CDF
User's Guide

Version 2.7, April 2, 2002

National Space Science Data Center

Copyright © 2002 NASA/GSFC/NSSDC
National Space Science Data Center
NASA/Goddard Space Flight Center
Greenbelt, Maryland 20771 (U.S.A.)

This software may be copied or redistributed as long as it is not sold for profit, but it can be incorporated into any other
substantive product with or without modifications for profit or non-profit. If the software is modified, it must include
the following notices:

- The software is not the original (for protection of the original author’s reputations from any problems introduced
by others)
- Change history (e.g. date, functionality, etc.)

This copyright notice must be reproduced on each copy made. This software is provided as is without any express or
implied warranties whatsoever.

DECnet - NSSDCA::CDFSUPPORT
Internet - cdfsupport@nssdca.gsfc.nasa.gov

Permission is granted to make and distribute verbatim copies of this document provided this copyright and permission
notice are preserved on all copies.

mailto:cdfsupport@nssdca.gsfc.nasa.gov

Contents

1.1 INEEOAUCTION ...ttt ettt ekt b e bt e b et e s e s e et e e bt sbeeb e e st e st et et e s besbeebeeneensentens 1
L2 WY USE CDF? ..ottt ettt ettt ettt st e s ae e beesb e e sseesaeesaessaesseessessbesseesssessaesseenseassenssanssensens 1
1.3 CoNCEPtUAl OTZANIZAION........c.eervieiierieeiieieeteesteerteesteetesteseesseesseesaeessesssesseesseessaessesssesssesseessesssesssesseesseenseessenss 1
1.4 Features 0f the CDF LiIDIAIYcccveciiiiieiiieie ettt sttt beesaesstesaeesaeenseenseeseenseenseanseensenseensens 2
1.4.1 File FOIMAt OPLIONSeeeuieiieiieieeieeieeteste st e sttt e et e sete st e st enseessessaesseeseensesnsesssesseenseenseenseenseensenssenseensenn 2
1.4.2 Data ENCOAING OPLIONSecvieiieiiieieeieeiterieeie et eteete st esteesteesseesaessaeseesseessesssesseesseesseensesnsesnseensesssesseenses 7
1.43 (07031010 (<353 () FO USSP 7
1.4.4 SPATSEIIESS ...enveeteettestieteete et et et teeuee st e anteen bt emteeseeeseease e et e st emeeeatees e e et enteenteen s e eeeeeneeebeenteenteenteeneeeneenneenteens 7
1.4.5 Variable Data ACCESS OPLIONS.c..ccieirieirierieiieitiesteerteeteetestesteesteeteesaeessesseeseesseessesssesssessseseesseessesnsenses 7
L.5 Organizing Your Data in @ CDF ..ottt sttt ettt st ea 7
1.5.1 VATTADIES ...ttt ettt a et ettt et e bt e a e e st e a e et e b e ekt eheeheeb e eneentebeeteebeeteeneeneenneneens 7
Li6 AITTDULES. ..ottt e b bt ea et e e e et e bt e bt e b e e bt es e e st et e b e e bt bt e aeen et et bbbt eae st et entes 11
1.7 CDF TOOIKI ittt ettt b et b e bt e bt et e et e st bt sb e ebe e bt ea b e b et e e bt ebeebeeneenneneentes 12
1.8 Library INterface ROULINESccccieviiiiieiiietieiieieeie ettt ete et et esteesteesbeesseessessaesseesseessesssesssesseesseeseensenns 13
1.8.1 Standard INEEITACEco.eeueiiiiiii ettt ettt sttt sttt ae 13
1.8.2 INtEINAL INTETTACEc.entieiieieeeitc ettt ettt ettt be st e eneenaes 14
1.9 CDF JaVa INEETTACE.etitiieriieiieieeitetet ettt sttt st st b ettt ettt sae e bt et easententes 14
L O 521 1415 (RPN 14
1.10.1 Creating a CDF, the Hard Way (But Not That Hard)...........ccccoeiiriiriiieeee e 15
1.10.2 Creating a CDF, an Easier WaYccooiiiiiiiiiiieieeieseee ettt sttt ettt ae et et neesneenneas 20
2.1 CDF Library 25
2.1.1 IIEEITACES ...ttt ettt st e b e bttt et et e h e bt b et ebt e e bt e bt e bt et e saee 25
2.1.2 CDF MOMES ...ttt ettt ettt et a et e e ae ekt e bt e et ee e em e em e e e b e e teebeeaeeseeneenseseteabesaeeneeneenseneennan 27
2.13 LLIITIIES -ttt ettt b e h e bttt skt b e b bt a e h et et b bbbt bt et et e b she e bt eneenbeeenten 28
2.14 SCTALCH FALES ..ttt ettt s e e bbbt et e et e st s b e bt ebe et e betens 28
2.1.5 CACKING SCHEIMC........vieiiieiiiciieieeie ettt ettt ettt e et eesbessbesteesae e beesseeseessseseessaesseassesssenseesseessesssenses 29
2.2 CDFS ittt ettt bbbt h ettt h bt bbbt e a et et b e st be bt bt et et enee 30
2.2.1 AACCESSINE ...ttt ettt et et et e st e et et e eaee e et e esa et e e st e enseeaseeaeesste st enseenteentees s et e en st enseenseenseenseentenneeteenreans 30
222 CTRALIIEZ ...ttt ettt ettt ettt st e et e e te et e e a et et e et e et e et e emeeeseeeseesa e e st emseemeeeae e st e teenteenseeseeaseenseenneenneenes 31
2.23 (057501114 V=SSP R 31
224 (] 10 TS] 1 VSRR 31
2.2.5 DIEIELINE ...ttt ettt ettt sttt e ae et e e et et et et e e heeh e e ae e st e e e e e et e e bt e ke bt eh e eh e e atente s et e ebeeheebeeneenseneentas 31
2.2.6 INAITIIILZ ettt ettt s a e s b et e st e st ea e e bt e bt e bt e bt et e e ae e eat e sheenbe e bt enteenteebeenbeebean 31
2.2.7 FOTTIIAL ..ottt h e b e b ettt e st sat e s be et e et e e st e ebeesb e e b e enbeenaesaeesas 32
2.2.8 ENCOMINE ..ottt ettt ettt et e et e e s b e e sbessbesseesae e beesseesseessensaeseenseesbeessenseenseenseenneenes 33
2.2.9 DIECOTING ...cvvieetieiiectieeeet ettt ettt ettt e e te e bt esbeesbeesse st aesseesbeesbeessesseesaeesseenseessesseenssesssessaesseesseensennes 36
2.2.10 COMPICSSION....eevieteereereeeereeteesteeseesseassesseesseesseasseasseassesseesseesseessesssesssesseessesssesssesssesssesseesseessesssenssenssessens 37
22,11 LAITIES 1ttt ettt b e s b ettt et s h e bbbt ea e sttt b e bt bt e bt et et et besae bt et eabenaens 38
2.3 VATTADIES ...ttt h bt et h ettt h bbbt a et b bt sh e bt bt eab et et 38
2.3.1 10 01 O OO PUP U STRTPURPROP 38
232 AALCCESSINE ...ttt ettt ettt ettt et et e a e e s et e e bt e te et e e a e e eh e e eh e e et e a et eateeh e et e e st enteenteenaeeateeneeeneenteeteens 39
233 (057501114 V=SSP 39
234 (] 10 TS] 1 VS PR T 39
235 INAITIIILZ .ttt b ettt ettt s a e e b et e st ea e e e e eb e e bt e bt em bt embeeae e eateebeenbe e bt enteen e ebeenbeebean 39
2.3.6 INUITIDEIING ..ottt ettt et ettt et e bttt eb e e st ea e et em s e se et e ebeebeebeeneeseenseneeebeebeeseeneenseneensenes 40
2.3.7 | D153 (151 VOO OO PP 40
2.3.8 DIMENSIONALIILY ..evviiiieiieeiiesieie ettt ettt et e et e e saessaesteesaeesbeesseeseesseesseessensseassesssenseesseessesnsenses 40
2.3.9 Data SPECTTICALIONeevvieeieiieiieie ettt ettt et esbe e besteesae e beesseessesssesseesbaesseessenssesseesseessesssensns 40
23,10 RECOTA VAITANCEc.eitiiititeiieeiiet ettt ettt ettt ettt ettt et e b s bbbt e bt e bt et entenaesaeebesaeebeeneennenaens 41
2.3.11 DIMENSION VAITANCEc.uitietirtietieiteitetenteeteste st ettt ettt ettt sbe bt ebt et eatentestesbe s bt e bt eaeeasententenbesaeebeeneensenaens 41
23012 RECOTAS. .ttt bbb ettt b e e bt bt e st ea b et s e e bt s bt e bt e bt ea b et et e bt sae bt et eatenaens 42
2 0 I TN o 7 6T N) £~ USROS 47

2.3. 14 COMPICSSION....eevieteeurieeeeeeteeteesteesseesesssesstesseesseesseasseaseesseesseesseessesssesssesssessesssesssesssesssesseesseensenssenssesssessens 47

2 0 B T Y - 1 o) 4 1 SRS UR PSP 48
2.3.16 SINGIE VAIUE ACCESS...uieuiieiieeiieiieiieieeiestesttesteesteeteeseesseeseenteesseassessaesseesseensesssesseesseenseenssenseensesssesseensen 49
2317 HYPET ACCESS cuveeentieeiieeite ettt ettt ettt ettt s bt et e e bt e bt e ettt e bt e s bt e e abtesabee e beeea bt e sabteeabeesabeeeabeesabeesabeesabaesntee s 50
2.3.18 SCQUENTIAL ACCESS. . ueiuuiiiieiieiieiieieeteeteste st esteeteeteestessees st enseesseassessaesseeseenseansesnsesssesseenseenseensenssenseensen 52
2.3.19 MUltiple Variable ACCESSc.ueeuieiuieiieieiieitie sttt ettt et et et e e e etesseesbeesteeneesneeeneesseeteenseenseeneesneanneas 53
2.3.20 Variable Pad ValUes.ooouiiiiiiiiieie ettt sttt et ettt et eneeeneeenean 54
2.4 PN 138 011U 55
2.4.1 INAITIIILZ et b ettt ettt s a e e b et et e st ee e eb e e bt e b e e bt embeeaeesateebeenbe e bt en bt en e ebeenbeebean 55
24.2 INUITIDEIING ...ttt ettt ettt ettt ettt et e eb e e st ea e et en e se et e ebeeeeebeeseeseemeensebesaeeseeneenseneensenes 56
2.4.3 ATTIDULE SCOPES ...vvivieitieiieite et et ettt et e ettt et e e et e e teesteebeesbeessesseesseasseesseessesssesssesseesseessesssesssesssesseeseenrenns 56
2.4.4 DICIETINE ...vvevieieeteete ettt ettt et e st e st e te e bt et e eteeste e beesseessessbeeseesaeesseesseesseessanseenseesseesseesaeaseesseenseenaennns 56
24.5 AIDULE ENETIES ..c..enteneiesteet ettt ettt s b e bbbt et e et bt besaeeb e et e ee 57
2.5 DALA TYPES +eeeuetteiiteiie ettt ettt ettt ettt et ettt e bt e st eea bt e s et e e e a bt e s a bt e e a bt e sa b e e e a bt e shb e e eabe e bt e ettt e bteenabeennbeenaneenns 58
2.5.1 INEEZEL DAt TYPES c.uveeutieeiieiiie ettt sttt et e st e st e e st b e e sabeesabeesabeesateesabeenateesabeenans 58
2.52 Floating Point Data TYPES.....ccveruierieiieiieniertiete et eitestteteetestesttesaee st esseenseeseesseesseenseensesssesseensesnsesnsennns 58
2.53 (O]0F:) ¢ Tor 3 g B Y T) o RSO RPR 58
2.54 EPOCH DAta TYPE...eeviiuieiieiieiieieieeiesteete et ettestestestestessesseesesseeseessansassesseesesseaseessensensessesessesseaseensassensansas 59
255 EqQUivalent DAt TYPESeecueeeueeieeieiteerieeie ettt ettt et e st et e ebeeteemeesaeesae e st enseeneeeseenseeaseenseenseenneenes 59
2.6 Compression AIZOTITRIMSooiiiiiiiii ettt ettt e b e st e bt e bt et setesaeesaeenteenteens 59
2.6.1 RUN-Length ENCOINGcviiuiieieiieieieee ettt sttt e se et et e be b ebe e st enseneeeas 59
2.6.2 HUTTIMAN 1ttt b ettt et a et e bt et e bt e sb e e b e e b e enaeeaeesas 60
2.6.3 Adaptive HUFFMAN. ..ottt ettt et eb e esbestaeste e beessessaesssesssesseenseensenns 60
2.6.4 GZIP ...ttt h e h e h et e b et h e bt b a e sttt h e bt bt e ae sttt beshe bt eaeen b et enten 60
31 Introduction 61
3.1.1 VMS, UNIX & MS-DOS ...ttt ettt sttt ettt sttt st et ettt st bt st ebe et enne e 61
3.1.2 IMACIIEOSI ...ttt ettt st b e bbbt ettt et bt bbbt et et enten 62
3.1.3 WINAOWS NT/95/98 ...ttt sttt st sh sttt et bt et be bt eateeenaen 64
3.14 Java Version of the CDF TOOIKIEcccuiiiieieiieii ettt ettt e 64
3.1.5 SPECIAL ATITIDULES ...ttt ettt et et e et e et e et e e st e st e teen e enteeneeeseesbeeseenseeneesnnesnes 64
3.1.6 SPECIAl QUALITICTeeeeeie ettt ettt et a et e et et e e e e s e ebeesbeenbeeseeneeenneenes 65

K T8 O B) <4 OSSPSR 65
321 INEEOAUCTION ...ttt ettt et b e b ettt s at e s a et e b e st e eb e e sb e e b e ebeenaeeneesaee 65
322 SpPecial AUTIDULE USAZE.....cveiieriieriieiieiieieeteesteeteeteete s testeesteesteeaessseesaesseeseesseessesssesssesseeseessesssesssesses 65
323 Executing the CDFedit PrOGIamccceviiiiieiieieciieiieieeie ettt ettt ste s b et este b e essaesseesseennesnns 65
324 Interaction With CDFEit.......cc.eeiiiiiiiiieiieie ettt st 68
33 (01D) 215 q 0T o SO TSRS PUTPURTP 69
3.3.1 INEEOAUCTION ...ttt bbbttt ettt b e s bt bt e et et e b e s bt sae e bt ebeeabeeennen 69
332 Special AUTIDULE USAZE.....cveiieriieiieiieieeieettest et eteete s testte st e st e et et e eseesseeseenseenseessesseesseenseensesnsesnnesnns 69
333 Executing the CDFexXport PrOZramccccooiieiiiiiiieiieeee ettt et e 70
334 Interaction With CDFEXPOTILcc.eeiiiiiiiieiet ettt ettt et eeseeseeebeeaeeeeenes 76
34 L) 2 eTa) 1)< o AT USRS 76
34.1 INETOAUCTION ...ttt st b e b ettt s at e s b et e e e st e eb e e sb e e b e ebeenaeeneesaee 76
342 Executing the CDFConvert ProOgramoocoooiiiiiiiiiiiiiee et 76
343 Output from the CDFconvert Program............ccccoocuiiiiiiiiiiiiiieieneeece et s 82
3.5 CDFCOMPATEveeeteeniie ettt ettt ettt e sttt e tte ettt e ateentteenbaeenseeessbeaaseesaseesaseesaseesnteesasaeensaesnsaesaseesnseensseesnsaennses 82
3.5.1 INEEOAUCTION ...ttt ettt ettt b e e bt bt et e s et et e e b e sbe e bt e st enseeennes 82
3.5.2 Executing the CDFcomMpPare PrOGIam...........cccvecuieiirieiiieiieiecieste sttt et e ste et eseessessaessaesseessessnesens 82
353 Output from the CDFcompare PrOgramccoecviriieriieiiieiesie ettt ssaessaesseeseenneses 87
3.6 CDFSTALS ...ttt ettt ettt st b et et et e ae e bt ettt ean e e a e bbbt sae e bt ettt eabeeenesanenaeen 87
3.6.1 INEEOAUCTION ...t bbbttt et ettt b e eb ettt et et s bt sae e bt ebeeasententen 87
3.6.2 Special ATIDULE USAZE......ueeiuieieieiieit ettt ettt ettt ettt et eeateste et e e e enteeseeeseesseeaseenseeneeeneeenes 87
3.63 Executing the CDFStats PrOGIAmcc.coouieiiiieiieieee ettt ettt s 88
3.6.4 Output from the CDFStats PrOGIam.........ccooiiiieiiiiiiiieiieiee et et 92
3.7 SKEIETONTADIE. ... ettt ettt ettt sttt ae st e st e st e b e sb e et e e bt ebeeseeneens e s e beebeeaeeneeneeneeneenees 93
3.71 INETOAUCTION ...ttt et b e b ettt st e s bt et e e e st e eb e e sb e e b e ebeenaeeneesae 93

3.7.2 Special AUIIDULE USAZE.....ceiiierrieiieiieiieieetieste et eteetestestee e esteeaeesbeesaesseeseesseessesssesssesseeseesseessesssenses 94

373 Executing the SkeletonTable Programi.............cciecviriiiiieniieiiiiie ettt sbeese e ees 94
3.7.4 Output from the SkeletonTable Programcccoeciiieiiinieiiee e 98
3.8 SKEIETONCDIE ...ttt ettt et et ettt b e bt bt e et et e e st e b s bt eet et et enbesaesbe e bt eaneneentes 98
3.8.1 INEEOAUCTION ...ttt et ettt b e sbe et e et e st e s bt sbe e bt bt eabeeenten 98
3.8.2 Executing the SKeletonCDF Programcccoecieiiiieiieieee ettt 99
3.83 Creating the SKeleton TabLecooiiiiiiiiiieiee ettt ettt et ettt et eneeseeeeneas 101
TR O] B] 011 Te 11 (SO PRRR 101
3.9.1 INETOAUCTION ...ttt ettt b e bt et ettt e s bt e sbe e et et e enbeeaeesaeenbees 102
392 Executing the CDFINQUIre PrOZIamcoiiiiiiieieiieteeie ettt ettt st ebe e 102
393 Output from the CDFINqUire Programccccooieiiiiiiiiiieiieeeeee et 103
BU10 CDFIT ettt ettt b bt h et et et bbbt e a e a et bbbt bt e bt ea s et et et e bbbt ebeeneenbennen 103
3.10.1 IIEEOAUCTION ..ttt ettt h bt bt e st et e e s bbbt sbeeb e emees b et et e b sbeebe e st enseneennen 103
3.10.2 Executing the CDFdir PrOgram...........ccoocuiiieiiiiieiieieee ettt seenesnne e 103
3.10.3 Output from the CDFdIir PrOGramcccoeouieiiriiiniieieeie ettt sesnne e e 104
311 CDFDIOWSE ..ttt ettt ettt ettt ettt sh e ea et e e et bt s bt b e e bt e bt et et et e s bt e bt ebeeb e e bt en b e b e st e sbesheeueeneenteaens 104
TR 0 O B) 2 T OSSPSR 104

303 CDFWALK ittt ettt s b et et a et bbbt ae st beeaeeae et ennenen 105

List of Figures

Figure 1.1 Conceptual View of a CDF, 0-Dimensional rVariablecocceeriiiiriininiiniiiieeeeeresese e 3
Figure 1.2 Conceptual View of a CDF, 2-Dimensional rVariables............ccccecereeeieriininiininineneeieteteienese e 4
Figure 1.3 Conceptual View of @ CDF, ZVariables.ccccveririiiiriiniinieniniencteetcese ettt 5
Figure 1.4 MUulti-File FOTMALcooiiiiiiiiiiii ettt st et ettt st st ebe et e nee 6
Figure 1.5 Single-File FOIMAL........c.cooiiiiiiee ettt ettt et et e et e e et et esneesae e teenteeneeeneeeneenean 6
Figure 2.1 Physical vS. Virtual DIMENSIONScecuieueiieitieiieie et stte sttt ettt et et e e e e eseesseesseeseeseeneesneesneesseenseens 42
Figure 2.2 Physical vs. Virtual Records, Standard Variablecociiiiiiiiiiiiiii e 43

Figure 3.1 Window Sections, CDFEItc..eiiiiiuiiieieieeee ettt sttt ettt et st et beseeebeeseente e ensennens 69

List of Tables

Table 1.1
Table 1.2
Table 1.3
Table 1.4
Table 1.5
Table 2.1
Table 2.2
Table 2.3
Table 2.4
Table 2.5
Table 2.6
Table 2.7
Table 2.8
Table 2.9
Table 3.1

Example Data Set - "Flat" Representation (0-Dimensional)..........cccecerevereereerieenieeriesieseesieesseeveevesnesseeseens 8
Example CDF - 2-Dimensional Representation (Conceptual)cccveeverierienieeniieiieeienieneeieeie e snesieeseeas 9
Example CDF - Specification for 2-Dimensional Representationc.cceccecveveevienenenieneneneneeeeneeieneens 10
Example CDF - 2-Dimensional Representation (Physical).........cccocveviieiiirienieniieiieiecieeee e 10
vAttribute eEntries for the Temperature rVariableoocoiieiieiiiiiiieeeeeee e 12
Standard INterface ROULINESc.eeiiiiiiiieieee ettt ettt st e bt e sttt e e e eneeeneesneas 26
Internal INterface ROULINES ... cc.iiuieuiieieieieese ettt ettt ettt e e e bt e et e st e steebeeaeenee e anseneens 26
Cache Size Operations, Internal INTETTACEceiriuiiiiiieeiie it e e seee s aeesaae e 30
Equivalent Byte OTAEIINGSccuiiuiiieieeieiieieetee ettt ettt ettt se et be et ese et e e et e besbeeeeebeeaeeneeeanseneens 35
Equivalent Single-Precision Floating-Point ENcCOdingsccccveeiiviiiienieiiiciecieeeeeeeee e 35
Equivalent Double-Precision Floating-Point ENCOAINGS........ccecveiiirierieriiiiiciecieeieeie e 36
Previous-missing Sparse Records Example, Conceptual View vs. Physical Storageccccccevevevvenieennnnne. 45
Default Pad VALUES......ccuoiiiriiriiiiiieiecte sttt ettt sttt et a et s besae bt nae 55
EQUIVAIENE DAtA TYPES ..uveevieiieiieieiieitesiterieete et eette st eteeteesaessaesseeseessesssesseesseenseanseenseanseessessaesseesesnsesnsennns 59

Example rVariables, CDFstats Monotonicity Checkingcccvecvieierieniesiiniesiesieseee e 87

Preface

About This Document

This document is intended to serve as both a user's guide and reference manual for the Common Data Format (CDF).
As such, it provides a primer for introducing the novice reader to the concepts of CDF as well as a reference manual for
the advanced user'. However, it does not serve as a cookbook for the proper methods of designing a CDF.

The very first questions usually asked by a reader are: What is CDF?, How is CDF used?, and How is CDF useful for
me? Although the reader will find the answers to these questions in this document, we provide here a brief description
of the conceptual basis of CDF in order to provide a proper perspective when reading the remainder of this document.

What is CDF?

CDF, in its most basic terms, is a conceptual data abstraction for storing, manipulating, and accessing multidimensional
data sets. We refer to CDF as a data abstraction because we never discuss the actual physical format in which data sets
are stored. Instead, we describe the form of the data sets and the means (interface) by which they may be manipulated.
This important difference from traditional physical file formats is reflected in the orientation of the document toward
defining form and function as opposed to a specification of the bits and bytes in an actual physical format. It is
important to state here that the use of a data abstraction in no way inhibits access to physical data or necessarily makes
such access inefficient. It merely provides a way of generalizing the data model and makes possible the specification of
a uniform interface for manipulation of a data set. The data abstraction allows future extensibility and provides for
conceptual simplicity while isolating machine and device dependence.

The contents of a CDF fall into two categories. The first is a series of records comprising a collection of variables
consisting of scalars, vectors, and n-dimensional arrays. The second is a set of attribute entries (metadata) describing
the CDF in global terms or specifically for a single variable. This dual function of CDF is what provides its "data set
independence." Both the data dictionary (attributes) and the data objects (variables) are combined into an integrated
data set. An important element of the CDF conceptual data abstraction is the "virtual" dimensional layer that allows
data objects that share a subset of the overall CDF dimensionality to be projected into the full dimensional space. This
capability is made available through the use of logical dimensional variances that indicate the subset of CDF
dimensions that are applicable.

How is CDF Used?

The origins of CDF date back to the development of the NASA Climate Data System at the National Space Science
Data Center (NSSDC). As such, it has had three main requirements driving its development.

1. Facilitate ingestion of data sets and data products into CDF.
2. Utilize standard common terminology (metadata) to describe the data sets.
3. Development of higher level applications (e.g., NSSDC Graphics System [NGS]).

The above requirements imply two classes of users for CDF. One user class performs primarily data acquisition and is
mainly involved in designing CDFs and the associated science metadata. The other user class builds high-level

! Programming reference manuals for C and Fortran users are provided as separate documents.

applications interacting with CDF at the programming level. CDF has two levels of access: one is through the
programming interface layer and the other is through a high-level toolkit written using the programming interface layer.

The toolkit provides utilities for creating new CDFs and for browsing existing CDFs. These are very useful for
architecturing a CDF and describing the metadata without using the programming level interfaces. The browsing tools
allow a quick look at CDF data sets and aid in CDF validation.

The CDF library comes with C, Java and Fortran Application programming Interfaces (APIs) and the APIs provide the
essential framework on which graphical and data analysis packages can be created. Perl APIs are also available as an
optional package for those who wish to develop CDF applications in Perl. The CDF library allows developers of CDF-
based systems to easily create applications that permit users to slice data across multidimensional subspaces, access
entire structures of data, perform subsampling of data, and access one data element independently regardless of its
relationship to any other data element. CDF data sets are portable across any platform supported by CDF. These
currently consist of VAX (OpenVMS and POSIX shell), Sun (SunOS & Solaris), DECstation (ULTRIX), DEC Alpha
(OSF/1 & OpenVMS), Silicon Graphics Iris and Power Series (IRIX), IBM RS6000 series (AIX), HP 9000 series (HP-
UX), NeXT (Mach), PC (DOS, Windows 3.x, Windows NT/95/98/2000, Linux, Cygwin & QNX), and Macintosh (68K
& Power PC running MacOS 8.x, 9.x, X, or Linux).

How is CDF Useful to Me?

Hopefully, the answers to the first two questions have provided a basis for answering this question. If you still have
questions or would like to learn more about CDF, please refer to the CDF Frequently Asked Questions (FAQ) page
(http://nssdc.gsfc.nasa.gov/cdf/html/FAQ.html) for more detailed information about CDF. It is
important to understand that CDF has been designed to solve a number of data management and storage problems and
has shown itself to be quite flexible in storing a wide variety of data sets.

il

Chapter 1

Primer

1.1 Introduction

The CDF Primer is designed for scientists, researchers, programmers, and managers who want to learn about CDF
without reading through this entire document or the programming reference guides. The primer will address what CDF
is and how it can be used for storing and managing different types of data. A brief description of the tools and utilities
available with CDF, in addition to program and toolkit examples, will be given. More detailed descriptions of the
concepts presented herein are provided in the accompanying chapters of this document and the programming reference
guides.

1.2 Why Use CDF?

When people first hear the term CDF they intuitively think of data formats in the traditional sense of the word (i.e.,
messy/convoluted storage of data on disk or tape). CDF is more than just a format. CDF is a "self-describing" format
for managing data. In addition to the actual data being stored, CDF also stores user-supplied descriptions of the data,
known as metadata. This self-describing property allows CDF to be a generic, data-independent format that can store
data from a wide variety of disciplines.

In addition to being a self-describing data format, CDF is also a software library. The library routines are callable from
C and Fortran and allow the user to randomly access and manage data and metadata without regard to their physical
storage. This completely relieves the user of low-level I/O operations allowing more time for data analysis. The actual
format used to store the data and metadata is completely transparent to the user.

The term "CDF" is also used to refer to the physical files that the CDF library generates. A data set stored using the
CDF library is called a "CDF".

1.3 Conceptual Organization

An important feature of CDF is that it can handle data sets that are inherently multidimensional in addition to data sets
that are scalar. To do this, CDF groups data by "variables" whose values are conceptually organized into arrays. The
dimensionality of these variable arrays depends upon the data and is specified by the user when the CDF or a variable
is created. For scalar data, as an example, the array of values would be 0-dimensional (i.e., a single value); whereas for
image data the array would be 2-dimensional. Similarly, the array for volume data would be 3-dimensional. CDF
allows users to specify arrays of up to ten dimensions. The array for a particular variable is called a "variable record."

A collection of arrays, one for each variable, is referred to as a "CDF record." A CDF can, and usually does, contain
multiple CDF records. This is useful for data with repeated observations at different times.

Two types of variables may exist in a CDF: rVariables' and zVariables.” Every rVariable in a CDF must have the same
number of dimensions and dimension sizes. In the scalar data example the CDF's rVariables would be 0-dimensional,
whereas for the image data example the CDF's rVariables would be 2-dimensional. Figures 1.1 and 1.2 illustrate 0-
dimensional and 2-dimensional rVariables, respectively. zVariables may have a different number of dimensions and/or
dimension sizes than that of the rVariables in a CDF. Figure 1.3 illustrates several zVariables. Note that a CDF may
contain both rVariables and zVariables.> The term "variable" is used when describing a property that applies to both
rVariables and zVariables.

It is important to note that there is no single "correct" way to store data in a CDF. The user has complete control over
how the data values are stored in the CDF (within the confines of the variable array structure) depending on how the
user views the data. This is the advantage of CDF. Data values are organized in whatever way makes sense to the user.

1.4 Features of the CDF Library

The CDF library is a flexible and extensible software package that gives the user many options for creating and
accessing a CDF.

1.4.1 File Format Options

The CDF library gives the user the option to choose from one of two file formats in which to store the data and
metadata. The first option is the traditional CDF multi-file format. This file format is illustrated in Figure 1.4
(assuming a CDF containing four variables). The example.cdf file contains all of the control information and metadata
for the CDF. In addition to the .cdf file," a file exists for each variable in the CDF and contains only the data associated
with that variable. This is illustrated by the files example.v0 through example.v3. The second option is the single-file
format, the default format when a CDF file is created. As illustrated in Figure 1.5, the whole CDF file consists of only
a single example.cdf file. This file contains the control information, metadata, and the data values for each of the
variables in the CDF. Both formats allow direct access. The advantage of the single-file format is that it minimizes the
number of files one has to manage and makes it easier to transport CDFs across a network. The organization of the
data within the single file may, however, become somewhat convoluted, slightly increasing the data access time. The
multi-file format, on the other hand, clearly delimits the data from the metadata and is organized in a consistent fashion
within the files. Updating, appending, and accessing data are also done with optimum efficiency.

For multi-file format CDFs, certain restrictions are applied. They are:’
- Compression: Compression is not allowed for the CDF or any of its variables.
- Sparseness: Sparse records or arrays for variables are not allowed.

- Allocation: Pre-allocation of records or blocks of records is not allowed. For each variable, the maximum written
record is the last allocated record.

' The “r” stands for “regular.” rVariables are the type of variables that CDF has always supported. Perhaps
“traditional” would have been a better term.

% The “z” doesn’t stand for anything special. We just like the letter “z.”

3 This is generally not recommended. In those situations where z variables are necessary it is best to use all zVariables
than a mixture of rVariables and zVariables.

* This file referred to as the dotCDF file.

> These features are covered in the following sections.

- Deletion: Deletion of a single variable from a CDF is not allowed. Only deleting a whole CDF is possible.

Record rVariable rVariable . . . rVariable
Number 1 2 n
1 O O O
2 O O O
3 O O O
n O O O

Figure 1.1 Conceptual View of a CDF, 0-Dimensional rVariable

Record rVariable rVariable . . . rVariable

Number 1 2 n
1 a [a
[[[
[[[
I ([I
[MM [
2 [[[
[(10 [
[(1 [
I [I
[(T [
3 [([[
[(1] [
[[0 [
I [I
[(T [
n [I [
[[[
I ([I
[[[
[(M [

Figure 1.2 Conceptual View of a CDF, 2-Dimensional rVariables

Record rVariable rVariable . . . rVariable
Number 1 2 n
1 a .d
[[-
[(M a
I -
[-
2 [.
[1M d
[(M -
I -
[-
3 [.0
[1M d
[(M -
I -
[-
n [.
[[.d
I (M -
[-
[-

Figure 1.3 Conceptual View of a CDF, zVariables

example.cdf

>=p0r—amZ

example.v0

> = > O

example.vl example.v2
D D
A A
T T
A A

example.v3

> = »> O

Figure 1.4 Multi-File Format

example.cdf

>HPO & PHPUOPADMZ

Figure 1.5 Single-File Format

1.4.2 Data Encoding Options

When creating a CDF, a user has the option of using any of the supported encodings: VAX, Sun, SGi Personal Iris and
Power Series, DECstation, DEC Alpha/OSF1, DEC Alpha/OpenVMS (D FLOAT, G FLOAT or IEEE FLOAT double-
precision flfloating-point), IBM RS6000 series, HP 9000 series, NeXT, PC, Macintosh, or network (XDR - eXternal
Data Representation). The created CDF may then be copied to any of the supported computers and read by the CDF
library. When a value is read from the CDF, the CDF library may be requested to decode the value into the encoding
of the computer being used or any of the other encodings (which may be desirable for various reasons). A CDF with
any of the supported encodings may be read from and written to on any supported computer.

143 Compression

Compression may be specified for a single-file CDF and the CDF library can be instructed to compress a CDF as it is
written to disk. This compression occurs transparently to the user. When a compressed CDF is opened, it is
automatically decompressed by the CDF library. An application does not have to even know that a CDF is compressed.
Any type of access is allowed on a compressed CDF. When a compressed CDF is closed by an application, it is
automatically recompressed as it is written back to disk.

The individual variables of a CDF can also be compressed. . The CDF library handles the compression and
decompression of the variable values transparently. The application does not have to know that the variable is
compressed as it accesses the variable's values.

Several different compression algorithms are supported by the CDF library. When compression is specified for a CDF
or one of its variables, the compression algorithm to be used must be selected. There will be trade-offs between the
different compression algorithms regarding execution performance and disk space savings.

The nature of the data in a CDF (or variable) will affect the selection of the best compression algorithm to be used.

1.4.4 Sparseness

Two types of sparseness are allowed for CDF variables: sparse records and sparse arrays. Sparse records are available
now - sparse arrays won't be available until a future CDF release. When a variable is specified as having sparse records,
only those records actually written to that variable will be stored in the CDF. This differs from variables without sparse
records in that for those variables every record preceding the maximum record written is stored in the CDF. For
example, if only the 1000th record were written to a variable without sparse records, the 999 preceding records would
also be written using a pad value. If sparse records had been specified for the variable, only the 1000th record would
be stored in the CDF (saving a considerable amount of disk space). Sparse records are ideal for variables containing
gaps of missing data.

1.4.5 Variable Data Access Options

A program can access variable data one value at a time or it can access an entire multidimensional array structure or
substructure spanning contiguous or non-contiguous record boundaries. The latter feature allows the user to perform
aggregate access or uniform subsampling of the data at greatly increased rates over traditional value by value access.

1.5 Organizing Your Data in a CDF

1.5.1 Variables

The first component of a CDF is the actual data, organized into arrays for the individual variables. CDF can
accommodate any type of data that can be organized into arrays. Two types of variables are supported: rVariables and
zVariables.

rVariables®

rVariables all have the same dimensionality (number of dimensions and dimension sizes). An example of the type of
data set that may be stored in a CDF's rVariables is shown in Table 1.1. Each record holds one value for each of the
four variables: Time, Longitude, Latitude, and Temperature. CDF can store scalar data in a "at" (0-dimensional)
representation such as this, but storage in this manner may hide fundamental relationships among the data values.
Consistent repetitions found in the data for this example suggest another way to organize the data set. Note that every
fourth record is an observation at the same point on Earth at different times. That fact is not immediately clear from
this representation of the data. Looking more closely, we note that only two differing values are recorded for Longitude
and, similarly, only two differing values are recorded for Latitude. This repetition suggests a 2-dimensional array
structure whose dimensions are defined by Longitude and Latitude. For each of the two Longitude values there are two
Latitude values. Time repeats for each Longitude/Latitude pair - the observations were taken simultaneously at the
longitude/latitude locations. Because of Time's repetition for Longitude/Latitude pairs, the number of Time values
specifies the number of records needed in the CDF. Each record conceptually contains a 2-dimensional array per
rVariable (Table 1.2). The array structure defines the dimensionality of the rVariables in the CDF. Although there are
four rVariables, the array dimensions and the sizes of those dimensions are determined only by Longitude and Latitude.
Temperature varies across the entire array while Time tells us how many records to expect. Therefore, the example,
when reduced as described, defines a CDF with 2-dimensional rVariables. The number of discrete values for each
rVariable that defines a dimension generates the size of that dimension. For example, Longitude has two unique
values so the dimension defined by Longitude has a size of two.

Record rVariables

Number Time Longitude Latitude Temperature
1 0000 -165 +40 20.0
2 0000 -165 +30 21.7
3 0000 -150 +40 19.2
4 0000 -150 +30 20.7
5 0100 -165 +40 18.2
6 0100 -165 +30 19.3
7 0100 -150 +40 22.0
8 0100 -150 +30 19.2
9 0200 -165 +40 19.9
10 0200 -165 +30 19.3
11 0200 -150 +40 19.6
12 0200 -150 +30 19.0
93 2300 -165 +40 21.0
94 2300 -165 +30 19.5
95 2300 -150 +40 18.4
96 2300 -150 +30 22.0

Table 1.1 Example Data Set - "Flat" Representation (0-Dimensional)

% Although rVariables are described here first, the trend among CDF users is toward CDFs containing only zVariables
(since zVariables can do everything rVariables can do and more). zVariables are described in the next section.

Adding another independent rVariable, for instance Pressure, poses no difficulty for the example. Temperature would
then be dependent on a specific Longitude, Latitude, and Pressure - a 3-dimensional array structure. In this 3-
dimensional example Longitude, Latitude, and Pressure define the number of dimensions for the rVariables in the CDF,
where the size of each dimension is determined by the number of discrete values contained in each of those rVariables.
Additional dependent rVariables would be stored in the same way as Temperature.

Although conceptually there is a 2-dimensional array structure for each rVariable in each record of the CDF, this would
not be an efficient way to store the data. For instance, the time for each record need only be stored once as opposed to
being stored four times as shown in each 2-dimensional array (Table 1.2). This problem is circumvented by specifying
"variances." For each rVariable there are variances associated with the array dimensions as well as the records.
"Record variance" indicates whether or not an rVariable has unique values from record to record in the CDF. Time
changes for each record so the record variance for Time is [TRUE]. One could also say that Time is record-variant.
Latitude and Longitude repeat their values from record to record so the record variance for each is [false]. Latitude and
Longitude are non-record-variant (NRV). The Temperature values change from record to record so they are record-
variant. The record variances for this example are shown in Table 1.3.

Record rVariables
Number Time Longitude Latitude Temperature
0000 — 0000 -165 - -150 +40 — +40 20.0 - 19.2
1 I I | | I | I I
0000 — 0000 -165 —-150 +30 — +30 21.7-20.7
0100 — 0000 -165 —-150 +40 — +40 18.2 -22.0
2 | I | | I | I I
0000 — 0000 -165 —-150 +30 —+30 19.3-19.2
0200 — 0000 -165 —-150 +40 — +40 19.9-19.6
3 I I | | I | I I
0000 — 0000 -165 —-150 +30 —+30 19.3-19.0
2300 - 0000 -165 —-150 +40 — +40 21.0-18.4
6 I I | | I | I I
0000 — 0000 -165 —-150 +30 —+30 19.5-22.0

Table 1.2 Example CDF - 2-Dimensional Representation (Conceptual)

Similarly, the term "dimension variance" indicates whether or not an rVariable changes with respect to the CDF
dimensions. In the example above with 2-dimensional rVariables, the Longitude rVariable defines the first dimension
of the CDF with its values repeating along the second dimension so its dimension variances would be [TRUE,false].
The Latitude rVariable defines the second dimension of the CDF with its values repeating along the first dimension so
its dimension variances would be [false, TRUE]. Because the Temperature values change for each latitude/longitude
location, its dimension variances are [TRUE,TRUE]. Time does not change from one latitude/longitude location to
another, so its values are the same along both

dimensions. The dimension variances for Time would be [false,false]. The dimension variances for the above example
are shown in Table 1.3.

rVariables
Time Longitude Latitude Temperature
Record Variance TRUE false false TRUE
First Dimension Variance false TRUE false TRUE
Second Dimension Variance false false TRUE TRUE

Table 1.3 Example CDF - Specification for 2-Dimensional Representation

When the record and dimension variances have been defined correctly, the amount of physical storage needed for the
CDF is drastically reduced. In the above example, 2-dimensional arrays are not physically stored

for each rVariable in a CDF record. Instead, the physical storage for each rVariable consists of just one

value for Time in each CDF record, a single 1-dimensional array of values for the Longitude and Latitude rVariables
(in only the first CDF record), and a full 2-dimensional array of values for Temperature in each

CDF record. The actual physical storage (physical view) is shown in Table 1.4. The conceptual view of

the CDF, however, is still that of one 2-dimensional array per rVariable in each CDF record as shown in

Table 1.2 (the physically stored values are shown in boldface type).

Record rVariables
Number Time Longitude Latitude Temperature
+40 20.0 - 19.2
1 0000 -165 —-150 | | |
+30 21.7-20.7
18.2 -22.0
2 0100 | |
19.3-19.2
19.9-19.6
3 0200 | |
19.3-19.0
21.0-184
6 2300 | |
19.5-22.0

Table 1.4 Example CDF - 2-Dimensional Representation (Physical)

zVariables

zVariables are similar to rVariables in all respects except that each zVariable can have a different dimensionality. This
allows any set of variables to be stored in the same CDF without wasting space or creating confusion in how the
variables are logically viewed.

Consider a data set that consists of some number of images, each containing 1024 by 1024 pixels. The data set also
contains a palette that is used to map pixel values to the actual color/shade to be displayed. Palettes are also referred to
as lookup tables or color lookup tables. For this example assume that each image pixel is stored in an 8-bit byte and the
palette is a 1-dimensional array of 256 colors/shades. Indexing into the palette array with a pixel value gives the
appropriate color/shade to use.

10

Attempting to store the images and the palette using only rVariables would result in one of two undesirable situations.
If the CDF's rVariables had a dimensionality of 2:[1024,1024]" (to store the images), the palette would have to be
stored in a 1024 by 1024 array that does not make sense logically and would waste disk space regardless of how the
dimension variances are set. If the CDF's rVariables had a dimensionality of 3:[1024,1024,256], the images could be
stored in an rVariable having dimension variances T/TTF® and the palette could be stored in an rVariable having
dimension variances F/FFT. This would not waste any disk space but is not the intuitive way to store the data - nothing
in the data set is 3-dimensional.

Using zVariables to store the images and palette would solve both problems. The images would be stored in a
zVariable with dimensionality 2:[1024,1024] (and variances of T/TT) and the palette would be stored in a zVariable
with a dimensionality of 1:[256] (and variances of F/T). This would waste no disk space and logically makes sense.

The use of zVariables is recommended because of this added flexibility. Note that zVariables can always be used
instead of rVariables. In the rVariable example where temperature values were being stored, zVariables could also have
been used. Each zVariable would have the same dimensionality and their dimension variances would be used in the
same way as they were used for the rVariables.

An even better example of how zVariables are preferred over rVariables in certain situations involves the storage of 1-
dimensional arrays (vectors). Assume that five 1-dimensional arrays are being stored with dimension sizes of 2, 3, 5, 7,
and 25. Using rVariables with a dimensionality of 1:[25] would waste considerable space while using rVariables with
a dimensionality of 5:[2,3,5,7,25] and dimension variances of T/TFFFF, T/FTFFF, T/FFTFF, T/FFFTF, and T/FFFFT
would be quite confusing to deal with zVariables with dimensionalities of 1:[2], 1:[3], 1:[5], 1:[7], and 1:[25] would be
straight forward and efficient.

1.6 Attributes

The second component of a CDF is the metadata. Metadata values consist of user-supplied descriptive information
about the CDF and the variables in the CDF by way of attributes and attribute entries. Attributes can be divided into
two categories: attributes of global scope (gAttributes) and attributes of variable scope (vAttributes). gAttributes
describe the CDF as a whole while vAttributes describe some property of each variable (rVariables and zVariables) in
the CDF. Any number of attributes may be stored in a single CDF. The term "attribute" is used when describing a
property that applies to both gAttributes and vAttributes.

gAttributes can include any information regarding the CDF and all of its variables collectively. Such descriptions could
include a title for the CDF, data set documentation, or a CDF modification history. A gAttribute may contain multiple
entries (called gEntries). An example of this would be a modification history kept in the optional gAttribute, MODS.
This attribute could be specified at CDF creation time and a gEntry made regarding creation date. Any subsequent
changes made to the CDF, including additional variables, changes in min/max values, or modifications to variable
values could be documented by writing additional gEntries to MODS.

vAttributes further describe the individual variables and their values. Examples of vAttributes would include such
things as a field name for the variable, the valid minimum and maximum, the units in which the variable data values are
stored, the format in which the data values are to be displayed, a fill value for errant or missing data, and a description
of the expected order of data values: increasing or decreasing (monotonicity). The entries of a vAttribute correspond to
the variables in the CDF. Each rEntry corresponds to an rVariable and each zEntry corresponds to a zVariable. Sample
vAttribute rEntries for the Temperature rVariable from the example above are shown in Table 1.5.

7 The notation for dimensionality used here is <num-dims>:[<dim-sizes>] where <num-dims> is the number of
dimensions and <dim-sizes> is zero or more dimension sizes separated by commas.

¥ The notation for variances used here is <rec-vary>/<dim-varys> where <rec-vary> is the record variance, T (TRUE)
or F (false), and <dim-varys> is zero or more dimension variances.

11

The term "entry" is used when describing a property that applies to gEntries, rEntries, and zEntries.

vAttribute rEntry value
FIELDNAM “Recorded temperature”
VALIDMIN -40.0

VALIDMAX 50.0

SCALEMIN 17.0

SCALEMAX 24.0

UNITS “deg C”

FORMATS “F4.1”

MONOTON “Increasing”

FILLVAL -999.9

Table 1.5 vAttribute eEntries for the Temperature rVariable

1.7 CDF Toolkit

A set of utility programs are provided with the CDF distribution which allow a user to perform a variety of operations
on CDFs without having to write an application program. Each toolkit program is described in detail in Chapter 3.

The available toolkit programs are as follows:

CDFedit’ Allows the display, creation, and modification of attribute and variable
data in a CDF.
CDFexport' Allows the contents of a CDF to be exported to the terminal screen, a text

file, or another CDF. The CDF may be filtered in order to export a subset
of its contents.

CDFconvert Allows the format, encoding, majority, compression, and sparseness of a
CDF to be changed. It also can reorganize a fragmented CDF file to
make the file access more efficiently. In all cases a new CDF is created.
The original CDF is not modified.

SkeletonCDF"! Reads a specially formatted text file (called a skeleton table) and creates
a skeleton CDF. A skeleton CDF is complete except for record-variant
data.

SkeletonTable Reads a CDF and produces a specially formatted text file called a

skeleton table. The skeleton table may be modified and then input to
SkeletonCDF to create a skeleton CDF.

CDFinquire Displays the version of your CDF distribution, many of the configurable
parameters, and the default CDF toolkit qualifiers.

CDFstats Produces a report containing various statistics about the variables in a

? CDFedit has replaced CDFbrowse. The alias/symbol CDFbrowse still exists in the "definitions" file on UNIX/VMS
systems but now executes CDFedit in a browse-only mode.

' CDFexport has replaced CDFlist and CDFwalk.

' SkeletonCDF was previously named CDFskeleton

12

CDF.
CDFcompare Reports the differences between two CDFs.

CDFdir Produces a directory listing of a CDF's files. For a multi-file CDF the
variable files are listed in ascending numerical order.

1.8 Library Interface Routines

The core CDF library supports two programming interfaces, the Standard Interface and the Internal Interface. The
Standard Interface is similar to the interface provided with Version 1 of CDF with several additions for new features.
The Internal Interface is provided to allow additional functionality to be added to the CDF library without the need to
modify the Standard Interface. Those features, not available from the Standard Interface, are made available using the
Internal Interface (e.g., access to zVariables). The Internal Interface makes CDF extendable. The Standard and
Internal interfaces are callable from both C, Fortran, and Perl.

The C and the Fortran interfaces (APIs) are desibed in the CDF C Reference manual and the CDF Fortran reference
manual, respectively. The Perl interfaces are described in the Perl to CDF Interfaces document that is included in the
CDF Perl distribution package. The C, Fortran, and Java APIs are part of the standard CDF distribution package, but
the Perl APIs are available as an optional package. The Java APIs for the Unix'? and Linux platforms are also available
as an optional package. As of this writing, the Java APIs are not available for the VMS operating system.

1.8.1 Standard Interface

The Standard Interface consists of three categories of software functions that are utilized to manipulate the components
that make up a CDF: general CDF functions, rVariable functions, and attribute functions.

The general CDF functions are as follows:

Callable from C Callable from Fortran Purpose

CDFCreate() CDF _create() Creates a new CDF.

CDFopen() CDF _open() Opens an existing CDF.

CDFdoc() CDF _doc() Inquires version/release and copyright notice.
CDFinquire() CDF _inquire() Inquires rVariable dimensionality, etc.
CDFclose() CDF close() Closes a CDF.

CDFdelete() CDF _delete() Deletes a CDF.

CDFerror() CDF _error() Inquires error (status) code meaning.

The rVariable functions are as follows:

12 PC running CYGWIN or Mac OS X can be considered a UNIX box while running the CDF tool programs.

13

Callable from C Callable from Fortran Purpose

CDFvarCreate() CDF _var_create() Creates a rVariable.

CDFvarNum() CDF _var num() Determines a rVariable number.
CDFvarRename() CDF var rename() Renames a rVariable.
CDFvarlnquire() CDF var inquire() Inquires about a rVariable.
CDFvarPut() CDF _var put() Writes a rVariable value.
CDFvarGet() CDF _var_get() Reads a rVariable value.
CDFvarHyperPut() CDF _var_hyper put() Writes one or more rVariable values.
CDFvarHyperGet() CDF _var_hyper get() Reads one or more rVariable values.
CDFvarClose() CDF _var_close() Closes a rVariable.

CDFgetrVarsRecordData() CDF_getrVarsRecordData() Reads one full record for a group of rVariables.
CDFputrVarsRecordData() CDF_putrVarsRecordData() Writes one full record for a group of rVariables

The attribute functions are as follows:

Callable from C Callable from Fortran Purpose

CDFattrCreate() CDF attr create() Creates an attribute.
CDFattrNum() CDF attr num() Determines an attribute number.
CDFattrRename() CDF attr_rename() Renames an attribute.
CDFattrlnquire() CDF attr_inquire() Inquires about an attribute.
CDFattrEntrylnquire() CDF attr_entry inquire() Inquires about an attribute rEntry.
CDFattrPut() CDF attr_put() Writes an attribute rEntry.
CDFattrGet() CDF attr_get() Reads an attribute rEntry.

The Standard Interface may be used to access only rVariables and the vAttribute rEntries for rVariables.

1.8.2 Internal Interface

The Internal Interface consists of one routine: CDFlib when called from C and CDF lib when called from Fortran. The
Internal Interface is used to perform all CDF operations. (In reality the Standard Interface is implemented via the
Internal Interface.) The Internal Interface is used to add new CDF features (e.g., zVariables) without having to change
the Standard Interface.

The Internal Interface must be used to access zVariables and the vAttribute zEntries for zVariables, and it can be used

to access rVariables and their attributes. zVariable is a superset of rVariable and the use of zVariable over rVariable is
highly recommended.

1.9 CDF Java Interface

The CDF Java Application Programming Interfaces (APIs) are based on the core CDF library's Internal Interface., and
they support a near complete set of the Internal Interface functions. The Java APIs only support zVariables and treats
rVariables as zVariables. This is not a problem since zVariable is a superset of rVariable. In another words, with
zVariables, you can do everything with rVariables and more, but not vice versa.

For a complete description of the Java APIs, please refer to http://nssdc.gsfc.nasa.gov/cdf/cdfjava doc/index.html.

1.10 Examples

14

In this section, sample programs of how to use the CDF library and toolkit will be presented. The same CDF will be
created two different ways: by using just the CDF library from a C program (using stdard interface) and by using the
CDF library with the SkeletonTable toolkit program and a Fortran program (using standard interface).

Sample Java programs are also included in Appendix D that describe how to create and read a CDF file using Java

APIs. Appendix D also conatins sample C programs that describe how to create variables and add data to them using
both the standard interface and the internal interface.

1.10.1 Creating a CDF, the Hard Way (But Not That Hard)

The first example program, written in C, creates a CDF with 2-dimensional rVariables using only CDF library function
calls. The CDF created will contain the data and metadata values used in the example presented earlier in this chapter
(minus some of the vAttributes/rEntries). An input file, example.dat, whose format is similar to that of Table 1.1 will
be read and its data values written into the CDF.

/**

*
* NSSDC/CDF Create an example CDF (without using a skeleton table).
*

* Version 1.0, 5-Jan-94, CDF, Inc.

*

* Modification history:

*

* V1.0 5-Jan-94, Joe Programmer Original version.
:***/

/**

Note (s) :

*
*
*
* This program would have to be modified to run on a DEC Alpha because the
* C language "long' data type is 8 bytes rather than 4 (the CDF data type of
* CDF_INT4 is always 4 bytes).

*

*

***/

/**

* Necessary include files.
**/

#include <stdio.h>
#include <stdlib.h>

#include "cdf.h"

/**

* Status handler.

**/

void StatusHandler (status)
CDFstatus status;

{
char message [CDF_ERRTEXT LEN+1];

15

if (status < CDEF_WARN) {

printf ("An error has occurred, halting...\n");
CDFerror (status, message);
printf ("%s\n", message);

exit (status);
}
else
if (status < CDF OK) {
printf ("Warning, function may not have completed as expected...\n");
CDFerror (status, message);
printf ("%s\n", message);
1
else
if (status > CDF OK) {
printf ("Function completed successfully, but be advised that...\n");
CDFerror (status, message);
printf ("%s\n", message);
1

return;

}

/**

* MAIN.
**/

main () {
CDFid id; /* CDF identifier. */
CDFstatus status; /* CDF completion status. */
FILE *fp; /* File pointer - used to read input data file. */
long numDims = 2; /* Number of dimensions, rVariables. */
static long dimSizes[2] = {2,2}; /* Dimension sizes, rVariables. */
long dimVarys|[2]; /* Dimension variances. */
long indices[2]; /* Dimension indices. */
long recNum; /* Record number. */
long attrNum; /* Attribute number. */
long TimeVarNum; /* 'Time' rVariable number. */
long LonVarNum; /* 'Longitude' rVariable number. */
long LatVarNum; /* 'Latitude' rVariable number. */
long TmpVarNum; /* 'Temperature' rVariable number. */
long Time; /* 'Time' rVariable value. */
float Lat; /* 'Latitude' rVariable value. */
float Lon; /* 'Longitude' rVariable value. */
float Tmp; /* 'Temperature' rVariable value. */
long TimeValidMin = 0; /* 'Time' valid minimum (0000). */
long TimeValidMax = 2359; /* 'Time' valid maximum (2359). */
float LonValidMin = -180.0; /* 'Longitude' valid minimum. */
float LonValidMax = 180.0; /* 'Longitude' valid maximum. */
float LatValidMin = -90.0; /* 'Latitude' valid minimum. */

16

float LatValidMax 90.0; /* 'Latitude' valid maximum. */

float TmpValidMin = -40.0; /* 'Temperature' valid minimum. */
float TmpValidMax 50.0; /* 'Temperature' valid maximum. */

/**

* Create the CDF.

**/

status = CDFcreate ("examplel", numDims, dimSizes, NETWORK ENCODING,
ROW _MAJOR, &id);
if (status != CDF_OK) StatusHandler (status);

/**

* Create rVariables.
**/

dimVarys[0] = NOVARY;

dimVarys([1] NOVARY;

status = CDFvarCreate (id, "Time", CDF _INT4, 1L, VARY, dimVarys,
&TimeVarNum) ;

if (status != CDF_OK) StatusHandler (status);

dimVarys[0] VARY;

dimVarys[1l] = NOVARY;

status = CDFvarCreate (id, "Longitude", CDF REAL4, 1L, NOVARY, dimVarys,
&LonVarNum) ;

CDF _OK) StatusHandler (status);

if (status !

dimVarys[0] = NOVARY;

dimVarys[1l] = VARY;

status = CDFvarCreate (id, "Latitude", CDF _REAL4, 1L, NOVARY, dimVarys,
&LatVarNum) ;

CDF _OK) StatusHandler (status);

if (status !

dimVarys[0] = VARY;

dimVarys[l] = VARY;

status = CDFvarCreate (id, "Temperature", CDF REAL4, 1L, VARY, dimVarys,
&TmpVarNum) ;

if (status != CDF_OK) StatusHandler (status);

/**

* Create attributes.
**/

status = CDFattrCreate (id, "TITLE", GLOBAL SCOPE, &attrNum);
if (status != CDF_OK) StatusHandler (status);

status = CDFattrCreate (id, "VALIDMIN", VARIABLE SCOPE, &attrNum);
if (status != CDF_OK) StatusHandler (status);

status = CDFattrCreate (id, "VALIDMAX", VARIABLE SCOPE, &attrNum);
if (status != CDF _OK) StatusHandler (status);

/**

* Write TITLE gAttribute gEntry.
**/

17

status = CDFattrPut (id, CDFattrNum(id,"TITLE"), OL, CDF CHAR, 50L,
"An example CDF (1). ")
if (status != CDF _OK) StatusHandler (status);

/**

* Write vAttribute rEntries for 'Time' rVariable.
**/

status = CDFattrPut (id, CDFattrNum(id, "VALIDMIN"),
CDFvarNum(id, "Time"), CDF INT4, 1L, &TimeValidMin);
if (status != CDF_OK) StatusHandler (status);

status = CDFattrPut (id, CDFattrNum(id, "VALIDMAX"),
CDFvarNum(id, "Time"), CDF INT4, 1L, &TimeValidMax);
if (status != CDF_OK) StatusHandler (status);

/**

* Write vAttribute rEntries for 'Longitude' rVariable.
**/

status = CDFattrPut (id, CDFattrNum(id, "VALIDMIN"),
CDFvarNum(id, "Longitude"), CDF REAL4, 1L, &LonValidMin);
if (status != CDF _OK) StatusHandler (status);

status = CDFattrPut (id, CDFattrNum(id, "VALIDMAX"),
CDFvarNum(id, "Longitude"), CDF REAL4, 1L, &LonValidMax);
if (status != CDF _OK) StatusHandler (status);

/**

* Write vAttribute rEntries for 'Latitude' rVariable.
**/

status = CDFattrPut (id, CDFattrNum(id, "VALIDMIN"),
CDFvarNum(id, "Latitude"), CDF REAL4, 1L, &LatValidMin);
if (status != CDF_OK) StatusHandler (status);

status = CDFattrPut (id, CDFattrNum(id, "VALIDMAX"),
CDFvarNum(id, "Latitude"), CDF REAL4, 1L, &LatValidMax);
if (status != CDF_OK) StatusHandler (status);

/**

* Write vAttribute rEntries for 'Temperature' rVariable.
**/

status = CDFattrPut (id, CDFattrNum(id, "VALIDMIN"),
CDFvarNum(id, "Temperature"), CDF REAL4, 1L,
&TmpValidMin) ;

if (status != CDF_OK) StatusHandler (status);

status = CDFattrPut (id, CDFattrNum(id, "VALIDMAX"),
CDFvarNum(id, "Temperature"), CDF REAL4, 1L,
&TmpValidMax) ;

if (status != CDF_OK) StatusHandler (status);

/**

* Read input values for rVariables and write them to the CDF. Not

18

every value must be written to the CDF - many of the values are redundant.
The 'Time' wvalue only has to be written once per CDF record (every 4 input
records). The 'Longitude' and 'Latitude' values are only written to the

first CDF record (and only at the appropriate indices). Each 'Temperature'

value read is written to the CDF.
***/

b S S

fp = fopen ("example.dat"™, "r");

if (fp == NULL) {
printf ("Error opening input file.\n");
exit (-1);

for (recNum = 0; recNum < 24; recNum++)
for (indices[0] = 0; indices[0] < 2; indices[0]++) {
for (indices[1l] = 0; indices[l] < 2; indices[1l]++) {
fscanf (fp, "%d %$f %$f %f", &Time, &Lon, &Lat, &Tmp);

if (indices[0] == 0 && indices[1l] == 0) {
status = CDFvarPut (id, TimeVarNum, recNum, indices, &Time);
if (status != CDF_OK) StatusHandler (status);

}

if (recNum == 0 && indices[1l] == 0) {
status = CDFvarPut (id, LonVarNum, recNum, indices, &Lon);
if (status != CDF_OK) StatusHandler (status);

}

if (recNum == 0 && indices[0] == 0) {
status = CDFvarPut (id, LatVarNum, recNum, indices, &Lat);
if (status != CDF_OK) StatusHandler (status);

}

status = CDFvarPut (id, TmpVarNum, recNum, indices, &Tmp);

if (status != CDF_OK) StatusHandler (status);

fclose (fp);

/**

* Close CDF.

**/

status = CDFclose (id);
if (status != CDF_OK) StatusHandler (status);

return;

19

1.10.2 Creating a CDF, an Easier Way

The CDF toolkit program SkeletonCDF is provided through the CDF distribution to make the task of creating a CDF
easier for a programmer. SkeletonCDF reads a specially formatted text file called a skeleton table and generates a
skeleton CDF. Everything about a CDF can be specified in a skeleton table except data values for variables that vary
from record to record (record-variant). The toolkit program SkeletonTable is also provided. It reads an existing CDF
and produces a skeleton table. The skeleton table for the CDF created using only the CDF library in Section 1.10.1
would be as follows.

! Skeleton table for the "example" CDF.
! Generated: Wed 5 Jan 1994 10:53:58

#header

CDF NAME: examplel
DATA ENCODING: NETWORK
MAJORITY: ROW
FORMAT: SINGLE

! Variables G.Attributes V.Attributes Records Dims Sizes

4/0 1 2 1/z 2 2 2

#GLOBALattributes
! Attribute Entry Data
! Name Number Type Value
| ——_ —_———— e

"TITLE" 1: CDF CHAR { "An example CDF (1). "o

- " " }

#VARIABLEattributes

"VALIDMIN"

"VALIDMAX"
#variables
! Variable Data Number Record Dimension
! Name Type Elements Variance Variances
| e —_ —_———— e e

"Time" CDF_INT4 1 T FF

! Attribute Data

! Name Type Value

—_——— e _—

"VALIDMIN" CDF_INT4 { 0}
"VALIDMAX" CDF_INT4 { 2359 }

20

! Variable

Data

Number Record Dimension
! Name Type Elements Variance Variances
| e = —_———— e e
"Longitude" CDF_REAL4 1 F T F
! Attribute Data
! Name Type Value
| e —_ —_— e —_—
"VALIDMIN" CDF_REAL4 { -180.0 }
"VALIDMAX" CDF REAL4 { 180.0 }
! NRV values follow...
[1, 1 1 = -165.0
[2, 1] =-150.0
! Variable Data Number Record Dimension
! Name Type Elements Variance Variances
| e —— = —_———— e e
"Latitude" CDF_REAL4 1 F F T
! Attribute Data
! Name Type Value
| e —_ —_——— e — =
"VALIDMIN" CDF_REAL4 { -90.0 }
"VALIDMAX" CDF_REAL4 { 90.0 }
! NRV values follow...
[1, 1 1 = 40.0
[1, 2 1 = 30.0
! Variable Data Number Record Dimension
! Name Type Elements Variance Variances
—_———— e e e
"Temperature" CDF_REAL4 1 T T T
! Attribute Data
! Name Type Value
| e —_ —_——— e — =
"VALIDMIN" CDF_REAL4 { -40.0 }
"VALIDMAX" CDF_REAL4 { 50.0 }
#end

Assuming that SkeletonCDF was used to create a CDF containing the metadata and data in the above skeleton table, the
following Fortran program would be used to complete the creation of the CDF.

21

PROGRAM exampleSKT

C __
C
C NSSDC/CDF Create an example CDF (using skeleton table).
C
C Version 1.0, 5-Jan-94, CDF, Inc.
C
C Modification history:
C
C V1.0 5-Jan-94, Joe Programmer Original version.
C
C __
INCLUDE '../../include/cdf.inc'
INTEGER*4 id ! CDF identifier.
INTEGER*4 status ! CDF completion status.
INTEGER*4 1lun ! Logical unit number for input data file.
INTEGER*4 indices (2) ! Dimension indices.
INTEGER*4 rec num ! Record number.
INTEGER*4 time var num ! 'Time' rVariable number.
INTEGER*4 tmp var num ! '"Temperature' rVariable number.
INTEGER*4 time ! 'Time' rVariable value.
REAL*4 lat ! '"Latitude' rVariable value.
REAL*4 lon ! 'Longitude' rVariable value.
REAL*4 tmp ! '"Temperature' rVariable value.
DATA lun/1/
C __
C Open the CDF.
C __
CALL CDF open ('example2', id, status)
IF (status .NE. CDF OK) CALL StatusHandler (status)
C __
C Determine rVariable numbers.
C __
time var num = CDF var num (id, 'Time')
IF (time_var num .LT. CDF _OK) CALL StatusHandler (status)
tmp var num = CDF var num (id, 'Temperature')
IF (tmp var num .LT. CDF OK) CALL StatusHandler (status)
C __

C Read input values for rVariables and write them to the CDF. Not
C every value must be written to the CDF - many of the values are redundant.
C The 'Time' value only has to be written once per CDF record (every 4 input

22

C records). The 'Longitude' and 'Latitude' values are not written at all
C because they had been specified in the skeleton table. Each 'Temperature'
C value read is written to the CDF.

C __
OPEN (lun, FILE='example.dat', ERR=99)
DO rec num = 1, 24
DO x1 =1, 2
DO x2 =1, 2
indices (1) = x1
indices (2) = x2
READ (lun, *, ERR=99) time, lon, lat, tmp
IF (indices(l) .EQ. 1 .AND. indices(2) .EQ. 1) THEN
CALL CDF var put (id, time var num, rec num, indices,
time, status)
IF (status .NE. CDF OK) CALL StatusHandler (status)
END IF
CALL CDF var put (id, tmp var num, rec num, indices,
tmp, status)
IF (status .NE. CDF OK) CALL StatusHandler (status)
END DO
END DO
END DO
CLOSE (lun, ERR=99)
C __
C Close CDF
C __
CALL CDF close (id, status)
IF (status .NE. CDF OK) CALL StatusHandler (status)
STOP
C __
C Input file error handler.
C __
99 WRITE (6,101)
101 FORMAT (' ', 'Error reading input file')
STOP
END
C __
C Status handler.
C __

SUBROUTINE StatusHandler (status)
INTEGER*4 status

23

INCLUDE '../../include/cdf.inc'
CHARACTER message*(CDFiERRTEXTiLEN)

IF (status .LT. CDF_WARN) THEN
WRITE (6,10)
10 FORMAT (' ', 'Error (halting)...")
CALL CDF error (status, message)
WRITE (6,11) message
11 FORMAT (' ',A)
STOP
ELSE
IF (status .LT. CDF OK) THEN
WRITE (6,12)
12 FORMAT (' ', '"Warning...')
CALL CDF _error (status, message)
WRITE (6,13) message
13 FORMAT (' ',A)
ELSE
IF (status .GT. CDF_OK) THEN
WRITE (6,14)
14 FORMAT (' ', 'Be advised that...')
CALL CDF error (status, message)
WRITE (6,15) message
15 FORMAT (' ',A)
END IF
END IF
END IF

RETURN
END

The CDF was opened (since it already existed) and the values for only the Time and Temperature rVariables were
written to the CDF. All of the other functions performed by the program in Section 1.10.1 were done by the
SkeletonCDF program when it read the skeleton table.

24

Chapter 2

Concepts

2.1 CDF Library

The CDF library is the only way to access a CDF. Various properties of the CDF library are described in the following
sections.

2.1.1 Interfaces

Two interfaces to the CDF core library exist for C and Fortran programs. They are described in the following sections.
For CDF Java Interface, see http://nssdc.gsfc.nasa.gov/cdf/cdfjava doc/index.html for a complete description.

Standard Interface

The Standard Interface provides a standard set of routines with which to access a CDF. Not all CDF features are
available with the Standard Interface. The Internal Interface must be used to perform operations not available with the
Standard Interface routines (e.g., access to zVariables). The Standard Interface is callable from both C and Fortran
applications. Table 2.1 lists the routines available when using the Standard Interface. Each routine is described in
detail in the corresponding programmer's guide.

Internal Interface
The Internal Interface may be used to perform all supported CDF operations. The Internal Interface must be used to

perform those operations not available with the Standard Interface. Table 2.2 lists the routines available when using the
Internal Interface. Each is described in detail in the corresponding programmer's guide.

25

Callable from C Callable from Fortran

Purpose

CDFCreate() CDF _create()
CDFopen() CDF _open()
CDFdoc() CDF_doc()
CDFinquire() CDF inquire()
CDFclose() CDF close()
CDFdelete() CDF _delete()
CDFerror() CDF _error()
CDFvarCreate() CDF _var_create()
CDFvarNum() CDF_var num()
CDFvarRename() CDF var rename()
CDFvarlnquire() CDF var_inquire()
CDFvarPut() CDF _var_put()
CDFvarGet() CDF _var_get()
CDFvarHyperPut() CDF _var_hyper_put()
CDFvarHyperGet() CDF _var_hyper_get()
CDFvarClose() CDF _var_close()

CDFgetrVarsRecordData()
CDFgetzVarsRecordData()
CDFputrVarsRecordData()
CDFputzVarsRecordData()

CDF _getrVarsRecordData()
CDF _getzVarsRecordData()
CDF _putrVarsRecordData()
CDF _putzVarsRecordData()

Creates a new CDF.

Opens an existing CDF.

Inquires version/release and copyright notice.
Inquires rVariable dimensionality, etc.
Closes a CDF.

Deletes a CDF.

Inquires error (status) code meaning.

Creates a rVariable.

Determines a rVariable number.
Renames a rVariable.

Inquires about a rVariable.

Writes a rVariable value.

Reads a rVariable value.

Writes one or more rVariable values.
Reads one or more rVariable values.
Closes a rVariable.

Reads a full record data for a group of rVariables.

Reads a full record data for a group of zVariables.
Writes a full record data for a group of rVariables.
Writes a full record data for a group of zVariables.

CDFattrCreate() CDF attr create() Creates an attribute.
CDFattrNum() CDF attr num() Determines an attribute number.
CDFattrRename() CDF attr_rename() Renames an attribute.
CDFattrlnquire() CDF attr_inquire() Inquires about an attribute.
CDFattrEntryInquire() CDF attr entry inquire() Inquires about an attribute rEntry.
CDFattrPut() CDF _attr put() Writes an attribute rEntry.
CDFattrGet() CDF attr get() Reads an attribute rEntry.
Table 2.1 Standard Interface Routines
Callable from C Callable from Fortran Purpose
CDFlib() CDF _lib() Performs all available operations that can be found in

the CDF C and Fortran reference manuals.

Table 2.2 Internal Interface Routines

CDF's IDL Interface

The CDF distribution contains an interface that allows full access to the CDF library (and hence CDFs) from within
IDL. CDF's IDL interface consists of a set of functions that mirror the functions in the Standard and Internal interfaces

for C and Fortran applications. CDF's IDL interface is described in Appendix B.

IDL also provides its own interface to the CDF library (as well as other data formats) that differs from CDF's IDL
interface. The differences are mainly syntactic with the functionality of the two interfaces being essentially the same.
IDL's documentation describes their built-in CDF interface. Another difference between the two interfaces is that
CDF's IDL interface is only available on those computers that support dynamic linking. Appendix B lists the

computers on which this is the case.

26

2.1.2 CDF Modes

Once a CDF has been opened (or created and not yet closed), the CDF library may be configured to act on that CDF in
one or more modes. These modes are specified independently for each open CDF.

Read-Only Mode

A CDF may ©be placed in read-only mode via the Internal Interface using the
<SELECT ,CDF_READONLY MODE > operation'. Only read access will be allowed on the CDF - all attempts to
modify the CDF will fail. A CDF may be toggled in and out of read-only mode any number of times (Note that
attempts to modify a CDF may also fail if insufficient access privileges exist for the CDF - the file system enforces this
access.)

zMode

A CDF may be placed into zMode? via the Internal Interface using the <SELECT ,CDF_zMODE > operation. When
in zMode a CDF's rVariables essentially disappear and are replaced by corresponding zVariables.” Likewise, the
rEntries for a vAttribute become zEntries (because they are now associated with zVariables). While in zMode most
operations involving rVariables/rEntries will fail. (Some inquiry operations will be allowed. For example, inquiring the
number of rVariables is allowed [but will always be zero].) When zMode is used, the number of variables remains the
same - rVariables simply change into zVariables. Note that the existing contents of the CDF are not changed - the CDF
simply appears different.

Each new zVariable has the same exact properties as the corresponding (hidden) rVariable except for dimensionality
and variances. The data specification (data type and number of elements), pad value, etc. stay the same. The
dimensionality/variances of each zVariable are dependent on which zMode is currently being used: zMode/1 or
zMode/2. In zMode/1 the dimensionality/variances stay exactly the same. In zMode/2, however, those dimensions
with a false variance (NOVARY) are eliminated. Consider a CDF with an rVariable dimensionality of 2:[180,360]*
containing the following rVariables.

rVariable Name Variances
EPOCH T/FF’
LATITUDE T/TF
LONGITUDE T/FT
HUMIDITY T/TT

If this CDF were to be placed into zMode/1, the following zVariables would replace the existing rVariables.

rVariable Name Dimensionality Variances
EPOCH 2:[180,360] T/FF
LATITUDE 2:[180,360] T/TF
LONGITUDE 2:[180,360] T/FT
HUMIDITY 2:[180,360] T/TT

' This notation is used to specify a function to be performed on an item. The syntax is <function_,item >.

% There are actually two types of zMode — read on.

? In a future release of CDF, support for rVariables will be eliminated. zMode is provided to ease the transition from
rVariables to the more exible zVariables. rVariables are essentially a subset of zVariables.

* This notation is used throughout this document. In this case there are two dimensions whose sizes are 180 and 360.
Adimensionality of zero is represented as 0:[].

> This notation is also used throughout this document. The record variance is before the slash and the dimension
variances.

27

Note that the dimensionality of of each zVariable is the same as it was for the rVariables in the CDF. However, if
zMode/2 were used, the following zVariables would replace the existing rValues.

rVariable Name Dimensionality Variances
EPOCH 0:[] T/
LATITUDE 1:[180] T/T
LONGITUDE 1:[360] T/T
HUMIDITY 2:[180,360] T/TT

In this case the false dimensional variances were removed (which decreased the dimensionality in several of the
variables).

A CDF can be placed into or taken out of zMode any number of times while it is open. Each time the zMode is
changed for a CDF, it would be best to think of the CDF as being closed and reopened in that zMode. The numbering
of variable/entries may or may not be as you would expect (and the scheme used could change in a future release of
CDF). Most applications will simply select a zMode immediately after opening a CDF. (zMode being off is the default
if a zZMode is not selected.)

NOTE: Using zMode does not change the contents of a CDF. A CDF containing rVariables will appear to contain
only zVariables when in zMode. If the same CDF is then opened without using zMode, the rVariables will still exist.

-0.0 to 0.0 Mode

The floating-point value -0.0 is legal on those computers which use the IEEE 754 floating-point representation (e.g.,
UNIX-based computers, the Macintosh, and the PC) but is illegal on VAXes and DEC Alphas running OpenVMS.
Attempting to use -0.0 results in a reserved operand fault on a VAX and a high performance arithmetic fault on a DEC
Alpha running OpenVMS. Because of this the CDF library can be told to convert -0.0 to 0.0 when read from or written
to a CDF. When reading from a CDF the values physically stored in the CDF are not modified - only the values
returned to an application are converted. When writing to a CDF the values physically stored are modified - -0.0 is
converted to 0.0 before being written to the CDF. This mode is available on all supported computers but is only really
necessary on VAXes and DEC Alphas running OpenVMS. The CDF library is told to convert -0.0 to 0.0 for a CDF via
the Internal Interface using the <SELECT ,CDF_NEGtoPOSfp0 MODE > operation. When this mode is disabled, a
warning (NEGATIVE FP ZERO) is returned when -0.0 is read from a CDF (and the decoding is that of a VAX or
DEC Alpha running OpenVMS) or written to a CDF (and the encoding is that of a VAX or DEC Alpha running
OpenVMS).

2.1.3 Limits

Open CDFs

The only limit on the number of CDFs that may be open simultaneously is the operating system's limit

on the number of open files that an application may have. Each open CDF will always have at least one associated

open file (the dotCDF file). The CDF library will open and close the variable files of a multi-file CDF as needed (see
Sections 2.3.3 and 2.3.4).

2.14 Scratch Files

The CDF library will make use of scratch files when necessary. These scratch files are associated with an open CDF.
Scratch files are used instead of core memory in an effort to prevent memory limitation problems (especially on the
Macintosh and PC). The following types of scratch files are used.

28

Staging The staging scratch file is used when a CDF contains compressed variables. As each
variable is accessed, a portion of the staging scratch file is allocated to hold a specific
number of uncompressed records for that variable. The number of records allocated
depends on the variable's blocking factor (see Section 2.3.12). The staging scratch file is
also used (when necessary) with variables having sparse records. If the records being
written are not first allocated, the staging scratch file will be used to minimize the
indexing overhead (see Section 2.2.7) by trying to keep consecutive records contiguous in
the dotCDF file.

Compression The compression scratch file is used when writing to a compressed variable in a CDF.
Because the CDF library does not know how well a block of variable records will
compress, the compression algorithm first writes the compressed block to the compression
scratch file. The compressed block is then copied to the dotCDF file. Note that when
reading a compressed variable, a compressed block of records is decompressed directly to
the staging scratch file because the CDF library knows the size of the uncompressed block
of records.

Uncompressed dotCDF When overall compression is specified for a CDF, the CDF library maintains an
uncompressed version of the dotCDF file as a scratch file.

By default, these scratch files are created in the current directory. On VMS systems the logical name CDF$TMP can be
defined with an alternate directory in which to create scratch files. On UNIX and MS-DOS systems the environment
variable CDF TMP would be used. An application can also select a directory to be used for scratch files with the
<SELECT ,SCRATCHDIR > operation of the Internal Interface (which will override a scratch directory specified
with CDF$TMP/CDF TMP).

The caching scheme used by the CDF library (see Section 2.1.5) affects how these scratch files can impact
performance. On machines with large amounts of core memory available, the cache size of a scratch files can be set
high enough to result in no blocks actually being written (paged out) to that file. In that case, the scratch file is more
like an allocated block of core memory.

2.1.5 Caching Scheme

The CDF library reads and writes to open files in 512-byte blocks. A cache of 512-byte memory buffers is maintained
by the CDF library for each open file. The CDF library attempts to keep in the cache the set of file blocks currently
being accessed. This results in fewer actual I/O operations to the file if repeated accesses to these blocks would occur.
When the cache is completely full and a new block of the file is accessed, one of the cache buffers is written back to the
file (if it was modified) and the new block is read into that cache buffer (unless the file is being extended in which case
the cache buffer is simply cleared). This process is known as paging. By optimizing the number of cache buffers for a
file, improved performance can be achieved. There is a tradeoff between having too few cache buffers and having too
many. Having too few cache buffers will cause excessive paging while having too many cache buffers may slow
performance because of the overhead involved in maintaining the cache (although this is very rare). Having too many
cache buffers may also cause problems on machines having limited memory such as the PC and Macintosh.

The CDF library attempts to choose optimal default cache sizes based on a CDF's format and the operating system
being used. This is difficult because the CDF library does not know how an application will access a CDF. For that
reason an application may specify, via the Internal Interface, the number of cache buffers to be used for a file. The
number of cache buffers may be changed as many times as necessary while a file is open (the first time will override
the default used by the CDF library). Default cache sizes may be configured for your CDF distribution when it is built
and installed. Consult your system manager for the values of these defaults (or use the CDFinquire toolkit program).

The situations in which it will be necessary to specify a cache size will depend on how a CDF is accessed. For

example, consider a variable in a multi-file, row-major CDF having a dimensionality of 2:[10,64], a data specification
of CDF REALS/1, and variances of T/TT. This variable definition results in each record of the variable being spread

29

across 10 file blocks with the second dimension varying the fastest (since the CDF's variable majority is row-major). If
single value reads were used to access this variable (see Section 2.3.16), only one cache buffer would be necessary for
the variable file if the second dimension were incremented the fastest (i.e., [1,1], [1,2], ..., [10,63], [10,64]). This is
because the values of a record would be accessed sequentially from the first block to the last block. If, however, the
first dimension were incremented the fastest (i.e., [1,1], [2,1], ..., [9,64], [10,64]), 10 cache buffers would improve
performance. The values of a record are not being accessed sequentially but rather each read would be from a different
block. Since the reads would be spread access 10 blocks, having (at least) 10 cache buffers would be optimal.

A similar situation arises when accessing standard variables in a single-file CDF. If values are accessed for each
variable at a particular record number, then performance will be improved by setting the number of cache buffers for
the dotCDF file to be equal to (or greater than) the number of variables. This is because the variable values will most
likely be located in that many different file blocks for a particular record number.

The Internal Interface is used to select and confirm the cache sizes being used for various files by the CDF library.
Confirming a cache size (if it has not been explicitly selected) will determine the default being used. The operations
used for each type of file are shown in Table 2.3.

NOTE: The default cache sizes used by the CDF library are fairly conservative in order to minimize the

problems that can arise due to memory limitations (especially on computers having limited memory such as the PC and
Macintosh). If the performance of your application is critical, it is very important to experiment with using larger
cache sizes. Significant gains in performance can be achieved with the proper cache sizes. It is also important to
allocate records for uncompressed variables. This will reduce the fragmentation that can occur in the dotCDF file
(which degrades performance because of the increased indexing that occurs). Allocating variable records is described in
Section 2.3.12.

File type Selecting Confirming

dotCDEF file° <SELECT ,CDF CACHESIZE > <CONFIRM_,CDF CACHESIZE >
rVariable file <SELECT ,rVAR CACHESIZE > <CONFIRM_,rVAR CACHESIZE >
All rVariable files <SELECT ,rVARs CACHESIZE > <CONFIRM_,rVARs CACHESIZE >
zVariable file <SELECT ,zZVAR CACHESIZE > <CONFIRM ,zVAR CACHESIZE >
All zVariable files <SELECT ,zVARs CACHESIZE > <CONFIRM ,zVARs CACHESIZE >
Staging scratch file <SELECT_,STAGE_CACHESIZE > <CONFIRM ,STAGE_CACHESIZE >

Compression scratch file <SELECT ,COMPRESS CACHESIZE > <CONFIRM ,COMPRESS CACHESIZE >

Table 2.3 Cache Size Operations, Internal Interface

2.2 CDFs

The following sections describe various aspects of a CDF.

2.2.1 Accessing

Only Version 2 CDFs may be accessed with the current CDF distribution. Version 1 CDFs must be converted to
Version 2 CDFs using the CDFconvert program in a CDF distribution prior to CDF V2.5 before they will be readable.

All supported CDF operations are available using the Internal Interface. A subset of these operations are available
using the Standard Interface. The Obsolete Interface is no longer supported. (Applications written for CDF Version 1
must be ported to the Standard or Internal Interface of CDF Version 2.)

S This alos applies to the uncompressed CDF that is maintained as a scratch file.

30

2.2.2 Creating

A CDF must be created by the CDF library. In a C application CDFs are created using either the CDFcreate function
(Standard Interface) or the <CREATE , CDF > operation of the CDFlib function (Internal Interface). In a Fortran
application CDFs are created using either the CDF create subroutine (Standard Interface) or the <CREATE , CDF >
operation of the CDF lib function (Internal Interface).

2.2.3 Opening

An application must open an existing CDF before access to that CDF is allowed by the CDF library. In a C application
CDFs are opened using either the CDFopen function (Standard Interface) or the <OPEN ,CDF > operation of the
CDFlib function (Internal Interface). In a Fortran application CDFs are opened using either the CDF open subroutine
(Standard Interface) or the <OPEN _, CDF_> operation of the CDF lib function (Internal Interface).

2.24 Closing

It is absolutely essential that a CDF that has been created or modified by an application be closed before the program
exits. If the CDF is not closed it will in most cases be corrupted and unreadable. This is because the cache buffers
maintained by the CDF library will not have been written to the CDF file(s). An existing CDF that has been opened
and only read from should also be closed. In a C application CDFs are closed using either the CDFclose function
(Standard Interface) or the <CLOSE ,CDF > operation of the CDFlib function (Internal Interface). In a Fortran
application CDFs are closed using either the CDF close subroutine (Standard Interface) or the <CLOSE ,CDF >
operation of the CDF lib function (Internal Interface).

2.2.5 Deleting

An open CDF may be deleted at any time. The dotCDF file is deleted along with any variable files if a multi- file CDF.
Note that if the CDF is corrupted and cannot be opened by the CDF library you will have to delete the CDF file(s)
manually using the capabilities of the operating system being used. In a C application CDFs are deleted using either
the CDFdelete function (Standard Interface) or the <DELETE ,CDF > operation of the CDFlib function (Internal
Interface). In a Fortran application CDFs are deleted using either the CDF delete subroutine (Standard Interface) or the
<DELETE_,CDF_> operation of the CDF lib function (Internal Interface).

2.2.6 Naming

The file name specified when opening or creating a CDF can be any legal file name for the operating system being
used. This includes logical symbols on VMS systems and environment variables on UNIX systems. Trailing blanks
are also allowed but will be ignored. This is so Fortran applications do not have to be concerned with the trailing
blanks of a Fortran CHARACTER variable. (C character strings use terminating NUL characters.)

In almost all cases when a CDF file name is specified, the .cdf extension should not be appended.” (It will be appended
automatically by the CDF library.) The exception to this is when a user has renamed an existing CDF with a different
extension or with no extension (for whatever reason). When a CDF is opened, the CDF library first appends the .cdf
extension to the file name specified and then checks to see if that file exists.® If not, the CDF library will also check to
see if a file exists whose file name is exactly as specified (without .cdf appended). If this is the case, the CDF must be
single-file. If the CDF is multi-file, an error occurs since the CDF library would have no idea as to how the variable

7 6The file of a CDF having an extension of .cdf is referred to as the dotCDF file.

8 Actually, the CDF library will check several possible extensions: .cdf, .cdf;1, .CDF, and .CDF;1. These extensions
are checked because some CD-ROM drivers (primarily on UNIX machines) do peculiar things when making the files
(e.g., CDFs) on a CD-ROM visible.

31

files had been renamed. Note also that the CDF library always appends .cdf to the file name specified when creating a
CDF.

NOTE: The CDF toolkit programs will in some cases not recognize a CDF if it does not have an extension
of .cdf.’

2.2.7 Format

There are two CDF formats: multi-file and single-file. The choice of which format to use will depend on how the CDF
is to be accessed. Note that the CDFconvert toolkit program can be used to change the format of an existing CDF
(creating a new CDF with the desired format).

The default format for a created CDF was determined when your CDF distribution was built and installed. Consult your
system manager for this default. In a user application, the Internal Interface must be used to change the format of a
CDF. The format of an existing CDF can be changed only if no variables have been created in the CDF. If the
SkeletonCDF toolkit program is used to create a CDF, the format is specified in the skeleton table (see Section 3.8).

A CDF's format is changed by using the <PUT ,CDF FORMAT > operation of the Internal Interface.

Single-File CDFs

A single-file CDF (SINGLE FILE) consists of only one file (with extension .cdf). This file is referred to as the
dotCDF file. The dotCDF file contains the control information for the entire CDF, the attribute entry data, and all of
the variable data. An indexing scheme is used to provide efficient access to variable records.

Indexing Scheme. In single-file CDFs an indexing scheme is used to keep track of where a variable's records are
located within the dotCDF file. The order that variable (and attribute entry) values are written to a single-file CDF by
an application may result in a variable's records being noncontiguous. There will be blocks of contiguous records, but
these blocks will not be contiguous in the dotCDF file.

For each variable in a single-file CDF one or more index records will exist. Each of these index records will contain
one or more index entries. Because the indexing scheme is now hierarchical,' each index entry will point to either
another index record (at a lower level in the hierarchy) or to a block of contiguous variable records (at the lowest level
of the hierarchy). An index entry consists of the following fields:

FirstRecord The number of the first record in a block of contiguous variable records or the first record
indexed in a lower-level index record.

LastRecord The number of the last record in a block of contiguous variable records or the last record
indexed in a lower-level index record.

ByteOffset The byte offset within the dotCDF file of the block of contiguous variable records or the
byte offset of a lower-level index record.

To find a particular variable record the CDF library must search through the index entries for that variable. Improved
performance will result if there are fewer index entries to search. This can be achieved by having a larger number of
records in each block of contiguous variable records (resulting in fewer overall index entries). Techniques used to
achieve fewer index entries are outlined in the Allocated Records and Blocking Factor descriptions in Section 2.3.12.

% Or .cdf:1 or .CDF or .CDF;1.
' As of CDF 2.6.

32

It is possible to inquire the indexing statistics for a variable. Using the Internal Interface, an application may inquire
the number of indexing levels in the hierarchy, the number of index records, and total number of entries for a variable
using the <GET_,1/zZVAR_nINDEXLEVELS >," <GET ,r/zZVAR _nINDEXRECORDS >, and
<GET ,1/zZVAR nINDEXENTRIES > operations.

Multi-File CDFs

A multi-file CDF (MULTI FILE) consists of one file (with extension .cdf referred to as the dotCDF file) containing
control information and attribute entry data and a separate file for each variable defined in the CDF (with extensions
v0,.vl, ... for rVariables and .z0,.zl, ... for zVariables). Each variable file contains the data values for the
corresponding variable. (The control information for each variable is stored in the dotCDF file.)

Performance

The most efficient access to CDF variables will usually occur when the CDF has the multi-file format. The extra
overhead involved with the indexing scheme used in single-file CDFs is small, so the difference may not be significant
(especially if hyper reads/writes are used). The drawback to using the multi-file format is that more than one file is
associated with a CDF (which may or may not be a problem for your system management).

There is a case in which the single-file format may be more efficient. If a CDF has a large number of variables (larger
than the number of files that may be open at once by an application) and the variables values are accessed variable-by-
variable (rather than accessing an entire variable before going to the next variable), the multi-file format may be much
slower than the single-file format. This is because the CDF library will have to close one variable file and then open
another as each variable value is accessed by the application (since the operating system's open file limit will be
reached). If the application was to access every value for a variable before going on to the next variable, this would not
occur (but it might create complications for the application).

Note that the format of a CDF can also be converted using the CDFconvert toolkit program (which creates a new CDF
with the specified format). Section 3.4 describes CDFconvert.

2.2.8 Encoding

The encoding of a CDF determines how attribute entry data and variable data values are stored on disk in the CDF
file(s). An application program never has to concern itself with the encoding of the CDF being accessed. The CDF
library performs all of the encoding and decoding of data values for the application.

A CDF's encoding is specified when the CDF is created when using the Standard Interface but is set to the default
encoding for your CDF distribution when created using the Internal Interface. The encoding of an existing CDF may
be changed with the Internal Interface if no variable values or attribute entries have been written (variables and
attributes may exist, however). If the SkeletonCDF toolkit program is used to create a CDF the encoding is specified in
the skeleton table (see Section 3.8).

The encoding specified when creating/modifying a CDF may be any of the native encodings for the computers

supported by CDF in addition to network (XDR) encoding.'” A CDF with any supported encoding is also readable on
any computer supported by CDF.

Host Encodings

! This notation is used when an operation exists for both rVariables and zVariables. In this case, the actual operations
are <GET_,zVAR_nINDEXLEVELS > and <GET ,rVAR nINDEXLEVELS >.
2 This is a change from previous releases of CDF.

33

Host encoding (HOST ENCODING) specifies that variable and attribute entry data values be written to the CDF in
the native encoding of the computer being used. In addition, the following explicit host encodings are supported:

VAX ENCODING VAX and microVAX computers. Double-precision floating-point values are
encoded in Digital's D FLOAT representation.

ALPHAVMSd ENCODING DEC Alpha computers running OpenVMS. Double-precision floating-point
values are encoded in Digital's D FLOAT representation.

ALPHAVMSg ENCODING DEC Alpha computers running OpenVMS. Double-precision floating-point
values are encoded in Digital's G FLOAT representation.

ALPHAVMSi_ENCODING DEC Alpha computers running OpenVMS. Double-precision floating-point
values are encoded in IEEE representation.

ALPHAOSF1_ENCODING DEC Alpha computers running OSF/1.

SUN_ENCODING Sun computers.

SGi_ ENCODING Silicon Graphics Iris and Power Series computers.

DECSTATION_ENCODING DECstation computers.

IBMRS ENCODING IBM RS6000 series computers.

HP ENCODING HP 9000 series computers.

PC_ENCODING PC personal computers.

NeXT_ ENCODING NeXT computers.

MAC_ENCODING Macintosh computers.

When HOST ENCODING is specified, it is translated to the actual host encoding from the above list. All host
encodings are readable and writeable on any machine supported by CDF.

Network Encoding

Network encoding (NETWORK ENCODING) specifies that variable and attribute entry data values be written to the
CDF in the XDR (External Data Representation) format. As values are written to the CDF, the CDF library encodes
them into network encoding. Network encoded CDFs are readable and writeable on any machine supported by CDF
(as are all of the other encodings).

Equivalent Encodings

While an encoding exists for each supported computer, not every encoding is different. The following sections describe
which computers use the same encoding for the various data types.

Character/1-Byte Integer Data Types Since each supported computer uses the ASCII character set and orders the
bits in a byte the same way, the character and 1-byte integer data types (CDF CHAR, CDF UCHAR, CDF BYTE, CDF
INT1, and CDF UINT1) are encoded in the same way on each.

Multiple-Byte Integer Data Types The multiple-byte integer data types (CDF INT2, CDF UINT2, CDF INT4, and
CDF UINT4) are encoded in one of two ways: big-Endian or little-Endian. Big-Endian has the least significant byte

34

(LSB) in the highest memory location while little-Endian has the LSB in the lowest memory location. The supported
computers use big-Endian or little-Endian as shown in Table 2.4. Network (XDR) encoding uses big-Endian encoding
for multiple-byte integer data types.

Big-Endian Little-Endian

Sun VAX

SGi Iris DECstation

IBM RS6000 PC

HP 9000 DEC Alpha (OSF/1)
NeXT DEC Alpha (OpenVMS)
Macintosh

(Network - XDR)

Table 2.4 Equivalent Byte Orderings

Single-Precision Floating-Point Data Types The single-precision floating-point encodings on the supported
computers are either IEEE 754 floating-point or Digital's F FLOAT floating-point. There are also two different byte
orderings for the computers that use IEEE 754 (big-Endian and little-Endian). The single-precision floating-point
encodings for each supported computer are shown in Table 2.5. Network (XDR) encoding uses IEEE 754 (big-Endian)
encoding for single-precision floating-point data types.

IEEE 754 (Big Endian) IEEE 754 (Little Endian) Digital's F FLOAT

Sun DECstation VAX

SGi Iris DEC Alpha (OSF/1) DEC Alpha / OpenVMS/D
IBM RS6000 DEC Alpha (OpenVMS/T) DEC Alpha / OpenVMS/G
HP 9000

NeXT

Macintosh

(Network - XDR)

Table 2.5 Equivalent Single-Precision Floating-Point Encodings

Double-Precision Floating-Point Data Types The double-precision floating-point encodings on the supported
computers are either IEEE 754 floating-point, Digital's D FLOAT floating-point, or Digital's G FLOAT floating-point.
There are also two different byte orderings for the computers that use IEEE 754 (big-Endian and little-Endian). The
double-precision floating-point encodings for each supported computer are shown in Table 2.6. Network (XDR)
encoding uses IEEE 754 (big-Endian) encoding for double-precision floating-point data types.

35

IEEE 754 (Big Endian) IEEE 754 (Little Endian)

Sun DECstation

SGi Iris PC

IBM RS6000 DEC Alpha/OSF/1

HP 9000 DEC Alpha/OpenVMS/I
NeXT

Macintosh

(Network - XDR)

Digital's D FLOAT Digital's G FLOAT
VAX DEC Alpha/OpenVMS/G
DEC Alpha/OpenVMS/D

Table 2.6 Equivalent Double-Precision Floating-Point Encodings

Performance

The best performance when accessing (reading or writing) a CDF will occur when that CDF is in the host encoding of
the computer being used (and host decoding is in effect - see Section 2.2.9). This is because no encoding or decoding
has to be performed by the CDF library. A CDF that must be portable between two or more different types of
computers should normally be network encoded. There may be cases, however, where it would be desirable to create a
CDF with host encoding (e.g., on a slow machine) and then transfer it to a faster machine for processing or conversion
to another encoding. Obviously, there are trade-offs as to which encoding should be used in any one particular case.
Keep in mind that a CDF can always be converted to the host encoding of the machine being used (with CDFconvert)
before being accessed.

2.2.9 Decoding

The decoding of a CDF determines how attribute entry and variable data values are passed to a calling application
program from the CDF library. The default decoding when a CDF is initially opened is host decoding (the native
encoding of the computer being used). When host decoding is in effect, all data values read by an application are
immediately ready for manipulation and display. Almost all of your applications will simply use the default of host
decoding and not be concerned with selecting a decoding. There are some situations, however, where selecting a
different decoding will be advantageous. Some possibilities are as follows:

1. A client/server model where a number of CDFs are maintained on a server computer (in any of the supported
encodings). Clients on different type computers could request data from a CDF on the server computer. The
server computer would then select a decoding for the CDF based on the client's computer type and then read the
data value(s). The value(s) could then be sent directly to the client computer by the server computer without a
conversion being necessary by either the client or the server. The CDF library would perform the necessary
conversions.

2. If data values were being read from a CDF and written in binary form to a file for use on a different type
computer. The proper decoding could be selected for the CDF before any of the data values are read. No
conversions would be necessary by the application program.

A CDF's decoding may be selected and reselected at any time after the CDF has been opened and as many times as
necessary. A CDF's decoding is selected via the Internal Interface with the <SELECT ,CDF _DECODING >
operation. Also, a CDF's decoding does not affect the values that already exist in a CDF or any values subsequently
written. A CDF's encoding determines how the values are written to the CDF file(s). Section 2.2.8 describes a CDF's
encoding.

36

The supported decodings correspond to the supported encodings. They are as follows:

HOST _DECODING The data representation of the host computer. This is the default.

NETWORK DECODING The External Data Representation (XDR).

VAX DECODING VAX and microVAX data representation. Double-precision floating-point
values will be in Digital's D FLOAT representation.

ALPHAVMSd DECODING DEC Alpha running OpenVMS data representation. Double-precision
floating- point values will be in Digital's D FLOAT representation.

ALPHAVMSg DECODING DEC Alpha running OpenVMS data representation. Double-precision
floating- point values will be in Digital's G FLOAT representation.

ALPHAVMSi DECODING DEC Alpha running OpenVMS data representation. Double-precision
floating- point values will be in IEEE representation.

ALPHAOSF1_DECODING DEC Alpha running OSF/1 data representation.

SUN_DECODING Sun data representation.

SGi_DECODING Silicon Graphics Iris and Power Series data representation.

DECSTATION DECODING DECstation data representation.

IBMRS DECODING IBM RS6000 series data representation.

HP DECODING HP 9000 series data representation.

PC_DECODING PC data representation.

NeXT DECODING NeXT data representation.

MAC DECODING Macintosh data representation

Performance

The best performance when reading a CDF will occur when the CDF's decoding is the same as the CDF's encoding
since no conversion will have to be performed by the CDF library. Since host decoding is the only directly usable
decoding by an application, CDFs with the host's encoding will provide the best performance. Care should be taken
when selecting the encoding for a CDF.

2.2.10 Compression

A compression may be specified for a single-file CDF that is performed when the CDF is closed and written to disk."
This compression applies to the overall CDF - individual variables may instead be compressed as described in Section
2.3.14. When compression is specified for a CDF, the CDF library maintains an uncompressed version of the dotCDF
file in a scratch file. When the CDF is closed, the uncompressed dotCDF file is compressed and written to the file with
the name specified when the CDF was opened/created. If the application program closing the CDF were to abnormally
terminate before the dotCDF file was successfully compressed and written, the uncompressed dotCDF scratch file
would remain in the scratch directory. The scratch directory used by the CDF library is described in Section 2.1.4.

1 Compression is not allowed with multi-file CDFs.

37

Overall compression for a CDF is specified with the <PUT ,CDF_COMPRESSION > operation of the Internal
Interface. It may be respecified as often as desired. A CDF's overall compression may be inquired using

the <GET ,CDF_COMPRESSION > operation for an open CDF and the <GET ,CDF INFO > operation for a CDF
that has not been opened (which saves the overhead of actually decompressing the CDF). The available compression
algorithms are described in Section 2.6.

2.2.11 Limits

Limits within a CDF are defined in the appropriate include files: cdf.h for C applications and cdf.inc for Fortran
applications. The following limits exist:"*

CDF_MAX DIMS The maximum number of dimensions that rVariables/zVariables may have.
CDF_VAR NAME LEN The maximum number of characters in a variable name.
CDF_ATTR NAME LEN The maximum number of characters in an attribute name.

CDF _PATHNAME LEN The maximum number of characters in the name of a file used to specify a CDF.

Most of these limits can be raised. Contact CDF User Support if that becomes necessary.

23 Variables

CDF variables are the mechanism for storing data. (Attributes are used to store metadata.) A new variable may be
created in a CDF at any time. Two varieties of variables are supported: rVariables and zVariables.”” The main
difference is that all rVariables in a CDF have the same dimensionality whereas zVariables can have differing
dimensionalities. In the following sections the differences between the two varieties will be noted where appropriate.

2.3.1 Types

With the introduction of compression and sparseness for variables, there now exist several different types of variables
(in addition to the distinction between rVariables and zVariables). The various types of variables are as follows. . .

"standard variable" A variable in a single-file CDF that is not compressed nor has sparse records
or arrays.
"compressed variable" A variable in a single-file CDF that is compressed and may or may not have

sparse records (but cannot have sparse arrays).

"variable with sparse records" A variable in a single-file CDF that has sparse records and may be
compressed, have sparse arrays, or have neither.

"variable with sparse arrays" A variable in a single-file CDF that has sparse arrays and may or may not
have sparse records (but cannot be compressed).

' Previous releases of CDF limited the number of variables a CDF could contain. That limit has been eliminated
except for multi-file CDFs on an PC because of the 8.3 naming convention.

' The letters "r" and "z" don't stand for anything in particular. "r" sort of stands for "regular" since rVariables have
always been supported by CDF. However, for Java APIs, only zVariables are supported.

38

"multi-file variable" A variable in a multi-file CDF. It cannot be compressed, have sparse records,
or have sparse arrays.

The term "variable" is used when a discussing a property that applies to all of the various variable types.

2.3.2 Accessing

The Standard Interface deals exclusively with rVariables. No access to zVariables is provided. The Internal Interface
may be used to access either rVariables or zVariables.

2.3.3 Opening

The CDF library automatically opens the variable files in a multi-file CDF as the variables are accessed. An application
never has to concern itself with opening variables. The opening of variables does not apply to single-file CDFs since
individual files do not exist for each variable.

2.3.4 Closing.

The CDF library automatically closes the variable files in a multi-file CDF when the CDF itself is closed by an
application.'® Variable files are also closed automatically by the CDF library as other variables are accessed if
insufficient file pointers exist to keep all of the variables open at once This would be due to an open file quota
enforced by the operating system being used.

A case also exists where it may be beneficial for an application to close a variable in a multi-file CDF. Since each open
variable file uses some number of cache buffers, a large amount of system memory could be in use (see Section 2.1.5).
This may not be a problem on VAX or UNIX machines but could result in a program crashing on an MS-DOS
machine. If memory is limited, an application may want to close variables after they have been accessed in order to
minimize the total number of cache buffers being used. In a C application rVariables are closed using either the
CDFvarClose function (Standard Interface) or the <CLOSE ,rVAR > operation of the CDFlib function (Internal
Interface). zVariables are closed using the <CLOSE ,zZVAR > operation of the CDFlib function (Internal Interface).
In a Fortran application rVariables are closed using either the CDF var close subroutine (Standard Interface) or the
<CLOSE ,rVAR > operation of the CDF lib function (Internal Interface). zVariables are closed using the
<CLOSE _,zZVAR > operation of the CDF lib function (Internal Interface).

The closing of variables does not apply to single-file CDFs since individual files do not exist for each variable.

2.3.5 Naming

Each variable in a CDF has a unique name. This applies to rVariables and zVariables together (i.e., an rVariable
cannot have the same name as a zVariable). Variable names are case sensitive regardless of the operating system being
used and may consist of up to CDF VAR NAME LEN printable characters (including blanks). Trailing blanks,
however, are ignored when the CDF library compares variable names. "LAT" and "LAT " are considered to be the
same name, so they cannot both exist in the same CDF. This was done because Version 1 of CDF padded variable
names on the right with blanks out to eight characters. When a Version 1 CDF was converted to a Version 2 CDF these
trailing blanks remained in the variable names. To allow CDF Version 2 applications to read such a CDF without
having to be concerned with the trailing blanks, the trailing blanks are ignored by the CDF library when comparing
variable names. The trailing blanks are returned as part of the name, however, when a variable is inquired by an
application program.

' 1t is required that an application close a CDF before exiting.

39

2.3.6 Numbering

The rVariables in a CDF are numbered consecutively starting at one (1) for Fortran applications and starting at zero (0)
for C applications. Likewise, the zVariables in a CDF are numbered consecutively starting at one (1) for Fortran
applications and starting at zero (0) for C applications. The CDF library assigns variable numbers as the variables are
created.

2.3.7 Deleting

A variable may be deleted from a single-file CDF."” Deleting a variable also causes the deletion of the corresponding
attribute entries for the variable. The disk space used by the variable definition, the variable's data records, and the
corresponding attribute entries becomes available for use as needed by the CDF library. Also, the variables which
numerically follow the variable being deleted are renumbered immediately. (Each is decremented by one.) Variables
are deleted using the <DELETE , 1/zZVAR > operation of the Internal Interface.

2.3.8 Dimensionality

Variable values are stored in arrays. A variable's dimensionality refers to the number of dimensions and the dimension
sizes of these arrays.

Each rVariable in a CDF has the same dimensionality. An array of values exists for each rVariable at each record in a
CDF. The values may not be physically stored but may be virtual (see Sections 2.3.12, 2.3.10, and 2.3.11).

A zVariable may have a dimensionality which is different from that of the rVariables and the other zVariables. An
array of values exists for each zVariable at each record in a CDF. As with rVariables the values may not be physically
stored but may be virtual. zVariables are intended for use in those situations where using an rVariable would waste disk
space or not logically make sense.

A variable array having two or more dimensions also contains subarrays. For instance, in a 3-dimensional array with
dimension sizes [10,20,30], each array consists of ten 2-dimensional subarrays of size [20,30], and each of those 2-
dimensional subarrays consists of twenty 1-dimensional subarrays of size [30]. Subarrays will be referred to when
discussing other properties of CDF variables.

2.3.9 Data Specification

Each variable in a CDF has a defined data specification. A variable's data specification consists of a data type and a
number of elements of that data type. A variable's data specification is specified when the variable

is created. The data specification of an existing variable may also be changed if either of the following conditions is

true.

1. Values have not yet been written to the variable (including an explicitly written pad value - see Section
2.3.20).

2. The old data type and new data type are considered equivalent, and the number of elements for the variable are
the same. Equivalent data types are described in Section 2.5.5.

Data Type

' Variables may not currently be deleted from a multi-file CDF.

40

The supported data types are described in Section 2.5. Variables having any combination of data types may exist in the
same CDF.

Number of Elements

In addition to a data type, each variable also has a number of elements. This refers to the number of elements of the
data type at each variable value. For character data types (CDF CHAR and CDF UCHAR) this is the number of
characters in each string. (A variable value consists of the entire character string.) The character string can be thought
of as an array of characters. For non-character data types, this must always be one (1). An array of elements per
variable value is not allowed for non-character data types.

2.3.10 Record Variance

A variable's record variance specifies whether or not the variable's values change from record to record. The effect of a
variable's record variance is defined as follows.

VARY The values do change from record to record. Each variable record is physically written with
no gaps between records (i.e., if a record more than one beyond the maximum record is
written, the intervening records are also physically written and contain pad values). If a
record is read beyond the maximum record written to a variable, the pad value for the
variable is returned. Variables of this type are referred to as record-variant (RV).

NOVARY The values do not change from record to record. Only one record is physically written to
the variable. Each record contains the same values (including virtual records beyond the
first record). Variables of this type are referred to as non-record-variant (NRV).

Section 2.3.12 describes variable records in more detail.

A variable's record variance is specified when the variable is created. The record variance of an existing variable may
be changed only if values have not yet been written to that variable. (An explicit pad value may have been specified
however.)

2.3.11 Dimension Variance

A variable's dimension variances specify whether or not the values change along the corresponding dimension. The
effects of a dimension variance are defined as follows:

VARY The values do change along the dimension. All of the values for the dimension (or all of
the subarrays) are physically stored.

NOVARY The values do not change along the dimension. Only one value (or subarray) is physically
written for that dimension. Each value (or subarray) along that dimension is the same
(including virtual values/subarrays beyond the first value/subarray).

Figure 2.1 illustrates the effect of dimension variances on a variable with 2-dimensional arrays (for a particular record).
For variable 1 each value in the array is physically stored and therefore unique. Because variable does not vary along
the second dimension, each value along that dimension is the same so only one value for that dimension is physically
stored (the other values are virtual). The same is true for variable 3 which does not vary along the first dimension.
Variable 4 does not vary along either dimension. Only one value is physically stored for the array - all of the other
values are the same (they are virtual).

41

A variable's dimension variances are specified when the variable is created. The dimension variances of an existing
variable may be changed only if values have not yet been written to that variable. (An explicit pad value may have
been specified, however.)

rVariable 1 rVariable 2 rVariable 3 rVariable 4
(VARY, VARY) (VARY, NOVARY) (NOVARY, VARY) (NOVARY, NOVARY)
EEEE)E] (B

‘ Ejnrg_l H [‘.‘:::.f.
MO

@] =]
MR =

’_| physical value

virtual value

Figure 2.1 Physical vs. Virtual Dimensions

2.3.12 Records.

A CDF record is a set of variable arrays, one per rVariable and one per zVariable in the CDF. The variable arrays in a
particular record are generally related to each other in some way (often time). This does not have to be the case and is
not enforced by the CDF library in any way. A variable record is simply the corresponding variable array within a
CDF record.

Physical variable records are actually stored in the CDF file(s). Virtual variable records are not actually stored but do
exist in the conceptual view of the variable provided by CDF. Virtual records can occur in a CDF because of the
following reasons:

1. If a variable's values do not vary from record to record (record variance of NOVARY), all of that variable's
records beyond the first one are virtual and have the same values as the first record (only the first record is
physically stored). If a record has not yet been written to that variable, then all of its records are virtual and
contain the pad value for that variable.

2. If a variable's values do vary from record to record (record variance of VARY), then the records beyond the
last record actually written are virtual and contain the pad value for that variable.

3. [If a variable has sparse records, then any unwritten records for that variable are virtual and contain either the
pad value for that variable or the previous existing record's values (depending on the type of sparse records).
Sparse records are described on page 48.

Record variance is described in Section 2.3.10. Variable pad values are described in Section 2.3.20.

The maximum record written is maintained by the CDF library for each variable in the CDF. The "maximum CDF
record" is simply the maximum rVariable record written (of all the rVariables). This quantity is available through the
Standard Interface when inquiring about a CDF. Because the Standard Interface does not allow access to zVariables,
zVariables are not considered when determining the "maximum CDF record." The "maximum CDF record" would be
used by applications dealing only with rVariables. The maximum record written for each rVariable and zVariable is
available via the Internal Interface.

42

Figure 2.2 illustrates the relationships between physical and virtual records for a standard variable. Variable 1 has five
records that were physically written. Only two records were physically written to variable 2 so the following records
are virtual (containing the pad value for that variable). Only one record can be physically written to variable 3 because
its record variance is NOVARY. The other records are virtual and contain the same values as the first record. Because
a record has not been physically written to variable 4, all of its records are virtual containing the pad value for that
variable. Likewise, since no records have been written to variable 5, all of its records are also virtual and contain the
pad value for that variable.

rVariable 1 rVariable 2 rVariable 3 rVariable 4 rVariable 5
(VARY) (VARY) (NOVARY) (NOVARY) (VARY)

I} &=

]

Igliplimiini

[11| physical record virtual record

Figure 2.2 Physical vs. Virtual Records, Standard Variable

43

Note that a variable's records do not have to be written sequentially starting at the first record. The records may be
written in any order. For a variable not having sparse records with a VARY record variance, if a new record more than
one record beyond the current maximum record for the variable is written, the intervening records will be physically
written and contain the pad value for that variable. For a variable having sparse records, only those records written by
an application are physically stored. Unwritten records are virtual as described in Sparse Records on 48.

Also, when one or more values are written to a new physical record, the entire record is physically written with the pad
value for the variable being used for the unspecified values (if any). The remaining values in the record may or may
not be subsequently written. Variable pad values are described in Section 2.3.20.

Numbering

The record numbers in a CDF are numbered starting at one (1) for Fortran applications and starting at zero (0) for C
applications.

Sparse Records

A variable in a single-file CDF can be specified as having sparse records.'® If so, then only those records that are
explicitly written to the variable will be physically stored. If a variable is not specified as having sparse records, then
all of the records up to the maximum written will be physically stored. Sparse records are only allowed in single-file
CDFs (where the indexing scheme used for variable records makes this possible). Considerable disk space can be saved
in the dotCDF file for a variable that has gaps of missing data if that variable is specified as having sparse records.

For an uncompressed variable having sparse records, it is also beneficial if the blocks of records that are going to be
written can first be allocated. This will allow the CDF library to optimize the indexing for the variable. Otherwise, the
CDF library will use the staging scratch file to minimize the indexing needed. Note that records cannot be allocated for
compressed variables (whether or not they have sparse records).

Two types of sparse records can be specified for a variable. They differ only in how unwritten records are presented in
the conceptual view of the variable. These missing records are considered virtual records just like the records beyond
the last record written. Pad-missing sparse records specifies that when a virtual record is read the variable's pad value
should be returned. Previous-missing sparse records specifies that when a virtual record is read the previous existing
record's values should be returned. If a previous record does not exist, the variable's pad value will be returned.

Note that previous-missing sparse records can also be used to save disk space for a variable if that variable's values do
not change from record to record except occasionally. If the only records written were those that changed from the
previous record, then the virtual records following each record actually written (physically stored) would all have the
same value(s). This could save considerable disk space if the values do not change often. For example, consider a 0-
dimensional variable having previous-missing sparse records that is being used to store temperature data. Each record
corresponds to a temperature reading at a given time. Table 2.7 shows how the variable might appear conceptually
along with which records are physically stored. Note that only three records are physically stored but that nine records
appear in the conceptual view of the variable.

Sparse records are specified for a variable using the <PUT ,1/zZVAR_SPARSERECORDS > operation of the Internal
Interface. One of the following types of sparse records must be specified:

NO_SPARSERECORDS The variable does not have sparse records.

PAD SPARSERECORDS The variable has pad-missing sparse records. The notation sRecords.PAD is
used by the CDF toolkit for pad-missing sparse records.

'8 Sparse records are not allowed for a variable in a multi-file CDF.

44

PREV SPARSERECORDS The variable has previous-missing sparse records. The notation
sRecords.PREV is used by the CDF toolkit for previous-missing sparse

records.
Record Temperature
1 101.4 (Physical)
2 101.4 (Virtual)
3 101.5 (Physical)
4 101.5 (Virtual)
5 101.5 (Virtual)
6 101.5 (Virtual)
7 101.5 (Virtual)
8 101.6 (Physical)
9 101.6 (Virtual)

Table 2.7 Previous-missing Sparse Records Example, Conceptual View vs. Physical Storage

The <GET _,r/zZVAR_SPARSERECORDS > operation can be used to inquire the type of sparse records.

Allocated Records.

The Internal Interface may be used to allocate records for an uncompressed variable in a single-file CDF'’ Normally
the number of records allocated would be the number that are to be written (assuming this can be determined). This
can greatly improve performance when writing (and reading) values for the variable because of reduced overhead when
searching the index entries (as described in Section 2.2.7). The application is normally expected to write to all of the
allocated records. For NRV variables, only one record may be allocated (because only one record will ever physically
exist). If the variable has sparse records, only those blocks of records that are going to be written would be allocated.
Records cannot be allocated by an application for compressed variables because they are allocated automatically by the
CDF library when their compressed size is known.

Performance is improved when using this method because the allocated records will be as contiguous as possible
requiring the fewest number of index entries. This will greatly improve the time needed to locate a particular record
when the variable is accessed. In addition, the CDF will be slightly smaller because of the reduced number of index
records.

Note that records do not have to be allocated by an application before they are written to a variable. The CDF library
will automatically allocate any needed records based on the variable's blocking factor. Also, records may be allocated
at any time (not only before records have been written as in previous CDF releases).

Records are allocated using the <PUT ,1/zZVAR_ALLOCATERECS > and <PUT ,1/zVAR_ALLOCATEBLOCK >
operations of the Internal Interface. The number of records allocated for a variable can be inquired using the
<GET ,1/zZVAR NUMallocRECS > operation. The maximum record allocated for a variable can be inquired using the
<GET ,1/zZVAR_MAXallocREC > operation. The exact records allocated for a variable can be determined using a
combination of the <GET ,1/7zZVAR ALLOCATEDTO > and <GET ,i/zZVAR_ALLOCATEDFROM > operations.

Initial Records

1 There is no reason to allocate records for a variable in a multi-file CDF.

45

The Internal Interface may be used to specify an initial number of records to be written for a variable.”” The pad value
for the variable is written at each record as if the application had done so itself. The Internal Interface allows this to be
done more conveniently with only one function call. Note that the default pad value for the variable's data type will be
used unless a pad value is explicitly specified for the variable. If a specific pad value is desired for a variable, then it
must be specified before the number of initial records is specified. Also, any compression or sparseness for the
variable must be specified before writing the initial records because those properties cannot be changed after records
have been written.

Specifying a number of initial records for a variable would usually be done only for a CDF with the single-file format.
Because the records would be allocated as contiguously as possible within the CDF file, the indexing scheme (see
Section 2.2.7) would require fewer entries making the access to that variable more efficient. Note that this method is
not as efficient as allocating records in those cases where all of the records are going to be written by the application.
This is because the records would be written twice - once with the pad value and then again by the application.

The number of initial records specified would in most cases be the number of records planned for a variable. Note that
additional records may be added to a variable at any time. For NRV variables the number of

initial records must always be specified as one (1). This is because only one physical record will ever actually be
written. Initial records for a variable may be specified only once.

Initial records are written to variables using the <PUT ,1r/zZVAR_INITIALRECS > operation of the Internal Interface.
Explicit pad values are specified using the <PUT ,1/7zZVAR PADVALUE > operation.

Blocking Factor.

A variable's blocking factor’' affects how records are allocated in the CDF file(s). For NRV variables the blocking
factor is not applicable because only one physical record will ever exist. For variables in a multi-file CDF the blocking
factor is not used because only those records written by an application will exist in the variable files. But for the other
types of variables in a single-file CDF the blocking factor can have a significant impact. The following sections will
describe how a variable's blocking factor is used in each case.

Standard Variables Space in the dotCDF file for records written to a standard variable is either allocated explicitly by
an application or automatically by the CDF library. If the records are allocated by the application the exact number
needed can be specified. This can be used to optimize the indexing for the variable resulting in fewer (or even just one)
index entries that must be searched when accessing the variable. If the records are not allocated by the application,
however, they must be automatically allocated by the CDF library. Because the CDF library wants to optimize the
indexing for a variable, it may allocate additional records beyond those needed at the time in an attempt to minimize
the number of index entries. The variable's blocking factor specifies the minimum number of records to allocate when
an application writes to an unallocated record. This is based on the assumption that the addition records allocated will
eventually be written. If that is not the case, the allocated but unwritten records will simply waste space in the dotCDF
file. The best way to prevent that situation is for an application to explicitly allocate the records that are going to be
written. An application can specify a blocking factor for a variable or let the CDF library use a default blocking factor.
Note that setting the blocking factor too low (and not allocating the records being written) may result in excessive
indexing for a variable. Even using the default blocking factor for a variable may result in excessive indexing unless
the records to be written are first allocated. The indexing scheme used by the CDF library is described in Section 2.2.7.

Compressed Variables The blocking factor for compressed variables specifies the number of records that will be
compressed together. The CDF library stages the records of a compressed variable in a scratch file. The number of
records in the staging area is also based on the variable's blocking factor. When necessary, the CDF library compresses
the records in the staging area and writes the compressed block of records to the dotCDF file. Each block of
compressed records has an associated index entry (see Section 2.2.7). Setting the blocking factor high will minimize the

2 The use of allocated records would in most cases be more efficient than specifying initial records.
21 A variable’s blocking factor was previously called its “extend records.”

46

indexing for a variable but will increase the time needed to access an individual record because the entire block in
which it is compressed will have to be decompressed. If the blocking factor is too low, the decompression of an
individual record will not take as long but excessive indexing may result (which will increase the access overhead).
Also, most compression algorithms work better as the number of records (bytes) being compressed is increased. Note
that if the compressed variable also has sparse records, the blocking factor becomes the maximum number of records
per compressed block. Depending on which records are written some of the compressed blocks may contain fewer
records. The blocking factor for a compressed variable may be explicitly specified by an application or a default may
be used as determined by the CDF library. Once a record has been written to the variable, however, the blocking factor
cannot be changed.

Uncompressed Variables With Sparse Records The CDF library uses a staging area scratch file for uncompressed
variables with sparse records. This is done in an attempt to minimize the indexing for the variable (as described in
Section 2.2.7) when the records being written are not first allocated by an application. The blocking factor specifies the
number of records to be maintained in the staging area for the variable (which will be the maximum number of
unallocated consecutive records that would be stored contiguously in a block when written by an application). An
explicit blocking factor can be specified or a default determined by the CDF library may be used.

Blocking factors are explicitly specified for variables using the <PUT _,1/zZVAR_BLOCKINGFACTOR > operation of
the Internal Interface. The blocking factor may be inquired using the <GET ,r/zZVAR BLOCKINGFACTOR >
operation. If an explicit blocking factor has not been specified, the default blocking factor for the variable will be
returned.

Note the distinction between records allocated and records actually written. The CDF library may allocate more
records than are actually written by an application for the reasons stated above. Both the number of records written to a
variable and the number of records allocated for that variable may be inquired using the Internal Interface.

Deleting

The records of a variable in a single-file CDF may be deleted.”> If the variable has sparse records, the deleted records
simply cease to exist. A gap of one or more missing records will be formed. But if the variable does not have sparse
records, the records following the block of deleted records are immediately renumbered to fill in the gap created. The
record numbers remain consecutive without a gap.

Variable records are deleted using the <DELETE ,r/zZVAR RECORDS > operation of the Internal Interface.

2.3.13 Sparse Arrays

Sparse arrays are planned for a future release of CDF. The idea being that only those values actually written to a
variable array (record) will be physically stored. Currently, unwritten values in each variable array are physically
stored using the variable's pad value. Note that specifying a compression for a variable will in many cases result in a
disk space savings similar to that of sparse arrays. The exact differences in disk space savings and execution overhead
between sparse arrays and variable compression will not be known until sparse arrays have been implemented.

2.3.14 Compression

22 Variable records may be deleted from a multi-file CDF.

47

A compression may be specified for a variable in a single-file CDF which gets performed automatically as values are
written.” The values are transparently decompressed as they are read from the variable. The values of a variable are
compressed in blocks of one or more variable records. The blocking factor for a compressed variable (described
beginning on page 50) specifies the number of records in each block (or the maximum number in the case of a
compressed variable with sparse records). Properly setting the blocking factor involves a trade-off between the
compression percentage achieved and execution speed when accessing values in individual variable records. The CDF
library also uses a staging area scratch file to minimize access overhead for a compressed variable. Note that if a block
of variable records actually increases in size when compressed, the block of records will be stored uncompressed in the
CDF. This could happen if the blocking factor is set too low or simply because of the nature of the data and the
compression algorithm being used.

The compression for a variable is specified with the <PUT ,i/zZVAR _COMPRESSION > operation of the internal
interface. A variable's compression may be inquired with the <GET ,1/7zZVAR_COMPRESSION > operation. Section
2.6 describes the available compression algorithms.

Reserve Percentage.

If a value in a compressed block of records is changed, the amount of compression achieved for that block may also
change. If it increases, the block of compressed records may have to be moved in the dotCDF file. This will most likely
result in the dotCDF file increasing in size if the block of compressed records is placed at the end (leaving a block of
unused bytes where the compressed block of records previously existed). This is not a desirable situation considering
that the variable compression is supposed to make the CDF smaller. To alleviate this potential problem a reserve
percentage may be selected for a compressed variable. When a compressed block of variable records is initially written
to the dotCDF file some additional space will be allocated. This will allow that block of compressed records to expand
in size if necessary. The reserve percentage is interpreted as follows:

0 No reserve space is allocated. This is the default.

1..100 Allocates that percentage of the uncompressed size of the block of variable records (as a
minimum). For example, if a 1000-byte block of records compressed down to 600 bytes and
the reserve percentage is 70%, then 700 bytes would actually be allocated for the block in
the dotCDF file. If the reserve percentage is 50%, then 600 bytes would of course still have
to be allocated.

101... Allocates that percentage of the size of the compressed block of variable records but not
exceeding the uncompressed size. For example, if a 1000- byte block of records compressed
down to 800 bytes and the reserve per- centage is 110%, then 880 bytes would be allocated
for the block.

Even specifying a reserve percentage for a compressed variable does not guarantee that the problem with moving
blocks of compressed records as the variable's values are changed will be avoided. If a CDF does become fragmented
in this way remember that the CDFconvert utility can always be used to create a new CDF with each variable's
compression being optimized (e.g., no fragmentation).

The reserve percentage for a compressed variable is selected with the <SELECT ,i/zZVAR_RESERVEPERCENT >

operation. A variable's reserve percentage may be confirmed with the <CONFIRM ,r/zZVAR RESERVEPERCENT >
operation.

2.3.15 Majority

3 Note that variable compression is not allowed in a multi-file CDF.

48

The variable majority of a CDF describes how variable values within each variable array (record) are stored. Each
variable in a CDF has the same majority. The majority can be either row major or column major.

ROW MAJOR Row majority. The first dimension changes the slowest.
COLUMN MAJOR Column majority. The first dimension changes the fastest.

For example, an array for an rVariable with [VARY,VARY] dimension variances in a 2-dimensional CDF with
dimension sizes [2,4] and row majority would be stored as follows:

v(1,1), v(1,2), v(1,3), v(1,4), v(2,1), v(2,2), v(2,3), v(2,4)

where v(i,j) is the value at indices (i,j). If the CDF had column majority, the array would be stored as follows:
v(1,1), v(2,1), v(1,2), v(2,2), v(1,3), v(2,3), v(1,4), v(2,4)

In each case v(1,1) is stored at the low address.

An application needs to be concerned with the majority of a CDF in the following cases:

1. When performing a variable hyper read, the values placed in the buffer by the CDF library will be in the
variable majority of the CDF. The application must process the values according to that majority.

When performing a variable hyper write, the CDF library expects the values in the buffer to be in the variable
majority of the CDF. The application must place the values into the buffer in that majority.

2. When sequential access is used, the values are read/written in the order imposed by the variable majority of the
CDF.

3. When single value reads/writes are performed, the majority could have an effect. The CDF library uses a
caching scheme to optimize** the random access to variable values. If all of the values of a record are to be
read/written, there may be an increase in performance if the values are accessed with (rather than against) the
majority. For example, if the majority is row-major, increment the last index the fastest.

4. When performing a multiple variable read/write, the full-physical records in the buffer will/must be in the
variable majority of the CDF.

A CDF's variable majority is specified when the CDF is created when using the Standard Interface but is set to the
default variable majority for your CDF distribution when created using the Internal Interface. The majority of an

existing CDF may be changed using the Internal Interface only if variable values have not yet been written. (Variables
may exist and explicit pad values may have been specified, however.)

2.3.16 Single Value Access

Single value access allows only one value to be read from or written to a variable with a single call to the CDF library.
Two parameters are specified when performing a single value read/write:

RecordNumber The record number at which to perform the access.

DimensionIndices The indices within the record at which to perform the access.

2 Since an application knows how it will be accessing a variable, it knows best how to optimize the caching scheme
used. See Section 2.1.5 for details on how an application can control the CDF library caching scheme.

49

For 0-dimensional variables, the dimension indices are not applicable.

Single value access is sensitive to the record and dimension variances of a variable. For instance, if a variable has a
record variance of NOVARY (with one record written) and a value is read from the fourth record, the CDF library will
actually read the value from the first record (the record that is physically stored). If a value were written to the fourth
record, the CDF library would actually write the value to the first record (the only record that actually physically
exists). If the record variance is VARY, the values are written to the actual records. (The physical records are the same
as the virtual records.) The same applies to any dimension variances that are NOVARY. When a set of indices is
specified for a single value read/write, the index for a dimension whose variance is NOVARY is forced to the first
index regardless of the actual index specified for that dimension (see Section 2.3.11).

In a C application single value access for rVariables is performed using either the CDFvarGet and CDFvarPut functions
(Standard Interface) or the <GET ,rVAR DATA > and <PUT ,rVAR_DATA > operations of the CDFlib function
(Internal Interface). Single value access for zVariables must be performed using the <GET ,zZVAR DATA > and
<PUT ,zVAR DATA > operations of CDFlib. In a Fortran application single value access for rVariables is
performed using either the CDF var get and CDF var put subroutines (Standard Interface) or the
<GET_,rVAR DATA > and <PUT ,rVAR DATA > operations of the CDF lib function (Internal Interface). Single
value access for zVariables must be performed using the <GET ,zZVAR DATA > and <PUT ,zVAR DATA >
operations of CDF lib.

2.3.17 Hyper Access

Hyper access allows more than one value to be read from or written to a variable with a single call to the CDF library.
In fact, the entire variable may be accessed at once (if a large enough memory buffer is available to your application).
Hyper reads cause the CDF library to read from the variable record(s) in the CDF and place the values into a memory
buffer provided by the application. Hyper writes cause the CDF library to take values from a memory buffer provided
by the application and write them to the variable records in the CDF. Six parameters are specified when performing a
hyper read/write:

RecordNumber The record number at which to start the access.
RecordCount The number of records to access.
RecordInterval The interval between records being accessed. An interval of two (2) would indicate

that every other record is to be accessed.

DimensionIndices The indices within each record at which the access should begin.
DimensionCounts The number of values along each dimension that should be accessed.
Dimensionlntervals For each dimension, the interval between values being accessed. An interval of

three (3) would indicate that every third value is to be accessed.
For 0-dimensional variables, the dimension indices, counts, and intervals are not applicable.

A hyper access may or may not read/write a contiguous set of values stored for a variable in the CDF. However, the
values in the memory buffer received/provided by the application are contiguous.

Hyper access is sensitive to the record and dimension variances of a variable. For instance, if a variable has a record
variance of NOVARY (with one record written) and a hyper read of the first five records for that variable is requested,
the CDF library will read the single record that is physically stored and place it five times (contiguously) into the
memory buffer provided by the application. The same applies to any dimension variances that are NOVARY. For
example, if the count for a dimension is three and the dimension variance is NOVARY, the one value (or subarray)

50

physically stored will be read by the CDF library and placed into the application's memory buffer three times
(contiguously).

Example (Fortran application)

Assume a 2-dimensional variable array with sizes [2,4], row majority, a record variance of VARY, dimension variances
of [VARY,VARY], and hyper read parameters as follows:

record number 5
record count 2
record interval 1
dimension indices 1
dimension counts 2
dimension intervals 1

1
4
1

The values placed in the application's buffer would be as follows (with the first value being in low memory):

5(1,1) 5(1,2) 5(1,3) 5(1,4) 5(2,1) 5(2,2) 5(2,3) 5(2,4)
6(1,1) 6(1,2) 6(1,3) 6(1,4) 6(2,1) 6(2,2) 6(2,3) 6(2,4)

where 1(i,j) is a physically stored value with r being the record number, i being the first dimension index, and j being
the second dimension index. (r, i, and j are physical record numbers and dimension indices.)

If the dimension variances had been [VARY,NOVARY], the values placed in the buffer would have been

5(1,1) 5(1,1) 5(1,1) 5(1,1) 5(2,1) 5(2,1) 5(2,1) 5(2,1)
6(1,1),6(1,1) 6(1,1) 6(1,1) 6(2,1) 6(2,1) 6(2,1) 6(2,1)

If the record count had been 3 and the record interval 2, the values placed in the buffer would have been

5(1,1) 5(1,2) 5(1,3) 5(1,4) 5(2,1) 5(2,2) 5(2,3) 5(2,4)
7(1,1) 7(1,2) 7(1,3) 7(1,4) 7(2,1) 7(2,2) 7(2,3) 7(2,4)
9(1,1) 9(1,2) 9(1,3) 9(1,4) 9(2,1) 9(2,2) 9(2,3) 9(2,4)

If the dimension counts had been [2,2] and the dimension intervals [1,2], the values placed in the buffer would have
been

5(1,1) 5(1,3) 5(2,1) 5(2,3)
6(1,1) 6(1,3) 6(2,1) 6(2,3)

If the CDF majority had been column major, the values placed in the buffer would have been.

5(1,1) 5(2,1) 5(1,2) 5(2,2) 5(1,3) 5(2,3) 5(1,4) 5(2,4)
6(1,1) 6(2,1) 6(1,2) 6(2,2) 6(1,3) 6(2,3) 6(1,4) 6(2,4)

Had these examples been for hyper writes, the CDF library would have expected to find the values in the application's
buffer exactly as they were placed there during the corresponding hyper read. In the case where the record interval was
2, the records being skipped would be written using the variable's pad value if they did not already exist. If they did
already exist, they would not be affected.

In a C application, hyper writes for rVariables are performed using the CDFvarHyperPut function (Standard Interface)
or the <PUT ,rVAR HYPERDATA > operation of the CDFlib function (Internal Interface). Hyper writes for
zVariables must be performed using the <PUT ,zZVAR HYPERDATA > operation of CDFlib. Hyper reads for
rVariables are performed using the CDFvarHyperGet function (Standard Interface) or the

51

<GET ,rVAR HYPERDATA > operation of CDFlib. Hyper reads for zVariables must be performed using the
<GET ,zZVAR_HYPERDATA > operation of CDFlib.

In a Fortran application, hyper writes for rVariables are performed using the CDF var hyper put subroutine (Standard
Interface) or the <PUT ,rVAR HYPERDATA > operation of the CDF lib function (Internal Interface). Hyper writes
for zVariables must be performed using the <PUT ,zZVAR HYPERDATA > operation of CDF lib. Hyper reads for
rVariables are performed wusing the CDF var hyper get subroutine (Standard Interface) or the
<GET_,rVAR_HYPERDATA > operation of CDF lib. Hyper reads for zVariables must be performed using the

<GET ,zZVAR_HYPERDATA_ > operation of CDF lib.

2.3.18 Sequential Access

Sequential access provides a way to sequentially read/write the values physically stored for a variable. To use
sequential access, a starting value must first be selected by specifying a record number and dimension indices. This
selects the "current sequential value." A sequential read will return the value at the current sequential value and then
automatically increment the current sequential value to the next value. Likewise, a sequential write will store a value at
the current sequential value and then increment the current sequential value to the next value. Sequential reads are
allowed until the end of the physical records has been reached (not the end of the virtual records [they never end]).
Sequential reading will increment to the beginning of the next physical record if necessary. Sequential writing can be
used to extend the physical records for a variable (as well as to overwrite existing values).

If the variable has sparse records, the virtual records in a gap of missing records are not skipped. The type of sparse
records (see Section 2.3.12) will determine the values returned. When a virtual record in a gap of missing records is
read, the informational status code VIRTUAL RECORD DATA is returned (rather than END OF VARIABLE).
Sequential writes will create any necessary record in a gap of missing records (i.e., sequential writes do not skip virtual
records in a gap of missing records).

Example (Fortran application)

Assume a 2-dimensional array with sizes [2,3], column majority, a record variance of VARY, dimension variances of
[VARY,VARY], nine (9) physical records written, and that the current sequential value has been set to record number
7 and indices [2,2]. Consecutive sequential reads would cause the following values to be read and returned to the
application:

7(2,2) 7(1,3) 7(2,3)
8(1,1) 8(2,1) 8(1,2) 8(2,2) 8(1,3) 8(2,3)
9(1,1) 9(2,1) 9(1,2) 9(2,2) 9(1,3) 9(2,3)
END OF VAR

... where 1(i,j) is a physically stored value with r being the record number, i the first dimension index, and j the second
dimension index. (r, i, and j are physical record numbers and dimension indices.) The next sequential read after the last
physical value would cause a status code indicating the end of the variable to be returned (END OF VAR).

Had the dimension variances been [NOVARY,VARY], the values read would have been
7(1,2) 7(1,3)
8(1,1) 8(1,2) 8(1,3)

9(1,1) 9(1,2) 9(1,3)
END_OF VAR

Note that specifying the virtual value 7(2,2) as the current sequential value caused physical value 7(1,2) to actually be
selected (because the first dimension variance is NOVARY).

52

Sequential access for variables is performed using the <GET ,1/zZVAR SEQDATA > and
<PUT ,r/zZVAR_SEQDATA > operations of the Internal Interface.

2.3.19 Multiple Variable Access

Multiple variable access allows an application to read from or write to multiple variables in a single operation. Multiple
variable access works on either the rVariables or the zVariables of a CDF - not a mixture of the two. Up to all of the
rVariables/zVariables may be accessed with a single call to the CDF library. For each variable specified in a multiple
variable access, a full-physical record for that variable will be read/written. A full-physical record consists of all of the
values exactly as they are physically stored in each variable record (the physical values). Virtual values do not apply
when performing a multiple variable access (see Section 2.3.11). Three parameters are specified when performing a
multiple variable read/write.

VariableCount The number of rVariables/zVariables that are being accessed.
VariableList The rVariables/zVariables being accessed (specified by number).
RecordNumbers The record numbers at which the reads/writes will take place. For rVariables the record

numbers must all be the same. For zVariables the record numbers can vary (but for most
applications will all be the same).

Multiple variable access is sensitive to the record variances of the variables being accessed. (Dimension variances do
not apply since full-physical records are being read/written.) If a variable has a record variance of NOVARY, then a
read/write to that variable will always occur at the first record regardless of the actual record number specified (since at
most only one physical record will ever exist). If the record variance were VARY, the reads/writes would take place at
the actual record numbers specified.

For a multiple variable write operation an application must place into a memory buffer each of the full- physical
records to be written. The order of the full-physical records must correspond to the order of the list of variables
specified, and the memory buffer must be contiguous - there can be no gaps between the full-physical records. This
memory buffer is then passed to the CDF library which scans through the buffer writing the full-physical records to the
corresponding variables.

Likewise, for a multiple variable read operation the CDF library places into a memory buffer provided by the
application the full-physical records read. The order of the full-physical records will correspond to the order of the list
of variables specified and the full-physical records will be contiguous. The application must then process the buffer as
needed.

Care must be used when generating and processing the memory buffer containing the full-physical records. If C struct
objects or Fortran STRUCTURE variables are being used, it may be necessary to order the variables being read/written
such that there are no gaps between elements of the structures (assuming you are defining structures containing one
element per full-physical record where an element is a scalar variable or an array depending on the corresponding
variable definition). On some computers the C and Fortran compilers will place gaps between the elements of these
structures so that memory alignment errors are not generated when the elements are accessed. In general, defining the
structures so that "larger" data types are before "smaller" data types should result in no gaps (e.g., the Fortran REAL*8
data type is "larger" than a INTEGER*2, which is "larger" than a BYTE). The list of variables would be adjusted
accordingly.

The variable majority must also be considered when performing a multiple variable read/write since full-physical
records are being accessed. The majority of the values in the full-physical records retrieved from/placed into the

memory buffer must be the same as the variable majority of the CDF.

For example, consider a column-major CDF containing the following three zVariables (as well as others):

53

zVariable Name Data Spcification Dimensionality Variances

zVarl CDF INT2/14% 0:[] T/
zVar2 CDF _CHAR/7 1:[5] T/T
ZVar3 CDF REALS/1 2:[2,4] T/TT

If a Fortran application were to perform a multiple variable read on these three zVariables, it could define a
STRUCTURE to receive the physical records as follows:

STRUCTURE /inputStruct/
REAL*8 zVar3values(2,4)
INTEGER*2 zVarlvalue
CHARACTER*7 zVar2values(5)
END STRUCTURE

Note that because a full-physical record for the zVariable zVar2 is an odd number of bytes it would most likely cause a
gap in the STRUCTURE if not placed at the end (on some computers). An approach that would work on all computers
would be to use EQUIVALENCE statements as follows:

INTEGER*2 zVarlvalue
CHARACTER*7 zVar2values(5)
REAL*8 zVar3values(2,4)
BYTE buffer(101)

EQUIVALENCE (zVar3values,buffer(1))
EQUIVALENCE (zVarlvalue,buffer(65))
EQUIVALENCE (zVar2values,buffer(67))

The EQUIVALENCE statements ensure that the full-physical records will be contiguous. In each of the above
examples, the order of the zVariables would be zVar3, zVarl, zVar2.

C applications must also be concerned with the ordering of full-physical records in the memory buffer. Even if a void
memory buffer is used with type casting to access individual values, the alignment of the values in the memory buffer
is important (on some computers).

Multiple variable writes are performed using the <PUT ,r/zZVARs RECDATA > operation of the Internal Interface.
Multiple variable reads are performed using the <GET ,r/zZVARs RECDATA > operation. The selection of record
numbers is performed using the <SELECT ,r/7zZVARs RECNUMBER > operation.

2.3.20 Variable Pad Values.

Variable pad® values are used in several situations. .

1. When the first value is written to a new record (for records containing multiple values), the other values in that
record will contain the pad value. This also applies to hyper writes if less than the entire record is written. The
unwritten values will contain the pad value.

2. For a variable not having sparse records, when a new record is written that is more than one record beyond the
last record already written, the intervening records will also be written and will contain pad values. This does
not apply to NRV variables because only one physical record actually exists.

5 This notation is used throughout this document. The data type is before the slash and the number of elements is after
the slash. In this case the data type is (CDF INT2) and the number of elements is one (1).
*These were previously known as fill values but were renamed to avoid confusion with the FILLVAL attribute.

54

3. For a variable having the pad-missing style of sparse records (sRecords.PAD), if a record is read from a gap of
missing records, pad values will be returned. The previous-missing style of sparse records (sRecords.PREV)
would cause the previous existing record's values to be returned (unless there is no previous record in which
case pad values would be returned).

4. When reading a record beyond the last record written for a variable, pad values will be returned except if the
variable has the previous-missing style of sparse records. In that case, the last written record's values are
returned (unless there are no written records in which case pad values are returned).

The pad value for a variable may be specified with the Internal Interface. It should be specified before any values are
read from or written to the variable - otherwise the default pad value will be used. The pad value may be changed at
any time (and any number of times) and will be in effect for all subsequent operations. The default pad value for each
data type are shown in Table 2.8.”

Data Type Default Pad Value
CDF BYTE 0

CDF INTI 0

CDF UINTI1 0

CDF INT2 0

CDF UINT2 0

CDF _INT4 0

CDF_UINT4 0

CDF _REAL4 0.0

CDF_FLOAT 0.0

CDF REALS 0.0

CDF DOUBLE 0.0

CDF_EPOCH 01-Jan-0000 00:00:00.000
CDF _CHAR ' " (space character)
CDF UCHAR " " (space character)

Table 2.8 Default Pad Values.

Variable pad values are specified using the <PUT ,r/zZVAR PADVALUE > operation of the Internal Interface. The
pad value being used for a variable can be inquired with the <GET ,i/zZVAR_PADVALUE > operation. If a pad value
has not been explicitly specified for a variable, the default pad value (based on the variable's data type) will be returned
along with the NO PADVALUE_SPECIFIED informational status code. The existence of an explicitly specified pad
value can be confirmed for a variable (without actually inquiring the wvalue) wusing the
<CONFIRM ,1/zZVAR PADVALUE > operation.

2.4 Attributes

CDF attributes are the mechanism for storing metadata. (Variables are used to store data.) A new attribute may be
created in a CDF at any time.

24.1 Naming

Each attribute in a CDF has a unique name. Attribute names are case sensitive regardless of the operating system being
used and may consist of up to CDF_ ATTR_ NAME_ LEN printable characters (including blanks). Trailing blanks,

2 These default pad values can be changed by your system manager when the CDF distribution is built.

55

however, are ignored when the CDF library compares attribute names. "UNITS" and "UNITS" are considered to be the
same name, so they cannot both exist in the same CDF. This was done because Version 1 of CDF padded attribute
names on the right with blanks out to eight characters. When a Version 1 CDF was converted to a Version 2 CDF these
trailing blanks remained in the attributes names. To allow CDF Version 2 applications to read such a CDF without
having to be concerned with the trailing blanks, the trailing blanks are ignored by the CDF when comparing attributes
names. The trailing blanks are returned as part of the name, however, when an attribute is inquired by an application
program.

2.4.2 Numbering

The attributes in a CDF are numbered consecutively starting at one (1) for Fortran applications and starting at zero (0)
for C applications. The CDF library assigns attribute numbers as the attributes are created. Note that there are not
separate lists of global and variable scoped attributes. Only one list of attributes exists in a CDF (containing both
global and variable scoped attributes).

2.4.3 Attribute Scopes

Attribute scopes declare the intended purpose of an attribute. Global scope attributes (gAttributes) describe some
aspect of the entire CDF. Variable scope attributes (vAttributes) describe some property of each variable.

An attribute's scope exists to assist in the interpretation of its entries by CDF toolkit programs and user applications
(e.g., entries of a vAttribute should correspond to variables). The CDF library also places some restrictions on the
operations that may be performed on an attribute of a particular scope.”® These restrictions consist of the following:

1. A gEntry operation may not be performed on a vAttribute.
2. A zEntry or rEntry operation may not be performed on a gAttribute.
3. While in zMode, only zEntry operations may be performed on vAttributes (see Section 2.1.2).

All other operations involving attributes and their entries remain available.

Assumed Scopes

CDF Version 1 did not allow the scope of an attribute to be explicitly declared. This led to ambiguities in the
interpretation of attribute entries in the toolkit programs and user applications. CDF Version 2 does allow the scope of
an attribute to be declared when the attribute is created. To ease the transition from Version 1 to Version 2, CDF
distributions prior to CDF V2.5 contained the notion of assumed attribute scopes. Assumed attribute scopes arose
when the CDF library had to guess the scope of an attribute in a Version 1 CDF (e.g., when the CDFconvert program
converted a Version 1 CDF to a Version 2 CDF). Beginning withCDF V2.5, all assumed attribute scopes are converted
to the corresponding definite scope. When a CDF is read this conversion occurs only in the CDF library - the CDF is
not physically altered. When an existing CDF is written to, each assumed attribute scope detected will be physically
converted to the corresponding definite scope. Note that if this automatic conversion is incorrect, the scope of an
attribute can be corrected using the Internal Interface in an application program or by editing the CDF with the CDFedit
program.

2.4.4 Deleting

 This was not necessarily the case in previous releases of CDF. These new restrictions should not, however, cause any
conicts with existing applications.

56

An attribute may be deleted from a CDF. Deleting an attribute also deletes the corresponding entries. The disk space
used by the attribute definition and the corresponding entries becomes available for use as needed by the CDF library.
Also, the attributes which numerically follow the attribute being deleted are renumbered immediately. (Each is
decremented by one.) Attributes are deleted using the <DELETE ,ATTR > operation of the Internal Interface.

2.4.5 Attribute Entries

Attribute entries are used to actually store metadata. Each attribute in a CDF may have zero or more associated entries.
For vAttributes two types of entries are supported: rEntries and zEntries. rEntries describe some property of the
corresponding rVariable, and zEntries describe some property of the corresponding zVariable. Note that an entry does
not have to exist for each variable in the CDF. For gAttributes only one type of entry is supported and is referred to as a
gEntry. The gEntries are independent of anything else in the CDF and have meaning only to the application. Note that
gEntries are sometimes referred to simply as "entries."

Accessing

The Standard Interface deals exclusively with rEntries (for vAttributes) and gEntries (for gAttributes). No access to
zEntries is provided. The Internal Interface may be used to access any type of attribute entry.

Numbering

The rEntries and zEntries for a vAttribute and the gEntries for a gAttribute are numbered starting at one (1) for Fortran
applications and starting at zero (0) for C applications. For vAttributes the entry numbers are in fact the variable
numbers of the variables being described. rEntries correspond to rVariables and zEntries correspond to zVariables.
For gAttributes the gEntry numbers have meaning only to the application.

The entry numbers used need not be contiguous (as are variable and attribute numbers). An application may choose to
write any combination of entries for a particular attribute (keeping in mind that the entry numbers used for a vAttribute
correspond to the existing variables).

Data Specification

Each entry for an attribute has a data specification and an associated value. A data specification consists of a data type
and a number of elements of that data type. The supported data types are described in Section 2.5. The entries for an
attribute may have any combination of data specifications.

For character data types the number of elements is the number of characters in the string. For example, if a gEntry
value for a gAttribute named TITLE were "Example CDF Title." (not including the double quotes), the data type would
be CDF_CHAR, and the number of elements would be 18 (a character string of size 18).

For non-character data types the number of elements is the size of an array of the data type. For example, if a zEntry
value of a vAttribute named RANGE were [100.0,900.0], the data type would be CDF_REALA4, and the number of
elements would be two (an array of two values).

Deleting
An entry may be deleted from an attribute. The disk space used by the entry becomes available for use as needed by
the CDF library. There is no renumbering of entries (as with deleting a variable or attribute). Entries are deleted using

the <DELETE ,gENTRY >, <DELETE ,rENTRY >, and <DELETE ,zZENTRY > operations of the Internal
Interface.

57

2.5 Data Types

CDF supports a variety of data types consistent with the types available with C and Fortran compilers on most
computers. All data types are based on an 8-bit byte. The size of an element of a data type is the same regardless of
the computer/operating system being used. The <GET ,DATATYPE_SIZE > operation of the Internal Interface may
be used to inquire the size in bytes of a particular data type.

2.5.1 Integer Data Types

CDF BYTE 1-byte, signed integer.
CDF_INTI1 1-byte, signed integer.
CDF _UINT1 1-byte, unsigned integer.
CDF INT2 2-byte, signed integer.
CDF _UINT2 2-byte, unsigned integer.
CDF_INT4 4-byte, signed integer.
CDF_UINT4 4-byte, unsigned integer.

NOTE: When using C on a DEC Alpha running OSF/1, keep in mind that a long is 8 bytes and that an int is 4 bytes.
Use an int with the data types CDF_INT4 and CDF_UINT#4 rather than a long.

NOTE: When using C on a PC under MS-DOS, keep in mind that an int is most likely 2 bytes and that a long is 4
bytes. Use a long with the data types CDF_INT4 and CDF_UINT4 rather than an int.

2.5.2 Floating Point Data Types

CDF REAL4 & CDF FLOAT 4-byte, single-precision floating-point.
CDF_REAL8 & CDF DOUBLE 8-byte, double-precision floating-point.

A special case exists with respect to the value -0.0 (negative floating-point zero). This value is legal on those
computers that use the IEEE 754 floating-point representation (e.g., most UNIX-based computers and the PC) but is
illegal on VAXes and DEC Alphas running OpenVMS. Attempting to use -0.0 will result in a reserved operand fault on
a VAX and a high performance arithmetic fault on a DEC Alpha running OpenVMS. A warning is returned whenever -
0.0 is read by an application on a VAX or DEC Alpha running OpenVMS. The CDF library can be put into a mode
where -0.0 will be converted to 0.0 when detected (see Section 2.1.2). If -0.0 is not being converted to 0.0, the CDF
toolkit programs are designed to display -0.0 in all cases. This includes those computers that normally suppress the
negative sign.

2.5.3 Character Data Types

CDF_CHAR 1-byte, character.
CDF_UCHAR 1-byte, unsigned character.

Character data types are unique for variables in that they are the only data types for which more than one element per

value is allowed. Each variable value consists of a character string with the number of elements being the number of
characters. More than one element is allowed for any of the data types when dealing with attribute entries.

58

254 EPOCH Data Type
CDF_EPOCH 8-byte, double precision floating point.
The CDF_EPOCH data type is used to store time values referenced from a particular epoch. For NSSDC applications
that epoch is 01-Jan-0000 00:00:00.000.” CDF_EPOCH values are the number of milliseconds since the epoch. The
standard format used to display a CDF_EPOCH value is
dd-mmm-yyyy hh:mm:ss.ccc
where dd is the day of the month (01-31), mmm is the month (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep,
Oct, Nov, or Dec), yyyy is the year (0000-9999) hh is the hour (00-23), mm is the minute (00-59), ss is the
second (00-59), and ccc is the millisecond (000-999).

Functions exist that parse, encode, compute, and decompose CDF_EPOCH values. These functions are described in the
CDF C Reference Manual for C applications and in the CDF Fortran Reference Manual for Fortran applications.

2.5.5 Equivalent Data Types

Certain data types are considered equivalent with respect to their representation in memory and in a CDF. Table 2.9
shows the groups of equivalent data types.

CDF_CHAR CDF_INT2 CDF_INT4 CDF_REAL4 CDF_REALS
CDF_UCHAR CDF_UINT2 CDF_UINT4 CDF_FLOAT CDF_DOUBLE
CDF_INTI1 CDF_EPOCH
CDF_UINTI

CDF BYTE

Table 2.9 Equivalent Data Types

Note that while the signed and unsigned forms of a data type are considered equivalent by the CDF library, they must
be correctly interpreted by an application to produce the desired results.

2.6 Compression Algorithms

Several compression algorithms are supported by the CDF library. Selecting the proper algorithm to use will depend on
the characteristics of the data being compressed. Experimentation with the available algorithms on the CDF or variable
being compressed will also be necessary. The following sections describe each compression algorithm, any associated
parameters, and the types of data for which they are appropriate.

2.6.1 Run-Length Encoding

¥ T know what you're thinking. The year 0 AD never existed. If it makes you feel better, think of the epoch year as 1
BC (or simply year 0) rather than 0 AD. Also, year 0 is considered to be a leap year.

59

The run-length encoding compression algorithm, RLE_COMPRESSION, takes advantage of repeating bytes in the
data. Currently, only the run-length encoding of zeros (0's) is supported. RLE_COMPRESSION has one parameter
which must be set to RLE OF ZEROs. The notation RLE.O is used for this type of RLE compression.

2.6.2 Huffman

The Huffman compression algorithm, HUFF_COMPRESSION, takes advantage of the frequency at which certain byte
values occur in the data. A sequence of bytes that contain a high percentage of a limited number of byte values will
compress better than if each byte value occurs with equal probability. HUFF COMPRESSION has one parameter
which must be set to OPTIMAL _ENCODING TREES.** The notation HUFF.0 is used for this type of HUFF
compression.

2.6.3 Adaptive Huffman

The adaptive Huffman compression algorithm, AHUFF COMPRESSION, also takes advantage of the frequency at
which certain byte values occur in the data. AHUFF _COMPRESSION is very similar to HUFF_ COMPRESSION and
generally provides slightly better compression. AHUFF_COMPRESSION has one parameter which must be set to
OPTIMAL ENCODING_TREES. The notation AHUFF.O is used for this type of AHUFF compression.

2,64 GZIP

The Gnu ZIP compression algorithm, GZIP_ COMPRESSION, uses the Lempel-Ziv coding (LZ77) taking advantage of
common substrings within the data. Significant compression occurs over a wide variety of data
sets.GZIP_ COMPRESSION has one parameter which may be set to a level value in the range from 1 (one) to 9 (nine).
1 provides the least amount of compression and executes the fastest. 9 provides the most compression but executes the
slowest. Levels between 1 and 9 allow for a trade-off between compression and execution speed. The notation
GZIP <level> is used for GZIP compression where <level> is a value from 1 to 9. For example, GZIP.7 specifies a
level of 7.

NOTE: GZIP compression is disabled for PCs running 16-bit DOS/Windows 3.x due to their memory constraint.

3 OPTIMAL ENCODING TREES causes each buffer of data to be scanned for the best possible compression. An
alternative method would be to scan the first buffer being compressed and then use the same byte value frequencies for
subsequent buffers.

60

Chapter 3

Toolkit Reference

3.1

Introduction

The CDF toolkit is a set of utility programs that allow the creation, analysis, and modification of CDFs. The following
sections will describe the use of these programs.

NOTE: Java version of the CDF toolkit' is available starting with CDF 2.7, and it is only available for the Unix

3.1.1

platform since the CDF toolkit provided for the Window 95/98/NT and Macintosh platforms are already
Graphical User Interface (GUI) based programs.

VMS, UNIX & MS-DOS

Each program is executed at the command line (or may be executed from within your applications using the methods
provided by the operating system being used). The following rules apply to the command line syntax:

1.

Parameters are required unless noted otherwise. Parameters are shown in angle brackets (<>'s) in the sections
which describe each toolkit program.

Qualifiers are optional unless noted otherwise.

. Qualifiers can be truncated as long as no ambiguities result.

Optional parts of a command are shown in brackets ([]'s) in the sections which describe each toolkit program.

A vertical line (]) is used to separate two or more options in those cases when only one of the options may be
specified.

Wildcard characters are allowed in CDF names to allow more than one CDF to be specified (where
appropriate). Wildcard characters may be used in the CDF name but not the directory path portion of a
specification. The wildcard characters supported are similar to those available on the operating system being
used.

UNIX: If a CDF specification is to contain a wildcard character, the entire specification must be
enclosed in single quote marks (e.g., '/disk3/sst*").

' CDFedit and CDFexport are not yet available. You can still use the Curses-based tools from the distribution.

61

7. On VMS/OpenVMS systems, qualifiers begin with a slash (/). On UNIX and MS-DOS systems, qualifiers
begin with a hyphen (-).

NOTE: You can override the default notation by specifying a slash or hyphen as the first parameter/qualifier
immediately after the program name. When this is done, you may have to adjust the syntax used as follows:

(a) When the slash notation is used on UNIX systems, character string will be necessary in the file names (e.g.,
specify "//disk1//CDFs" rather than "/distl/CDFs"). Also, double quote marks are required around options
enclosed in parenthesis.

(b) When the slash notation is used on MS-DOS systems, double quote marks may be needed around entire
qualifier/option combinations.

8. On MS-DOS systems the executable names may be different from the names shown in this chapter (file names
are limited to 8.3 characters). Where the names differ, the actual name will be noted.

If you add the directory containing the toolkit executables to your path, you will have to use the 8-character (or
fewer) names. If you use a command aliasing program, you could specify the aliases to be the names shown in
this chapter with each pointing to the corresponding executable file name.

9. On UNIX systems all parameters/qualifiers entered at the command line are case sensitive. On VMS,
OpenVMS, and MS-DOS systems parameters/qualifiers are not case sensitive. Note that variable names are
always case sensitive regardless of the operating system being used.

10. If an option contains blanks, it will generally be necessary to enclose the entire option in double quote marks.
11. On UNIX systems, it may be necessary to execute "stty tab3" before running CDFedit or CDFexport.

12. Some of the toolkit programs have a "paging" qualifier. Paging is not allowed if the output of the program has
been directed to a file.

13. Most toolkit programs have an "about" qualifier that can be used to determine the CDF distribution from
which the program came. On the Macintosh, an "about" selection is available on the "apple" pull-down menu.

In the following sections the available qualifiers and options for each of the toolkit programs will be presented. The
default settings for these qualifiers and options will not be shown since they can be configured for a particular CDF
distribution. Use CDFinquire to determine these defaults.

On VMS/OpenVMS systems you should have executed the command procedure named DEFINITIONS.COM before
running any of the CDF toolkit programs. This will define the necessary logical names and symbols. Your system
administrator knows the location of DEFINITIONS.COM.

On UNIX systems you should have source'd (or equivalent) the script file named definitions.<shell-type> where
<shell-type> is the type of shell you are using: C for the C-shell (csh) and tcsh, K for the Korn (ksh), BASH, and
POSIX shells, and B for the Bourne shell (sh). This will define the necessary environment variables and aliases. Your
system administrator knows the location of definitions.<shell-type>.

3.1.2 Macintosh
Each toolkit program is started by double-clicking on the appropriate icon. A dialog box will be displayed in which the
parameters and qualifiers needed to execute the program are specified. When the parameters/qualifiers have been

selected, clicking on Enter causes the initial execution to begin.

For the programs that use a full-screen interface (e.g., CDFedit and CDFexport), a "pasteboard" window is opened in
which the program displays menus, prompts, etc. When the "pasteboard" window is closed (by exiting the execution),

62

the parameters/qualifiers dialog box is redisplayed. A new set of parameters/qualifiers may be selected and executed or
the program may be terminated.

For the programs that simply output to the screen (e.g., CDFstats, CDFcompare, and CDFinquire), a "standard output"
window is opened in which the output will be written. When the execution completes, the "apple" and File menus are
available in the menu bar. Under the File menu the following commands are available:

Execute Causes the parameters/qualifiers dialog box to be redisplayed. A new set of parameters/qualifiers
may be selected and executed. The output from each execution is appended to the existing output.

Save Saves the current output to a file named <program-name>.so where <program-name> is the name
of the program.

Save as... Saves the current output to the file specified in the standard output file dialog box that will be
displayed.

Clear Clears the current output.

Quit Terminates the program.

The vertical scroll bar as well as the page up and page down keys may be used to scroll through the output. When a
large amount of text has been written, a dialog box may be displayed indicating that an output overow is about to occur.
The output may be saved to a file before being cleared (to allow the execution to continue).

The parameters/qualifiers dialog box for each program uses the standard Macintosh controls. Edit fields are used to
enter text values (e.g., the file name of a CDF). Leaving an edit field blank is allowed in some cases (which will be
noted). Check boxes are used to enable or disable a qualifier. An X in the check box indicates that the qualifier is
enabled. Radio buttons are used in groups to allow one of several options to be chosen for a qualifier. Generally, only
one of the radio buttons in a group may be selected.

Several types of files are specified to the toolkit programs. These consist of CDFs, skeleton tables, and output files. In
a parameters/qualifiers dialog box edit field or a toolkit program's prompt field a file must be specified using a full or
partial file name. Full file names consist of a volume name (which is also the corresponding folder name), zero or
more folder names, and finally the file name (with or without an extension). These are all separated by semi-colons
(:'s). Partial file names do not start with a volume name and may start with or without a semi-colon. If a partial file
name starts with a semi-colon, one or more folder names will follow, each separated by a semi-colon, followed by the
file name. The first folder must exist in the currently selected folder. If a partial file name starts without a semi-colon,
then only a file name should be present and the file is (or will be) located in the currently selected folder. To ease in
the selection of files in parameters/qualifiers dialog boxes, the corresponding edit fields are followed by a Select
button. When clicked on, a standard input/output file dialog will be displayed in which a file may be specified. When
that has been done the file name of the selected file will appear in the edit field.

A directory/wildcard® specification is allowed for some of the CDF specifications required by the toolkit programs.
This allows more than one of the CDFs in a directory to be selected. If a CDF specification ends with a folder name,
then all of the CDFs in that folder will have been specified. A trailing semi-colon is not required (but may be present).
The supported wildcard characters are the asterick (*) which matches zero or more characters and the question mark (?)
which matches exactly one character.

In the following sections the available qualifiers and options for each of the toolkit programs will be presented. The
default settings for these qualifiers and options will not be shown since they can be configured for a particular CDF
distribution. When a program is started, the settings shown in the initial parameters/qualifiers dialog box are the
default qualifiers for your CDF distribution.

? Macintosh folders are equivalent to the directories discussed here.

63

NOTE: You may find it necessary to increase the partition size available to a toolkit program when dealing with very
large CDFs. You can do this by editing the "current size" field of the window opened when using the Get Info item of
the File menu (from the Desktop menu bar) on the toolkit executable.

3.1.3 Windows NT/95/98

Two excutable programs (i.e. CDFfsi.exe & CDFso.exe) are provided as part of the standard