstatus *status

The status code.

The only required preselected object/state is the current status code.

<CONFIRM_,zMODE_>

Confirms the zMode for the current CDF. Required arguments are as follows:

243

out: long *mode

The zMode. The zModes are described in Section 4.14.

The only required preselected object/state is the current CDF.

<CONFIRM_,COMPRESS_CACHESIZE_>

Confirms the number of cache buffers being used for the compression scratch file (for the current CDF). The
Concepts chapter in the CDF User's Guide describes the caching scheme used by the CDF library. Required
arguments are as follows:

out: long *numBuffers

The number of cache buffers being used.

The only required preselected object/state is the current CDF.

<CONFIRM_,CURgENTRY_EXISTENCE_>

Confirms the existence of the gEntry at the current gEntry number for the current attribute (in the current CDF).
If the gEntry does not exist, an error code will be returned.

There are no required arguments.

The required preselected objects/states are the current CDF, its current attribute, and its current gEntry number.

NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.

<CONFIRM_,CURrENTRY_EXISTENCE_>

Confirms the existence of the rEntry at the current rEntry number for the current attribute (in the current CDF). If
the rEntry does not exist, an error code will be returned.

There are no required arguments.

The required preselected objects/states are the current CDF, its current attribute, and its current rEntry number.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<CONFIRM_,CURzENTRY_EXISTENCE_>

Confirms the existence of the zEntry at the current zEntry number for the current attribute (in the current CDF).
If the zEntry does not exist, an error code will be returned.

There are no required arguments.

The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<CONFIRM_,gENTRY_>

Confirms the current gEntry number for all attributes in the current CDF. Required arguments are as follows:

out: long *entryNum

The gEntry number.

The only required preselected object/state is the current CDF.

244

<CONFIRM_,gENTRY_EXISTENCE_>

Confirms the existence of the specified gEntry for the current attribute (in the current CDF). If the gEntry does
not exist, an error code will be returned. in any case the current gEntry number is not affected. Required arguments
are as follows:

in: long entryNum

The gEntry number.

The required preselected objects/states are the current CDF and its current attribute.

NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.

<CONFIRM_,rENTRY_>

Confirms the current rEntry number for all attributes in the current CDF. Required arguments are as follows:

out: long *entryNum

The rEntry number.

The only required preselected object/state is the current CDF.

<CONFIRM_,rENTRY_EXISTENCE_>

Confirms the existence of the specified rEntry for the current attribute (in the current CDF). If the rEntry does not
exist, An error code will be returned. in any case the current rEntry number is not affected. Required arguments
are as follows:

in: long entryNum

The rEntry number.

The required preselected objects/states are the current CDF and its current attribute.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<CONFIRM_,rVAR_>

Confirms the current rVariable (in the current CDF). Required arguments are as follows:

out: long *varNum

rVariable number.

The only required preselected object/state is the current CDF.

<CONFIRM_,rVAR_CACHESIZE_>

Confirms the number of cache buffers being used for the current rVariable's file (of the current CDF). This
operation is not applicable to a single-file CDF. The Concepts chapter in the CDF User's Guide describes the
caching scheme used by the CDF library. Required arguments are as follows:

out: long *numBuffers

The number of cache buffers being used.

The required preselected objects/states are the current CDF and its current rVariable.

245

<CONFIRM_,rVAR_EXISTENCE_>
Confirms the existence of the named rVariable (in the current CDF). If the rVariable does not exist, an error code
will be returned. in any case the current rVariable is not affected. Required arguments are as follows:

in: char *varName

The rVariable name. This may be at most CDF_VAR_NAME_LEN256 characters (excluding the NUL
terminator).

The only required preselected object/state is the current CDF.

<CONFIRM_,rVAR_PADVALUE_>

Confirms the existence of an explicitly specified pad value for the current rVariable (in the current CDF). If An
explicit pad value has not been specified, the informational status code NO_PADVALUE_SPECIFIED will be
returned.

There are no required arguments.

The required preselected objects/states are the current CDF and its current rVariable.

<CONFIRM_,rVAR_RESERVEPERCENT_>

Confirms the reserve percentage being used for the current rVariable (of the current CDF). This operation is only
applicable to compressed rVariables. The Concepts chapter in the CDF User's Guide describes the reserve
percentage scheme used by the CDF library. Required arguments are as follows:

out: long *percent

The reserve percentage.

The required preselected objects/states are the current CDF and its current rVariable.

<CONFIRM_,rVAR_SEQPOS_>

Confirms the current sequential value for sequential access for the current rVariable (in the current CDF). Note
that a current sequential value is maintained for each rVariable individually. Required arguments are as follows:

out: long *recNum

Record number.

out: long indices[CDF_MAX_DIMS]

Dimension indices. Each element of indices receives the corresponding dimension index. For 0-
dimensional rVariables this argument is ignored (but must be present).

The required preselected objects/states are the current CDF and its current rVariable.

<CONFIRM_,rVARs_DIMCOUNTS_>

Confirms the current dimension counts for all rVariables in the current CDF. For 0-dimensional rVariables this
operation is not applicable. Required arguments are as follows:

out: long counts[CDF_MAX_DIMS]

Dimension counts. Each element of counts receives the corresponding dimension count.

The only required preselected object/state is the current CDF.

246

<CONFIRM_,rVARs_DIMINDICES_>

Confirms the current dimension indices for all rVariables in the current CDF. For 0-dimensional rVariables this
operation is not applicable. Required arguments are as follows:

out: long indices[CDF_MAX_DIMS]

Dimension indices. Each element of indices receives the corresponding dimension index.

The only required preselected object/state is the current CDF.

<CONFIRM_,rVARs_DIMINTERVALS_>

Confirms the current dimension intervals for all rVariables in the current CDF. For 0-dimensional rVariables this
operation is not applicable. Required arguments are as follows:

out: long intervals[CDF_MAX_DIMS]

Dimension intervals. Each element of intervals receives the corresponding dimension interval.

The only required preselected object/state is the current CDF.

<CONFIRM_,rVARs_RECCOUNT_>

Confirms the current record count for all rVariables in the current CDF. Required arguments are as follows:

out: long *recCount

Record count.

The only required preselected object/state is the current CDF.

<CONFIRM_,rVARs_RECINTERVAL_>

Confirms the current record interval for all rVariables in the current CDF. Required arguments are as follows:

out: long *recInterval

Record interval.

The only required preselected object/state is the current CDF.

<CONFIRM_,rVARs_RECNUMBER_>

Confirms the current record number for all rVariables in the current CDF. Required arguments are as follows:

out: long *recNum

Record number.

The only required preselected object/state is the current CDF.

<CONFIRM_,STAGE_CACHESIZE_>

Confirms the number of cache buffers being used for the staging scratch file (for the current CDF). The Concepts
chapter in the CDF User's Guide describes the caching scheme used by the CDF library. Required arguments are
as follows:

out: long *numBuffers

The number of cache buffers being used.

247

The only required preselected object/state is the current CDF.

<CONFIRM_,zENTRY_>

Confirms the current zEntry number for all attributes in the current CDF. Required arguments are as follows:

out: long *entryNum

The zEntry number.

The only required preselected object/state is the current CDF.

<CONFIRM_,zENTRY_EXISTENCE_>

Confirms the existence of the specified zEntry for the current attribute (in the current CDF). If the zEntry does
not exist, an error code will be returned. in any case the current zEntry number is not affected. Required arguments
are as follows:

in: long entryNum

The zEntry number.

The required preselected objects/states are the current CDF and its current attribute.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<CONFIRM_,zVAR_>

Confirms the current zVariable (in the current CDF). Required arguments are as follows:

out: long *varNum

zVariable number.

The only required preselected object/state is the current CDF.

<CONFIRM_,zVAR_CACHESIZE_>

Confirms the number of cache buffers being used for the current zVariable's file (of the current CDF). This
operation is not applicable to a single-file CDF. The Concepts chapter in the CDF User's Guide describes the
caching scheme used by the CDF library. Required arguments are as follows:

out: long *numBuffers

The number of cache buffers being used.

The required preselected objects/states are the current CDF and its current zVariable.

<CONFIRM_,zVAR_DIMCOUNTS_>

Confirms the current dimension counts for the current zVariable in the current CDF. For 0-dimensional zVariables
this operation is not applicable. Required arguments are as follows:

out: long counts[CDF_MAX_DIMS]

Dimension counts. Each element of counts receives the corresponding dimension count.

The required preselected objects/states are the current CDF and its current zVariable.

<CONFIRM_,zVAR_DIMINDICES_>

248

Confirms the current dimension indices for the current zVariable in the current CDF. For 0-dimensional
zVariables this operation is not applicable. Required arguments are as follows:

out: long indices[CDF_MAX_DIMS]

Dimension indices. Each element of indices receives the corresponding dimension index.

The required preselected objects/states are the current CDF and its current zVariable.

<CONFIRM_,zVAR_DIMINTERVALS_>

Confirms the current dimension intervals for the current zVariable in the current CDF. For 0-dimensional
zVariables this operation is not applicable. Required arguments are as follows:

out: long intervals[CDF_MAX_DIMS]

Dimension intervals. Each element of intervals receives the corresponding dimension interval.

The required preselected objects/states are the current CDF and its current zVariable.

<CONFIRM_,zVAR_EXISTENCE_>

Confirms the existence of the named zVariable (in the current CDF). If the zVariable does not exist, an error code
will be returned. in any case the current zVariable is not affected. Required arguments are as follows:

in: char *varName

The zVariable name. This may be at most CDF_VAR_NAME_LEN256 characters (excluding the NUL
terminator).

The only required preselected object/state is the current CDF.

<CONFIRM_,zVAR_PADVALUE_>

Confirms the existence of an explicitly specified pad value for the current zVariable (in the current CDF). If An
explicit pad value has not been specified, the informational status code NO_PADVALUE_SPECIFIED will be
returned.

There are no required arguments.

The required preselected objects/states are the current CDF and its current zVariable.

<CONFIRM_,zVAR_RECCOUNT_>

Confirms the current record count for the current zVariable in the current CDF. Required arguments are as follows:

out: long *recCount

Record count.

The required preselected objects/states are the current CDF and its current zVariable.

<CONFIRM_,zVAR_RECINTERVAL_>

Confirms the current record interval for the current zVariable in the current CDF. Required arguments are as
follows:

out: long *recInterval

Record interval.

249

The required preselected objects/states are the current CDF and its current zVariable.

<CONFIRM_,zVAR_RECNUMBER_>

Confirms the current record number for the current zVariable in the current CDF. Required arguments are as
follows:

out: long *recNum

Record number.

The required preselected objects/states are the current CDF and its current zVariable.

<CONFIRM_,zVAR_RESERVEPERCENT_>

Confirms the reserve percentage being used for the current zVariable (of the current CDF). This operation is only
applicable to compressed zVariables. The Concepts chapter in the CDF User's Guide describes the reserve
percentage scheme used by the CDF library. Required arguments are as follows:

out: long *percent

The reserve percentage.

The required preselected objects/states are the current CDF and its current zVariable.

<CONFIRM_,zVAR_SEQPOS_>
Confirms the current sequential value for sequential access for the current zVariable (in the current CDF). Note
that a current sequential value is maintained for each zVariable individually. Required arguments are as follows:

out: long *recNum

Record number.

out: long indices[CDF_MAX_DIMS]

Dimension indices. Each element of indices receives the corresponding dimension index. For 0-
dimensional zVariables this argument is ignored (but must be present).

The required preselected objects/states are the current CDF and its current zVariable.

<CREATE_,ATTR_>

A new attribute will be created in the current CDF. An attribute with the same name must not already exist in the
CDF. The created attribute implicitly becomes the current attribute (in the current CDF). Required arguments are
as follows:

in: char *attrName

Name of the attribute to be created. This can be at most CDF_ATTR_NAME_LEN256 characters
(excluding the NUL terminator). Attribute names are case-sensitive.

in: long scope

Scope of the new attribute. Specify one of the scopes described in Section 4.12.

out: long *attrNum

250

Number assigned to the new attribute. This number must be used in subsequent CDF function calls
when referring to this attribute. An existing attribute's number may also be determined with the
<GET_,ATTR_NUMBER_> operation.

The only required preselected object/state is the current CDF.

<CREATE_,CDF_>

A new CDF will be created. It is illegal to create a CDF that already exists. The created CDF implicitly becomes
the current CDF. Required arguments are as follows:

in: char *CDFname

File name of the CDF to be created. (Do not append an extension.) This can be at most
CDF_PATHNAME_LEN characters (excluding the NUL terminator). A CDF file name may contain
disk and directory specifications that conform to the conventions of the operating system being used
(including logical names on OpenVMS systems and environment variables on UNIX systems).

UNIX: File names are case-sensitive.

in: long numDims

Number of dimensions for the rVariables. This can be as few as zero (0) and at most CDF_MAX_DIMS.
Note that this must be specified even if the CDF will contain only zVariables.

in: long dimSizes[]

Dimension sizes for the rVariables. Each element of dimSizes specifies the corresponding dimension
size. Each dimension size must be greater than zero (0). For 0-dimensional rVariables this argument
is ignored (but must be present). Note that this must be specified even if the CDF will contain only
zVariables.

out: CDFid *id

CDF identifier to be used in subsequent operations on the CDF.

A CDF is created with the default format, encoding, and variable majority as specified in the configuration file of
your CDF distribution. Consult your system manager to determine these defaults. These defaults can then be
changed with the corresponding <PUT_,CDF_FORMAT_>, <PUT_,CDF_ENCODING_>, and
<PUT_,CDF_MAJORITY_> operations if necessary.

A CDF must be closed with the <CLOSE_,CDF_> operation to ensure that the CDF will be correctly written to
disk.

There are no required preselected objects/states.

<CREATE_,rVAR_>

A new rVariable will be created in the current CDF. A variable (rVariable or zVariable) with the same name must
not already exist in the CDF. The created rVariable implicitly becomes the current rVariable (in the current CDF).
Required arguments are as follows:

in: char *varName

Name of the rVariable to be created. This can be at most CDF_VAR_NAME_LEN256 characters
(excluding the NUL). Variable names are case-sensitive.

in: long dataType

251

Data type of the new rVariable. Specify one of the data types described in Section 4.5.

in: long numElements

Number of elements of the data type at each value. For character data types (CDF_CHAR and
CDF_UCHAR), this is the number of characters in each string (an array of characters). A string exists
at each value of the variable. For the non-character data types this must be one (1) - multiple elements
are not allowed for non-character data types.

in: long recVary

Record variance. Specify one of the variances described in Section 4.9.

in: long dimVarys[]

Dimension variances. Each element of dimVarys specifies the corresponding dimension variance. For
each dimension specify one of the variances described in Section 4.9. For 0-dimensional rVariables this
argument is ignored (but must be present).

out: long *varNum

Number assigned to the new rVariable. This number must be used in subsequent CDF function calls
when referring to this rVariable. An existing rVariable's number may also be determined with the
<GET_,rVAR_NUMBER_> operation.

The only required preselected object/state is the current CDF.

<CREATE_,zVAR_>

A new zVariable will be created in the current CDF. A variable (rVariable or zVariable) with the same name must
not already exist in the CDF. The created zVariable implicitly becomes the current zVariable (in the current CDF).
Required arguments are as follows:

in: char *varName

Name of the zVariable to be created. This can be at most CDF_VAR_NAME_LEN256 characters
(excluding the NUL terminator). Variable names are case-sensitive.

in: long dataType

Data type of the new zVariable. Specify one of the data types described in Section 4.5.

in: long numElements

Number of elements of the data type at each value. For character data types (CDF_CHAR and
CDF_UCHAR), this is the number of characters in each string (an array of characters). A string exists
at each value of the variable. For the non-character data types this must be one (1) - multiple elements
are not allowed for non-character data types.

in: long numDims

Number of dimensions for the zVariable. This may be as few as zero and at most CDF_MAX_DIMS.

in: long dimSizes[]

252

The dimension sizes. Each element of dimSizes specifies the corresponding dimension size. Each
dimension size must be greater than zero (0). For a 0-dimensional zVariable this argument is ignored
(but must be present).

in: long recVary

Record variance. Specify one of the variances described in Section 4.9.

in: long dimVarys[]

Dimension variances. Each element of dimVarys specifies the corresponding dimension variance. For
each dimension specify one of the variances described in Section 4.9. For a 0-dimensional zVariable
this argument is ignored (but must be present).

out: long *varNum

Number assigned to the new zVariable. This number must be used in subsequent CDF function calls
when referring to this zVariable. An existing zVariable's number may also be determined with the
<GET_,zVAR_NUMBER_> operation.

The only required preselected object/state is the current CDF.

<DELETE_,ATTR_>
Deletes the current attribute (in the current CDF). Note that the attribute's entries are also deleted. The attributes,
which numerically follow the attribute being deleted, are immediately renumbered. When the attribute is deleted,
there is no longer a current attribute.

There are no required arguments.

The required preselected objects/states are the current CDF and its current attribute.

<DELETE_,CDF_>

Deletes the current CDF. A CDF must be opened before it can be deleted. When the CDF is deleted, there is no
longer a current CDF.

There are no required arguments.

The only required preselected object/state is the current CDF.

<DELETE_,gENTRY_>

Deletes the gEntry at the current gEntry number of the current attribute (in the current CDF). Note that this does
not affect the current gEntry number.

There are no required arguments.

The required preselected objects/states are the current CDF, its current attribute, and its current gEntry number.

NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.

<DELETE_,rENTRY_>

Deletes the rEntry at the current rEntry number of the current attribute (in the current CDF). Note that this does
not affect the current rEntry number.

There are no required arguments.

The required preselected objects/states are the current CDF, its current attribute, and its current rEntry number.

253

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<DELETE_,rVAR_>

Deletes the current rVariable (in the current CDF). Note that the rVariable's corresponding rEntries are also deleted
(from each vAttribute). The rVariables, which numerically follow the rVariable being deleted, are immediately
renumbered. The rEntries, which numerically follow the rEntries being deleted, are also immediately renumbered.
When the rVariable is deleted, there is no longer a current rVariable. NOTE: This operation is only allowed on
single-file CDFs.

There are no required arguments.

The required preselected objects/states are the current CDF and its current rVariable.

<DELETE_,rVAR_RECORDS_>

Deletes the specified range of records from the current rVariable (in the current CDF). If the rVariable has sparse
records a gap of missing records will be created. If the rVariable does not have sparse records, the records
following the range of deleted records are immediately renumbered beginning with the number of the first deleted
record. NOTE: This operation is only allowed on single-file CDFs.

Required arguments are as follows:

in: long firstRecord

The record number of the first record to be deleted.

in: long lastRecord

The record number of the last record to be deleted.

The required preselected objects/states are the current CDF and its current rVariable.

<DELETE_,rVAR_RECORDS_RENUMBER_>

Deletes the specified range of records from the current rVariable (in the current CDF). Whether the rVariable has
sparse records or not. the records following the range of deleted records are immediately renumbered beginning
with the number of the first deleted record. NOTE: This operation is only allowed on single-file CDFs.

Required arguments are as follows:

in: long firstRecord

The record number of the first record to be deleted.

in: long lastRecord

The record number of the last record to be deleted.

The required preselected objects/states are the current CDF and its current rVariable.

<DELETE_,zENTRY_>

Deletes the zEntry at the current zEntry number of the current attribute (in the current CDF). Note that this does
not affect the current zEntry number.

There are no required arguments.

The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.

254

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<DELETE_,zVAR_>

Deletes the current zVariable (in the current CDF). Note that the zVariable's corresponding zEntries are also
deleted (from each vAttribute). The zVariables, which numerically follow the zVariable being deleted, are
immediately renumbered. The rEntries, which numerically follow the rEntries being deleted, are also immediately
renumbered. When the zVariable is deleted, there is no longer a current zVariable. NOTE: This operation is
only allowed on single-file CDFs.

There are no required arguments.

The required preselected objects/states are the current CDF and its current rVariable.

<DELETE_,zVAR_RECORDS_>

Deletes the specified range of records from the current zVariable (in the current CDF). If the zVariable has sparse
records a gap of missing records will be created. If the zVariable does not have sparse records, the records
following the range of deleted records are immediately renumbered beginning with the number of the first deleted
record. NOTE: This operation is only allowed on single-file CDFs. Required arguments are as follows:

in: long firstRecord

The record number of the first record to be deleted.

in: long lastRecord

The record number of the last record to be deleted.

The required preselected objects/states are the current CDF and its current zVariable.

<DELETE_,zVAR_RECORDS_RENUMBER_>

Deletes the specified range of records from the current zVariable (in the current CDF). Whether the zVariable has
sparse records or not. the records following the range of deleted records are immediately renumbered beginning
with the number of the first deleted record. NOTE: This operation is only allowed on single-file CDFs.

Required arguments are as follows:

in: long firstRecord

The record number of the first record to be deleted.

in: long lastRecord

The record number of the last record to be deleted.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,ATTR_MAXgENTRY_>

Inquires the maximum gEntry number used for the current attribute (in the current CDF). This does not necessarily
correspond with the number of gEntries for the attribute. Required arguments are as follows:

out: long *maxEntry

The maximum gEntry number for the attribute. If no gEntries exist, then a value of –1 will be passed
back.

255

The required preselected objects/states are the current CDF and its current attribute.

NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.

<GET_,ATTR_MAXrENTRY_>

Inquires the maximum rEntry number used for the current attribute (in the current CDF). This does not necessarily
correspond with the number of rEntries for the attribute. Required arguments are as follows:

out: long *maxEntry

The maximum rEntry number for the attribute. If no rEntries exist, then a value of –1 will be passed
back.

The required preselected objects/states are the current CDF and its current attribute.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<GET_,ATTR_MAXzENTRY_>

Inquires the maximum zEntry number used for the current attribute (in the current CDF). This does not necessarily
correspond with the number of zEntries for the attribute. Required arguments are as follows:

out: long *maxEntry

The maximum zEntry number for the attribute. If no zEntries exist, then a value of –1 will be passed
back.

The required preselected objects/states are the current CDF and its current attribute.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<GET_,ATTR_NAME_>

Inquires the name of the current attribute (in the current CDF). Required arguments are as follows:

out: char attrName[CDF_ATTR_NAME_LEN256+1]

Attribute name.

The required preselected objects/states are the current CDF and its current attribute.

<GET_,ATTR_NUMBER_>

Gets the number of the named attribute (in the current CDF). Note that this operation does not select the current
attribute. Required arguments are as follows:

in: char *attrName

Attribute name. This may be at most CDF_ATTR_NAME_LEN256 characters (excluding the NUL
terminator).

out: long *attrNum

The attribute number.

The only required preselected object/state is the current CDF.

<GET_,ATTR_NUMgENTRIES_>

256

Inquires the number of gEntries for the current attribute (in the current CDF). This does not necessarily correspond
with the maximum gEntry number used. Required arguments are as follows:

out: long *numEntries

The number of gEntries for the attribute.

The required preselected objects/states are the current CDF and its current attribute.

NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.

<GET_,ATTR_NUMrENTRIES_>

Inquires the number of rEntries for the current attribute (in the current CDF). This does not necessarily correspond
with the maximum rEntry number used. Required arguments are as follows:

out: long *numEntries

The number of rEntries for the attribute.

The required preselected objects/states are the current CDF and its current attribute.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<GET_,ATTR_NUMzENTRIES_>

Inquires the number of zEntries for the current attribute (in the current CDF). This does not necessarily correspond
with the maximum zEntry number used. Required arguments are as follows:

out: long *numEntries

The number of zEntries for the attribute.

The required preselected objects/states are the current CDF and its current attribute.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<GET_,ATTR_SCOPE_>

Inquires the scope of the current attribute (in the current CDF). Required arguments are as follows:

out: long *scope

Attribute scope. The scopes are described in Section 4.12.

The required preselected objects/states are the current CDF and its current attribute.

<GET_,CDF_CHECKSUM__>

Inquires the checksum mode of the current CDF. Required arguments are as follows:

out: long *checksum

The checksum mode of the current CDF (NO_CHECKSUM or MD5_CHECKSUM). The checksum
mode is described in Section 4.19.

The required preselected objects/states is the current CDF.

<GET_,CDF_COMPRESSION_>

257

Inquires the compression type/parameters of the current CDF. This refers to the compression of the CDF - not of
any compressed variables. Required arguments are as follows:

out: long *cType

The compression type. The types of compressions are described in Section 4.10.

out: long cParms[CDF_MAX_PARMS]

The compression parameters. The compression parameters are described in Section 4.10.

out: long *cPct

If compressed, the percentage of the uncompressed size of the CDF needed to store the compressed
CDF.

The only required preselected object/state is the current CDF.

<GET_,CDF_COPYRIGHT_>

Reads the Copyright notice for the CDF library that created the current CDF. Required arguments are as follows:

out: char Copyright[CDF_COPYRIGHT_LEN+1]

CDF Copyright text.

The only required preselected object/state is the current CDF.

<GET_,CDF_ENCODING_>

Inquires the data encoding of the current CDF. Required arguments are as follows:

out: long *encoding

Data encoding. The encodings are described in Section 4.6.

The only required preselected object/state is the current CDF.

<GET_,CDF_FORMAT_>

Inquires the format of the current CDF. Required arguments are as follows:

out: long *format

CDF format. The formats are described in Section 4.4.

The only required preselected object/state is the current CDF.

<GET_,CDF_INCREMENT_>

Inquires the incremental number of the CDF library that created the current CDF. Required arguments are as
follows:

out: long *increment

Incremental number.

The only required preselected object/state is the current CDF.

<GET_,CDF_INFO_>

258

Inquires the compression type/parameters of a CDF without having to open the CDF. This refers to the
compression of the CDF - not of any compressed variables. Required arguments are as follows:

in: char *CDFname

File name of the CDF to be inquired. (Do not append an extension.) This can be at most
CDF_PATHNAME_LEN characters (excluding the NUL terminator). A CDF file name may contain
disk and directory specifications that conform to the conventions of the operating system being used
(including logical names on OpenVMS systems and environment variables on UNIX systems).

UNIX: File names are case-sensitive.

out: long *cType

The CDF compression type. The types of compressions are described in Section 4.10.

out: long cParms[CDF_MAX_PARMS]

The compression parameters. The compression parameters are described in Section 4.10.

out: OFF_T38 *cSize

If compressed, size in bytes of the dotCDF file. If not compressed, set to zero (0).

out: OFF_T5 *uSize

If compressed, size in bytes of the dotCDF file when decompressed. If not compressed, size in bytes
of the dotCDF file.

There are no required preselected objects/states.

<GET_,CDF_LEAPSECONDLASTUPDATED_>

Inquires the variable lastupdated of the current CDF. Required arguments are as follows:

out: long *lastupdated

Variable lastupdated. The date of the last leap second was added to the leap second table that is used
for making the CDF. This information is relevant only to TT2000 data in the CDF.

The only required preselected object/state is the current CDF.

<GET_,CDF_MAJORITY_>

Inquires the variable majority of the current CDF. Required arguments are as follows:

out: long *majority

Variable majority. The majorities are described in Section 4.8.

The only required preselected object/state is the current CDF.

<GET_,CDF_NUMATTRS_>

Inquires the number of attributes in the current CDF. Required arguments are as follows:

38 It is type long for V2.6 and V2.7.

259

out: long *numAttrs

Number of attributes.

The only required preselected object/state is the current CDF.

<GET_,CDF_NUMgATTRS_>

Inquires the number of gAttributes in the current CDF. Required arguments are as follows:

out: long *numAttrs

Number of gAttributes.

The only required preselected object/state is the current CDF.

<GET_,CDF_NUMrVARS_>

Inquires the number of rVariables in the current CDF. Required arguments are as follows:

out: long *numVars

Number of rVariables.

The only required preselected object/state is the current CDF.

<GET_,CDF_NUMvATTRS_>

Inquires the number of vAttributes in the current CDF. Required arguments are as follows:

out: long *numAttrs

Number of vAttributes.

The only required preselected object/state is the current CDF.

<GET_,CDF_NUMzVARS_>

Inquires the number of zVariables in the current CDF. Required arguments are as follows:

out: long *numVars

Number of zVariables.

The only required preselected object/state is the current CDF.

<GET_,CDF_RELEASE_>

Inquires the release number of the CDF library that created the current CDF. Required arguments are as follows:

out: long *release

Release number.

The only required preselected object/state is the current CDF.

<GET_,CDF_VERSION_>

Inquires the version number of the CDF library that created the current CDF. Required arguments are as follows:

out: long *version

260

Version number.

The only required preselected object/state is the current CDF.

<GET_,DATATYPE_SIZE_>

Inquires the size (in bytes) of an element of the specified data type. Required arguments are as follows:

in: long dataType

Data type.

out: long *numBytes

Number of bytes per element.

There are no required preselected objects/states.

<GET_,gENTRY_DATA_>

Reads the gEntry data value from the current attribute at the current gEntry number (in the current CDF). Required
arguments are as follows:

out: void *value

Value. This buffer must be large to hold the value. The value is read from the CDF and placed into
memory at address value.

The required preselected objects/states are the current CDF, its current attribute, and its current gEntry number.

NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.

<GET_,gENTRY_DATATYPE_>

Inquires the data type of the gEntry at the current gEntry number for the current attribute (in the current CDF).
Required arguments are as follows:

out: long *dataType

Data type. The data types are described in Section 4.5.

The required preselected objects/states are the current CDF, its current attribute, and its current gEntry number.

NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.

<GET_,gENTRY_NUMELEMS_>

Inquires the number of elements (of the data type) of the gEntry at the current gEntry number for the current
attribute (in the current CDF). Required arguments are as follows:

out: long *numElements

Number of elements of the data type. For character data types (CDF_CHAR and CDF_UCHAR) this
is the number of characters in the string (an array of characters). For all other data types this is the
number of elements in an array of that data type.

The required preselected objects/states are the current CDF, its current attribute, and its current gEntry number.

NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.

261

<GET_,LIB_COPYRIGHT_>

Reads the Copyright notice of the CDF library being used. Required arguments are as follows:

out: char Copyright[CDF_COPYRIGHT_LEN+1

CDF library Copyright text.

There are no required preselected objects/states.

<GET_,LIB_INCREMENT_>

Inquires the incremental number of the CDF library being used. Required arguments are as follows:

out: long *increment

Incremental number.

There are no required preselected objects/states.

<GET_,LIB_RELEASE_>

Inquires the release number of the CDF library being used. Required arguments are as follows:

out: long *release

Release number.

There are no required preselected objects/states.

<GET_,LIB_subINCREMENT_>

Inquires the subincremental character of the CDF library being used. Required arguments are as follows:

out: char *subincrement

Subincremental character.

There are no required preselected objects/states.

<GET_,LIB_VERSION_>

Inquires the version number of the CDF library being used. Required arguments are as follows:

out: long *version

Version number.

There are no required preselected objects/states.

<GET_,rENTRY_DATA_>

Reads the rEntry data value from the current attribute at the current rEntry number (in the current CDF). Required
arguments are as follows:

out: void *value

Value. This buffer must be large to hold the value. The value is read from the CDF and placed into
memory at address value.

The required preselected objects/states are the current CDF, its current attribute, and its current rEntry number.

262

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<GET_,rENTRY_DATATYPE_>

Inquires the data type of the rEntry at the current rEntry number for the current attribute (in the current CDF).
Required arguments are as follows:

out: long *dataType

Data type. The data types are described in Section 4.5.

The required preselected objects/states are the current CDF, its current attribute, and its current rEntry number.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<GET_,rENTRY_NUMELEMS_>

Inquires the number of elements (of the data type) of the rEntry at the current rEntry number for the current
attribute (in the current CDF). Required arguments are as follows:

out: long *numElements

Number of elements of the data type. For character data types (CDF_CHAR and CDF_UCHAR)
this is the number of characters in the string (an array of characters). For all other data types this is the
number of elements in an array of that data type.

The required preselected objects/states are the current CDF, its current attribute, and its current rEntry number.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<GET_,rENTRY_NUMSTRINGS_>

Inquires the number of strings (of CDF_CHAR or CDF_UCHAR data type) of the rEntry at the current rEntry
number for the current attribute (in the current CDF). Required arguments are as follows:

out: long *numStrings

Number of strings of the character data type. It is only for character data types (CDF_CHAR and
CDF_UCHAR). Strings are concatenated and stored in the CDF in a sequence of charaters, with a pre-
defined delimiter (“\N “), separating the strings. The number of elements for this character data type
contains the extra characters used for the delimiter. 39

The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.

<GET_,rENTRY_STRINGSDATA_>
Reads the strings (of CDF_CHAR or CDF_UCHAR data type) of the rEntry at the current rEntry number for the
current attribute (in the current CDF). Required arguments are as follows:

out: long *numStrings

The number of strings of the character data type. It is only for character data types (CDF_CHAR and
CDF_UCHAR). Strings are concatenated and stored in the CDF in a sequence of charaters, with a pre-
defined delimiter (“\N “), separating the strings. The number of elements for this character data type
contains the extra characters used for the delimiter. 40

39 This feature is added in CDF V3.7.0. CDFs of previously versions only allow one single string.
40 This feature is added in CDF V3.7.0. CDFs of previously versions only allow one single string.

263

out: char **strings

An array of the retrieved Null-terminating strings. Spaces for the strings are dynamically allocated by
the library. Once the strings are no longer needed, the application needs to free the spaces to avoid the
memory leak. 41

The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.

<GET_,rVAR_ALLOCATEDFROM_>
Inquires the next allocated record at or after a given record for the current rVariable (in the current CDF). Required
arguments are as follows:

in: long startRecord

The record number at which to begin searching for the next allocated record. If this record exists, it will
be considered the next allocated record.

out: long *nextRecord

The number of the next allocated record.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,rVAR_ALLOCATEDTO_>

Inquires the last allocated record (before the next unallocated record) at or after a given record for the current
rVariable (in the current CDF). Required arguments are as follows:

in: long startRecord

The record number at which to begin searching for the last allocated record.

out: long *nextRecord

The number of the last allocated record.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,rVAR_BLOCKINGFACTOR_>42

Inquires the blocking factor for the current rVariable (in the current CDF). Blocking factors are described in the
Concepts chapter in the CDF User's Guide. Required arguments are as follows:

out: long *blockingFactor

The blocking factor. A value of zero (0) indicates that the default blocking factor is being used.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,rVAR_COMPRESSION_>

Inquires the compression type/parameters of the current rVariable (in the current CDF). Required arguments are
as follows:

out: long *cType

41 The function: CDF_Free_String (long numStrings, char **strings) can be called with the returned number of strings
and pointer to the string array to free the spaces.
42 The item rVAR_BLOCKINGFACTOR was previously named rVAR_EXTENDRECS.

264

The compression type. The types of compressions are described in Section 4.10.

out: long cParms[CDF_MAX_PARMS]

The compression parameters. The compression parameters are described in Section 4.10.

out: long *cPct

If compressed, the percentage of the uncompressed size of the rVariable's data values needed to store
the compressed values.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,rVAR_DATA_>

Reads a value from the current rVariable (in the current CDF). The value is read at the current record number and
current dimension indices for the rVariables (in the current CDF). Required arguments are as follows:

out: void *value

Value. This buffer must be large enough to hold the value. The value is read from the CDF and placed
into memory at address value.

The required preselected objects/states are the current CDF, its current rVariable, its current record number for
rVariables, and its current dimension indices for rVariables.

<GET_,rVAR_DATATYPE_>

Inquires the data type of the current rVariable (in the current CDF). Required arguments are as follows:

out: long *dataType

Data type. The data types are described in Section 4.5.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,rVAR_DIMVARYS_>

Inquires the dimension variances of the current rVariable (in the current CDF). For 0-dimensional rVariables this
operation is not applicable. Required arguments are as follows:

out: long dimVarys[CDF_MAX_DIMS]

Dimension variances. Each element of dimVarys receives the corresponding dimension variance. The
variances are described in Section 4.9.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,rVAR_HYPERDATA_>

Reads one or more values from the current rVariable (in the current CDF). The values are read based on the
current record number, current record count, current record interval, current dimension indices, current dimension
counts, and current dimension intervals for the rVariables (in the current CDF). Required arguments are as
follows:

out: void *buffer

Values. This buffer must be large enough to hold the values. The values are read from the CDF and
placed into memory starting at address buffer.

265

The required preselected objects/states are the current CDF, its current rVariable, its current record number, record
count, and record interval for rVariables, and its current dimension indices, dimension counts, and dimension
intervals for rVariables.

<GET_,rVAR_MAXallocREC_>

Inquires the maximum record number allocated for the current rVariable (in the current CDF). Required arguments
are as follows:

out: long *varMaxRecAlloc

Maximum record number allocated.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,rVAR_MAXREC_>

Inquires the maximum record number for the current rVariable (in the current CDF). For rVariables with a record
variance of NOVARY, this will be at most zero (0). A value of negative one (-1) indicates that no records have
been written. Required arguments are as follows:

out: long *varMaxRec

Maximum record number.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,rVAR_NAME_>

Inquires the name of the current rVariable (in the current CDF). Required arguments are as follows:

out: char varName[CDF_VAR_NAME_LEN256+1

Name of the rVariable.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,rVAR_nINDEXENTRIES_>

Inquires the number of index entries for the current rVariable (in the current CDF). This only has significance for
rVariables that are in single-file CDFs. The Concepts chapter in the CDF User's Guide describes the indexing
scheme used for variable records in a single-file CDF. Required arguments are as follows:

out: long *numEntries

Number of index entries.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,rVAR_nINDEXLEVELS_>

Inquires the number of index levels for the current rVariable (in the current CDF). This only has significance for
rVariables that are in single-file CDFs. The Concepts chapter in the CDF User's Guide describes the indexing
scheme used for variable records in a single-file CDF. Required arguments are as follows:

out: long *numLevels

Number of index levels.

The required preselected objects/states are the current CDF and its current rVariable.

266

<GET_,rVAR_nINDEXRECORDS_>

Inquires the number of index records for the current rVariable (in the current CDF). This only has significance
for rVariables that are in single-file CDFs. The Concepts chapter in the CDF User's Guide describes the indexing
scheme used for variable records in a single-file CDF. Required arguments are as follows:

out: long *numRecords

Number of index records.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,rVAR_NUMallocRECS_>

Inquires the number of records allocated for the current rVariable (in the current CDF). The Concepts chapter in
the CDF User's Guide describes the allocation of variable records in a single-file CDF. Required arguments are
as follows:

out: long *numRecords

Number of allocated records.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,rVAR_NUMBER_>

Gets the number of the named rVariable (in the current CDF). Note that this operation does not select the current
rVariable. Required arguments are as follows:

in: char *varName

The rVariable name. This may be at most CDF_VAR_NAME_LEN256 characters (excluding the NUL
terminator).

out: long *varNum

The rVariable number.

The only required preselected object/state is the current CDF.

<GET_,rVAR_NUMELEMS_>

Inquires the number of elements (of the data type) for the current rVariable (in the current CDF). Required
arguments are as follows:

out: long *numElements

Number of elements of the data type at each value. For character data types (CDF_CHAR and
CDF_UCHAR) this is the number of characters in the string. (Each value consists of the entire string.)
For all other data types this will always be one (1) – multiple elements at each value are not allowed
for non-character data types.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,rVAR_NUMRECS_>

Inquires the number of records written for the current rVariable (in the current CDF). This may not correspond to
the maximum record written (see <GET_,rVAR_MAXREC_>) if the rVariable has sparse records. Required
arguments are as follows:

267

out: long *numRecords

Number of records written.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,rVAR_PADVALUE_>

Inquires the pad value of the current rVariable (in the current CDF). If a pad value has not been explicitly specified
for the rVariable (see <PUT_,rVAR_PADVALUE_>), the informational status code
NO_PADVALUE_SPECIFIED will be returned and the default pad value for the rVariable's data type will be
placed in the pad value buffer provided. Required arguments are as follows:

out: void *value

Pad value. This buffer must be large enough to hold the pad value. The pad value is read from the
CDF and placed in memory at address value.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,rVAR_RECVARY_>

Inquires the record variance of the current rVariable (in the current CDF). Required arguments are as follows:

out: long *recVary

Record variance. The variances are described in Section 4.9.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,rVAR_SEQDATA_>

Reads one value from the current rVariable (in the current CDF) at the current sequential value for that rVariable.
After the read the current sequential value is automatically incremented to the next value (crossing a record
boundary If necessary). An error is returned if the current sequential value is past the last record for the rVariable.
Required arguments are as follows:

out: void *value

Value. This buffer must be large enough to hold the value. The value is read from the CDF and placed
into memory at address value.

The required preselected objects/states are the current CDF, its current rVariable, and the current sequential value
for the rVariable. Note that the current sequential value for an rVariable increments automatically as values are
read.

<GET_,rVAR_SPARSEARRAYS_>

Inquires the sparse arrays type/parameters of the current rVariable (in the current CDF). Required arguments are
as follows:

out: long *sArraysType

The sparse arrays type. The types of sparse arrays are described in Section 4.11.2.

out: long sArraysParms[CDF_MAX_PARMS]

The sparse arrays parameters. The sparse arrays parameters are described in Section 4.11.2.

out: long *sArraysPct

268

If sparse arrays, the percentage of the non-sparse size of the rVariable's data values needed to store the
sparse values.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,rVAR_SPARSERECORDS_>

Inquires the sparse records type of the current rVariable (in the current CDF). Required arguments are as follows:

out: long *sRecordsType

The sparse records type. The types of sparse records are described in Section 4.11.1.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,rVARs_DIMSIZES_>

Inquires the size of each dimension for the rVariables in the current CDF. For 0-dimensional rVariables this
operation is not applicable. Required arguments are as follows:

out: long dimSizes[CDF_MAX_DIMS]

Dimension sizes. Each element of dimSizes receives the corresponding dimension size.

The only required preselected object/state is the current CDF.

<GET_,rVARs_MAXREC_>

Inquires the maximum record number of the rVariables in the current CDF. Note that this is not the number of
records but rather the maximum record number (which is one less than the number of records). A value of negative
one (-1) indicates that the rVariables contain no records. The maximum record number for an individual rVariable
may be inquired using the <GET_,rVAR_MAXREC_> operation. Required arguments are as follows:

out: long *maxRec

Maximum record number.

The only required preselected object/state is the current CDF.

<GET_,rVARs_NUMDIMS_>

Inquires the number of dimensions for the rVariables in the current CDF. Required arguments are as follows:

out: long *numDims

Number of dimensions.

The only required preselected object/state is the current CDF.

<GET_,rVARs_RECDATA_>

Reads full-physical records from one or more rVariables (in the current CDF). The full-physical records are read
at the current record number for rVariables. This operation does not affect the current rVariable (in the current
CDF). Required arguments are as follows:

in: long numVars

The number of rVariables from which to read. This must be at least one (1).

in: long varNums[]

269

The rVariables from which to read. This array, whose size is determined by the value of numVars,
contains rVariable numbers. The rVariable numbers can be listed in any order.

out: void *buffer

The buffer into which the full-physical rVariable records being read are to be placed. This buffer must
be large enough to hold the full-physical records. The order of the full-physical rVariable records in
this buffer will correspond to the rVariable numbers listed in varNums, and this buffer will be contiguous
- there will be no spacing between full-physical rVariable records. Be careful if using C struct objects
to receive multiple full-physical rVariable records. C compilers on some operating systems will pad
between the elements of a struct in order to prevent memory alignment errors (i.e., the elements of a
struct may not be contiguous). See the Concepts chapter in the CDF User's Guide for more details on
how to allocate this buffer.

The required preselected objects/states are the current CDF and its current record number for rVariables. 43

<GET_,STATUS_TEXT_>

Inquires the explanation text for the current status code. Note that the current status code is NOT the status from
the last operation performed. Required arguments are as follows:

out: char text[CDF_STATUSTEXT_LEN+1

Text explaining the status code.

The only required preselected object/state is the current status code.

<GET_,zENTRY_DATA_>

Reads the zEntry data value from the current attribute at the current zEntry number (in the current CDF). Required
arguments are as follows:

out: void *value

Value. This buffer must be large to hold the value. The value is read from the CDF and placed into
memory at address value.

The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<GET_,zENTRY_DATATYPE_>

Inquires the data type of the zEntry at the current zEntry number for the current attribute (in the current CDF).
Required arguments are as follows:

out: long *dataType

Data type. The data types are described in Section 4.5.

The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<GET_,zENTRY_NUMELEMS_>

43 A Standard Interface CDFgetrVarsRecordDatabyNumbers provides the same functionality.

270

Inquires the number of elements (of the data type) of the zEntry at the current zEntry number for the current
attribute (in the current CDF). Required arguments are as follows:

out: long *numElements

Number of elements of the data type. For character data types (CDF_CHAR and CDF_UCHAR) this
is the number of characters in the string (an array of characters). For all other data types this is the
number of elements in an array of that data type.

The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<GET_,zENTRY_NUMSTRINGS_>

Inquires the number of strings (of CDF_CHAR or CDF_UCHAR data type) of the zEntry at the current zEntry
number for the current attribute (in the current CDF). Required arguments are as follows:

out: long *numStrings

Number of strings of the character data type. It is only for character data types (CDF_CHAR and
CDF_UCHAR). Strings are concatenated and stored in the CDF in a sequence of charaters, with a pre-
defined delimiter (“\N “), separating the strings. The number of elements for this character data type
contains the extra characters used for the delimiter.

The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<GET_,zENTRY_STRINGSDATA_>

Reads the strings (of CDF_CHAR or CDF_UCHAR data type) of the zEntry at the current zEntry number for the
current attribute (in the current CDF). Required arguments are as follows:

out: long *numStrings

The number of strings of the character data type. It is only for character data types (CDF_CHAR and
CDF_UCHAR). Strings are concatenated and stored in the CDF in a sequence of charaters, with a pre-
defined delimiter (“\N “), separating the strings. The number of elements for this character data type
contains the extra characters used for the delimiter.

out: char **strings

An array of the retrieved Null-terminating strings. Spaces for the strings are dynamically allocated by
the library. Once the strings are no longer needed, the application needs to free the spaces to avoid the
memory leak. 44

The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.

<GET_,zVAR_ALLOCATEDFROM_>
Inquires the next allocated record at or after a given record for the current zVariable (in the current CDF). Required
arguments are as follows:

in: long startRecord

44 The function: CDF_Free_String (long numStrings, char **strings) can be called with the returned number of strings
and pointer to the string array to free the spaces.

271

The record number at which to begin searching for the next allocated record. If this record exists, it will
be considered the next allocated record.

out: long *nextRecord

The number of the next allocated record.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zVAR_ALLOCATEDTO_>

Inquires the last allocated record (before the next unallocated record) at or after a given record for the current
zVariable (in the current CDF). Required arguments are as follows:

in: long startRecord

The record number at which to begin searching for the last allocated record.

out: long *nextRecord

The number of the last allocated record.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zVAR_BLOCKINGFACTOR_>45

Inquires the blocking factor for the current zVariable (in the current CDF). Blocking factors are described in the
Concepts chapter in the CDF User’s Guide. Required arguments are as follows:

out: long *blockingFactor

The blocking factor. A value of zero (0) indicates that the default blocking factor is being used.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zVAR_COMPRESSION_>

Inquires the compression type/parameters of the current zVariable (in the current CDF). Required arguments are
as follows:

out: long *cType

The compression type. The types of compressions are described in Section 4.10.

out: long cParms[CDF_MAX_PARMS]

The compression parameters. The compression parameters are described in Section 4.10.

out: long *cPct

If compressed, the percentage of the uncompressed size of the zVariable's data values
needed to store the compressed values.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zVAR_DATA_>

45 The item zVAR_BLOCKINGFACTOR was previously named zVAR_EXTENDRECS .

272

Reads a value from the current zVariable (in the current CDF). The value is read at the current record number and
current dimension indices for that zVariable (in the current CDF). Required arguments are as follows:

out: void *value

Value. This buffer must be large enough to hold the value. The value is read from the CDF and placed
into memory at address value.

The required preselected objects/states are the current CDF, its current zVariable, the current record number for
the zVariable, and the current dimension indices for the zVariable.

<GET_,zVAR_DATATYPE_>

Inquires the data type of the current zVariable (in the current CDF). Required arguments are as follows:

out: long *dataType

Data type. The data types are described in Section 4.5.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zVAR_DIMSIZES_>

Inquires the size of each dimension for the current zVariable in the current CDF. For 0-dimensional zVariables
this operation is not applicable. Required arguments are as follows:

out: long dimSizes[CDF_MAX_DIMS]

Dimension sizes. Each element of dimSizes receives the corresponding dimension size.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zVAR_DIMVARYS_>

Inquires the dimension variances of the current zVariable (in the current CDF). For 0-dimensional zVariables this
operation is not applicable. Required arguments are as follows:

out: long dimVarys[CDF_MAX_DIMS]

Dimension variances. Each element of dimVarys receives the corresponding dimension variance. The
variances are described in Section 4.9.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zVAR_HYPERDATA_>

Reads one or more values from the current zVariable (in the current CDF). The values are read based on the
current record number, current record count, current record interval, current dimension indices, current dimension
counts, and current dimension intervals for that zVariable (in the current CDF). Required arguments are as
follows:

out: void *buffer

Values. This buffer must be large enough to hold the values. The values are read from the CDF and
placed into memory starting at address buffer.

The required preselected objects/states are the current CDF, its current zVariable, the current record number,
record count, and record interval for the zVariable, and the current dimension indices, dimension counts, and
dimension intervals for the zVariable.

273

<GET_,zVAR_MAXallocREC_>
Inquires the maximum record number allocated for the current zVariable (in the current CDF). Required
arguments are as follows:

out: long *varMaxRecAlloc

Maximum record number allocated.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zVAR_MAXREC_>

Inquires the maximum record number for the current zVariable (in the current CDF). For zVariables with a record
variance of NOVARY, this will be at most zero (0). A value of negative one (-1) indicates that no records have
been written. Required arguments are as follows:

out: long *varMaxRec

Maximum record number.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zVAR_NAME_>

Inquires the name of the current zVariable (in the current CDF). Required arguments are as follows:

out: char varName[CDF_VAR_NAME_LEN256+1

Name of the zVariable.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zVAR_nINDEXENTRIES_>

Inquires the number of index entries for the current zVariable (in the current CDF). This only has significance for
zVariables that are in single-file CDFs. The Concepts chapter in the CDF User's Guide describes the indexing
scheme used for variable records in a single-file CDF. Required arguments are as follows:

out: long *numEntries

Number of index entries.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zVAR_nINDEXLEVELS_>

Inquires the number of index levels for the current zVariable (in the current CDF). This only has significance for
zVariables that are in single-file CDFs. The Concepts chapter in the CDF User's Guide describes the indexing
scheme used for variable records in a single-file CDF. Required arguments are as follows:

out: long *numLevels

Number of index levels.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zVAR_nINDEXRECORDS_>

Inquires the number of index records for the current zVariable (in the current CDF). This only has significance
for zVariables that are in single-file CDFs. The Concepts chapter in the CDF User's Guide describes the indexing
scheme used for variable records in a single-file CDF. Required arguments are as follows:

274

out: long *numRecords

Number of index records.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zVAR_NUMallocRECS_>

Inquires the number of records allocated for the current zVariable (in the current CDF). The Concepts chapter in
the CDF User's Guide describes the allocation of variable records in a single-file CDF. Required arguments are
as follows:

out: long *numRecords

Number of allocated records.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zVAR_NUMBER_>

Gets the number of the named zVariable (in the current CDF). Note that this operation does not select the current
zVariable. Required arguments are as follows:

in: char *varName

The zVariable name. This may be at most CDF_VAR_NAME_LEN256 characters (excluding the NUL
terminator).

out: long *varNum

The zVariable number.

The only required preselected object/state is the current CDF.

<GET_,zVAR_NUMDIMS_>

Inquires the number of dimensions for the current zVariable in the current CDF. Required arguments are as
follows:

out: long *numDims

Number of dimensions.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zVAR_NUMELEMS_>

Inquires the number of elements (of the data type) for the current zVariable (in the current CDF). Required
arguments are as follows:

out: long *numElements

Number of elements of the data type at each value. For character data types (CDF_CHAR and
CDF_UCHAR) this is the number of characters in the string. (Each value consists of the entire string.)
For all other data types this will always be one (1) – multiple elements at each value are not allowed
for non-character data types.

The required preselected objects/states are the current CDF and its current zVariable.

275

<GET_,zVAR_NUMRECS_>
Inquires the number of records written for the current zVariable (in the current CDF). This may not correspond
to the maximum record written (see <GET_,zVAR_MAXREC_>) if the zVariable has sparse records. Required
arguments are as follows:

out: long *numRecords

Number of records written.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zVAR_PADVALUE_>

Inquires the pad value of the current zVariable (in the current CDF). If a pad value has not been explicitly specified
for the zVariable (see <PUT_,zVAR_PADVALUE_>), the informational status code
NO_PADVALUE_SPECIFIED will be returned and the default pad value for the zVariable's data type will be
placed in the pad value buffer provided. Required arguments are as follows:

out: void *value

Pad value. This buffer must be large enough to hold the pad value. The pad value is read from the
CDF and placed in memory at address value.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zVAR_RECVARY_>

Inquires the record variance of the current zVariable (in the current CDF). Required arguments are as follows:

out: long *recVary

Record variance. The variances are described in Section 4.9.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zVAR_SEQDATA_>

Reads one value from the current zVariable (in the current CDF) at the current sequential value for that zVariable.
After the read the current sequential value is automatically incremented to the next value (crossing a record
boundary If necessary). An error is returned if the current sequential value is past the last record for the zVariable.
Required arguments are as follows:

out: void *value

Value. This buffer must be large enough to hold the value. The value is read from the CDF and placed
into memory at address value.

The required preselected objects/states are the current CDF, its current zVariable, and the current sequential value
for the zVariable. Note that the current sequential value for a zVariable increments automatically as values are
read.

<GET_,zVAR_SPARSEARRAYS_>

Inquires the sparse arrays type/parameters of the current zVariable (in the current CDF). Required arguments are
as follows:

out: long *sArraysType

The sparse arrays type. The types of sparse arrays are described in Section 4.11.2.

276

out: long sArraysParms[CDF_MAX_PARMS]

The sparse arrays parameters.

out: long *sArraysPct

If sparse arrays, the percentage of the non-sparse size of the zVariable's data values needed to store the
sparse values.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zVAR_SPARSERECORDS_>

Inquires the sparse records type of the current zVariable (in the current CDF). Required arguments are as follows:

out: long *sRecordsType

The sparse records type. The types of sparse records are described in Section 4.11.1.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zVARs_MAXREC_>

Inquires the maximum record number of the zVariables in the current CDF. Note that this is not the number of
records but rather the maximum record number (which is one less than the number of records). A value of negative
one (-1) indicates that the zVariables contain no records. The maximum record number for an individual zVariable
may be inquired using the <GET_,zVAR_MAXREC_> operation. Required arguments are as follows:

out: long *maxRec

Maximum record number.

The only required preselected object/state is the current CDF.

<GET_,zVARs_RECDATA_>

Reads full-physical records from one or more zVariables (in the current CDF). The full-physical record for a
particular zVariable is read at the current record number for that zVariable. (The record numbers do not have to
be the same but in most cases probably will be.) This operation does not affect the current zVariable (in the current
CDF). Required arguments are as follows:

in: long numVars

The number of zVariables from which to read. This must be at least one (1).

in: long varNums[]

The zVariables from which to read. This array, whose size is determined by the value of numVars,
contains zVariable numbers. The zVariable numbers can be listed in any order.

out: void *buffer

The buffer into which the full-physical zVariable records being read are to be placed. This buffer must
be large enough to hold the full-physical records. The order of the full-physical zVariable records in
this buffer will correspond to the zVariable numbers listed in varNums, and this buffer will be
contiguous - there will be no spacing between full-physical zVariable records. Be careful if using C
struct objects to receive multiple full-physical zVariable records. C compilers on some operating
systems will pad between the elements of a struct in order to prevent memory alignment errors (i.e., the

277

elements of a struct may not be contiguous). See the Concepts chapter in the CDF User's Guide for more
details on how to allocate this buffer.

The required preselected objects/states are the current CDF and the current record number for each of the
zVariables specified. A convenience operation exists, <SELECT_,zVARs_RECNUMBER_>, that allows the
current record number for each zVariable to be selected at one time (as opposed to selecting the current record
numbers one at a time using <SELECT_,zVAR_RECNUMBER_>). 46

<NULL_>

Marks the end of the argument list that is passed to An internal interface call. No other arguments are allowed
after it.

<OPEN ,CDF_>

Opens the named CDF. The opened CDF implicitly becomes the current CDF. Required arguments are as follows:

in: char *CDFname

File name of the CDF to be opened. (Do not append an extension.) This can be at most
CDF_PATHNAME_LEN characters (excluding the NUL terminator). A CDF file name may contain
disk and directory specifications that conform to the conventions of the operating system being used
(including logical names on OpenVMS systems and environment variables on UNIX systems).

UNIX: File names are case-sensitive.

out: CDFid *id

CDF identifier to be used in subsequent operations on the CDF.

There are no required preselected objects/states.

<PUT_,ATTR_NAME_>

Renames the current attribute (in the current CDF). An attribute with the same name must not already exist in the
CDF. Required arguments are as follows:

in: char *attrName

New attribute name. This may be at most CDF_ATTR_NAME_LEN256 characters (excluding the NUL
terminator).

The required preselected objects/states are the current CDF and its current attribute.

<PUT_,ATTR_SCOPE_>

Respecifies the scope for the current attribute (in the current CDF). Required arguments are as follows:

in: long scope

New attribute scope. Specify one of the scopes described in Section 4.12.

The required preselected objects/states are the current CDF and its current attribute.

<PUT_,CDF_CHECKSUM__>_

Respecifies the checksum mode of the current CDF. Required arguments are as follows:

in: long checksum

46 A Standard Interface CDFgetzVarsRecordDatabyNumbers provides the same functionality.

278

The checksum mode to be used (NO_CHECKSUM or MD5_CHECKSUM). The checksum mode is
described in Section 4.19.

The required preselected objects/states is the current CDF.

<PUT_,CDF_COMPRESSION_>

Specifies the compression type/parameters for the current CDF. This refers to the compression of the CDF - not
of any variables. Required arguments are as follows:

in: long cType

The compression type. The types of compressions are described in Section 4.10.

in: long cParms[]

The compression parameters. The compression parameters are described in Section 4.10.

The only required preselected object/state is the current CDF.

<PUT_,CDF_ENCODING_>

Respecifies the data encoding of the current CDF. A CDF's data encoding may not be changed after any variable
values (including the pad value) or attribute entries have been written. Required arguments are as follows:

in: long encoding

New data encoding. Specify one of the encodings described in Section 4.6.

The only required preselected object/state is the current CDF.

<PUT_,CDF_FORMAT_>

Respecifies the format of the current CDF. A CDF’s format may not be changed after any variables have been
created. Required arguments are as follows:

in: long format

New CDF format. Specify one of the formats described in Section 4.4.

The only required preselected object/state is the current CDF.

<PUT_,CDF_LEAPSECONDLASTUPDATED_>

Respecifies the date that the last leap second was added to the leap second table that the CDF was based upon.
The value must be a valid entry in the currently used leap second table, or zero (o). This is normally used for the
older CDFs that have not had this field set. Required arguments are as follows:

in: long lastupdated

The date, in YYYYMMDD form.

The only required preselected object/state is the current CDF.

<PUT_,CDF_MAJORITY_>

Respecifies the variable majority of the current CDF. A CDF's variable majority may not be changed after any
variable values have been written. Required arguments are as follows:

in: long majority

279

New variable majority. Specify one of the majorities described in Section 4.8.

The only required preselected object/state is the current CDF.

<PUT_,gENTRY_DATA_>

Writes a gEntry to the current attribute at the current gEntry number (in the current CDF). An existing gEntry
may be overwritten with a new gEntry having the same data specification (data type and number of elements) or
a different data specification. Required arguments are as follows:

in: long dataType

Data type of the gEntry. Specify one of the data types described in Section 4.5.

in: long numElements

Number of elements of the data type. This may be greater than one (1) for any of the supported data
types. For character data types (CDF_CHAR and CDF_UCHAR) this is the number of characters in the
string (an array of characters). For all other data types this is the number of elements in an array of that
data type.

in: void *value

Value(s). The entry value is written to the CDF from memory address value.

The required preselected objects/states are the current CDF, its current attribute, and its current gEntry number.

NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.

<PUT_,gENTRY_DATASPEC_>

Modifies the data specification (data type and number of elements) of the gEntry at the current gEntry number of
the current attribute (in the current CDF). The new and old data types must be equivalent, and the number of
elements must not be changed. Equivalent data types are described in the Concepts chapter in the CDF User’s
Guide. Required arguments are as follows:

in: long dataType

New data type of the gEntry. Specify one of the data types described in Section 4.5.

in: long numElements

Number of elements of the data type.

The required preselected objects/states are the current CDF, its current attribute, and its current gEntry number.

NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.

<PUT_,rENTRY_DATA_>

Writes an rEntry to the current attribute at the current rEntry number (in the current CDF). An existing rEntry
may be overwritten with a new rEntry having the same data specification (data type and number of elements) or a
different data specification. Required arguments are as follows:

in: long dataType

Data type of the rEntry. Specify one of the data types described in Section 4.5.

280

in: long numElements

Number of elements of the data type. This may be greater than one (1) for any of the supported data
types. For character data types (CDF_CHAR and CDF_UCHAR) this is the number of characters in the
string (an array of characters). For all other data types this is the number of elements in an array of that
data type.

in: void *value

Value(s). Entry value is written to the CDF from memory address value.

The required preselected objects/states are the current CDF, its current attribute, and its current rEntry number.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<PUT_,rENTRY_DATASPEC_>

Modifies the data specification (data type and number of elements) of the rEntry at the current rEntry number of
the current attribute (in the current CDF). The new and old data types must be equivalent, and the number of
elements must not be changed. Equivalent data types are described in the Concepts chapter in the CDF User’s
Guide. Required arguments are as follows:

in: long dataType

New data type of the rEntry. Specify one of the data types described in Section 4.5.

in: long numElements

Number of elements of the data type.

The required preselected objects/states are the current CDF, its current attribute, and its current rEntry number.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<PUT_,rVAR_ALLOCATEBLOCK_>

Specifies a range of records to allocate for the current rVariable (in the current CDF). This operation is only
applicable to uncompressed rVariables in single-file CDFs. The Concepts chapter in the CDF User's Guide
describes the allocation of variable records. Required arguments are as follows:

in: long firstRecord

The first record number to allocate.

in: long lastRecord

The last record number to allocate.

The required preselected objects/states are the current CDF and its current rVariable.

<PUT_,rVAR_ALLOCATERECS_>

Specifies the number of records to allocate for the current rVariable (in the current CDF). The records are allocated
beginning at record number 0 (zero). This operation is only applicable to uncompressed rVariables in single-file
CDFs. The Concepts chapter in the CDF User's Guide describes the allocation of variable records. Required
arguments are as follows:

in: long nRecords

281

Number of records to allocate.

The required preselected objects/states are the current CDF and its current rVariable.

<PUT_,rVAR_BLOCKINGFACTOR_>47

Specifies the blocking factor for the current rVariable (in the current CDF). The Concepts chapter in the CDF
User's Guide describes a variable's blocking factor. NOTE: The blocking factor has no effect for NRV variables
or multi-file CDFs. Required arguments are as follows:

in: long blockingFactor

The blocking factor. A value of zero (0) indicates that the default blocking factor should be used.

The required preselected objects/states are the current CDF and its current rVariable.

<PUT_,rVAR_COMPRESSION_>

Specifies the compression type/parameters for the current rVariable (in current CDF). Required arguments are as
follows:

in: long cType

The compression type. The types of compressions are described in Section 4.10.

in: long cParms[]

The compression parameters. The compression parameters are described in Section 4.10.

The required preselected objects/states are the current CDF and its current rVariable.

<PUT_,rVAR_DATA_>

Writes one value to the current rVariable (in the current CDF). The value is written at the current record number
and current dimension indices for the rVariables (in the current CDF). Required arguments are as follows:

in: void *value

Value. The value is written to the CDF from memory address value.

The required preselected objects/states are the current CDF, its current rVariable, its current record number for
rVariables, and its current dimension indices for rVariables.

<PUT_,rVAR_DATASPEC_>

Respecifies the data specification (data type and number of elements) of the current rVariable (in the current CDF).
An rVariable's data specification may not be changed If the new data specification is not equivalent to the old data
specification and any values (including the pad value) have been written. Data specifications are considered
equivalent If the data types are equivalent (see the Concepts chapter in the CDF User's Guide) and the number of
elements are the same. Required arguments are as follows:

in: long dataType

New data type. Specify one of the data types described in Section 4.5.

in: long numElements

47 The item rVAR_BLOCKINGFACTOR was previously named rVAR_EXTENDRECS .

282

Number of elements of the data type at each value. For character data types (CDF_CHAR and
CDF_UCHAR), this is the number of characters in each string (an array of characters). A string exists
at each value. For the non-character data types this must be one (1) - arrays of values are not allowed
for non-character data types.

The required preselected objects/states are the current CDF and its current rVariable.

<PUT_,rVAR_DIMVARYS_>

Respecifies the dimension variances of the current rVariable (in the current CDF). An rVariable's dimension
variances may not be changed if any values have been written (except for an explicit pad value - it may have been
written). For 0-dimensional rVariables this operation is not applicable. Required arguments are as follows:

in: long dimVarys[]

New dimension variances. Each element of dimVarys specifies the corresponding dimension variance.
For each dimension specify one of the variances described in Section 4.9.

The required preselected objects/states are the current CDF and its current rVariable.

<PUT_,rVAR_HYPERDATA_>

Writes one or more values to the current rVariable (in the current CDF). The values are written based on the
current record number, current record count, current record interval, current dimension indices, current dimension
counts, and current dimension intervals for the rVariables (in the current CDF). Required arguments are as
follows:

in: void *buffer

Values. The values starting at memory address buffer are written to the CDF.

The required preselected objects/states are the current CDF, its current rVariable, its current record number, record
count, and record interval for rVariables, and its current dimension indices, dimension counts, and dimension
intervals for rVariables.

<PUT_,rVAR_INITIALRECS_>

Specifies the number of records to initially write to the current rVariable (in the current CDF). The records are
written beginning at record number 0 (zero). This may be specified only once per rVariable and before any other
records have been written to that rVariable. If a pad value has not yet been specified, the default is used (see the
Concepts chapter in the CDF User’s Guide). If a pad value has been explicitly specified, that value is written to
the records. The Concepts chapter in the CDF User's Guide describes initial records. Required arguments are as
follows:

in: long nRecords

Number of records to write.

The required preselected objects/states are the current CDF and its current rVariable.

<PUT_,rVAR_NAME_>

Renames the current rVariable (in the current CDF). A variable (rVariable or zVariable) with the same name must
not already exist in the CDF. Required arguments are as follows:

in: char *varName

New name of the rVariable. This may consist of at most CDF_VAR_NAME_LEN256 characters
(excluding the NUL terminator).

283

The required preselected objects/states are the current CDF and its current rVariable.

<PUT_,rVAR_PADVALUE_>

Specifies the pad value for the current rVariable (in the current CDF). An rVariable's pad value may be specified
(or respecified) at any time without affecting already written values (including where pad values were used). The
Concepts chapter in the CDF User's Guide describes variable pad values. Required arguments are as follows:

in: void *value

Pad value. The pad value is written to the CDF from memory address value.

The required preselected objects/states are the current CDF and its current rVariable.

<PUT_,rVAR_RECVARY_>

Respecifies the record variance of the current rVariable (in the current CDF). An rVariable's record variance may
not be changed if any values have been written (except for an explicit pad value - it may have been written).
Required arguments are as follows:

in: long recVary

New record variance. Specify one of the variances described in Section 4.9.

The required preselected objects/states are the current CDF and its current rVariable.

<PUT_,rVAR_SEQDATA_>

Writes one value to the current rVariable (in the current CDF) at the current sequential value for that rVariable.
After the write the current sequential value is automatically incremented to the next value (crossing a record
boundary if necessary). If the current sequential value is past the last record for the rVariable, the rVariable is
extended as necessary. Required arguments are as follows:

in: void *value

Value. The value is written to the CDF from memory address value.

The required preselected objects/states are the current CDF, its current rVariable, and the current sequential value
for the rVariable. Note that the current sequential value for an rVariable increments automatically as values are
written.

<PUT_,rVAR_SPARSEARRAYS_>

Specifies the sparse arrays type/parameters for the current rVariable (in the current CDF). Required arguments
are as follows:

in: long sArraysType

The sparse arrays type. The types of sparse arrays are described in Section 4.11.2.

in: long sArraysParms[]

The sparse arrays parameters. The sparse arrays parameters are described in Section 4.11.2.

The required preselected objects/states are the current CDF and its current rVariable.

<PUT_,rVAR_SPARSERECORDS_>

Specifies the sparse records type for the current rVariable (in the current CDF). Required arguments are as follows:

in: long sRecordsType

284

The sparse records type. The types of sparse records are described in Section 4.11.1.

The required preselected objects/states are the current CDF and its current rVariable.

<PUT_,rVARs_RECDATA_>

Writes full-physical records to one or more rVariables (in the current CDF). The full-physical records are written
at the current record number for rVariables. This operation does not affect the current rVariable (in the current
CDF). Required arguments are as follows:

in: long numVars

The number of rVariables to which to write. This must be at least one (1).

in: long varNums[]

The rVariables to which to write. This array, whose size is determined by the value of numVars, contains
rVariable numbers. The rVariable numbers can be listed in any order.

in: void *buffer

The buffer of full-physical rVariable records to be written. The order of the full-physical rVariable
records in this buffer must agree with the rVariable numbers listed in varNums, and this buffer must be
contiguous - there can be no spacing between full-physical rVariable records. Be careful if using C
struct objects to store multiple full-physical rVariable records. C compilers on some operating systems
will pad between the elements of a struct in order to prevent memory alignment errors (i.e., the elements
of a sturct may not be contiguous). See the Concepts chapter in the CDF User's Guide for more details
on how to create this buffer.

The required preselected objects/states are the current CDF and its current record number for rVariables. 48

<PUT_,zENTRY_DATA_>

Writes a zEntry to the current attribute at the current zEntry number (in the current CDF). An existing zEntry may
be overwritten with a new zEntry having the same data specification (data type and number of elements) or a
different data specification. Required arguments are as follows:

in: long dataType

Data type of the zEntry. Specify one of the data types described in Section 4.5.

in: long numElements

Number of elements of the data type. This may be greater than one (1) for any of the supported data
types. For character data types (CDF_CHAR and CDF_UCHAR) this is the number of characters in the
string (an array of characters). For all other data types this is the number of elements in an array of that
data type.

in: void *value

Value(s). The entry value is written to the CDF from memory address value.

The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

48 A Standard Interface CDFputrVarsRecordDatabyNumbers provides the same functionality.

285

<PUT_,zENTRY_DATASPEC_>

Modifies the data specification (data type and number of elements) of the zEntry at the current zEntry number of
the current attribute (in the current CDF). The new and old data types must be equivalent, and the number of
elements must not be changed. Equivalent data types are described in the Concepts chapter in the CDF User’s
Guide. Required arguments are as follows:

in: long dataType

New data type of the zEntry. Specify one of the data types described in Section 4.5.

in: long numElements

Number of elements of the data type.

The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<PUT_,zVAR_ALLOCATEBLOCK_>

Specifies a range of records to allocate for the current zVariable (in the current CDF). This operation is only
applicable to uncompressed zVariables in single-file CDFs. The Concepts chapter in the CDF User's Guide
describes the allocation of variable records. Required arguments are as follows:

in: long firstRecord

The first record number to allocate.

in: long lastRecord

The last record number to allocate.

The required preselected objects/states are the current CDF and its current zVariable.

<PUT_,zVAR_ALLOCATERECS_>

Specifies the number of records to allocate for the current zVariable (in the current CDF). The records are allocated
beginning at record number 0 (zero). This operation is only applicable to uncompressed zVariables in single-file
CDFs. The Concepts chapter in the CDF User's Guide describes the allocation of variable records. Required
arguments are as follows:

in: long nRecords

Number of records to allocate.

The required preselected objects/states are the current CDF and its current zVariable.

<PUT_,zVAR_BLOCKINGFACTOR_>49

Specifies the blocking factor for the current zVariable (in the current CDF). The Concepts chapter in the CDF
User's Guide describes a variable's blocking factor. NOTE: The blocking factor has no effect for NRV variables
or multi-file CDFs. Required arguments are as follows:

in: long blockingFactor

The blocking factor. A value of zero (0) indicates that the default blocking factor should be used.

49 The item zVAR_BLOCKINGFACTOR was previously named zVAR_EXTENDRECS .

286

The required preselected objects/states are the current CDF and its current zVariable.

<PUT_,zVAR_COMPRESSION_>

Specifies the compression type/parameters for the current zVariable (in current CDF). Required arguments are as
follows:

in: long cType

The compression type. The types of compressions are described in Section 4.10.

in: long cParms[]

The compression parameters. The compression parameters are described in Section 4.10.

The required preselected objects/states are the current CDF and its current zVariable.

<PUT_,zVAR_DATA_>

Writes one value to the current zVariable (in the current CDF). The value is written at the current record number
and current dimension indices for that zVariable (in the current CDF). Required arguments are as follows:

in: void *value

Value. The value is written to the CDF from memory address value.

The required preselected objects/states are the current CDF, its current zVariable, the current record number for
the zVariable, and the current dimension indices for the zVariable.

<PUT_,zVAR_DATASPEC_>

Respecifies the data specification (data type and number of elements) of the current zVariable (in the current CDF).
A zVariable's data specification may not be changed If the new data specification is not equivalent to the old data
specification and any values (including the pad value) have been written. Data specifications are considered
equivalent If the data types are equivalent (see the Concepts chapter in the CDF User's Guide) and the number of
elements are the same. Required arguments are as follows:

in: long dataType

New data type. Specify one of the data types described in Section 4.5.

in: long numElements

Number of elements of the data type at each value. For character data types (CDF_CHAR and
CDF_UCHAR), this is the number of characters in each string (an array of characters). A string exists
at each value. For the non-character data types this must be one (1) - arrays of values are not allowed
for non-character data types.

The required preselected objects/states are the current CDF and its current zVariable.

<PUT_,zVAR_DIMVARYS_>

Respecifies the dimension variances of the current zVariable (in the current CDF). A zVariable's dimension
variances may not be changed if any values have been written (except for an explicit pad value - it may have been
written). For 0-dimensional zVariables this operation is not applicable. Required arguments are as follows:

in: long dimVarys[]

287

New dimension variances. Each element of dimVarys specifies the corresponding dimension variance.
For each dimension specify one of the variances described in Section 4.9.

The required preselected objects/states are the current CDF and its current zVariable.

<PUT_,zVAR_INITIALRECS_>

Specifies the number of records to initially write to the current zVariable (in the current CDF). The records are
written beginning at record number 0 (zero). This may be specified only once per zVariable and before any other
records have been written to that zVariable. If a pad value has not yet been specified, the default is used (see the
Concepts chapter in the CDF User’s Guide). If a pad value has been explicitly specified, that value is written to
the records. The Concepts chapter in the CDF User's Guide describes initial records. Required arguments are as
follows:

in: long nRecords

Number of records to write.

The required preselected objects/states are the current CDF and its current zVariable.

<PUT_,zVAR_HYPERDATA_>

Writes one or more values to the current zVariable (in the current CDF). The values are written based on the
current record number, current record count, current record interval, current dimension indices, current dimension
counts, and current dimension intervals for that zVariable (in the current CDF). Required arguments are as
follows:

in: void *buffer

Values. The values starting at memory address buffer are written to the CDF.

The required preselected objects/states are the current CDF, its current zVariable, the current record number,
record count, and record interval for the zVariable, and the current dimension indices, dimension counts, and
dimension intervals for the zVariable.

<PUT_,zVAR_NAME_>

Renames the current zVariable (in the current CDF). A variable (rVariable or zVariable) with the same name must
not already exist in the CDF. Required arguments are as follows:

in: char *varName

New name of the zVariable. This may consist of at most CDF_VAR_NAME_LEN256 characters
(excluding the NUL terminator).

The required preselected objects/states are the current CDF and its current zVariable.

<PUT_,zVAR_PADVALUE_>

Specifies the pad value for the current zVariable (in the current CDF). A zVariable's pad value may be specified
(or respecified) at any time without affecting already written values (including where pad values were used). The
Concepts chapter in the CDF User's Guide describes variable pad values. Required arguments are as follows:

in: void *value

Pad value. The pad value is written to the CDF from memory address value.

The required preselected objects/states are the current CDF and its current zVariable.

<PUT_,zVAR_RECVARY_>

288

Respecifies the record variance of the current zVariable (in the current CDF). A zVariable's record variance may
not be changed if any values have been written (except for an explicit pad value - it may have been written).
Required arguments are as follows:

in: long recVary

New record variance. Specify one of the variances described in Section 4.9.

The required preselected objects/states are the current CDF and its current zVariable.

<PUT_,zVAR_SEQDATA_>

Writes one value to the current zVariable (in the current CDF) at the current sequential value for that zVariable.
After the write the current sequential value is automatically incremented to the next value (crossing a record
boundary if necessary). If the current sequential value is past the last record for the zVariable, the zVariable is
extended as necessary. Required arguments are as follows:

in: void *value

Value. The value is written to the CDF from memory address value.

The required preselected objects/states are the current CDF, its current zVariable, and the current sequential value
for the zVariable. Note that the current sequential value for a zVariable increments automatically as values are
written.

<PUT_,zVAR_SPARSEARRAYS_>

Specifies the sparse arrays type/parameters for the current zVariable (in the current CDF). Required arguments
are as follows:

in: long sArraysType

The sparse arrays type. The types of sparse arrays are described in Section 4.11.2.

in: long sArraysParms[]

The sparse arrays parameters. The sparse arrays parameters are described in Section 4.11.2.

The required preselected objects/states are the current CDF and its current zVariable.

<PUT_,zVAR_SPARSERECORDS_>

Specifies the sparse records type for the current zVariable (in the current CDF). Required arguments are as
follows:

in: long sRecordsType

The sparse records type. The types of sparse records are described in Section 4.11.1.

The required preselected objects/states are the current CDF and its current zVariable.

<PUT_,zVARs_RECDATA_>

Writes full-physical records to one or more zVariables (in the current CDF). The full-physical record for a
particular zVariable is written at the current record number for that zVariable. (The record numbers do not have
to be the same but in most cases probably will be.) This operation does not affect the current zVariable (in the
current CDF). Required arguments are as follows:

in: long numVars

289

The number of zVariables to which to write. This must be at least one (1).

in: long varNums[]

The zVariables to which to write. This array, whose size is determined by the value of numVars,
contains zVariable numbers. The zVariable numbers can be listed in any order.

in: void *buffer

The buffer of full-physical zVariable records to be written. The order of the full-physical zVariable
records in this buffer must agree with the zVariable numbers listed in varNums, and this buffer must be
contiguous - there can be no spacing between full-physical zVariable records. Be careful if using C
struct objects to store multiple full-physical zVariable records. C compilers on some operating systems
will pad between the elements of a struct in order to prevent memory alignment errors (i.e., the elements
of a struct may not be contiguous). See the Concepts chapter in the CDF User's Guide for more details
on how to create this buffer.

The required preselected objects/states are the current CDF and the current record number for each of the
zVariables specified. A convenience operation exists, <SELECT_,zVARs_RECNUMBER_>, that allows the
current record number for each zVariable to be selected at one time (as opposed to selecting the current record
numbers one at a time using <SELECT_,zVAR_RECNUMBER_>). 50

<SELECT_,ATTR_>

Explicitly selects the current attribute (in the current CDF) by number. Required arguments are as follows:

in: long attrNum

Attribute number.

The only required preselected object/state is the current CDF.

<SELECT_,ATTR_NAME_>

Explicitly selects the current attribute (in the current CDF) by name. NOTE: Selecting the current attribute by
number (see <SELECT_,ATTR_>) is more efficient. Required arguments are as follows:

in: char *attrName

Attribute name. This may be at most CDF_ATTR_NAME_LEN256 characters (excluding the NUL
terminator).

The only required preselected object/state is the current CDF.

<SELECT_,CDF_>

Explicitly selects the current CDF. Required arguments are as follows:

in: CDFid id

Identifier of the CDF. This identifier must have been initialized by a successful <CREATE_,CDF_> or
<OPEN ,CDF_> operation.

There are no required preselected objects/states.

<SELECT_,CDF_CACHESIZE_>

50 A Standard Interface CDFputzVarsRecordDatabyNumbers provides the same functionality.

290

Selects the number of cache buffers to be used for the dotCDF file (for the current CDF). The Concepts chapter
in the CDF User's Guide describes the caching scheme used by the CDF library. Required arguments are as
follows:

in: long numBuffers

The number of cache buffers to be used.

The only required preselected object/state is the current CDF.

<SELECT_,CDF_DECODING_>

Selects a decoding (for the current CDF). Required arguments are as follows:

in: long decoding

The decoding. Specify one of the decodings described in Section 4.7.

The only required preselected object/state is the current CDF.

<SELECT_,CDF_NEGtoPOSfp0_MODE_>

Selects a -0.0 to 0.0 mode (for the current CDF). Required arguments are as follows:

in: long mode

The -0.0 to 0.0 mode. Specify one of the -0.0 to 0.0 modes described in Section 4.15.

The only required preselected object/state is the current CDF.

<SELECT_,CDF_READONLY_MODE_>

Selects a read-only mode (for the current CDF). Required arguments are as follows:

in: long mode

The read-only mode. Specify one of the read-only modes described in Section 4.13.

The only required preselected object/state is the current CDF.

<SELECT_,CDF_SCRATCHDIR_>

Selects a directory to be used for scratch files (by the CDF library) for the current CDF. The Concepts chapter in
the CDF User’s Guide describes how the CDF library uses scratch files. This scratch directory will override the
directory specified by the CDF$TMP logical name (on OpenVMS systems) or CDF TMP environment variable
(on UNIX and MS-DOS systems). Required arguments are as follows:

in: char *scratchDir

The directory to be used for scratch files. The length of this directory specification is limited only by
the operating system being used.

The only required preselected object/state is the current CDF.

<SELECT_,CDF_STATUS_>

Selects the current status code. Required arguments are as follows:

in: CDFstatus status

CDF status code.

291

There are no required preselected objects/states.

<SELECT_,CDF_zMODE_>

Selects a zMode (for the current CDF). Required arguments are as follows:

in: long mode

The zMode. Specify one of the zModes described in Section 4.14.

The only required preselected object/state is the current CDF.

<SELECT_,COMPRESS_CACHESIZE_>

Selects the number of cache buffers to be used for the compression scratch file (for the current CDF). The
Concepts chapter in the CDF User's Guide describes the caching scheme used by the CDF library. Required
arguments are as follows:

in: long numBuffers

The number of cache buffers to be used.

The only required preselected object/state is the current CDF.

<SELECT_,gENTRY_>

Selects the current gEntry number for all gAttributes in the current CDF. Required arguments are as follows:

in: long entryNum

gEntry number.

The only required preselected object/state is the current CDF.

<SELECT_,rENTRY_>

Selects the current rEntry number for all vAttributes in the current CDF. Required arguments are as follows:

in: long entryNum

rEntry number.

The only required preselected object/state is the current CDF.

<SELECT_,rENTRY_NAME_>

Selects the current rEntry number for all vAttributes (in the current CDF) by rVariable name. The number of the
named rVariable becomes the current rEntry number. (The current rVariable is not changed.) NOTE: Selecting
the current rEntry by number (see <SELECT_,rENTRY_>) is more efficient. Required arguments are as follows:

in: char *varName

rVariable name. This may be at most CDF_VAR_NAME_LEN256 characters (excluding the NUL
terminator).

The only required preselected object/state is the current CDF.

<SELECT_,rVAR_>

Explicitly selects the current rVariable (in the current CDF) by number. Required arguments are as follows:

292

in: long varNum

rVariable number.

The only required preselected object/state is the current CDF.

<SELECT_,rVAR_CACHESIZE_>

Selects the number of cache buffers to be used for the current rVariable's file (of the current CDF). This operation
is not applicable to a single-file CDF. The Concepts chapter in the CDF User's Guide describes the caching scheme
used by the CDF library. Required arguments are as follows:

in: long numBuffers

The number of cache buffers to be used.

The required preselected objects/states are the current CDF and its current rVariable.

<SELECT_,rVAR_NAME_>

Explicitly selects the current rVariable (in the current CDF) by name. NOTE: Selecting the current rVariable by
number (see <SELECT_,rVAR_>) is more efficient. Required arguments are as follows:

in: char *varName

rVariable name. This may be at most CDF_VAR_NAME_LEN256 characters (excluding the NUL
terminator).

The only required preselected object/state is the current CDF.

<SELECT_,rVAR_RESERVEPERCENT_>

Selects the reserve percentage to be used for the current rVariable (in the current CDF). This operation is only
applicable to compressed rVariables. The Concepts chapter in the CDF User's Guide describes the reserve
percentage scheme used by the CDF library. Required arguments are as follows:

in: long percent

The reserve percentage.

The required preselected objects/states are the current CDF and its current rVariable.

<SELECT_,rVAR_SEQPOS_>

Selects the current sequential value for sequential access for the current rVariable (in the current CDF). Note that
a current sequential value is maintained for each rVariable individually. Required arguments are as follows:

in: long recNum

Record number.

in: long indices[]

Dimension indices. Each element of indices specifies the corresponding dimension index. For 0-
dimensional rVariables this argument is ignored (but must be present).

The required preselected objects/states are the current CDF and its current rVariable.

<SELECT_,rVARs_CACHESIZE_>

293

Selects the number of cache buffers to be used for all of the rVariable files (of the current CDF). This operation
is not applicable to a single-file CDF. The Concepts chapter in the CDF User's Guide describes the caching scheme
used by the CDF library. Required arguments are as follows:

in: long numBuffers

The number of cache buffers to be used.

The only required preselected object/state is the current CDF.

<SELECT_,rVARs_DIMCOUNTS_>

Selects the current dimension counts for all rVariables in the current CDF. For 0-dimensional rVariables this
operation is not applicable. Required arguments are as follows:

in: long counts[]

Dimension counts. Each element of counts specifies the corresponding dimension count.

The only required preselected object/state is the current CDF.

<SELECT_,rVARs_DIMINDICES_>

Selects the current dimension indices for all rVariables in the current CDF. For 0-dimensional rVariables this
operation is not applicable. Required arguments are as follows:

in: long indices[]

Dimension indices. Each element of indices specifies the corresponding dimension index.

The only required preselected object/state is the current CDF.

<SELECT_,rVARs_DIMINTERVALS_>

Selects the current dimension intervals for all rVariables in the current CDF. For 0-dimensional rVariables this
operation is not applicable. Required arguments are as follows:

in: long intervals[]

Dimension intervals. Each element of intervals specifies the corresponding dimension interval.

The only required preselected object/state is the current CDF.

<SELECT_,rVARs_RECCOUNT_>

Selects the current record count for all rVariables in the current CDF. Required arguments are as follows:

in: long recCount

Record count.

The only required preselected object/state is the current CDF.

<SELECT_,rVARs_RECINTERVAL_>

Selects the current record interval for all rVariables in the current CDF. Required arguments are as follows:

in: long recInterval

Record interval.

294

The only required preselected object/state is the current CDF.

<SELECT_,rVARs_RECNUMBER_>

Selects the current record number for all rVariables in the current CDF. Required arguments are as follows:

in: long recNum

Record number.

The only required preselected object/state is the current CDF.

<SELECT_,STAGE CACHESIZE_>

Selects the number of cache buffers to be used for the staging scratch file (for the current CDF). The Concepts
chapter in the CDF User's Guide describes the caching scheme used by the CDF library. Required arguments are
as follows:

in: long numBuffers

The number of cache buffers to be used.

The only required preselected object/state is the current CDF.

<SELECT_,zENTRY_>

Selects the current zEntry number for all vAttributes in the current CDF. Required arguments are as follows:

in: long entryNum

zEntry number.

The only required preselected object/state is the current CDF.

<SELECT_,zENTRY_NAME_>

Selects the current zEntry number for all vAttributes (in the current CDF) by zVariable name. The number of the
named zVariable becomes the current zEntry number. (The current zVariable is not changed.) NOTE: Selecting
the current zEntry by number (see <SELECT_,zENTRY_>) is more efficient. Required arguments are as follows:

in: char *varName

zVariable name. This may be at most CDF_VAR_NAME_LEN256 characters (excluding the NUL
terminator).

The only required preselected object/state is the current CDF.

<SELECT_,zVAR_>

Explicitly selects the current zVariable (in the current CDF) by number. Required arguments are as follows:

in: long varNum

zVariable number.

The only required preselected object/state is the current CDF.

<SELECT_,zVAR_CACHESIZE_>

Selects the number of cache buffers to be used for the current zVariable's file (of the current CDF). This operation
is not applicable to a single-file CDF. The Concepts chapter in the CDF User's Guide describes the caching scheme
used by the CDF library. Required arguments are as follows:

295

in: long numBuffers

The number of cache buffers to be used.

The required preselected objects/states are the current CDF and its current zVariable.

<SELECT_,zVAR_DIMCOUNTS_>

Selects the current dimension counts for the current zVariable in the current CDF. For 0-dimensional zVariables
this operation is not applicable. Required arguments are as follows:

in: long counts[]

Dimension counts. Each element of counts specifies the corresponding dimension count.

The required preselected objects/states are the current CDF and its current zVariable.

<SELECT_,zVAR_DIMINDICES_>

Selects the current dimension indices for the current zVariable in the current CDF. For 0-dimensional zVariables
this operation is not applicable. Required arguments are as follows:

in: long indices[]

Dimension indices. Each element of indices specifies the corresponding dimension index.

The required preselected objects/states are the current CDF and its current zVariable.

<SELECT_,zVAR_DIMINTERVALS_>
Selects the current dimension intervals for the current zVariable in the current CDF. For 0-dimensional zVariables this
operation is not applicable. Required arguments are as follows:

in: long intervals[]

Dimension intervals. Each element of intervals specifies the corresponding dimension interval.

The required preselected objects/states are the current CDF and its current zVariable.

<SELECT_,zVAR_NAME_>

Explicitly selects the current zVariable (in the current CDF) by name. NOTE: Selecting the current zVariable by
number (see <SELECT_,zVAR_>) is more efficient. Required arguments are as follows:

in: char *varName

zVariable name. This may be at most CDF_VAR_NAME_LEN256 characters (excluding the NUL
terminator).

The only required preselected object/state is the current CDF.

<SELECT_,zVAR_RECCOUNT_>

Selects the current record count for the current zVariable in the current CDF. Required arguments are as follows:

in: long recCount

Record count.

The required preselected objects/states are the current CDF and its current zVariable.

296

<SELECT_,zVAR_RECINTERVAL_>

Selects the current record interval for the current zVariable in the current CDF. Required arguments are as follows:

in: long recInterval

Record interval.

The required preselected objects/states are the current CDF and its current zVariable.

<SELECT_,zVAR_RECNUMBER_>

Selects the current record number for the current zVariable in the current CDF. Required arguments are as follows:

in: long recNum

Record number.

The required preselected objects/states are the current CDF and its current zVariable.

<SELECT_,zVAR_RESERVEPERCENT_>

Selects the reserve percentage to be used for the current zVariable (in the current CDF). This operation is only
applicable to compressed zVariables. The Concepts chapter in the CDF User's Guide describes the reserve
percentage scheme used by the CDF library. Required arguments are as follows:

in: long percent

The reserve percentage.

The required preselected objects/states are the current CDF and its current zVariable.

<SELECT_,zVAR_SEQPOS_>

Selects the current sequential value for sequential access for the current zVariable (in the current CDF). Note that
a current sequential value is maintained for each zVariable individually. Required arguments are as follows:

in: long recNum

Record number.

in: long indices[]

Dimension indices. Each element of indices specifies the corresponding dimension index. For 0-
dimensional zVariables this argument is ignored (but must be present).

The required preselected objects/states are the current CDF and its current zVariable.

<SELECT_,zVARs_CACHESIZE_>

Selects the number of cache buffers to be used for all of the zVariable files (of the current CDF). This operation
is not applicable to a single-file CDF. The Concepts chapter in the CDF User's Guide describes the caching scheme
used by the CDF library. Required arguments are as follows:

in: long numBuffers

The number of cache buffers to be used.

The only required preselected object/state is the current CDF.

297

<SELECT_,zVARs_RECNUMBER_>
Selects the current record number for each zVariable in the current CDF. This operation is provided to simplify
the selection of the current record numbers for the zVariables involved in a multiple variable access operation
(see the Concepts chapter in the CDF User’s Guide). Required arguments are as follows:

in: long recNum

Record number.

The only required preselected object/state is the current CDF.

7.7 More Examples
Several more examples of the use of CDFlib follow. in each example it is assumed that the current CDF has already been
selected (either implicitly by creating/opening the CDF or explicitly with <SELECT_,CDF_>).

7.7.1 rVariable Creation

In this example an rVariable will be created with a pad value being specified; initial records will be written; and the
rVariable's blocking factor will be specified. Note that the pad value was specified before the initial records. This results
in the specified pad value being written. Had the pad value not been specified first, the initial records would have been
written with the default pad value. It is assumed that the current CDF has already been selected.

.
.
#include "cdf.h"
.
.
CDFstatus status; /* Status returned from CDF library. */
long dimVarys[2]; /* Dimension variances. */
long varNum; /* rVariable number. */
Float padValue = -999.9; /* Pad value. */

.
.
dimVarys[0] = VARY;
dimVarys[1] = VARY;
status = CDFlib (CREATE_, rVAR_, "HUMIDITY", CDF_REAL4, 1, VARY, dimVarys, &varNum,
 PUT__, rVAR_PADVALUE_, &padValue,
 rVAR_INITIALRECS_, (long) 500,
 rVAR_BLOCKINGFACTOR_, (long) 50,
 NULL_);
if (status != CDF_OK) UserStatusHandler (status);
.
.

7.7.2 zVariable Creation (Character Data Type)

298

In this example a zVariable with a character data type will be created with a pad value being specified. It is assumed that
the current CDF has already been selected.

.
.
#include "cdf.h"
.
.
CDFstatus status; /* Status returned from CDF library. */
long dimVarys[1]; /* Dimension variances. */
long varNum; /* zVariable number. */
long numDims = 1; /* Number of dimensions. */
static long dimSizes[1] = { 20 }; /* Dimension sizes. */
long numElems = 10; /* Number of elements (characters in this case). */
static char padValue = "**********"; /* Pad value. */
.
.
dimVarys[0] = VARY;
status = CDFlib (CREATE_, zVAR_, "Station", CDF_CHAR, numElems, numDims,
 dimSizes, NOVARY, dimVarys, &varNum,
 PUT__, zVAR_PADVALUE_, padValue,
 NULL_);
if (status != CDF_OK) UserStatusHandler (status);
.
.

7.7.3 Hyper Read with Subsampling

In this example an rVariable will be subsampled in a CDF whose rVariables are 2-dimensional and have dimension sizes
[100,200]. The CDF is row major, and the data type of the rVariable is CDF_UINT2. It is assumed that the current CDF
has already been selected.

.
.
#include "cdf.h"
.
.
CDFstatus status; /* Status returned from CDF library. */
unsigned short values[50][100]; /* Buffer to receive values. */
long recCount = 1; /* Record count, one record per hyper get. */
long recInterval = 1; /* Record interval, set to one to indicate contiguous records

 (really meaningless since record count is one). */
static long indices[2] = {0,0}; /* Dimension indices, start each read at 0,0 of the array. */
static long counts[2] = {50,100}; /* Dimension counts, half of the values along

 each dimension will be read. */
static long intervals[2] = {2,2}; /* Dimension intervals, every other value along

 each dimension will be read. */
long recNum; /* Record number. */
long maxRec; /* Maximum rVariable record number in the CDF - this was

 determined with a call to CDFinquire. */
.
.
status = CDFlib (SELECT_, rVAR_NAME_, "BRIGHTNESS",

299

 rVARs_RECCOUNT_, recCount,
 rVARs_RECINTERVAL_, recInterval,
 rVARs_DIMINDICES_, indices,
 rVARs_DIMCOUNTS_, counts,
 rVARs_DIMINTERVALS_, intervals,
 NULL_);
if (status != CDF_OK) UserStatusHandler (status);

for (recNum = 0; recNum <= maxRec; recNum++) {
 status = CDFlib (SELECT_, rVARs_RECNUMBER_, recNum,
 GET_, rVAR_HYPERDATA_, values,
 NULL_);
 if (status != CDF_OK) UserStatusHandler (status);
 .
 .
 /* process values */
 .
 .
}
.
.

7.7.4 Attribute Renaming

In this example the attribute named Tmp will be renamed to TMP. It is assumed that the current CDF has already been
selected.

.
.
#include "cdf.h"
.
.
CDFstatus status; /* Status returned from CDF library. */
.
.
status = CDFlib (SELECT_, ATTR_NAME_, "Tmp",
 PUT__, ATTR_NAME, "TMP",
 NULL_);
if (status != CDF_OK) UserStatusHandler (status);
.
.

7.7.5 Sequential Access

In this example the values for a zVariable will be averaged. The values will be read using the sequential access method
(see the Concepts chapter in the CDF User's Guide). Each value in each record will be read and averaged. It is assumed
that the data type of the zVariable has been determined to be CDF_REAL4. It is assumed that the current CDF has
already been selected.

.

300

.
#include "cdf.h"
.
.
CDFstatus status; /* Status returned from CDF library. */
long varNum; /* zVariable number. */
long recNum = 0; /* Record number, start at first record. */
static long indices[2] = {0,0}; /* Dimension indices. */
float value; /* Value read. */
double sum = 0.0; /* Sum of all values. */
long count = 0; /* Number of values. */
float ave; /* Average value. */
.
.
status = CDFlib (GET_, zVAR_NUMBER_, "FLUX", &varNum,
 NULL_);
if (status != CDF_OK) UserStatusHandler (status);
status = CDFlib (SELECT_, zVAR_, varNum,
 zVAR_SEQPOS_, recNum, indices,
 GET_, zVAR_SEQDATA_, &value,
 NULL_);

while (status _>= CDF_OK) {
 sum += value;
 count++;
 status = CDFlib (GET_, zVAR_SEQDATA_, &value,
 NULL_);
}
if (status != END_OF_VAR) UserStatusHandler (status);

ave = sum / count;
.
.

7.7.6 Attribute rEntry Writes

In this example a set of attribute rEntries for a particular rVariable will be written. It is assumed that the current CDF
has already been selected.

.
.
#include "cdf.h"
.
.
CDFstatus status; /* Status returned from CDF library. */
static float scale[2] = {-90.0,90.0}; /* Scale, minimum/maximum. */
.
.
status = CDFlib (SELECT_, rENTRY_NAME_, "LATITUDE",
 ATTR_NAME_, "FIELDNAM",
 PUT__, rENTRY_DATA_, CDF_CHAR, (long) 20,
 "Latitude “,
 SELECT_, ATTR_NAME_, "SCALE",

301

 PUT__, rENTRY_DATA_, CDF_REAL4, (long) 2, scale,
 SELECT_, ATTR_NAME_, "UNITS",
 PUT__, rENTRY_DATA_, CDF_CHAR, (long) 20,
 "Degrees north “,
 NULL_);
if (status != CDF_OK) UserStatusHandler (status);
.
.

7.7.7 Multiple zVariable Write

In this example full-physical records will be written to the zVariables in a CDF. Note the ordering of the zVariables (see
the Concepts chapter in the CDF User's Guide). It is assumed that the current CDF has already been selected.

.
.
#include "cdf.h"
.
.
CDFstatus status; /* Status returned from CDF library. */
short time; /* `Time' value. */
char vectorA[3]; /* `vectorA' values. */
double vectorB[5]; /* `vectorB' values. */
long recNumber; /* Record number. */
char buffer[45]; /* Buffer of full-physical records. */
long varNumbers[3]; /* Variable numbers. */
.
.
status = CDFlib (GET_, zVAR_NUMBER_, "vectorB", &varNumbers[0],
 zVAR_NUMBER_, "time", &varNumbers[1],
 zVAR_NUMBER_, "vectorA", &varNumbers[2],
 NULL_);
if (status != CDF_OK) UserStatusHandler (status);
.
.
for (recNumber = 0; recNumber < 100; recNumber++) {
 .
 /* read values from input file */
 .
 memmove (&buffer[0], vectorB, 40);
 memmove (&buffer[40], &time, 2);
 memmove (&buffer[42], vectorA, 3);
 status = CDFlib (SELECT_, zVARs_RECNUMBER_, recNumber,
 PUT__, zVARs_RECDATA_, 3L, varNumbers, buffer,
 NULL_);
 if (status != CDF_OK) UserStatusHandler (status);
}
.
.

302

Note that it would be more efficient to read the values directly into buffer. The method shown here was used to illustrate
how to create the buffer of full-physical records.

7.8 A Potential Mistake We Don't Want You to Make

The following example illustrates one of the most common mistakes made when using the Internal Interface in a C
application. Please don't do something like the following:

.
.
#include "cdf.h"
.
.
CDFid id; /* CDF identifier (handle). */
CDFstatus status; /* Status returned from CDF library. */
long varNum; /* zVariable number. */
.
.
status = CDFlib (SELECT_, CDF_, id,
 GET_, zVAR_NUMBER_, "EPOCH", &varNum,
 SELECT_, zVAR_, varNum, /* _ERROR! */
 NULL_);
if (status != CDF_OK) UserStatusHandler (status);
.
.

It looks like the current zVariable will be selected based on the zVariable number determined by using the
<GET_,zVAR_NUMBER_> operation. What actually happens is that the zVariable number passed to the
<SELECT_,zVAR_> operation is undefined. This is because the C compiler is passing varNum by value rather than
reference.51 Since the argument list passed to CDFlib is created before CDFlib is called, varNum does not yet have a
value. Only after the <GET_,zVAR_NUMBER_> operation is performed does varNum have a valid value. But at that
point it's too late since the argument list has already been created. In this type of situation you would have to make two
calls to CDFlib. The first would inquire the zVariable number and the second would select the current zVariable.

7.9 Custom C Functions

Most of the Standard Interface functions callable from C applications are implemented as C macros that call CDFlib
(Internal Interface). For example, the CDFcreate function is actually defined as the following C macro:

#define CDFcreate(CDFname,numDims,dimSizes,encoding,majority,id) \
CDFlib (CREATE_, CDF_, CDFname, numDims, dimSizes, id, \
 PUT__, CDF_ENCODING_, encoding, \
 CDF_MAJORITY_, majority, \
 NULL_)

These macros are defined in cdf.h. Where your application calls CDFcreate, the C compiler (preprocessor) expands the
macro into the corresponding call to CDFlib.

51 Fortran programmers can get away with doing something like this because everything is passed by reference.

303

The flexibility of CDFlib allows you to define your own custom CDF functions using C macros. For instance, a function
that returns the format of a CDF could be defined as follows:

#define CDFinquireFormat(id,format) \
CDFlib (SELECT_, CDF_, id, \
 GET_, CDF_FORMAT_, format, \
 NULL_)

Your application would call the function as follows:
.
.
CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long format; /* Format of CDF. */
.
.
status = CDFinquireFormat (id, &format);
if (status != CDF_OK) UserStatusHandler (status);
.
.

305

Chapter 8

8 Interpreting CDF Status Codes

Most CDF functions return a status code of type CDFstatus. The symbolic names for these codes are defined in cdf.h
and should be used in your applications rather than using the true numeric values. Appendix A explains each status code.
When the status code returned from a CDF function is tested, the following rules apply.

status > CDF_OK Indicates successful completion but some additional information is
provided. These are informational codes.

status = CDF_OK Indicates successful completion.

CDF_WARN < status < CDF_OK Indicates that the function completed but probably not as expected.

These are warning codes.

status < CDF_WARN Indicates that the function did not complete. These are error codes.

The following example shows how you could check the status code returned from CDF functions.

CDFstatus status;

.
.
status = CDFfunction (...); /* any CDF function returning CDFstatus */
if (status != CDF_OK) {
 UserStatusHandler (status, ...);
 .
 .
}

In your own status handler you can take whatever action is appropriate to the application. An example status handler
follows. Note that no action is taken in the status handler if the status is CDF_OK.

#include <stdio.h>
#include "cdf.h"
void UserStatusHandler (status)
CDFstatus status;
{
 char message[CDF_STATUSTEXT_LEN+1];
 if (status < CDF_WARN) {

306

 printf ("An error has occurred, halting...\n");
 CDFerror (status, message);
 printf ("%s\n", message);
 exit (status);
 }
 else {
 if (status < CDF_OK) {
 printf ("Warning, function may not have completed as expected...\n");
 CDFerror (status, message);
 printf ("%s\n", message);
 }
 else {
 if (status _> CDF_OK) {
 printf ("Function completed successfully, but be advised that...\n");
 CDFerror (status, message);
 printf ("%s\n", message);
 }
 }
 }
 return;
}

Explanations for all CDF status codes are available to your applications through the function CDFerror. CDFerror
encodes in a text string an explanation of a given status code.

307

Chapter 9

9 EPOCH Utility Routines

Several functions exist that compute, decompose, parse, and encode CDF_EPOCH and CDF_EPOCH16 values. These
functions may be called by applications using the CDF_EPOCH and CDF_EPOCH16 data types and are included in the
CDF library. Function prototypes for these functions may be found in the include file cdf.h. The Concepts chapter in
the CDF User's Guide describes EPOCH values. The date/time components for CDF_EPOCH and CDF_EPOCH16 are
UTC-based, without leap seconds.

The CDF_EPOCH and CDF_EPOCH16 data types are used to store time values referenced from a particular epoch. For
CDF that epoch values for CDF_EPOCH and CDF_EPOCH16 are milliseconds from 01-Jan-0000 00:00:00.000 and
pico-seconds from 01-Jan-0000 00:00:00.000.000.000.000, respectively.

9.1 computeEPOCH

computeEPOCH calculates a CDF_EPOCH value given the individual components. If an illegal component is detected,
the value returned will be ILLEGAL_EPOCH_VALUE.

double computeEPOCH(/* out -- CDF_EPOCH value returned. */
long year, /* in -- Year (AD). */
long month, /* in -- Month */
long day, /* in -- Day */
long hour, /* in -- Hour */
long minute, /* in -- Minute */
long second, /* in -- Second */
long msec); /* in -- Millisecond */

NOTE: Previously, fields for month, day, hour, minute, second and msec should have a valid ranges, mainly 1-12 for
month, 1-31 for day, 0-23 for hour, 0-59 for minute and second, and 0-999 for msec. However, there are two variations
on how computeEPOCH can be used. The month argument is allowed to be 0 (zero), in which case, the day argument is
assumed to be the day of the year (DOY) having a range of 1 through 366. Also, if the hour, minute, and second arguments
are all 0s (zero), then the msec argument is assumed to be the millisecond of the day, having a range of 0 through
86400000. The modified computeEPOCH, since the CDF V3.3.1, allows month, day, hour minute, second and msec to
be any values, even negative ones, without range checking as long as the comulative date is after 0AD. Any cumulative

308

date before 0AD will cause this function to return ILLEGAL_EPOCH_VALUE52 (–1.0). By not checking the range of
dta fields, the epoch will be computed from any given values for month, day, hour, etc. For example, the epoch can be
computed by passing a Unix-time (seconds from 1970-1-1) in a set of arguments of “1970, 1, 1, 0, 0, unix-time, 0”. While
the second field is allowed to have a value of 60 (or greater), the CDF epoch still does not support of leap second. An
input of 60 for the second field will automatically be interpreted as 0 (zero) second in the following minute. If the month
field is 0, the day field is still considered as DOY. If the day field is 0, the date will fall back to the last day of the previous
month, e.g., a date of 2010-2-0 becoming 2010-1-31. The following table shows how the year, month and day components
of the epoch will be interpreted by the following EPOCHbreakdown function when the month and/or day field is passed
in with 0 or negative value to computeEPOCH function.

Year Month Day Year Month Day
2010 0 0  2009 12 31 Last day of the previous year
2010 -1 0  2009 11 30 Last day of November of the previous

year
2010 0 1  2010 1 1 First day of the year
2010 1 0  2009 12 31 Last day of the previous year
2010 0 -1  2009 12 30 Two days before January 1st of current

year
2010 -1 -1  2009 11 29 Two months and two days before

January 1st of current year

Input Year/Month/Day Interpreted Year/Month/Day

9.2 EPOCHbreakdown

EPOCHbreakdown decomposes a CDF_EPOCH value into the individual components.

void EPOCHbreakdown(
double epoch, /* in -- The CDF_EPOCH value. */
long *year, /* out -- Year (AD, e.g., 1994). */
long *month, /* out -- Month (1-12). */
long *day, /* out -- Day (1-31). */
long *hour, /* out -- Hour (0-23). */
long *minute, /* out -- Minute (0-59). */
long *second, /* out -- Second (0-59). */
long *msec); /* out -- Millisecond (0-999). */

9.3 toEncodeEPOCH

toEncodeEPOCH encodes a CDF_EPOCH value into the standard date/time character string, based on the passed style.
The fomats of the string are:

- Style 0: dd-mmm-yyyy hh:mm:ss.ccc where dd is the day of the month (1-31), mmm is the month (Jan,
Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, or Dec), yyyy is the year, hh is the hour (0-23), mm is
the minute (0-59), ss is the second (0-59), and ccc is the millisecond (0-999).

52 ILLEGAL_EPOCH_VALUE, if encoded, will be presented as 31-Dec-9999 23:59:59.999, 99991231.9999999,
99991231235959, 9999-12-31T23:59:59.999Z, or 9999-12-31T23:59.59.999, depending on the encoding style.

309

- Style 1: yyyymmdd.ttttttt where yyyy is the year, mm is the month (1-12), dd is the day of the month (1-
31), and ttttttt is the fraction of the day (e.g., 5000000 is 12 o'clock noon).

- Style 2: yyyymmddhhmmss where yyyy is the year, mm is the month (01-12), dd is the day of the month
(1-31), hh is the hour (0-23), mm is the minute (0-59), and ss is the second (0-59).

- Style 3: yyyy-mm-ddThh:mm:ss.cccZ where yyyy is the year, mm is the month (01-12), dd is the day of
the month (1-31), hh is the hour (0-23), mm is the minute (0-59), ss is the second (0-59), and ccc is the
millisecond (0-999).

- Style 453: yyyy-mm-ddThh:mm:ss.ccc where yyyy is the year, mm is the month (01-12), dd is the day of
the month (1-31), hh is the hour (0-23), mm is the minute (0-59), ss is the second (0-59), and ccc is the
millisecond (0-999).

void toEncodeEPOCH(

double epoch, /* in -- The CDF_EPOCH value. */
int style, /* in -- The string style. */
char epString[EPOCH_STRING_LEN+1]); /* out -- The standard date/time character string. */

EPOCH_STRING_LEN (happens to be the largest string length among all styles) is defined in cdf.h.

9.4 encodeEPOCH

encodeEPOCH encodes a CDF_EPOCH value into the standard date/time character string. The format of the string is
dd-mmm-yyyy hh:mm:ss.ccc where dd is the day of the month (1-31), mmm is the month (Jan, Feb, Mar, Apr, May,
Jun, Jul, Aug, Sep, Oct, Nov, or Dec), yyyy is the year, hh is the hour (0-23), mm is the minute (0-59), ss is the second
(0-59), and ccc is the millisecond (0-999).

void encodeEPOCH(
double epoch, /* in -- The CDF_EPOCH value. */
char epString[EPOCH_STRING_LEN+1]); /* out -- The standard date/time character string. */

EPOCH_STRING_LEN is defined in cdf.h.

9.5 encodeEPOCH1

encodeEPOCH1 encodes a CDF_EPOCH value into an alternate date/time character string. The format of the string is
yyyymmdd.ttttttt, where yyyy is the year, mm is the month (1-12), dd is the day of the month (1-31), and ttttttt is the
fraction of the day (e.g., 5000000 is 12 o'clock noon).

void encodeEPOCH1(
double epoch, /* in -- The CDF_EPOCH value. */
char epString[EPOCH1_STRING_LEN+1]); /* out -- The alternate date/time character string. */

EPOCH1_STRING_LEN is defined in cdf.h.

53 If the style is invalid (not in 0-4 range), then style 4 is the default.

310

9.6 encodeEPOCH2

encodeEPOCH2 encodes a CDF_EPOCH value into an alternate date/time character string. The format of the string is
yyyymoddhhmmss where yyyy is the year, mo is the month (1-12), dd is the day of the month (1-31), hh is the hour (0-
23), mm is the minute (0-59), and ss is the second (0-59).

void encodeEPOCH2(
double epoch, /* in -- The CDF_EPOCH value. */
char epString[EPOCH2_STRING_LEN+1]); /* out -- The alternate date/time character string. */

EPOCH2_STRING_LEN is defined in cdf.h.

9.7 encodeEPOCH3

encodeEPOCH3 encodes a CDF_EPOCH value into an alternate date/time character string. The format of the string is
yyyy-mo-ddThh:mm:ss.cccZ where yyyy is the year, mo is the month (1-12), dd is the day of the month (1-31), hh is
the hour (0-23), mm is the minute (0-59), ss is the second (0-59), and ccc is the millisecond (0-999).

void encodeEPOCH3(
double epoch, /* in -- The CDF_EPOCH value. */
char epString[EPOCH3_STRING_LEN+1]); /* out -- The alternate date/time character string. */

EPOCH3_STRING_LEN is defined in cdf.h.

9.8 encodeEPOCH454

encodeEPOCH4 encodes a CDF_EPOCH value into an alternate, ISO 8601 date/time character string. The format of the
string is yyyy-mo-ddThh:mm:ss.ccc where yyyy is the year, mo is the month (1-12), dd is the day of the month (1-31),
hh is the hour (0-23), mm is the minute (0-59), ss is the second (0-59), and ccc is the millisecond (0-999).

void encodeEPOCH4(
double epoch, /* in -- The CDF_EPOCH value. */
char epString[EPOCH4_STRING_LEN+1]); /* out -- The ISO 8601 date/time character string. */

EPOCH4_STRING_LEN is defined in cdf.h.

9.9 encodeEPOCHx

encodeEPOCHx encodes a CDF_EPOCH value into a custom date/time character string. The format of the encoded
string is specified by a format string.

54 This encoding style is the default for the CDF_EPOCH data type from V3.7.1.

311

void encodeEPOCHx(
double epoch, /* in -- The CDF_EPOCH value. */
char format[EPOCHx_FORMAT_MAX], /* in ---The format string. */
char encoded[EPOCHx_STRING_MAX]); /* out -- The custom date/time character string. */

The format string consists of EPOCH components, which are encoded, and text that is simply copied to the encoded
custom string. Components are enclosed in angle brackets and consist of a component token and an optional width. The
syntax of a component is: <token[.width]>. If the optional width contains a leading zero, then the component will be
encoded with leading zeroes (rather than leading blanks).

The supported component tokens and their default widths are as follows. . .

Token Meaning Default
dom Day of month (1-31) <dom.0>
doy Day of year (001-366) <doy.03>
month Month (`Jan',`Feb',...,`Dec') <month>
mm Month (1,2,...,12) <mm.0>
year Year (4-digit) <year.04>
yr Year (2-digit) <yr.02>
hour Hour (00-23) <hour.02>
min Minute (00-59) <min.02>
sec Second (00-59) <sec.02>
fos Fraction of second. <fos.3>
fod Fraction of day. <fod.8>

Note that a width of zero indicates that as many digits as necessary should be used to encoded the component. The
<month> component is always encoded with three characters. The <fos> and <fod> components are always encoded
with leading zeroes.

If a left angle bracket is desired in the encoded string, then simply specify two left angle brackets (<<) in the format string
(character stuffing).

For example, the format string used to encode the standard EPOCH date/time character string (see Section 9.3) would
be. . .

<dom.02>-<month>-<year> <hour>:<min>:<sec>.<fos>

EPOCHx_FORMAT_LEN and EPOCHx_STRING_MAX are defined in cdf.h.

9.10 toParseEPOCH

toParseEPOCH parses a standard date/time character string and returns a CDF_EPOCH value. The format of the string
can be one of valid styles used by the encoding functions described in Section 9.3-9.8. If an illegal field is detected in
the string the value returned will be ILLEGAL_EPOCH_VALUE.

double toParseEPOCH(/* out -- CDF_EPOCH value returned. */
char *epString); /* in -- The standard date/time character string. */

epString has the maximum length of EPOCH_STRING_LEN, which is defined in cdf.h.

312

9.11 parseEPOCH

parseEPOCH parses a standard date/time character string and returns a CDF_EPOCH value. The format of the string is
that produced by the encodeEPOCH function described in Section 9.3. If an illegal field is detected in the string the
value returned will be ILLEGAL_EPOCH_VALUE.

double parseEPOCH(/* out -- CDF_EPOCH value returned. */
char epString[EPOCH_STRING_LEN+1]); /* in -- The standard date/time character string. */

EPOCH_STRING_LEN is defined in cdf.h.

9.12 parseEPOCH1

parseEPOCH1 parses an alternate date/time character string and returns a CDF_EPOCH value. The format of the string
is that produced by the encodeEPOCH1 function described in Section 9.5. If an illegal field is detected in the string the
value returned will be ILLEGAL_EPOCH_VALUE.

double parseEPOCH1(/* out -- CDF_EPOCH value returned. */
char epString[EPOCH1_STRING_LEN+1]); /* in -- The alternate date/time character string. */

EPOCH1_STRING_LEN is defined in cdf.h.

9.13 parseEPOCH2

parseEPOCH2 parses an alternate date/time character string and returns a CDF_EPOCH value. The format of the string
is that produced by the encodeEPOCH2 function described in Section 9.6. If an illegal field is detected in the string the
value returned will be ILLEGAL_EPOCH_VALUE.

double parseEPOCH2(/* out -- CDF_EPOCH value returned. */
char epString[EPOCH2_STRING_LEN+1]); /* in -- The alternate date/time character string. */

EPOCH2_STRING_LEN is defined in cdf.h.

9.14 parseEPOCH3

parseEPOCH3 parses an alternate date/time character string and returns a CDF_EPOCH value. The format of the string
is that produced by the encodeEPOCH3 function described in Section 9.7. If an illegal field is detected in the string the
value returned will be ILLEGAL_EPOCH_VALUE.

double parseEPOCH3(/* out -- CDF_EPOCH value returned. */
char epString[EPOCH3_STRING_LEN+1]); /* in -- The alternate date/time character string. */

EPOCH3_STRING_LEN is defined in cdf.h.

313

9.15 parseEPOCH4

parseEPOCH4 parses an alternate, ISO 8601 date/time character string and returns a CDF_EPOCH value. The format
of the string is that produced by the encodeEPOCH4 function described in Section 9.8. If an illegal field is detected in
the string the value returned will be ILLEGAL_EPOCH_VALUE.

double parseEPOCH4(/* out -- CDF_EPOCH value returned. */
char epString[EPOCH4_STRING_LEN+1]); /* in -- The alternate date/time character string. */

EPOCH4_STRING_LEN is defined in cdf.h.

9.16 computeEPOCH16

computeEPOCH16 calculates a CDF_EPOCH16 value given the individual components. If an illegal component is
detected, the value returned will be ILLEGAL_EPOCH_VALUE.

double computeEPOCH16(/* out -- status code returned. */
long year, /* in -- Year (AD, e.g., 1994). */
long month, /* in -- Month. */
long day, /* in -- Day. */
long hour, /* in -- Hour. */
long minute, /* in -- Minute. */
long second, /* in -- Second. */
long msec, /* in -- Millisecond. */
long microsec, /* in -- Microsecond. */
long nanosec, /* in -- Nanosecond. */
long picosec, /* in -- Picosecond. */
double epoch[2]); /* out -- CDF_EPOCH16 value returned */

Similar to computeEPOCH, this function no longer performs range checks for each individual componenet as long as the
cumulative date is after 0AD. If any of the date/time componment is invalid, each of the the computed epoch values will
hold -1.0E3155, and the function returns ILLEGAL_EPOCH_VALUE.

9.17 EPOCH16breakdown

EPOCH16breakdown decomposes a CDF_EPOCH16 value into the individual components.

void EPOCH16breakdown(
double epoch[2], /* in -- The CDF_EPOCH16 value. */

55 This 2-double value, if encoded, will be presented as 31-Dec-9999 23:59:59.999.999.999.999,
99991231.999999999999999, 99991231235959, 9999-12-31T23:59:59.999.999.999.999Z, or 9999-12-
31T23:59.59.999999999999, depending on the encoding style.

314

long *year, /* out -- Year (AD, e.g., 1994). */
long *month, /* out -- Month (1-12). */
long *day, /* out -- Day (1-31). */
long *hour, /* out -- Hour (0-23). */
long *minute, /* out -- Minute (0-59). */
long *second, /* out -- Second (0-59). */
long *msec, /* out -- Millisecond (0-999). */
long *microsec, /* out -- Microsecond (0-999). */
long *nanosec, /* out -- Nanosecond (0-999). */
long *picosec); /* out -- Picosecond (0-999). */

9.18 toEncodeEPOCH16

toEncodeEPOCH16 encodes a CDF_EPOCH16 value into the standard date/time character string, based on the passed
style. The fomats of the string are:

- Style 0: dd-mmm-yyyy hh:mm:ss.mmm.uuu.nnn.ppp where dd is the day of the month (1-31), mmm is
the month (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, or Dec), yyyy is the year, hh is the hour
(0-23), mm is the minute (0-59), ss is the second (0-59), and mmm is the millisecond (0-999), uuu is the
microsecond (0-999), nnn is the nanosecond (0-999), and ppp is the picosecond (0-999).

- Style 1: yyyymmdd.ttttttttttttttt where yyyy is the year, mm is the month (1-12), dd is the day of the month
(1-31), and ttttttttttttttt is the fraction of the day (e.g., 5000000 is 12 o'clock noon).

- Style 2: yyyymmddhhmmss where yyyy is the year, mm is the month (01-12), dd is the day of the month
(1-31), hh is the hour (0-23), mm is the minute (0-59), and ss is the second (0-59).

- Style 3: yyyy-mm-ddThh:mm:ss.mmm.uuu.nnn.pppZ where yyyy is the year, mm is the month (01-12),
dd is the day of the month (1-31), hh is the hour (0-23), mm is the minute (0-59), ss is the second (0-59),
and mmm is the millisecond (0-999), uuu is the microsecond (0-999), nnn is the nanosecond (0-999), and
ppp is the picosecond (0-999).

- Style 456: yyyy-mm-ddThh:mm:ss.mmmuuunnnppp where yyyy is the year, mm is the month (01-12),
dd is the day of the month (1-31), hh is the hour (0-23), mm is the minute (0-59), ss is the second (0-59),
and mmm is the millisecond (0-999), uuu is the microsecond (0-999), nnn is the nanosecond (0-999), and
ppp is the picosecond (0-999).

void toEncodeEPOCH16(

double *epoch, /* in -- The CDF_EPOCH16 value. */
int style, /* in -- The string style. */
char epString[EPOCH16_STRING_LEN+1]); /* out -- The standard date/time character string. */

EPOCH16_STRING_LEN (happens to be the largest string length among all styles) is defined in cdf.h.

9.19 encodeEPOCH16

encodeEPOCH16 encodes a CDF_EPOCH16 value into the standard date/time character string. The format of the string
is dd-mmm-yyyy hh:mm:ss.mmm:uuu:nnn:ppp where dd is the day of the month (1-31), mmm is the month (Jan,
Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, or Dec), yyyy is the year, hh is the hour (0-23), mm is the minute (0-
59), ss is the second (0-59), mmm is the millisecond (0-999), uuu is the microsecond (0-999), nnn is the nanosecond (0-
999), and ppp is the picosecond (0-999).

void encodeEPOCH16(
double epoch[2], /* in -- The CDF_EPOCH16 value. */

56 If the style is invalid (not in 0-4 range), then style 4 is the default.

315

char epString[EPOCH16_STRING_LEN+1]); /* out -- The date/time character string. */

EPOCH16_STRING_LEN is defined in cdf.h.

9.20 encodeEPOCH16_1

encodeEPOCH16_1 encodes a CDF_EPOCH16 value into an alternate date/time character string. The format of the
string is yyyymmdd.ttttttttttttttt, where yyyy is the year, mm is the month (1-12), dd is the day of the month (1-31),
and ttttttttttttttt is the fraction of the day (e.g., 500000000000000 is 12 o'clock noon).

void encodeEPOCH16_1(
double epoch[2], /* in -- The CDF_EPOCH16 value. */
char epString[EPOCH16_1_STRING_LEN +1]); /* out -- The date/time character string. */

EPOCH16_1_STRING_LEN is defined in cdf.h.

9.21 encodeEPOCH16_2

encodeEPOCH16_2 encodes a CDF_EPOCH16 value into an alternate date/time character string. The format of the
string is yyyymoddhhmmss where yyyy is the year, mo is the month (1-12), dd is the day of the month (1-31), hh is the
hour (0-23), mm is the minute (0-59), and ss is the second (0-59).

void encodeEPOCH16_2(
double epoch[2], /* in -- The CDF_EPOCH16 value. */
char epString[EPOCH16_2_STRING_LEN+1]); /* out -- The date/time character string. */

EPOCH16_2_STRING_LEN is defined in cdf.h.

9.22 encodeEPOCH16_3

encodeEPOCH16_3 encodes a CDF_EPOCH16 value into an alternate date/time character string. The format of the
string is yyyy-mo-ddThh:mm:ss.mmm:uuu:nnn:pppZ where yyyy is the year, mo is the month (1-12), dd is the day
of the month (1-31), hh is the hour (0-23), mm is the minute (0-59), ss is the second (0-59), mmm is the millisecond (0-
999), uuu is the microsecond (0-999), nnn is the nanosecond (0-999), and ppp is the picosecond (0-999).

void encodeEPOCH16_3(
double epoch[2], /* in -- The CDF_EPOCH16 value. */
char epString[EPOCH16_3_STRING_LEN+1]); /* out -- The alternate date/time character string. */

EPOCH16_3_STRING_LEN is defined in cdf.h.

316

9.23 encodeEPOCH16_457

encodeEPOCH16_4 encodes a CDF_EPOCH16 value into an alternate, ISO 8601 date/time character string. The format
of the string is yyyy-mo-ddThh:mm:ss.mmmuuunnnppp where yyyy is the year, mo is the month (1-12), dd is the day
of the month (1-31), hh is the hour (0-23), mm is the minute (0-59), ss is the second (0-59), mmm is the millisecond (0-
999), uuu is the microsecond (0-999), nnn is the nanosecond (0-999), and ppp is the picosecond (0-999).

void encodeEPOCH16_4(
double epoch[2], /* in -- The CDF_EPOCH16 value. */
char epString[EPOCH16_4_STRING_LEN+1]); /* out -- The ISO 8601 date/time character string. */

EPOCH16_4_STRING_LEN is defined in cdf.h.

9.24 encodeEPOCH16_x

encodeEPOCH16_x encodes a CDF_EPOCH16 value into a custom date/time character string. The format of the
encoded string is specified by a format string.

void encodeEPOCH16_x(
double epoch[2], /* in -- The CDF_EPOCH16 value. */
char format[EPOCHx_FORMAT_MAX]; /* in ---The format string. */
char encoded[EPOCHx_STRING_MAX]); /* out -- The date/time character string. */

The format string consists of EPOCH components, which are encoded, and text that is simply copied to the encoded
custom string. Components are enclosed in angle brackets and consist of a component token and an optional width. The
syntax of a component is: <token[.width]>. If the optional width contains a leading zero, then the component will be
encoded with leading zeroes (rather than leading blanks).

The supported component tokens and their default widths are as follows. . .

Token Meaning Default
dom Day of month (1-31) <dom.0>
doy Day of year (001-366) <doy.03>
month Month (`Jan',`Feb',...,`Dec') <month>
mm Month (1,2,...,12) <mm.0>
year Year (4-digit) <year.04>
yr Year (2-digit) <yr.02>
hour Hour (00-23) <hour.02>
min Minute (00-59) <min.02>
sec Second (00-59) <sec.02>
msc Millisecond (000-999) <msc.3>
usc Microsecond (000-999) <usc.3>
nsc Nanosecond (000-999) <nsc.3>
psc Picosecond (000-999) <psc.3>
fos Fraction of second. <fos.12>
fod Fraction of day. <fod.8>

57 This encoding style is the default for CDF_EPOCH16 data type for the date/time string from V3.7.1.

317

Note that a width of zero indicates that as many digits as necessary should be used to encoded the component. The
<month> component is always encoded with three characters. The <fos> and <fod> components are always encoded
with leading zeroes.

If a left angle bracket is desired in the encoded string, then simply specify two left angle brackets (<<) in the format string
(character stuffing).

For example, the format string used to encode the standard EPOCH date/time character string would be. . .

<dom.02>-<month>-<year> <hour>:<min>:<sec>.<msc>.<usc>.<nsc>.<psc>.<fos>

EPOCHx_FORMAT_LEN and EPOCHx_STRING_MAX are defined in cdf.h.

9.25 toParseEPOCH16

toParseEPOCH16 parses a standard date/time character string and returns a CDF_EPOCH16 value (a two-double). The
format of the string is one of the styles that is produced by one of the encoding functions for CDF_EPOCH16. If an
illegal field is detected in the string the values returned will be ILLEGAL_EPOCH_VALUE.

double toParseEPOCH16(/* out -- The status code returned. */
char *epString, /* in -- The date/time character string. */
double epoch[2]); /* out -- The CDF_EPOCH16 value returned */

epString has a maximum length of EPOCH16_STRING_LEN, which is defined in cdf.h.

9.26 parseEPOCH16

parseEPOCH16 parses a standard date/time character string and returns a CDF_EPOCH16 value. The format of the
string is that produced by the encodeEPOCH16 function. If an illegal field is detected in the string the value returned
will be ILLEGAL_EPOCH_VALUE.

double parseEPOCH16(/* out -- The status code returned. */
char epString[EPOCH16_STRING_LEN+1], /* in -- The date/time character string. */
double epoch[2]); /* out -- The CDF_EPOCH16 value returned */

EPOCH16_STRING_LEN is defined in cdf.h.

9.27 parseEPOCH16_1

parseEPOCH16_1 parses an alternate date/time character string and returns a CDF_EPOCH16 value. The format of
the string is that produced by the encodeEPOCH16_1 function. If an illegal field is detected in the string the value
returned will be ILLEGAL_EPOCH_VALUE.

318

double parseEPOCH16_1(/* out -- The status code returned. */
char epString[EPOCH16_1_STRING_LEN+1], /* in -- The date/time character string. */
double epoch[2]); /* out -- The CDF_EPOCH16 value returned */

EPOCH16_1_STRING_LEN is defined in cdf.h.

9.28 parseEPOCH16_2

parseEPOCH16_2 parses an alternate date/time character string and returns a CDF_EPOCH16 value. The format of
the string is that produced by the encodeEPOCH16_2 function. If an illegal field is detected in the string the value
returned will be ILLEGAL_EPOCH_VALUE.

double parseEPOCH16_2(/* out -- The status code returned. */
char epString[EPOCH16_2_STRING_LEN +1], /* in -- The date/time character string. */
double epoch[2]); /* out -- The CDF_EPOCH16 value returned */

EPOCH16_2_STRING_LEN is defined in cdf.h.

9.29 parseEPOCH16_3

parseEPOCH16_3 parses an alternate date/time character string and returns a CDF_EPOCH16 value. The format of
the string is that produced by the encodeEPOCH16_3 function. If an illegal field is detected in the string the value
returned will be ILLEGAL_EPOCH_VALUE.

double parseEPOCH16_3(/* out -- The status code returned. */
char epString[EPOCH16_3_STRING_LEN +1], /* in -- The date/time character string. */
double epoch[2]); /* out -- The CDF_EPOCH16 value returned */

EPOCH16_3_STRING_LEN is defined in cdf.h.

9.30 parseEPOCH16_4

parseEPOCH16_4 parses an alternate, ISO 8601 date/time character string and returns a CDF_EPOCH16 value. The
format of the string is that produced by the encodeEPOCH16_4 function. If an illegal field is detected in the string the
value returned will be ILLEGAL_EPOCH_VALUE.

double parseEPOCH16_3(/* out -- The status code returned. */
char epString[EPOCH16_4_STRING_LEN +1], /* in -- The ISO 8601 date/time string. */
double epoch[2]); /* out -- The CDF_EPOCH16 value returned */

EPOCH16_4_STRING_LEN is defined in cdf.h.

319

9.31 EPOCHtoUnixTime

EPOCHtoUnixTime converts epoch time(s) in CDF_EPOCH type into Unix time(s). A CDF_EPOCH epoch, a double,
is milliseconds from 0000-01-01T00:00:00.000 while Unix time, also a double, is seconds from 1970-01-
01T00:00:00.000. The Unix time can have sub-second, with a time resolution of microseconds, in its fractional part.

void EPOCHtoUnixTime (
double *epoch, /* in -- CDF_EPOCH epoch times. */
double *unixTime, /* out -- Unix times. */
int numTimes); /* in -- Number of times to be converted. */

9.32 UnixTimetoEPOCH

UnixTimetoEPOCH converts Unix time(s) into epoch time(s) in CDF_EPOCH type. A Unix time, a double, is seconds
from 1970-01-01T00:00:00.000 while a CDF_EPOCH epoch, also a double, is milliseconds from 0000-01-
01T00:00:00.000. The Unix time can have sub-second, with a time resolution of microseconds, in its fractional part.
Converting the Unix time to EPOCH will only keep the resolution to milliseconds.

void UnixTimetoEPOCH (
double *unixTime, /* in -- Unix times. */
double *epoch, /* out -- CDF_EPOCH epoch times. */
int numTimes); /* in -- Number of times to be converted. */

9.33 EPOCH16toUnixTime

EPOCH16toUnixTime converts epoch time(s) in CDF_EPOCH16 type into Unix time(s). A CDF_EPOCH16 epoch, a
two-double, is picoseconds from 0000-01-01T00:00:00.000.000.000.000 while Unix time, a double, is seconds from
1970-01-01T00:00:00.000. The Unix time can have sub-second, with a time resolution of microseconds, in its fractional
part. Note: As CDF_EPOCH16 has much higher time resolution, sub-microseconds portion of its time will get lost during
the conversion.

void EPOCH16toUnixTime (
double *epoch, /* in -- CDF_EPOCH16 epoch times. */
double *unixTime, /* out -- Unix times. */
int numTimes); /* in -- Number of times to be converted. */

9.34 UnixTimetoEPOCH16

UnixTimetoEPOCH16 converts Unix times into epoch times of CDF_EPOCH16 type. A Unix time, a double, is seconds
from 1970-01-01T00:00:00.000 while a CDF_EPOCH16 epoch, a two-double, is picoseconds from 0000-01-
01T00:00:00.000.000.000.000. The Unix time can have sub-second, with a time resolution of microseconds, in its
fractional part. Sub-microseconds will be filled with 0’s when converting from Unix time to EPOCH16.

void UnixTimetoEPOCH16 (

320

double *unixTime, /* in -- Unix times. */
double *epoch, /* out -- CDF_EPOCH16 epoch times. */
int numTimes); /* in -- Number of times to be converted. */

321

10 TT2000 Utility Routines

Several functions exist that compute, decompose, parse, and encode CDF_TIME_TT2000 values. These functions may
be called by applications using the CDF_TIME_TT2000 data type and are included in the CDF library. Function
prototypes for these functions may be found in the include file cdf.h. The Concepts chapter in the CDF User's Guide
describes TT2000 values. The date/time components for CDF_TIME_TT2000 are UTC-based, with leap seconds.

The CDF_TIME_TT2000 data types are used to store time values referenced from J2000 (2000-01-
01T12:00:00.000000000), the Terrestrial Time (TT). For CDF, values in CDF_TIME_TT2000 are nanoseconds. from
J2000 with leap seconds included. TT2000 data can cover years between 1707 and 2292.

10.1 computeTT2000 (aka CDF_TT2000_from_UTC_parts)

computeTT2000 calculates a CDF_TIME_TT2000 value, given the individual UTC-based date/time components. If an
illegal component is detected (any of the provided componments can not have a non-zero fraction portion in its double
value, other than the last argument), the value returned will be ILLEGAL_TT2000_VALUE58.

The full form:

long long computeTT200059 (/* out -- CDF_TIME_TT2000 value returned. */
double year, /* in -- Year (AD). */
double month, /* in -- Month */
double day, /* in -- Day */
double hour, /* in -- Hour. */
double minute, /* in -- Minute */
double second, /* in -- Second */
double msec, /* in -- Millisecond */
double usec, /* in -- Microsecond */
double nsec); /* in -- Nanosecond */

The variable argument form:

long long computeTT2000 (/* out -- CDF_TIME_TT2000 value returned. */
double year, /* in -- Year (AD). */
double month, /* in -- Month */
double day, /* in -- Day */

58 Please note: The ILLEGAL_TT2000_VALUE has a value of -9223372036854775805. When encoded into a
date/time string, it will be presented as 1707-09-22T12:12:10.961224195.
59 Even all components are defined as double, to simplify the computation, this function only allows the very last
argument to have a non-zero fractional part. The day component can be either the day of the month or the day of the
year (DOY). For DOY, the month component has to be one (1), otherwise an invalid time value is returned. Avoid
passing in the time components that extend into the next day as that could present a potential problem.

322

…,
double TT2000END);

This function is also aliased as computeTT2000 for short. This function accepts variable number of arguments after
the first three components of year, month and day. It allows a full argument list of nine (9) fields: year, month, day,
hour, minute, second, millisecond, microsecond and nanosecond. If less than full arguments is passed in, a predefined
TT2000END has to be appended to signify the end of argument list. Without it, an unexpected value might be returned.

The followings are some samples.

For three date/time arguments (sub-day),

tt2000 = computeTT2000 (2010.0, 10.0, 12.5, TT2000END);

For four date/time arguments (sub-hour),

tt2000 = computeTT2000 (2010.0, 10.0, 12.0, 12.5, TT2000END);

For five date/time arguments (sub-minute),

tt2000 = computeTT2000 (2010.0, 10.0, 12.0, 12.0, 30.5, TT2000END);

For six date/time arguments (sub-second),

tt2000 = computeTT2000 (2010.0, 10.0, 12.0, 12.0, 30.0, 30.5, TT2000END);

For the complete argument list:
tt2000 = computeTT2000 (2010.0, 10.0, 12.0, 1.0, 2.0, 3.0, 111.0, 222.0, 333.5);

This call is not allowed,

tt2000 = computeTT2000 (2010.0, 10.0, 12.5, 12.5, TT2000END);

Any invalid component is detected, an predefined ILLEGAL_TT2000_VALUE60 (-9223372036854775805LL) is
returned.

10.2 breakdownTT2000 (aka CDF_TIME_to_UTC_parts or
TT2000breakdown)

breakdownTT2000 decomposes a CDF_TIME_TT2000 value into the individual UTC-based date/time components.

The full form:

void breakdownTT2000 (

60 ILLEGAL_TT2000_VALUE, if encoded, will be presented as 31-Dec-9999 23:59:59.999999999,
99991231.9999999999, 99991231235959, 9999-12-31T23:59:59.999999999, or 9999-12-31T23:59.59.999999999Z,
depending on the encoding style.

323

long long tt2000, /* in -- The CDF_TIME_TT2000 value. */
double *year, /* out -- Year (AD). */
double *month, /* out -- Month */
double *day, /* out -- Day */
double *hour, /* out -- Hour. */
double *minute, /* out -- Minute */
double *second, /* out -- Second */
double *msec, /* out -- Millisecond */
double *usec, /* out -- Microsecond */
double *nsec); /* out -- Nanosecond */

The variable argument form:

void breakdownTT2000 (
long long tt2000, /* in -- The CDF_TIME_TT2000 value. */
double *year, /* out -- Year (AD). */
double *month, /* out -- Month */
double *day, /* out -- Day */
…,
double TT2000NULL);

This function is also aliased as TT2000breakdown or breakdownTT2000 for short. This function accepts variable
number of arguments after the first four components of TT2000 value, year, month and day. It allows a full argument
list of ten (10) fields: tt2000, year, month, day, hour, minute, second, millisecond, microsecond and nanosecond. If
less than the full arguments are passed in for the decomposed date/time fields, a predefined TT2000NULL has to be
appended to signify the end of argument list. Without it, an unexpected field value might be returned. Even all
components are defined as double, only the very last argument may have really fractional value, e.g.,

For decomposing into three date/time arguments (sub-day),

breakdownTT2000 (tt2000, &year, &month, &day, TT2000NULL);

For decomposing into four date/time arguments (sub-hour),

breakdownTT2000 (tt2000, &year, &month, &day, &hour, TT2000NULL);

For decomposing into five date/time arguments (sub-minute),

breakdownTT2000 (tt2000, &year, &month, &day, &hour, &minute, TT2000NULL);

For decomposing into six date/time arguments (sub-second),

breakdownTT2000 (tt2000, &year, &month, &day, &hour, &minute, &second, TT2000NULL);

For decomposing into the complete argument list:

breakdownTT2000 (tt2000, &year, &month, &day, &hour, &minute, &second, &milsec, &micsec, &nansec);

324

10.3 toEncodeTT200061

toEncodeTT2000 encodes a CDF_TIME_TT2000 value into the standard UTC-based date/time character string, based
on the passed in style. The fomats of the string are:

- Style 0: dd-mmm-yyyy hh:mm:ss.mmm.uuu.nnn where dd is the day of the month (1-31), mmm is the
month (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, or Dec), yyyy is the year, hh is the hour (0-
23), mm is the minute (0-59), ss is the second (0-59/60), and mmm is the millisecond (0-999), uuu is the
microsecond (0-999), and nnn is the nanosecond (0-999).

- Style 1: yyyymmdd.ttttttttttttttt where yyyy is the year, mm is the month (1-12), dd is the day of the month
(1-31), and ttttttttttttttt is the fraction of the day (e.g., 5000000 is 12 o'clock noon).

- Style 2: yyyymmddhhmmss where yyyy is the year, mm is the month (01-12), dd is the day of the month
(1-31), hh is the hour (0-23), mm is the minute (0-59), and ss is the second (0-59/60).

- Style 3: yyyy-mm-ddThh:mm:ss.mmmuuunnn where yyyy is the year, mm is the month (01-12), dd is
the day of the month (1-31), hh is the hour (0-23), mm is the minute (0-59), ss is the second (0-59/60), and
mmm is the millisecond (0-999), uuu is the microsecond (0-999), and nnn is the nanosecond (0-999).

- Style 4: yyyy-mm-ddThh:mm:ss.mmmuuunnnZ where yyyy is the year, mm is the month (01-12), dd is
the day of the month (1-31), hh is the hour (0-23), mm is the minute (0-59), ss is the second (0-59/60), and
mmm is the millisecond (0-999), uuu is the microsecond (0-999), and nnn is the nanosecond (0-999).

void toEncodeTT200062(

long long tt2000, /* in -- The CDF_TIME_TT2000 value. */
int style, /* in -- The string style. */
char *string); /* out -- encoded UTC string */

10.4 encodeTT2000 (aka CDF_TT2000_to_UTC_string)

encodeTT2000 encodes a CDF_TIME_TT2000 value into the standard UTC-based date/time character string. The
default format of the string is of ISO 8601 format: yyyy-mn-ddT hh:ms:ss.mmmuuunnn where yyyy is the year (1707-
2292), mm is the month (01-12), dd is the day of the month (1-31), hh is the hour (0-23), mn is the minute (0-59), ss is
the second (0-59 or 0-60 if leap second), mmm is the millisecond (0-999), uuu is the microsecond (0-999) and nnn is the
nanosecond (0-999).

The full form63:

void encodeTT2000 (
long long tt2000, /* in -- The CDF_TIME_TT2000 value. */
char *string, /* out -- encoded UTC string */
int style); /* in -- The encoded string style . */

The variable argument form:

void encodeTT2000 64(
long long tt2000, /* in -- The CDF_TIME_TT2000 value. */
char *string); /* out -- encoded UTC string */

61 To compliment other CDF epoch data typoes: toEncodeEPOCH and toEncodeEPOCH16. If TT2000 has the
predefined FILLED_TT2000_VALUE value, which is the minimum of 64-bit integer: -9223372036854775808, it will
be encoded as 9999-12-31T23:59:59.999999999.
62 The default encoding style is 3 for CDF_TIME_TT2000 data type for the date/time string
63 The preferred form.
64 The default encoding style is 3 for CDF_TIME_TT2000 data type for the date/time string

325

This function is also aliased as CDF_TT2000_to_UTC_string. This function accepts variable number of arguments
after the first two components of TT2000 value, and UTC string. It allows an optional argument field of an integer for
style. If the style is not passed in, a style of value 3 is assumed and the default encoded UTC string is returned. The
style has a valid value from 0 to 4.

For a style of 0, the encoded UTC string is DD-Mon-YYYY hh:mm:ss.mmmuuunnn, where DD is the day of the
month (1-31), Mon is the month (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, or Dec), YYYY is the year,
hh is the hour (0-23), mm is the minute (0-59), ss is the second (0-59 or 0-60 if leap second), mmm is the millisecond
(0-999), uuu is the microsecond (0-999), and nnn is the nanosecond (0-999). The encoded string has a length of
TT2000_0_STRING_LEN (30).

For a style of 1, the encoded UTC string is YYYYMMDD.ttttttttt, where YYYY is the year, MM is the month (1-12)
DD is the day of the month (1-31), and ttttttttt is sub-day.(0-999999999). The encoded string has a length of
TT2000_1_STRING_LEN (19).

For a style of 2, the encoded UTC string is YYYYMMDDhhmmss, where YYYY is the year, MM is the month (1-
12) DD is the day of the month (1-31), hh is the hour (0-23), mm is the minute (0-59),and ss is the second (0-59 or 0-
60 if leap second). The encoded string has a length of TT2000_2_STRING_LEN (14).

For a style of 3, the encoded UTC string is ISO 8601 form of YYYY-MM-DDThh:mm:ss.mmmuuunnn, where
YYYY is the year, MM is the month (1-12), DD is the day of the month (1-31), hh is the hour (0-23), mm is the minute
(0-59), ss is the second (0-59 or 0-60 if leap second), mmm is the millisecond (0-999), uuu is the microsecond (0-999),
and nnn is the nanosecond (0-999). The encoded string has a length of TT2000_3_STRING_LEN (29).

For a style of 4, the encoded UTC string is ISO 8601 form of YYYY-MM-DDThh:mm:ss.mmmuuunnnZ, where
YYYY is the year, MM is the month (1-12), DD is the day of the month (1-31), hh is the hour (0-23), mm is the minute
(0-59), ss is the second (0-59 or 0-60 if leap second), mmm is the millisecond (0-999), uuu is the microsecond (0-999),
and nnn is the nanosecond (0-999). The encoded string has a length of TT2000_4_STRING_LEN (30).

10.5 toParseTT200065
toParseTT2000 parses an encoded UTC-based date/time string and returns a CDF_TIME_TT2000 value. The format of
the string is one of the strings produced by toEncodeTT2000 or other encoding functions described in this Section. If the
epoch is outside the range for TT2000, the value returned will be ILLEGAL_TT2000_VALUE.

long long toParseTT2000(/* out -- CDF_TIME_TT2000 value returned. */
char *epString); /* in -- The date/time character string. */

10.6 parseTT2000 (aka CDF_TT2000_from_UTC_string)

parseTT2000 parses a standard UTC-based date/time character string and returns a CDF_TIME_TT2000 value. The
format of the string is one of the strings produced by the CDF_TT2000_to_UTC_string function described in Section
10.3. If the epoch is outside the range for TT2000, the value returned will be ILLEGAL_TT2000_VALUE.

65 To compliment to other CDF epoch data types: toParseEPOCH and toParseEPOCH16.

326

long long parseTT2000 (/* out -- CDF_TIME_TT2000 value returned. */
char *epString); /* in -- The standard date/time character string. */

This function is also aliased as CDF_TT2000_from_UTC_string.

10.7 CDF_TT2000_from_UTC_EPOCH

CDF_TT2000_from_UTC_EPOCH converts a value of CDF_EPOCH type to CDF_TIME_TT2000 type. If the epoch
is outside the range for TT2000, the value returned will be ILLEGAL_TT2000_VALUE. If the epoch is a predefined,
filled dummy value, DUMMY_TT2000_VALUE is returned.

long long CDF_TT2000_from_UTC_EPOCH(/* out -- CDF_TIME_TT2000 value returned. */
double epoch); /* in -- CDF_EPOCH value. */

This function converts a CDF_EPOCH data value to CDF_TIME_TT2000 value. Both microsecond and nanosecond
fields for TT2000 are zero-filled.

10.8 CDF_TT2000_to_UTC_EPOCH

CDF_TT2000_to_UTC_EPOCH converts a value in CDF_TIME_TT2000 type to CDF_EPOCH type.

double CDF_TT2000_to_UTC_EPOCH(/* out – The CDF_EPOCH value
long long tt2000); /* in -- The CDF_TIME_TT2000 value. */

The microsecond and nanosecond fields in TT2000 are ignored. As the CDF_EPOCH type does not have leap seconds,
the date/time falls on a leap second from TT2000 type will be converted to the zero (0) second of the next day.

10.9 CDF_TT2000_from_UTC_EPOCH16

CDF_TT2000_from_UTC_EPOCH16 converts a data value in CDF_EPOCH16 type to CDF_TT2000 type. If the epoch
is outside the range for TT2000, the value returned will be ILLEGAL_TT2000_VALUE. If the epoch is a predefined,
filled dummy value, DUMMY_TT2000_VALUE is returned.

long long CDF_TT2000_from_UTC_EPOCH16(/* out -- CDF_TIME_TT2000 value returned. */
double *epoch16); /* in -- The CDF_EPOCH16 value. */

The picoseconds from CDF_EPOCH16 is ignored.

327

10.10 CDF_TT2000_to_UTC_EPOCH16

CDF_TT2000_to_UTC_EPOCH16 converts a data value in CDF_TIME_TT2000 type to CDF_EPOCH16 type.

double CDF_TT2000_to_UTC_EPOCH16(/* out -- 0.0 if successful, -1.0 or -1.0E31 if failed. */
long long tt2000; /* in -- The CDF_TIME_TT2000 value. */
double *epoch16); /* out -- CDF_EPOCH16 value */

The picoseconds to CDF_EPOCH16 are zero(0)-filled. As the CDF_EPOCH16 type does not have leap seconds, the
date/time falls on a leap second in TT2000 type will be converted to the zero (0) second of the next day.

10.11 TT2000toUnixTime

TT2000toUnixTime converts epoch times in CDF_TIME_TT2000 (TT2000) type to Unix times. A CDF_TIME_TT2000
epoch, an 8-byte integer, is nanoseconds from J2000 with leap seconds, while Unix time, a double, is seconds from 1970-
01-01T00:00:00.000. The Unix time can have sub-second, with a time resolution of microseconds, in its fractional part.
Note: As CDF_TIME_TT2000 has much higher time resolution, sub-microseconds portion of its time might get lost
during the conversion. Also, TT2000’s leap seconds will get lost after the conversion.

void TT2000toUnixTime (
long long *epoch, /* in -- CDF_TIME_TT2000 epoch times. */
double *unixTime, /* out -- Unix times. */
int numTimes); /* in -- Number of times to be converted. */

10.12 UnixTimetoTT2000

UnixTimetoTT2000 converts Unix times into epoch times in CDF_TIME_TT2000 (TT2000) type. A Unix time, a double,
is seconds from 1970-01-01T00:00:00.000 while a CDF_TIME_TT2000 epoch, an 8-byte integer, is nanoseconds from
J2000 with leap seconds. The Unix time can have sub-second, with a time resolution of microseconds, in its fractional
part. Sub-microseconds will be filled with 0’s when converting from Unix time to TT2000.

void UnixTimetoTT2000 (
double *unixTime, /* in -- Unix times. */
long long *epoch, /* out -- CDF_TIME_TT2000 epoch times. */
int numTimes); /* in -- Number of times to be converted. */

328

Appendix A

A.1 Introduction

A status code is returned from most CDF functions. The cdf.h (for C) and CDF.INC (for Fortran) include files contain
the numerical values (constants) for each of the status codes (and for any other constants referred to in the explanations).
The CDF library Standard Interface functions CDFerror (for C) and CDF_error (for Fortran) can be used within a program
to inquire the explanation text for a given status code. The Internal Interface can also be used to inquire explanation text.

There are three classes of status codes: informational, warning, and error. The purpose of each is as follows:

Informational Indicates success but provides some additional information that may be of interest to an
application.

Warning Indicates that the function completed but possibly not as expected.

Error Indicates that a fatal error occurred and the function aborted.

Status codes fall into classes as follows:

Error codes < CDF_WARN < Warning codes < CDF_OK < Informational codes

CDF_OK indicates an unqualified success (it should be the most commonly returned status code). CDF_WARN is
simply used to distinguish between warning and error status codes.

A.2 Status Codes and Messages

The following list contains an explanation for each possible status code. Whether a particular status code is considered
informational, a warning, or an error is also indicated.

ATTR_EXISTS Named attribute already exists - cannot create or rename. Each
attribute in a CDF must have a unique name. Note that trailing
blanks are ignored by the CDF library when comparing attribute
names. [Error]

ATTR_NAME_TRUNC Attribute name truncated to CDF_ATTR_NAME_LEN256

characters. The attribute was created but with a truncated name.
[Warning]

BAD_ALLOCATE_RECS An illegal number of records to allocate for a variable was

specified. For RV variables the number must be one or greater.
For NRV variables the number must be exactly one. [Error]

BAD_ARGUMENT An illegal/undefined argument was passed. Check that all

arguments are properly declared and initialized. [Error]

329

BAD_ATTR_NAME Illegal attribute name specified. Attribute names must contain at
least one character, and each character must be printable. [Error]

BAD_ATTR_NUM Illegal attribute number specified. Attribute numbers must be zero

(0) or greater for C applications and one (1) or greater for Fortran
applications. [Error]

BAD_BLOCKING_FACTOR66 An illegal blocking factor was specified. Blocking factors must be

at least zero (0). [Error]

BAD_CACHESIZE An illegal number of cache buffers was specified. The value must

be at least zero (0). [Error]

BAD_CDF_EXTENSION An illegal file extension was specified for a CDF. In general, do

not specify an extension except possibly for a single-file CDF that
has been renamed with a different file extension or no file
extension. [Error]

BAD_CDF_ID CDF identifier is unknown or invalid. The CDF identifier

specified is not for a currently open CDF. [Error]

BAD_CDF_NAME Illegal CDF name specified. CDF names must contain at least one

character, and each character must be printable. Trailing blanks
are allowed but will be ignored. [Error]

BAD_CDFSTATUS Unknown CDF status code received. The status code specified is

not used by the CDF library. [Error]

BAD_CHECKSUM An illegal checksum mode received. It is invlid or currently not

supported. [Error]

BAD_COMPRESSION_PARM An illegal compression parameter was specified. [Error]

BAD_DATA_TYPE An unknown data type was specified or encountered. The CDF

data types are defined in cdf.h for C applications and in cdf.inc for
Fortran applications. [Error]

BAD_DECODING An unknown decoding was specified. The CDF decodings are

defined in cdf.h for C applications and in cdf.inc for Fortran
applications. [Error]

BAD_DIM_COUNT Illegal dimension count specified. A dimension count must be at

least one (1) and not greater than the size of the dimension. [Error]

BAD_DIM_INDEX One or more dimension index is out of range. A valid value must

be specified regardless of the dimension variance. Note also that
the combination of dimension index, count, and interval must not
specify an element beyond the end of the dimension. [Error]

BAD_DIM_INTERVAL Illegal dimension interval specified. Dimension intervals must be

at least one (1). [Error]

BAD_DIM_SIZE Illegal dimension size specified. A dimension size must be at least

one (1). [Error]

66 The status code BAD_BLOCKING_FACTOR was previously named BAD_EXTEND_RECS.

330

BAD_ENCODING Unknown data encoding specified. The CDF encodings are

defined in cdf.h for C applications and in cdf.inc for Fortran
applications. [Error]

BAD_ENTRY_NUM Illegal attribute entry number specified. Entry numbers must be at

least zero (0) for C applications and at least one (1) for Fortran
applications. [Error]

BAD_FNC_OR_ITEM The specified function or item is illegal. Check that the proper

number of arguments are specified for each operation being
performed. Also make sure that NULL_ is specified as the last
operation. [Error]

BAD_FORMAT Unknown format specified. The CDF formats are defined in cdf.h

for C applications and in cdf.inc for Fortran applications. [Error]

BAD_INITIAL_RECS An illegal number of records to initially write has been specified.

The number of initial records must be at least one (1). [Error]

BAD_MAJORITY Unknown variable majority specified. The CDF variable

majorities are defined in cdf.h for C applications and in cdf.inc for
Fortran applications. [Error]

BAD_MALLOC Unable to allocate dynamic memory - system limit reached.

Contact CDF User Support if this error occurs. [Error]

BAD_NEGtoPOSfp0_MODE An illegal -0.0 to 0.0 mode was specified. The -0.0 to 0.0 modes

are defined in cdf.h for C applications and in cdf.inc for Fortran
applications. [Error]

BAD_NUM_DIMS The number of dimensions specified is out of the allowed range.

Zero (0) through CDF_MAX_DIMS dimensions are allowed. If
more are needed, contact CDF User Support. [Error]

BAD_NUM_ELEMS The number of elements of the data type is illegal. The number of

elements must be at least one (1). For variables with a non-
character data type, the number of elements must always be one
(1). [Error]

BAD_NUM_VARS Illegal number of variables in a record access operation. [Error]

BAD_READONLY_MODE Illegal read-only mode specified. The CDF read-only modes are

defined in cdf.h for C applications and in cdf.inc for Fortran
applications. [Error]

BAD_REC_COUNT Illegal record count specified. A record count must be at least one

(1). [Error]

BAD_REC_INTERVAL Illegal record interval specified. A record interval must be at least

one (1). [Error]

BAD_REC_NUM Record number is out of range. Record numbers must be at least

zero (0) for C applications and at least one (1) for Fortran
applications. Note that a valid value must be specified regardless
of the record variance. [Error]

331

BAD_SCOPE Unknown attribute scope specified. The attribute scopes are

defined in cdf.h for C applications and in cdf.inc for Fortran
applications. [Error]

BAD_SCRATCH_DIR An illegal scratch directory was specified. The scratch directory

must be writeable and accessible (if a relative path was specified)
from the directory in which the application has been executed.
[Error]

BAD_SPARSEARRAYS_PARM An illegal sparse arrays parameter was specified. [Error]

BAD_VAR_NAME Illegal variable name specified. Variable names must contain at

least one character and each character must be printable. [Error]

BAD_VAR_NUM Illegal variable number specified. Variable numbers must be zero

(0) or greater for C applications and one (1) or greater for Fortran
applications. [Error]

BAD_zMODE Illegal zMode specified. The CDF zModes are defined in cdf.h for

C applications and in cdf.inc for Fortran applications. [Error]

CANNOT_ALLOCATE_RECORDS Records cannot be allocated for the given type of variable (e.g., a

compressed variable). [Error]

CANNOT_CHANGE Because of dependencies on the value, it cannot be changed. Some
possible causes of this error follow:

1. Changing a CDF's data encoding after a variable value

(including a pad value) or an attribute entry has been
written.

2. Changing a CDF's format after a variable has been created

or if a compressed single-file CDF.

3. Changing a CDF's variable majority after a variable value

(excluding a pad value) has been written.

4. Changing a variable's data specification after a value

(including the pad value) has been written to that variable
or after records have been allocated for that variable.

5. Changing a variable's record variance after a value

(excluding the pad value) has been written to that variable
or after records have been allocated for that variable.

6. Changing a variable's dimension variances after a value

(excluding the pad value) has been written to that variable
or after records have been allocated for that variable.

7. Writing “initial” records to a variable after a value

(excluding the pad value) has already been written to that
variable.

8. Changing a variable's blocking factor when a compressed

variable and a value (excluding the pad value) has been

332

written or when a variable with sparse records and a value
has been accessed.

9. Changing an attribute entry's data specification where the

new specification is not equivalent to the old specification.

CANNOT_COMPRESS The CDF or variable cannot be compressed. For CDFs, this occurs
if the CDF has the multi-file format. For variables, this occurs if
the variable is in a multi-file CDF, values have been written to the
variable, or if sparse arrays have already been specified for the
variable. [Error]

CANNOT_SPARSEARRAYS Sparse arrays cannot be specified for the variable. This occurs if

the variable is in a multi-file CDF, values have been written to the
variable, records have been allocated for the variable, or if
compression has already been specified for the variable. [Error]

CANNOT_SPARSERECORDS Sparse records cannot be specified for the variable. This occurs if

the variable is in a multi-file CDF, values have been written to the
variable, or records have been allocated for the variable. [Error]

CDF_CLOSE_ERROR Error detected while trying to close CDF. Check that sufficient

disk space exists for the dotCDF file and that it has not been
corrupted. [Error]

CDF_CREATE_ERROR Cannot create the CDF specified - error from file system. Make

sure that sufficient privilege exists to create the dotCDF file in the
disk/directory location specified and that an open file quota has not
already been reached. [Error]

CDF_DELETE_ERROR Cannot delete the CDF specified - error from file system.

Insufficient privileges exist the delete the CDF file(s). [Error]

CDF_EXISTS The CDF named already exists - cannot create it. The CDF library

will not overwrite an existing CDF. [Error]

CDF_INTERNAL_ERROR An unexpected condition has occurred in the CDF library. Report

this error to CDFsupport. [Error]

CDF_NAME_TRUNC CDF file name truncated to CDF_PATHNAME_LEN characters.

The CDF was created but with a truncated name. [Warning]

CDF_OK Function completed successfully.

CDF OPEN_ERROR Cannot open the CDF specified - error from file system. Check

that the dotCDF file is not corrupted and that sufficient privilege
exists to open it. Also check that an open file quota has not already
been reached. [Error]

CDF_READ_ERROR Failed to read the CDF file - error from file system. Check that the

dotCDF file is not corrupted. [Error]

CDF_WRITE_ERROR Failed to write the CDF file - error from file system. Check that

the dotCDF file is not corrupted. [Error]

333

CHECKSUM_ERROR The data integrity verification through the checksum failed.
[Error]

CHECKSUM_NOT_ALLOWED The checksum is not allowed for old versioned files. [Error]

COMPRESSION_ERROR An error occurred while compressing a CDF or block of variable

records. This is an internal error in the CDF library. Contact CDF
User Support. [Error]

CORRUPTED_V2_CDF This Version 2 CDF is corrupted. An error has been detected in

the CDF's control information. If the CDF file(s) are known to be
valid, please contact CDF User Support. [Error]

DECOMPRESSION_ERROR An error occurred while decompressing a CDF or block of variable

records. The most likely cause is a corrupted dotCDF file. [Error]

DID_NOT_COMPRESS For a compressed variable, a block of records did not compress to

smaller than their uncompressed size. They have been stored
uncompressed. This can result If the blocking factor is set too
low or if the characteristics of the data are such that the
compression algorithm chosen is unsuitable. [Informational]

EMPTY_COMPRESSED_CDF The compressed CDF being opened is empty. This will result if a

program, which was creating/modifying, the CDF abnormally
terminated. [Error]

END_OF_VAR The sequential access current value is at the end of the variable.

Reading beyond the end of the last physical value for a variable is
not allowed (when performing sequential access). [Error]

FORCED_PARAMETER A specified parameter was forced to an acceptable value (rather

than an error being returned). [Warning]

IBM_PC_OVERFLOW An operation involving a buffer greater than 64k bytes in size has

been specified for PCs running 16-bit DOS/Windows 3.*. [Error]

ILLEGAL_EPOCH_VALUE Illegal component is detected in computing an epoch value or an

illegal epoch value is provided in decomposing an epoch value.
[Error]

ILLEGAL_FOR_SCOPE The operation is illegal for the attribute's scope. For example, only

gEntries may be written for gAttributes - not rEntries or zEntries.
[Error]

ILLEGAL_IN_zMODE The attempted operation is illegal while in zMode. Most

operations involving rVariables or rEntries will be illegal. [Error]

ILLEGAL_ON_V1_CDF The specified operation (i.e., opening) is not allowed on Version 1

CDFs. [Error]

ILLEGAL_TT2000_VALUE Illegal component is detected in computing an epoch value or an

illegal epoch value is provided in decomposing an epoch value.
[Error]

MULTI_FILE_FORMAT The specified operation is not applicable to CDFs with the multi-

file format. For example, it does not make sense to inquire

334

indexing statistics for a variable in a multi-file CDF (indexing is
only used in single-file CDFs). [Informational]

NA_FOR_VARIABLE The attempted operation is not applicable to the given variable.

[Warning]

NEGATIVE_FP_ZERO One or more of the values read/written are -0.0 (An illegal value

on VAXes and DEC Alphas running OpenVMS). [Warning]

NO_ATTR_SELECTED An attribute has not yet been selected. First select the attribute on

which to perform the operation. [Error]

NO_CDF_SELECTED A CDF has not yet been selected. First select the CDF on which

to perform the operation. [Error]

NO_DELETE_ACCESS Deleting is not allowed (read-only access). Make sure that delete

access is allowed on the CDF file(s). [Error]

NO_ENTRY_SELECTED An attribute entry has not yet been selected. First select the entry

number on which to perform the operation. [Error]

NO_MORE_ACCESS Further access to the CDF is not allowed because of a severe error.

If the CDF was being modified, an attempt was made to save the
changes made prior to the severe error. in any event, the CDF
should still be closed. [Error]

NO_PADVALUE_SPECIFIED A pad value has not yet been specified. The default pad value is

currently being used for the variable. The default pad value was
returned. [Informational]

NO_STATUS SELECTED A CDF status code has not yet been selected. First select the status

code on which to perform the operation. [Error]

NO_SUCH_ATTR The named attribute was not found. Note that attribute names are

case-sensitive. [Error]

NO_SUCH_CDF The specified CDF does not exist. Check that the file name

specified is correct. [Error]

NO_SUCH_ENTRY No such entry for specified attribute. [Error]

NO_SUCH_RECORD The specified record does not exist for the given variable. [Error]

NO_SUCH_VAR The named variable was not found. Note that variable names are

case-sensitive. [Error]

NO_VAR_SELECTED A variable has not yet been selected. First select the variable on

which to perform the operation. [Error]

NO_VARS_IN_CDF This CDF contains no rVariables. The operation performed is not

applicable to a CDF with no rVariables. [Informational]

NO_WRITE_ACCESS Write access is not allowed on the CDF file(s). Make sure that the

CDF file(s) have the proper file system privileges and ownership.
[Error]

335

NOT_A_CDF Named CDF is corrupted or not actually a CDF. Contact CDF
User Support if you are sure that the specified file is a CDF that
should be readable by the CDF distribution being used. [Error]

NOT_A_CDF_OR_NOT_SUPPORTED This can occur if an older CDF distribution is being used to read a

CDF created by a more recent CDF distribution. Contact CDF
User Support if you are sure that the specified file is a CDF that
should be readable by the CDF distribution being used. CDF is
backward compatible but not forward compatible. [Error]

PRECEEDING_RECORDS_ALLOCATED Because of the type of variable, records preceding the range of

records being allocated were automatically allocated as well.
[Informational]

READ_ONLY_DISTRIBUTION Your CDF distribution has been built to allow only read access to

CDFs. Check with your system manager if you require write
access. [Error]

READ_ONLY_MODE The CDF is in read-only mode - modifications are not allowed.

[Error]

SCRATCH_CREATE_ERROR Cannot create a scratch file - error from file system. If a scratch

directory has been specified, ensure that it is writeable. [Error]

SCRATCH_DELETE_ERROR Cannot delete a scratch file - error from file system. [Error]

SCRATCH_READ_ERROR Cannot read from a scratch file - error from file system. [Error]

SCRATCH_WRITE_ERROR Cannot write to a scratch file - error from file system. [Error]

SINGLE_FILE_FORMAT The specified operation is not applicable to CDFs with the single-

file format. For example, it does not make sense to close a variable
in a single-file CDF. [Informational]

SOME_ALREADY_ALLOCATED Some of the records being allocated were already allocated.

[Informational]

TOO_MANY_PARMS A type of sparse arrays or compression was encountered having

too many parameters. This could be causes by a corrupted CDF or
if the CDF was created/modified by a CDF distribution more
recent than the one being used. [Error]

TOO_MANY_VARS A multi-file CDF on a PC may contain only a limited number of

variables because of the 8.3 file naming convention of MS-DOS.
This consists of 100 rVariables and 100 zVariables. [Error]

UNKNOWN_COMPRESSION An unknown type of compression was specified or encountered.

[Error]

UNKNOWN_SPARSENESS An unknown type of sparseness was specified or encountered.

[Error]

UNSUPPORTED_OPERATION The attempted operation is not supported at this time. [Error]

VAR_ALREADY_CLOSED The specified variable is already closed. [Informational]

336

VAR_CLOSE_ERROR Error detected while trying to close variable file. Check that
sufficient disk space exists for the variable file and that it has not
been corrupted. [Error]

VAR_CREATE_ERROR An error occurred while creating a variable file in a multi-file CDF.

Check that a file quota has not been reached. [Error]

VAR_DELETE_ERROR An error occurred while deleting a variable file in a multi-file CDF.

Check that sufficient privilege exist to delete the CDF files.
[Error]

VAR_EXISTS Named variable already exists - cannot create or rename. Each

variable in a CDF must have a unique name (rVariables and
zVariables can not share names). Note that trailing blanks are
ignored by the CDF library when comparing variable names.
[Error]

VAR_NAME_TRUNC Variable name truncated to CDF_VAR_NAME_LEN256

characters. The variable was created but with a truncated name.
[Warning]

VAR_OPEN_ERROR An error occurred while opening variable file. Check that

sufficient privilege exists to open the variable file. Also make sure
that the associated variable file exists. [Error]

VAR_READ_ERROR Failed to read variable as requested - error from file system. Check

that the associated file is not corrupted. [Error]

VAR_WRITE_ERROR Failed to write variable as requested - error from file system.

Check that the associated file is not corrupted. [Error]

VIRTUAL_RECORD_DATA One or more of the records are virtual (never actually written to

the CDF). Virtual records do not physically exist in the CDF file(s)
but are part of the conceptual view of the data provided by the CDF
library. Virtual records are described in the Concepts chapter in
the CDF User's Guide. [Informational]

337

Appendix B

B.1 Original Standard Interface

CDFstatus CDFattrCreate (id, attrName, attrScope, attrNum)
CDFid id; /* in */
char *attrName; /* in */
long attrScope; /* in */
long *attrNum; /* out */

CDFstatus CDFattrEntryInquire (id, attrNum, entryNum, dataType, numElements)
CDFid id; /* in */
long attrNum; /* in */
long entryNum; /* in */
long *dataType; /* out */
long *numElements; /* out */

CDFstatus CDFattrGet (id, attrNum, entryNum, value)
CDFid id; /* in */
long attrNum; /* in */
long entryNum; /* in */
void *value; /* out */

CDFstatus CDFattrInquire (id, attrNum, attrName, attrScope, maxEntry)
CDFid id; /* in */
long attrNum; /* in */
char *attrName; /* out */
long *attrScope; /* out */
long *maxEntry; /* out */

long CDFattrNum (id, attrName)
CDFid id; /* in */
char *attrName; /* in */

CDFstatus CDFattrPut (id, attrNum, entryNum, dataType, numElements, value)
CDFid id; /* in */
long attrNum; /* in */
long entryNum; /* in */
long dataType; /* in */
long numElements; /* in */
void *value; /* in */

CDFstatus CDFattrRename (id, attrNum, attrName)
CDFid id; /* in */
long attrNum; /* in */

338

char *attrName; /* in */

CDFstatus CDFclose (id)
CDFid id; /* in */

CDFstatus CDFcreate (CDFname, numDims, dimSizes, encoding, majority, id)
char *CDFname; /* in */
long numDims; /* in */
long dimSizes[]; /* in */
long encoding; /* in */
long majority; /* in */
CDFid *id; /* out */

CDFstatus CDFdelete (id)
CDFid id; /* in */

CDFstatus CDFdoc (id, version, release, text)
CDFid id; /* in */
long *version; /* out */
long *release; /* out */
char text[CDF_DOCUMENT_LEN+1]; /* out */

CDFstatus CDFerror (status, message)
CDFstatus status; /* in */
char message[CDF_STATUSTEXT_LEN+1]; /* out */

CDFstatus CDFgetrVarsRecordData (id, numVars, varNames, varRecNum, buffer)
CDFid id; /* in */
long numVars; /* in */
char *varNames[]; /* in */
long varRecNum; /* in */
void *buffer[]; /* out */

CDFstatus CDFgetzVarsRecordData (id, numVars, varNames, varRecNum, buffer)
CDFid id; /* in */
long numVars; /* in */
char *varNames[]; /* in */
long varRecNum; /* in */
void *buffer[]; /* out */

CDFstatus CDFinquire (id, numDims, dimSizes, encoding, majority, maxRec,
 numVars, numAttrs)
CDFid id; /* in */
long *numDims; /* out */
long dimSizes[CDF_MAX_DIMS]; /* out */
long *encoding; /* out */
long *majority; /* out */
long *maxRec; /* out */
long *numVars; /* out */
long *numAttrs; /* out */

CDFstatus CDFopen (CDFname, id)
char *CDFname; /* in */
CDFid *id; /* out */

CDFstatus CDFputrVarsRecordData (id, numVars, varNames, varRecNum, buffer)

339

CDFid id; /* in */
long numVars; /* in */
char *varNames[]; /* in */
long varRecNum; /* in */
void *buffer; /* in */

CDFstatus CDFputzVarsRecordData (id, numVars, varNames, varRecNum, buffer)
CDFid id; /* in */
long numVars; /* in */
char *varNames[]; /* in */
long varRecNum; /* in */
void *buffer[]; /* in */

CDFstatus CDFvarClose (id, varNum)
CDFid id; /* in */
long varNum; /* in */

CDFstatus CDFvarCreate (id, varName, dataType, numElements, recVariances,
 dimVariances, varNum)
CDFid id; /* in */
char *varName; /* in */
long dataType; /* in */
long numElements; /* in */
long recVariance; /* in */
long dimVariances[]; /* in */
long *varNum; /* out */

CDFstatus CDFvarGet (id, varNum, recNum, indices, value)
CDFid id; /* in */
long varNum; /* in */
long recNum; /* in */
long indices[]; /* in */
void *value; /* out */

CDFstatus CDFvarHyperGet (id, varNum, recStart, recCount, recInterval,
 indices, counts, intervals, buffer)
CDFid id; /* in */
long varNum; /* in */
long recStart; /* in */
long recCount; /* in */
long recInterval; /* in */
long indices[]; /* in */
long counts[]; /* in */
long intervals[]; /* in */
void *buffer; /* out */

CDFstatus CDFvarHyperPut (id, varNum, recStart, recCount, recInterval,
 indices, counts, intervals, buffer)
CDFid id; /* in */
long varNum; /* in */
long recStart; /* in */
long recCount; /* in */
long recInterval; /* in */
long indices[]; /* in */
long counts[]; /* in */
long intervals[]; /* in */

340

void *buffer; /* in */

CDFstatus CDFvarInquire (id, varNum, varName, dataType, numElements,
 recVariance, dimVariances)
CDFid id; /* in */
long varNum; /* in */
char *varName; /* out */
long *dataType; /* out */
long *numElements; /* out */
long *recVariance; /* out */
long dimVariances[CDF_MAX_DIMS]; /* out */

long CDFvarNum (id, varName)
CDFid id; /* in */
char *varName; /* in */

CDFstatus CDFvarPut (id, varNum, recNum, indices, value)
CDFid id; /* in */
long varNum; /* in */
long recNum; /* in */
long indices[]; /* in */
void *value; /* in */

CDFstatus CDFvarRename (id, varNum, varName)
CDFid id; /* in */
long varNum; /* in */
char *varName; /* in */

341

B.2 Extended Standard Interface

CDFstatus CDFcloseCDF (id)
CDFid id; /* in */

CDFstatus CDFclosezVar (id, varNum)
CDFid id; /* in */
long varNum; /* in */

CDFstatus CDFconfirmAttrExistence (id, attrName)
CDFid id; /* in */
char *attrName; /* in */

CDFstatus CDFconfirmgEntryExistence (id, attrNum, entryNum)
CDFid id; /* in */
long attrNum; /* in */
long entryNum; /* in */

CDFstatus CDFconfirmrEntryExistence (id, attrNum, entryNum)
CDFid id; /* in */
long attrNum; /* in */
long entryNum; /* in */

CDFstatus CDFconfirmzEntryExistence (id, attrNum, entryNum)
CDFid id; /* in */
long attrNum; /* in */
long entryNum; /* in */

CDFstatus CDFconfirmzVarExistence (id, varNum)
CDFid id; /* in */
long varNum; /* in */

CDFstatus CDFconfirmzVarPadValueExistence (id, varNum)
CDFid id; /* in */
long varNum; /* in */

CDFstatus CDFcreateAttr (id, attrName, scope, attrNum)
CDFid id; /* in */
char *attrName; /* in */
long scope; /* in */
long *attrNum; /* out */

CDFstatus CDFcreateCDF (CDFname, dimSizes, id)
char *CDFname; /* in */
CDFid *id; /* out */

CDFstatus CDFcreatezVar (id, varName, dataType, numElements, numDims,
 dimSizes, recVary, dimVarys, varNum)
CDFid id; /* in */
char *varName; /* in */
long dataType; /* in */
long numElements; /* in */

342

long numDims; /* in */
long dimSizes[]; /* in */
long recVary; /* in */
long dimVarys[]; /* in */
long *varNum; /* out */

CDFstatus CDFdeleteCDF (id)
CDFid id; /* in */

CDFstatus CDFdeleteAttr (id, attrNum)
CDFid id; /* in */
long attrNum; /* in */

CDFstatus CDFdeleteAttrgEntry (id, attrNum, entryNum)
CDFid id; /* in */
long attrNum; /* in */
long entryNum; /* in */

CDFstatus CDFdeleteAttrrEntry (id, attrNum, entryNum)
CDFid id; /* in */
long attrNum; /* in */
long entryNum; /* in */

CDFstatus CDFdeleteAttrzEntry (id, attrNum, entryNum)
CDFid id; /* in */
long attrNum; /* in */
long entryNum; /* in */

CDFstatus CDFdeletezVar (id, varNum)
CDFid id; /* in */
long varNum; /* in */

CDFstatus CDFdeletezVarRecords (id, varNum, startRec, endRec)
CDFid id; /* in */
long varNum; /* in */
long startRec; /* in */
long endRec; /* in */

CDFstatus CDFdeletezVarRecordsRenumber (id, varNum, startRec, endRec)
CDFid id; /* in */
long varNum; /* in */
long startRec; /* in */
long endRec; /* in */

CDFstatus CDFgetAttrgEntryDataType (id, attrNum, entryNum, dataType)
CDFid id; /* in */
long attrNum; /* in */
long entryNum; /* in */
long *dataType; /* out */

CDFstatus CDFgetAttrgEntryNumElements (id, attrNum, entryNum, numElems)
CDFid id; /* in */
long attrNum; /* in */
long entryNum; /* in */
long *numElems; /* out */

343

CDFstatus CDFgetAttrgEntry (id, attrNum, entryNum, value)
CDFid id; /* in */
long attrNum; /* in */
long entryNum; /* in */
void *value; /* out */

CDFstatus CDFgetAttrrEntry (id, attrNum, entryNum, value)
CDFid id; /* in */
long attrNum; /* in */
long entryNum; /* in */
void *value; /* out */

CDFstatus CDFgetAttrMaxgEntry (id, attrNum, entryNum)
CDFid id; /* in */
long attrNum; /* in */
long *entryNum; /* out */

CDFstatus CDFgetAttrMaxrEntry (id, attrNum, entryNum)
CDFid id; /* in */
long attrNum; /* in */
long *entryNum; /* out */

CDFstatus CDFgetAttrMaxzEntry (id, attrNum, entryNum)
CDFid id; /* in */
long attrNum; /* in */
long *entryNum; /* out */

CDFstatus CDFgetAttrName (id, attrNum, attrName)
CDFid id; /* in */
long attrNum; /* in */
char *attrName; /* out */

long CDFgetAttrNum (id, attrName) /* out */
CDFid id; /* in */
char *attrName; /* in */

CDFstatus CDFgetAttrrEntryDataType (id, attrNum, entryNum, dataType)
CDFid id; /* in */
long attrNum; /* in */
long entryNum; /* in */
long *dataType; /* out */

CDFstatus CDFgetAttrrEntryNumElements (id, attrNum, entryNum, numElems)
CDFid id; /* in */
long attrNum; /* in */
long entryNum; /* in */
long *numElems; /* out */

CDFstatus CDFgetAttrScope (id, attrNum, scope)
CDFid id; /* in */
long attrNum; /* in */
long *scope; /* out */

CDFstatus CDFgetAttrStrgEntry (id, attrNum, entryNum, string)
CDFid id; /* in */
long attrNum; /* in */

344

long entryNum; /* in */
long **string; /* out */

CDFstatus CDFgetAttrStrrEntry (id, attrNum, entryNum, string)
CDFid id; /* in */
long attrNum; /* in */
long entryNum; /* in */
long **string; /* out */

CDFstatus CDFgetAttrStrzEntry (id, attrNum, entryNum, string)
CDFid id; /* in */
long attrNum; /* in */
long entryNum; /* in */
long **string; /* out */

CDFstatus CDFgetAttrWStrgEntry (id, attrNum, entryNum, string, locale)
CDFid id; /* in */
long attrNum; /* in */
long entryNum; /* in */
wchar_t **string; /* out */
char *locale; /* in */

CDFstatus CDFgetAttrWStrrEntry (id, attrNum, entryNum, string, locale)
CDFid id; /* in */
long attrNum; /* in */
long entryNum; /* in */
wchar_t **string; /* out */
char *locale; /* in */

CDFstatus CDFgetAttrWStrzEntry (id, attrNum, entryNum, string, locale)
CDFid id; /* in */
long attrNum; /* in */
long entryNum; /* in */
wchar_t **string; /* out */
char *locale; /* in */

CDFstatus CDFgetAttrzEntry (id, attrNum, entryNum, value)
CDFid id; /* in */
long attrNum; /* in */
long entryNum; /* in */
void *value; /* out */

CDFstatus CDFgetAttrzEntryDataType (id, attrNum, entryNum, dataType)
CDFid id; /* in */
long attrNum; /* in */
long entryNum; /* in */
long *dataType; /* out */

CDFstatus CDFgetAttrzEntryNumElements (id, attrNum, entryNum, numElems)
CDFid id; /* in */
long attrNum; /* in */
long entryNum; /* in */
long *numElems; /* out */

CDFstatus CDFgetCacheSize (id, numBuffers)
CDFid id; /* in */

345

long *numBuffers; /* out */

CDFstatus CDFgetChecksum (id, checksum)
CDFid id; /* in */
long *checksum; /* out */

CDFstatus CDFgetCompression (id, compressionType, compressionParms,
 compressionPercent)
CDFid id; /* in */
long *compressionType; /* out */
long compressionParms[]; /* out */
long *compressionPercent; /* out */

CDFstatus CDFgetCompressionCacheSize (id, numBuffers)
CDFid id; /* in */
long *numBuffers; /* out */

CDFstatus CDFgetCompressionInfo (cdfName, compressionType, compressionParms,
 compressionSize, uncompressionSize)
char *cdfName; /* in */
long *compressionType; /* out */
long compressionParms[]; /* out */
OFF_T *compressionSize; /* out */
OFF_T *uncompressionSize; /* out */

CDFstatus CDFgetCopyright (id, Copyright)
CDFid id; /* in */
char *Copyright; /* out */

CDFstatus CDFgetDataTypeSize (dataType, numBytes)
long dataType; /* in */
long *numBytes; /* out */

CDFstatus CDFgetDecoding (id, decoding)
CDFid id; /* in */
long *decoding; /* out */

CDFstatus CDFgetEncoding (id, encoding)
CDFid id; /* in */
long *encoding; /* out */

int CDFgetFileBackward ()

CDFstatus CDFgetFormat (id, format)
CDFid id; /* in */
long *format; /* out */

CDFstatus CDFgetLibraryCopyright (Copyright)
char *Copyright; /* out */

CDFstatus CDFgetLibraryVersion (version, release, increment, subIncrement)
long *version; /* out */
long *release; /* out */
long *increment; /* out */
char *subIncrement; /* out */

346

CDFstatus CDFgetLeapSecondLastUpdated (id, lastUpdated)
CDFid id; /* in */
long *lastUpdated; /* out */

CDFstatus CDFgetMajority (id, majority)
CDFid id; /* in */
long *majority; /* out */

CDFstatus CDFgetMaxWrittenRecNums (id, maxRecrVars, maxReczVars)
CDFid id; /* in */
long *maxRecrVars; /* out */
long *maxReczVars; /* out */

CDFstatus CDFgetName (id, name)
CDFid id; /* in */
char *name; /* out */

CDFstatus CDFgetNegtoPosfp0Mode (id, negtoPosfp0)
CDFid id; /* in */
long *negtoPosfp0; /* out */

CDFstatus CDFgetNumAttrgEntries (id, attrNum, entries)
CDFid id; /* in */
long atrNum; /* in */
long *entries; /* out */

CDFstatus CDFgetNumAttributes (id, numAttrs)
CDFid id; /* in */
long *numAttrs; /* out */

CDFstatus CDFgetNumAttrrEntries (id, attrNum, entries)
CDFid id; /* in */
long atrNum; /* in */
long *entries; /* out */

CDFstatus CDFgetNumAttrzEntries (id, attrNum, entries)
CDFid id; /* in */
long atrNum; /* in */
long *entries; /* out */

CDFstatus CDFgetNumgAttributes (id, numAttrs)
CDFid id; /* in */
long *numAttrs; /* out */

CDFstatus CDFgetNumvAttributes (id, numAttrs)
CDFid id; /* in */
long *numAttrs; /* out */

CDFstatus CDFgetNumrVars (id, numVars)
CDFid id; /* in */
long *numrVars; /* out */

CDFstatus CDFgetNumzVars (id, numVars)
CDFid id; /* in */
long *numzVars; /* out */

347

CDFstatus CDFgetReadOnlyMode (id, mode)
CDFid id; /* in */
long *mode; /* out */

CDFstatus CDFgetStageCacheSize (id, numBuffers)
CDFid id; /* in */
long *numBuffers; /* out */

CDFstatus CDFgetStatusText (status, text)
CDFstatus status; /* in */
char *text; /* out */

CDFstatus CDFgetVarAllRecordsByVarName (id, varName, buffer)
CDFid id; /* in */
char *varName; /* in */
void *buffer; /* out */

long CDFgetVarNum (id, varName)
CDFid id; /* in */
char *varName; /* in */

int CDFgetValidate ()

CDFstatus CDFgetVarAllRecordsByVarName (id, varName, buffer)
CDFid id; /* in */
char *varName; /* in */
void *buffer; /* out */

CDFstatus CDFgetVarRangeRecordsByVarName (id, varName, startRec, stopRec, buffer)
CDFid id; /* in */
char *varName; /* in */
long startRec; /* in */
long stopRec; /* in */
void *buffer; /* out */

CDFstatus CDFgetVersion (id, version, release, increment)
CDFid id; /* in */
long *version; /* out */
long *release; /* out */
long *increment; /* out */

CDFstatus CDFgetzMode (id, zMode)
CDFid id; /* in */
long *zMode; /* out */

CDFstatus CDFgetzVarAllocRecords (id, varNum, allocRecs)
CDFid id; /* in */
long varNum; /* in */
long *allocRecs; /* out */

CDFstatus CDFgetzVarAllRecordsByVarID (id, varNum, buffer)
CDFid id; /* in */
long varNum; /* in */
void *buffer; /* out */

CDFstatus CDFgetzVarBlockingFactor (id, varNum, bf)

348

CDFid id; /* in */
long varNum; /* in */
long *bf; /* out */

CDFstatus CDFgetzVarCacheSize (id, varNum, numBuffers)
CDFid id; /* in */
long varNum; /* in */
long *numBuffers; /* out */

CDFstatus CDFgetzVarCompression (id, varNum, cType, cParms, cPercent)
CDFid id; /* in */
long varNum; /* in */
long *cType; /* out */
long cParms[]; /* out */
long *cPercent; /* out */

CDFstatus CDFgetzVarData (id, varNum, recNum, indices, value)
CDFid id; /* in */
long varNum; /* in */
long recNum; /* in */
long indices[]; /* in */
void *value; /* out */

CDFstatus CDFgetzVarDataType (id, varNum, dataType)
CDFid id; /* in */
long varNum; /* in */
long *dataType; /* out */

CDFstatus CDFgetzVarDimSizes (id, varNum, dimSizes)
CDFid id; /* in */
long varNum; /* in */
long dimSizes[]; /* out */

CDFstatus CDFgetzVarDimVariances (id, varNum, dimVarys)
CDFid id; /* in */
long varNum; /* in */
long dimVarys[]; /* out */

CDFstatus CDFgetzVarMaxAllocRecNum (id, varNum, maxRec)
CDFid id; /* in */
long varNum; /* in */
long *maxRec; /* out */

CDFstatus CDFgetzVarMaxWrittenRecNum (id, varNum, maxRec)
CDFid id; /* in */
long varNum; /* in */
long *maxRec; /* out */

CDFstatus CDFgetzVarName (id, varNum, varName)
CDFid id; /* in */
long varNum; /* in */
char *varName; /* out */

CDFstatus CDFgetzVarNumDims (id, varNum, numDims)
CDFid id; /* in */
long varNum; /* in */

349

long *numDims; /* out */

CDFstatus CDFgetzVarNumElements (id, varNum, numElems)
CDFid id; /* in */
long varNum; /* in */
long *numElems; /* out */

CDFstatus CDFgetzVarNumRecsWritten (id, varNum, numRecs)
CDFid id; /* in */
long varNum; /* in */
long *numRecs; /* out */

CDFstatus CDFgetzVarPadValue (id, varNum, padValue)
CDFid id; /* in */
long varNum; /* in */
void *padValue; /* out */

CDFstatus CDFgetzVarRangeRecordsByVarID (id, varNum, startRec, stopRec, buffer)
CDFid id; /* in */
long varNum; /* in */
long startRec; /* in */
long stopRec; /* in */
void *buffer; /* out */

CDFstatus CDFgetzVarRecordData (id, varNum, recNum, buffer)
CDFid id; /* in */
long varNum; /* in */
long recNum; /* in */
void *buffer; /* out */

CDFstatus CDFgetzVarRecVariance (id, varNum, recVary)
CDFid id; /* in */
long varNum; /* in */
long *recVary; /* out */

CDFstatus CDFgetzVarReservePercent (id, varNum, percent)
CDFid id; /* in */
long varNum; /* in */
long *percent; /* out */

CDFstatus CDFgetzVarSeqData (id, varNum, value)
CDFid id; /* in */
long varNum; /* in */
void *value; /* out */

CDFstatus CDFgetzVarSeqPos (id, varNum, recNum, indices)
CDFid id; /* in */
long varNum; /* in */
long *recNum; /* out */
long indices[]; /* out */

CDFstatus CDFgetzVarsMaxWrittenRecNum (id, recNum)
CDFid id; /* in */
long *recNum; /* out */

CDFstatus CDFgetzVarSparseRecords (id, varNum, sRecords)

350

CDFid id; /* in */
long varNum; /* in */
long *sRecords; /* out */

CDFstatus CDFgetzVarSpec (id, varNum, dataType, numElems, numDims, dimSizes, recVary, dimVarys)
CDFid id; /* in */
long varNum; /* in */
long *dataType; /* out */
long *numElems; /* out */
long *numDims; /* out */
long dimSizes[]; /* out */
long *recVary; /* out */
long dimVarys[]; /* out */

CDFstatus CDFgetzVarsRecordDatabyNumbers (id, numVars, varNums,
 varRecNum, buffer)
CDFid id; /* in */
long numVars; /* in */
long varNums[]; /* in */
long varRecNum; /* in */
void *buffer; /* out */

CDFstatus CDFhyperGetzVarData (id, varNum, recNum, reCount, recInterval,
 indices, counts, intervals, buffer)
CDFid id; /* in */
long varNum; /* in */
long recNum; /* in */
long recCount; /* in */
long recInterval; /* in */
long indices[]; /* in */
long counts[]; /* in */
long intervals[]; /* in */
void *buffer; /* out */

CDFstatus CDFhyperPutzVarData (id, varNum, recNum, reCount, recInterval,
 indices, counts, intervals, buffer)
CDFid id; /* in */
long varNum; /* in */
long recNum; /* in */
long recCount; /* in */
long recInterval; /* in */
long indices[]; /* in */
long counts[]; /* in */
long intervals[]; /* in */
void *buffer; /* in */

CDFstatus CDFinquireAttr (id, attrNum, attrName, attrScope, maxgEntry, maxrEntry,
 maxzEntry)
CDFid id; /* in */
long attrNum; /* in */
char *attrName; /* out */
long *attrScope; /* out */
long *maxgEntry; /* out */
long *maxrEntry; /* out */
long *maxzEntry; /* out */

351

CDFstatus CDFinquireAttrgEntry (id, attrNum, entryNum, dataType, numElems)
CDFid id; /* in */
long attrNum; /* in */
long entryNum; /* in */
long *dataType; /* out */
long *numElems; /* out */

CDFstatus CDFinquireAttrrEntry (id, attrNum, entryNum, dataType, numElems)
CDFid id; /* in */
long attrNum; /* in */
long entryNum; /* in */
long *dataType; /* out */
long *numElems; /* out */

CDFstatus CDFinquireAttrzEntry (id, attrNum, entryNum, dataType, numElems)
CDFid id; /* in */
long attrNum; /* in */
long entryNum; /* in */
long *dataType; /* out */
long *numElems; /* out */

CDFstatus CDFinquireCDF (id, numDims, dimSizes, encoding, majority, maxrRec,
 numrVars, maxzRec, numzVars, numAttrs)
CDFid id; /* in */
long *numDims; /* out */
long dimSizes[CDF_MAX_DIMS]; /* out */
long *encoding; /* out */
long *majority; /* out */
long *maxrRec; /* out */
long *numrVars; /* out */
long *maxzRec; /* out */
long *numzVars; /* out */
long *numAttrs; /* out */

CDFstatus CDFinquirezVar (id, varNum, varName, dataType, numElems,
 numDims, dimSizes, recVary, dimVarys)
CDFid id; /* in */
long varNum; /* in */
char *varName; /* out */
long *dataType; /* out */
long *numElems; /* out */
long *numDims; /* out */
long dimSizes[]; /* out */
long *recVary; /* out */
long dimVarys[]; /* out */

CDFstatus CDFinsertVarAllRecordsByVarName (id, varName, startRec, numRecs, buffer)
CDFid id; /* in */
char *varName; /* in */
long startRec; /* in */
long numRecs; /* in */
void *buffer; /* in */

CDFstatus CDFinsertrVarAllRecordsByVarID (id, varNum, startRec, numRecs, buffer)
CDFid id; /* in */
long varNum; /* in */

352

long startRec; /* in */
long numRecs; /* in */
void *buffer; /* in */

CDFstatus CDFinsertzVarAllRecordsByVarID (id, varNum, startRec, numRecs, buffer)
CDFid id; /* in */
long varNum; /* in */
long startRec; /* in */
long numRecs; /* in */
void *buffer; /* in */

CDFstatus CDFputAttrgEntry (id, attrNum, entryNum, dataType, numElems, value)
CDFid id; /* in */
long attrNum; /* in */
long entryNum; /* in */
long dataType; /* in */
long numElems; /* in */
void *value; /* in */

CDFstatus CDFopenCDF (CDFname, id)
char *CDFname; /* in */
CDFid *id; /* out */

CDFstatus CDFputAttrrEntry (id, attrNum, entryNum, dataType, numElems, value)
CDFid id; /* in */
long attrNum; /* in */
long entryNum; /* in */
long dataType; /* in */
long numElems; /* in */
void *value; /* in */

CDFstatus CDFputAttrStrgEntry (id, attrNum, entryNum, string)
CDFid id; /* in */
long attrNum; /* in */
long entryNum; /* in */
char *string; /* in */

CDFstatus CDFputAttrStrrEntry (id, attrNum, entryNum, string)
CDFid id; /* in */
long attrNum; /* in */
long entryNum; /* in */
char *string; /* in */

CDFstatus CDFputAttrStrzEntry (id, attrNum, entryNum, string)
CDFid id; /* in */
long attrNum; /* in */
long entryNum; /* in */
char *string; /* in */

CDFstatus CDFputAttrWStrgEntry (id, attrNum, entryNum, string, locale)
CDFid id; /* in */
long attrNum; /* in */
long entryNum; /* in */
wchar_t *string; /* in */
char *locale; /* in */

353

CDFstatus CDFputAttrWStrrEntry (id, attrNum, entryNum, string, locale)
CDFid id; /* in */
long attrNum; /* in */
long entryNum; /* in */
wchar_t *string; /* in */
char *locale; /* in */

CDFstatus CDFputAttrWStrzEntry (id, attrNum, entryNum, string, locale)
CDFid id; /* in */
long attrNum; /* in */
long entryNum; /* in */
wchar_t *string; /* in */
char *locale; /* in */

CDFstatus CDFputAttrzEntry (id, attrNum, entryNum, dataType, numElems, value)
CDFid id; /* in */
long attrNum; /* in */
long entryNum; /* in */
long dataType; /* in */
long numElems; /* in */
void *value; /* in */

CDFstatus CDFputVarAllRecordsByVarName (id, varName, buffer)
CDFid id; /* in */
char *varName; /* in */
void *buffer; /* in */

CDFstatus CDFputVarRangeRecordsByVarName (id, varName, startRec, stopRec, buffer)
CDFid id; /* in */
char *varName; /* in */
long startRec; /* in */
long stopRec; /* in */
void *buffer; /* in */

CDFstatus CDFputzVarAllRecordsByVarID (id, varNum, buffer)
CDFid id; /* in */
long varNum; /* in */
void *buffer; /* in */

CDFstatus CDFputzVarData (id, varNum, recNum, indices, value)
CDFid id; /* in */
long varNum; /* in */
long recNUm; /* in */
long indices[]; /* in */
void *value; /* in */

CDFstatus CDFputzVarRangeRecordsByVarID (id, varNum, startRec, stopRec, buffer)
CDFid id; /* in */
long varNum; /* in */
long startRec; /* in */
long stopRec; /* in */
void *buffer; /* in */

CDFstatus CDFputzVarRecordData (id, varNum, recNum, values)
CDFid id; /* in */
long varNum; /* in */

354

long recNUm; /* in */
void *values; /* in */

CDFstatus CDFputzVarSeqData (id, varNum, value)
CDFid id; /* in */
long varNum; /* in */
void *value; /* in */

CDFstatus CDFputzVarsRecordDatabyNumbers (id, numVars, varNums,
 varRecNum, buffer)
CDFid id; /* in */
long numVars; /* in */
long varNums[]; /* in */
long varRecNum; /* in */
void *buffer; /* in */

CDFstatus CDFrenameAttr (id, attrNum, attrName)
CDFid id; /* in */
long attrNum; /* in */
char *attrName; /* in */

CDFstatus CDFrenamezVar (id, varNum, varName)
CDFid id; /* in */
long varNum; /* in */
char *varName; /* in */

CDFstatus CDFsetAttrgEntryDataSpec (id, attrNum, entryNum, dataType)
CDFid id; /* in */
long attrNum; /* in */
long entryNum; /* in */
long dataType; /* in */

CDFstatus CDFsetAttrrEntryDataSpec (id, attrNum, entryNum, dataType)
CDFid id; /* in */
long attrNum; /* in */
long entryNum; /* in */
long dataType; /* in */

CDFstatus CDFsetAttrScope (id, attrNum, scope)
CDFid id; /* in */
long attrNum; /* in */
long scope; /* in */

CDFstatus CDFsetAttrzEntryDataSpec (id, attrNum, entryNum, dataType)
CDFid id; /* in */
long attrNum; /* in */
long entryNum; /* in */
long dataType; /* in */

CDFstatus CDFsetCacheSize (id, numBuffers)
CDFid id; /* in */
long numBuffers; /* in */

CDFstatus CDFsetChecksum (id, checksum)
CDFid id; /* in */
long checksum; /* in */

355

CDFstatus CDFsetCompression (id, compressionType, compressionParms)
CDFid id; /* in */
long compressionType; /* in */
long compressionParms[]; /* in */

CDFstatus CDFsetCompressionCacheSize (id, numBuffers)
CDFid id; /* in */
long numBuffers; /* in */

CDFstatus CDFsetDecoding (id, decoding)
CDFid id; /* in */
long decoding; /* in */

CDFstatus CDFsetEncoding (id, encoding)
CDFid id; /* in */
long encoding; /* in */

void CDFsetFileBackward (mode)
long mode; /* in */

CDFstatus CDFsetFormat (id, format)
CDFid id; /* in */
long format; /* in */

CDFstatus CDFsetLeapSecondLastUpdated (id, lastUpdated)
CDFid id; /* in */
long lastUpdated; /* in */

CDFstatus CDFsetMajority (id, majority)
CDFid id; /* in */
long majority; /* in */

CDFstatus CDFsetNegtoPosfp0Mode (id, negtoPosfp0)
CDFid id; /* in */
long negtoPosfp0; /* in */

CDFstatus CDFsetReadOnlyMode (id, readOnly)
CDFid id; /* in */
long readOnly; /* in */

CDFstatus CDFsetStageCacheSize (id, numBuffers)
CDFid id; /* in */
long numBuffers; /* in */

void CDFsetValidate (mode)
long mode; /* in */

CDFstatus CDFsetzMode (id, zMode)
CDFid id; /* in */
long zMode; /* in */

CDFstatus CDFsetzVarAllocBlockRecords (id, varNum, firstRec, lastRec)
CDFid id; /* in */
long varNum; /* in */
long firstRec; /* in */

356

long lastRec; /* in */

CDFstatus CDFsetzVarAllocRecords (id, varNum, numRecs)
CDFid id; /* in */
long varNum; /* in */
long numRecs; /* in */

CDFstatus CDFsetzVarBlockingFactor (id, varNum, bf)
CDFid id; /* in */
long varNum; /* in */
long bf; /* in */

CDFstatus CDFsetzVarCacheSize (id, varNum, numBuffers)
CDFid id; /* in */
long varNum; /* in */
long numBuffers; /* in */

CDFstatus CDFsetzVarCompression (id, varNum, compressionType,
 compressionParms)
CDFid id; /* in */
long varNum; /* in */
long compressionType; /* in */
long compressionParms[]; /* in */

CDFstatus CDFsetzVarDataSpec (id, varNum, dataType)
CDFid id; /* in */
long varNum; /* in */
long dataType; /* in */

CDFstatus CDFsetzVarDimVariances (id, varNum, dimVarys)
CDFid id; /* in */
long varNum; /* in */
long dimVarys[]; /* in */

CDFstatus CDFsetzVarInitialRecs (id, varNum, initialRecs)
CDFid id; /* in */
long varNum; /* in */
long initialRecs; /* in */

CDFstatus CDFsetzVarPadValue (id, varNum, padValue)
CDFid id; /* in */
long varNum; /* in */
void *padValue; /* in */

CDFstatus CDFsetzVarRecVariance (id, varNum, recVary)
CDFid id; /* in */
long varNum; /* in */
long recVary; /* in */

CDFstatus CDFsetzVarReservePercent (id, varNum, reservePercent)
CDFid id; /* in */
long varNum; /* in */
long reservePercent; /* in */

CDFstatus CDFsetzVarsCacheSize (id, numBuffers)
CDFid id; /* in */

357

long numBuffers; /* in */

CDFstatus CDFsetzVarSeqPos (id, varNum, recNum, indices)
CDFid id; /* in */
long varNum; /* in */
long recNum; /* in */
long indices[]; /* in */

CDFstatus CDFsetzVarSparseRecords (id, varNum, sRecords)
CDFid id; /* in */
long varNum; /* in */
long sRecords; /* in */

int UnicodetoUTF8 (utf8, codepoints, numCP)
char *utf8; /* out */
int *codepoints; /* in */
int numCP; /* in */

int UTF8toUnicode (codepoints, utf8, numBytes)
int *codepoints; /* out */
char *utf8; /* in */
int numBytes; /* in */

358

B.3 CDFread Functions

CDFstatus CDFreadgAttrEntry (id, attrNum, entry, dataType, numElems, data)
CDFid id; /* in */
long attrNum; /* in */
long entryNum; /* in */
long *dataType; /* out */
long *numElems; /* out */
CDFdata *data; /* out */

CDFstatus CDFreadzAttrEntry (id, attrNum, entry, dataType, numElems, data)
CDFid id; /* in */
long attrNum; /* in */
long entryNum; /* in */
long *dataType; /* out */
long *numElems; /* out */
CDFdata *data; /* out */

CDFstatus CDFreadzVarPadValue (id, varNum, dataType, numElems, data)
CDFid id; /* in */
long varNum; /* in */
long *dataType; /* out */
long *numElems; /* out */
CDFdata *data; /* out */

CDFstatus CDFreadzVarAllByVarID (id, varNum, numRecs, dataType, numElems, numDims, dimSizes, recVary,
 dimVarys, data)
CDFid id; /* in */
long varNum; /* in */
long *numRecs; /* out */
long *dataType; /* out */
long *numElems; /* out */
long *numDims; /* out */
long dimSizes[]; /* out */
long *recVary; /* out */
long dimVarys[]; /* out */
CDFdata *data; /* out */

CDFstatus CDFreadzVarDataByVarID (id, varNum, numRecs, data)
CDFid id; /* in */
long varNum; /* in */
long *numRecs; /* out */
CDFdata *data; /* out */

CDFstatus CDFreadzVarRangeDataByVarID (id, varNum, startRec, stopRec, data)
CDFid id; /* in */
long varNum; /* in */
long startRec; /* in */
long stopRec; /* in */
CDFdata *data; /* out */

CDFstatus CDFreadzVarAllByVarName (id, varName, numRecs, dataType, numElems, numDims, dimSizes, recVary,
 dimVarys, data)

359

CDFid id; /* in */
char *varName; /* in */
long *numRecs; /* out */
long *dataType; /* out */
long *numElems; /* out */
long *numDims; /* out */
long dimSizes[]; /* out */
long *recVary; /* out */
long dimVarys[]; /* out */
CDFdata *data; /* out */

CDFstatus CDFreadzVarDataByVarName (id, varName, numRecs, data)
CDFid id; /* in */
char *varName; /* in */
long *numRecs; /* out */
CDFdata *data; /* out */

CDFstatus CDFreadzVarRangeDataByVarName (id, varName, startRec, stopRec, data)
CDFid id; /* in */
char *varName; /* in */
long startRec; /* in */
long stopRec; /* in */
CDFdata *data; /* out */

CDF_Free_String (numStrings, strings)
long numStrings; /* in */
char **strings; /* in */

360

B.4 Internal Interface

CDFstatus CDFlib (op, ...)
long op; /* in */

CLOSE_
CDF_
rVAR_
zVAR_

CONFIRM_

ATTR_ long *attrNum /* out */
ATTR_EXISTENCE_ char *attrName /* in */
CDF_ CDFid *id /* out */
CDF_ACCESS_
CDF_CACHESIZE_ long *numBuffers /* out */
CDF_DECODING_ long *decoding /* out */
CDF_NAME_ char CDFname[CDF_PATHNAME_LEN+1]

/* out */
CDF_NEGtoPOSfp0_MODE_ long *mode /* out */
CDF_READONLY_MODE_ long *mode /* out */
CDF_STATUS_ CDFstatus *status /* out */
CDF_zMODE_ long *mode /* out */
COMPRESS_CACHESIZE_ long *numBuffers /* out */
CURgENTRY_EXISTENCE_
CURrENTRY_EXISTENCE_
CURzENTRY_EXISTENCE_
gENTRY_ long *entryNum /* out */
gENTRY_EXISTENCE_ long entryNum /* in */
rENTRY_ long *entryNum /* out */
rENTRY_EXISTENCE_ long entryNum /* in */
rVAR_ long *varNum /* out */
rVAR_CACHESIZE_ long *numBuffers /* out */
rVAR_EXISTENCE_ char *varName /* in */
rVAR_PADVALUE_
rVAR_RESERVEPERCENT_ long *percent /* out */
rVAR_SEQPOS_ long *recNum /* out */

long indices[CDF_MAX_DIMS] /* out */
rVARs_DIMCOUNTS_ long counts[CDF_MAX_DIMS] /* out */
rVARs_DIMINDICES_ long indices[CDF_MAX_DIMS] /* out */
rVARs_DIMINTERVALS_ long intervals[CDF_MAX_DIMS] /* out */
rVARs_RECCOUNT_ long *recCount /* out */
rVARs_RECINTERVAL_ long *recInterval /* out */
rVARs_RECNUMBER_ long *recNum /* out */
STAGE_CACHESIZE_ long *numBuffers /* out */
zENTRY_ long *entryNum /* out */
zENTRY_EXISTENCE_ long entryNum /* in */
zVAR_ long *varNum /* out */
zVAR_CACHESIZE_ long *numBuffers /* out */
zVAR_DIMCOUNTS_ long counts[CDF_MAX_DIMS] /* out */
zVAR_DIMINDICES_ long indices[CDF_MAX_DIMS] /* out */
zVAR_DIMINTERVALS_ long intervals[CDF_MAX_DIMS] /* out */
zVAR_EXISTENCE_ char *varName /* in */
zVAR_PADVALUE_
zVAR_RECCOUNT_ long *recCount /* out */
zVAR_RECINTERVAL_ long *recInterval /* out */

361

zVAR_RECNUMBER_ long *recNum /* out */
zVAR_RESERVEPERCENT_ long *percent /* out */
zVAR_SEQPOS_ long *recNum /* out */

long indices[CDF_MAX_DIMS] /* out */

CREATE_
ATTR_ char *attrName /* in */

long scope /* in */
long *attrNum /* out */

CDF_ char *CDFname /* in */

long numDims /* in */
long dimSizes[] /* in */
CDFid *id /* out */

rVAR_ char *varName /* in */
long dataType /* in */
long numElements /* in */
long recVary /* in */
long dimVarys[] /* in */
long *varNum /* out */

zVAR_ char *varName /* in */

long dataType /* in */
long numElements /* in */
long numDims /* in */
long dimSizes[] /* in */
long recVary /* in */
long dimVarys[] /* in */
long *varNum /* out */

DELETE_

ATTR_
CDF_
gENTRY_
rENTRY_
rVAR_
rVAR_RECORDS_ long firstRecord /* in */

long lastRecord /* in */
rVAR_RECORDS_RENUMBER_ long firstRecord /* in */

long lastRecord /* in */
zENTRY_
zVAR_
zVAR_RECORDS_ long firstRecord /* in */

long lastRecord /* in */

zVAR_RECORDS_RENUMBER_ long firstRecord /* in */
long lastRecord /* in */

GET_

ATTR_MAXgENTRY_ long *maxEntry /* out */
ATTR_MAXrENTRY_ long *maxEntry /* out */
ATTR_MAXzENTRY_ long *maxEntry /* out */
ATTR_NAME_ char attrName[CDF_ATTR_NAME_LEN256+1]

/* out */
ATTR_NUMBER_ char *attrName /* in */

362

long *attrNum /* out */
ATTR_NUMgENTRIES_ long *numEntries /* out */
ATTR_NUMrENTRIES_ long *numEntries /* out */
ATTR_NUMzENTRIES_ long *numEntries /* out */
ATTR_SCOPE_ long *scope /* out */
CDF_CHECKSUM_ long *checksum /* out */
CDF_COMPRESSION_ long *cType /* out */

long cParms[CDF_MAX_PARMS] /* out */
long *cPct /* out */

CDF_COPYRIGHT_ char Copyright[CDF_COPYRIGHT_LEN+1]
/* out */

CDF_ENCODING_ long *encoding /* out */
CDF_FORMAT_ long *format /* out */
CDF_INCREMENT_ long *increment /* out */
CDF_INFO_ char *name /* in */

long *cType /* out */
long cParms[CDF_MAX_PARMS] /* out */
OFF_T *cSize /* out */
OFF_T *uSize /* out */

CDF_LEAPSECONDLASTUPDATED_ long *lastUpdated /* out */
CDF_MAJORITY_ long *majority /* out */
CDF_NUMATTRS_ long *numAttrs /* out */
CDF_NUMgATTRS_ long *numAttrs /* out */
CDF_NUMrVARS_ long *numVars /* out */
CDF_NUMvATTRS_ long *numAttrs /* out */
CDF_NUMzVARS_ long *numVars /* out */
CDF_RELEASE_ long *release /* out */
CDF_VERSION_ long *version /* out */
DATATYPE_SIZE_ long dataType /* in */

long *numBytes /* out */
gENTRY_DATA_ void *value /* out */
gENTRY_DATATYPE_ long *dataType /* out */
gENTRY_NUMELEMS_ long *numElements /* out */
LIB_COPYRIGHT_ char Copyright[CDF_COPYRIGHT_LEN+1]

/* out */
LIB_INCREMENT_ long *increment /* out */
LIB_RELEASE_ long *release /* out */
LIB_subINCREMENT_ char *subincrement /* out */
LIB_VERSION_ long *version /* out */
rENTRY_DATA_ void *value /* out */
rENTRY_DATATYPE_ long *dataType /* out */
rENTRY_NUMELEMS_ long *numElements /* out */
rENTRY_NUMSTRINGS_ long *numStrings /* out */
rENTRY_STRINGSDATA_ long *numStrings /* out */

char **strings /* out */
rVAR_ALLOCATEDFROM_ long startRecord /* in */

long *nextRecord /* out */
rVAR_ALLOCATEDTO_ long startRecord /* in */

long *lastRecord /* out */
rVAR_BLOCKINGFACTOR_ long *blockingFactor /* out */
rVAR_COMPRESSION_ long *cType /* out */

long cParms[CDF_MAX_PARMS] /* out */
long *cPct /* out */

rVAR_DATA_ void *value /* out */
rVAR_DATATYPE_ long *dataType /* out */
rVAR_DIMVARYS_ long dimVarys[CDF_MAX_DIMS] /* out */

363

rVAR_HYPERDATA_ void *buffer /* out */
rVAR_MAXallocREC_ long *maxRec /* out */
rVAR_MAXREC_ long *maxRec /* out */
rVAR_NAME_ char varName[CDF_VAR_NAME_LEN256+1] /* out */
rVAR_nINDEXENTRIES_ long *numEntries /* out */
rVAR_nINDEXLEVELS_ long *numLevels /* out */
rVAR_nINDEXRECORDS_ long *numRecords /* out */
rVAR_NUMallocRECS_ long *numRecords /* out */
rVAR_NUMBER_ char *varName /* in */

long *varNum /* out */
rVAR_NUMELEMS_ long *numElements /* out */
rVAR_NUMRECS_ long *numRecords /* out */
rVAR_PADVALUE_ void *value /* out */
rVAR_RECVARY_ long *recVary /* out */
rVAR_SEQDATA_ void *value /* out */
rVAR_SPARSEARRAYS_ long *sArraysType /* out */

long sArraysParms[CDF_MAX_PARMS] /* out */
long *sArraysPct /* out */

rVAR_SPARSERECORDS_ long *sRecordsType /* out */
rVARs_DIMSIZES_ long dimSizes[CDF_MAX_DIMS] /* out */
rVARs_MAXREC_ long *maxRec /* out */
rVARs_NUMDIMS_ long *numDims /* out */
rVARs_RECDATA_ long numVars /* in */

long varNums[] /* in */
void *buffer /* out */

STATUS_TEXT_ char text[CDF_STATUSTEXT_LEN+1] /* out */
zENTRY_DATA_ void *value /* out */
zENTRY_DATATYPE_ long *dataType /* out */
zENTRY_NUMELEMS_ long *numElements /* out */
zENTRY_NUMSTRINGS_ long *numStrings /* out */
zENTRY_STRINGSDATA_ long *numStrings /* out */

char **strings /* out */
zVAR_ALLOCATEDFROM_ long startRecord /* in */

long *nextRecord /* out */
zVAR_ALLOCATEDTO_ long startRecord /* in */

long *lastRecord /* out */
zVAR_BLOCKINGFACTOR_ long *blockingFactor /* out */
zVAR_COMPRESSION_ long *cType /* out */

long cParms[CDF_MAX_PARMS] /* out */
long *cPct /* out */

zVAR_DATA_ void *value /* out */
zVAR_DATATYPE_ long *dataType /* out */
zVAR_DIMSIZES_ long dimSizes[CDF_MAX_DIMS] /* out */
zVAR_DIMVARYS_ long dimVarys[CDF_MAX_DIMS] /* out */
zVAR_HYPERDATA_ void *buffer /* out */
zVAR_MAXallocREC_ long *maxRec /* out */
zVAR_MAXREC_ long *maxRec /* out */
zVAR_NAME_ char varName[CDF_VAR_NAME_LEN256+1] /* out */
zVAR_nINDEXENTRIES_ long *numEntries /* out */
zVAR_nINDEXLEVELS_ long *numLevels /* out */
zVAR_nINDEXRECORDS_ long *numRecords /* out */
zVAR_NUMallocRECS_ long *numRecords /* out */
zVAR_NUMBER_ char *varName /* in */

long *varNum /* out */
zVAR_NUMDIMS_ long *numDims /* out */
zVAR_NUMELEMS_ long *numElements /* out */

364

zVAR_NUMRECS_ long *numRecords /* out */
zVAR_PADVALUE_ void *value /* out */
zVAR_RECVARY_ long *recVary /* out */
zVAR_SEQDATA_ void *value /* out */
zVAR_SPARSEARRAYS_ long *sArraysType /* out */

long sArraysParms[CDF_MAX_PARMS] /* out */
long *sArraysPct /* out */

zVAR_SPARSERECORDS_ long *sRecordsType /* out */
zVARs_MAXREC_ long *maxRec /* out */
zVARs_RECDATA_ long numVars /* in */

long varNums[] /* in */
void *buffer /* out */

NULL_

OPEN_
CDF_ char *CDFname /* in */

CDFid *id /* out */
PUT__

ATTR_NAME_ char *attrName /* in */
ATTR_SCOPE_ long scope /* in */
CDF_CHECKSUM_ long checksum /* in */
CDF_COMPRESSION_ long cType /* in */

long cParms[] /* in */
CDF_ENCODING_ long encoding /* in */
CDF_FORMAT_ long format /* in */
CDF_LEAPSECONDLASTUPDATED_ long lastUpdated /* in */
CDF_MAJORITY_ long majority /* in */
gENTRY_DATA_ long dataType /* in */

long numElements /* in */
void *value /* in */

gENTRY_DATASPEC_ long dataType /* in */
long numElements /* in */

rENTRY_DATA_ long dataType /* in */
long numElements /* in */
void *value /* in */

rENTRY_DATASPEC_ long dataType /* in */
long numElements /* in */

rVAR_ALLOCATEBLOCK_ long firstRecord /* in */
long lastRecord /* in */

rVAR_ALLOCATERECS_ long numRecords /* in */
rVAR_BLOCKINGFACTOR_ long blockingFactor /* in */
rVAR_COMPRESSION_ long cType /* in */

long cParms[] /* in */
rVAR_DATA_ void *value /* in */
rVAR_DATASPEC_ long dataType /* in */

long numElements /* in */
rVAR_DIMVARYS_ long dimVarys[] /* in */
rVAR_HYPERDATA_ void *buffer /* in */
rVAR_INITIALRECS_ long nRecords /* in */
rVAR_NAME_ char *varName /* in */
rVAR_PADVALUE_ void *value /* in */
rVAR_RECVARY_ long recVary /* in */
rVAR_SEQDATA_ void *value /* in */
rVAR_SPARSEARRAYS_ long sArraysType /* in */

long sArraysParms[] /* in */
rVAR_SPARSERECORDS_ long sRecordsType /* in */

365

rVARs_RECDATA_ long numVars /* in */
long varNums[] /* in */
void *buffer /* in */

zENTRY_DATA_ long dataType /* in */
long numElements /* in */
void *value /* in */

zENTRY_DATASPEC_ long dataType /* in */
long numElements /* in */

zVAR_ALLOCATEBLOCK_ long firstRecord /* in */
long lastRecord /* in */

zVAR_ALLOCATERECS_ long numRecords /* in */
zVAR_BLOCKINGFACTOR_ long blockingFactor /* in */
zVAR_COMPRESSION_ long cType /* in */

long cParms[] /* in */
zVAR_DATA_ void *value /* in */
zVAR_DATASPEC_ long dataType /* in */

long numElements /* in */
zVAR_DIMVARYS_ long dimVarys[] /* in */
zVAR_INITIALRECS_ long nRecords /* in */
zVAR_HYPERDATA_ void *buffer /* in */
zVAR_NAME_ char *varName /* in */
zVAR_PADVALUE_ void *value /* in */
zVAR_RECVARY_ long recVary /* in */
zVAR_SEQDATA_ void *value /* in */
zVAR_SPARSEARRAYS_ long sArraysType /* in */

long sArraysParms[] /* in */
zVAR_SPARSERECORDS_ long sRecordsType /* in */
zVARs_RECDATA_ long numVars /* in */

long varNums[] /* in */
void *buffer /* in */

SELECT_
ATTR_ long attrNum /* in */
ATTR_NAME_ char *attrName /* in */
CDF_ CDFid id /* in */
CDF_CACHESIZE_ long numBuffers /* in */
CDF_DECODING_ long decoding /* in */
CDF_NEGtoPOSfp0_MODE_ long mode /* in */
CDF_READONLY_MODE_ long mode /* in */
CDF_SCRATCHDIR_ char *dirPath /* in */
CDF_STATUS_ CDFstatus status /* in */
CDF_zMODE_ long mode /* in */
COMPRESS_CACHESIZE_ long numBuffers /* in */
gENTRY_ long entryNum /* in */
rENTRY_ long entryNum /* in */
rENTRY_NAME_ char *varName /* in */
rVAR_ long varNum /* in */
rVAR_CACHESIZE_ long numBuffers /* in */
rVAR_NAME_ char *varName /* in */
rVAR_RESERVEPERCENT_ long percent /* in */
rVAR_SEQPOS_ long recNum /* in */

long indices[] /* in */
rVARs_CACHESIZE_ long numBuffers /* in */
rVARs_DIMCOUNTS_ long counts[] /* in */
rVARs_DIMINDICES_ long indices[] /* in */
rVARs_DIMINTERVALS_ long intervals[] /* in */
rVARs_RECCOUNT_ long recCount /* in */

366

rVARs_RECINTERVAL_ long recInterval /* in */
rVARs_RECNUMBER_ long recNum /* in */
STAGE_CACHESIZE_ long numBuffers /* in */
zENTRY_ long entryNum /* in */
zENTRY_NAME_ char *varName /* in */
zVAR_ long varNum /* in */
zVAR_CACHESIZE_ long numBuffers /* in */
zVAR_DIMCOUNTS_ long counts[] /* in */
zVAR_DIMINDICES_ long indices[] /* in */
zVAR_DIMINTERVALS_ long intervals[] /* in */
zVAR_NAME_ char *varName /* in */
zVAR_RECCOUNT_ long recCount /* in */
zVAR_RECINTERVAL_ long recInterval /* in */
zVAR_RECNUMBER_ long recNum /* in */
zVAR_RESERVEPERCENT_ long percent /* in */
zVAR_SEQPOS_ long recNum /* in */

long indices[] /* in */
zVARs_CACHESIZE_ long numBuffers /* in */
zVARs_RECNUMBER_ long recNum /* in */

367

B.5 EPOCH Utility Routines

double computeEPOCH (year, month, day, hour, minute, second, msec)
long year; /* in */
long month; /* in */
long day; /* in */
long hour; /* in */
long minute; /* in */
long second; /* in */
long msec; /* in */

void EPOCHbreakdown (epoch, year, month, day, hour, minute, second, msec)
double epoch; /* in */
long *year; /* out */
long *month; /* out */
long *day; /* out */
long *hour; /* out */
long *minute; /* out */
long *second; /* out */
long *msec; /* out */

void toEncodeEPOCH (epoch, style, epString)
double epoch; /* in */
int style; /* in */
char epString[EPOCH_STRING_LEN+1]; /* out */

void encodeEPOCH (epoch, epString)
double epoch; /* in */
char epString[EPOCH_STRING_LEN+1]; /* out */

void encodeEPOCH1 (epoch, epString)
double epoch; /* in */
char epString[EPOCH1_STRING_LEN+1]; /* out */

void encodeEPOCH2 (epoch, epString)
double epoch; /* in */
char epString[EPOCH2_STRING_LEN+1]; /* out */

void encodeEPOCH3 (epoch, epString)
double epoch; /* in */
char epString[EPOCH3_STRING_LEN+1]; /* out */

void encodeEPOCH4 (epoch, epString)
double epoch; /* in */
char epString[EPOCH4_STRING_LEN+1]; /* out */

void encodeEPOCHx (epoch, format, epString)
double epoch; /* in */
char format[EPOCHx_FORMAT_MAX+1]; /* in */
char epString[EPOCHx_STRING_MAX+1]; /* out */

double parseEPOCH (epString)
char epString[EPOCH_STRING_LEN+1]; /* in */

368

double toParseEPOCH (epString)
char epString[EPOCH_STRING_LEN+1]; /* in */

double parseEPOCH1 (epString)
char epString[EPOCH1_STRING_LEN+1]; /* in */

double parseEPOCH2 (epString)
char epString[EPOCH2_STRING_LEN+1]; /* in */

double parseEPOCH3 (epString)
char epString[EPOCH3_STRING_LEN+1]; /* in */
double parseEPOCH4 (epString)
char epString[EPOCH4_STRING_LEN+1]; /* in */

double computeEPOCH16 (year, month, day, hour, minute, second, msec, microsec, nanosec, picosec)
long year; /* in */
long month; /* in */
long day; /* in */
long hour; /* in */
long minute; /* in */
long second; /* in */
long msec; /* in */
long microsec; /* in */
long nanosec; /* in */
long picosec; /* in */
double epoch[2]; /* out */

void EPOCH16breakdown (epoch, year, month, day, hour, minute, second, msec, microsec, nanosec, picosec)
double epoch[2]; /* in */
long *year; /* out */
long *month; /* out */
long *day; /* out */
long *hour; /* out */
long *minute; /* out */
long *second; /* out */
long *msec; /* out */
long *microsec; /* out */
long *nanosec; /* out */
long *picosec; /* out */

void toEncodeEPOCH16 (epoch, style, epString)
double epoch[2]; /* in */
int style; /* in */
char epString[EPOCH16_STRING_LEN +1]; /* out */

void encodeEPOCH16 (epoch, epString)
double epoch[2]; /* in */
char epString[EPOCH16_STRING_LEN +1]; /* out */

void encodeEPOCH16_1 (epoch, epString)
double epoch[2]; /* in */
char epString[EPOCH16_1_STRING_LEN+1]; /* out */

void encodeEPOCH16_2 (epoch, epString)
double epoch[2]; /* in */

369

char epString[EPOCH16_2_STRING_LEN+1]; /* out */

void encodeEPOCH16_3 (epoch, epString)
double epoch[2]; /* in */
char epString[EPOCH16_3_STRING_LEN+1]; /* out */

void encodeEPOCH16_4 (epoch, epString)
double epoch[2]; /* in */
char epString[EPOCH16_4_STRING_LEN+1]; /* out */

void encodeEPOCH16_x (epoch, format, epString)
double epoch[2]; /* in */
char format[EPOCHx_FORMAT_MAX+1]; /* in */
char epString[EPOCHx_STRING_MAX+1]; /* out */

double toParseEPOCH16 (epString, epoch)
char epString[EPOCH16__STRING_LEN+1]; /* in */
double epoch[2]; /* out */

double parseEPOCH16 (epString, epoch)
char epString[EPOCH16__STRING_LEN+1]; /* in */
double epoch[2]; /* out */

double parseEPOCH16_1 (epString)
char epString[EPOCH16_1_STRING_LEN+1]; /* in */
double epoch[2]; /* out */

double parseEPOCH16_2 (epString)
char epString[EPOCH16_2_STRING_LEN+1]; /* in */
double epoch[2]; /* out */

double parseEPOCH16_3 (epString)
char epString[EPOCH16_3_STRING_LEN+1]; /* in */
double epoch[2]; /* out */

double parseEPOCH16_4 (epString)
char epString[EPOCH16_4_STRING_LEN+1]; /* in */
double epoch[2]; /* out */

void EPOCHtoUnixTime (epoch, unixTime, numTimes)
double *epoch; /* in */
double *unixTime; /* out */
int numTimes; /* in */

void EPOCH16toUnixTime (epoch, unixTime, numTimes)
double *epoch; /* in */
double *unixTime; /* out */
int numTimes; /* in */

void UnixTimetoEPOCH (unixTime, epoch, numTimes)
double *unixTime; /* in */
double *epoch; /* out */
int numTimes; /* in */

void UnixTimetoEPOCH16 (unixTime, epoch, numTimes)
double *unixTime; /* in */

370

double *epoch; /* out */
int numTimes; /* in */

371

B.6 TT2000 Utility Routines

computeTT2000 or CDF_TT2000_from_UTC_parts
long long computeTT2000 (year, month, day, …) (*Variable argument form)
double year; /* in */
double month; /* in */
double day; /* in */
…
TT2000END; /* in */

long long computeTT2000 (year, month, day, hour, minute, second, msec, usec, nsec) (*Full form)
double year; /* in */
double month; /* in */
double day; /* in */
double hour; /* in */
double minute; /* in */
double second; /* in */
double msec; /* in */
double usec; /* in */
double nsec; /* in */

breakdownTT2000 or CDF_TT2000_to_UTC_parts or TT2000breakdown
void breakdownTT2000 (tt2000, year, month, day, …)67
long long tt2000; /* in */
double *year; /* out */
double *month; /* out */
double *day; /* out */
…
TT2000NULL; /* in */

void breakdownTT2000 (tt2000, year, month, day, hour, minute, second, msec, usec, nsec)68
long long tt2000; /* in */
double *year; /* out */
double *month; /* out */
double *day; /* out */
double *hour; /* out */
double *minute; /* out */
double *second; /* out */
double *msec; /* out */
double *usec; /* out */
double *nsec; /* out */

void toEncodeTT2000 (tt2000, style, epString)
long long tt2000; /* in */
int style; /* in */
char *epString; /* out */

encodeTT2000 or CDF_TT2000_to_UTC_string
void encodeTT2000 (tt2000, epString) (*Variable argument form)
long long tt2000; /* in */
char *epString; /* out */

67 Variable argument list form after the day field. But, need to have TT2000NULL to indicate the end of the list.
68 Full list form

372

void encodeTT2000 (tt2000, epString, form) (*Full form)
long long tt2000; /* in */
char *epString; /* out */
int form; /* in */

long long toParseTT2000 (epString)
char *epString; /* in */

parseTT2000 or CDF_TT2000_from_UTC_string
long long parseTT2000 (epString)
char *epString; /* in */

long CDF_TT2000_from_UTC_EPOCH (epoch)
double epoch; /* in */

long CDF_TT2000_from_UTC_EPOCH16 (epoch16)
double *epoch16; /* in */

double CDF_TT2000_to_UTC_EPOCH (tt2000)
long long tt2000; /* in */

double CDF_TT2000_to_UTC_EPOCH16 (tt2000, epoch16)
long long tt2000; /* in */
double *epoch16; /* out */

void TT2000toUnixTime (tt2000, unixTime, numTimes)
long long *tt2000; /* in */
double *epoch16; /* out */
int numTimes; /* in */

void UnixTimetoTT2000 (unixTime, tt2000, numTimes)
double *unixTime; /* in */
long long *tt2000; /* out */
int numTimes; /* in */

373

Index

ALPHAOSF1_DECODING, 15
ALPHAOSF1_ENCODING, 14
ALPHAVMSd_DECODING, 15
ALPHAVMSd_ENCODING, 13
ALPHAVMSg_DECODING, 15
ALPHAVMSg_ENCODING, 13
ALPHAVMSi_DECODING, 15
ALPHAVMSi_ENCODING, 13
ARM_BIG_DECODING, 15
ARM_BIG_ENCODING, 14
ARM_LITTLE_DECODING, 15
ARM_LITTLE_ENCODING, 14
attribute

inquiring, 30
number

inquiring, 31
renaming, 33

attributes
checking existence, 164, 219, 220, 221, 222, 224, 225,

227, 228
creating, 25, 168, 249
current, 236

confirming, 241
selecting

by name, 290
by number, 289

deleting, 252
entries

current, 236
confirming, 243, 244, 247
selecting

by name, 292, 294
by number, 291, 294

data specification
changing, 280, 285
data type

inquiring, 260, 262, 269
number of elements

inquiring, 260, 262, 270
deleting, 252, 253
existence, determining, 244, 247
global entry

checking existence, 165
inquiring, 27
maximum

inquiring, 254, 255
number of

inquiring, 256
reading, 28, 260, 261, 269
writing, 32, 279, 280, 284

existence, determining, 241
naming, 19, 26, 168

inquiring, 30, 255
renaming, 277

number of
inquiring, 42, 259

numbering

inquiring, 255
scopes

changing, 278
constants, 18

GLOBAL_SCOPE, 18
VARIABLE_SCOPE, 18

inquiring, 30, 199, 256
Attributes

entries
global entry

deleting, 170
reading, 172

Attributes
deleting, 169
entries

rVariable entry
checking existence, 166

zVariable entry
checking existence, 167

Attributes
entries

rVariable entry
deleting, 170

Attributes
entries

zVariable entry
deleting, 171

Attributes
entries

global entry
data type

inquiring, 174
Attributes

entries
global entry

number of elements
inquiring, 175

Attributes
entries

rVariable entry
reading, 176

Attributes
entries

global entry
last entry number

inquiring, 177
Attributes

entries
rVariable entry

last entry number
inquiring, 178

Attributes
entries

zVariable entry
last entry number

inquiring, 179
Attributes

374

name
inquiring, 180

Attributes
number

inquiring, 180
Attributes

entries
global entry

data type
inquiring, 181

Attributes
entries

global entry
number of elements

inquiring, 182
Attributes

scope
inquiring, 183

Attributes
entries

rVariable entry
reading, 184

Attributes
entries

rVariable entry
reading, 185

Attributes
entries

rVariable entry
reading, 186

Attributes
entries

rVariable entry
reading, 187

Attributes
entries

rVariable entry
reading, 188

Attributes
entries

rVariable entry
reading, 190

Attributes
entries

zVariable entry
reading, 191

Attributes
entries

zVariable entry
data type

inquiring, 192
Attributes

entries
zVariable entry

number of elements
inquiring, 193

Attributes
entries

global entries
number of

inquiring, 194
Attributes

number of
inquiring, 195

Attributes
entries

rEntries
number of

inquiring, 196
Attributes

entries
zEntries

number of
inquiring, 197

Attributes
inquiring, 199

Attributes
entries

global entry
inquiring, 201

Attributes
entries

rVariable entry
inquiring, 202

Attributes
entries

zVariable entry
inquiring, 203

Attributes
entries

global entry
writing, 205

Attributes
entries

rVariable entry
writing, 206

Attributes
entries

rVariable entry
reading, 207

Attributes
entries

rVariable entry
reading, 208

Attributes
entries

rVariable entry
reading, 209

Attributes
entries

rVariable entry
reading, 210

Attributes
entries

rVariable entry
reading, 211

Attributes
entries

rVariable entry
reading, 212

Attributes
entries

zVariable entry
writing, 213

375

Attributes
renaming, 215

Attributes
entries

global entry
data specification

resetting, 215
Attributes

entries
rVariable entry

data specification
resetting, 216

Attributes
scope

resetting, 217
Attributes

entries
zVariable entry

data specification
resetting, 218

CDF
backward file, 20
backward file flag

getting, 21
setting, 20

cache size
compression

resetting, 87
Checksum, 21
Checksum mode

setting, 22, 23
closing, 34
Copyright

inquiring, 72
creating, 35
deleting, 36, 67
Long Integer, 24
opening, 44, 83
set

majority, 91
Validation, 23

CDF getNegtoPosfp0Mode, 77
CDF library

copy right notice
max length, 19
reading, 261

Extended Standard Interface, 61
Internal interface, 233
modes

-0.0 to 0.0
confirming, 242
constants

NEGtoPOSfp0off, 19
NEGtoPOSfp0on, 19

selecting, 290
decoding

confirming, 242
constants

ALPHAOSF1_DECODING, 15
ALPHAVMSd_DECODING, 15
ALPHAVMSg_DECODING, 15
ALPHAVMSi_DECODING, 15

ARM_BIG_DECODING, 15
ARM_LITTLE_ENCODING, 15
DECSTATION_DECODING, 15
HOST_DECODING, 14
HP_DECODING, 15
IA64VMSg_DECODING, 15
IA64VMSi_DECODING, 15
IBMPC_DECODING, 15
IBMRS_DECODING, 15
MAC_DECODING, 15
NETWORK_DECODING, 15
NeXT_DECODING, 15
SGi_DECODING, 15
SUN_DECODING, 15
VAX_DECODING, 15

selecting, 290
read-only

confirming, 242
constants

READONLYoff, 18
READONLYon, 18

selecting, 18, 290
zMode

confirming, 243
constants

zMODEoff, 19
zMODEon1, 19
zMODEon2, 19

selecting, 18, 291
Original Standard Interface, 25
shared CDF library, 7
version

inquiring, 261
CDF lkibrary

modes
decoding

constants
IA64VMSd_DECODING, 15

CDF setNegtoPosfp0Mode, 92
CDF$INC, 1
CDF$LIB, 5
cdf.h, 1, 11
CDF_ATTR_NAME_LEN, 19
CDF_BYTE, 12
CDF_CHAR, 12
CDF_COPYRIGHT_LEN, 19
CDF_DOUBLE, 12
CDF_EPOCH, 12
CDF_EPOCH16, 12
CDF_error or CDFerror, 328
CDF_FLOAT, 12
CDF_INC, 2
CDF_INT1, 12
CDF_INT2, 12
CDF_INT4, 12
CDF_INT8, 12
CDF_LIB, 5
CDF_MAX_DIMS, 19
CDF_MAX_PARMS, 19
CDF_OK, 11
CDF_PATHNAME_LEN, 19
CDF_REAL4, 12

376

CDF_REAL8, 12
CDF_STATUSTEXT_LEN, 20
CDF_TIME_TT2000, 13
CDF_TT2000_from_UTC_EPOCH, 326
CDF_TT2000_from_UTC_EPOCH16, 326
CDF_TT2000_from_UTC_parts, 321
CDF_TT2000_from_UTC_string, 325
CDF_TT2000_to_UTC_EPOCH, 326
CDF_TT2000_to_UTC_EPOCH16, 326
CDF_TT2000_to_UTC_parts, 322
CDF_TT2000_to_UTC_string, 324
CDF_UCHAR, 12
CDF_UINT1, 12
CDF_UINT2, 12
CDF_UINT4, 12
CDF_VAR_NAME_LEN, 19
CDF_WARN, 12
CDFattrCreate, 25
CDFattrEntryInquire, 27
CDFattrGet, 28
CDFattrInquire, 30
CDFattrNum, 31
CDFattrPut, 32
CDFattrRename, 33
CDFclose, 34
CDFcloseCDF, 65
CDFclosezVar, 96
CDFconfirmAttrExistence, 164, 219, 220, 221, 222, 224,

225, 227, 228
CDFconfirmgEntryExistence, 165
CDFconfirmrEntryExistence, 166
CDFconfirmzEntryExistence, 167
CDFconfirmzVarExistence, 97
CDFconfirmzVarPadValueExistence, 98
CDFcreate, 35
CDFcreateAttr, 168
CDFcreateCDF, 65
CDFcreatezVar, 98
CDFdelete, 36
CDFdeleteAttr, 169
CDFdeleteAttrgEntry, 170
CDFdeleteAttrrEntry, 170
CDFdeleteAttrzEntry, 171
CDFdeleteCDF, 67
CDFdeletezVar, 100
CDFdeletezVarRecords, 101, 102
CDFdoc, 37
CDFerror, 38
CDFgetAttrgEntry, 172
CDFgetAttrgEntryDataType, 174
CDFgetAttrMaxrEntry, 178
CDFgetAttrMaxzEntry, 179
CDFgetAttrName, 180
CDFgetAttrNum, 180
CDFgetAttrrEntry, 176, 184, 185, 186, 187, 188, 190, 207,

208, 209, 210, 211, 212
CDFgetAttrrEntryDataType, 181
CDFgetAttrrEntryNumElements, 182
CDFgetAttrScope, 183
CDFgetAttrzEntry, 191
CDFgetAttrzEntryDataType, 192
CDFgetAttrzEntryNumElements, 193

CDFgetCacheSize, 67
CDFgetCkecksum, 68
CDFgetCompression, 69
CDFgetCompressionCacheSize, 70
CDFgetCompressionInfo, 71
CDFgetCopyright, 72
CDFgetDataTypeSize, 61, 229, 230
CDFgetDecoding, 72
CDFgetEncoding, 73
CDFgetFileBackward, 74
CDFgetFormat, 74, 75, 91
CDFgetLibraryCopyright, 62
CDFgetLibraryVersion, 63
CDFgetMajority, 76
CDFgetMaxWrittenRecNums, 103
CDFgetName, 77
CDFgetNumAttrgEntries, 194
CDFgetNumAttributes, 195
CDFgetNumAttrrEntries, 196
CDFgetNumAttrzEntries, 197
CDFgetNumgAttributes, 198
CDFgetNumrVars, 104
CDFgetNumvAttributes, 198
CDFgetNumzVars, 105
CDFgetReadOnlyMode, 78
CDFgetrVarsRecordData, 39
CDFgetStageCacheSize, 79
CDFgetStatusText, 64
CDFgetValidae, 80
CDFgetVarAllRecordsByVarName, 105
CDFgetVarNum, 107
CDFgetVarRangeRecordsByVarName, 108
CDFgetVersion, 80
CDFgetzMode, 81
CDFgetzVarAllocRecords, 110
CDFgetzVarAllRecordsByVarID, 110
CDFgetzVarBlockingFactor, 112
CDFgetzVarCacheSize, 113
CDFgetzVarCompression, 114
CDFgetzVarData, 115
CDFgetzVarDataType, 116
CDFgetzVarDimSizes, 117
CDFgetzVarDimVariances, 117
CDFgetzVarMaxAllocRecNum, 118
CDFgetzVarMaxWrittenRecNum, 119
CDFgetzVarName, 120
CDFgetzVarNumDims, 120
CDFgetzVarNumElements, 121
CDFgetzVarNumRecsWritten, 122
CDFgetzVarPadValue, 123
CDFgetzVarRangeRecordsByVarID, 124
CDFgetzVarRecordData, 125
CDFgetzVarRecVariance, 126
CDFgetzVarReservePercent, 127
CDFgetzVarSeqData, 128
CDFgetzVarSeqPos, 129
CDFgetzVarsMaxWrittenRecNum, 130
CDFgetzVarSparseRecords, 131
CDFgetzVarsRecordData, 41
CDFgetzVarsRecordDatabyNumbers, 132
CDFhyperGetzVarData, 134
CDFhyperPutzVarData, 136

377

CDFid, 11
CDFinquire, 42
CDFinquireAttr, 199
CDFinquireAttrgEntry, 201
CDFinquireAttrrEntry, 202
CDFinquireAttrzEntry, 203
CDFinquireCDF, 82
CDFinquirezVar, 137
CDFinsertrVarRecordsByVarID, 139
CDFinsertVarRecordsByVarName, 140
CDFinsertzVarRecordsByVarID, 141
CDFlib, 233
CDFopen, 44
CDFopenCDF, 83
CDFputAttrgEntry, 205
CDFputAttrrEntry, 206
CDFputAttrzEntry, 213
CDFputrVarsRecordData, 45
CDFputVarAllRecordsByVarName, 142
CDFputVarRangeRecordsByVarName, 143
CDFputzVarAllRecordsByVarID, 144
CDFputzVarData, 145
CDFputzVarRangeRecordsByVarID, 147
CDFputzVarRecordData, 148
CDFputzVarSeqData, 149
CDFputzVarsRecordData, 47
CDFputzVarsRecordDatabyNumbers, 150
CDFrenameAttr, 215
CDFrenamezVar, 152
cdfs

checksum
inquiring, 256

CDFs
compression

inquiring, 69, 71
CDFs

browsing, 18
cache size

inquiring, 67
checksum

inquiring, 68
closing, 65
compression types/parameters, 17
copy right notice

max length, 19
reading, 37

corrupted, 35, 66
creating, 65
encoding

constants, 13
ALPHAOSF1_ENCODING, 14
ALPHAVMSd_ENCODING, 13
ALPHAVMSg_ENCODING, 13
ALPHAVMSi_ENCODING, 13
ARM_BIG_ENCODING, 14
ARM_LITTLE_ENCODING, 14
DECSTATION_ENCODING, 14
HOST_ENCODING, 13
HP_ENCODING, 14
IA64VMSd_ENCODING, 14
IA64VMSg_ENCODING, 14
IA64VMSi_ENCODING, 14

IBMPC_ENCODING, 14
IBMRS_ENCODING, 14
MAC_ENCODING, 14
NETWORK_ENCODING, 13
NeXT_ENCODING, 14
SGi_ENCODING, 14
SUN_ENCODING, 14
VAX_ENCODING, 13

default, 13
inquiring, 42

format
constants

MULTI_FILE, 12
SINGLE_FILE, 12

default, 12
naming, 19, 35, 44, 66
overwriting, 35, 66
version

inquiring, 37
CDFs

cache size
compression

inquiring, 70
CDFs

decoding
inquiring, 72

CDFs
decoding

inquiring, 73
CDFs

file backard
inquiring, 74

CDFs
format

inquiring, 74
CDFs

format
inquiring, 75

CDFs
majority

inquiring, 76
CDFs

name
inquiring, 77

CDFs
-0.0 to 0.0 mode

inquiring, 77
CDFs

read-only mode
inquiring, 78

CDFs
cache size

stage
inquiring, 79

CDFs
validation

inquiring, 80
CDFs

version
inquiring, 80

CDFs
zMode

378

inquiring, 81
CDFs

inquiring, 82
CDFs

naming, 84
CDFs

cache size
resetting, 84

CDFs
checksum

resetting, 85
CDFs

compression
resetting, 86

CDFs
decoding

resetting, 88
CDFs

encoding
resetting, 88

CDFs
File Backward

resetting, 89
CDFs

format
resetting, 90

CDFs
format

inquiring, 91
CDFs

-0.0 to 0.0 Mode
resetting, 92

CDFs
read-only mode

resetting, 93
CDFs

cache size
stage

resetting, 94
CDFs

validation
resetting, 94

CDFs
zMode

resetting, 95
CDFs

record number
maximum written for zVariables and rVariables, 103

CDFs
rVariables

number of
inquiring, 104

CDFs
zVariables

number of
inquiring, 105

CDFs
global attributes

number of
inquiring, 198

CDFs
variable attributes

number of
inquiring, 198

CDFs
current, 235

CDFs
closing, 240

CDFs
current

confirming, 241
CDFs

accessing, 241
CDFs

cache buffers
confirming, 241

CDFs
cache buffers

confirming, 243
CDFs

cache buffers
confirming, 244

CDFs
cache buffers

confirming, 246
CDFs

cache buffers
confirming, 247

CDFs
creating, 250

CDFs
deleting, 252

CDFs
compression

inquiring, 257
CDFs

copy right notice
reading, 257

CDFs
encoding

inquiring, 257
CDFs

format
inquiring, 257

CDFs
version

inquiring, 257
CDFs

version
inquiring, 260

CDFs
compression

inquiring, 264
CDFs

compression
inquiring, 271

CDFs
nulling, 277

CDFs
opening, 277

CDFs
checksum

specifying, 278
CDFs

379

compression
specifying, 278

CDFs
encoding

changing, 278
CDFs

format
changing, 278

CDFs
format

changing, 279
CDFs

current
selecting, 290

CDFs
cache buffers

selecting, 290
CDFs

scratch directory
specifying, 291

CDFs
cache buffers

selecting, 291
CDFs

cache buffers
selecting, 292

CDFs
cache buffers

selecting, 293
CDFs

cache buffers
selecting, 294

CDFs
cache buffers

selecting, 295
CDFs

cache buffers
selecting, 297

CDFsetAttrgEntryDataSpec, 215
CDFsetAttrrEntryDataSpec, 216
CDFsetAttrScope, 217
CDFsetAttrzEntryDataSpec, 218
CDFsetCacheSize, 84
CDFsetChecksum, 85
CDFsetCompression, 86
CDFsetCompressionCacheSize, 87
CDFsetDecoding, 88
CDFsetEncoding, 88
CDFsetFileBackward, 89
CDFsetFormat, 90
CDFsetMajority, 91
CDFsetReadOnlyMode, 93
CDFsetStageCacheSize, 94
CDFsetValidate, 94
CDFsetzMode, 95
CDFsetzVarAllocBlockRecords, 153
CDFsetzVarAllocRecords, 153
CDFsetzVarBlockingFactor, 154
CDFsetzVarCacheSize, 155
CDFsetzVarCompression, 156
CDFsetzVarDataSpec, 157
CDFsetzVarDimVariances, 158

CDFsetzVarInitialRecs, 158
CDFsetzVarPadValue, 159
CDFsetzVarRecVariance, 160
CDFsetzVarReservePercent, 161
CDFsetzVarsCacheSize, 162
CDFsetzVarSeqPos, 163
CDFsetzVarSparseRecords, 163
CDFstatus, 11
CDFvarClose, 48
CDFvarCreate, 49
CDFvarGet, 51
CDFvarHyperGet, 52
CDFvarHyperPut, 53
CDFvarInquire, 54
CDFvarNum, 56
CDFvarPut, 57
CDFvarRename, 58
checksum

CDF
specifying, 278

Ckecksum, 68, 85
closing

zVar in a multi-file CDF, 96
COLUMN_MAJOR, 16
Compiling, 1
compression

CDF
inquiring, 257, 258
specifying, 278

types/parameters, 17
variables

inquiring, 264, 271
reserve percentage

confirming, 245, 249
selecting, 292, 296

specifying, 281, 286
computeEPOCH, 307
computeEPOCH16, 313
computeTT2000, 321
Data type

size
inquiring, 61, 229, 230

data types
constants, 12

CDF_BYTE, 12
CDF_CHAR, 12
CDF_DOUBLE, 12
CDF_EPOCH, 12
CDF_EPOCH16, 12
CDF_FLOAT, 12
CDF_INT1, 12
CDF_INT2, 12
CDF_INT4, 12
CDF_INT8, 12
CDF_REAL4, 12
CDF_REAL8, 12
CDF_TIME_TT2000, 13
CDF_UCHAR, 12
CDF_UINT1, 12
CDF_UINT2, 12
CDF_UINT4, 12

inquiring size, 260

380

DECSTATION_DECODING, 15
DECSTATION_ENCODING, 14
definitions file, 1
DEFINITIONS.COM, 1, 5
dimensions

limit, 19
encodeEPOCH, 308, 309, 314
encodeEPOCH1, 309
encodeEPOCH16, 314
encodeEPOCH16_1, 315
encodeEPOCH16_2, 315
encodeEPOCH16_3, 315
encodeEPOCH16_4, 316
encodeEPOCH16_x, 316
encodeEPOCH2, 310
encodeEPOCH3, 310
encodeEPOCH4, 310
encodeEPOCHx, 310, 311
encodeTT2000, 324
EPOCH

computing, 307, 313
decomposing, 308, 313
encoding, 308, 309, 310, 311, 314, 315, 316
ISO 8601, 310, 313, 316, 318, 319, 327
parsing, 312, 313, 317, 318, 319, 327
utility routines, 307

computeEPOCH, 307
computeEPOCH16, 313
encodeEPOCH, 308, 309, 314
encodeEPOCH1, 309
encodeEPOCH16, 314
encodeEPOCH16_1, 315
encodeEPOCH16_2, 315
encodeEPOCH16_3, 315
encodeEPOCH16_4, 316
encodeEPOCH16_x, 316
encodeEPOCH2, 310
encodeEPOCH3, 310
encodeEPOCH4, 310
encodeEPOCHx, 310, 311
EPOCH16breakdown, 313
EPOCHbreakdown, 308
parseEPOCH, 312
parseEPOCH1, 312
parseEPOCH16, 317
parseEPOCH16_1, 317
parseEPOCH16_2, 318
parseEPOCH16_3, 318
parseEPOCH16_4, 318, 319, 327
parseEPOCH2, 312
parseEPOCH3, 312
parseEPOCH4, 313

EPOCH16breakdown, 313
EPOCHbreakdown, 308
examples

CDF
-0.0 to 0.0 mode

set, 92
attribute

name
get, 180

scope

get, 183
checksum

set, 86
compression

get, 69
compression cache size

set, 87
Copyright

get, 72
decoding

get, 73
encoding

set, 89
file backward

set, 89
global attribute

entry
data type

get, 174
get, 173

entry
number of elements

get, 175
number of entries

get, 195
inquiring, 83
number of attributes

get, 195
read-only mode

set, 93
rVariable attribute

entry
get, 176, 184, 185, 187, 188, 189, 190, 207, 208,

210, 211, 212, 213
entry

data type
get, 182

stage cache size
set, 94

validate
set, 95

validation
get, 80

version
get, 81

zMode
get, 81
set, 95

CDF
cache size

get, 68
checksum

get, 68
close, 65
create, 66
delete, 67

CDF
compression cache size

get, 70
CDF

compression information
get, 71

381

CDF
file backward

get, 74
CDF

format
get, 75

CDF
format

get, 76
CDF

majority
get, 76

CDF
name

get, 77
CDF

-0.0 to 0.0 mode
get, 78

CDF
read-only mode

get, 78
CDF

cache buffer size
get, 79

CDF
open, 84

CDF
cache size

set, 85
CDF

compression
set, 86

CDF
decoding

set, 88
CDF

format
set, 90

CDF
format

get, 91
CDF

majority
set, 92

CDF
zVar

close, 96
CDF

zVariable
existence

confirm, 97
CDF

zVariable
pad value existence

confirm, 98
CDF

zVariable
create, 99

CDF
zVariable

delete, 101
CDF

zVariable
data records

delete, 101
CDF

zVariable
data records

delete, 102
CDF

max record numbers
zVariables and rVariables

get, 103
CDF

number of rVariables
get, 104

CDF
number of zVariables

get, 105
CDF

Variable
all records

get, 106
CDF

Variable number
get, 107

CDF
variable

range records
get, 109

CDF
zVariable

number of records allocated
get, 110

CDF
zVariable

all records
get, 111

CDF
zVariable

blocking factor
get, 112

CDF
zVariable

cache size
get, 113

CDF
zVariable

compression
get, 114

CDF
zVariable

variable data
get, 115

CDF
zVariable

data type
get, 116

CDF
zVariable

dimension sizes
get, 117

CDF
zVariable

382

dimension variances
get, 118

CDF
zVariable

maximum number of records allocated
get, 119

CDF
zVariable

maximum record number
get, 119

CDF
zVariable

name
get, 120

CDF
zVariable

dimensionality
get, 121

CDF
zVariable

number of elements
get, 122

CDF
zVariable

number of records written
get, 122

CDF
zVariable

pad value
get, 123

CDF
zVariable

range records
get, 124

CDF
zVariable

record data
get, 126

CDF
zVariable

record variance
get, 127

CDF
zVariable

compression reserve percentage
get, 127

CDF
zVariable

data value
get, 128

CDF
zVariable

read position
get, 129

CDF
zVariables

maximum record number
get, 130

CDF
zVariable

sparse record type
get, 131

CDF
zVariable

sparse record type
get, 132

CDF
zVariables

record data
get, 133

CDF
zVariable

multiple values or records
get, 135

CDF
zVariable

data values
write, 137

CDF
zVariable

inquire, 138
CDF

Variable
all records

put, 143
CDF

Variable
range records

put, 144
CDF

zVariable
all records

put, 145
CDF

zVariable
data value

write, 146
CDF

zVariable
all records

put, 147
CDF

zVariable
record data

write, 148
CDF

zVariable
data value

sequential write, 149
CDF

zVariables
record data

write, 150
CDF

zVariable
rename, 152

CDF
zVariable

data records
block

allocate, 153
CDF

zVariable
data records

383

sequential
allocate, 154

CDF
zVariable

blocking factor
set, 155

CDF
zVariable

cache size
set, 155

CDF
zVariable

compression
set, 156

CDF
zVariable

data type
set, 157

CDF
zVariable

dimension variances
set, 158

CDF
zVariable

number of initial records
set, 159

CDF
zVariable

pad value
set, 160

CDF
zVariable

record variance
set, 161

CDF
zVariable

compression reserve percentage
set, 161

CDF
zVariable

cache size
set, 162

CDF
zVariable

sequential location
set, 163

CDF
zVariable

sparse record flag
set, 164

CDF
attribute

existence
confirm, 165

CDF
gentry

existence
confirm, 166

CDF
rEntry

existence
confirm, 166

CDF
zEntry

existence
confirm, 167

CDF
attribute

create, 168
CDF

attribute
delete, 169

CDF
global attribute

entry
delete, 170

CDF
rVariable attribute

entry
delete, 171

CDF
zVariable attribute

entry
delete, 172

CDF
global attribute

last Entry number
get, 177

CDF
rVariable attribute

last Entry number
get, 178

CDF
zVariable attribute

last entry number
get, 179

CDF
attribute

number
get, 181

CDF
rVariable attribute

entry
number of elements

get, 183
CDF

zVariable attribute
entry

get, 191
CDF

zVariable attribute
entry

data type
get, 193

CDF
zVariable attribute

entry
number of elements

get, 194
CDF

rVariable attribute
number of entries

get, 196
CDF

384

zVariable attribute
number of entries

get, 197
CDF

number of global attributes
get, 198

CDF
number of variable attributes

get, 199
CDF

attribute
information

get, 200
CDF

global attribute
entry

information
get, 201

CDF
rVariable attribute

entry
information

get, 203
CDF

zVariable attribute
entry

information
get, 204

CDF
global attribute

entry
write, 205

CDF
rVariable attribute

entry
write, 207

CDF
zVariable attribute

entry
write, 214

CDF
attribute

rename, 215
CDF

global attribute
entry

specification
set, 216

CDF
rVariable attribute

entry
specification

set, 217
CDF

attribute
data scope

set, 218
CDF

zVariable attribute
entry

specification
set, 218

CDF
attribute

existence
confirm, 220

CDF
attribute

existence
confirm, 221

CDF
attribute

existence
confirm, 222

CDF
attribute

existence
confirm, 223

CDF
attribute

existence
confirm, 224

CDF
attribute

existence
confirm, 225

CDF
attribute

existence
confirm, 226

CDF
attribute

existence
confirm, 227

CDF
attribute

existence
confirm, 228

CDF
attribute

existence
confirm, 229

CDF
attribute

existence
confirm, 230

CDF
attribute

existence
confirm, 231

closing
CDF, 34
rVariable, 49

creating
attribute, 26
CDF, 36, 233
rVariable, 50, 297
zVariable, 298

deleting
CDF, 37

get
CDF

Copyright, 62
library version, 63

385

data type size, 62
rVariable

data, 51
inquiring

attribute, 30
entry, 27

attribute number, 31
CDF, 38, 43

format, 303
error code explanation text, 39, 64
rVariable, 55
variable number, 56

Internal Interface, 233, 297
interpreting

status codes, 305
opening

CDF, 44
read

multiple zVariables’ data, 41
reading

attribute entry, 29
rVariable values

hyper, 52, 299
rVariables full record, 40
zVariable values

sequential, 300
renaming

attribute, 34
attributes, 299
rVariable, 58

rVariables
inserting records, 139, 142

status handler, 305
Variables

inserting records, 141
writing

attribute
gEntry, 33
rEntry, 33, 301

rVariable
multiple records/values, 54

rVariable, 57
rVariables, 45
rVariables full record, 45
zVariable full record, 47
zVariable values

multiple variable, 301
Extended Standard Interface, 61
function prototypes, 25, 61
getAttrgEntryNumElements, 175
getAttrMaxgEntry, 177
GLOBAL_SCOPE, 18
HOST_DECODING, 14
HOST_ENCODING, 13
HP_DECODING, 15
HP_ENCODING, 14
IA64VMSd_DECODING, 15
IA64VMSd_ENCODING, 14
IA64VMSg_DECODING, 15
IA64VMSg_ENCODING, 14
IA64VMSi_DECODING, 15
IA64VMSi_ENCODING, 14

IBMPC_DECODING, 15
IBMPC_ENCODING, 14
IBMRS_DECODING, 15
IBMRS_ENCODING, 14
include files, 1
inquiring

CDF information, 37
Interfaces

Extended Standard, 61
Internal, 233
Original Standard, 25

Internal Interface, 233
common mistakes, 302
currnt objects/states, 235

attribute, 236
attribute entries, 236
CDF, 235
records/dimensions, 236, 237, 238
sequential value, 237, 238
status code, 238
variables, 236

examples, 233, 297
Indentation/Style, 239
Operations, 240
status codes, returned, 239
syntax, 239

argument list, 240
limitations, 240

libcdf.a, 5
libcdf.lib, 6
LIBCDF.OLB, 5
Library

error text
inquiring, 64

Library
Copyright

inquiring, 62
version

inquiring, 63
limits

attribute name, 19
Copyright text, 19
dimensions, 19
explanation/status text, 20
file name, 19
parameters, 19
variable name, 19

Limits of names, 19
linking, 5

shareable CDF library, 7
MAC_DECODING, 15
MAC_ENCODING, 14
MULTI_FILE, 12
NEGtoPOSfp0off, 19
NEGtoPOSfp0on, 19
NETWORK_DECODING, 15
NETWORK_ENCODING, 13
NeXT_DECODING, 15
NeXT_ENCODING, 14
NO_COMPRESSION, 17
NO_SPARSEARRAYS, 18
NO_SPARSERECORDS, 17

386

NOVARY, 16
Original Standard Interface, 25
PAD_SPARSERECORDS, 17
parseEPOCH, 312
parseEPOCH1, 312
parseEPOCH16, 317
parseEPOCH16_1, 317
parseEPOCH16_2, 318
parseEPOCH16_3, 318
parseEPOCH16_4, 318, 319, 327
parseEPOCH2, 312
parseEPOCH3, 312
parseEPOCH4, 313
parseTT2000, 325
PREV_SPARSERECORDS, 18
programming interface

customizing, 303
typedef’s, 11

CDFid, 11
CDFstatus, 11

reading
multiple rVariables’ data, 39
multiple zVariables’ data, 41

READONLYoff, 18
READONLYon, 18
ROW_MAJOR, 16
rVariables

close, 48
creating, 49
full record

reading, 39
writing, 45

hyper values
accessing, 52
writing, 53

inseting records, 139
renaming, 58
single value

accessing, 51
writing, 57

scratch directory
specifying, 291

SGi_DECODING, 15
SGi_ENCODING, 14
SINGLE_FILE, 12
sparse arrays

inquiring, 267, 276
specifying, 284, 288
types, 18

sparse records
inquiring, 268, 276
specifying, 284, 289
types, 17

status codes
constants, 11, 305

CDF_OK, 11
CDF_WARN, 12

current, 238
confirming, 242
selecting, 291

error, 328
explanation text

inquiring, 38, 269
max length, 20

informational, 328
interpreting, 305
status handler, example, 301
warning, 328

SUN_DECODING, 15
SUN_ENCODING, 14
TT2000

computing, 321
conversion, 326
decomposing, 322
encoding, 324
parsing, 325
utility routines, 321

CDF_TT2000_from_UTC_EPOCH, 326
CDF_TT2000_from_UTC_EPOCH16, 326
CDF_TT2000_from_UTC_parts, 321
CDF_TT2000_from_UTC_string, 325
CDF_TT2000_to_UTC_EPOCH, 326
CDF_TT2000_to_UTC_EPOCH16, 326
CDF_TT2000_to_UTC_parts, 322
CDF_TT2000_to_UTC_string, 324

TT2000breakdown, 322
UTF-8 encoding, 13
VARIABLE_SCOPE, 18
variables

closing, 241
compression

confirming, 245, 249
inquiring, 257, 264, 271
selecting, 292, 296
specifying, 281, 286
types/parameters, 17

creating, 250, 251
current, 236

confirming, 244, 247
selecting

by name, 292, 296
by number, 292, 295

data specification
changing, 282, 286
data type

inquiring, 54, 264, 272
number of elements

inquiring, 54, 266, 275
deleting, 253, 254
dimension counts

current, 237, 238
confirming, 245, 247
selecting, 293, 295

dimension indices, starting
current, 237, 238

confirming, 246, 248
selecting, 293, 295

dimension intervals
current, 237, 238

confirming, 246, 248
selecting, 293, 295

dimensionality
inquiring, 42, 268, 274

existence, determining, 245, 248

387

majority
changing, 279
considering, 16
constants, 16

COLUMN_MAJOR, 16
ROW_MAJOR, 16

default, 250
inquiring, 258

naming, 50, 99
inquiring, 54, 265, 273
max length, 19
renaming, 283, 287

number
inquiring, 56

number of
inquiring, 42

number of, inquiring, 259
numbering

inquiring, 266, 274
pad value

confirming, 245, 248
inquiring, 267, 275
specifying, 283, 288

reading, 264, 272
record count

current, 237
confirming, 246, 248
selecting, 294, 296

record interval
current, 237, 238

confirming, 246, 248
selecting, 294, 296

record number, starting
current, 236, 237

confirming, 246, 249
selecting, 294, 296

records
allocated

inquiring, 263, 266, 271, 274
specifying, 280, 281, 285, 286

blocking factor
inquiring, 263, 271
specifying, 281, 286

deleting, 253, 254
indexing

inquiring, 265, 273
initial

writing, 282, 287
maximum

inquiring, 42, 265, 268, 273, 276
number of

inquiring, 267, 275
sparse, 17

inquiring, 268, 276
specifying, 284, 289

sparse arrays
inquiring, 267, 276, 284, 288
types, 18

variances
constants, 16

NOVARY, 16
VARY, 16

dimensional
inquiring, 264, 272
specifying, 282, 287

record
changing, 283, 288
inquiring, 267, 275

writing, 282, 287
Variables

inseting records, 140
number

inquiring, 107
read range records, 108
write range records, 143

VARY, 16
VAX_DECODING, 15
VAX_ENCODING, 13
Vriables

read all records, 105
zMODEoff, 19
zMODEon1, 19
zMODEon2, 19
zVariables

data records
deleting, 101, 102

zVariables
check existence, 97
creating, 98
deleting, 100
full record

reading, 41
writing, 47

pad value
checking existence, 98

zVariables
record numbers

allocated records
inquiring, 110

zVariables
read all records, 110

zVariables
blocking factor

inquiring, 112
zVariables

cache size
inquiring, 113

zVariables
compression

inquiring, 114
zVariables

reading data, 115
zVariables

data type
inquiring, 116

zVariables
dimension sizes

inquiring, 117
zVariables

dimension variances
inquiring, 117

zVariables
record numbers

allocated records

388

maximum
inquiring, 118

zVariables
record numbers

written records
maximum

inquiring, 119
zVariables

name
inquiring, 120

zVariables
dimensionality

inquiring, 120
zVariables

number of elements
inquiring, 121

zVariables
record numbers

written records
number of

inquiring, 122
zVariables

pad value
inquiring, 123

zVariables
read range records, 124

zVariables
reading one record, 125

zVariables
record variance

inquiring, 126
zVariables

compression
reserve percentage

inquiring, 127
zVariables

sequential data
reading one value, 128

zVariables
sequential position

inquiring, 129
zVariables

record numbers
written records

maximum
rVariables and zVariables, 130

zVariables
sparse records type

inquiring, 131
zVariables

sparse records type
inquiring, 131

zVariables
reading record

multiple zVariables, 132
zVariables

reading multiple values or records, 134
zVariables

writing
multiple values or records, 136

zVariables
inquiring, 137

zVariables
inseting records, 141

zVariables
write all records, 142

zVariables
write all records, 144

zVariables
writing data, 145

zVariables
write range records, 147

zVariables
writing record data, 148

zVariables
writing sequential data, 149

zVariables
writing record

multiple variables, 150
zVariables

renaming, 152
zVariables

records
allocation, 153

zVariables
records

allocation, 153
zVariables

blocking factor
resetting, 154

zVariables
cache size

resetting, 155
zVariables

compression
resetting, 156

zVariables
data specification

resetting, 157
zVariables

dimension variances
resetting, 158

zVariables
records

writing initially, 158
zVariables

pad value
resetting, 159

zVariables
record variance

resetting, 160
zVariables

compression
reserve percentage

resetting, 161
zVariables

cache size
resetting, 162

zVariables
sequential position

resetting, 163
zVariables

sparse records type
resetting, 163

389

	CDF
	C Reference Manual
	NASA / Goddard Space Flight Center
	1 Compiling
	The CDF file’s offset and size in V 3.0 use the data type off_t (__int64 on Windows)0F , instead of 32-bit long. One or certain predefined macros needs to be defined to the C compiler to make it 64-bit long.
	One of two methods may be used to include cdf.h. They are described in the following sections.
	1.1 Specifying cdf.h Location in the Compile Command
	1.1.1 OpenVMS Systems
	1.1.2 UNIX Systems (including Mac OS X and ARM)
	1.1.3 Windows Systems, Microsoft Visual C++ or Microsoft Visual C++ .Net

	1.2 Specifying cdf.h Location in the Source File

	2 Linking
	2.1 OpenVMS Systems
	2.1.1 Combining the Compile and Link

	2.2 Windows Systems, Microsoft Visual C++ or Microsoft Visual C++ .NET

	3 Linking Shared CDF Library
	3.1 DEC VAX & Alpha (OpenVMS)
	3.2 SUN (Solaris)
	3.3 HP 9000 (HP-UX)9F
	3.4 IBM RS6000 (AIX)10F4
	3.5 DEC Alpha (OSF/1)
	3.6 SGi (IRIX 6.x)
	3.7 Linux (X86 & Power PC & ARM)
	3.8 Windows
	3.9 Macintosh OS X (X86_64 or ARM)

	4 Programming Interface
	4.1 Item Referencing
	4.2 Defined Types
	4.3 CDFstatus Constants

	These constants are of type CDFstatus.
	4.4 CDF Formats
	4.5 CDF Data Types

	One of the following constants must be used when specifying a CDF data type for an attribute entry or variable.
	4.6 Data Encodings

	DECSTATION_ENCODING
	4.7 Data Decodings
	4.8 Variable Majorities
	4.9 Record/Dimension Variances

	Record and dimension variances affect how variable data values are physically stored.
	4.10 Compressions
	4.11 Sparseness
	4.11.1 Sparse Records

	The following types of sparse records for variables are supported.
	4.11.2 Sparse Arrays

	The following types of sparse arrays for variables are supported.12F
	4.12 Attribute Scopes
	4.13 Read-Only Modes
	4.14 zModes
	4.15 -0.0 to 0.0 Modes
	4.16 Operational Limits

	These are limits within the CDF library. If you reach one of these limits, please contact CDF User Support.
	4.17 Limits of Names and Other Character Strings
	4.18 Backward File Compatibility with CDF 2.7

	By default, a CDF file created by CDF V3.0 or a later release is not readable by any of the CDF releases before CDF V3.0 (e.g. CDF 2.7.x, 2.6.x, 2.5.x, etc.). The file incompatibility is due to the 64-bit file offset used in CDF 3.0 and later release...
	There are two ways to create a file that’s backward compatible with CDF 2.7 and 2.6, but not 2.5. Function CDFsetFileBackward, can be called to control the backward compatibility from an application before a CDF file is created (e.g. via CDFcreateCDF...
	The following example uses the Internal Interface to create two CDF files: “MY_TEST1.cdf” is a V3.* file while “MY_TEST2.cdf” a V2.7 file. Alternatively, the Standard Interface function CDFcreateCDF can be used for the file creation.
	Another method is through an environment variable and no function call is needed (and thus no code change involved in any existing applications). The environment variable, CDF_FILEBACKWARD on all Unix platforms and Windows, or CDF$FILEBACKWARD on Ope...
	4.19 Checksum

	To ensure the data integrity while transferring CDF files from/to different platforms at different locations, the checksum feature was added in CDF V3.2 as an option for the single-file format CDF files (not for the multi-file format). By default, th...
	If the checksum bit is turned on, a 16-byte signature message (a.k.a. message digest) is computed from the entire file and appended to the end of the file when the file is closed (after any create/write/update activities). Every time such file is ope...
	There are several ways to add or remove the checksum bit. One way is to use the Interface call (Standard or Internal) with a proper checksum mode. Another way is through the environment variable. Finally, CDFedit and CDFconvert (CDF tools included ...
	See Section 6.2.5 and 6.2.26 for the Standards Interface functions and Section 7.6 for the Internal Interface functions. The environment variable method requires no function calls (and thus no code change is involved for existing applications). The ...
	The following example uses the Internal Interface to set a new CDF file with the MD5 checksum and set another existing file’s checksum to none.
	Alternatively, the Standard Interface function CDFsetChecksum can be used for the same purpose.
	The following example uses the Internal Interface whether the checksum mode is enabled for a CDF.
	Alternatively, the Standard Interface function CDFgetChecksum can be used for the same purpose.
	4.20 Data Validation

	To ensure the data integrity from CDF files and secure operation of CDF-based applications, a data validaion feature is added while a CDF file is opened. This process, as the default, performs sanity checks on the data fields in the CDF internal data ...
	This validation feature is controlled by the setting /unseting the environment variable CDF_VALIDATE on all Unix platforms, Mac OS X and Windows, or CDF$VALIDATE on Open/VMS. If its value is not set or set to “yes”, all open CDF files are subjected to...
	The following example sets the data validation on when the CDF file, “TEST”, is open.
	The following example turns off the data validation when the CDF file, “TEST” is open.
	4.21 8-Byte Integer
	4.22 UTF-8 Encoding

	5 Standard Interface
	5.1 CDFattrCreate15F
	5.1.1 Example(s)

	5.2 CDFattrEntryInquire
	5.2.1 Example(s)

	5.3 CDFattrGet16F
	5.3.1 Example(s)

	5.4 CDFattrInquire17F
	5.4.1 Example(s)

	5.5 CDFattrNum18F

	CDFattrNum may be used as an embedded function call when an attribute number is needed.
	5.5.1 Example(s)
	5.6 CDFattrPut
	5.6.1 Example(s)

	5.7 CDFattrRename19F
	5.7.1 Example(s)

	In the following example the attribute named LAT is renamed to LATITUDE.
	5.8 CDFclose
	5.8.1 Example(s)

	The following example will close an open CDF.
	5.9 CDFcreate

	UNIX: File names are case-sensitive.
	NOTE: CDFclose must be used to close the CDF before your application exits to ensure that the CDF will be correctly written to disk (see Section 5.8).
	5.9.1 Example(s)

	The following example creates a CDF named “test1.cdf” with network encoding and row majority.
	ROW_MAJOR and NETWORK_ENCODING are defined in cdf.h.
	5.10 CDFdelete
	5.10.1 Example(s)

	The following example will open and then delete an existing CDF.
	5.11 CDFdoc
	5.11.1 Example(s)

	The following example returns and displays the version/release and Copyright notice.
	5.12 CDFerror20F
	5.12.1 Example(s)

	The following example displays the explanation text if an error code is returned from a call to CDFopen.
	5.13 CDFgetrVarsRecordData21F
	5.13.1 Example(s)

	5.14 CDFgetzVarsRecordData
	5.14.1 Example(s)

	5.15 CDFinquire
	5.15.1 Example(s)

	The following example returns the basic information about a CDF.
	5.16 CDFopen

	UNIX: File names are case-sensitive.
	5.16.1 Example(s)

	The following example will open a CDF named “NOAA1.cdf”.
	5.17 CDFputrVarsRecordData22F
	5.17.1 Example(s)

	5.18 CDFputzVarsRecordData
	5.18.1 Example(s)

	This function can be a replacement for the similar functionality
	5.19 CDFvarClose23F
	5.19.1 Example(s)

	The following example will close an open rVariable in a multi-file CDF.
	5.20 CDFvarCreate24F
	5.20.1 Example(s)

	5.21 CDFvarGet25F
	5.21.1 Example(s)

	The following example returns two data values, the first and the fifth element, in Record 0 from an rVariable named MY_VAR, a 2-dimensional (2 by 3) CDF_DOUBLE type variable, in a row-major CDF.
	5.22 CDFvarHyperGet26F
	5.22.1 Example(s)

	5.23 CDFvarHyperPut27F
	5.23.1 Example(s)

	5.24 CDFvarInquire
	5.24.1 Example(s)

	5.25 CDFvarNum28F
	5.25.1 Example(s)

	In the following example CDFvarNum is used as an embedded function call when inquiring about an rVariable.
	5.26 CDFvarPut29F
	5.26.1 Example(s)

	The following example will write two data values (1st and 5th elements) of a 2-dimensional rVariable (2 by 3) named MY_VAR to record number 0.
	5.27 CDFvarRename30F
	5.27.1 Example(s)

	6 Exended Standard Interface
	6.1 Library
	6.1.1 CDFgetDataTypeSize
	6.1.1.1. Example(s)

	The following example returns the size of the data type CDF_INT4 that is 4 bytes.
	6.1.2 CDFgetLibraryCopyright
	6.1.2.1. Example(s)

	The following example returns the Copyright of the CDF library being used.
	6.1.3 CDFgetLibraryVersion
	6.1.3.1. Example(s)

	The following example returns the version and release information of the CDF library that is being used.
	6.1.4 CDFgetStatusText
	6.1.4.1. Example(s)

	The following example displays the explanation text for the error code that is returned from a call to CDFopenCDF.
	6.2 CDF
	6.2.1 CDFcloseCDF
	6.2.1.1. Example(s)

	The following example will close an open CDF.
	6.2.2 CDFcreateCDF

	UNIX: File names are case-sensitive.
	NOTE: CDFcloseCDF must be used to close the CDF before your application exits to ensure that the CDF will be correctly written to disk (see Section 5.8).
	6.2.2.1. Example(s)

	The following example creates a CDF named “test1.cdf” with the default encoding and majority.
	6.2.3 CDFdeleteCDF
	6.2.3.1. Example(s)

	The following example will open and then delete an existing CDF.
	6.2.4 CDFgetCacheSize
	6.2.4.1. Example(s)

	The following example returns the cache buffers for the open CDF file.
	6.2.5 CDFgetChecksum
	6.2.5.1. Example(s)

	The following example returns the checksum code for the open CDF file.
	6.2.6 CDFgetCompression
	6.2.6.1. Example(s)

	The following example returns the compression information of the open CDF file.
	6.2.7 CDFgetCompressionCacheSize
	6.2.7.1. Example(s)

	The following example returns the number of cache buffers used for the scratch file from the compressed CDF file.
	6.2.8 CDFgetCompressionInfo
	6.2.8.1. Example(s)

	The following example returns the compression information from a “unopen” CDF named “MY_TEST.cdf”.
	6.2.9 CDFgetCopyright
	6.2.9.1. Example(s)

	The following example returns the Copyright in a CDF.
	6.2.10 CDFgetDecoding
	6.2.10.1. Example(s)

	The following example returns the decoding for the CDF.
	6.2.11 CDFgetEncoding
	6.2.11.1. Example(s)

	The following example returns the data encoding used for the given CDF.
	6.2.12 CDFgetFileBackward
	6.2.12.1. Example(s)

	In the following example, the CDF’s file backward mode is acquired.
	6.2.13 CDFgetFormat
	6.2.13.1. Example(s)

	The following example returns the file format of the CDF.
	6.2.14 CDFgetLeapSecondLastUpdated
	6.2.14.1. Example(s)

	The following example returns the file format of the CDF.
	6.2.15 CDFgetMajority
	6.2.15.1. Example(s)

	The following example returns the majority of the CDF.
	6.2.16 CDFgetName
	6.2.16.1. Example(s)

	The following example returns the name of the CDF.
	6.2.17 CDFgetNegtoPosfp0Mode
	6.2.17.1. Example(s)

	The following example returns the –0.0 to 0.0 mode of the CDF.
	6.2.18 CDFgetReadOnlyMode
	6.2.18.1. Example(s)

	The following example returns the read-only mode for the given CDF.
	6.2.19 CDFgetStageCacheSize
	6.2.19.1. Example(s)

	The following example returns the number of cache buffers used in a CDF.
	6.2.20 CDFgetValidate
	6.2.20.1. Example(s)

	In the following example, it gets the data validation mode.
	6.2.21 CDFgetVersion
	6.2.21.1. Example(s)

	In the following example, a CDF’s version/release is acquired.
	6.2.22 CDFgetzMode
	6.2.22.1. Example(s)

	In the following example, a CDF’s zMode is acquired.
	6.2.23 CDFinquireCDF
	6.2.23.1. Example(s)

	The following example returns the basic information about a CDF.
	6.2.24 CDFopenCDF

	UNIX: File names are case-sensitive.
	6.2.24.1. Example(s)

	The following example will open a CDF named “NOAA1.cdf”.
	6.2.25 CDFsetCacheSize
	6.2.25.1. Example(s)

	The following example extends the number of cache buffers to 500 for the open CDF file. The default number is 300 for a single-file format CDF on Unix systems.
	6.2.26 CDFsetChecksum
	6.2.26.1. Example(s)

	The following example turns off the checksum flag for the open CDF file..
	6.2.27 CDFsetCompression
	6.2.27.1. Example(s)

	The following example uses GZIP.6 to compress the CDF file.
	6.2.28 CDFsetCompressionCacheSize
	6.2.28.1. Example(s)

	The following example extends the number of cache buffers used for the scratch file from the compressed CDF file to 100. The default cache buffers is 80 for Unix systems.
	6.2.29 CDFsetDecoding
	6.2.29.1. Example(s)

	The following example sets NETWORK_DECODING to be the decoding scheme in the CDF.
	6.2.30 CDFsetEncoding
	6.2.30.1. Example(s)

	The following example sets the encoding to HOST_ENCODING for the CDF.
	6.2.31 CDFsetFileBackward
	6.2.31.1. Example(s)

	In the following example, it sets the file backward mode to FILEBACKWARDoff, which means that any files to be created will be of version V3.*, the same as the library version.
	6.2.32 CDFsetFormat
	6.2.32.1. Example(s)

	The following example sets the file format to MULTI_FILE for the CDF. The default is SINGLE_FILE format.
	6.2.33 CDFsetLeapSecondLastUpdated
	6.2.33.1. Example(s)

	The following example returns the file format of the CDF.
	6.2.34 CDFsetMajority
	6.2.34.1. Example(s)

	The following example sets the majority to COLUMN_MAJOR for the CDF. The default is ROW_MAJOR.
	6.2.35 CDFsetNegtoPosfp0Mode
	6.2.35.1. Example(s)

	The following example sets the –0.0 to 0.0 mode to ON for the CDF.
	6.2.36 CDFsetReadOnlyMode
	6.2.36.1. Example(s)

	The following example sets the read-only mode to OFF for the CDF.
	6.2.37 CDFsetStageCacheSize
	6.2.37.1. Example(s)

	The following example sets the number of stage cache buffers to 10 for a CDF.
	6.2.38 CDFsetValidate
	6.2.38.1. Example(s)

	In the following example, it sets the validation mode to be on, so any following CDF files are subjected to the data validation process when they are open.
	6.2.39 CDFsetzMode
	6.2.39.1. Example(s)

	In the following example, a CDF’s zMode is specified to zMODEon2: all rVariables are treated as zVariables with NOVARY dimensions being eliminated.
	6.3 Variable
	6.3.1 CDFclosezVar
	6.3.1.1. Example(s)

	The following example will close an open zVariable file from a multi-file CDF.
	6.3.2 CDFconfirmzVarExistence
	6.3.2.1. Example(s)

	The following example checks the existence of zVariable “MY_VAR” in a CDF.
	6.3.3 CDFconfirmzVarPadValueExistence
	6.3.3.1. Example(s)

	The following example checks the existence of the pad value of zVariable “MY_VAR” in a CDF.
	6.3.4 CDFcreatezVar
	6.3.4.1. Example(s)

	6.3.5 CDFdeletezVar
	6.3.5.1. Example(s)

	The following example deletes the zVariable named MY_VAR in a CDF.
	6.3.6 CDFdeletezVarRecords
	6.3.6.1. Example(s)

	The following example deletes 11 records (from record numbered 11 to 21) from the zVariable “MY_VAR” in a CDF. Note: The first record is numbered as 0.
	6.3.7 CDFdeletezVarRecordsRenumber
	6.3.7.1. Example(s)

	The following example deletes 11 records (from record numbered 11 to 21) from the zVariable “MY_VAR” in a CDF. Note: The first record is numbered as 0. If the last record number is 100, then after the deletion, the record will be 89.
	6.3.8 CDFgetMaxWrittenRecNums
	6.3.8.1. Example(s)

	The following example returns the maximum written record numbers among all rVariables and zVariables of the CDF.
	6.3.9 CDFgetNumrVars
	6.3.9.1. Example(s)

	The following example returns the total number of rVariables in a CDF.
	6.3.10 CDFgetNumzVars
	6.3.10.1. Example(s)

	The following example returns the total number of zVariables in a CDF.
	6.3.11 CDFgetVarAllRecordsByVarName
	6.3.11.1. Example(s)

	The following example returns the whole record data for zVariable “MY_VAR” in a CDF.
	Assuming that the variable has 100 records, each record being a 1-dimensional, with 3 elements, of double type.
	A more general approach: for a variable of double type, but not knowing the total number of records, number of dimensions, etc,:
	6.3.12 CDFgetVarNum 33F

	CDFgetVarNum may be used as an embedded function call where an rVariable or zVariable number is needed.
	6.3.12.1. Example(s)

	In the following example CDFgetVarNum is used as an embedded function call when inquiring about a zVariable.
	6.3.13 CDFgetVarRangeRecordsByVarName
	6.3.13.1. Example(s)

	The following example reads the 100 record data, from record number 10 to 109 for zVariable “MY_VAR” in a CDF.
	Assuming each record is a 1-dimensional, with 3 elements, of double type.
	More general approach: for a variable of double type:
	6.3.14 CDFgetzVarAllocRecords
	6.3.14.1. Example(s)

	The following example returns the number of allocated records for zVariable “MY_VAR” in a CDF.
	6.3.15 CDFgetzVarAllRecordsByVarID
	6.3.15.1. Example(s)

	The following example returns the whole record data for zVariable “MY_VAR” in a CDF.
	Assuming that the variable has 100 records, each record being a 1-dimensional, with 3 elements, of double type.
	More general approach: for a variable of double type, but not knowing the total number of records, number of dimensions, etc,:
	6.3.16 CDFgetzVarBlockingFactor
	6.3.16.1. Example(s)

	The following example returns the blocking factor for the zVariable “MY_VAR” in a CDF.
	6.3.17 CDFgetzVarCacheSize
	6.3.17.1. Example(s)

	The following example returns the number of cache buffers for zVariable “MY_VAR” in a CDF.
	6.3.18 CDFgetzVarCompression
	6.3.18.1. Example(s)

	The following example returns the compression information for zVariable “MY_VAR” in a CDF.
	6.3.19 CDFgetzVarData
	6.3.19.1. Example(s)

	The following example returns two data values, the first and the fifth element, in Record 0 from zVariable “MY_VAR”, a 2-dimensional (2 by 3) CDF_DOUBLE type variable, in a row-major CDF.
	6.3.20 CDFgetzVarDataType
	6.3.20.1. Example(s)

	The following example returns the data type of zVariable “MY_VAR” in a CDF.
	6.3.21 CDFgetzVarDimSizes
	6.3.21.1. Example(s)

	The following example returns the dimension sizes for zVariable “MY_VAR” in a CDF.
	6.3.22 CDFgetzVarDimVariances
	6.3.22.1. Example(s)

	The following example returns the dimension variances of the 2-dimensional zVariable “MY_VAR” in a CDF.
	6.3.23 CDFgetzVarMaxAllocRecNum
	6.3.23.1. Example(s)

	The following example returns the maximum allocated record number for the zVariable “MY_VAR” in a CDF.
	6.3.24 CDFgetzVarMaxWrittenRecNum
	6.3.24.1. Example(s)

	The following example returns the maximum record number written for the zVariable “MY_VAR” in a CDF.
	6.3.25 CDFgetzVarName
	6.3.25.1. Example(s)

	The following example returns the name of the zVariable whose variable number is 1.
	6.3.26 CDFgetzVarNumDims
	6.3.26.1. Example(s)

	The following example returns the number of dimensions for zVariable “MY_VAR” in a CDF.
	6.3.27 CDFgetzVarNumElements
	6.3.27.1. Example(s)

	The following example returns the number of elements for the data type from zVariable “MY_VAR” in a CDF.
	6.3.28 CDFgetzVarNumRecsWritten
	6.3.28.1. Example(s)

	The following example returns the number of written records from zVariable “MY_VAR” in a CDF.
	6.3.29 CDFgetzVarPadValue
	6.3.29.1. Example(s)

	The following example returns the pad value from zVariable “MY_VAR”, a CDF_INT4 type variable, in a CDF.
	6.3.30 CDFgetzVarRangeRecordsByVarID
	6.3.30.1. Example(s)

	The following example reads the 100 record data, from record number 10 to 109 for zVariable “MY_VAR” in a CDF.
	Assuming each record is a 1-dimensional, with 3 elements, of double type.
	More general approach: for a variable of double type:
	6.3.31 CDFgetzVarRecordData
	6.3.31.1. Example(s)

	The following example will read two full records (record numbers 2 and 5) from zVariable “MY_VAR”, a 2-dimension (2 by 3), CDF_INT4 type variable, in a CDF. The variable’s dimension variances are all VARY.
	6.3.32 CDFgetzVarRecVariance
	6.3.32.1. Example(s)

	The following example returns the record variance for the zVariable “MY_VAR” in a CDF.
	6.3.33 CDFgetzVarReservePercent
	6.3.33.1. Example(s)

	The following example returns the compression reserve percentage from the compressed zVariable “MY_VAR” in a CDF.
	6.3.34 CDFgetzVarSeqData
	6.3.34.1. Example(s)

	The following example will read the first two data values from the beginning of record number 2 (from a 2-dimensional zVariable whose data type is CDF_INT4) in a CDF.
	6.3.35 CDFgetzVarSeqPos
	6.3.35.1. Example(s)

	The following example returns the location for the current sequential value (position), the record number and indices within it, from a 2-dimensional zVariable named MY_VAR in a CDF.
	6.3.36 CDFgetzVarsMaxWrittenRecNum
	6.3.36.1. Example(s)

	The following example returns the maximum record number for all of the zVariables in a CDF.
	6.3.37 CDFgetzVarSparseRecords
	6.3.37.1. Example(s)

	The following example returns the sparse records type of the zVariable “MY_VAR” in a CDF.
	6.3.38 CDFgetzVarSpec
	6.3.38.1. Example(s)

	The following example acquires the specification for zVariable “MY_VAR” in a CDF.
	6.3.39 CDFgetzVarsRecordDatabyNumbers
	6.3.39.1. Example(s)

	6.3.40 CDFhyperGetzVarData
	6.3.40.1. Example(s)

	6.3.41 CDFhyperPutzVarData
	6.3.41.1. Example(s)

	6.3.42 CDFinquirezVar
	6.3.42.1. Example(s)

	6.3.43 CDFinsertrVarRecordsByVarID
	6.3.43.1. Example(s)

	The following example shows how 10 records, from (zero-based) record number 5, are inserted for an rVariable “Test”, a scalar of CDF_INT4 type, in a CDF.
	6.3.44 CDFinsertVarRecordsByVarName
	6.3.44.1. Example(s)

	The following example shows how 10 records, from (zero-based) record number 5, are inserted for a zVariable “Test”, a scalar of CDF_INT4 type, in a CDF.
	6.3.45 CDFinsertzVarRecordsByVarID
	6.3.45.1. Example(s)

	The following example shows how 10 records, from (zero-based) record number 5, are inserted for an zVariable “Test”, a scalar of CDF_INT4 type, in a CDF.
	6.3.46 CDFputVarAllRecordsByVarName
	6.3.46.1. Example(s)

	The following example writes out a total of 100 records , for zVariable “MY_VAR” in a CDF.
	Assuming each record is a 1-dimensional, with 3 elements, of double type.
	6.3.47 CDFputVarRangeRecordsByVarName
	6.3.47.1. Example(s)

	The following example writes out a range of record data, from record 10 to 109, for zVariable “MY_VAR” in a CDF.
	Assuming each record is a 1-dimensional, with 3 elements, of double type.
	6.3.48 CDFputzVarAllRecordsByVarID
	6.3.48.1. Example(s)

	The following example writes out the whole record data for zVariable “MY_VAR” in a CDF.
	Assuming that the variable has 100 records, each record being a 1-dimensional, with 3 elements, of double type.
	6.3.49 CDFputzVarData
	6.3.49.1. Example(s)

	The following example will write two data values, the first and the fifth element, in Record 0 from zVariable “MY_VAR”, a 2-dimensional (2 by 3), CDF_DOUBLE type variable, in a row-major CDF.
	6.3.50 CDFputzVarRangeRecordsByVarID
	6.3.50.1. Example(s)

	The following example writes out a range of record data, from record 10 to 109, for zVariable “MY_VAR” in a CDF.
	Assuming each record is a 1-dimensional, with 3 elements, of double type.
	6.3.51 CDFputzVarRecordData
	6.3.51.1. Example(s)

	The following example will write two full records (numbered 2 and 5) from zVariable “MY_VAR”, a 2-dimension (2 by 3), CDF_INT4 type variable, in a CDF. The variable’s dimension variances are all VARY.
	6.3.52 CDFputzVarSeqData
	6.3.52.1. Example(s)

	The following example will write two data values starting at record number 2 from a 2-dimensional zVariable whose data type is CDF_INT4.
	6.3.53 CDFputzVarsRecordDatabyNumbers
	6.3.53.1. Example(s)

	6.3.54 CDFrenamezVar
	6.3.54.1. Example(s)

	6.3.55 CDFsetzVarAllocBlockRecords
	6.3.55.1. Example(s)

	The following example allocates 10 records, from record numbered 10 to 19, for zVariable “MY_VAR” in a CDF.
	6.3.56 CDFsetzVarAllocRecords
	6.3.56.1. Example(s)

	The following example allocates 100 records, from record numbered 0 to 99, for zVariable “MY_VAR” in a CDF.
	6.3.57 CDFsetzVarBlockingFactor
	6.3.57.1. Example(s)

	The following example sets the blocking factor to 100 records for zVariable “MY_VAR” in a CDF.
	6.3.58 CDFsetzVarCacheSize
	6.3.58.1. Example(s)

	The following example sets the number of cache buffers to 10 for zVariable “MY_VAR” in a CDF.
	6.3.59 CDFsetzVarCompression
	6.3.59.1. Example(s)

	The following example sets the compression to GZIP.6 for zVariable “MY_VAR” in a CDF.
	6.3.60 CDFsetzVarDataSpec
	6.3.60.1. Example(s)

	The following example respecifies the data type to CDF_INT2 (from its original CDF_UINT2) for zVariable “MY_VAR” in a CDF.
	6.3.61 CDFsetzVarDimVariances
	6.3.61.1. Example(s)

	The following example resets the dimension variances to true (VARY) and false (NOVARY) for zVariable “MY_VAR”, a 2-dimensional variable, in a CDF.
	6.3.62 CDFsetzVarInitialRecs
	6.3.62.1. Example(s)

	The following example writes the initial 100 records to zVariable “MY_VAR” in a CDF.
	6.3.63 CDFsetzVarPadValue
	6.3.63.1. Example(s)

	The following example sets the pad value to –9999 for zVariable “MY_VAR”, a CDF_INT4 type variable, in a CDF.
	6.3.64 CDFsetzVarRecVariance
	6.3.64.1. Example(s)

	The following example sets the record variance to VARY (from NOVARY) for zVariable “MY_VAR” in a CDF.
	6.3.65 CDFsetzVarReservePercent
	6.3.65.1. Example(s)

	The following example sets the reserve percentage to 10 for zVariable “MY_VAR” in a CDF.
	6.3.66 CDFsetzVarsCacheSize
	6.3.66.1. Example(s)

	The following example sets the number of cache buffers to 10 for all zVariables in a CDF.
	6.3.67 CDFsetzVarSeqPos
	6.3.67.1. Example(s)

	The following example sets the current sequential value to the first value element in record number 2 for a zVariable, a 2-dimensional variable, in a CDF.
	6.3.68 CDFsetzVarSparseRecords
	6.3.68.1. Example(s)

	The following example sets the sparse records type to PAD_SPARSERECORDS from its original type for zVariable “MY_VAR” in a CDF.
	6.4 Attributes/Entries
	6.4.1 CDFconfirmAttrExistence
	6.4.1.1. Example(s)

	The following example checks whether the attribute by the name of “ATTR_NAME1” is in a CDF.
	6.4.2 CDFconfirmgEntryExistence
	6.4.2.1. Example(s)

	The following example checks the existence of gEntry numbered 1 for attribute “MY_ATTR” in a CDF.
	6.4.3 CDFconfirmrEntryExistence
	6.4.3.1. Example(s)

	The following example checks the existence of an rEntry, corresponding to rVariable “MY_VAR”, for attribute “MY_ATTR” in a CDF.
	6.4.4 CDFconfirmzEntryExistence
	6.4.4.1. Example(s)

	The following example checks the existence of the zEntry corresponding to zVariable “MY_VAR” for the variable attribute “MY_ATTR” in a CDF.
	6.4.5 CDFcreateAttr
	6.4.5.1. Example(s)

	6.4.6 CDFdeleteAttr
	6.4.6.1. Example(s)

	The following example deletes an existing attribute named MY_ATTR from a CDF.
	6.4.7 CDFdeleteAttrgEntry
	6.4.7.1. Example(s)

	The following example deletes the entry number 5 from an existing global attribute MY_ATTR in a CDF.
	6.4.8 CDFdeleteAttrrEntry
	6.4.8.1. Example(s)

	The following example deletes the entry corresponding to rVariable “MY_VAR1” from the variable attribute “MY_ATTR” in a CDF.
	6.4.9 CDFdeleteAttrzEntry
	6.4.9.1. Example(s)

	The following example deletes the variable attribute entry named MY_ATTR that is attached to the zVariable MY_VAR1.
	6.4.10 CDFgetAttrgEntry
	6.4.10.1. Example(s)

	6.4.11 CDFgetAttrgEntryDataType
	6.4.11.1. Example(s)

	The following example gets the data type for the gEntry numbered 2 from the global attribute “MY_ATTR” in a CDF.
	6.4.12 CDFgetAttrgEntryNumElements
	6.4.12.1. Example(s)

	The following example gets the number of elements from the gEntry numbered 2 from the global attribute “MY_ATTR” in a CDF.
	6.4.13 CDFgetAttrrEntry
	6.4.13.1. Example(s)

	6.4.14 CDFgetAttrMaxgEntry
	6.4.14.1. Example(s)

	The following example gets the last entry number from the global attribute “MY_ATTR” in a CDF.
	6.4.15 CDFgetAttrMaxrEntry
	6.4.15.1. Example(s)

	The following example gets the last entry, corresponding to the last rVariable number, from the variable attribute “MY_ATTR” in a CDF.
	6.4.16 CDFgetAttrMaxzEntry
	6.4.16.1. Example(s)

	The following example gets the last entry, corresponding to the last zVariable number, attached to the variable attribute MY_ATTR in a CDF.
	6.4.17 CDFgetAttrName
	6.4.17.1. Example(s)

	The following example retrieves the name of the attribute number 2, if it exists, in a CDF.
	6.4.18 CDFgetAttrNum

	CDFgetAttrNum may be used as an embedded function call when an attribute number is needed.
	6.4.18.1. Example(s)
	6.4.19 CDFgetAttrrEntryDataType
	6.4.19.1. Example(s)

	The following example gets the data type for the entry of rVariable “MY_VAR1” in the (variable) attribute “MY_ATTR” in a CDF.
	6.4.20 CDFgetAttrrEntryNumElements
	6.4.20.1. Example(s)

	The following example gets the number of elements for the entry of rVariable “MY_VAR1” in the (variable) attribute “MY_ATTR” in a CDF.
	6.4.21 CDFgetAttrScope
	6.4.21.1. Example(s)

	The following example gets the scope of the attribute “MY_ATTR” in a CDF.
	6.4.22 CDFgetAttrStrgEntry
	6.4.22.1. Example(s)

	6.4.23 CDFgetAttrStrrEntry
	6.4.23.1. Example(s)

	6.4.24 CDFgetAttrStrzEntry
	6.4.24.1. Example(s)

	6.4.25 CDFgetAttrWStrgEntry
	6.4.25.1. Example(s)

	6.4.26 CDFgetAttrWStrrEntry
	6.4.26.1. Example(s)

	6.4.27 CDFgetAttrWStrzEntry
	6.4.27.1. Example(s)

	6.4.28 CDFgetAttrzEntry
	6.4.28.1. Example(s)

	6.4.29 CDFgetAttrzEntryDataType
	6.4.29.1. Example(s)

	The following example gets the data type of the attribute named MY_ATTR for the zVariable MY_VAR1 in a CDF.
	6.4.30 CDFgetAttrzEntryNumElements
	6.4.30.1. Example(s)

	The following example returns the number of elements for attribute named MY_ATTR for the zVariable MY_VAR1 in a CDF
	6.4.31 CDFgetNumAttrgEntries
	6.4.31.1. Example(s)

	The following example retrieves the total number of gEntries for the global attribute MY_ATTR in a CDF.
	6.4.32 CDFgetNumAttributes
	6.4.32.1. Example(s)

	The following example returns the total number of global and variable attributes in a CDF.
	6.4.33 CDFgetNumAttrrEntries
	6.4.33.1. Example(s)

	The following example returns the total number of rEntries from the variable attribute “MY_ATTR” in a CDF.
	6.4.34 CDFgetNumAttrzEntries
	6.4.34.1. Example(s)

	The following example returns the total number of zEntries for the variable attribute MY_ATTR in a CDF.
	6.4.35 CDFgetNumgAttributes
	6.4.35.1. Example(s)

	The following example returns the total number of global attributes in a CDF.
	6.4.36 CDFgetNumvAttributes
	6.4.36.1. Example(s)

	The following example returns the total number of variable attributes of a CDF.
	6.4.37 CDFinquireAttr
	6.4.37.1. Example(s)

	6.4.38 CDFinquireAttrgEntry
	6.4.38.1. Example(s)

	6.4.39 CDFinquireAttrrEntry
	6.4.39.1. Example(s)

	6.4.40 CDFinquireAttrzEntry
	6.4.40.1. Example(s)

	6.4.41 CDFputAttrgEntry
	6.4.41.1. Example(s)

	6.4.42 CDFputAttrrEntry
	6.4.42.1. Example(s)

	6.4.43 CDFputAttrStrgEntry
	6.4.43.1. Example(s)

	6.4.44 CDFputAttrStrrEntry
	6.4.44.1. Example(s)

	6.4.45 CDFputAttrStrzEntry
	6.4.45.1. Example(s)

	6.4.46 CDFputAttrWStrgEntry
	6.4.46.1. Example(s)

	6.4.47 CDFputAttrWStrrEntry
	6.4.47.1. Example(s)

	6.4.48 CDFputAttrWStrzEntry
	6.4.48.1. Example(s)

	6.4.49 CDFputAttrzEntry
	6.4.49.1. Example(s)

	6.4.50 CDFrenameAttr
	6.4.50.1. Example(s)

	In the following example the attribute named LAT is renamed to LATITUDE.
	6.4.51 CDFsetAttrgEntryDataSpec
	6.4.51.1. Example(s)

	The following example modifies the third entry’s (entry number 2) data type of the global attribute MY_ATTR in a CDF. It will change its original data type from CDF_INT2 to CDF_UINT2.
	6.4.52 CDFsetAttrrEntryDataSpec
	6.4.52.1. Example(s)

	The following example modifies the data specification for an rEntry, corresponding to rVariable “MY_VAR”, in the variable attribute “MY_ATTR” in a CDF. It will change its original data type from CDF_INT2 to CDF_UINT2.
	6.4.53 CDFsetAttrScope
	6.4.53.1. Example(s)

	The following example changes the scope of the global attribute named MY_ATTR to a variable attribute (VARIABLE_SCOPE).
	6.4.54 CDFsetAttrzEntryDataSpec
	6.4.54.1. Example(s)

	The following example respecifies the data type of the attribute entry of the attribute named MY_ATTR that is associated with the zVariable MY_VAR. It will change its original data type from CDF_INT2 to CDF_UINT2.
	6.5 Simplified CDFread Functions
	6.5.1 CDFreadgAttrEntry
	6.5.1.1. Example(s)

	The following example reads an entry, at number 0, from the global attribute “ATTR_NAME1” in a CDF.
	6.5.2 CDFreadzAttrEntry
	6.5.2.1. Example(s)

	The following example reads an entry, for zVariable “VAR1”, from the variable attribute “ATTR_NAME1” in a CDF.
	6.5.3 CDFreadzVarPadValue
	6.5.3.1. Example(s)

	The following example reads the pad value for zVariable “VAR1” in a CDF.
	6.5.4 CDFreadzVarAllByVarID
	6.5.4.1. Example(s)

	The following example reads the full information, specifications and data, for zVariable “VAR1” in a CDF.
	6.5.5 CDFreadzVarDataByVarID
	6.5.5.1. Example(s)

	The following example reads the full data from zVariable “VAR1” in a CDF.
	6.5.6 CDFreadzVarRangeDataByVarID
	6.5.6.1. Example(s)

	The following example reads the first 100 records, from record 0 to 99, from zVariable “VAR1” in a CDF.
	6.5.7 CDFreadzVarAllByVarName
	6.5.7.1. Example(s)

	The following example reads the full information, specifications and data, for zVariable “VAR1” in a CDF.
	6.5.8 CDFreadzVarDataByVarName
	6.5.8.1. Example(s)

	The following example reads the full data from zVariable “VAR1” in a CDF.
	6.5.9 CDFreadzVarRangeDataByVarName
	6.5.9.1. Example(s)

	The following example reads the first 100 records, from record 0 to 99, from zVariable “VAR1” in a CDF.
	6.5.10 CDF_Free_String
	6.5.10.1. Example(s)

	The following example reads the entry from the variable attribute, as attribute id 2, which is string-based from zVariable, as variable id 0, in a CDF. After it is done, free the space.
	6.6 UTF-8 encode/decode
	6.6.1 UnicodetoUTF8
	6.6.1.1. Example(s)

	The following example encodes an array of Unicode codepoints to UTF-8 charatcer string.
	6.6.2 UTF8toUnicode
	6.6.2.1. Example(s)

	The following example decodes a UTF-8 string to an array of Unicode codepoints.
	7 Internal Interface - CDFlib
	CDFstatus CDFlib (long function, ...);
	This function prototype is found in the include file cdf.h.
	7.1 Example(s)
	7.2 Current Objects/States (Items)
	7.3 Returned Status
	7.4 Indentation/Style

	NULL_);
	The following example shows the same call to CDFlib without the proper indentation.
	The need for proper indentation to ensure the readability of your applications should be obvious.
	7.5 Syntax

	NULL_);
	7.6 Operations. . .

	There are no required arguments.
	The only required preselected object/state is the current CDF.
	There are no required arguments.
	The required preselected objects/states are the current CDF and its current rVariable.
	There are no required arguments.
	The required preselected objects/states are the current CDF and its current zVariable.
	Attribute number.
	The only required preselected object/state is the current CDF.
	The only required preselected object/state is the current CDF.
	The current CDF.
	There are no required preselected objects/states.
	There are no required arguments.
	The only required preselected object/state is the current CDF.
	The number of cache buffers being used.
	The only required preselected object/state is the current CDF.
	The decoding. The decodings are described in Section 4.7.
	The only required preselected object/state is the current CDF.
	File name of the CDF.
	The only required preselected object/state is the current CDF.
	The -0.0 to 0.0 mode. The -0.0 to 0.0 modes are described in Section 4.15.
	The only required preselected object/state is the current CDF.
	The read-only mode. The read-only modes are described in Section 4.13.
	The only required preselected object/state is the current CDF.
	The status code.
	The only required preselected object/state is the current status code.
	The zMode. The zModes are described in Section 4.14.
	The only required preselected object/state is the current CDF.
	The number of cache buffers being used.
	The only required preselected object/state is the current CDF.
	There are no required arguments.
	The required preselected objects/states are the current CDF, its current attribute, and its current gEntry number.
	NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.
	There are no required arguments.
	The required preselected objects/states are the current CDF, its current attribute, and its current rEntry number.
	NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
	There are no required arguments.
	The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.
	NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
	The gEntry number.
	The only required preselected object/state is the current CDF.
	The gEntry number.
	The required preselected objects/states are the current CDF and its current attribute.
	NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.
	The rEntry number.
	The only required preselected object/state is the current CDF.
	The rEntry number.
	The required preselected objects/states are the current CDF and its current attribute.
	NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
	The only required preselected object/state is the current CDF.
	The number of cache buffers being used.
	The required preselected objects/states are the current CDF and its current rVariable.
	The only required preselected object/state is the current CDF.
	There are no required arguments.
	The required preselected objects/states are the current CDF and its current rVariable.
	The reserve percentage.
	The required preselected objects/states are the current CDF and its current rVariable.
	Record number.
	The required preselected objects/states are the current CDF and its current rVariable.
	Dimension counts. Each element of counts receives the corresponding dimension count.
	The only required preselected object/state is the current CDF.
	Dimension indices. Each element of indices receives the corresponding dimension index.
	The only required preselected object/state is the current CDF.
	Dimension intervals. Each element of intervals receives the corresponding dimension interval.
	The only required preselected object/state is the current CDF.
	Record count.
	The only required preselected object/state is the current CDF.
	Record interval.
	The only required preselected object/state is the current CDF.
	Record number.
	The only required preselected object/state is the current CDF.
	The number of cache buffers being used.
	The only required preselected object/state is the current CDF.
	The zEntry number.
	The only required preselected object/state is the current CDF.
	The zEntry number.
	The required preselected objects/states are the current CDF and its current attribute.
	NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
	The only required preselected object/state is the current CDF.
	The number of cache buffers being used.
	The required preselected objects/states are the current CDF and its current zVariable.
	Dimension counts. Each element of counts receives the corresponding dimension count.
	The required preselected objects/states are the current CDF and its current zVariable.
	Dimension indices. Each element of indices receives the corresponding dimension index.
	The required preselected objects/states are the current CDF and its current zVariable.
	Dimension intervals. Each element of intervals receives the corresponding dimension interval.
	The required preselected objects/states are the current CDF and its current zVariable.
	The only required preselected object/state is the current CDF.
	There are no required arguments.
	The required preselected objects/states are the current CDF and its current zVariable.
	Record count.
	The required preselected objects/states are the current CDF and its current zVariable.
	Record interval.
	The required preselected objects/states are the current CDF and its current zVariable.
	Record number.
	The required preselected objects/states are the current CDF and its current zVariable.
	The reserve percentage.
	The required preselected objects/states are the current CDF and its current zVariable.
	Record number.
	The required preselected objects/states are the current CDF and its current zVariable.
	Scope of the new attribute. Specify one of the scopes described in Section 4.12.
	The only required preselected object/state is the current CDF.
	UNIX: File names are case-sensitive.
	CDF identifier to be used in subsequent operations on the CDF.
	There are no required preselected objects/states.
	Data type of the new rVariable. Specify one of the data types described in Section 4.5.
	Record variance. Specify one of the variances described in Section 4.9.
	The only required preselected object/state is the current CDF.
	Data type of the new zVariable. Specify one of the data types described in Section 4.5.
	Number of dimensions for the zVariable. This may be as few as zero and at most CDF_MAX_DIMS.
	Record variance. Specify one of the variances described in Section 4.9.
	The only required preselected object/state is the current CDF.
	There are no required arguments.
	The required preselected objects/states are the current CDF and its current attribute.
	There are no required arguments.
	The only required preselected object/state is the current CDF.
	There are no required arguments.
	The required preselected objects/states are the current CDF, its current attribute, and its current gEntry number.
	NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.
	There are no required arguments.
	The required preselected objects/states are the current CDF, its current attribute, and its current rEntry number.
	NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
	There are no required arguments.
	The required preselected objects/states are the current CDF and its current rVariable.
	The record number of the first record to be deleted.
	The record number of the last record to be deleted.
	The required preselected objects/states are the current CDF and its current rVariable.
	The record number of the first record to be deleted.
	The record number of the last record to be deleted.
	The required preselected objects/states are the current CDF and its current rVariable.
	There are no required arguments.
	The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.
	NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
	There are no required arguments.
	The required preselected objects/states are the current CDF and its current rVariable.
	The record number of the first record to be deleted.
	The record number of the last record to be deleted.
	The required preselected objects/states are the current CDF and its current zVariable.
	The record number of the first record to be deleted.
	The record number of the last record to be deleted.
	The required preselected objects/states are the current CDF and its current zVariable.
	The required preselected objects/states are the current CDF and its current attribute.
	NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.
	The required preselected objects/states are the current CDF and its current attribute.
	NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
	The required preselected objects/states are the current CDF and its current attribute.
	NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
	Attribute name.
	The required preselected objects/states are the current CDF and its current attribute.
	The attribute number.
	The only required preselected object/state is the current CDF.
	The number of gEntries for the attribute.
	The required preselected objects/states are the current CDF and its current attribute.
	NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.
	The number of rEntries for the attribute.
	The required preselected objects/states are the current CDF and its current attribute.
	NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
	The number of zEntries for the attribute.
	The required preselected objects/states are the current CDF and its current attribute.
	NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
	Attribute scope. The scopes are described in Section 4.12.
	The required preselected objects/states are the current CDF and its current attribute.
	The checksum mode of the current CDF (NO_CHECKSUM or MD5_CHECKSUM). The checksum mode is described in Section 4.19.
	The required preselected objects/states is the current CDF.
	The compression type. The types of compressions are described in Section 4.10.
	The compression parameters. The compression parameters are described in Section 4.10.
	The only required preselected object/state is the current CDF.
	CDF Copyright text.
	The only required preselected object/state is the current CDF.
	Data encoding. The encodings are described in Section 4.6.
	The only required preselected object/state is the current CDF.
	CDF format. The formats are described in Section 4.4.
	The only required preselected object/state is the current CDF.
	Incremental number.
	The only required preselected object/state is the current CDF.
	UNIX: File names are case-sensitive.
	The CDF compression type. The types of compressions are described in Section 4.10.
	The compression parameters. The compression parameters are described in Section 4.10.
	If compressed, size in bytes of the dotCDF file. If not compressed, set to zero (0).
	There are no required preselected objects/states.
	Variable lastupdated. The date of the last leap second was added to the leap second table that is used for making the CDF. This information is relevant only to TT2000 data in the CDF.
	The only required preselected object/state is the current CDF.
	Variable majority. The majorities are described in Section 4.8.
	The only required preselected object/state is the current CDF.
	Number of attributes.
	The only required preselected object/state is the current CDF.
	Number of gAttributes.
	The only required preselected object/state is the current CDF.
	Number of rVariables.
	The only required preselected object/state is the current CDF.
	Number of vAttributes.
	The only required preselected object/state is the current CDF.
	Number of zVariables.
	The only required preselected object/state is the current CDF.
	Release number.
	The only required preselected object/state is the current CDF.
	Version number.
	The only required preselected object/state is the current CDF.
	Data type.
	Number of bytes per element.
	There are no required preselected objects/states.
	The required preselected objects/states are the current CDF, its current attribute, and its current gEntry number.
	NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.
	Data type. The data types are described in Section 4.5.
	The required preselected objects/states are the current CDF, its current attribute, and its current gEntry number.
	NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.
	The required preselected objects/states are the current CDF, its current attribute, and its current gEntry number.
	NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.
	CDF library Copyright text.
	There are no required preselected objects/states.
	Incremental number.
	There are no required preselected objects/states.
	Release number.
	There are no required preselected objects/states.
	Subincremental character.
	There are no required preselected objects/states.
	Version number.
	There are no required preselected objects/states.
	The required preselected objects/states are the current CDF, its current attribute, and its current rEntry number.
	NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
	Data type. The data types are described in Section 4.5.
	The required preselected objects/states are the current CDF, its current attribute, and its current rEntry number.
	NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
	The required preselected objects/states are the current CDF, its current attribute, and its current rEntry number.
	NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
	The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.
	The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.
	The number of the next allocated record.
	The required preselected objects/states are the current CDF and its current rVariable.
	The record number at which to begin searching for the last allocated record.
	The number of the last allocated record.
	The required preselected objects/states are the current CDF and its current rVariable.
	The blocking factor. A value of zero (0) indicates that the default blocking factor is being used.
	The required preselected objects/states are the current CDF and its current rVariable.
	The compression type. The types of compressions are described in Section 4.10.
	The compression parameters. The compression parameters are described in Section 4.10.
	The required preselected objects/states are the current CDF and its current rVariable.
	Data type. The data types are described in Section 4.5.
	The required preselected objects/states are the current CDF and its current rVariable.
	The required preselected objects/states are the current CDF and its current rVariable.
	Maximum record number allocated.
	The required preselected objects/states are the current CDF and its current rVariable.
	Maximum record number.
	The required preselected objects/states are the current CDF and its current rVariable.
	Name of the rVariable.
	The required preselected objects/states are the current CDF and its current rVariable.
	Number of index entries.
	The required preselected objects/states are the current CDF and its current rVariable.
	Number of index levels.
	The required preselected objects/states are the current CDF and its current rVariable.
	Number of index records.
	The required preselected objects/states are the current CDF and its current rVariable.
	Number of allocated records.
	The required preselected objects/states are the current CDF and its current rVariable.
	The rVariable number.
	The only required preselected object/state is the current CDF.
	The required preselected objects/states are the current CDF and its current rVariable.
	Number of records written.
	The required preselected objects/states are the current CDF and its current rVariable.
	The required preselected objects/states are the current CDF and its current rVariable.
	Record variance. The variances are described in Section 4.9.
	The required preselected objects/states are the current CDF and its current rVariable.
	The sparse arrays type. The types of sparse arrays are described in Section 4.11.2.
	The sparse arrays parameters. The sparse arrays parameters are described in Section 4.11.2.
	The required preselected objects/states are the current CDF and its current rVariable.
	The sparse records type. The types of sparse records are described in Section 4.11.1.
	The required preselected objects/states are the current CDF and its current rVariable.
	Dimension sizes. Each element of dimSizes receives the corresponding dimension size.
	The only required preselected object/state is the current CDF.
	Maximum record number.
	The only required preselected object/state is the current CDF.
	Number of dimensions.
	The only required preselected object/state is the current CDF.
	The number of rVariables from which to read. This must be at least one (1).
	The required preselected objects/states are the current CDF and its current record number for rVariables. 46F
	Text explaining the status code.
	The only required preselected object/state is the current status code.
	The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.
	NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
	Data type. The data types are described in Section 4.5.
	The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.
	NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
	The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.
	NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
	The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.
	NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
	The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.
	The number of the next allocated record.
	The required preselected objects/states are the current CDF and its current zVariable.
	The record number at which to begin searching for the last allocated record.
	The number of the last allocated record.
	The required preselected objects/states are the current CDF and its current zVariable.
	The blocking factor. A value of zero (0) indicates that the default blocking factor is being used.
	The required preselected objects/states are the current CDF and its current zVariable.
	The compression type. The types of compressions are described in Section 4.10.
	The compression parameters. The compression parameters are described in Section 4.10.
	If compressed, the percentage of the uncompressed size of the zVariable's data values
	The required preselected objects/states are the current CDF and its current zVariable.
	Data type. The data types are described in Section 4.5.
	The required preselected objects/states are the current CDF and its current zVariable.
	Dimension sizes. Each element of dimSizes receives the corresponding dimension size.
	The required preselected objects/states are the current CDF and its current zVariable.
	The required preselected objects/states are the current CDF and its current zVariable.
	Maximum record number allocated.
	The required preselected objects/states are the current CDF and its current zVariable.
	Maximum record number.
	The required preselected objects/states are the current CDF and its current zVariable.
	Name of the zVariable.
	The required preselected objects/states are the current CDF and its current zVariable.
	Number of index entries.
	The required preselected objects/states are the current CDF and its current zVariable.
	Number of index levels.
	The required preselected objects/states are the current CDF and its current zVariable.
	Number of index records.
	The required preselected objects/states are the current CDF and its current zVariable.
	Number of allocated records.
	The required preselected objects/states are the current CDF and its current zVariable.
	The zVariable number.
	The only required preselected object/state is the current CDF.
	Number of dimensions.
	The required preselected objects/states are the current CDF and its current zVariable.
	The required preselected objects/states are the current CDF and its current zVariable.
	Number of records written.
	The required preselected objects/states are the current CDF and its current zVariable.
	The required preselected objects/states are the current CDF and its current zVariable.
	Record variance. The variances are described in Section 4.9.
	The required preselected objects/states are the current CDF and its current zVariable.
	The sparse arrays type. The types of sparse arrays are described in Section 4.11.2.
	The required preselected objects/states are the current CDF and its current zVariable.
	The sparse records type. The types of sparse records are described in Section 4.11.1.
	The required preselected objects/states are the current CDF and its current zVariable.
	Maximum record number.
	The only required preselected object/state is the current CDF.
	The number of zVariables from which to read. This must be at least one (1).
	UNIX: File names are case-sensitive.
	CDF identifier to be used in subsequent operations on the CDF.
	There are no required preselected objects/states.
	The required preselected objects/states are the current CDF and its current attribute.
	New attribute scope. Specify one of the scopes described in Section 4.12.
	The required preselected objects/states are the current CDF and its current attribute.
	The checksum mode to be used (NO_CHECKSUM or MD5_CHECKSUM). The checksum mode is described in Section 4.19.
	The required preselected objects/states is the current CDF.
	The compression type. The types of compressions are described in Section 4.10.
	The compression parameters. The compression parameters are described in Section 4.10.
	The only required preselected object/state is the current CDF.
	New data encoding. Specify one of the encodings described in Section 4.6.
	The only required preselected object/state is the current CDF.
	New CDF format. Specify one of the formats described in Section 4.4.
	The only required preselected object/state is the current CDF.
	The date, in YYYYMMDD form.
	The only required preselected object/state is the current CDF.
	New variable majority. Specify one of the majorities described in Section 4.8.
	The only required preselected object/state is the current CDF.
	Data type of the gEntry. Specify one of the data types described in Section 4.5.
	Value(s). The entry value is written to the CDF from memory address value.
	The required preselected objects/states are the current CDF, its current attribute, and its current gEntry number.
	NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.
	New data type of the gEntry. Specify one of the data types described in Section 4.5.
	Number of elements of the data type.
	The required preselected objects/states are the current CDF, its current attribute, and its current gEntry number.
	NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.
	Data type of the rEntry. Specify one of the data types described in Section 4.5.
	Value(s). Entry value is written to the CDF from memory address value.
	The required preselected objects/states are the current CDF, its current attribute, and its current rEntry number.
	NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
	New data type of the rEntry. Specify one of the data types described in Section 4.5.
	Number of elements of the data type.
	The required preselected objects/states are the current CDF, its current attribute, and its current rEntry number.
	NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
	The first record number to allocate.
	The last record number to allocate.
	The required preselected objects/states are the current CDF and its current rVariable.
	Number of records to allocate.
	The required preselected objects/states are the current CDF and its current rVariable.
	The blocking factor. A value of zero (0) indicates that the default blocking factor should be used.
	The required preselected objects/states are the current CDF and its current rVariable.
	The compression type. The types of compressions are described in Section 4.10.
	The compression parameters. The compression parameters are described in Section 4.10.
	The required preselected objects/states are the current CDF and its current rVariable.
	Value. The value is written to the CDF from memory address value.
	New data type. Specify one of the data types described in Section 4.5.
	The required preselected objects/states are the current CDF and its current rVariable.
	The required preselected objects/states are the current CDF and its current rVariable.
	Values. The values starting at memory address buffer are written to the CDF.
	Number of records to write.
	The required preselected objects/states are the current CDF and its current rVariable.
	The required preselected objects/states are the current CDF and its current rVariable.
	Pad value. The pad value is written to the CDF from memory address value.
	The required preselected objects/states are the current CDF and its current rVariable.
	New record variance. Specify one of the variances described in Section 4.9.
	The required preselected objects/states are the current CDF and its current rVariable.
	Value. The value is written to the CDF from memory address value.
	The sparse arrays type. The types of sparse arrays are described in Section 4.11.2.
	The sparse arrays parameters. The sparse arrays parameters are described in Section 4.11.2.
	The required preselected objects/states are the current CDF and its current rVariable.
	The sparse records type. The types of sparse records are described in Section 4.11.1.
	The required preselected objects/states are the current CDF and its current rVariable.
	The number of rVariables to which to write. This must be at least one (1).
	The required preselected objects/states are the current CDF and its current record number for rVariables. 51F
	Data type of the zEntry. Specify one of the data types described in Section 4.5.
	Value(s). The entry value is written to the CDF from memory address value.
	The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.
	NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
	New data type of the zEntry. Specify one of the data types described in Section 4.5.
	Number of elements of the data type.
	The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.
	NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
	The first record number to allocate.
	The last record number to allocate.
	The required preselected objects/states are the current CDF and its current zVariable.
	Number of records to allocate.
	The required preselected objects/states are the current CDF and its current zVariable.
	The blocking factor. A value of zero (0) indicates that the default blocking factor should be used.
	The required preselected objects/states are the current CDF and its current zVariable.
	The compression type. The types of compressions are described in Section 4.10.
	The compression parameters. The compression parameters are described in Section 4.10.
	The required preselected objects/states are the current CDF and its current zVariable.
	Value. The value is written to the CDF from memory address value.
	New data type. Specify one of the data types described in Section 4.5.
	The required preselected objects/states are the current CDF and its current zVariable.
	The required preselected objects/states are the current CDF and its current zVariable.
	Number of records to write.
	The required preselected objects/states are the current CDF and its current zVariable.
	Values. The values starting at memory address buffer are written to the CDF.
	The required preselected objects/states are the current CDF and its current zVariable.
	Pad value. The pad value is written to the CDF from memory address value.
	The required preselected objects/states are the current CDF and its current zVariable.
	New record variance. Specify one of the variances described in Section 4.9.
	The required preselected objects/states are the current CDF and its current zVariable.
	Value. The value is written to the CDF from memory address value.
	The sparse arrays type. The types of sparse arrays are described in Section 4.11.2.
	The sparse arrays parameters. The sparse arrays parameters are described in Section 4.11.2.
	The required preselected objects/states are the current CDF and its current zVariable.
	The sparse records type. The types of sparse records are described in Section 4.11.1.
	The required preselected objects/states are the current CDF and its current zVariable.
	The number of zVariables to which to write. This must be at least one (1).
	Attribute number.
	The only required preselected object/state is the current CDF.
	The only required preselected object/state is the current CDF.
	There are no required preselected objects/states.
	The number of cache buffers to be used.
	The only required preselected object/state is the current CDF.
	The decoding. Specify one of the decodings described in Section 4.7.
	The only required preselected object/state is the current CDF.
	The -0.0 to 0.0 mode. Specify one of the -0.0 to 0.0 modes described in Section 4.15.
	The only required preselected object/state is the current CDF.
	The read-only mode. Specify one of the read-only modes described in Section 4.13.
	The only required preselected object/state is the current CDF.
	The only required preselected object/state is the current CDF.
	CDF status code.
	There are no required preselected objects/states.
	The zMode. Specify one of the zModes described in Section 4.14.
	The only required preselected object/state is the current CDF.
	The number of cache buffers to be used.
	The only required preselected object/state is the current CDF.
	The only required preselected object/state is the current CDF.
	The only required preselected object/state is the current CDF.
	The only required preselected object/state is the current CDF.
	The only required preselected object/state is the current CDF.
	The number of cache buffers to be used.
	The required preselected objects/states are the current CDF and its current rVariable.
	The only required preselected object/state is the current CDF.
	The reserve percentage.
	The required preselected objects/states are the current CDF and its current rVariable.
	Record number.
	The required preselected objects/states are the current CDF and its current rVariable.
	The number of cache buffers to be used.
	The only required preselected object/state is the current CDF.
	Dimension counts. Each element of counts specifies the corresponding dimension count.
	The only required preselected object/state is the current CDF.
	Dimension indices. Each element of indices specifies the corresponding dimension index.
	The only required preselected object/state is the current CDF.
	Dimension intervals. Each element of intervals specifies the corresponding dimension interval.
	The only required preselected object/state is the current CDF.
	Record count.
	The only required preselected object/state is the current CDF.
	Record interval.
	The only required preselected object/state is the current CDF.
	Record number.
	The only required preselected object/state is the current CDF.
	The number of cache buffers to be used.
	The only required preselected object/state is the current CDF.
	The only required preselected object/state is the current CDF.
	The only required preselected object/state is the current CDF.
	The only required preselected object/state is the current CDF.
	The number of cache buffers to be used.
	The required preselected objects/states are the current CDF and its current zVariable.
	Dimension counts. Each element of counts specifies the corresponding dimension count.
	The required preselected objects/states are the current CDF and its current zVariable.
	Dimension indices. Each element of indices specifies the corresponding dimension index.
	The required preselected objects/states are the current CDF and its current zVariable.
	Dimension intervals. Each element of intervals specifies the corresponding dimension interval.
	The required preselected objects/states are the current CDF and its current zVariable.
	The only required preselected object/state is the current CDF.
	Record count.
	The required preselected objects/states are the current CDF and its current zVariable.
	Record interval.
	The required preselected objects/states are the current CDF and its current zVariable.
	Record number.
	The required preselected objects/states are the current CDF and its current zVariable.
	The reserve percentage.
	The required preselected objects/states are the current CDF and its current zVariable.
	Record number.
	The required preselected objects/states are the current CDF and its current zVariable.
	The number of cache buffers to be used.
	The only required preselected object/state is the current CDF.
	Record number.
	The only required preselected object/state is the current CDF.
	7.7 More Examples
	7.7.1 rVariable Creation

	NULL_);
	7.7.2 zVariable Creation (Character Data Type)
	7.7.3 Hyper Read with Subsampling

	NULL_);
	7.7.4 Attribute Renaming

	PUT__, ATTR_NAME, "TMP",
	7.7.5 Sequential Access

	NULL_);
	NULL_);
	7.7.6 Attribute rEntry Writes

	ATTR_NAME_, "FIELDNAM",
	SELECT_, ATTR_NAME_, "SCALE",
	NULL_);
	7.7.7 Multiple zVariable Write

	NULL_);
	7.8 A Potential Mistake We Don't Want You to Make
	7.9 Custom C Functions

	NULL_)
	8 Interpreting CDF Status Codes
	The following example shows how you could check the status code returned from CDF functions.
	CDFstatus status;
	9 EPOCH Utility Routines
	9.1 computeEPOCH
	9.2 EPOCHbreakdown

	EPOCHbreakdown decomposes a CDF_EPOCH value into the individual components.
	9.3 toEncodeEPOCH

	EPOCH_STRING_LEN (happens to be the largest string length among all styles) is defined in cdf.h.
	9.4 encodeEPOCH

	EPOCH_STRING_LEN is defined in cdf.h.
	9.5 encodeEPOCH1

	EPOCH1_STRING_LEN is defined in cdf.h.
	9.6 encodeEPOCH2

	EPOCH2_STRING_LEN is defined in cdf.h.
	9.7 encodeEPOCH3

	EPOCH3_STRING_LEN is defined in cdf.h.
	9.8 encodeEPOCH457F

	EPOCH4_STRING_LEN is defined in cdf.h.
	9.9 encodeEPOCHx

	The supported component tokens and their default widths are as follows. . .
	EPOCHx_FORMAT_LEN and EPOCHx_STRING_MAX are defined in cdf.h.
	9.10 toParseEPOCH

	epString has the maximum length of EPOCH_STRING_LEN, which is defined in cdf.h.
	9.11 parseEPOCH

	EPOCH_STRING_LEN is defined in cdf.h.
	9.12 parseEPOCH1

	EPOCH1_STRING_LEN is defined in cdf.h.
	9.13 parseEPOCH2

	EPOCH2_STRING_LEN is defined in cdf.h.
	9.14 parseEPOCH3

	EPOCH3_STRING_LEN is defined in cdf.h.
	9.15 parseEPOCH4

	EPOCH4_STRING_LEN is defined in cdf.h.
	9.16 computeEPOCH16
	9.17 EPOCH16breakdown

	EPOCH16breakdown decomposes a CDF_EPOCH16 value into the individual components.
	9.18 toEncodeEPOCH16

	EPOCH16_STRING_LEN (happens to be the largest string length among all styles) is defined in cdf.h.
	9.19 encodeEPOCH16

	EPOCH16_STRING_LEN is defined in cdf.h.
	9.20 encodeEPOCH16_1

	EPOCH16_1_STRING_LEN is defined in cdf.h.
	9.21 encodeEPOCH16_2

	EPOCH16_2_STRING_LEN is defined in cdf.h.
	9.22 encodeEPOCH16_3

	EPOCH16_3_STRING_LEN is defined in cdf.h.
	9.23 encodeEPOCH16_460F

	EPOCH16_4_STRING_LEN is defined in cdf.h.
	9.24 encodeEPOCH16_x

	The supported component tokens and their default widths are as follows. . .
	EPOCHx_FORMAT_LEN and EPOCHx_STRING_MAX are defined in cdf.h.
	9.25 toParseEPOCH16

	epString has a maximum length of EPOCH16_STRING_LEN, which is defined in cdf.h.
	9.26 parseEPOCH16

	EPOCH16_STRING_LEN is defined in cdf.h.
	9.27 parseEPOCH16_1

	EPOCH16_1_STRING_LEN is defined in cdf.h.
	9.28 parseEPOCH16_2

	EPOCH16_2_STRING_LEN is defined in cdf.h.
	9.29 parseEPOCH16_3

	EPOCH16_3_STRING_LEN is defined in cdf.h.
	9.30 parseEPOCH16_4

	EPOCH16_4_STRING_LEN is defined in cdf.h.
	9.31 EPOCHtoUnixTime
	9.32 UnixTimetoEPOCH
	9.33 EPOCH16toUnixTime
	9.34 UnixTimetoEPOCH16

	10 TT2000 Utility Routines
	10.1 computeTT2000 (aka CDF_TT2000_from_UTC_parts)
	10.2 breakdownTT2000 (aka CDF_TIME_to_UTC_parts or TT2000breakdown)

	breakdownTT2000 decomposes a CDF_TIME_TT2000 value into the individual UTC-based date/time components.
	10.3 toEncodeTT200064F
	10.4 encodeTT2000 (aka CDF_TT2000_to_UTC_string)
	10.5 toParseTT200068F
	10.6 parseTT2000 (aka CDF_TT2000_from_UTC_string)
	10.7 CDF_TT2000_from_UTC_EPOCH
	10.8 CDF_TT2000_to_UTC_EPOCH

	CDF_TT2000_to_UTC_EPOCH converts a value in CDF_TIME_TT2000 type to CDF_EPOCH type.
	10.9 CDF_TT2000_from_UTC_EPOCH16

	The picoseconds from CDF_EPOCH16 is ignored.
	10.10 CDF_TT2000_to_UTC_EPOCH16
	10.11 TT2000toUnixTime
	10.12 UnixTimetoTT2000
	Appendix A
	A.1 Introduction

	Error codes < CDF_WARN < Warning codes < CDF_OK < Informational codes
	A.2 Status Codes and Messages
	Appendix B
	B.1 Original Standard Interface
	B.2 Extended Standard Interface
	B.3 CDFread Functions
	B.4 Internal Interface

	CLOSE_
	CDF_
	CONFIRM_
	CREATE_
	DELETE_
	ATTR_
	CDF_
	GET_
	NULL_
	OPEN_
	PUT__
	SELECT_
	B.5 EPOCH Utility Routines
	B.6 TT2000 Utility Routines

	Index

