CDF_CREATE

The CDF_CREATE function creates a new Common Data Format file with the given
filename.

Note that when you create a CDF file, you may specify both encoding and
decoding methods. Encoding specifies the method used to write data to the
CDF file. Decoding specifies the method used to retrieve data from the CDF
file and pass it to an application (IDL, for example). Encoding and decoding
methods are specified by setting the XXX_ENCODING and XXX_DECODING keywords
to CDF_CREATE. If no decoding method is specified, the decoding method is
set to be the same as the encoding method.

All CDF encodings and decodings can be written or read on all platforms, but
matching the encoding with the architecture used provides the best performance.
If you work in a single-platform environment most of the time, select
HOST_ENCODING for maximum performance. If you know that the CDF file will be transported to a computer using another architecture, specify the encoding for the target architecture or specify NETWORK_ENCODING (the default). Specifying the target architecture provides maximum performance on that architecture; specifying NETWORK_ENCODING provides maximum flexibility.

For more discussion on CDF encoding/decoding methods and combinations, see sections 2.2.8 ("Encoding") and 2.2.9 ("Decoding") of the version 2.7 CDF User's Guide.

Syntax
Result = CDF_CREATE(Filename, [Dimensions]
 [, /CLOBBER]
 [, /MULTI_FILE | , /SINGLE_FILE]
 [, /COL_MAJOR | , /ROW_MAJOR]
 [Encoding keyword]
 [Decoding Keyword])

Encoding Keywords (optional):
[, /ALPHAOSF1_ENCODING]
[, /ALPHAVMSD_ENCODING]
[, /ALPHAVMSG_ENCODING]
[, /DECSTATION_ENCODING]
[, /HOST_ENCODING]
[, /HP_ENCODING]
[, /IBMPC_ENCODING]
[, /IBMRS_ENCODING]
[, /MAC_ENCODING]
[, /NETWORK_ENCODING]
[, /NEXT_ENCODING]
[, /SGI_ENCODING]
[, /SUN_ENCODING]

Decoding Keywords (Optional):
[, /ALPHAOSF1_DECODING]
[, /ALPHAVMSD_DECODING]
[, /ALPHAVMSG_DECODING]
[, /DECSTATION_DECODING]
[, /HOST_DECODING]
[, /HP_DECODING]
[, /IBMPC_DECODING]
[, /IBMRS_DECODING]
[, /MAC_DECODING]
[, /NETWORK_DECODING]
[, /NEXT_DECODING]
[, /SGI_DECODING]
[, /SUN_DECODING]

Return Value
Returns the CDF ID for the new file.

Arguments
Filename A scalar string containing the name of the file to be
 created. Note that if the desired filename has a .cdf
 ending, you can omit the extension and specify just the
 first part of the filename. For example, specifying
 "mydata" would open the file mydata.cdf.

Dimensions A vector of values specifying size of each rVariable
 dimension. If no dimensions are specified, the file will
 contain a single scalar per record (i.e., a 0-dimensional
 CDF). This argument has no effect on zVariables.

Keywords
CLOBBER Set this keyword to erase the existing file (if the file
 already exists) before creating the new version.

 Note that if the existing file has been corrupted, the
 CLOBBER operation will attempt to delete this bad file.
 If it fails, causing IDL to display an error message, You
 must manually delete the existing file from outside IDL.

COL_MAJOR Set this keyword to use column major (IDL-like) array
 ordering for variable storage.

ROW_MAJOR Set this keyword to specify row major (C-like) array
 ordering for variable storage. This is the default.

MULTI_FILE Set this keyword to cause all CDF control information and
 attribute entry data to be placed in one .cdf file, with a
 separate file created for each defined variable. If the
 variable in an rVariable, then the variable files will have
 extensions of .v0, .v1, etc.; zVariables will be stored in
 files with extensions of .z0, .z1, etc. and it is less
 efficient than the SINGLE_FILE format. See section 2.2.7
 ("Format") in the CDF User's Guide for more information.
 If both SINGLE_FILE and MULTI_FILE are set, the file will
 be created in the SINGLE_FILE format.

 MULTI_FILE Example:

 id=CDF_CREATE('multi', /MULTI_FILE)
 CDF_CONTROL, id, GET_FORMAT=cdf_format
 HELP, cdf_format

 IDL prints:
 CDF_FORMAT STRING = 'MULTI_FILE'

SINGLE_FILE Set this keyword to cause all CDF information (control
 information, attribute entry data, variable data, etc.) to
 be written to a single .cdf file. This is the default.
 See section 2.2.7 ("Format") of the CDF User's Guide for
 more information. If both SINGLE_FILE and MULTI_FILE are
 set, the file will be created in the SINGLE_FILE format.

Encoding Keywords
Select one of the following keywords to specify the type of encoding:

ALPHAOSF1_ENCODING Set this keyword to indicate DEC ALPHA/OSF1 data
 encoding.

ALPHAVMSD_ENCODING Set this keyword to indicate DEC ALPHA/VMS data
 encoding using Digital's D_FLOAT representation.

ALPHAVMSG_ENCODING Set this keyword to indicate DEC ALPHA/VMS data
 encoding using Digital's G_FLOAT representation.

DECSTATION_ENCODING Set this keyword to select Decstation (MIPSEL)
 data encoding.

HOST_ENCODING Set this keyword to select that the file will use
 native data encoding. This is the default.

HP_ENCODING Set this keyword to select HP 9000 data encoding.

IBMPC_ENCODING Set this keyword to select IBM PC data encoding.

IBMRS_ENCODING Set this keyword to select IBM RS/6000 series data
 encoding.

MAC_ENCODING Set this keyword to select Macintosh data encoding.

NETWORK_ENCODING Set this keyword to select network-transportable
 data encoding (XDR).

NEXT_ENCODING Set this keyword to select NeXT data encoding.

SGI_ENCODING Set this keyword to select SGI (MIPSEB) data encoding
 (Silicon Graphics Iris and Power series).

SUN_ENCODING Set this keyword to select SUN data encoding.

Decoding Keywords
Select one of the following keywords to specify the type of decoding:

ALPHAOSF1_DECODING Set this keyword to indicate DEC ALPHA/OSF1 data
 decoding.

ALPHAVMSD_DECODING Set this keyword to indicate DEC ALPHA/VMS data
 decoding using Digital's D_FLOAT representation.

ALPHAVMSG_DECODING Set this keyword to indicate DEC ALPHA/VMS data
 decoding using Digital's G_FLOAT representation.

DECSTATION_DECODING Set this keyword to select Decstation (MIPSEL)
 data decoding.

HOST_DECODING Set this keyword to select that the file will use
 native data decoding. This is the default.

HP_DECODING Set this keyword to select HP 9000 data decoding.

IBMPC_DECODING Set this keyword to select IBM PC data decoding.

IBMRS_DECODING Set this keyword to select IBM RS/6000 series data
 decoding.

MAC_DECODING Set this keyword to select Macintosh data decoding.

NETWORK_DECODING Set this keyword to select network-transportable
 data decoding (XDR).

NEXT_DECODING Set this keyword to select NeXT data decoding.

SGI_DECODING Set this keyword to select SGI (MIPSEB) data decoding
 (Silicon Graphics Iris and Power series).

SUN_DECODING Set this keyword to select SUN data decoding.

Examples
Use the following command to create a 10-element by 20-element CDF using
network encoding and Sun decoding:

id = CDF_CREATE('cdf_create.cdf', [10,20], /NETWORK_ENCODING, $
 /SUN_DECODING)
; ... other cdf commands ...
CDF_CLOSE, id ; close the file.
Now suppose that we decide to use HP_DECODING instead. We can use the CLOBBER keyword to delete the existing file when creating the new file:

id = CDF_CREATE('cdf_create.cdf', [10,20], /NETWORK_ENCODING, $
 /HP_DECODING, /CLOBBER)
; ... other cdf commands ...
CDF_CLOSE, id ; close the file.
The new file is written over the existing file. Use the following command to delete the file:

CDF_DELETE, id

Version History
Introduced: Pre 4.0

CDF_ENCODE_EPOCH16

The CDF_ENCODE_EPOCH16 function encodes a single or an array of CDF_EPOCH16
value(s) into the standard date and time character string(s). The default
format of the string is dd-mmm-yyyy hh: mm:ss.ccc.uuu.nnn.ppp where dd is the
day of the month (1-31), mmm is the month (Jan, Feb, Mar, Apr, May, Jun, Jul,
Aug, Sep, Oct, Nov, Dec), yyyy is the year, hh is the hour (0-23), mm is the
minute (0-59), ss is the second (0-60 if leap second), ccc is the millisecond
(0-999), uuu is the microsecond (0-999), nnn is the nanosecond (0-999), and
ppp is the picosecond (0-999).

Syntax
 Result = CDF_ENCODE_EPOCH16(Epoch16 [, EPOCH={0 | 1 | 2 | 3}])

Return Value
 Returns the string(s) representation of the given CDF_EPOCH16 value(s).

Arguments
 Epoch16 A scalar or an array (<= 2D) CDF_EPOCH16 value(s).

Keywords
 EPOCH=<epoch_mode>, where the default epoch_mode is 0.

 EPOCH=0 : returns a date in dd-mmm-yyyy hh:mm:ss.ccc.uuu.nnn.ppp where

 dd is the day of the month (1-31),
 mmm is the month (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug,
 Sep, Oct, Nov, or Dec),
 yyyy is the year, A.D,
 hh is the hour (0-23),
 mm is the minute (0-59),
 ss is the second (0-60 if leap second),
 ccc is the millisecond (0-999),
 uuu is the microsecond (0-999),
 nnn is the nanosecond (0-999), and
 ppp is the picosecond (0-999).

 EPOCH=1 : returns a date in yyyymmdd.ttttttttttttttt where
 yyyy is the year,
 mm is the month (1-12),
 dd is the day of the month (1-31), and
 ttttttttttttttt is the fraction of the day (e.g. 500000000000000
 is 12 'oclock noon).

 EPOCH=2 : returns a date in yyyymmddss where
 yyyy is the year,
 mm is the month (1-12),
 dd is the day of the month (1-31), and
 ss is the second (0-59).

 EPOCH=3 : returns a date in yyyy-mm-ddThh:mm:ss.ccc.uuu.nnn.pppZ
 yyyy is the year,
 mm is the month (1-12),
 dd is the day of the month (1-31),
 hh is the hour (0-23),
 mm is the minute (0-59),
 ss is the second (0-60 if leap second),
 ccc is the millisecond (0-999),
 uuu is the microsecond (0-999),
 nnn is the nanosecond (0-999), and
 ppp is the picosecond (0-999).

Examples
 test_string = '04-Dec-2005 20:19:18.176.214.648.000'
 test_epoch = CDF_PARSE_EPOCH16(test_string)
 PRINT, CDF_ENCODE_EPOCH16(test_epoch)

IDL Output
 04-Dec-2005 20:19:18.176.214.648.000

Version History
 Introduced: CDF 3.4.0

See Also
 CDF_PARSE_EPOCH16, CDF_EPOCH16

CDF_ENCODE_EPOCH

The CDF_ENCODE_EPOCH function encodes a single or an array of CDF_EPOCH
value(s) into the standard date and time character string(s). The format of
the string is default as dd-mmm-yyyy hh: mm:ss.ccc where dd is the day of
the month (1-31), mmm is the month (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug,
Sep, Oct, Nov, Dec), yyyy is the year, hh is the hour (0-23), mm is the minute
(0-59), ss is the second (0-60 if leap second), and ccc is the millisecond
(0-999).

Syntax
 Result = CDF_ENCODE_EPOCH(Epoch [, EPOCH={0 | 1 | 2 | 3}])

Return Value
 Returns the string(s) representation of the given CDF_EPOCH value(s).

Arguments
 Epoch A scalar or any array (<=2D) CDF_EPOCH value(s).

Keywords
 EPOCH=<epoch_mode>, where the default epoch_mode is 0.

 EPOCH=0 : returns a date in dd-mmm-yyyy hh:mm:ss.ccc where

 dd is the day of the month (1-31),
 mmm is the month (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug,
 Sep, Oct, Nov, or Dec),
 yyyy is the year, A.D,
 hh is the hour (0-23),
 mm is the minute (0-59),
 ss is the second (0-60 if leap second), and
 ccc is the millisecond (0-999).

 EPOCH=1 : returns a date in yyyymmdd.ttttttt where
 yyyy is the year,
 mm is the month (1-12),
 dd is the day of the month (1-31), and
 ttttttt is the fraction of the day (e.g. 5000000
 is 12 'oclock noon).

 EPOCH=2 : returns a date in yyyymmddss where
 yyyy is the year,
 mm is the month (1-12),
 dd is the day of the month (1-31), and
 ss is the second (0-59).

 EPOCH=3 : returns a date in yyyy-mm-ddThh:mm:ss.cccZ
 yyyy is the year,
 mm is the month (1-12),
 dd is the day of the month (1-31),
 hh is the hour (0-23),
 mm is the minute (0-59),
 ss is the second (0-60 if leap second), and
 ccc is the millisecond (0-999).

Examples
 test_string = '04-Dec-2005 20:19:18.176'
 test_epoch = CDF_PARSE_EPOCH(test_string)
 PRINT, CDF_ENCODE_EPOCH(test_epoch)

IDL Output
 04-Dec-2005 20:19:18.176

Version History
 Introduced: CDF 3.4.0

See Also
 CDF_PARSE_EPOCH, CDF_EPOCH

CDF_ENCODE_TT2000

The CDF_ENCODE_TT2000 function encodes a single or an array of CDF_TIME_TT2000
value(s) into the standard date and time character string(s). The default
format of the string is a ISO 8601 format as yyyy-mm-ddThh:mm:ss.cccuuunnn
where yyyy is the year, mm is the month (1-12), dd is the day of the month
(1-31), hh is the hour (0-23), mm is the minute (0-59), ss is the second
(0-60 if leap second), and ccc is the millisecond (0-999), uuu is the
microsecond (0-999), and nnn is the nanosecond (0-999).

Syntax
 Result = CDF_ENCODE_TT2000(Epoch [, EPOCH={0 | 1 | 2 | 3}])

Return Value
 Returns the string(s) representation of the given CDF_TIME_TT2000 value(s).

Arguments
 Epoch A scalar or an array (<= 2D) of CDF_TIME_TT2000 value(s).

Keywords
 EPOCH=<epoch_mode>, where the default epoch_mode is 3.

 EPOCH=0 : returns a date in dd-mmm-yyyy hh:mm:ss.ccccccccc where

 dd is the day of the month (1-31),
 mmm is the month (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug,
 Sep, Oct, Nov, or Dec),
 yyyy is the year, A.D,
 hh is the hour (0-23),
 mm is the minute (0-59),
 ss is the second (0-60 if leap second), and
 ccccccccc is the millisecond (000-999), microsecond (000-999)
 and nanosecond (000-999).

 EPOCH=1 : returns a date in yyyymmdd.tttttttttt where
 yyyy is the year,
 mm is the month (1-12),
 dd is the day of the month (1-31), and
 tttttttttt is the fraction of the day (e.g. 5000000000
 is 12 o'clock noon).

 EPOCH=2 : returns a date in yyyymmddss where
 yyyy is the year,
 mm is the month (1-12),
 dd is the day of the month (1-31), and
 ss is the second (0-59).

 EPOCH=3 : returns a date in yyyy-mm-ddThh:mm:ss.ccccccccc
 yyyy is the year,
 mm is the month (1-12),
 dd is the day of the month (1-31),
 hh is the hour (0-23),
 mm is the minute (0-59),
 ss is the second (0-60 if leap second), and
 ccccccccc is the millisecond (000-999), microsecond (000-999)
 and nanosecond (000-999).

Examples
 test_string = '2005-12-04T20:19:18.176321123'
 test_epoch = CDF_PARSE_TT2000(test_string)
 PRINT, CDF_ENCODE_TT2000(test_epoch)
 CDF_TT2000, test_epoch2, 2005, 12, 4, 20, 19, 18, 176, 321, /compute
 PRINT, CDF_ENCODE_TT2000(test_epoch2, epoch=0)

IDL Output
 2005-12-04T20:19:18.176321123
 04-Dec-2005 20:19:18.176321123

Version History
 Introduced: CDF 3.4.0

See Also
 CDF_PARSE_TT2000, CDF_TT2000

CDF_EPOCH16

The CDF_EPOCH16 procedure computes or breaks down a single or an array of
CDF_EPOCH16 value(s) in a CDF file. When computing an epoch, any missing value
is considered to be zero.

If you supply a scalar or an array of value(s) for the Epoch argument and set
the BREAKDOWN_EPOCH keyword, CDF_EPOCH16 will compute the values of the Year,
Month, Day, etc. and insert the values into the named variables you supply.
If you specify the Year (and optionally, the Month, Day, etc.) in a scalar or
array and set the COMPUTE_EPOCH keyword, CDF_EPOCH16 will compute the epoch
and place the value(s) in the named variable supplied as the Epoch parameter.

Note:
 You must set either the BREAKDOWN_EPOCH or COMPUTE_EPOCH keyword.

Syntax
 CDF_EPOCH16, Epoch, Year [, Month, Day, Hour, Minute, Second, Milli,
 Micro, Nano, Pico] [, /BREAKDOWN_EPOCH] [, /COMPUTE_EPOCH]

Arguments
 Epoch A single or an array (<= 2D) Epoch value(s) to be broken down, or
 a named variable into which the computed epoch will be placed. The
 Epoch value is the number of picoseconds since
 01-Jan-0000 00:00:00.000.000.000.000

 Note:
 "Year zero" is a convention chosen by CDF to measure epoch values.
 This date is more commonly referred to as 1 BC. Remember that 1 BC
 was a leap year. The Epoch is defined as the number of picoseconds
 since 01-Jan-0000 00:00:00.000.000.000.000, as computed using the
 CDF library's internal date routines. The CDF date/time calculations
 do not take into account the changes to the Gregorian calendar, and
 cannot be directly converted into Julian date/times. To convert CDF
 epochs into date/times and vice versa, you should only use the
 CDF_EPOCH16 routine with either the BREAKDOWN_EPOCH or COMPUTE_EPOCH
 keyword.

 Year The year(s) (such as 1992) or a named variable.

 Month The month(s) (1-12) or a named variable. You can also set the Month
 argument equal to zero, in which case the Day argument can take
 on any value between 1-366; this number is interpreted as the
 "Day of the Year" rather than a "Day of the Month".

 Day The day(s) (1-31) or a named variable. If the Month argument is set
 equal to zero, Day can be set to any value between 1-366.

 Hour The hour(s) (0-23) or a named variable.

 Minute The minute(s) (0-59) or a named variable.

 Second The second(s) (0-59) or a named variable.

 Milli The millisecond(s) (0-999) or a named variable.

 Micro The microsecond(s) (0-999) or a named variable.

 Nano The nanosecond(s) (0-999) or a named variable.

 Pico The picosecond(s) (0-999) or a named variable.

Keywords
 BREAKDOWN_EPOCH
 If this keyword is set, Epoch is a value which will broken down and the
 resulting Year, Month, Day, etc. are returned in the remaining parameters
 which must be named variables.

 COMPUTE_EPOCH
 If this keyword is set, Epoch is a named variable into which the epoch
 is placed and the other parameters are values which will be used to
 compute the epoch.

Examples
 To compute the epoch value of September 20, 2005 at 3:05:46:02:156:

 CDF_EPOCH16, epoch, 2005, 9, 20, 3, 5, 46, 27, 2, 156, /COMPUTE_EPOCH

 To break down the given epoch value into standard date components:

 CDF_EPOCH16, epoch, yr, mo, dy, hr, min, sec, milli, micro, nano, /BREAK

 To compute an array of epoch values from the following three dates:
 20-Sep-2005 03:05:46:156.111.222.333,
 20-Sep-2005 03:06:22:234.444.555.666,
 20-Sep-2005 03:07:12:345.777.888.999:

 yy = [2005, 2005, 2005]
 mm = [9, 9, 9]
 dd = [20, 20, 20]
 hh = [3, 3, 3]
 mn = [5, 6, 7]
 ss = [46, 22, 12]
 ms = [156, 234, 345]
 us = [111, 444, 777]
 ns = [222, 555, 666]
 ps = [333, 666, 999]
 CDF_EPOCH16, epoch2, yy, mm, dd, hh, mn, ss, ms, us, ns, ps, /COMPUTE

 Since the year, month, day, hour fields are the same in this sample,
 alternatively, the above command can be written as:

 CDF_EPOCH16, epoch2, 2005, 9, 20, 3, mn, ss, ms, us, ns, ps, /COMPUTE

 To break down the above vectorized epoch values into standard date
 components:

 CDF_EPOCH16, epoch2, yr, mo, dy, hr, min, sec, milli, micro, nanso, pico,
 /BREAK

 All yr, mo, dy, hr, min, sec, milli, micro, nano and pico fields will be in
 an array.

Version History
 Introduced: CDF 3.4.0

See Also
 CDF_ENCODE_EPOCH16, CDF_PARSE_EPOCH16

CDF_EPOCH_COMPARE

The CDF_EPOCH_COMPARE function compares a source epoch, either a scalar or an
array of epoch values (date and time), against a base epoch, also a scalar
or an array of values. The epoch can be one of the
CDF formats, CDF_EPOCH, CDF_EPOCH16 and CDF_TIME_TT2000. While data of type
CDF_EPOCH and CDF_EPOCH16 can be compared with each other, data in
CDF_TIME_TT2000 can only be compared with the data of same type.
If the base epoch is a scalar, it is used to compare with all values in the
first epoch. If the base epoch is an array, same element in the source and
base epoch array is compared. If a third argument, endepoch, is provided,
the baseepoch and endepoch are used as the starting and ending epoch that the
source epoch will be checked against.

Calling the function with two arguments: It returns a scalar value or an
array values of integer of 1, 0, or -1, depending on the source epoch.
If the value of the first epoch is greater (later date and time) than the
base epoch, 1 is set. If the value of the first epoch is the same as
the base epoch, 0 is set. If the value of the first epoch is
less (earlier date and time) than the base epoch, -1 is set.

Returns: A scalar or array of integers of
 1 : if epoch1 > baseepoch
 0 : if epoch1 = baseepoch
 -1 : if epoch1 < baseepoch

Calling the function with three arguments: It returns a scalar value or an
array values of integer of 1 or 0.

If the value of the source epoch falls within the starting and ending epoch
1 is set. Otherwise, 0 is set.

Returns: A scalar or array of integers of
 1 : if baseepoch <= epoch1 <= endepoch
 0 : otherwise

Syntax
 Result = CDF_EPOCH_COMPARE(epoch, baseepoch [,endepoch])

Arguments
 epoch A single or an array of epoch value(s) returned from call to
 CDF_EPOCH,/compute, CDF_EPOCH16,/compute for CDF_EPOCH or
 CDF_EPOCH16 data type, or CDF_TT2000,/compute for CDF_TIME_TT2000
 data type, CDF_VARGET, or CDF_VARGET1.

 baseepoch A single or an array of epoch value(s) returned from call to
 CDF_EPOCH,/compute, CDF_EPOCH16,/compute for CDF_EPOCH or
 CDF_EPOCH16 data type, or CDF_TT2000,/compute for CDF_TIME_TT2000
 data type, CDF_VARGET, or CDF_VARGET1.

 endepoch A single or an array of epoch value(s) returned from call to
 CDF_EPOCH,/compute, CDF_EPOCH16,/compute for CDF_EPOCH or
 CDF_EPOCH16 data type, or CDF_TT2000,/compute for CDF_TIME_TT2000
 data type, CDF_VARGET, or CDF_VARGET1. This field has to be
 of the same data type and dimensionality as baseepoch.

Keywords
 None

Examples
 ; For CDF_EPOCH data type
 cdf_varget, id, "Epoch", ep, rec_count=1000,/zvariable
 cdf_epoch, base, 2005,6,1,10,18,17,2,/compute
 ret= cdf_epoch_compare(ep,base)
 help, ret
 ; For CDF_TIME_TT2000 data type
 cdf_varget, id2, "Epoch", ep2, rec_count=1000,/zvariable
 cdf_tt2000, base2, 2005,6,1,10,18,17,2,3,4,/compute
 ret2= cdf_epoch_compare(ep2,base2)
 help, ret2
 ; For CDF_EPOCH data type
 cdf_varget, id3, "Epoch", ep3, rec_count=1000,/zvariable
 cdf_epoch, starting, 2005,6,1,10,18,17,2,/compute
 cdf_epoch, ending, 2005,6,10,10,18,17,2,/compute
 ret3= cdf_epoch_compare(ep3,starting,ending)
 help, ret3

Version History
 Introduced: CDF V3.4.0

CDF_EPOCH_DIFF

The CDF_EPOCH_DIFF function computes the difference between the source epoch,
either a scalar or an array of epoch values (date and time), against a base
epoch, also a scalar or an array of values. The epoch can be one of the
CDF formats, CDF_EPOCH, CDF_EPOCH16 or CDF_TIME_TT2000. While data of type
CDF_EPOCH and CDF_EPOCH16 can be compared with each other, data in
CDF_TIME_TT2000 can only be compared with the data of the same type.
If the base epoch is a scalar, it is used to compute the differences with
all values in the source epoch. If the base epoch is an array, same element in
the source and base epoch array is compared. It returns a scalar value or an
array of values, depending on the source epoch, in milliseconds or microseconds
for CDF_EPOCH and CDF_EPOCH16 data types, or nanoseconds for CDF_TIME_TT2000
data type.

Syntax
 Result = CDF_EPOCH_DIFF(epoch1, epoch2 [,/MILLI_SECONDS | ,/MICRO_SECONDS])

Arguments
 epoch1 A single or an array epoch value(s) returned from call to
 CDF_EPOCH,/compute, or CDF_EPOCH16,/compute for CDF_EPOCH or
 CDF_EPOCH16 data type, or CDF_TT2000,/compute for CDF_TIME_TT2000
 data type, CDF_VARGET, or CDF_VARGET1.

 epoch2 A single or an array epoch value(s) returned from call to
 CDF_EPOCH,/compute, or CDF_EPOCH16,/compute for CDF_EPOCH or
 CDF_EPOCH16 data type, or CDF_TT2000,/compute for CDF_TIME_TT2000
 data type, CDF_VARGET, or CDF_VARGET1.

Keywords
 MILLI_SECONDS The default for CDF_EPOCH and CDF_EPOCH16 data comparison
 and not applicable to CDF_TIME_TT2000 data type.
 The resolution is in milliseconds. It indicates that
 the sub-millisecond portions are ignored for CDF_EPOCH16
 data type. It has no effect to CDF_EPOCH data type.
 MICRO_SECONDS The resolution is in microseconds and the
 sub-microseconds portions of the data are ignored for
 CDF_EPOCH16 data type. CDF_EPOCH data is expanded to
 microseconds, but is not applicable to CDF_TIME_TT2000.

Examples
 ; For CDF_EPOCH data type
 cdf_varget, id, "Epoch", ep, rec_count=1000,/zvariable
 cdf_epoch, base, 2005,6,1,10,18,17,2,/compute
 ret= cdf_epoch_diff(ep,base)
 help, ret
 ; For CDF_TIME_TT2000
 cdf_varget, id2, "Epoch", ep2, rec_count=1000,/zvariable
 cdf_tt2000, base2, 2005,6,1,10,18,17,2,3,4,/compute
 ret2= cdf_epoch_diff(ep2,base2)
 help, ret2

Version History
 Introduced: CDF V3.4.0

CDF_EPOCH_TOJULDAYS

The CDF_EPOCH_TOJULDAYS function converts CDF epoch value(s), in CDF_EPOCH,
CDF_EPOCH16 or CDF_TIME_TT2000 data type, to Julian day(s). Each returned
Julian day is in double, similar to what IDL's JULDAY returns.
Optionally, the returned days can be in string of ISO 8601 format.

Syntax
 Result = CDF_EPOCH_TOJULDAYS (epoch[, /STRING])

Arguments
 epoch An epoch value(s) returned from CDF_EPOCH,/compute,
 CDF_EPOCH16,/compute, CDF_TT2000,/compute, CDF_VARGET, or
 CDF_VARGET1.

Keywords
 STRING Signal that the returned date(s) in ISO 8601 format string

Examples
 cdf_varget, id, "Epoch", epoch, rec_count=1000,/zvariable
 ret = cdf_epoch_tojuldays (epoch)
 ret2 = cdf_epoch_tojuldays (epoch, /string)

Version History
 Introduced: CDF V3.4.0

See Also
 CDF_EPOCH, CDF_EPOCH16, CDF_TT2000

CDF_EPOCH

The CDF_EPOCH procedure computes or breaks down a single or an array of
CDF_EPOCH value(s) in a CDF file. When computing an epoch(s), any missing
value is considered to be zero.

If you supply a value(s) for the Epoch argument and set the BREAKDOWN_EPOCH
keyword, CDF_EPOCH will compute the values of the Year, Month, Day, etc.
and insert the values into the named variables you supply. If you specify
the Year (and optionally, the Month, Day, etc.) in a scalar or array and set
the COMPUTE_EPOCH keyword, CDF_EPOCH will compute the epoch and place the
value in the named variable supplied as the Epoch parameter.

Note:
 You must set either the BREAKDOWN_EPOCH or COMPUTE_EPOCH keyword.

Syntax
 CDF_EPOCH, Epoch, Year [, Month, Day, Hour, Minute, Second, Milli
 [, /BREAKDOWN_EPOCH] [, /COMPUTE_EPOCH]

Arguments
 Epoch The Epoch value(s) to be broken down, or a named variable into
 which the computed epoch value(s) will be placed. An Epoch value
 is the number of milliseconds since 01-Jan-0000 00:00:00.000.
 This field can be a scalar or array of values when to be broken
 down into date/time components.

 Note:
 "Year zero" is a convention chosen by CDF to measure epoch values.
 This date is more commonly referred to as 1 BC. Remember that 1 BC
 was a leap year. The Epoch is defined as the number of picoseconds
 since 01-Jan-0000 00:00:00.000.000.000.000, as computed using the
 CDF library's internal date routines. The CDF date/time calculations
 do not take into account the changes to the Gregorian calendar, and
 cannot be directly converted into Julian date/times. To convert CDF
 epochs into date/times and vice versa, you should only use the
 CDF_EPOCH16 routine with either the BREAKDOWN_EPOCH or COMPUTE_EPOCH
 keyword.

 Year The year(s) (such as 1992) or a named variable.

 Month The month(s) (1-12) or a named variable. You can also set the Month
 argument equal to zero, in which case the Day argument can take
 on any value between 1-366; this number is interpreted as the
 "Day of the Year" rather than a "Day of the Month".

 Day The day(s) (1-31) or a named variable. If the Month argument is set
 equal to zero, Day can be set to any value between 1-366.

 Hour The hour(s) (0-23) or a named variable.

 Minute The minute(s) (0-59) or a named variable.

 Second The second(s) (0-59) or a named variable.

 Milli The millisecond(s) (0-999) or a named variable.

Keywords
 BREAKDOWN_EPOCH
 If this keyword is set, Epoch is a value(s) which will broken down and the
 resulting Year(s), Month(s), Day(s), etc. are returned in the remaining parameters
 which must be named variables.

 COMPUTE_EPOCH
 If this keyword is set, Epoch is a named variable into which the epoch
 is placed and the other parameters are values which will be used to
 compute the epoch.

Examples
 To compute a single epoch value of September 20, 2005 at 3:05:46:156 am:

 CDF_EPOCH, epoch, 2005, 9, 20, 3, 5, 46, 156, /COMPUTE_EPOCH

 To break down the given epoch value into standard date components:

 CDF_EPOCH, epoch, yr, mo, dy, hr, min, sec, milli, /BREAK

 To compute an array of epoch values from the following three dates:
 20-Sep-2005 03:05:46:156,
 20-Sep-2005 03:06:22:234,
 20-Sep-2005 03:07:12:345:

 yy = [2005, 2005, 2005]
 mm = [9, 9, 9]
 dd = [20, 20, 20]
 hh = [3, 3, 3]
 mn = [5, 6, 7]
 ss = [46, 22, 12]
 ms = [156, 234, 345]
 CDF_EPOCH, epoch2, yy, mm, dd, hh, mn, ss, ms, /COMPUTE_EPOCH

 Since the year, month, day, hour fields are the same in this sample,
 alternatively, the above command can be written as:

 CDF_EPOCH, epoch2, 2005, 9, 20, 3, mn, ss, ms, /COMPUTE_EPOCH

 To break down the above vectorized epoch values into standard date
 components:

 CDF_EPOCH, epoch2, yr, mo, dy, hr, min, sec, milli, /BREAK

 All yr, mo, dy, hr, min, sec, milli fields will be in array form.

Version History
 Introduced: CDF 3.4.0

See Also
 CDF_ENCODE_EPOCH, CDF_PARSE_EPOCH

CDF_LEAPSECONDS_INFO

The CDF_LEAPSECONDS_INFO function returns a structure containing information
about the leap seconds used by CDF.

Syntax
result = CDF_LEAPSECONDS_INFO ()

Return Value

The returned structure has the form:

{ USE_FILE: 1, CDF_LEAPSECONDSTABLE:"...", $
 LASTUPDATED:LONARR(...), LEAPSECONDS: DOUBLEARR(...)}

Explanation of the Structure Tags

Tag

USE_FILE		This field will contain a 1 if the leap seconds are
			read from a file. 0 means the leap seconds are based
			on the hard-coded table in the CDF library, which may
 not have the latest leap second(s) if the library is
 not up-to-date.

CDF_LEAPSECONDSTABLE	This field contains the value of environment variable:
			CDF_LEAPSECONDSTABLE, if it is defined. Its value is
			supposed to be the file name of the leap seconds table.
			Data contents for the leap seconds should be properly
			formatted to be valid for use.

LASTUPDATED		An array of ints. This field shows the last date, in
			year, month and day, that the leap seconds table is
			updated, which can show whether the table is
 up-to-date.

LEAPSECONDS		This field contains the contents of the leap seconds
 table that is used by CDF library.

Arguments

None

Keywords

None

Examples:

 info = CDF_LEAPSECONDS_INFO()
 help, info, /struct
 print, info

Version History
 Introduced: CDF 3.4.0

CDF_PARSE_EPOCH16

The CDF_PARSE_EPOCH16 function parses a single or an array of properly-formatted
input string(s) into a single or an array of double complex value(s) properly
formatted for use as a CDF_EPOCH16 variable. CDF_EPOCH16 variables may be
encoded into a variety of formats using the CDF_ENCODE_EPOCH16 function or
decomposed into date/time components using CDF_EPOCH16, /BREAKDOWN_EPOCH
function.

Syntax
 Result = CDF_PARSE_EPOCH16(Epoch_string)

Return Value
 Returns a single or an array (<= 2D) of double-complex value(s) of the input
 string.

Arguments
 Epoch_string A scalar or an array (<= 2D) formatted string that will be
 parsed into a double-complex value(s) suitable to be used as
 a CDF_EPOCH16 value(s). The format expected by
 CDF_PARSE_EPOCH16 is dd-mmm-yyyy hh:mm:ss.ccc.uuu.nnn.ppp
 where:

 dd is the day of the month, 1-31.
 mmm is the month, Jan, Feb, Mar, Apr, May, Jun, Jul, Aug,
 Sep, Oct, Nov, or Dec.
 yyyy is the year, A.D.
 hh is the hour, 0-23.
 mm is the minute, 0-59.
 ss is the second, 0-60 if leap second.
 ccc is the millisecond, 0-999.
 uuu is the microsecond, 0-999.
 nnn is the nanosecond, 0-999.
 ppp is the picosecond, 0-999.

Keywords
 None.

Examples
 test_string = '04-Dec-2005 20:19:18.176.214.648.000'
 test_epoch = CDF_PARSE_EPOCH16(test_string)
 CDF_EPOCH16,test_epoch, year, month, day, hour, min, sec, milli, $
 micro, nano, pico,/BREAKDOWN_EPOCH
 HELP, test_string, test_epoch
 PRINT, CDF_ENCODE_EPOCH16(test_epoch)
 PRINT, year, month, day, hour, min, sec, milli, micro, nano, pico

IDL Output
 TEST_STRING STRING = '04-Dec-1995 20:19:18.176'
 TEST_EPOCH DCOMPLEX = 6.2985328e+13

 04-Dec-2005 20:19:18.176.214.648.000
 2005 12 4 20 19 18 176 214 648 000

Version History
 Introduced: CDF 3.4.0

See Also
 CDF_ENCODE_EPOCH16, CDF_EPOCH16

CDF_PARSE_EPOCH

The CDF_PARSE_EPOCH function parses a properly-formatted input string(s) into
a single or an array of double value(s) properly formatted for use as a
CDF_EPOCH variable. CDF_EPOCH variables may be encoded into a variety of
formats using the CDF_ENCODE_EPOCH function or decomposed into date/time
components using CDF_EPOCH,/BREAKDOWN_EPOCH function.

Syntax
 Result = CDF_PARSE_EPOCH(Epoch_string)

Return Value
 Returns a single or an array (<= 2D) double value(s) of the input string.

Arguments
 Epoch_string A scalar or an array (<= 2D) of formatted string(s) that will
 be parsed into a single or array of double value(s) suitable
 to be used as a CDF_EPOCH value. The format expected by
 CDF_PARSE_EPOCH is dd-mmm-yyyy hh:mm:ss.ccc.uuu.nnn.ppp where:

 dd is the day of the month, 1-31.
 mmm is the month, Jan, Feb, Mar, Apr, May, Jun, Jul, Aug,
 Sep, Oct, Nov, or Dec.
 yyyy is the year, A.D.
 hh is the hour, 0-23.
 mm is the minute, 0-59.
 ss is the second, 0-60 if leap second.
 ccc is the millisecond, 0-999.

Keywords
 None.

Examples
 test_string = '04-Dec-2005 20:19:18.176'
 test_epoch = CDF_PARSE_EPOCH(test_string)
 CDF_EPOCH,test_epoch, year, month, day, hour, min, sec, milli, $
 /BREAKDOWN_EPOCH
 HELP, test_string, test_epoch
 PRINT, CDF_ENCODE_EPOCH(test_epoch)
 PRINT, year, month, day, hour, min, sec, milli

IDL Output
 TEST_STRING STRING = '04-Dec-1995 20:19:18.176'
 TEST_EPOCH DOUBLE = 6.2985328e+13

 04-Dec-2005 20:19:18.176
 2005 12 4 20 19 18 176

Version History
 Introduced: CDF 3.4.0

See Also
 CDF_ENCODE_EPOCH, CDF_EPOCH

CDF_PARSE_TT2000

The CDF_PARSE_TT2000 function parses a single or an array of properly-formatted
input string into a 8-byte integer (LONG64) value(s) for use as a
CDF_TIME_TT2000 type variable. CDF_TIME_TT2000 variables may be encoded into a
variety of formats using the CDF_ENCODE_TT2000 function or decomposed into
date/time components using CDF_TT2000,/BREAKDOWN_EPOCH function.

Syntax
 Result = CDF_PARSE_TT2000(Epoch_string)

Return Value
 Returns a single or an array (<= 2D) of 8-byte integer value(s) of the input
 string(s).

Arguments
 Epoch_string A scalar or an array (<= 2D) formatted string(s) that will
 be parsed into a 8-byte value to be used as a CDF_TIME_TT2000
 data type. The format can be one of the predefined formats.
 However, the default expected by CDF_PARSE_TT2000 is
 yyyy-mm-ddThh:mm:ss.cccuuunnn, a ISO 8601 form, where:

 yyyy is the year, A.D.
 mm is the month, 1-12.
 dd is the day of the month, 1-31.
 hh is the hour, 0-23.
 mm is the minute, 0-59.
 ss is the second, 0-59 (0-60 if leap second applicable).
 ccc is the millisecond, 0-999.
 uuu is the microsecond, 0-999.
 nnn is the nanosecond, 0-999.

Keywords
 None.

Examples
 test_string = '2005-12-04T20:19:18.176214648'
 test_epoch = CDF_PARSE_TT2000(test_string)
 CDF_TT2000,test_epoch, year, month, day, hour, min, sec, milli, $
 micro, nano,/BREAKDOWN_EPOCH
 HELP, test_string, test_epoch
 PRINT, CDF_ENCODE_TT2000(test_epoch)
 PRINT, year, month, day, hour, min, sec, milli, micro, nano

IDL Output
 TEST_STRING STRING = '1995-12-04T20:19:18.176214648'
 TEST_EPOCH LONG64 = 186999558176214648

 2005-12-04T20:19:18.176214648
 2005.000 12.000000 4.0000000 20.000000
 19.000000 18.000000 176.00000 214.00000
 648.00000

Version History
 Introduced: CDF 3.4.0

See Also
 CDF_ENCODE_TT2000, CDF_TT2000

CDF_TT2000

The CDF_TT2000 procedure computes or breaks down a single or an array of
CDF_TIME_TT2000 value(s) in a CDF file. When computing an epoch, any
missing value is considered to be zero.

If you supply a scalar or an array values for the TT2000 argument and set
the BREAKDOWN_EPOCH keyword, CDF_EPOCH will break down the epoch value(s)
into the Year, Month, Day, etc. and insert the values into the named
variables you supply. If you specify the Year (and optionally, the Month,
Day, etc.) in a scalar or array and set the COMPUTE_EPOCH keyword,
CDF_EPOCH will compute the epoch and place the value(s) in the named
variable supplied as the Epoch parameter.

Note:
 You must set either the BREAKDOWN_EPOCH or COMPUTE_EPOCH keyword.

Syntax
 CDF_TT2000, Epoch, Year, Month, Day [, Hour, Minute, Second, Milli,
 Micro, Nano] [, /BREAKDOWN_EPOCH] [, /COMPUTE_EPOCH] [, /TOINTEGER]

Arguments
 Epoch A scalar or an array (<= 2D) of Epoch value(s) to be broken down,
 or a named variable into which the computed epoch will be placed.
 A TT2000 Epoch value is the number of nanoseconds since J2000
 (2000-01-01T12:00:00.000000000) with leap seconds included.

 Note:
 CDF_TIME_TT2000 is based on J2000.
 It can only cover +/- 272 years from J2000. To convert CDF TT2000
 epochs into date/times and vice versa, you should only use the
 CDF_TT2000 routine with either the BREAKDOWN_EPOCH or COMPUTE_EPOCH
 keyword.

 Year The year(s) (such as 1992) or a named variable.

 Month The month(s) (1-12) or a named variable. You can also set the Month
 argument equal to zero, in which case the Day argument can take
 on any value between 1-366; this number is interpreted as the
 "Day of the Year" rather than a "Day of the Month".

 Day The day(s) (1-31) or a named variable. If the Month argument is set
 equal to zero, Day can be set to any value between 1-366.

 Hour The hour(s) (0-23) or a named variable.

 Minute The minute(s) (0-59) or a named variable.

 Second The second(s) (0-59 or 0-60 if leap second) or a named variable.

 Milli The millisecond(s) (0-999) or a named variable.

 Micro The microsecond(s) (0-999) or a named variable.

 Nano The nanosecond(s) (0-999) or a named variable.

 Note: For the entered date/time components to compute the epoch, only
 the last component is allowed to be fractional. Otherwise, a message of
 illegal value is returned. When an epoch is broken down into date/time
 components, all are in double form by default.

Keywords
 BREAKDOWN_EPOCH
 If this keyword is set, Epoch is a value which will broken down and the
 resulting Year, Month, Day, etc. are returned in the remaining parameters
 which must be named variables.

 COMPUTE_EPOCH
 If this keyword is set, Epoch is a named variable into which the epoch
 is placed and the other parameters are values which will be used to
 compute the epoch.

 TOINTEGER
 This keyword is applicable when an epoch value(s) is broken down to
 date/time components (with BREAKDOWN_EPOCH keyword). If this keyword is
 set, all components will be in integer, instead of their default of
 doubles.

Examples
 To compute a single epoch value of September 20, 2005 at 3:05:46.27.02.156:

 CDF_TT2000, epoch, 2005, 9, 20, 3, 5, 46, 27, 2, 156, /COMPUTE_EPOCH

 To break down the given epoch value into standard date components:

 CDF_TT2000, epoch, yr, mo, dy, hr, min, sec, milli, micro, nano, /BREAK

 To compute an array of epoch values from the following three dates:
 20-Sep-2005 03:05:46:156.111.222,
 20-Sep-2005 03:06:22:234.333.444,
 20-Sep-2005 03:07:12:345.555.666:

 yy = [2005, 2005, 2005]
 mm = [9, 9, 9]
 dd = [20, 20, 20]
 hh = [3, 3, 3]
 mn = [5, 6, 7]
 ss = [46, 22, 12]
 ms = [156, 234, 345]
 us = [111, 333, 555]
 ns = [222, 444, 666]
 CDF_TT2000, epoch2, yy, mm, dd, hh, mn, ss, ms, us, ns, /COMPUTE_EPOCH

 Since the year, month, day, hour fields are the same in this sample,
 alternatively, the above command can be written as:

 CDF_TT2000, epoch2, 2005, 9, 20, 3, mn, ss, ms, us, ns, /COMPUTE_EPOCH

 To break down the above vectorized epoch values into standard date
 components:

 CDF_TT2000, epoch2, yr, mo, dy, hr, min, sec, milli, micro, nano, /BREAK

 All yr, mo, dy, hr, min, sec, milli, micro, nano fields will be in array form.

Version History
 Introduced: CDF 3.4.0

See Also
 CDF_ENCODE_TT2000, CDF_PARSE_TT2000

CDF_VARCREATE

The CDF_VARCREATE function creates a new variable in a Common Data Format file.
CDF's "variable" is a generic name or an object that represents data
where data can be 0-dimensional (scalar data) or multi-dimensional (up to
10-dimension), and it does not have any scientific context associated it.
For example, a variable can be data representing an independent variable, a
dependent variable, time and date value, or whatever data might be (e.g.
image, XML file, etc.). In other words, the variable doesn't contain any
hidden meanings other than the data itself. One may describe one
variable's relationship with other variable(s) through CDF's "attributes".

There are two types of variables (rVariable and zVariable) and they can
coexist in the same CDF file. Every rVariable in a CDF must have the
same number of dimensions and dimension sizes, whereas each zVariable has
its own dimension and dimension size. Suppose there are 2 rVariables
(v1, v2) in a CDF. Let's say v2 is defined as 2:[20,10] - 2-dimensional
array with its size of 20 x 10 (20 rows and 10 columns). Then v1 MUST
be defined as 2:[20,10] albeit it only needs 1:[8] (since it is a rVariable).
But if this model is implemented using zVariables, then v1 and v2 can be
defined as 1:[20,10] and 1:[8] instead of 1:[20,10] and 1:[20,10]. As you
can see above, since all the rVariables must have the same dimensions and
dimension sizes, there'll be a lot of disk space wasted if a few variables
need big arrays and many variables need small arrays.

So why would you want to use rVariables over zVariables? There's no reason
to use rVariables at all (since zVariables are much more efficient) if you
are creating a new CDF file. But if you are analyzing data files that were
created with early CDF releases or contain rVariables for some reason, you'll
need to use rVariables. One may wonder why there are rVariables and
zVariables, not just zVariables. When CDF was first introduced in early
90's, only rVariables were available. The inefficiencies with rVariables
were quickly realized and addressed with the introduction of zVariables in
later CDF releases.

Syntax
Result = CDF_VARCREATE(Id, Name [, DimVary] [, /VariableType]
 [, ALLOCATERECS=records] [, DIMENSIONS=array]
 [, NUMELEM=characters]
 [, /REC_NOVARY | , /REC_VARY]
 [, /ZVARIABLE])

Return Value
 Returns the variable of the type specified by the chosen keyword.

Arguments
Id The CDF ID, returned from a previous call to CDF_OPEN or
 CDF_CREATE.

Name A string containing the name of the variable to be created.

DimVary A one-dimensional array containing one element per CDF
 dimension. If the element is non-zero or the string 'VARY',
 the variable will have variance in that dimension. If the
 element is zero or the string 'NOVARY' then the variable
 will have no variance with that dimension. If the variable
 is zero-dimensional, this argument may be omitted.

Keywords
VariableType You must specify the type variable being created. This is
 done by setting one of the following keywords:

 CDF_BYTE CDF_CHAR CDF_UCHAR
 CDF_INT1 CDF_UINT1 CDF_INT8
 CDF_INT2 CDF_UINT2 CDF_TIME_TT2000
 CDF_INT4 CDF_UINT4
 CDF_FLOAT CDF_REAL4
 CDF_DOUBLE CDF_REAL8
 CDF_EPOCH CDF_LONG_EPOCH

 If no type is specified, CDF_FLOAT is assumed.
 CDF_LONG_EPOCH represents the CDF_EPOCH16 data type.

ALLOCATERECS Set this keyword equal to the desired number of pre-allocated
 records for this variable in a SINGLE_FILE CDF file.
 Pre-allocating records ensure that variable data is stored
 contiguously in the CDF file. For discussion about allocating
 records, see section 2.3.12 ("Records") of the CDF User's Guide.

DIMENSIONS Set this keyword to create a new zVariable with the specified
 dimensions. For example:

 id = CDF_CREATE("cdffile.cdf", [100])
 zid = CDF_VARCREATE(id, "Zvar", [1,1,1], DIM=[10,20,30],
 /ZVARIABLE)

NUMELEM The number of elements of the data type at each variable value.
 This keyword only has meaning for string data types (CDF_CHAR,
 CDF_UCHAR). This is the number of characters in the string.
 The default is 1.

REC_NOVARY If this keyword is set, all records will contain the same
 information.

REC_VARY If this keyword is set, all records will contain unique data.
 This is the default.

ZVARIABLE If this keyword is not set, a variable is assumed to be a
 rVariable. rVariable is a subset of zVariable, and it's
 highly recommended that variable should always be created
 as zVariable since it's much more efficient than rVariables.

 A variable is assumed to be a zVariable if its dimensions are
 specified by the DIMENSIONS keyword. If the dimension is not
 specified in the DIMENSIONS keyword, the variable is assumed
 to be a scalar (0-dimension). For example:

 id = CDF_CREATE("cdffile.cdf")
 zid1 = CDF_VARCREATE(id, "Zvar1", /ZVARIABLE)
 zid2 = CDF_VARCREATE(id, "Zvar2", ['VARY','VARY'], DIM=[3,10],
 /CDF_INT2, /ZVARIABLE)

Examples

Example 1
In this example, we create a CDF file to record the data retrieved from an
array of temperature and salinity detectors. There is a 3 x 4 array of
detectors at two depths, 10.0 meters and 20.2 meters:

id = CDF_CREATE("temp_salinity.cdf", [3,4], /NETWORK_ENCODING, $
 /SUN_DECODING, /CLOBBER)
temp_id =CDF_VARCREATE(id, "Temperature", ['Vary', 'Vary'], $
 /REC_VARY,/CDF_FLOAT)
depth_id = CDF_VARCREATE(id, "Depth", [0,0], /REC_VARY, /CDF_FLOAT, $
 /ZVARIABLE)
sal_id = CDF_VARCREATE(id, "Salinity", [1,1], /REC_VARY, /CDF_DOUBLE,
 /ZVARIABLE)

; Create and fill the UNITS attribute:
units_att = CDF_ATTCREATE(id, 'UNITS', /VARIABLE)
CDF_ATTPUT, id, 'UNITS', 'Depth', 'Meters'
CDF_ATTPUT, id, 'UNITS', temp_id, 'Kelvin'
CDF_ATTPUT, id, units_att, sal_id, 'Percent'

; Create and write some fictitious data:
data1 = 20.0 + FINDGEN(3,4)
CDF_VARPUT, id, varid, data1
; IDL will handle the type conversion, CDF will set all values
; of this record to a depth of 10.0.
CDF_VARPUT, id, depth_id, '10.0'
CDF_VARPUT, id, depth_id, 20.2,rec_start=1
; Set the second depth.
CDF_VARPUT, id, sal_id, DINDGEN(3,4)/10.0
; Make more fictitious data.

; Demonstrate the non-variance of depth by retrieving the
; values. On the first pass, use CDF_VARGET1 to retrieve
; single values:
CDF_VARGET1, id, depth_id, pth_0 ; Get single values.
CDF_VARGET1, id, depth_id, depth_1, REC_START=1
; Get single values.
HELP, depth_0, depth_1

; Now retrieve the full depth records:
CDF_VARGET, id, depth_id, depth, REC_COUNT=2

;Examine the depth variable:
HELP, depth
PRINT, depth
IDL Output
DEPTH_0 FLOAT = 10.0000
DEPTH_1 FLOAT = 20.2000

DEPTH FLOAT = Array(3, 4, 2)

10.0000 10.0000 10.0000
10.0000 10.0000 10.0000
10.0000 10.0000 10.0000
10.0000 10.0000 10.0000

20.2000 20.2000 20.2000
20.2000 20.2000 20.2000
20.2000 20.2000 20.2000
20.2000 20.2000 20.2000

Example 2
In this example, we create a variable, setting the data type from a string variable, which could have been returned by the DATATYPE keyword to a CDF_VARINQ call:

VARTYPE = 'CDF_FLOAT'

; Use the _EXTRA keyword and the CREATE_STRUCT function to
; make the appropriate keyword.

VarId = CDF_VARCREATE(Id, 'Pressure', [1,1], $
 NUMELEM=2, _EXTRA=CREATE_STRUCT(VARTYPE,1))
CDF_CLOSE, id ; Close the CDF file.

Version History
Introduced: Pre 4.0

