CDF_ATTPUT
==========

The CDF_ATTPUT procedure writes an attribute entry to a Common Data Format file,
or attaches an attribute to a CDF variable. If the specified entry already
exists, it is overwritten.

Examples

Example 1

Id= CDF_CREATE('foo', /SUN_ENCODING, /HOST_DECODING, $

 /ROW_MAJOR) ; no dimensions.

dummy= CDF_VARCREATE(id, 'Var1', /CDF_INT4, /REC_VARY)

v2= CDF_VARCREATE(id, 'Var2', /CDF_FLOAT, /REC_NOVARY)

dummy= CDF_ATTCREATE(id, 'Title', /VARIABLE)

global_dummy = CDF_ATTCREATE(id,'Date',/GLOBAL)

dummy= CDF_ATTCREATE(id, 'Att2', /VARIABLE)

CDF_ATTPUT, id, 'Title', 'Var1', 'Temperature at surface'

CDF_ATTPUT, id, 'Title', v2, 'Time of recording'

CDF_ATTPUT, id, 'Date',1,'July 4, 1996'

CDF_ATTPUT, id, 'Att2', 'Var2', FINDGEN(10)

; Rename the "Att2" attribute to "Attribute2":

CDF_ATTRENAME, Id, 'Att2', 'Attribute2'

; Verify the attribute number (zero-based) of Attribute2

PRINT, CDF_ATTNUM(id, 'Attribute2')

; Close the CDF file. This file is used in the CDF_ATTGET example.

CDF_CLOSE, id

IDL Output

See Additional Examples for more on using CDF_ATTPUT.

Syntax

CDF_ATTPUT, Id, Attribute, EntryNum, Value [, /CDF_EPOCH | /CDF_DATATYPE*]
 [, /ZVARIABLE]

Arguments

Id

The CDF ID, returned from a previous call to CDF_OPEN or CDF_CREATE.

Attribute

A string containing either the name or number of the attribute to be written.

EntryNum

The entry number. If the attribute is variable in scope, this is either the
name or number of the variable the attribute is to be associated with. If the
attribute is global in scope, this is the actual gEntry. It is the user’s
responsibility to keep track of valid gEntry numbers. Normally gEntry numbers
will begin with 0 or 1 and will increase up to MAXGENTRY (as reported in the
GET_ATTR_INFO structure returned by CDF_CONTROL), but this is not required.
The EntryNum for the variable-scoped attribute must point to an existing
variable.

Value

The value(s) to be written.

Keywords

CDF_EPOCH

This keyword sets Value (of IDL's double type) to type CDF_EPOCH in the
CDF file. If this keyword is not set, Value is set to type CDF_DOUBLE.

Note: If the CDF_EPOCH keyword is set and the passed value is of IDL's int64 type, it is
written as CDF_TIME_TT2000 data type. Without this keyword, the int64
value is written as CDF_INT8 data type.

CDF_DATATYPE*

This is a defined value indicated what the actual CDF data type the entry is
written to. The defined value is one of the following: CDF_BYTE, CDF_CHAR,
CDF_DOUBLE, CDF_EPOCH, CDF_FLOAT, CDF_INT1, CDF_INT2, CDF_INT4, CDF_INT8,
CDF_LONG_EPOCH, CDF_REAL4, CDF_REAL8, CDF_TIME_TT2000, CDF_UCHAR, CDF_UINT1,
CDF_UINT2, CDF_UINT4. To use this form, the entry Value has to have the
matching IDL data type. Otherwise a mis-matched error could occur. This is
a more specific way to write out the entry of the intended type to
avoid the potential type mistake. The aforementioned CDF_EPOCH will still
work, as specified.

ZVARIABLE

If EntryNum is a variable ID (as opposed to a variable name) and the variable
is a zVariable, set this flag to indicate that the variable ID is a zVariable
ID. The default is to assume that EntryNum is an rVariable ID.
Note: the attribute must have a scope of VARIABLE_SCOPE.

Additional Examples

Example 2

The following example uses the Global attribute “MODS” to keep track of the
modification history of a CDF file named mods.cdf.

id = CDF_CREATE('mods.cdf', /CLOBBER)

cid = CDF_ATTCREATE(id, 'MODS', /GLOBAL_SCOPE)

CDF_ATTPUT, id, cid, 0, 'Original Version'

CDF_CLOSE, id

; Next, reopen the CDF file and make modifications:

id = CDF_OPEN('mods.cdf')

CDF_CONTROL, id, ATTRIBUTE='MODS', GET_ATTR_INFO=ginfo

;Use CDF_CONTROL to get the MAXGENTRY used.

CDF_ATTPUT, id, cid, ginfo.maxgentry+1,'Second Version'

;Insert the new gEntry at MAXGENTRY+1.

CDF_CLOSE, id

; Reopen the CDF file again and make more modifications:

id = CDF_OPEN('mods.cdf')

CDF_CONTROL, id, ATTRIBUTE='MODS', GET_ATTR_INFO=ginfo

CDF_ATTPUT, id, cid, ginfo.maxgentry+1, 'Third Version'

CDF_CLOSE, id

;Reopen the CDF file again and make a modification in the

;MAXGENTRY + 2 spot (skipping an entry number).

id = CDF_OPEN('mods.cdf')

CDF_CONTROL, id, ATTRIBUTE='MODS', GET_ATTR_INFO=ginfo

CDF_ATTPUT, id, cid, ginfo.maxgentry+2, 'Fourth Version'

; Now, examine the CDF file to review its modification history.

; Since the gENTRY numbers have a gap in them, we can check each

; attribute with the CDF_ATTEXISTS function. This is a good idea

; if you do not know for certain that the attribute entries are

; serially numbered.

CDF_CONTROL, id, ATTRIBUTE='MODS', GET_ATTR_INFO=ginfo

 FOR I=0, ginfo.maxgentry DO BEGIN

 IF CDF_ATTEXISTS(id, cid, I) THEN BEGIN

 CDF_ATTGET, id, cid, I, gatt

 PRINT, I, gatt, FORMAT='("Attribute: MODS (gENTRY #",i1,") = ",A)'

 ENDIF ELSE BEGIN

 PRINT, I, FORMAT='("Attribute: MODS (gENTRY #",i1,") $

 Does not exist")'

 ENDELSE

 ENDFOR

CDF_CLOSE, id

IDL Output

Attribute: MODS (gENTRY #0) = Original Version

Attribute: MODS (gENTRY #1) = Second Version

Attribute: MODS (gENTRY #2) = Third Version

Attribute: MODS (gENTRY #3) Does not exist

Attribute: MODS (gENTRY #4) = Fourth Version

Version History

Pre 4.0

Introduced

© 2015 Exelis Visual Information Solutions, Inc., a subsidiary of Harris
Corporation. All Rights Reserved. This information is not subject to the
controls of the International Traffic in Arms Regulations (ITAR) or the Export
Administration Regulations (EAR). However, this information may be restricted
from transfer to various embargoed countries under U.S. laws and regulations.

