CDF
User's Guide

Version 3.0, February 11, 2005

Space Physics Data Facility
NASA / Goddard Space Flight Center

Copyright © 2005 NASA/GSFC
Space Physics Data Facility
NASA/Goddard Space Flight Center
Greenbelt, Maryland 20771 (U.S.A.)

This software may be copied or redistributed as long as it is not sold for profit, but it can be incorporated into any other
substantive product with or without modifications for profit or non-profit. If the software is modified, it must include
the following notices:

- The software is not the original (for protection of the original author’s reputations from any problems introduced
by others)

- Change history (e.g. date, functionality, etc.)

This copyright notice must be reproduced on each copy made. This software is provided as is without any express or
implied warranties whatsoever.

Internet - cdfsupport@listserv.gsfc.nasa.gov

Permission is granted to make and distribute verbatim copies of this document provided this copyright and permission
notice are preserved on all copies.

Contents

Preface i
Chapter 1 Primer 1
1.1 IIETOAUCTION. ...ttt ettt b et b bbbt st b b et st b b eh et st b bttt b bttt b bt sttt eae s 1
1.2 WY USE CDEF ...ttt bbbt st b sttt b bt b bttt b bt ne bt es 1
1.3 CONCEPLUAL OTZANIZALION.......eveeiveeirieeieteieietetieteeeeteststetesetesesseseesesessesesseeesesseseesessssesessensesessessssesessenessensesensesessanes 2
1.4 Features 0f the CDF LIDTATYcc.couiiiiiieieieieeteet ettt sttt ettt ettt ettt e b et esbesbesbesbesbesbenaens 2
1.4.1 File FOTMAL OPTIONS ..c.vivitiiiitiitiiiestesteste sttt sttt sttt s b e bt bbb b b s b sbe s b e s b s b e sbe s b e sbe st e sbesbesbesbesbesbenee 2
1.4.2 Data ENCOAING OPLIONS ...c.veviiiiiiiiitiitisiesteste sttt sttt sttt sttt sttt st b s b bbb b e s b sbesbesbesbesbesbesbesbesbesbesbesbesbesbenee 8
1.4.3 (01031102 1T T o SO UP PP 8
1.4.4 SDATSEIESS. . .uteuteuteuteitetetet et ettt et et e et et et e b et et et et et et et et et et et et et et et et et e bebe b e b e bebenbenbenbenbenbenbetes 8
1.4.5 Variable Data ACCESS OPLIONScueiruerieririeeirieeieteestetetestesesseseesesessesessessesessesessesessesessassesessesessessssensssensesensens 8
1.5 Organizing Your Data i @ CDFc.oiiiiiiieeee ettt ettt ettt st et sbe st e sbesbesbesbesbesbenbens 9
1.5.1 VATIADIES ...ttt bbbttt bbbttt b bbbttt b et es 9
1.6 ATFIDULES .ottt ettt st et h e bttt st et h et bttt h et ettt 12
1.7 CDF TOOLKIE. .ttt ettt ettt st b et b bt b bt b bt e bkt st b bt st bkt ne et ebene s 13
1.8 Library INterface ROULINEScueviiiiiieieieieeeetee ettt ettt ettt sttt et et e sbe st et e besbesbesbesbe e 14
1.8.1 StaNAard INTEITACEceeirieiiiiiiiiieie ettt sttt sttt st 14
1.8.2 INternal INEITACEceeuiieiiiciiciecc ettt ettt sttt st 15
1.9 CDF Java INEITACEceeuiieiiiciiciiccce ettt sttt sttt st 15
1.10 EXAIMPIES. ...ttt b bbb bbb b e bbb e b b et e be b e b e b e b b e ebeebenbesbesbeebenbe b nee 15
1.10.1 Creating a CDF, the Hard Way (But Not That Hard)ccccoeeireiireeineireeeet e 16
1.10.2 Creating a CDF, an EaSI€r WAcceiiiriiriiieierierieiesiestest ettt sttt st sbe st st sbesbesbesbesbesbesbesbesbenaens 21
Chapter 2 Concepts 26
2.1 CDF LIDTATY .cuteuteiteieietet ettt ettt ettt ettt e et e b et et et et et et e b e b e b e b e be b e s et e b et enbebebesbebesbensensensenne 26
2.1.1 TIEEITACES ..ttt ettt sttt ettt et 26
2.1.2 CDF MOUES ...ttt sttt sttt s a ettt a st bt b et b b ae et sae e bennene 28
2.1.3 LLITIES 11ttt bbbt h bbbt bbb bbb bttt b bttt b bttt ne 29
2.14 SCIALCI FILES ...ttt ettt b et b bbbttt bbbttt 29
2.1.5 CaACKING SCREIMEc.uiiiiiiiiiiitiiie bbb bbb b et b e s bbb b s bbb s b sbesbesbesbesbeneas 30
22 CDFS ittt ettt h bbb bbbt a bbbt bbbt e b bt e bbb bttt b et ettt es 31
2.2.1 AACCRSSINE ...ttt ettt ettt ettt sttt s b s bt e s b e e b et e sb e s b e b e b e b e s b e b e b e e b e b e b e ebe b e he b e eheebeebeebeebeebesbeebenbenbentenee 31
222 (5 171511 USSP 32
223 (0515) 1101 PSPPSRI 32
224 CLOSINE ...ttt ettt ettt ettt et s b et e st e st s e st et e s es e s ese e s ene et enses e s eseesese e s esees et et e esesesseneesenseseseneeseneesenessensns 32
2.2.5 DICLELINEZ ..ottt b et b e bbbt bbbt bbb b bbb b e b b e bbb e e be b e s b sbenbeneas 32
2.2.6 INAITIIIIZ ..ottt ettt sttt b et b e s b e st e s b e s b e b et e b e s b e b e b e e b e s b e be b e b e sbe b esb e besbesbeebenbesbesbesbesbebenee 32
2.2.7 FOTINAL. ...ttt b sttt h et b et st h et b ettt b e 33
2.2.8 ENCOING ..ttt bbbttt b e bbbt bt bbb bt bbb b bbb bbb e be b e b sbe b naas 34
2.2.9 DIECOAING ...ttt ettt ettt st ettt e st st e st et e e es e e seseeseneesanees e s eseesesesseneesenseseesesesseneesenseseseneesenessenessensns 37
2.2.10 COMMPTESSION ..unteutententetetetestetestestestestestestestessestessessessesessessesesessessesessensesensessesbessessesessensenbesbessensessensensens 38
2.2 1T LAIMEES tetttitetete ettt ettt bbbt b bbb b bbb h bbbttt bbb bttt b bttt 39
2.3 VATIADIES ...ttt bbbt b bbbttt b bbbttt b btttk ettt b et 39
2.3.1 Y DS ettt ettt ettt b e bbbt bbb bbb bbb bbb bbb bbbt e b bt ehe b e b e he b e b e ebeebe et sbesbennas 39
232 AACCRSSINE ...ttt ettt ettt sttt st st s bbb e et et et e s b e s b e b e b e b e e b e b e b e b e b e e b e be b e be b e b e he b e b e benbeebeebesbenbenbenee 40
233 (0315) 1101 PP PSPPI 40
234 CLOSINE. «...evevtteiieteete ettt ettt ettt ettt st et e s b e st s e st e s e s es e e ses e s ene et anees e s eseesese e s eseesenseseesesesseneeseneeseseneeseneesenessensns 40
2.3.5 INAITIIIIZ ..ottt ettt ettt b e st b et b e s b et e s b e s b e b e b e b e s b e b e e b e e b e sb e be b e b e sbe b esbesbesbesbesbesbesbesbesbesbebenee 40
2.3.6 INUITIDEIING ...ttt ettt ettt ettt ettt et et e st et e s et et esesseseesene et ens et eaeseeseseeseneesenseseseseeseneesenesseneesensnns 41
2.3.7 DICLELINZ ...eveteetieieeieet st b et b e bbb bt bbbt h e b bbb b b e b bbb b be b e b b beneas 41
2.3.8 DIMENSIONALILY ...ttt b e bbbt bbb s b bt s b s b s b e sbesbesbe s b e ebesbesbesbesbesbesbesbeneas 41
2.3.9 Data SPECTIICATION ..e.viviiiieiitiitiitece sttt b e s bbb b b s b s b e s b e s b e s b e s be st e sbesbesbesbesbesbeneas 41
23,10 RECOTA VAIIAINCEecuiveuiriiiiitiieiiieitnteit ettt ettt sttt b ettt st st s bt b et ebe s eae b st s bt et e e euesaenesaenesneneas 42

2.3.11 DiIMENSION VATTAIICE.vveicveeireeereeeeeeeteeeeteeeete e ettt eeeeeetteeeteeeereeeseesaseeeteeenseeeseesaseeesseesseeenseeenseesaseensseenseeenres 42

230012 RECOTAS. ettt ettt ettt s a et et b et bt s ae s a et b et h e a et a et sbe e 43
2.3.13 SPATSE ATTAYS weeuvereeeierterteriertertestestestestestestestestestessessesbessessesbessessessesessebessensessesbesbessesseasesbesbesbesbesbenbesbensensens 49
2.3. 14 COMMPIESSION ..ueuteutentetetetetetetetestestestestesbestetesbesaesbesbesessesessesesesesebenbesesbesbesbesbesbesesbesbenbesbesbessesbensensens 49
23015 IMIAJOTIEY weeutententenietetente sttt e st et et et et et et e st et et et e s b et e b e b e b e b et e b et e b et et et e be b e eheebe et e be b e benbeebesbesbesbenbenbentens 50
2.3.16 SINGIE VAIUE ACCESS..uiviiiieteieierierieste et e st s e st st e st s te st e st e s bestesbesbe st e besbesbesbesbesbessesbebesbesbesbesbesbesbesbessensens 51
2317 HYPOT ACCESS . .eeutiutiuieieietetestestestestestestestestestestestessesbe st esbesbe b e besse s e be b e bebenbe st esbesbe b esbe b eebenbenbesbesbesbenbenbenbens 52
23,18 SCQUENLIAL ACCESS....veuiveuirieietiietiriesieteststetetetetesseseetesesseseeseseesesesessesesseseasansesensasessesessesessaneasensesessenessesessanens 54
2.3.19 MUIPIE VaAriable ACCESS...c.cevirieiirieeirieirieieteieteetete et stese ettt aesessesesse st esessesessesessenessaneasensesesseseesesessanens 54
2.3.20 Variable Pad ValUES.c.civiiiiiiiiiriiicinec sttt ettt sttt 56
2.4 ATIIDULES .ottt ettt ettt sttt h e bttt et h et bttt h et et a et n s 57
2.4.1 INAITIIIIZ ..ottt ettt sttt b et b e s b e st e s b e s b e b et e b e s b e b e b e e b e s b e be b e b e sbe b esb e besbesbeebenbesbesbesbesbebenee 57
24.2 INUITIDEIING ...ttt ettt ettt ettt et e b e st et e s et e seseesesessese et ens et eaesesseseeseneesensesesseseesenessenesseneesensns 58
243 ATITTIDULE SCOPES .ottt ettt sttt ettt st et s b e st et et e s b e s b e s b e st e st e s besbesb e b e sbesbesbesbesbesbesbesbesbenbesbesbensenee 58
24.4 DICLELINEZ ..ottt b e bt bbbt b e bbbt bbb b bbb b e b bbb b e e be b e besbe b nnas 58
2.4.5 AIIDULE BIMIIES ...coeviiinieiiiciiitecccetce ettt sttt sttt b ettt sbe e b e 59
2.5 DIALA TYPES -ttt ettt ettt et et et et e et e b et e b ebenbe et e benbenbenbenbenee 60
2.5.1 TNEEEET DIALA TYPES .euveviririirtiitiitiete sttt ettt ettt sttt sttt b e bbb bbbt s b s b s b s bt s b s b e sbesbesbesbesbesbesbesbesbesbesbesbeeas 60
252 Floating Point Data TYPEScceeiririiiriiniiisiesie sttt sttt st sbe bbbt sbe bbb sbesbesbesees 60
253 Character Data TYPES......cueirveirieieierieiirteeistetsetesestesessesessestssaseesessesessesesseseesesesessessssensesansesesessssensssenessensans 60
2.5.4 EPOCH Daata TYPES ..eveevirviiteitiitiniisiesiesie sttt sttt sttt sttt sttt sbe bbb b sb e s be s b s be s b e sbesbesbesbesbesbesbesbesbesbesbesbesbesas 60
2.5.5 EQUIVALENE DAta TYPEServirviriirtiriiriirieriesieste sttt sttt s b e st s b e s b b s b s b s b b e sbesbesbesbesbesbesbenaes 61
2.6 ComPression ALZOTIEIIMS.ouiiiiiieee ettt ettt ettt ettt e st et e sbesbe st e st esbesbesbesbenbenee 61
2.6.1 RUN-LENGth ENCOMINGeeuiieiiieieiiieiisie ettt ettt sttt a s s sene s e e se s eneeseneeseneesensns 62
2.6.2 HUFEMAN ...ttt ettt sttt sttt st b et 62
2.6.3 Adaptive HUFTMAN.ccooiiieiiieiccee ettt se s se e sa et e saeseeseneesenesseneesennns 62
2.64 GZIP oottt bbb bbbt b bbb bttt b bttt b bttt b bttt 62
Chapter 3 Toolkit Reference 63
3.1 Introduction 63
3.1.1 VMS, UNIX & MS-DOS.....ccooiiiieiiirieieirtrtsietetsts ettt ettt sttt st b ettt b ettt b bt se b bt st sae 63
3.1.2 IMACINEOSH OS X ..ottt ettt b et b bt b bbb bttt b bt st b bt st ene 64
3.1.3 IMACINEOSH OS 9.ttt bbbttt b et b bt b bttt b bt st b bt 65
3.14 Windows NT/95/98/2000/XPc.oeriimeuiririiieiiininieteitrtsteieitst sttt bttt sttt ettt b ettt b st be bt sesbebeaenesae 66
3.1.5 Java Version of the CDF T0OIKit fOr UNIX.......cccceirieeirieirieinieieiiseeteiee ettt essenens 67
3.1.6 SPECIAL ATTTDULES ...ttt ettt ettt ettt et et et et e bebe st esbesbesbesbebebesbenbesbesbesbessensens 67
3.1.7 SPECIAL QUALTTIET......eeuieiieieiee ettt ettt et ettt et e st e st et e be st e besbesbesbesbesbesbens 67
3.2 CDF@ituueiiiiteiiiret ettt bbb bbbttt b bbbttt b bttt b bttt et 68
3.2.1 IIEFOAUCTION ...ttt bbbt b et st bbb b bttt b bt s bbb et st b bt neene 68
322 SPecial AUTIDULE USAZE ...cuveueeureieieieteietet ettt ettt ettt ettt et e be st et e besbesbesbenbesbesbesbesbesbesbesbesbensens 68
323 Executing the CDFedit PIOZIAM.......cccoviririiiiirieiisiesese sttt bbb bbb bbb e 68
324 Interaction With CDEFEItcccoueueiiriiieiiiririeieeret ettt sttt b bbbt 70
33 CDFEXPOTT ..ttt ettt ettt et et et e et et e st et et e be st e be st ensentensens et e sensensensensensensesebebebenbesbesenbesbesbensensensenne 71
3.3.1 IIEFOAUCTION ...ttt bbbt b bbbttt b et st b b bttt b bt s bbbt se e b bt nene 71
332 SPecial AUTIDULE USAZEcuveueeuieieieieietetet ettt ettt et et et et et et et et e besbesbesbesbesbesbebesbebesbesbesbesbesbensens 71
333 Executing the CDFeXpOrt PrOZIAMccoviiiiiiiiiiiresiesie sttt sttt s sbe s 72
334 Interaction With CDFEXPOTLccveirieirieirieieieieiest ettt sttt sttt st eseesessesessesesseneeseneesesseseesenseseneesensns 77
34 CDEFCOMNVETL.....coeuiieiiiiietietettreet sttt ettt et b ettt st h e ea e bt s bt b s a e s e st s bt e bt e bt se s st sbeseeuemeenenaenes 77
34.1 IIEFOAUCTION ...ttt b et b et b b bttt b bt s bbbt se b bt st nne 77
342 Executing the CDFCONVETt PTOZIAIMNco.evuiiiiiiiiiiiiisesesesesse st 78
343 Output from the CDFCONVEIt PrOZIAM.........ccooviieiiieiirieiieieieieietistee sttt saesessenessenessensns 82
3.5 CDFCOMPATE......ueeuteutenienientetetete et e et et e tes b e tesbete s e bessentessensentansensessensensensensensensensesesesebensebesessessensenbensensenee 82
3.5.1 INEFOAUCTION ..ottt bbbt b bbbttt bbb bbb bt s bbb et st b bt st ne 82
352 Executing the CDFCOMPAre PrOZIamm........ccccoiviriiiiiiniirisiesiesisiesc ettt sttt st 82
353 Output from the CDFCOMPAre PrOZrami...........ecvevirieeirieiiieisieieiesteteteeseee et saenesse e senessensns 86
3.6 CDFSLALS. ...ttt ettt sttt b ettt st h et e b et bt bt h e h ekt ae bt ekt ae e a et h et h e eae e enes 86

3.6.1 L ST uqe e L0 Te15To)« WU 86

3.6.2 SPECIial AHITDULE USAZEvevvveuieiiieiiieeisieiisieiete ettt et e st e ettt ssese s eseesesaesessesessenesseneesensesensesesseneesenens 87

3.6.3 Executing the CDFStats PIOZIAIMNccciiviiiiiiiiiiiriesieseseste sttt sttt sb e st sbe st e 87
3.6.4 Output from the CDFStats PrOZIAM.........ccoceiiiiieiiieiirieiieieesietete sttt saene e seseesessessssenessenessensens 90
3.7 SKEIBLONTADIE ...ttt ettt b ettt b et b et b bttt st b e 92
3.7.1 INEFOAUCTION ...ttt bbbt b et st bbb bbb bt st bkt st b bt st sne 92
3.7.2 SPECIial AUITDULE USAZEvevvveuiiieieiieietieieii ettt ettt sttt ettt ssese s esessesaesessesessesesseneesensesesesessenessenens 92
373 Executing the SkeletonTable PrOGIamccoveievirieirieieieieieietistee ettt se e neesenans 92
3.74 Output from the SkeletonTable PrOSIamcccoieieeirieiiieiriiieiistet ittt enaes 96
3.8 SKEIBLONCDIE ...ttt b ettt b ettt b et st b bttt b bttt b bt st bttt bene 96
3.8.1 IIEFOAUCTION ..ottt b bbbt b et st b bbb bt s bbbt st b b e st ne 96
3.8.2 Executing the SKeletONCDF PIrOZIAMc.ccvovirieiirieeirieieieisieietestee sttt sese e saesesseneesenessenens 96
3.83 Creating the SKEIeton TabIe...........ccveveirieiiieirieieieie ettt sttt a s seneeseneesenens 98
3.9 CDFINQUITE ..ttt ettt ettt et e et et e te st e bessebe st ensentansensessensensensensensensens et enbenbensensebenbensessessensensensenns 99
3.9.1 INEFOAUCTION ...ttt bbbt b et st bbb bbb bt st bkt st b bt st sne 99
392 Executing the CDFINQUITE PTOGIAMcc.ovuiiiiiiiiiiiiiisesesiesse sttt st 99
393 Output from the CDFINQUITE PTOGIAIMcceiveiiiiieiiieiisieceieieetetete ettt saeseenens 100
3.10 CDFIT ettt bbbttt h bttt b et st b b bttt b bbbttt bbbkt b b 100
3101 TIEEOQUCHION .ttt b ettt b ettt b bttt b bttt b et es 100
3.10.2 Executing the CDFAIr PrOZIAMccooeiiiiiieiiieiieieisieietetete ettt st et sesessesessenessenens 100

3.10.3 Output from the CDFir PrOZIAIMccocirieiiieiiiieiiieieieieesieet ettt sttt sae s ssesessesessenessenens 101

List of Figures

Figure 1.1
Figure 1.2
Figure 1.3
Figure 1.4
Figure 1.5
Figure 2.1
Figure 2.2
Figure 3.1

Conceptual View of a CDF, 0-Dimensional 1Variable............cocccceereineinecininiiinieineinecneeeeeeeseeeseeesnenean 4
Conceptual View of a CDF, 2-Dimensional 1Variablesc..cccoeveineiniecineniiinieineinecneeeieeeeseeeseeesnenean 5
Conceptual View 0f @ CDF, ZVariabIescccociviiririiriiniiriesiesieseseseseste sttt sttt st s sbe b saesees 6
MUlti-File FOIMAL ..ottt ettt sttt ettt be e b st sae e saenee 7
SINELE-FIIE FOTTNAL........coiitiiiiitiitiitietecc sttt b e bbbt s b e s b b e s b e s be s b e s be st e sbesbesbesbesbesbesbesbens 7
Physical vs. Virtual DIMENSIONS.........ccceeeueuirieirieinieinieteiinetentetnteeetete ettt sseae et st ereeete st sae st saesesneneeneneene 43
Physical vs. Virtual Records, Standard Variablecccooeviiiiinininirenesesesesesese e 45
WINAOW SECHONS, CDIFEAILoeiiiviiiiiiie ettt ettt eet e ettt e e e et e e e etaeesesaaeeesaaeessnaseessnaseesenaaeeean 71

List of Tables

Table 1.1
Table 1.2
Table 1.3
Table 1.4
Table 1.5
Table 2.1
Table 2.2
Table 2.3
Table 2.4
Table 2.5
Table 2.6
Table 2.7
Table 2.8
Table 2.9
Table 3.1

Example Data Set - "Flat" Representation (0-Dimensional)............cccecevueinevinecenieninineineinecneeneeeeneeennenes 10
Example CDF - 2-Dimensional Representation (COnceptual).........c.ccccoueireirieerieninenieinieenecnieeseeereneenennenes 10
Example CDF - Specification for 2-Dimensional Representation...........c.cocccvecerereeeneeneenecnencnreneeeneennenes 11
Example CDF - 2-Dimensional Representation (PhySical)ccoceviviririnininininenesesesesese s 11
vAttribute eEntries for the Temperature rVariablecoccociviviiiiiniiiie e 13
Standard INterface ROULINESccccerveuirieiiiiiiiiiciinieriecntetet ettt ettt sttt st st be et 27
Internal INterface ROULINESccccioiiiiriiiinieiiiciiciicc ettt st st 27
Cache Size Operations, Internal INtEITaCEccceviririiiiiiiiii e 31
EQuivalent Byte OTAETINESc.ccivirtiriiriiriiniisiesiesie sttt sttt sttt sttt sttt st sbe b sbe b sbe b s b sbesbesbesbesbesbesbesbesbesbenee 36
Equivalent Single-Precision Floating-Point ENCOdingsc.cccccceiiiineinieiinecniiiincinecnecneeseeeeseeenenes 36
Equivalent Double-Precision Floating-Point ENCOINGScccceiviririnininininiresiesesesesese e 37
Previous-missing Sparse Records Example, Conceptual View vs. Physical Storage...........c.ccccoeecrenvvcnecnnene. 47
Default Pad VALUES.coveuiriiiiiiiiiiieiiice ettt st sttt st st a et 57
EQUIvalent Data TYPESc.coueerieeriiieiinieiiniecnteerietetee ettt sttt ettt ettt s a et bbbt aeae s st s bt bt et sn st snenes 61

Example rVariables, CDFstats Monotonicity CheCKing............cceceviriririnininininisiesiesesie et 87

Preface

About This Document

This document is intended to serve as both a user's guide and reference manual for the Common Data Format (CDF).
As such, it provides a primer for introducing the novice reader to the concepts of CDF as well as a reference manual for
the advanced user'. However, it does not serve as a cookbook for the proper methods of designing a CDF.

The very first questions usually asked by a reader are: What is CDF?, How is CDF used?, and How is CDF useful for
me? Although the reader will find the answers to these questions in this document, we provide here a brief description
of the conceptual basis of CDF in order to provide a proper perspective when reading the remainder of this document.

What is CDF?

CDF, in its most basic terms, is a conceptual data abstraction for storing, manipulating, and accessing multidimensional
data sets. We refer to CDF as a data abstraction because we never discuss the actual physical format in which data sets
are stored. Instead, we describe the form of the data sets and the means (interface) by which they may be manipulated.
This important difference from traditional physical file formats is reflected in the orientation of the document toward
defining form and function as opposed to a specification of the bits and bytes in an actual physical format. It is
important to state here that the use of a data abstraction in no way inhibits access to physical data or necessarily makes
such access inefficient. It merely provides a way of generalizing the data model and makes possible the specification of
a uniform interface for manipulation of a data set. The data abstraction allows future extensibility and provides for
conceptual simplicity while isolating machine and device dependence.

The contents of a CDF fall into two categories. The first is a series of records comprising a collection of variables
consisting of scalars, vectors, and n-dimensional arrays. The second is a set of attribute entries (metadata) describing
the CDF in global terms or specifically for a single variable. This dual function of CDF is what provides its "data set
independence." Both the metadata (attributes) and the data objects (variables) are combined into an integrated data set.
An important element of the CDF conceptual data abstraction is the "virtual" dimensional layer that allows data objects
that share a subset of the overall CDF dimensionality to be projected into the full dimensional space. This capability is
made available through the use of logical dimensional variances that indicate the subset of CDF dimensions that are
applicable.

How is CDF Used?

The origins of CDF date back to the development of the NASA Climate Data System at the National Space Science
Data Center (NSSDC). As such, it has had three main requirements driving its development.

1. Facilitate ingestion of data sets and data products into CDF.
2. Utilize standard common terminology (metadata) to describe the data sets.
3. Development of higher level applications (e.g., NSSDC Graphics System [NGS]).

The above requirements imply two classes of users for CDF. One user class performs primarily data acquisition and is
mainly involved in designing CDFs and the associated science metadata. The other user class builds high-level

' Programming reference manuals for C and Fortran users are provided as separate documents.

applications interacting with CDF at the programming level. CDF has two levels of access: one is through the
programming interface layer and the other is through a high-level toolkit written using the programming interface layer.

The toolkit provides a suite of utilities for creating, browsing, and modifying CDF files as well as exporting or
importing CDF data to/from a regular text file or an eXtensible Markup Languge (XML) file. These are very useful for
architecturing a CDF and describing the metadata without using the programming level interfaces. The browsing tools
allow a quick look at CDF data sets and aid in CDF validation.

The CDF library comes with C, Java and Fortran Application programming Interfaces (APIs), and the APIs provide the
essential framework on which graphical and data analysis packages can be created. Perl APIs are also available as an
optional package for those who wish to develop CDF applications in Perl. The CDF library allows developers of CDF-
based systems to easily create applications that permit users to slice data across multidimensional subspaces, access
entire structures of data, perform subsampling of data, and access one data element independently regardless of its
relationship to any other data element. CDF data sets are portable across any platform supported by CDF. These
currently consist of VAX (OpenVMS and POSIX shell), Sun (SunOS & Solaris), DECstation (ULTRIX), DEC Alpha
(OSF/1 or Tru64 & OpenVMS), Silicon Graphics Iris and Power Series (IRIX), IBM RS6000 series (AIX), HP 9000
series (HP-UX), NeXT (Mach), PC (DOS, Windows 3.x, Windows NT/95/98/2000/XP, Linux, Cygwin & QNX), and
Macintosh (Mac OS X, or Linux) for the CDF library 2.7 or older. CDF 3.0 also supports these operating systems
except HP-UX and IBM AIX (due to lack of user’s interest and hardware). If you need to run the CDF library on either
HP-UX or IBM’s AIX operating system, please contact the CDF support office at cdfsupport@listserv.gsfc.nasa.gov.

CDF is supported by commercial and open souce data analysis/visualization software such as IDL, MATLAB, and
IBM’s Data Explorer (XP). For those who are familiar with a language like IDL or MATLAB can easily create
sophisticated plots from CDF files instead of writing a lengthy program in C, Fortran, or Java.

How is CDF Useful to Me?

Hopefully, the answers to the first two questions have provided a basis for answering this question. If you still have
questions or would like to learn more about CDF, please refer to the CDF Frequently Asked Questions (FAQ) page
(http://nssdc.gsfc.nasa.gov/cdf/html/FAQ.html) for more detailed information about CDF. It is
important to understand that CDF has been designed to solve a number of data management and storage problems and
has shown itself to be quite flexible in storing a wide variety of data sets.

Chapter 1

Primer

1.1 Introduction

The CDF Primer is designed for scientists, researchers, programmers, and managers who want to learn about CDF
without reading through this entire document or the programming reference guides. The primer will address what CDF
is and how it can be used for storing and managing different types of data. A brief description of the tools and utilities
available with CDF, in addition to program and toolkit examples, will be given. More detailed descriptions of the
concepts presented herein are provided in the accompanying chapters of this document and the programming reference
guides.

1.2 Why Use CDF?

When people first hear the term CDF they intuitively think of data formats in the traditional sense of the word (i.e.,
messy/convoluted storage of data on disk or tape). CDF is more than just a format. CDF is a "self-describing" format
for managing data. In addition to the actual data being stored, CDF also stores user-supplied descriptions of the data,
known as metadata. This self-describing property allows CDF to be a generic, data-independent format that can store
data from a wide variety of disciplines.

In addition to being a self-describing data format, CDF is also a software library. The library routines are callable from
C, Fortran, and Java and allow the user to randomly access and manage data and metadata without regard to their
physical storage. This completely relieves the user of low-level I/O operations allowing more time for data analysis.
The actual format used to store the data and metadata is completely transparent to the user. If an application is written
in Java, it can be executed without any modifications on any of the Java supported platforms.

The term "CDF" is also used to refer to the physical files that the CDF library generates. A data set stored using the
CDF library is called a "CDF".

CDF files created on one operating system can be read without any modifications on any of the CDF supported
platforms: VAX (OpenVMS and POSIX shell), Sun (SunOS & Solaris), DECstation (ULTRIX), DEC Alpha (OSF/1 or
Tru64 & OpenVMS), Silicon Graphics Iris and Power Series (IRIX), IBM RS6000 series (AIX), HP 9000 series (HP-
UX), NeXT (Mach), PC (DOS, Windows 3.x, Windows NT/95/98/2000/XP, Linux, Cygwin & QNX), and Macintosh
(MacOS X, or Linux). The aforementioned operating systems are supported by CDF 2.7, 2.6, and 2.5. CDF 3.0 also
supports these operating systems except HP-UX and IBM AIX (due to lack of user’s interest and hardware). If you
need to run the CDF library on either HP-UX or IBM’s AIX operating system, please contact the CDF support office at
cdfsupport@listserv.gsfc.nasa.gov.

1.3 Conceptual Organization

An important feature of CDF is that it can handle data sets that are inherently multidimensional in addition to data sets
that are scalar. To do this, CDF groups data by "variables" whose values are conceptually organized into arrays. The
dimensionality of these variable arrays depends upon the data and is specified by the user when the CDF or a variable
is created. For scalar data, as an example, the array of values would be 0-dimensional (i.e., a single value); whereas for
image data the array would be 2-dimensional. Similarly, the array for volume data would be 3-dimensional. CDF
allows users to specify arrays of up to ten dimensions. The array for a particular variable is called a "variable record."
A collection of arrays, one for each variable, is referred to as a "CDF record." A CDF can, and usually does, contain
multiple CDF records. This is useful for data with repeated observations at different times.

Two types of variables may exist in a CDF: rVariables' and zVariables.”> Every rVariable in a CDF must have the same
number of dimensions and dimension sizes. In the scalar data example the CDF's rVariables would be 0-dimensional,
whereas for the image data example the CDF's rVariables would be 2-dimensional. Figures 1.1 and 1.2 illustrate 0-
dimensional and 2-dimensional rVariables, respectively. zVariables may have a different number of dimensions and/or
dimension sizes than that of the rVariables in a CDF. Figure 1.3 illustrates several zVariables. Since zVariable is more
efficient in terms of storage and offers more functionality than rVariable, use of zVariable is recommended. Note that a
CDF may contain both rVariables and zVariables.” The term "variable" is used when describing a property that applies
to both rVariables and zVariables.

It is important to note that there is no single "correct" way to store data in a CDF. The user has complete control over
how the data values are stored in the CDF (within the confines of the variable array structure) depending on how the
user views the data. This is the advantage of CDF. Data values are organized in whatever way makes sense to the user.

1.4 Features of the CDF Library

The CDF library is a flexible and extensible software package that gives the user many options for creating and
accessing a CDF.

1.4.1 File Format Options

The CDF library gives the user the option to choose from one of two file formats in which to store the data and
metadata. The first option is the traditional CDF multi-file format. This file format is illustrated in Figure 1.4
(assuming a CDF containing four variables). The example.cdf file contains all of the control information and metadata
for the CDF. In addition to the .cdf file,* a file exists for each variable in the CDF and contains only the data associated
with that variable. This is illustrated by the files example.v0 through example.v3. The second option is the single-file
format, the default format when a CDF file is created. As illustrated in Figure 1.5, the whole CDF file consists of only
a single example.cdf file. This file contains the control information, metadata, and the data values for each of the
variables in the CDF. Both formats allow direct access. The advantage of the single-file format is that it minimizes the
number of files one has to manage and makes it easier to transport CDFs across a network. The organization of the
data within the single file may, however, become somewhat convoluted, slightly increasing the data access time. The
multi-file format, on the other hand, clearly delimits the data from the metadata and is organized in a consistent fashion
within the files. Updating, appending, and accessing data are also done with optimum efficiency.

" The “r” stands for “regular.” rVariables are the type of variables that CDF has always supported. Perhaps
“traditional” would have been a better term.

> The “z” doesn’t stand for anything special. We just like the letter “z.”
? This is generally not recommended. In those situations where z variables are necessary it is best to use all zVariables
than a mixture of rVariables and zVariables.

* This file referred to as the dotCDF file.

For multi-file format CDFs, certain restrictions are applied. They are:’

Compression: Compression is not allowed for the CDF or any of its variables.

Sparseness: Sparse records or arrays for variables are not allowed.

Allocation: Pre-allocation of records or blocks of records is not allowed. For each variable, the maximum written
record is the last allocated record.

Deletion: Deletion of a single variable from a CDF is not allowed. Only deleting a whole CDF is possible.

Record rVariable rVariable . . . rVariable
Number 1 2 n
1 a a a
2 a a a
3 a a a
n a a a

> These features are covered in the following sections.

Figure 1.1 Conceptual View of a CDF, 0-Dimensional rVariable

Record rVariable rVariable rVariable
Number 1 2 n

1 I I [[T aaaad
I I [[T aaaad

I I [[T aaaad

I N [I [I T I | I I [

I N [I [I T I | I I [

2 I N [I [I T I | I I [
I I [[T aaaad

I I [[T aaaad

I I [[T aaaad

I N [I [I T I | I I [

3 I N [I [I T I | I I [
I I [[T aaaad

I I [[T aaaad

I I [[T aaaad

I N [I [I T I | I I [

n I N [I [I T I | I I [
I N [I [I T I | I I [

I N [I [I T I | I I [

I N [I [I T I | I I [

I N [I [I T I | I I [

Figure 1.2 Conceptual View of a CDF, 2-Dimensional rVariables

Record rVariable rVariable . . . rVariable

Number 1 2 n
1 I I [a
I I [I T I | a
I I [I T I | a
I [J
I [|
2 I [[|
I I [I T I | a
I I [I T I | a
I I [a
I [|
3 I [[|
I I [I T I | a
I I [I T I | a
I I [a
I [|
n I [[|
I N [I [I T I | a
I N [I [I T I | a
I [J
I [|

Figure 1.3 Conceptual View of a CDF, zVariables

example.cdf

>0 amZ

example.v0

> = >0

example.vl example.v2
D D
A A
T T
A A

example.v3

>—=» 0

Figure 1.4 Multi-File Format

example.cdf

@ >H>0pHAmZ

>—=» 0

Figure 1.5 Single-File Format

1.4.2 Data Encoding Options

When creating a CDF, a user has the option of using any of the supported encodings: VAX, Sun, SGi Personal Iris and
Power Series, DECstation, DEC Alpha/OSF1, DEC Alpha/OpenVMS (D FLOAT, G FLOAT or IEEE FLOAT double-
precision flfloating-point), IBM RS6000 series, HP 9000 series, NeXT, PC, Macintosh, or network (XDR - eXternal
Data Representation). The created CDF may then be copied to any of the supported computers and read by the CDF
library. When a value is read from the CDF, the CDF library may be requested to decode the value into the encoding
of the computer being used or any of the other encodings (which may be desirable for various reasons). A CDF with
any of the supported encodings may be read from and written to on any supported computer.

1.4.3 Compression

Compression may be specified for a single-file CDF and the CDF library can be instructed to compress a CDF as it is
written to disk. This compression occurs transparently to the user. When a compressed CDF is opened, it is
automatically decompressed by the CDF library. An application does not have to even know that a CDF is compressed.
Any type of access is allowed on a compressed CDF. When a compressed CDF is closed by an application, it is
automatically recompressed as it is written back to disk.

The individual variables of a CDF can also be compressed. . The CDF library handles the compression and
decompression of the variable values transparently. The application does not have to know that the variable is
compressed as it accesses the variable's values.

Several different compression algorithms are supported by the CDF library. When compression is specified for a CDF
or one of its variables, the compression algorithm to be used must be selected. There will be trade-offs between the
different compression algorithms regarding execution performance and disk space savings.

The nature of the data in a CDF (or variable) will affect the selection of the best compression algorithm to be used.

1.4.4 Sparseness

Two types of sparseness are allowed for CDF variables: sparse records and sparse arrays. Sparse records are available
now - sparse arrays won't be available until a future CDF release. When a variable is specified as having sparse records,
only those records actually written to that variable will be stored in the CDF. This differs from variables without sparse
records in that for those variables every record preceding the maximum record written is stored in the CDF. For
example, if only the 1000th record were written to a variable without sparse records, the 999 preceding records would
also be written using a pad value. If sparse records had been specified for the variable, only the 1000th record would
be stored in the CDF (saving a considerable amount of disk space). Sparse records are ideal for variables containing
gaps of missing data.

1.4.5 Variable Data Access Options

A program can access variable data one value at a time or it can access an entire multidimensional array structure or
substructure spanning contiguous or non-contiguous record boundaries. The latter feature allows the user to perform
aggregate access or uniform subsampling of the data at greatly increased rates over traditional value by value access.

1.5 Organizing Your Data in a CDF

1.5.1 Variables

The first component of a CDF is the actual data, organized into arrays for the individual variables. CDF can
accommodate any type of data that can be organized into arrays. Two types of variables are supported: rVariables and
zVariables.

rVariables®

rVariables all have the same dimensionality (number of dimensions and dimension sizes). An example of the type of
data set that may be stored in a CDF's rVariables is shown in Table 1.1. Each record holds one value for each of the
four variables: Time, Longitude, Latitude, and Temperature. CDF can store scalar data in a "at" (0-dimensional)
representation such as this, but storage in this manner may hide fundamental relationships among the data values.
Consistent repetitions found in the data for this example suggest another way to organize the data set. Note that every
fourth record is an observation at the same point on Earth at different times. That fact is not immediately clear from
this representation of the data. Looking more closely, we note that only two differing values are recorded for Longitude
and, similarly, only two differing values are recorded for Latitude. This repetition suggests a 2-dimensional array
structure whose dimensions are defined by Longitude and Latitude. For each of the two Longitude values there are two
Latitude values. Time repeats for each Longitude/Latitude pair - the observations were taken simultaneously at the
longitude/latitude locations. Because of Time's repetition for Longitude/Latitude pairs, the number of Time values
specifies the number of records needed in the CDF. Each record conceptually contains a 2-dimensional array per
rVariable (Table 1.2). The array structure defines the dimensionality of the rVariables in the CDF. Although there are
four rVariables, the array dimensions and the sizes of those dimensions are determined only by Longitude and Latitude.
Temperature varies across the entire array while Time tells us how many records to expect. Therefore, the example,
when reduced as described, defines a CDF with 2-dimensional rVariables. The number of discrete values for each
rVariable that defines a dimension generates the size of that dimension. For example, Longitude has two unique
values so the dimension defined by Longitude has a size of two.

Record rVariables
Number Time Longitude Latitude Temperature
1 0000 -165 +40 20.0
2 0000 -165 +30 21.7
3 0000 -150 +40 19.2
4 0000 -150 +30 20.7
5 0100 -165 +40 18.2
6 0100 -165 +30 19.3
7 0100 -150 +40 22.0
8 0100 -150 +30 19.2
9 0200 -165 +40 19.9
10 0200 -165 +30 19.3
11 0200 -150 +40 19.6
12 0200 -150 +30 19.0
93 2300 -165 +40 21.0
94 2300 -165 +30 19.5
95 2300 -150 +40 18.4
96 2300 -150 +30 22.0

% Although rVariables are described here first, the trend among CDF users is toward CDFs containing only zVariables
(since zVariables can do everything rVariables can do and more). zVariables are described in the next section.

Table 1.1 Example Data Set - "Flat" Representation (0-Dimensional)

Adding another independent rVariable, for instance Pressure, poses no difficulty for the example. Temperature would
then be dependent on a specific Longitude, Latitude, and Pressure - a 3-dimensional array structure. In this 3-
dimensional example Longitude, Latitude, and Pressure define the number of dimensions for the rVariables in the CDF,
where the size of each dimension is determined by the number of discrete values contained in each of those rVariables.
Additional dependent rVariables would be stored in the same way as Temperature.

Although conceptually there is a 2-dimensional array structure for each rVariable in each record of the CDF, this would
not be an efficient way to store the data. For instance, the time for each record need only be stored once as opposed to
being stored four times as shown in each 2-dimensional array (Table 1.2). This problem is circumvented by specifying
"variances." For each rVariable there are variances associated with the array dimensions as well as the records.
"Record variance" indicates whether or not an rVariable has unique values from record to record in the CDF. Time
changes for each record so the record variance for Time is [TRUE]. One could also say that Time is record-variant.
Latitude and Longitude repeat their values from record to record so the record variance for each is [false]. Latitude and
Longitude are non-record-variant (NRV). The Temperature values change from record to record so they are record-
variant. The record variances for this example are shown in Table 1.3.

Record rVariables
Number Time Longitude Latitude Temperature
0000 — 0000 -165 - -150 +40 — +40 20.0 -19.2
1 I I I I I I | I
0000 — 0000 -165 - -150 +30 — +30 21.7 -20.7
0100 — 0000 -165 - -150 +40 — +40 18.2 - 22.0
2 I I I I I I | I
0000 — 0000 -165 - -150 +30 - +30 19.3-19.2
0200 — 0000 -165 - -150 +40 — +40 19.9 -19.6
3 I I I I I I | I
0000 — 0000 -165 - -150 +30 - +30 19.3-19.0
2300 — 0000 -165 - -150 +40 — +40 21.0-184
6 I I I I I I | I
0000 — 0000 -165 - -150 +30 - +30 19.5 -22.0

Table 1.2 Example CDF - 2-Dimensional Representation (Conceptual)

Similarly, the term "dimension variance" indicates whether or not an rVariable changes with respect to the CDF
dimensions. In the example above with 2-dimensional rVariables, the Longitude rVariable defines the first dimension
of the CDF with its values repeating along the second dimension so its dimension variances would be [TRUE,false].
The Latitude rVariable defines the second dimension of the CDF with its values repeating along the first dimension so
its dimension variances would be [false, TRUE]. Because the Temperature values change for each latitude/longitude
location, its dimension variances are [TRUE,TRUE]. Time does not change from one latitude/longitude location to
another, so its values are the same along both

dimensions. The dimension variances for Time would be [false,false]. The dimension variances for the above example

are shown in Table 1.3.

Record Variance
First Dimension Variance
Second Dimension Variance

rVariables
Time Longitude Latitude Temperature
TRUE false false TRUE
false TRUE false TRUE
false false TRUE TRUE

Table 1.3 Example CDF - Specification for 2-Dimensional Representation

When the record and dimension variances have been defined correctly, the amount of physical storage needed for the
CDF is drastically reduced. In the above example, 2-dimensional arrays are not physically stored

for each rVariable in a CDF record. Instead, the physical storage for each rVariable consists of just one

value for Time in each CDF record, a single 1-dimensional array of values for the Longitude and Latitude rVariables
(in only the first CDF record), and a full 2-dimensional array of values for Temperature in each

CDF record. The actual physical storage (physical view) is shown in Table 1.4. The conceptual view of

the CDF, however, is still that of one 2-dimensional array per rVariable in each CDF record as shown in

Table 1.2 (the physically stored values are shown in boldface type).

Record rVariables
Number Time Longitude Latitude Temperature
+40 20.0 -19.2
1 0000 -165 - -150 | | I
+30 21.7 -20.7
18.2 - 22.0
2 0100 | I
19.3-19.2
19.9-19.6
3 0200 | I
19.3-19.0
21.0-184
6 2300 | I
19.5 - 22.0

Table 1.4 Example CDF - 2-Dimensional Representation (Physical)

zVariables

zVariables are similar to rVariables in all respects except that each zVariable can have a different dimensionality. This
allows any set of variables to be stored in the same CDF without wasting space or creating confusion in how the

variables are logically viewed.

Consider a data set that consists of some number of images, each containing 1024 by 1024 pixels. The data set also
contains a palette that is used to map pixel values to the actual color/shade to be displayed. Palettes are also referred to
as lookup tables or color lookup tables. For this example assume that each image pixel is stored in an 8-bit byte and the
palette is a 1-dimensional array of 256 colors/shades. Indexing into the palette array with a pixel value gives the
appropriate color/shade to use.

Attempting to store the images and the palette using only rVariables would result in one of two undesirable situations.
If the CDF's rVariables had a dimensionality of 2:[1024,1024] (to store the images), the palette would have to be
stored in a 1024 by 1024 array that does not make sense logically and would waste disk space regardless of how the
dimension variances are set. If the CDF's rVariables had a dimensionality of 3:[1024,1024,256], the images could be
stored in an rVariable having dimension variances T/TTF® and the palette could be stored in an rVariable having
dimension variances F/FFT. This would not waste any disk space but is not the intuitive way to store the data - nothing
in the data set is 3-dimensional.

Using zVariables to store the images and palette would solve both problems. The images would be stored in a
zVariable with dimensionality 2:[1024,1024] (and variances of T/TT) and the palette would be stored in a zVariable
with a dimensionality of 1:[256] (and variances of F/T). This would waste no disk space and logically makes sense.

The use of zVariables is recommended because of this added flexibility. Note that zVariables can always be used
instead of rVariables. In the rVariable example where temperature values were being stored, zVariables could also have
been used. Each zVariable would have the same dimensionality and their dimension variances would be used in the
same way as they were used for the rVariables.

An even better example of how zVariables are preferred over rVariables in certain situations involves the storage of 1-
dimensional arrays (vectors). Assume that five 1-dimensional arrays are being stored with dimension sizes of 2, 3, 5, 7,
and 25. Using rVariables with a dimensionality of 1:[25] would waste considerable space while using rVariables with
a dimensionality of 5:[2,3,5,7,25] and dimension variances of T/TFFFF, T/FTFFF, T/FFTFF, T/FFFTF, and T/FFFFT
would be quite confusing to deal with zVariables with dimensionalities of 1:[2], 1:[3], 1:[5], 1:[7], and 1:[25] would be
straight forward and efficient.

1.6 Attributes

The second component of a CDF is the metadata. Metadata values consist of user-supplied descriptive information
about the CDF and the variables in the CDF by way of attributes and attribute entries. Attributes can be divided into
two categories: attributes of global scope (gAttributes) and attributes of variable scope (vAttributes). gAttributes
describe the CDF as a whole while vAttributes describe some property of each variable (rVariables and zVariables) in
the CDF. Any number of attributes may be stored in a single CDF. The term "attribute" is used when describing a
property that applies to both gAttributes and vAttributes.

gAttributes can include any information regarding the CDF and all of its variables collectively. Such descriptions could
include a title for the CDF, data set documentation, or a CDF modification history. A gAttribute may contain multiple
entries (called gEntries). An example of this would be a modification history kept in the optional gAttribute, MODS.
This attribute could be specified at CDF creation time and a gEntry made regarding creation date. Any subsequent
changes made to the CDF, including additional variables, changes in min/max values, or modifications to variable
values could be documented by writing additional gEntries to MODS.

vAttributes further describe the individual variables and their values. Examples of vAttributes would include such
things as a field name for the variable, the valid minimum and maximum, the units in which the variable data values are

" The notation for dimensionality used here is <num-dims>:[<dim-sizes>] where <num-dims> is the number of
dimensions and <dim-sizes> is zero or more dimension sizes separated by commas.

¥ The notation for variances used here is <rec-vary>/<dim-varys> where <rec-vary> is the record variance, T (TRUE)
or F (false), and <dim-varys> is zero or more dimension variances.

stored, the format in which the data values are to be displayed, a fill value for errant or missing data, and a description
of the expected order of data values: increasing or decreasing (monotonicity). The entries of a vAttribute correspond to
the variables in the CDF. Each rEntry corresponds to an rVariable and each zEntry corresponds to a zVariable. Sample
vAttribute rEntries for the Temperature rVariable from the example above are shown in Table 1.5.

The term "entry" is used when describing a property that applies to gEntries, rEntries, and zEntries.

vAttribute rEntry value
FIELDNAM “Recorded temperature”
VALIDMIN -40.0

VALIDMAX 50.0

SCALEMIN 17.0

SCALEMAX 24.0

UNITS “deg C”

FORMATS “F4.1”

MONOTON “Increasing”

FILLVAL -999.9

Table 1.5 vAttribute eEntries for the Temperature rVariable

1.7 CDF Toolkit

A set of utility programs are provided with the CDF distribution which allow a user to perform a variety of operations
on CDFs without having to write an application program. Each toolkit program is described in detail in Chapter 3.

The available toolkit programs are as follows:

CDFedit’ Allows the display, creation, and modification of attribute and variable
data in a CDF.
CDFexport'" Allows the contents of a CDF to be exported to the terminal screen, a text

file, or another CDF. The CDF may be filtered in order to export a subset
of its contents.

CDFconvert Allows the format, encoding, majority, compression, and sparseness of a
CDF to be changed. It also can reorganize a fragmented CDF file to
make the file access more efficiently. In all cases a new CDF is created.
The original CDF is not modified.

SkeletonCDF"! Reads a specially formatted text file (called a skeleton table) and creates
a skeleton CDF. A skeleton CDF is complete except for record-variant
data.

SkeletonTable Reads a CDF and produces a specially formatted text file called a

skeleton table. The skeleton table may be modified and then input to
SkeletonCDF to create a skeleton CDF.

? CDFedit has replaced CDFbrowse. The alias/symbol CDFbrowse still exists in the "definitions" file on UNIX/VMS
systems but now executes CDFedit in a browse-only mode.

' CDFexport has replaced CDFlist and CDFwalk.

' SkeletonCDF was previously named CDFskeleton

CDFinquire Displays the version of your CDF distribution, many of the configurable
parameters, and the default CDF toolkit qualifiers.

CDFstats Produces a report containing various statistics about the variables in a
CDF.

CDFcompare Reports the differences between two CDFs.

CDFdir Produces a directory listing of a CDF's files. For a multi-file CDF the

variable files are listed in ascending numerical order.

1.8 Library Interface Routines

The core CDF library supports two programming interfaces, the Standard Interface and the Internal Interface. The
Standard Interface is similar to the interface provided with Version 1 of CDF with several additions for new features.
The Internal Interface is provided to allow additional functionality to be added to the CDF library without the need to
modify the Standard Interface. Those features, not available from the Standard Interface, are made available using the
Internal Interface (e.g., access to zVariables). The Internal Interface makes CDF extendable. The Standard and
Internal interfaces are callable from both C, Fortran, and Perl.

The C and the Fortran interfaces (APIs) are desibed in the CDF C Reference manual and the CDF Fortran reference
manual, respectively. The Perl interfaces are described in the Perl to CDF Interfaces document that is included in the
CDF Perl distribution package. The C, Fortran, and Java APIs are part of the standard CDF distribution package, but
the Perl APIs are available as an optional package. The Java APIs for the Unix'? and Linux platforms are also available
as an optional package. As of this writing, the Java APIs are not available for the VMS operating system.

1.8.1 Standard Interface

The Standard Interface consists of three categories of software functions that are utilized to manipulate the components
that make up a CDF: general CDF functions, rVariable functions, and attribute functions.

The general CDF functions are as follows:

Callable from C Callable from Fortran Purpose

CDFCreate() CDF_create() Creates a new CDF.

CDFopen() CDF _open() Opens an existing CDF.

CDFdoc() CDF _doc() Inquires version/release and copyright notice.
CDFinquire() CDF _inquire() Inquires rVariable dimensionality, etc.
CDFclose() CDEF_close() Closes a CDF.

CDFdelete() CDF_delete() Deletes a CDF.

CDPFerror() CDF_error() Inquires error (status) code meaning.

The rVariable functions are as follows:

2pC running CYGWIN or Mac OS X can be considered a UNIX box while running the CDF tool programs.

Callable from C Callable from Fortran Purpose

CDFvarCreate() CDF _var_create() Creates a rVariable.

CDFvarNum() CDF_var_num() Determines a rVariable number.
CDFvarRename() CDF_var_rename() Renames a rVariable.
CDFvarlnquire() CDF _var_inquire() Inquires about a rVariable.
CDFvarPut() CDF_var_put() Writes a rVariable value.
CDFvarGet() CDF_var_get() Reads a rVariable value.
CDFvarHyperPut() CDF _var_hyper put() Writes one or more rVariable values.
CDFvarHyperGet() CDF _var_hyper get() Reads one or more rVariable values.
CDFvarClose() CDF _var_close() Closes a rVariable.

CDFgetrVarsRecordData() =~ CDF_getrVarsRecordData() Reads one full record for a group of rVariables.
CDFputrVarsRecordData() ~ CDF_putrVarsRecordData() ~ Writes one full record for a group of rVariables

The attribute functions are as follows:

Callable from C Callable from Fortran Purpose

CDPFattrCreate() CDF _attr_create() Creates an attribute.
CDFattrNum() CDF_attr_num() Determines an attribute number.
CDFattrRename() CDF_attr_rename() Renames an attribute.
CDFattrInquire() CDF _attr_inquire() Inquires about an attribute.
CDFattrEntryInquire() CDF _attr_entry_inquire() Inquires about an attribute rEntry.
CDPFattrPut() CDF _attr_put() Writes an attribute rEntry.
CDFattrGet() CDF _attr_get() Reads an attribute rEntry.

The Standard Interface may be used to access only rVariables and the vAttribute rEntries for rVariables.

1.8.2 Internal Interface

The Internal Interface consists of one routine: CDFlib when called from C and CDF lib when called from Fortran. The
Internal Interface is used to perform all CDF operations. (In reality the Standard Interface is implemented via the
Internal Interface.) The Internal Interface is used to add new CDF features (e.g., zVariables) without having to change
the Standard Interface.

The Internal Interface must be used to access zVariables and the vAttribute zEntries for zVariables, and it can be used

to access rVariables and their attributes. zVariable is a superset of rVariable and the use of zVariable over rVariable is
highly recommended.

1.9 CDF Java Interface

The CDF Java Application Programming Interfaces (APIs) are based on the core CDF library's Internal Interface., and
they support a near complete set of the Internal Interface functions. The Java APIs only support zVariables and treats
rVariables as zVariables. This is not a problem since zVariable is a superset of rVariable. In another words, with
zVariables, you can do everything with rVariables and more, but not vice versa.

For a complete description of the Java APIs, please refer to http://nssdc.gsfc.nasa.gov/cdf/cdfjava doc/index.html.

1.10 Examples

In this section, sample programs of how to use the CDF library and toolkit will be presented. The same CDF will be
created two different ways: by using just the CDF library from a C program (using stdard interface) and by using the
CDF library with the SkeletonTable toolkit program and a Fortran program (using standard interface).

Sample Java programs are also included in Appendix D that describe how to create and read a CDF file using Java

APIs. Appendix D also conatins sample C programs that describe how to create variables and add data to them using
both the standard interface and the internal interface.

1.10.1 Creating a CDF, the Hard Way (But Not That Hard)

The first example program, written in C, creates a CDF with 2-dimensional rVariables using only CDF library function
calls. The CDF created will contain the data and metadata values used in the example presented earlier in this chapter
(minus some of the vAttributes/rEntries). An input file, example.dat, whose format is similar to that of Table 1.1 will
be read and its data values written into the CDF.

/**

*
* NSSDC/CDF Create an example CDF (without using a skeleton table).
*

* Version 1.0, 5-Jan-94, CDF, Inc.

*

* Modification history:

*

* V1.0 5-Jan-94, Joe Programmer Original version.
:***/

/**
Note (s) :

*
*
*
* This program would have to be modified to run on a DEC Alpha because the
* C language "long' data type is 8 bytes rather than 4 (the CDF data type of
* CDF_INT4 is always 4 bytes).

*
*

***/

/**

* Necessary include files.
**/

#include <stdio.h>
#include <stdlib.h>

#include "cdf.h"

/**

* Status handler.
**/

void StatusHandler (status)
CDFstatus status;
{

char message[CDF ERRTEXT LEN+1];

if (status < CDF_WARN) {
printf ("An error has occurred, halting...\n");
CDFerror (status, message);
printf ("%s\n", message);
exit (status);
}
else
if (status < CDF_OK) {
printf ("Warning, function may not have completed as expected...\n");
CDFerror (status, message);
printf ("%s\n", message);
}
else
if (status > CDF_OK) {
printf ("Function completed successfully, but be advised that...\n");
CDFerror (status, message);
printf ("%s\n", message);
}

return;

/**

* MAIN.
******************‘k***‘k‘k************************‘k****‘k************************/

main () |

CDFid id; /* CDF identifier. */

CDFstatus status; /* CDF completion status. */

FILE *fp; /* File pointer - used to read input data file. */
long numDims = 2; /* Number of dimensions, rVariables. */
static long dimSizes[2] = {2,2}; /* Dimension sizes, rVariables. */
long dimVarys([2]; /* Dimension variances. */

long indices[2]; /* Dimension indices. */

long recNum; /* Record number. */

long attrNum; /* Attribute number. */

long TimeVarNum; /* 'Time' rVariable number. */

long LonVarNum; /* 'Longitude' rVariable number. */

long LatVarNum; /* 'Latitude' rVariable number. */

long TmpVarNum; /* 'Temperature' rVariable number. */

long Time; /* 'Time' rVariable value. */

float Lat; /* 'Latitude' rVariable value. */

float Lon; /* 'Longitude' rVariable value. */

float Tmp; /* 'Temperature' rVariable value. */

long TimeValidMin = O0; /* 'Time' valid minimum (0000). */
long TimeValidMax = 2359; /* 'Time' valid maximum (2359). */
float LonValidMin = -180.0; /* 'Longitude' valid minimum. */
float LonValidMax = 180.0; /* 'Longitude' valid maximum. */
float LatvalidMin = -90.0; /* 'Latitude' valid minimum. */

float LatValidMax

90.0; /* 'Latitude' valid maximum. */

float TmpValidMin = -40.0; /* 'Temperature' valid minimum. */
float TmpValidMax 50.0; /* 'Temperature' valid maximum. */

/************************‘k***

* Create the CDF.
**/

status = CDFcreate ("examplel", numDims, dimSizes, NETWORK ENCODING,
ROW MAJOR, &id);
if (status != CDF OK) StatusHandler (status);

/************************‘k***

* Create rVariables.
*************************‘k****‘k***/

dimVarys[0] = NOVARY;

dimVarys|[1] NOVARY;

status = CDFvarCreate (id, "Time", CDF INT4, 1L, VARY, dimVarys,
&TimeVarNum) ;

CDF _OK) StatusHandler (status);

if (status !

dimVarys[0] = VARY;

dimVarys[1l] = NOVARY;

status = CDFvarCreate (id, "Longitude", CDF REAL4, 1L, NOVARY, dimVarys,
&LonVarNum) ;

if (status != CDF _OK) StatusHandler (status);

dimVarys[0] = NOVARY;

dimVarys|[1] VARY;

status = CDFvarCreate (id, "Latitude", CDF REAL4, 1L, NOVARY, dimVarys,
&LatVarNum) ;

if (status != CDF OK) StatusHandler (status);
dimVarys[0] = VARY;
dimVarys[1l] = VARY;

status = CDFvarCreate (id, "Temperature", CDF REAL4, 1L, VARY, dimVarys,
&TmpVarNum) ;
if (status != CDF OK) StatusHandler (status);

/************************‘k***

* Create attributes.
*************************‘k****‘k***/

status = CDFattrCreate (id, "TITLE", GLOBAL SCOPE, &attrNum);
if (status != CDF OK) StatusHandler (status);

status = CDFattrCreate (id, "VALIDMIN", VARIABLE SCOPE, &attrNum);
if (status != CDF _OK) StatusHandler (status);

status = CDFattrCreate (id, "VALIDMAX", VARIABLE SCOPE, &attrNum);
if (status != CDF OK) StatusHandler (status);

/************************‘k***

* Write TITLE gAttribute gEntry.
**/

status = CDFattrPut (id, CDFattrNum(id,"TITLE"), 0L, CDF CHAR, 50L,
"An example CDF (1). ")
if (status != CDF OK) StatusHandler (status);

/************************‘k***

* Write vAttribute rEntries for 'Time' rVariable.
********************‘k****‘k**/

status = CDFattrPut (id, CDFattrNum(id, "VALIDMIN"),
CDFvarNum(id, "Time"), CDF INT4, 1L, &TimeValidMin);
if (status != CDF OK) StatusHandler (status);

status = CDFattrPut (id, CDFattrNum(id, "VALIDMAX"),
CDFvarNum(id, "Time"), CDF INT4, 1L, &TimeValidMax);
if (status != CDF OK) StatusHandler (status);

/************************‘k***

* Write vAttribute rEntries for 'Longitude' rVariable.
*************************‘k****‘k***/

status = CDFattrPut (id, CDFattrNum(id, "VALIDMIN"),
CDFvarNum(id, "Longitude"), CDF REAL4, 1L, &LonValidMin);
if (status != CDF OK) StatusHandler (status);

status = CDFattrPut (id, CDFattrNum(id, "VALIDMAX"),
CDFvarNum(id, "Longitude"), CDF REAL4, 1L, &LonValidMax);
if (status != CDF _OK) StatusHandler (status);

/************************‘k***

* Write vAttribute rEntries for 'Latitude' rVariable.
*************************‘k****‘k***/

status = CDFattrPut (id, CDFattrNum(id, "VALIDMIN"),
CDFvarNum(id, "Latitude"), CDF REAL4, 1L, &LatValidMin);
if (status != CDF OK) StatusHandler (status);

status = CDFattrPut (id, CDFattrNum(id, "VALIDMAX"),
CDFvarNum(id, "Latitude"), CDF REAL4, 1L, &LatValidMax);
if (status != CDF OK) StatusHandler (status);

/************************‘k***

* Write vAttribute rEntries for 'Temperature' rVariable.
**/

status = CDFattrPut (id, CDFattrNum(id,"VALIDMIN"),
CDFvarNum(id, "Temperature"), CDF REAL4, 1L,
&TmpValidMin) ;

if (status != CDF _OK) StatusHandler (status);

status = CDFattrPut (id, CDFattrNum(id, "VALIDMAX"),
CDFvarNum(id, "Temperature"), CDF REAL4, 1L,
&TmpValidMax) ;

if (status != CDF OK) StatusHandler (status);

/************************‘k***

* Read input values for rVariables and write them to the CDF. Not

The 'Time'

records). The 'Longitude' and 'Latitude'

every value must be written to the CDF - many of the values are redundant.
value only has to be written once per CDF record

(every 4 input
values are only written to the

first CDF record (and only at the appropriate indices). Each 'Temperature'

value read is written to the CDF.
*****************************‘k****‘k**/

Xk % % X %

fp = fopen ("example.dat", "r");
if (fp == NULL) {
printf ("Error opening input file.\n");
exit (-1);
}
for (recNum = 0; recNum < 24; recNum++) {
for (indices[0] = 0; indices[0] < 2; indices[0]++) {
for (indices[1l] = 0; indices[1l] < 2; indices[1l]++) {
fscanf (fp, "%d %$f %$f $f", &Time, &Lon, &Lat, &Tmp);
if (indices[0] == 0 && indices[1l] == 0) {
status = CDFvarPut (id, TimeVarNum, recNum, indices, &Time) ;
if (status != CDF _OK) StatusHandler (status);
}
if (recNum == 0 && indices[l] == 0) {
status = CDFvarPut (id, LonVarNum, recNum, indices, &Lon);
if (status != CDF _OK) StatusHandler (status);
}
if (recNum == 0 && indices[0] == 0) {
status = CDFvarPut (id, LatVarNum, recNum, indices, &Lat);
if (status != CDF _OK) StatusHandler (status);
}
status = CDFvarPut (id, TmpVarNum, recNum, indices, &Tmp);
if (status != CDF_OK) StatusHandler (status);
}
}
}
fclose (fp):

/************************‘k***

* Close CDF.

*‘k***********************‘k**/

status = CDFclose (id);
if (status != CDF OK) StatusHandler (status);
return;

20

1.10.2 Creating a CDF, an Easier Way

The CDF toolkit program SkeletonCDF is provided through the CDF distribution to make the task of creating a CDF
easier for a programmer. SkeletonCDF reads a specially formatted text file called a skeleton table and generates a
skeleton CDF. Everything about a CDF can be specified in a skeleton table except data values for variables that vary
from record to record (record-variant). The toolkit program SkeletonTable is also provided. It reads an existing CDF
and produces a skeleton table. The skeleton table for the CDF created using only the CDF library in Section 1.10.1
would be as follows.

! Skeleton table for the "example" CDF.
! Generated: Wed 5 Jan 1994 10:53:58
#header
CDF NAME: examplel
DATA ENCODING: NETWORK
MAJORITY: ROW

FORMAT: SINGLE

! Variables G.Attributes V.Attributes Records Dims Sizes

4/0 1 2 1/z 2 2 2

#GLOBALattributes
! Attribute Entry Data
! Name Number Type Value
| e — e _ —_——— e ——

"TITLE" 1: CDF_CHAR { "An example CDF (1). "o

" " }

#VARIABLEattributes

"VALIDMIN"

"VALIDMAX"
#variables
! Variable Data Number Record Dimension
! Name Type Elements Variance Variances
| e —_ —_———— e e e

"Time" CDF _INT4 1 T FF

! Attribute Data

! Name Type Value

—_——— e ——

"VALIDMIN" CDF _INT4 { 0}
"VALIDMAX" CDF _INT4 { 2359 }

21

! Variable
I Name

"Longitude"

! Attribute
! Name

! ________
"VALIDMIN"
"VALIDMAX"

Data
Type

CDF_REAL4

Data
Type

CDF_REAL4
CDF_REAL4

! NRV values follow...

[1,
[2,

] =
]

1
1

! Variable
! Name

"Latitude"

! Attribute
! Name

! ________
"VALIDMIN"
"VALIDMAX"

-165.0
-150.0

Data
Type

CDF_REAL4

Data
Type

CDF_REAL4
CDF_REAL4

! NRV values follow...

[1, 1
[1, 2

! Variable
! Name

"Temperature"

! Attribute
! Name

"VALIDMIN"
"VALIDMAX"

fend

Assuming that SkeletonCDF was used to create a CDF containing the metadata and data in the above skeleton table, the

] = 40.
] = 30.

Data
Type

CDF_REAL4

Data
Type

CDF_REAL4
CDF_REAL4

Number
Elements

{ -180.0
{ 180.0 }

Number
Elements

Number
Elements

Record
Variance

}

Record
Variance

Record
Variance

following Fortran program would be used to complete the creation of the CDF.

27

Dimension
Variances

Dimension
Variances

Dimension
Variances

PROGRAM exampleSKT

C __
C
C NSSDC/CDF Create an example CDF (using skeleton table).
C
C Version 1.0, 5-Jan-94, CDF, Inc.
C
C Modification history:
C
C V1.0 5-Jan-94, Joe Programmer Original version.
C
C __
INCLUDE '../../include/cdf.inc'
INTEGER*4 id ! CDF identifier.
INTEGER*4 status ! CDF completion status.
INTEGER*4 lun ! Logical unit number for input data file.
INTEGER*4 indices (2) ! Dimension indices.
INTEGER*4 rec_num ! Record number.
INTEGER*4 time var num ! 'Time' rVariable number.
INTEGER*4 tmp var num ! '"Temperature' rVariable number.
INTEGER*4 time ! '"Time' rVariable value.
REAL*4 lat ! '"Latitude' rVariable value.
REAL*4 lon ! '"Longitude' rVariable value.
REAL*4 tmp ! '"Temperature' rVariable value.
DATA lun/1/
C __
C Open the CDF.
C __
CALL CDF _open ('example2', id, status)
IF (status .NE. CDF OK) CALL StatusHandler (status)
C __
C Determine rVariable numbers.
C __
time var num = CDF var num (id, 'Time')
IF (time var num .LT. CDF OK) CALL StatusHandler (status)
tmp var num = CDF var num (id, 'Temperature')
IF (tmp var num .LT. CDF OK) CALL StatusHandler (status)
C __

C Read input values for rVariables and write them to the CDF. Not
C every value must be written to the CDF - many of the values are redundant.
C The 'Time' wvalue only has to be written once per CDF record (every 4 input

2

C records). The 'Longitude' and 'Latitude' wvalues are not written at all
C because they had been specified in the skeleton table. Each 'Temperature'
C value read is written to the CDF.

C __
OPEN (lun, FILE='example.dat', ERR=99)
DO rec num = 1, 24
DO x1 =1, 2
DO x2 =1, 2
indices (1) = x1
indices (2) = x2
READ (lun, *, ERR=99) time, lon, lat, tmp
IF (indices(l) .EQ. 1 .AND. indices(2) .EQ. 1) THEN
CALL CDF var put (id, time var num, rec num, indices,
time, status)
IF (status .NE. CDF OK) CALL StatusHandler (status)
END IF
CALL CDF var put (id, tmp var num, rec num, indices,
tmp, status)
IF (status .NE. CDF OK) CALL StatusHandler (status)
END DO
END DO
END DO
CLOSE (lun, ERR=99)
C __
C Close CDF
C __
CALL CDF _close (id, status)
IF (status .NE. CDF OK) CALL StatusHandler (status)
STOP
C __
C Input file error handler.
C __
99 WRITE (6,101)
101 FORMAT (' ', 'Error reading input file')
STOP
END
C __
C Status handler.
C __

SUBROUTINE StatusHandler (status)
INTEGER*4 status

24

INCLUDE '../../include/cdf.inc'
CHARACTER message* (CDF_ERRTEXT LEN)

IF (status .LT. CDF_WARN) THEN
WRITE (6,10)
10 FORMAT (' ', 'Error (halting)...")
CALL CDF error (status, message)
WRITE (6,11) message
11 FORMAT (' ',A)
STOP
ELSE
IF (status .LT. CDF_OK) THEN
WRITE (6,12)
12 FORMAT (' ', 'Warning...'")
CALL CDF _error (status, message)
WRITE (6,13) message
13 FORMAT (' ',A)
ELSE
IF (status .GT. CDF OK) THEN
WRITE (6,14)
14 FORMAT (' ', 'Be advised that...'")
CALL CDF _error (status, message)
WRITE (6,15) message
15 FORMAT (' ',A)
END IF
END IF
END IF

RETURN
END

The CDF was opened (since it already existed) and the values for only the Time and Temperature rVariables were
written to the CDF. All of the other functions performed by the program in Section 1.10.1 were done by the
SkeletonCDF program when it read the skeleton table.

28

Chapter 2

Concepts

2.1 CDF Library

The CDF library is the only way to access a CDF. Various properties of the CDF library are described in the following
sections.

2.1.1 Interfaces

Two interfaces to the CDF core library exist for C and Fortran programs. They are described in the following sections.
For CDF Java Interface, see http://nssdc.gsfc.nasa.gov/cdf/cdfjava doc/index.html for a complete description.

Standard Interface

The Standard Interface provides a standard set of routines with which to access a CDF. Not all CDF features are
available with the Standard Interface. The Internal Interface must be used to perform operations not available with the
Standard Interface routines (e.g., access to zVariables). The Standard Interface is callable from both C and Fortran
applications. Table 2.1 lists the routines available when using the Standard Interface. Each routine is described in
detail in the corresponding programmer's guide.

Internal Interface
The Internal Interface may be used to perform all supported CDF operations. The Internal Interface must be used to

perform those operations not available with the Standard Interface. Table 2.2 lists the routines available when using the
Internal Interface. Each is described in detail in the corresponding programmer's guide.

A

Callable from C Callable from Fortran

Purpose

CDFCreate() CDF_create()
CDFopen() CDF _open()
CDFdoc() CDF_doc()
CDFinquire() CDF_inquire()
CDFclose() CDEF_close()
CDFdelete() CDF_delete()
CDPFerror() CDF_error()
CDFvarCreate() CDF _var_create()
CDFvarNum() CDF_var_num()
CDFvarRename() CDF_var_rename()
CDFvarlnquire() CDF_var_inquire()
CDFvarPut() CDF_var_put()
CDFvarGet() CDF_var_get()
CDFvarHyperPut() CDF _var_hyper_put()
CDFvarHyperGet() CDF_var_hyper_get()
CDFvarClose() CDF _var_close()

CDFgetrVarsRecordData()
CDFgetzVarsRecordData()
CDFputrVarsRecordData()
CDFputzVarsRecordData()

CDF _getrVarsRecordData()
CDF_getzVarsRecordData()
CDF_putrVarsRecordData()
CDF_putzVarsRecordData()

Creates a new CDF.

Opens an existing CDF.

Inquires version/release and copyright notice.
Inquires rVariable dimensionality, etc.
Closes a CDF.

Deletes a CDF.

Inquires error (status) code meaning.

Creates a rVariable.

Determines a rVariable number.
Renames a rVariable.

Inquires about a rVariable.

Writes a rVariable value.

Reads a rVariable value.

Writes one or more rVariable values.
Reads one or more rVariable values.
Closes a rVariable.

Reads a full record data for a group of rVariables.
Reads a full record data for a group of zVariables.
Writes a full record data for a group of rVariables.
Writes a full record data for a group of zVariables.

CDPFattrCreate() CDF _attr_create() Creates an attribute.
CDFattrNum() CDF _attr_num() Determines an attribute number.
CDFattrRename() CDF_attr_rename() Renames an attribute.
CDFattrInquire() CDF _attr_inquire() Inquires about an attribute.
CDFattrEntryInquire() CDF _attr_entry inquire() Inquires about an attribute rEntry.
CDPFattrPut() CDF _attr_put() Writes an attribute rEntry.
CDFattrGet() CDEF _attr_get() Reads an attribute rEntry.
Table 2.1 Standard Interface Routines
Callable from C Callable from Fortran Purpose
CDFlib() CDF_lib() Performs all available operations that can be found in

the CDF C and Fortran reference manuals.

Table 2.2 Internal Interface Routines

CDF's IDL Interface

The CDF distribution contains an interface that allows full access to the CDF library (and hence CDFs) from within
IDL. CDF's IDL interface consists of a set of functions that mirror the functions in the Standard and Internal interfaces

for C and Fortran applications. CDF's IDL interface is described in Appendix B.

IDL also provides its own interface to the CDF library (as well as other data formats) that differs from CDF's IDL
interface. The differences are mainly syntactic with the functionality of the two interfaces being essentially the same.
IDL's documentation describes their built-in CDF interface. Another difference between the two interfaces is that
CDF's IDL interface is only available on those computers that support dynamic linking. Appendix B lists the

computers on which this is the case.

27

2.1.2 CDF Modes

Once a CDF has been opened (or created and not yet closed), the CDF library may be configured to act on that CDF in
one or more modes. These modes are specified independently for each open CDF.

Read-Only Mode

A CDF may be placed in read-only mode via the Internal Interface wusing the
<SELECT_,CDF_READONLY_MODE_> operation'. Only read access will be allowed on the CDF - all attempts to
modify the CDF will fail. A CDF may be toggled in and out of read-only mode any number of times (Note that
attempts to modify a CDF may also fail if insufficient access privileges exist for the CDF - the file system enforces this
access.)

zMode

A CDF may be placed into zMode? via the Internal Interface using the <SELECT_,CDF_zMODE_> operation. When
in zMode a CDF's rVariables essentially disappear and are replaced by corresponding zVariables.’ Likewise, the
rEntries for a vAttribute become zEntries (because they are now associated with zVariables). While in zMode most
operations involving rVariables/rEntries will fail. (Some inquiry operations will be allowed. For example, inquiring the
number of rVariables is allowed [but will always be zero].) When zMode is used, the number of variables remains the
same - rVariables simply change into zVariables. Note that the existing contents of the CDF are not changed - the CDF
simply appears different.

Each new zVariable has the same exact properties as the corresponding (hidden) rVariable except for dimensionality
and variances. The data specification (data type and number of elements), pad value, etc. stay the same. The
dimensionality/variances of each zVariable are dependent on which zMode is currently being used: zMode/l or
zMode/2. In zMode/1 the dimensionality/variances stay exactly the same. In zMode/2, however, those dimensions
with a false variance (NOVARY) are eliminated. Consider a CDF with an rVariable dimensionality of 2:[180,360]"
containing the following rVariables.

rVariable Name Variances
EPOCH T/FF°
LATITUDE T/TF
LONGITUDE T/FT
HUMIDITY T/TT

If this CDF were to be placed into zMode/1, the following zVariables would replace the existing rVariables.

rVariable Name Dimensionality Variances
EPOCH 2:[180,360] T/FF
LATITUDE 2:[180,360] T/TF
LONGITUDE 2:[180,360] T/FT
HUMIDITY 2:[180,360] T/TT

' This notation is used to specify a function to be performed on an item. The syntax is <function_,item_>.

* There are actually two types of zMode — read on.

? In a future release of CDF, support for rVariables will be eliminated. zMode is provided to ease the transition from
rVariables to the more exible zVariables. rVariables are essentially a subset of zVariables.

* This notation is used throughout this document. In this case there are two dimensions whose sizes are 180 and 360.
Adimensionality of zero is represented as O:[].

> This notation is also used throughout this document. The record variance is before the slash and the dimension
variances.

7R

Note that the dimensionality of of each zVariable is the same as it was for the rVariables in the CDF. However, if
zMode/2 were used, the following zVariables would replace the existing rValues.

rVariable Name Dimensionality Variances
EPOCH 0:(] T/
LATITUDE 1:[180] T/T
LONGITUDE 1:[360] T/T
HUMIDITY 2:[180,360] T/TT

In this case the false dimensional variances were removed (which decreased the dimensionality in several of the
variables).

A CDF can be placed into or taken out of zMode any number of times while it is open. Each time the zMode is
changed for a CDF, it would be best to think of the CDF as being closed and reopened in that zMode. The numbering
of variable/entries may or may not be as you would expect (and the scheme used could change in a future release of
CDF). Most applications will simply select a zMode immediately after opening a CDF. (zMode being off is the default
if a zMode is not selected.)

NOTE: Using zMode does not change the contents of a CDF. A CDF containing rVariables will appear to contain
only zVariables when in zMode. If the same CDF is then opened without using zMode, the rVariables will still exist.

-0.0 to 0.0 Mode

The floating-point value -0.0 is legal on those computers which use the IEEE 754 floating-point representation (e.g.,
UNIX-based computers, the Macintosh, and the PC) but is illegal on VAXes and DEC Alphas running OpenVMS.
Attempting to use -0.0 results in a reserved operand fault on a VAX and a high performance arithmetic fault on a DEC
Alpha running OpenVMS. Because of this the CDF library can be told to convert -0.0 to 0.0 when read from or written
to a CDF. When reading from a CDF the values physically stored in the CDF are not modified - only the values
returned to an application are converted. When writing to a CDF the values physically stored are modified - -0.0 is
converted to 0.0 before being written to the CDF. This mode is available on all supported computers but is only really
necessary on VAXes and DEC Alphas running OpenVMS. The CDF library is told to convert -0.0 to 0.0 for a CDF via
the Internal Interface using the <SELECT_,CDF_NEGtoPOSfp0_MODE_> operation. When this mode is disabled, a
warning (NEGATIVE FP ZERO) is returned when -0.0 is read from a CDF (and the decoding is that of a VAX or
DEC Alpha running OpenVMS) or written to a CDF (and the encoding is that of a VAX or DEC Alpha running
OpenVMS).

2.1.3 Limits

Open CDFs

The only limit on the number of CDFs that may be open simultaneously is the operating system's limit

on the number of open files that an application may have. Each open CDF will always have at least one associated

open file (the dotCDF file). The CDF library will open and close the variable files of a multi-file CDF as needed (see
Sections 2.3.3 and 2.3.4).

214 Scratch Files

29

The CDF library will make use of scratch files when necessary. These scratch files are associated with an open CDF.
Scratch files are used instead of core memory in an effort to prevent memory limitation problems (especially on the
Macintosh and PC). The following types of scratch files are used.

Staging The staging scratch file is used when a CDF contains compressed variables. As each
variable is accessed, a portion of the staging scratch file is allocated to hold a specific
number of uncompressed records for that variable. The number of records allocated
depends on the variable's blocking factor (see Section 2.3.12). The staging scratch file is
also used (when necessary) with variables having sparse records. If the records being
written are not first allocated, the staging scratch file will be used to minimize the
indexing overhead (see Section 2.2.7) by trying to keep consecutive records contiguous in
the dotCDF file.

Compression The compression scratch file is used when writing to a compressed variable in a CDF.
Because the CDF library does not know how well a block of variable records will
compress, the compression algorithm first writes the compressed block to the compression
scratch file. The compressed block is then copied to the dotCDF file. Note that when
reading a compressed variable, a compressed block of records is decompressed directly to
the staging scratch file because the CDF library knows the size of the uncompressed block
of records.

Uncompressed dotCDF When overall compression is specified for a CDF, the CDF library maintains an
uncompressed version of the dotCDF file as a scratch file.

By default, these scratch files are created in the current directory. On VMS systems the logical name CDF$TMP can be
defined with an alternate directory in which to create scratch files. On UNIX and MS-DOS systems the environment
variable CDF TMP would be used. An application can also select a directory to be used for scratch files with the
<SELECT_,SCRATCHDIR_> operation of the Internal Interface (which will override a scratch directory specified
with CDF$TMP/CDF TMP).

The caching scheme used by the CDF library (see Section 2.1.5) affects how these scratch files can impact
performance. On machines with large amounts of core memory available, the cache size of a scratch files can be set
high enough to result in no blocks actually being written (paged out) to that file. In that case, the scratch file is more
like an allocated block of core memory.

2.1.5 Caching Scheme

The CDF library reads and writes to open files in 512-byte blocks. A cache of 512-byte memory buffers is maintained
by the CDF library for each open file. The CDF library attempts to keep in the cache the set of file blocks currently
being accessed. This results in fewer actual I/O operations to the file if repeated accesses to these blocks would occur.
When the cache is completely full and a new block of the file is accessed, one of the cache buffers is written back to the
file (if it was modified) and the new block is read into that cache buffer (unless the file is being extended in which case
the cache buffer is simply cleared). This process is known as paging. By optimizing the number of cache buffers for a
file, improved performance can be achieved. There is a tradeoff between having too few cache buffers and having too
many. Having too few cache buffers will cause excessive paging while having too many cache buffers may slow
performance because of the overhead involved in maintaining the cache (although this is very rare). Having too many
cache buffers may also cause problems on machines having limited memory such as the PC and Macintosh.

The CDF library attempts to choose optimal default cache sizes based on a CDF's format and the operating system
being used. This is difficult because the CDF library does not know how an application will access a CDF. For that
reason an application may specify, via the Internal Interface, the number of cache buffers to be used for a file. The
number of cache buffers may be changed as many times as necessary while a file is open (the first time will override
the default used by the CDF library). Default cache sizes may be configured for your CDF distribution when it is built
and installed. Consult your system manager for the values of these defaults (or use the CDFinquire toolkit program).

N

The situations in which it will be necessary to specify a cache size will depend on how a CDF is accessed. For
example, consider a variable in a multi-file, row-major CDF having a dimensionality of 2:[10,64], a data specification
of CDF REALS/1, and variances of T/TT. This variable definition results in each record of the variable being spread
across 10 file blocks with the second dimension varying the fastest (since the CDF's variable majority is row-major). If
single value reads were used to access this variable (see Section 2.3.16), only one cache buffer would be necessary for
the variable file if the second dimension were incremented the fastest (i.e., [1,1], [1,2], ..., [10,63], [10,64]). This is
because the values of a record would be accessed sequentially from the first block to the last block. If, however, the
first dimension were incremented the fastest (i.e., [1,1], [2,1], ..., [9,64], [10,64]), 10 cache buffers would improve
performance. The values of a record are not being accessed sequentially but rather each read would be from a different
block. Since the reads would be spread access 10 blocks, having (at least) 10 cache buffers would be optimal.

A similar situation arises when accessing standard variables in a single-file CDF. If values are accessed for each
variable at a particular record number, then performance will be improved by setting the number of cache buffers for
the dotCDF file to be equal to (or greater than) the number of variables. This is because the variable values will most
likely be located in that many different file blocks for a particular record number.

The Internal Interface is used to select and confirm the cache sizes being used for various files by the CDF library.
Confirming a cache size (if it has not been explicitly selected) will determine the default being used. The operations
used for each type of file are shown in Table 2.3.

NOTE: The default cache sizes used by the CDF library are fairly conservative in order to minimize the

problems that can arise due to memory limitations (especially on computers having limited memory such as the PC and
Macintosh). If the performance of your application is critical, it is very important to experiment with using larger
cache sizes. Significant gains in performance can be achieved with the proper cache sizes. It is also important to
allocate records for uncompressed variables. This will reduce the fragmentation that can occur in the dotCDF file
(which degrades performance because of the increased indexing that occurs). Allocating variable records is described in
Section 2.3.12.

File type Selecting Confirming

dotCDF file® <SELECT_,CDF_CACHESIZE_> <CONFIRM_,CDF_CACHESIZE >
rVariable file <SELECT_,rVAR_CACHESIZE > <CONFIRM_,rVAR_CACHESIZE >
All rVariable files <SELECT_,rVARs_CACHESIZE > <CONFIRM_,rVARs_CACHESIZE >
zVariable file <SELECT_,zZVAR_CACHESIZE > <CONFIRM_,zVAR_CACHESIZE >
All zVariable files <SELECT_,zVARs_CACHESIZE > <CONFIRM_,zVARs_CACHESIZE >
Staging scratch file <SELECT_,STAGE_CACHESIZE_> <CONFIRM_,STAGE_CACHESIZE_>

Compression scratch file <SELECT_,COMPRESS_CACHESIZE > <CONFIRM_,COMPRESS_CACHESIZE_>

Table 2.3 Cache Size Operations, Internal Interface

2.2 CDFs

The following sections describe various aspects of a CDF.

2.2.1 Accessing

Only Version 2 CDFs may be accessed with the current CDF distribution. Version 1 CDFs must be converted to
Version 2 CDFs using the CDFconvert program in a CDF distribution prior to CDF V2.5 before they will be readable.

% This alos applies to the uncompressed CDF that is maintained as a scratch file.

21

All supported CDF operations are available using the Internal Interface. A subset of these operations are available
using the Standard Interface. The Obsolete Interface is no longer supported. (Applications written for CDF Version 1
must be ported to the Standard or Internal Interface of CDF Version 2.)

2.2.2 Creating

A CDF must be created by the CDF library. In a C application CDFs are created using either the CDFcreate function
(Standard Interface) or the <CREATE_, CDF_> operation of the CDFlib function (Internal Interface). In a Fortran
application CDFs are created using either the CDF create subroutine (Standard Interface) or the <CREATE_, CDF_>
operation of the CDF lib function (Internal Interface).

2.2.3 Opening

An application must open an existing CDF before access to that CDF is allowed by the CDF library. In a C application
CDFs are opened using either the CDFopen function (Standard Interface) or the <OPEN_,CDF_> operation of the
CDFlib function (Internal Interface). In a Fortran application CDFs are opened using either the CDF open subroutine
(Standard Interface) or the <OPEN_, CDF_> operation of the CDF lib function (Internal Interface).

2.24 Closing

It is absolutely essential that a CDF that has been created or modified by an application be closed before the program
exits. If the CDF is not closed it will in most cases be corrupted and unreadable. This is because the cache buffers
maintained by the CDF library will not have been written to the CDF file(s). An existing CDF that has been opened
and only read from should also be closed. In a C application CDFs are closed using either the CDFclose function
(Standard Interface) or the <CLOSE_,CDF_> operation of the CDFlib function (Internal Interface). In a Fortran
application CDFs are closed using either the CDF close subroutine (Standard Interface) or the <CLOSE_,CDF_>
operation of the CDF lib function (Internal Interface).

2.2.5 Deleting

An open CDF may be deleted at any time. The dotCDF file is deleted along with any variable files if a multi- file CDF.
Note that if the CDF is corrupted and cannot be opened by the CDF library you will have to delete the CDF file(s)
manually using the capabilities of the operating system being used. In a C application CDFs are deleted using either
the CDFdelete function (Standard Interface) or the <DELETE_,CDF_> operation of the CDFlib function (Internal
Interface). In a Fortran application CDFs are deleted using either the CDF delete subroutine (Standard Interface) or the
<DELETE_,CDF_> operation of the CDF lib function (Internal Interface).

2.2.6 Naming

The file name specified when opening or creating a CDF can be any legal file name for the operating system being
used. This includes logical symbols on VMS systems and environment variables on UNIX systems. Trailing blanks
are also allowed but will be ignored. This is so Fortran applications do not have to be concerned with the trailing
blanks of a Fortran CHARACTER variable. (C character strings use terminating NUL characters.)

In almost all cases when a CDF file name is specified, the .cdf extension should not be appended.” (It will be appended
automatically by the CDF library.) The exception to this is when a user has renamed an existing CDF with a different
extension or with no extension (for whatever reason). When a CDF is opened, the CDF library first appends the .cdf

7 6The file of a CDF having an extension of .cdf is referred to as the dotCDF file.

2

extension to the file name specified and then checks to see if that file exists.® If not, the CDF library will also check to
see if a file exists whose file name is exactly as specified (without .cdf appended). If this is the case, the CDF must be
single-file. If the CDF is multi-file, an error occurs since the CDF library would have no idea as to how the variable
files had been renamed. Note also that the CDF library always appends .cdf to the file name specified when creating a
CDF.

NOTE: The CDF toolkit programs will in some cases not recognize a CDF if it does not have an extension
of .cdf.’

2.2.7 Format

There are two CDF formats: multi-file and single-file. The choice of which format to use will depend on how the CDF
is to be accessed. Note that the CDFconvert toolkit program can be used to change the format of an existing CDF
(creating a new CDF with the desired format).

The default format for a created CDF is single-file, and it can be changed if needed. In a user application, the Internal
Interface must be used to change the format of a CDF by using the <PUT_,CDF_FORMAT_> operation of the Internal
Interface. The format of an existing CDF can be changed only if no variables have been created in the CDF. If the
SkeletonCDF toolkit program is used to create a CDF, the format is specified in the skeleton table (see Section 3.8).

Single-File CDFs

A single-file CDF (SINGLE FILE) consists of only one file (with extension .cdf). This file is referred to as the
dotCDF file. The dotCDF file contains the control information for the entire CDF, the attribute entry data, and all of
the variable data. An indexing scheme is used to provide efficient access to variable records.

Indexing Scheme. In single-file CDFs an indexing scheme is used to keep track of where a variable's records are
located within the dotCDF file. The order that variable (and attribute entry) values are written to a single-file CDF by
an application may result in a variable's records being noncontiguous. There will be blocks of contiguous records, but
these blocks will not be contiguous in the dotCDF file.

For each variable in a single-file CDF one or more index records will exist. Each of these index records will contain
one or more index entries. Because the indexing scheme is now hierarchical, each index entry will point to either
another index record (at a lower level in the hierarchy) or to a block of contiguous variable records (at the lowest level
of the hierarchy). An index entry consists of the following fields:

FirstRecord The number of the first record in a block of contiguous variable records or the first record
indexed in a lower-level index record.

LastRecord The number of the last record in a block of contiguous variable records or the last record
indexed in a lower-level index record.

ByteOffset The byte offset within the dotCDF file of the block of contiguous variable records or the
byte offset of a lower-level index record.

8 Actually, the CDF library will check several possible extensions: .cdf, .cdf;1, .CDF, and .CDF;1. These extensions
are checked because some CD-ROM drivers (primarily on UNIX machines) do peculiar things when making the files
(e.g., CDFs) on a CD-ROM visible.

° Or .cdf;1 or .CDF or .CDF;1.

' As of CDF 2.6.

27

To find a particular variable record the CDF library must search through the index entries for that variable. Improved
performance will result if there are fewer index entries to search. This can be achieved by having a larger number of
records in each block of contiguous variable records (resulting in fewer overall index entries). Techniques used to
achieve fewer index entries are outlined in the Allocated Records and Blocking Factor descriptions in Section 2.3.12.

It is possible to inquire the indexing statistics for a variable. Using the Internal Interface, an application may inquire
the number of indexing levels in the hierarchy, the number of index records, and total number of entries for a variable
using the <GET_.,r/zZVAR_nINDEXLEVELS >," <GET_,r/zVAR_nINDEXRECORDS_>, and
<GET_,1/zZVAR_nINDEXENTRIES_> operations.

Multi-File CDFs

A multi-file CDF (MULTI FILE) consists of one file (with extension .cdf referred to as the dotCDF file) containing
control information and attribute entry data and a separate file for each variable defined in the CDF (with extensions
.v0,.vl, ... for rVariables and .z0,.z1, ... for zVariables). Each variable file contains the data values for the
corresponding variable. (The control information for each variable is stored in the dotCDF file.)

Performance

The most efficient access to CDF variables will usually occur when the CDF has the multi-file format. The extra
overhead involved with the indexing scheme used in single-file CDFs is small, so the difference may not be significant
(especially if hyper reads/writes are used). The drawback to using the multi-file format is that more than one file is
associated with a CDF (which may or may not be a problem for your system management).

There is a case in which the single-file format may be more efficient. If a CDF has a large number of variables (larger
than the number of files that may be open at once by an application) and the variables values are accessed variable-by-
variable (rather than accessing an entire variable before going to the next variable), the multi-file format may be much
slower than the single-file format. This is because the CDF library will have to close one variable file and then open
another as each variable value is accessed by the application (since the operating system's open file limit will be
reached). If the application was to access every value for a variable before going on to the next variable, this would not
occur (but it might create complications for the application).

Note that the format of a CDF can also be converted using the CDFconvert toolkit program (which creates a new CDF
with the specified format). Section 3.4 describes CDFconvert.

2.2.8 Encoding

The encoding of a CDF determines how attribute entry data and variable data values are stored on disk in the CDF
file(s). An application program never has to concern itself with the encoding of the CDF being accessed. The CDF
library performs all of the encoding and decoding of data values for the application.

A CDF's encoding is specified when the CDF is created when using the Standard Interface but is set to the default
encoding for your CDF distribution when created using the Internal Interface. The encoding of an existing CDF may
be changed with the Internal Interface if no variable values or attribute entries have been written (variables and
attributes may exist, however). If the SkeletonCDF toolkit program is used to create a CDF the encoding is specified in
the skeleton table (see Section 3.8).

"' This notation is used when an operation exists for both rVariables and zVariables. In this case, the actual operations
are <GET_,zZVAR_nINDEXLEVELS_ > and <GET_,rVAR_nINDEXLEVELS_>.

4

The encoding specified when creating/modifying a CDF may be any of the native encodings for the computers
supported by CDF in addition to network (XDR) encoding."”” A CDF with any supported encoding is also readable on
any computer supported by CDF.

Host Encodings

Host encoding (HOST_ENCODING) specifies that variable and attribute entry data values be written to the CDF in
the native encoding of the computer being used. In addition, the following explicit host encodings are supported:

VAX_ENCODING VAX and microVAX computers. Double-precision floating-point values are
encoded in Digital's D FLOAT representation.

ALPHAVMSd_ENCODING DEC Alpha computers running OpenVMS. Double-precision floating-point
values are encoded in Digital's D FLOAT representation.

ALPHAVMSg_ENCODING DEC Alpha computers running OpenVMS. Double-precision floating-point
values are encoded in Digital's G FLOAT representation.

ALPHAVMSi_ENCODING DEC Alpha computers running OpenVMS. Double-precision floating-point
values are encoded in IEEE representation.

ALPHAOSF1_ENCODING DEC Alpha computers running OSF/1.

SUN_ENCODING Sun computers.

SGi_ENCODING Silicon Graphics Iris and Power Series computers.

DECSTATION_ENCODING DECstation computers.

IBMRS_ENCODING IBM RS6000 series computers.

HP_ENCODING HP 9000 series computers.

PC_ENCODING PC personal computers.

NeXT_ENCODING NeXT computers.

MAC_ENCODING Macintosh computers.

When HOST_ENCODING is specified, it is translated to the actual host encoding from the above list. All host
encodings are readable and writeable on any machine supported by CDF.

Network Encoding

Network encoding (NETWORK_ENCODING) specifies that variable and attribute entry data