CDF

Visual Basic Reference Manual

Version 3.7.1, February 20, 2019

Space Physics Data Facility
NASA / Goddard Space Flight Center

Space Physics Data Facility
NASA/Goddard Space Flight Center
Greenbelt, Maryland 20771 (U.S.A.)

This software may be copied or redistributed as long as it is not sold for profit, but it can be incorporated into any other
substantive product with or without modifications for profit or non-profit. If the software is modified, it must include
the following notices:

- The software is not the original (for protection of the original author’s reputations from any problems introduced
by others)

- Change history (e.g. date, functionality, etc.)

This Copyright notice must be reproduced on each copy made. This software is provided as is without any express or
implied warranties whatsoever.

Internet — gsfc-cdf-support@]lists.nasa.gov

Contents

1 Compiling....."...........'.....'.....'...........'................."..."...........'...........'.........."........ 1
L1 NAMESPACES ...ttt ettt ettt ettt et s et e s e st e et e st e e esaeeanesa e e s e e bt e s e eaeea st eae et e eueesseennesseennesaeennesueennesanennens 1
1.2 BASE CIASSES ..everueruirtinieriintietentest ettt ettt et ea e at e bt st e bt s b sae et e b e s b e st et et et et et et e st eaeeae e bt ea e b e e bt sh et be et et et et ennenee 1
1.3 Compiling With COMPIIET OPLIONScveuviuiiiiieniiirieeiteenerteet sttt ettt ettt ettt et sae b st sbeebesbesaesae b eaeneennene 2
T4 SAMPIE PIOZIAINIScveviriiiitetentetetet ettt ettt et et et eb s b sae et be st e st et et e s esteae et e st eaeeaeeaeeaeebe e bt sb et e s beseena e b enseneennenee 3

2 Programming INTErfacCeccoceiicicsnnicnicnnicsssnnncnssnsecssssssessssssscsssssesssssssssssnsssssss D

2.1 T RETEIENCINGeviiiiiiiiieieete ettt ettt et ettt e bbbt s bt sae st b sa et et e e e eneene 5
2.2 COMPALDIE TYPES ...cveruiruiriieteriirtentitentetetet ettt et et e b et sbe st be s e sttt e e et eat et et eatestebtebeebesbeshe st e besae st ensensenteneenne 5
2.3 CDFCONSIANES.....c.veevieieetieeeteetesieete st et ettt et eat e eeeesteese e s st e e e saeesse s st essesseesseeasenseeasesseenee st emnesatennesaeennesueennesanennens 6
24 CDF STAMUS ..uveeutieiieiieieie et ettt se et sttt et e et et et et e s st e e e s et esae s st esseea e e st e e a e e st e ae e n e e aeesa e eaeesatennesaeesaesaeenesanennens 6
2.5 CDEF FOIMALSoouiiiiiiieiieieieetere ettt ettt ettt et e ae e st eae s a e ene e a e e s e e as et e e ae e st esee st emnesatennesaeennesaeennesanennens 6
2.0 CDEF DaAta TYPES ..cueeverueruiriietentertentetentetetetestestetteutese et e e bt sae st eebesae st et et et et estemteseentestebtebeebesbesbe st e benae st et ensensensenne 6
2.7 DAt ENCOGINGZSeoveevirieriirtietinterteet ettt ettt ettt ettt st st b e s b st ettt et et et e st eae e st ebesbe e bt sbesae st e besae st et eseneeneenne 8
2.8 DAt DECOUINGS ...cveeverueriiriietintertertctentetet ettt ettt ettt be bbb s b et et e b et e st et e st eat e st ebeeb e e bt ebeshe et e benae st et eneneeneenee 9
2.9 Variable MaJOTItICSceuerueruirrerrirtirtetentetetet et et ettt et ebe sttt et s b st et e be s et eat et e st eseemtestebeebesbesbeebeebesae st entensenseneen 10
2.10 Record/DIimension VATIANCEScc.couerterterterteuteteteueetteiestesteesesseseessessessessessenseneenteseeseesessessesseesessessessensensensenses 11
211 COMPIESSIONS ..oeeeveuieteriertintentertentetentetenteteeeseeatesteseeseebesbe st eebesse sttt e sensenteatenteneententesteseebeesesatebeebesaestentensensensen 11
202 SPAISEIIESS....cuvivieurieteete ettt ettt ettt e et e ettt e sa et ea et sa e esa e satesa e s ae e n e e e R e e an e n e ean ettt e et e e s e eneenneseeennenae 12

20121 SPArse RECOTASc.ueeuiiiiiiiiieieeeeetet ettt sttt et st s e eane s eenesaeeneeanesneeae 12

20122 SPAISE AITAYS...ccueiuieieriieteeiieteet ettt et et et st e et st e st et e bt e ane st e easesreesa e eueesaesaee st smnesneennenseennesueenneeunenreas 12
2,13 AIIDULE SCOPES ...ceveviiirtietiriertietetent ettt ettt ettt sb et b s b st et b et et et et et e st eae e st ebe e bt e bt sateb e benae st et esenseneen 12
2.14 REAA-ONLY MOGES....ccueruiriiniiiiirtiteieiet ettt ettt ettt sttt sttt ettt et et et et e st e st ebe e bt e bt saeeb e besae st ebenseneeneen 13
205 ZIMIOAES ..ttt ettt ettt st h bt b e ettt ettt et e a e e ae Rt e b e bt bt ea e eb b b st et e b e e eneen 13
2,16 -0.0 10 0.0 MOAESeovimiiitiitentetetet ettt ettt ettt sttt st et ettt ettt ettt eb e bt bt sa e eb b sbe st et e b e e eneen 13
2,17 OPerational LIMILSco.eruiririrtintentertetetetetet ettt ettt ettt ettt ettt et et et e bt e bt e bt saeeb e besae st ebensenseneen 13
2.18 Limits of Names and Other Character SIIINESc.ceceeveriririneriinenierieteieteeetee ettt ere e see et sseneenees 14
2.19 Backward File Compatibility With CDF 2.7c.ccccoeitrimiririiiininieseetcteteeetee ettt st nees 14
220 CRECKSUM ...ttt ettt et et st e e st a e st ea e s e e beean e s e ean et e e s e bt e s eeneennesaeennenae 15
221 Datad ValIAAtON.....coeeeiiriieiirierierteiert ettt ettt ettt b e st ettt et et e e et e st e st et e bt e bt e bt sa et besbe st et e b eneeneen 16
222 B-BYE INIEEET ..ottt et ettt e n et ne e et nnesae 17
223 LD SECONAS ..ottt ettt ettt et st st st s r e ettt n e s neenn e et ennenae 17

3 Understanding the Application INterfaceccccocvvneeccccscvcnnnecccsscsnnnscccssssennees 19

3.1 ATZUMENES PASSING ...eoveiuiiiiiiiititiiertete ettt ettt ettt ettt st b ettt et et e st et e bt e bt e bt s bt sa e b b et e tennene 19
32 Multi-Dimensional ATTAYS.......cceeeruirtirerertetertertetetetettete ettt ettt st b et et esse st et eseesteseebesbesbesteebesbesaesensensens 22
3.3 Data TyPe EQUIVAICNLco.eruiriiriiiiirtiteiertctetetet ettt sttt et et ettt ettt ebe e b s bbb e sbesa et esennens 22
34 FIXEA STALBIMEILeuiuiiuieiiitietiet ettt ettt ettt ettt b e bbbt bt s bt sttt et et et et e st eseeatebtebeebesbesbeebenbesaetensennens 22
3.5 EXCeption HAanAIINGcccooiriiriiiiiiiriiiieneetetet ettt ettt ettt ettt e b e bt bbb b sa et benene 23
3.6 DIimensional LIMITALIONSco.eeterueruirtirtenienteterteteteetetetteteeie sttt st st sttt st et ease e et eseeatebeebesbesbesbeebesbesaessensennens 23

4 Application INLErfaceccceevvcniicicsnnicsssnricscsnsicsssssncssssssessssssscsssssssssssssssssssssscs 25

4.1 Library INFOTMALIONcc.eoveieiiiiieiieiieierte ettt ettt et ettt ettt bbb sttt et et et et e st e st e st ebeebeebesbesb e beseneeneen 26
4.1.1 CDFZetDAtaATYPESIZE ...cueeueeuiriiriiriintinterieetetet ettt ettt ettt sttt st sttt se ettt e st e st e st eseebe s bt sae st e benaenaesenee 26
4.1.2 CDFgetLibraryCOPYIIZRLcceoiriiriiiiirinieientetetetetet ettt ettt et ettt ettt sbe bbb st besae e ae e 27
4.1.3 CDFZELLADIArY VEISIONcueeueriiriiriintintertentetetesteteteateteetteue sttt sbesae st b esae st et et et eseeaeesteseebeebesbesteebenaenaensenee 27
414 CDFZELSTAUSTEXL ..ottt sttt ettt et sa e e s et esne s aeene st esnesse e nesaneneeunenneas 28

4.2 CDF et et a et e e ettt et a e e se e e ne s ae e nesaeeneeae e neeaeeneeae 29

421 CDEFCIOSE -ttt sttt ettt et ettt ettt a s bbbt ettt e b et ettt a e at e st eh e bbbt et be e et enee 29
4.2.2 CDECIOSECDE ...ttt ettt ettt ettt st b bt et b ettt et at e st ebe e bt e b sbe st e benaenaenaenee 30
423 CDECIEALE ...ttt ettt ettt ettt ettt s et st st ettt e et e ee e st e e e saeemnesaeesnesaeeanesaeenesuneneennenneeas 31
424 CDECIEAECDEcouiiiiiiieteie ettt ettt ettt e a e e sa e st e s e st enesa e nesaneneeanennens 32
425 CDEFARIELE ...ttt ettt ettt ettt st b bt st ettt et et et e st eateaeebeeb e bt sb e st b e e et enee 33
4.2.60 CDEFARICLECDEootiiiiieiieiieieeieeteet sttt ettt ettt st b ettt b e ettt et eae e st ebeeb e e b sbe st e benaenaensenee 34
A.2.77 CDEFAOC ... ittt ettt ettt et ettt b e bt bt ettt e b et et ettt eae st eb e bbbttt benae et nee 35
A.2.8 CDFEITOT ..cuuititeiteteteetet ettt ettt sttt et ettt et eb e bt e bt s bbbt s ettt e b e e et et et e st eae e st eueebe e bt sbe st e benaenaensenee 36
4.2.9 CDFZEICACRESIZEc.ccueiuieiiriiriieieeteetet ettt ettt ettt sttt ettt ettt sbeeb e e b sae st b e e e saenaenee 37
4210 CDEFZECRECKSUML. ...c..eiiiiiiiiieiieiieiereee ettt ettt ettt ettt et sa e e e s st esne s et enesaeesnesseenesaneneeunennens 37
4.2.11 CDFZEtCOMPIESSIONeoueeueriiriirtintintertentetetetetestenteseeseesesteetesbesaestessessensensensentestestestentesessesbestessensensensenee 38
4.2.12 CDFgetCompressiONCaChESIZEcc.coviriirieriinieieieeeieeiteerieet ettt ettt ettt ebe bt sae st be e e e e 39
4.2.13 CDFgetCompressiOnIn occcceieiriririinieriiietetete ettt ettt ettt et sae st be b e e e 40
4.2.14 CDFZECOPYTIZNE ..ueiutiuiiiiiiieiintieieet sttt ettt ettt ettt st b st s e ettt sa et et et e st eat e st eueeb e e bt sae st e benaenaensenee 41
4.2.15 CDFZEDECOMIMNEeeueiuieuieiiniieiirtietitestestertet ettt ettt ettt sttt s e st ae et et et e st e st e st sbeeb e e bt sae st e benaenaensenee 42
4.2.16 CDFZEENCOINGueoutiuiiiiiiiriiniiniietintertestetest ettt ettt sttt ettt se et et ettt et ebe bt e besae st e benae e nsenee 42
4.2.17 CDFZEtFIIEBaCKWAIeouiiiiiiiriiriiicrertetetetetetete ettt sttt ettt ettt sae bbbttt ae e ne e 43
4218 CDEFZEIFOIMAL ...c..eoutiiiiiiieiieiieterte ettt sttt ettt ettt et e e saeeane s et esnesaeesnesaeesnesaeennesanenneeanennens 44
4219 CDFgetLeapSecondLastUpPdatedcoceeveriiiiiiiiiiniiiieieiieeete ettt e ne e 45
4220 CDFZEMAJOTILY ...eeveuriureuieiirieriertietintestestestessestetetesteseeteeuessesbe s bt sae st e s ese s et emt et eneeatesteseebeebesaestenbensenaensenee 46
4221 CDFZENAIMEcviuteuiiiieiieiietieteeteet et ste sttt ettt et e bt e bt e bt bt et e e bt s et st e b e s e e et et emeesteatesteseebeebesae st enbenaenaensenee 46
4222 CDFgetNegtOPOSIPOMOUEcoveetiriiriiiiieieieteteteieeiteie sttt sttt ettt ettt et et sbe bbbt st be e saenenee 47
4223 CDFgetReadONIyMOMEcoueeueriiriiiiriiniiienteteteteteieei ettt sttt ettt et ettt et sbe bbbt st be e saeaenee 48
4224 CDFgetStagelacCheSizZe.couvvuiriiriiriiriirieieictetetete ettt sttt ettt ettt ebe bbbt st be b e ne e 49
4.2.25 CDFZEtVALIAALEcueeuiiuieiieiiriinieeieet sttt ettt ettt sttt ettt et ettt eat et sbeeb e e bt sbe st e benaenaensenee 50
42260 CDFZEEVETSION ...ttt sttt et ettt es et e bt bt et s bt s et st et et et et et et estententebeebeebesaestenbenaenaensenee 50
4227 CDFZEIZIMOUE ..ottt ettt ettt ettt et et b s bt sttt et se et et et e st eat e st sbeebe e bt sbe st e benaenaensenee 51
4.2.28 CDFINQUITE ...ttt sttt st sttt ettt e st bt e bt e bt sbe e b e bt s et st e b e s e e et easemeesteatestebeebeebesbe st e benaenaensenee 52
4229 CDFINQUITECDEcoiiiiiiiiiiini ettt ettt ettt et et ettt sbe bt e bt sae st et e aenaesenee 53
4230 CDFOPEN.c..cuuiiiiiiieteiteiteiteitettet ettt sttt ettt et bt b e bt s bt eb bt s a e st et e b et et et et st e at e bt bt e bt bt bt et benae et enee 55
4.2.31 CDFOPENCDE ..ottt ettt ettt sttt ettt et ettt e st ebe bt e bt sae st et e nae et enee 56
4.2.32 CDFSEIECT ...ttt ettt ettt ettt ettt b et eb e bt b ettt a et et et et e st eat e st ebe e bt bt sbe et e b e nae et enee 57
4.2.33 CDFSEIECICDFuiiiiiiiiiieiieiieierteetet sttt ettt ettt ettt st b bttt b e ettt e st e st e st ebeeb e bt sbe st e b e naenaemnenee 58
4.2.34 CDFSEICACNESIZE ...c.eeuieuiriieiiniietietetereesetet ettt ettt ettt et ettt ebe bt e bt sae bt nae et enee 59
4.2.35 CDFSEICRECKSUINueuiiiiiirtiriirtiet sttt ettt et ettt e bt sbe b s bt s e st b b e e et et et e st emtesesbeebeebesaestenbenaenaensenee 60
4.2.30 CDFSEICOMPIESSIONeouteuertirtirtintitertentetetetestestenteueeteeuesueeteebesee st e besse st emsenseneentemtesteseebesbesaesteebensenaensenee 60
4.2.37 CDFsetCompressiOoNCaChESIZEcouevuiriirierienieiiiiieieiteerieet ettt ettt st sae st s aenee 61
4.2.38 CDFSEDECOMINGeoutiuieuieiiniiniintietiniestestestent ettt ettt ettt sb st es bt s ettt b et et et et e st eat e st sueebe e bt saesteebenaenaensenee 62
4.2.39 CDFSEENCOGING......eeutiuiiuieiiriintintietitertestetet ettt ettt et sttt sttt sa ettt et bt e st ebeeb e e bt sae st benaenaensenee 63
4240 CDFSEtFIEBACKWAIGc.eoiiiiriiriiitiiirierteretetetet ettt sttt et sttt ettt et ebe b b sae st b sae e aenee 64
4241 CDFSEEOIMALc.eotiuiiuiiiieiietinierieet sttt ettt ettt ettt b e bt s a ettt e et et et e st eae e st sbeeb e e bt sbesteebenaenaensenee 64
4242 CDFsetLeapSecondLastUpdated...........coeveriirieriiiiieirinenenenie ettt ettt et et s saeae e 65
4243 CDFSEMAJOTILYeeuveuteuieueeiiniiriirtieteeterte sttt ettt eatebe e bt e bt sbe et s bt s et st e b e b e s et emteneeseeatestebeebeebesaestenbensenaensenee 66
4244 CDFsetNegtOPOSIPOMOUEc..couertiriiriiieteieteteteteieetteie ettt sttt ettt ettt ebe bbb st besae e nenee 67
4245 CDFsetReadONIYMOUEc.coeruiruirtiniiriiniiiententeteteteieeit ettt sttt sttt ettt estsbeebesbesaesteebesaesaensenee 68
4246 CDFSetStagelaChESIZeccueeueruiriiriiiirienteietetetet ettt ettt ettt ettt et et at e st ebe bt e b sae st benaesaeaenee 68
4247 CDFSEEVAIIAALEcveuriuieuieiiriiniiitietiiestest ettt ettt ettt sttt ettt se et et et e st eae e st sbeebesbesaestesbenaenaensenee 69
4248 CDFSELZIMIOME ...ttt ettt ettt ettt st b bt sttt et e ettt e st eat e st ebeebeebesbe st et e naenaensenee 70
4.3 VATIADIES ...ttt h et h bt bttt ettt et e b e bt a e bt eb bt nbe st et e b e e eneen 71
431 CDEFCIOSEIVATutiiiieiieiieiieieeteeie ettt sttt ettt et et b et sb s b bt et sttt et et et et e st eateatebeebe e bt sae st e benaenaensenee 71
432 CDEFCIOSEZVAL ...utiuiiiieiiiiieiieiieieeie ettt sttt et ettt ettt et s b e bt bt sttt et et et et et e st eat e st ebeeb e e bt sbe st e benaenaensenee 72
433 CDFcONfirmrVarEXISIENCEcoeruirtiriiriintiieteteteteteteeiteie sttt ettt et sttt ettt et sse bt e b sae st besae e senee 73
434 CDFconfirmrVarPadValuUEEXISIEIICEccuecuertirieieiiieiiriieienientesiestesteteste ettt ettt ebe e st s nee 73
4.3.5 CDFconfirMZVarEXISIENCEccceeueetirtiriiniiriententeteteteieeiteie sttt sttt st ettt ettt sse et sbesae st besaesaensenee 74
4.3.6 CDFconfirmzVarPadValUEEXISIENCEc..ccueruirueieieieiiriirienientenie ettt ettt ettt et et et sae e e e 75
4377 CDEFCTEAET VATeeutiuieuiiuieieeiiniintenttet et st sttt et et e st et eb e et e eaesb e et e s bt s et st e b e b e e et et eneestemteseebeebeebesae st e benaenaensenee 76

438

439

43.10
43.11
43.12
43.13
43.14
43.15
43.16
43.17
43.18
43.19
43.20
4321
4322
4323
4324
4325
4326
4327
43.28
4.3.29
4.3.30
4331
4332
4333
4334
4.3.35
4.3.36
4337
4338
4.3.39
4.3.40
4341
4342
4343
4344
4345
4346
4347
4.3.48
4.3.49
4.3.50
4351
4352
4353
4354
4355
4.3.56
4.3.57
4.3.58
4.3.59
4.3.60
43.61
4.3.62
4.3.63

CDEFCTEAEZVAT ...ttt ettt ettt et s e et e st e bt e s bt e e bt e sat e s bt e sab e e bt e sab e e bt esateebeesabesabeesabesseess 78
L) 2a 1S3 (1<) 4 TSRS 79
CDFdeleter VArRECOTAScoueeieieieieeiiesieeieeee ittt ettt ettt st e e st e be s st et e ene e seeneenseensesseensesneensenns 80
CDFdeleterVarRecOrdSRENUMDETcc.eeiiriirieiieiesiieieec ettt ettt seeeesneeeeees 81
(@) 24 1S] (1< A SRR 82
CDFdEleteZVarRECOTASceouieiiieieieeiiesieeteeee ettt ettt ettt ettt e st esbe s st et e ene e seeneenseensesseensesneensesns 83
CDFdeletezVarReCOrdSRENUMDETcceeiiriieieiieieiieieeit ettt sttt sttt enee st esseeeesneeneesns 84
CDFgetMaxWIHENRECINUITScc.couiruiriiriiriintiteteteteteteteeie ettt sr et et sa ettt eseeseebesbesaesbesbeseestesensens 85
CDEFZENUIMI VLS. ...ttt ettt sttt st et eate st e st e bt e bt sae st ebesa et et e seteatensenteseebeebesbeebeabeseestensensens 86
CDFZEINUMZVAIScouiiiiiiiiieieieee ettt ettt et e st st re s s e n e e e e bt esnesneennesneennenaee 87
CDFZetrVarAlIOCRECOTAScoueruiruiriirtintiniinteteteteteiteteieeit ettt sttt et sae et et et eseebeebesaeebesbesaestesensens 88
CDFgetrVarBIOCKINGFACTOTcc.eiiiiiiiriiiietcteteteteteeeiteie sttt ettt ettt sae b st nnene 88
CDFEtrVarCaCheSizZec.cecveueruiriririiienieetetet ettt sttt ettt ettt ettt b e sae b b sa et bennens 89
CDFEtrVarCOmMPIESSION «....ceveutrutruertirtietententetertetetestesteseeuessessestesbessestesensensensensenteseesessessessessessessensensens 90
CDFZErVarData........ccccoouiiiiiiiieiecicec ettt sttt ettt sn e enesneenenae 91
CDFZetrVarDataTyPecccoeeiiriiieiieieceeieeeete ettt st et st st st e sreene s ne e 92
CDFgetrVarDIMVArianeesc.coeeeririirieriinienieteteteteteieeit sttt este sttt sse st et et eeeseebesbesatebesbeseestensensens 93
CDFZEIVArINTO ..ottt sttt ettt ettt e bbbt bt besa et bennens 94
CDFgetrVarMax AIIOCRECNUI........couiitiiiirititeteteteteteee ettt ettt ettt sae b see et nnene 95
CDFgetrVarMax WIitteNRECINUINc..eouiitiriirtititeieieieteeeite sttt ettt ettt ettt sae st besee st et nnens 96
CDFZEIrVAINAITIC.......coueiiieiiiiieierieete ettt ettt ettt st st ae st be s ae e s e neeene bt ens e st ennesreennesaee 97
CDFgetr VarNUMEICINENLSc.cotiiririiriiniinieteteteteteteeett ettt st ettt et ettt ebe s e saesbesbesaestenbennens 98
CDFgetrVarNUMRECSWIIHETc..eoueiuiriiiiriinietcieteteteteeeitei sttt ettt ettt ebe e sae b b sae st bennens 99
CDFetrVarPadValUe.........coociiiiiiiiiriiieec ettt sttt ettt et ettt sae st st nene 99
CDFZetrVarReCOIrdDALAcevueeieieeieiieieeiee ettt ettt te st e e ss et e e st e teeneaseeneesseeneesneensesneen 100
CDFZEtrVArRECVATIANCEcocuieuieiieiieiieieeeeieettete et et ettt et e s teeee st e e ss e e e eneenseeneenseeneesseeneesneensesneen 101
CDFetrVarReSEIVEPETCENLoiviiiiiiiiieieeieecteetert ettt ettt sttt sttt st e et e sate e satesaeenee 102
CDFZEtrVarsDIMSIZEScecveeuieieeieieeiesieeieeiee e st este et et et esaeeeesseensesseensesseensesseenseeseaseensesseensesseensesneen 103
CDEFZEtrVarSEqDAta.coouiiiiiiiiiieieeete ettt ettt st et e et e s bt e s bt e s bt e e beesbeesabeesaeesateessaesaseenne 104
CDEFZEIIVAIrSEQPOS ...couveiiiiiiieiie ettt ettt sttt et e s bt et e s bt e sabe e bt e sabeesatesabeessaeeaseenne 105
CDFgetrVarsMaxWritteNRECINUIN.....cc.ceiuieiiiieiieeieie ettt te sttt e te sttt e st e e eneesseeneesseeneesneensesneen 106
CDFZetrVarsNUMDIIMISoouteieiierieeieieeeesie e et ete et este st e saestesseensesseensasseensesseenseeneeseensesseensesseensesnenn 107
CDFgetrVarSparsERECOTTScouuiiiiiiiiiiiieieeieeeet ettt ettt ettt et sttt e st e saaesaeenee 107
CDFZEEVATINUITL ...couiiiiiiiiiiiieieenite ettt ettt ettt et e sbt e st e st e st e s bt e e bt e s bt e e bt e beesabeesatesabeessaesaseenne 108
CDFEEtZVarAllOCRECOIASeeueriiriiriiriietiniertetetetetetet ettt ettt sttt ettt et et sae b b sae st s e 109
CDFgetzVarBlOCKINGFACLOTc..ceiiiiieiieieieeeeee ettt sttt ettt e e et eseeneesseeneesneensesneen 110
CDFZEtZVarCaCheSIZecouveeeeieeieeieeeieee ettt ettt ettt et et e e s st e e e s e e seeneeseeneesseeneesaeensenneen 111
CDFZEtZV arCOMPIESSION.....e.eeeuteeeeeteeeteteeeesteeteeseeteeseessestesseensesseansesseesesseensesseensesseanseensesseesesseensesnen 112
CDEFZEZVAIDALA ...ccueiiiiiiiiieiieieeeee ettt et sat e s bt e st st e s bt e st e e s bt e sbeesbeesabeesatesabeessaesaseenne 113
CDFZEtZVaArDataTYPEceoueieiiiiiieitete ettt ettt ettt sttt s e sbt e s bt e s bt e s be e bt e sabeesatesabeesaaesaseenne 114
CDFZEtZVArDIMSIZES ...c.veeveeiieieeiesieeteieete st e e st et e et estestesaeentesseensesseensasseensesseenseeneanseeneesseensesaeensesnenn 115
CDFZEtZVarDIMVArIAnCes.ccueeuveruerieieeiesieeiesseesteetessestesseensesseensesseesesseensesseensesssansesnsessesssesseensesnes 116
L) 23w 1 11 {0 TSRS 117
CDFgetzVarMax AIIOCRECINUINocuiiieiieieiieieeiteie ettt te st e e se e e e st e e eseeseeneesseeneesneensesnean 118
CDFgetzVarMax WIitteNRECINUIc..coviiiiririiieieicieieteceiteceee ettt ettt ettt 119
CDFZEIZVATINAINE ..ottt ettt sttt sbt et e s bt s bt e st e st e e s bt e e bt e bt e e bt e beesabeesaeesateesuaeeaseenne 120
CDFZEtZVarNUIMDIIMScccviiieiieiieieiieiieteee ettt e e et esaeetesseentesseensesseensesseenseeseeseeneesseensesseensesneen 120
CDFZetZVarNUMEICIMENLSccverieiieieiieieeieeieetteteetesteetesteetesseetesseensesseensesseenseeneenseeneesseensesseensesneen 121
CDFgetzZVarNUMRECSWIIIENc..eeveeiieiieieeieeieeiieteete e et esae et et ete st etessee e eseenteeseeseeneesseensesneensesneen 122
CDFZEtZVarPadValUecocoeiiiiieiieieiieeeeee et ettt ettt et e e et e e se e e eneeseeneesseeneesneensesneen 123
CDFetzZVarRecoOTdData.covuiiiiuiiiiiiiieieeiee sttt ettt ettt ettt e bt s bt e be e sbe e s st e sateesaaesaseenee 124
CDFZEtZVArRECVATTANCEc.eeeveeieieeiieieeieetteie et et et e e et e st et e sseete s st entesseenseeseenseeneenseeneesseensesneensesneen 125
CDFetZVarRESEIVEPETICENLeiiviiiiiiiieiteeiee ettt ettt ettt e bt e st e st st e s it e sabeesaaesaaeenne 126
CDFZELZVArSEODALA ...c...eeiiieiiieiieeeeee ettt ettt sttt e st et e e s bt e s beesbe e sabeesaeesabeesaaeeseenne 127
CDEFZEIZVATSEAPOS «...ceveeiieeeeee ettt sttt et e st et e e s bt e s be e bt e sabeesatesabeesbaeenseenne 128

CDFgetzVarsMaxWrittenNRECINUITLeovieiiiieiieiieieecee ettt ettt et e sae e e sneensesneen 128

4.3.64 CDFgetzVarSparsCRECOTTSco.evuiriiriiriirieiiieteteteteete ettt sttt ettt ettt be et sae et b b seeneen 129

4.3.65 CDFhyperGetrVarData........ccccociruiriiriiriintinienienieteieteteiteit ettt ettt ettt et et ese et sae bt besbesaeneen 130
4.3.66 CDFhYPerGetZVarDatacc.coceeuiriiriiriiniinienienieteieteteiteit ettt ettt ettt ettt ebe bt besaesbeebesbesaeneen 132
4.3.67 CDFhyperPutrVarDataccccoceviriiiiniiniiiiiieteetecete ettt ettt ettt et be et sa e sa b s saeeen 134
4.3.68 CDFhyperPutzZVarData.........c.cocceiriirininiiniiniiieieieteteiteteteetee sttt sttt sttt ettt sae et be b saeneen 135
4.3.09 CDFINQUITETVATctiiiuiiieiieiieeeteet ettt ettt et ete st e st eat bt e bt e bt sbe sttt e ae st et et et eneeateatebeebeebesuesseebenbeseensen 137
4370 CDFINQUITEZVAT ...ttt ettt ettt ettt e st eatebe bt et sae st b s ae st et et et eseesteneeseebeebesuesbeebenseseensen 139
4371 CDEFPUIIVAIDALAcccoiiiiiiiiiiiiieieeeceet ettt sttt ea e sneesneeneenneeae 140
4372 CDFPUtrVarPadValUeccccoceririiiininiiiiieieteieteteee ettt sttt sttt ettt sa e sa b s saeneen 141
4373 CDFputrVarReCOrdDataccooieriiriiiiiiiiieieiieeeeeeeeee ettt et 142
43774 CDFPUIVArSEqDALacc.ooiiiiiieiiiiiieeeeceeeee ettt sttt n e e ene e 143
4375 CDFPULZVAIDALAcoueiuiiieiiriiiiitieteiestest ettt ettt ettt ettt et b et ettt et et et bt e bt e bt suesaeebesbeseennen 144
4376 CDFPUtZVarPadValUeccceeviruiriiiiiniriiieicieteietete ettt ettt ettt ettt ettt sae et be b saeneen 146
4377 CDFputzVarRecordDatacccoeruerieriiriinieiiieieieteteiteeeit ettt sttt ettt ese bbbt et besbeseeneen 147
43778 CDFPUIZVArSEADALAcoueeriieiiiiieieiieieee ettt ettt st et n e e ene e 148
43779 CDEFICNAMETVAToouiiiiiiiiieiiitete sttt ettt ettt et sa e e et esae st e bt saee st sanesbe e s e be e s e st ennesneenneeneennenae 149
4.3.80 CDFIENAMEZVAIcctiuiiuieuiriinientieteetentestetentestestetetestesteatebeebeebesae st e besse st eat e tenteneestemeeseebeesesuesaeebenseseensen 150
4.3.81 CDFsetrVarAlloCBIOCKRECOTAScouivtiieriinieiiieieieiieceitetceesee sttt ettt ettt et be e et se b seeneen 150
4.3.82 CDFsetrVarAlIOCRECOITS.cocruiriiriiriirtiteieietetete ettt ettt ettt et ese bt sa e se b b seeneen 151
4.3.83 CDFsetrVarBIoCKINGFACIOTcc.couiiiiiriiicicetctetetetete ettt ettt saeeen 152
4.3.84 CDFSErVarCaCheSiZecocueuerueruiriinieniintinienienteteteteteet et ettt sbe sttt ae st et e te st et et et ebeebeebesaeseeebesbeseeneen 153
4.3.85 CDFSetrVarCOMPIESSIONc.ceeruirterreruirtententententeteteneeuteuesseesessessessessessessensensenseneesseseesessessessessessessessensen 154
4.3.86 CDFSetrVarDataSPeCccceeeriruiriirieriintinienientetetetetetteie et etes sttt se st et e te st et eseeseeseebeebesaesseebesseseensen 155
4.3.87 CDFSetrVarDIMVAIIANCESc.coeeverueruirtenientenietetetetetteiesteesessesse st sessestesseseseeneesseseesessessessessessessessensen 156
4.3.88 CDFSetrVarINItIaAlRECScc.ceerueruiriiriirtintiienienteteteteeeit ettt ettt st ettt ettt ese b ebesaesaeebesbeseeneen 157
4.3.89 CDFSetrVarRECVArIANCEc.coeruirtiriiriintiieieteteteteteit ettt ettt ettt sttt ettt ese bt besaeseeebesbesaeneen 158
4390 CDFsetrVarReSeIrVEPEICENLc..ccouiiiiiiiiiiiieieieceeeceee ettt sttt 158
4391 CDFSetrVarsCaCheSiZecoeeeruiriirieriiniiienieteteteteteit ettt ettt st st ettt et et eae st ebeebesaesaeebesbeseensen 159
4.3.92 CDFSELrVarSEqPOSc.ceteiriiiriiriiierestees ettt sttt ettt ettt be bt sae et be b seeneen 160
4393 CDFsetrVarSpars€RECOIUScoueiiiiiiiiieiecieeeeeeeteee ettt n e see 161
4394 CDFsetzVarAlloCBIOCKRECOTAS......cc.couirtirierienieiiieteiteiteteteeteee sttt ettt ettt ebe e s sa e s saeneen 162
4.3.95 CDFsetZVarAllOCRECOITScc.cruiriiriiriiniiieienieteieteteteit ettt sttt sttt ettt be et sae et be b seeneen 163
4396 CDFsetzVarBIOCKINZFACIOTc..couiitiririiieieieteieteteite ettt sttt ettt ettt sa e se b s seeneen 164
4.3.97 CDFSEtZVArCaChESIZEcoueeueruiriiriirieniintitcnientetetete ettt ettt ettt ettt ettt ebe bt besae et ebesbeseeneen 165
4.3.98 CDFSEtZVarCOmMPIESSIONc..ceueruirtirieriintententetetetetereeuteiesseesessessestessessessensensenteneesseneeseesessessessessessessensen 165
4.3.99 CDFSEtZVArDAtASPECc.eeueruiriiriirtiniertentetententetet ettt ettt ettt ettt et be sttt e st e st eat et ebeebeebesuesaeebesbeseensen 166
4.3.100 CDFsetzZVarDImMVarianeesco.eeeruirierienienieteienteteteeeteeseeesee st sessestessetesteseeseeaeesessessessessessessessensen 167
4.3.101 CDFsetzZVarInitialRECscceeeruiriiriirinieicicteictetetete ettt ettt ettt ettt sa e se b b saeneen 168
4.3.102 CDFSEtZVArRECVATIANCEcouervirtiriiriintiieienteteieteteit ettt ettt sttt ettt et ebe e b bt sae st ebesaesaennen 169
4.3.103 CDFsetzVarReservePerCentcoccooiiiiiiiiiiiiiiiicieeceecee ettt 170
4.3.104 CDFSEtZVarsCacCheSizZecocerueriiririniinienieieieieteteit ettt ettt ettt ettt ettt b bt sae et ebe s b saeneen 171
4.3.105 CDFSEIZVAISEQPOSooutruiriiriiriintieiesienteetentestet ettt ettt sttt ettt ettt e st et e bt bt e besaesaeebesbeseeneen 172
4.3.106 CDFsetzVarSparsCRECOIAScceviririirieniiniiiiieteteiteteieetee sttt sttt ettt ese et sae et b b saeneen 173
43107 CDEFVATCIOSEc.veuveueeirinieiieienienieeteete sttt ettt et et et e st eatebe et e bt sbe st b e s be st et et et eneesteseebeebeebesuesseebenseneensen 174
4.3.108 CDEVAICIEALEc.veeuverieiriiieieeeete sttt ettt et ettt et st e et st e bt saee s e s e e beeesesbeeane s bt esaeeneenneeneenneene 174
4.3.109 CDEFVAIGELcuveuieniiuiiiieieieeieee sttt ettt ettt et ettt b e bt sbe bbb et et et et e st eateaeebeebeebesuesbeebenbeseeneen 176
43110 CDEVATHYPETGELoovieiiiiieiiiieieeeee ettt ettt ettt st a e st s e st nesneesaesneesneeneennesae 177
43111 CDEFVArHYPEIPULoooiiiiiiiiiiieee ettt st n e s 178
43112 CDEFVAIINQUITE.....ceiiiiiiieiieieeeeteet ettt ettt ettt ettt be st ettt et et et e bt e bt e bt se e st e ebenbesaeneen 180
43113 CDEVAINUII ..ottt ettt et ettt st a e st s e e e e b e e ene b e e ane st enaeeneemneeneemnesae 181
43114 CDEVAIPUL ...ttt ettt et st st b e e et een e b e s e be et e eneenneeneennesae 182
43115 CDEFVARENAIMEcoutiuiiieiiiiiiiriieteiercst ettt ettt st sttt et ettt ettt be bt saesae b e s beseeneen 183
44 AIIDULES/EINITIES ..ottt ettt ettt ettt e b e bt bt e bt s bt s e et e b et et et et et entemeeaeebeebenbesaeebenbenaens 184
441 CDFAICIEALE.....cueeuvieeieiieieeitete ettt ettt ettt e eae e st esa e sate et saee st e e e s be e s e be e s e seenneeneemneeneennenae 184
442 CDFatrENIYINQUITE. ..c.covitiieiiiiitieteetent ettt ettt ettt ettt et et ae sttt e ettt ebeebe e bt suesaeebesbesaensen 185

443 CDFAIGEL ..c..eouiieiieiieieieeeec ettt ettt ettt et et eae e et st e et st e st e e e s bt e s e b e e s et e it e ene et eneenneeae 187

444

445

446

447

448

449

44.10
44.11
4412
4413
44.14
44.15
44.16
4417
44.18
44.19
4420
4421
4422
4423
4424
4425
4426
4427
4428
4.4.29
4430
4431
4432
4433
4434
4435
44.36
4437
4438
4.4.39
4.4.40
4441
4.4.42
4443
4.4.44
4445
4446
4.4.47
4448
4.4.49

L@) 2 1150 T 153 TSP PRPS 188

CDFAUINUITL ...ttt ettt ettt et et s bt e bt e e at e e bt e st e e bt e sab e e btesat e e bt e sase e beesabeenbeesabeenaeesates 190
CDFAIPUL ...ttt ettt ettt e bt e s bt e s bt e bt e st e e bt e st e e bt e sabe e beeeabeebeesabeeaeesates 190
CDFAUIRENAINEcoueiiiiiiiiiiteeteet ettt sttt e e b e e et e bt e s bt e bt e st e e sbtesabe e bt e sabeebeesabeesaeesats 192
(@1 D) ele) 1V iU Y AN 1 25 T 1<) 1T TSP 193
CDFconfirmgENIIYEXISIEIICEccuvrutruiriiriiriintitertenteteteteit ettt ettt sae sttt ettt et ese b besee st benaens 194
CDFconfirmrENIIYEXISTEIICEcoutrueruirtirtirientinteietetetet ettt sttt sttt ettt ettt sae b b e st s e 194
CDFconfirmzZENtIYEXISIENICEcouvruertiriiriiriintiteteteteteteieeiteie sttt sttt ettt eae et sae b b sae st s e 195
L) 2ed (1Y N 1 SRS 196
L@) 24 1S3 (< N 15 SRS 197
CDFAEICtEAUIZENLTY ...ttt ettt ettt ettt ettt ettt et e e s bbb see e b e 198
CDFAEICtEAITENIIYcuteuteiiiiieteteeierteeteetest sttt ettt ettt et sttt s bt et ae ettt et ese et saeebeebesee st enenee 199
01D 24153 (1Y N 11 v 23 1 i 2RSSR 200
CDEFZELAIZEDNLTY .neteiiiiiiieeieeeite ettt ettt et sh e et e s bt e s bt e st e s be e s bt e et e e s bt e eabe e beesabeesaeesabeessaesaseenne 201
CDFget AttrgEntryDataTYPE ...cocuveeeiieieiiierieeiee sttt ettt ettt st e bt bt e s bt e st e sbe e st e sabeesaaesneenee 202
CDFgetAttrgEntryNUMEICINENLSc..eeveiieiiiieieeiieieeieee ettt st e e sttt st eeeeseesseeneesseeneesneensesneen 203
CDFZEtAUIMAXZENITY ...coniiiiiiiiei ettt ettt ettt e e bt st e s bt e sabe e s st e sateesaaesaneenne 204
CDFZEtAUIIMAXIENIIYoeiiiiieieeieieetetee ettt et e sttt e s bt et e s st et e sseenseeseenseeneenseeneesseeneesseensesneen 205
CDFZEtAUIIMAXZENLIY ..ottt ettt et st esae et esseente s st ensesseenseeseenseeneenseensesseensesneensesneen 206
CDEFZELALIINGITICueeiuiiiiieeiieniie ettt ettt et sit et esbt e e bt esbe e s bt e s st e s beesbbeeabeesbteeabe e beesabeesatesateessnesaseenne 207
CDEFZEEAIINUIN ...ttt ettt ettt e sa et s bt et esbe e s bt e s st e ea b e e s bt e eabeesbteeabe e beesabeesaeesabeessaesseenne 208
CDEFZELALITEINLTY ..ttt ettt ettt et sbt e st e st e st e e s bt e e bt e s bt e eabe e beesabeesaeesateessaeeaseenne 208
CDFget AtTENIIYDAtaATYPE ...eeveeiiieiieeieeeteete ettt sttt sttt bt e st e st st e it e sateesaaeeaneenne 210
CDFgetAttrrEntryNUMEICIMENLSc..eeuveiieieiieieeiieie ettt ettt e e eseesseeneesseeneesneensesneen 211
CDEFZEEALISCOPE -.eenvveeuveemteeiteniteertteeite et e st e et e st e e bt e sbt e e bt e sbt e s bt essteeabeesbbeeabeenbteeabeenbeesabeesatesateessaesaseenne 212
CDEFZELAIZENITY .uvteiiiiiiieeiteeie ettt sttt et sat e st e st e st e s bt e e bt e s bt e eabeesbeesabeesaeesabeessaeenseenee 212
CDFget AttrZENIryDataTYPeceoueeeiieiieeieeetectte ettt ettt ettt et s bt e be e st e st e sateesabesneenne 214
CDFgetAttrzEntryNUMEISIMENLSocviiieieiieieeieie ettt ettt ettt ese et e sseeneesneensesneen 215
CDFetNUMAIZENLIICSeeiieeieeieieetei ettt et ettt ettt e st e e s bt e e e st e teeneeseeneesseeneesneensesneen 216
CDFZEtNUMALIIDULESeeveieieieeiieieeiesieetesteeie st ete et e testesseeneesseensesseensesseensesseenseeseaseeneessesnsesaeensesnen 217
CDFZEetNUMALITENLIICS ...o.viieieieeieieeieieeieeeee ettt ettt ettt et e e st e et e eneenteeseeseeneesseeneesaeensesneen 217
CDFZEtNUMALTIZENIIICSveieeieeeieieeieieete et ste et et et e e et esaeetesseentesseensesseensesseensesneenseeneesseensesseensesnenn 218
CDFZEtNUMZALIIDULEScuveueeiiriiriiriirtintenientetestent ettt ete et eae st beseeste st e sse st estess et eneese et sseebesbesaeseesenee 219
CDFZEtNUMVAIIIDULESeuveieieieeeierieeieteetesttesteeeeesteestesseseesseensesseensesseesesseensesseensesseasseensessesnsesseensesnen 220
L) 21T 18U AN 6 SRS 221
CDFINQUITE ATIZENIIY ...c.eieiiieiieie ettt ettt e e st e st et esbeente s s e et esseenseeseenseeneenseeneesseensesneensesneen 223
CDFINQUITE ATITENLIY ..eoneieiiieiee ettt ettt ettt ettt et e s st e e e st e teeneenseeneesseeneesneensesneen 224
1) 2110 18N LY aN 6 74 2711y 2SRRI 225
L) 2T (AN 144 25 11 oy TSRS 226
CDRPULAITENIIY ..ttt et ettt st s e st e s bt e et e e bt e eabeesbeesabeesatesabeessaesaneenne 227
CDFPULATIZENLTY ..ottt ettt sttt et e sae e n e et eneeaeesaeennesaeennesneen 229
CDFTE@NAMEALLTeeiteeteeeiteeteeeite ettt et eat et esat e et e e s bt e e bt e sbe e st e e s abeeabeesbteeabeebteeabeenbeesabeesaeesateessaesaseenne 230
CDFSsetAttrgENtryDataSPECcoouviiiiiiieiiieeieeeeree ettt ettt ettt ettt e st e st e sateesaaeeaeenee 230
CDFSetAtITENIYDAtASPECeeviiiiieiteeit ettt ettt ettt et e bt et st et e sateesaaesbeenee 231
CDFSELALISCOPE ...ceuteeueteriteeteeeite ettt et e et et e st e et e s bt e e bt e sbe e st e e s st e eabeesbbeeabe e bt e eabe e beesabeesatesateessaeeaseenne 233
CDFSetAtrZENIIYDAtASPECeevuiiiiiiiiiiiieeieetee ettt ettt ettt e bt bt e bt e sabeesatesabeesaaesaeenne 233

S Interpreting CDF Status Codesccueiiccessrsnneicccsssssanssccssssssssssssssssssssssssssssss 239

6 EPOCH Utility ROULINES ...cuvveeeicccsssssnneeccssssssnssecsssssssssssssssssssssssssssssssassssssssssass 230

6.1 COMPULEEPOCHocuiiiiiiiieeie ettt ettt et e st e e st e e s et et e s st enseeseenseeseenseeseenseeneeseensesneensesneensesnean 236
6.2 EPOCHDIEAKAOWIoocuviiiiiiieeeteee ettt et eee e et eee e e et e e eaeeeeeaseeeeseeeeseseenareeeesseeeenseeeeneeeenseeeennreeeanneas 237
6.3 tOENCOAEEPOCHoooiiiiciieiieeeeee ettt ettt ettt e e et e e te e tee e be e saeesba e bbeesse e seeessaessseasseassaesseesseanseeseean 237
6.4 @NCOACEPOCHcociiiiieeeeee ettt ettt e et e e e e e be e taeesbe e saeesba e bseasseesseeassaessseasseessaensseessesnseeseean 237

0.5 ENCOUEEPOCH ...ttt ettt e et e e s e et e e e e sseaasteeesesaaseeeesssnssaeessssnsaseeessesanseeesssnnees 238

6.6

6.7

6.8

6.9

6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24
6.25
6.26
6.27
6.28
6.29
6.30
6.31
6.32
6.33
6.34

ENCOAEEPOCHZ ...ttt ettt et e st e e te e et e e baestbeebeessbeesseessseesseassseassaessseenseessseasseesssennseanes 238
ENCOAEEPOCHS ...ttt et e st e e te e e v e e baeetbe e beessbeesseessbeesseassseensaessseanseessseasseesssennseanes 238
ENCOAEEPOCHZ ..ottt et e st e e ste e et e e baeetbeesbeessbeeaseessbeenseessseensaessseanseessseasseesssennseanes 238
ENCOAEEPOCHX ... coctiiiii ettt ettt et e et e st e e steeetbe e baeesseebeessseesseessseesseassseanssessseanseessseasseesssennseanes 239
[70) 521 £1Y 2 o 1 = SRR 239
PATSEEPOCH........ciiiiieee ettt sttt et et et et e et e e st e s e sae et e e at e s e ent e beente st en s e st enseeneenseenes 240
PATSEEPOCH L ..ottt st b e a e e bt e s at e s bt e st e s bt e s bt e e abeesbtesabeenbeesabeenaeesates 240
PATSEEPOCHZ ...ttt sttt e s h e e bt e s at e s bt e s st e s bt e s bt e eabeesbtesabeesbeesabeesaeesates 240
PATSEEPOCHS ...ttt ettt ettt e s h et e bt e s ht e s bt e s st e s be e s bt e e bt e sbeesabeenbeesabeenaeesates 240
PATSEEPOCHA ...ttt ettt e b e s h et e b e s at e s bt e s st e s bt e s bt e e bt e sbtesabeesbeesabeenaeesates 241
COMPULEEPOCHLO ..ottt ettt et e st e e s bt et e s st e teestenseeseenteeneeseeneesseensesneensennean 241
EPOCHIODICAKAOWINvecivieiiiciieiie ettt ettt e e eteesteeteeseveeveesabeeseessseesbaassseasseesssaassaessseesaenseeenseanssennses 241
tOENCOAEEPOCHIOeviveete ettt ettt ettt et e st e e be e st e ebaessaeeabaessbeenseessbeessaesssesnsaenseeensaasnennss 242
ENCOACEPOCHLO........oiiiieeieete ettt et e et e et e st e e baesabeebeessaeesbaassseenseessseessaessseansaeseeenseassennses 242
ENCOACEPOCH IO 1oiiiiiiiieiie ettt ettt et e et e et e st e e baesabeebaeesaeeabaesssessseesssaessaessseensaeseeensaansnennses 242
ENCOACEPOCH IO _2 ...ttt ettt ettt et e st e e taesabeebaessaeeabaessseasseessseessaessseensaeseeenseanssennses 243
ENCOACEPOCH IO _3 ...ttt et e e et e st e e taesabeebaeesaeeabaessbeasseessseessaessseensaeseeensaanssennses 243
ENCOACEPOCH IO _4 ...ttt ettt ettt et e st e e taesabeebaeesbeeabaessseesseessseessaessseensaensseenseanssennses 243
ENCOACEPOCH 16 _X....iiiiiiiiieiie ettt ettt ettt e e et e et e e te e s b e ebeesabeesbaessaeeabaessseessaessseassaessseensaeseeenseanssennses 243
LOPAISEEPOCHLOooiiiiieeie ettt ettt ettt e et e st e e ba e s ab e ebeessaeeabaessseessaessseessaessseansaesseenseanssennses 244
PATSEEPOCHIO.........oiieieiieeeee ettt sttt et e bt et e st e e st e eaeense s st ensesaeeseensenseenseseensanseanseeneansennes 244
PATSEEPOCHTLO_L....neiiieeieieeee ettt ettt ettt et e st e en s e s et ense s st ensesaee s e enseseenseseensenseenseeneansennes 245
PATSEEPOCHTLO_ 2.ttt ettt et et et e st e s e s st enee s et ensesnteseensenseenseseensanseenseeneanseenes 245
PATSEEPOCHTLO_3 ...ttt ettt ettt et et et e st e st e s st ense s st enseenee s e enseseens e seensanseenseeneansennes 245
PATSEEPOCHILO_ 4.ttt ettt ettt et e st e e st e e st e nse s et esesate s e enseseenseseensanseenseeneansennes 245
EPOCHEOUNIXTIMEeevviiiieiieeieeeiee st eetee et esteeeteeteeeaeeteeseseesaessseasaessseassasssseasseesssesssaesssesnsessssseseesssennses 246
UniXTIMEIOEPOCHooiiiiiiiicieee ettt ettt e st e e ve e st e ebeeetae e baessbeanbeessseessaessseensaeseeenseasnennss 246
EPOCHIOtOUNIXTIMEveevieiiiiiieiie st eeiee et et e eteesteeeteeteeseveesaessseesaessseassassssessseesssessseessseesesssseesesnssennses 246
UniXTIMEIOEPOCHLOoeiiiiciiee ettt ettt ettt eta et e ebe e e taeeabaessaessbaessseessaessseenseesseenseenseennss 247

7 TT2000 Utility ROULINES ..ccovvvrnnreeccssssnnneccssssssnnseccssssssssssssssssssssssssssssssssasssssseess 249

7.1
72
7.3
74
7.5
7.6
7.7
7.8
79

COMPULETT2000 ...ttt ettt ettt ettt e a e st s e s e s ae e e bt eene s bt e s e neenesneenneeneenneeae 249
TT2000DIEAKAOWILveieveeiieeiiieitieeteeeteeeteeeteesveeeteestaeeteessseesseessseasseessseasssessseanssasseeansaassseassaesssensseessseasaenseenn 250
tOENCOAETT2000ccuviiiiieieeeiie ettt e ettt e eteerte e et e et e sebeesteeesbe e baeesseebaassseesseessseasseessseasssessseaseesssessseesssenseanes 251
ENCOAETT2000eeieiiiiiieieeeee ettt e et et e ettt esteeebe e bt e saseasseeasse e saeasseesseessseassaessseasseassseassaessseaseessaessseesssenseenes 251
tOPATSETT2000evierieiiieieeetie et et e et et e eteesteeebe e teesebeesseeasse e saaasseesseessseessaessseasseassseansaessseaseessseasseesssenseanes 252
PATSETT2000 ... e eieeeieieeiiee ettt ettt ettt et e st e te st eaesaee s e saeenseeseenseensenseensesseensesseensesneensesneensesnsesesnsenseensenseens 252
CDFgetLastDateinLeapSecoOndSTabIEc.ccieieiiiriiiriieieeieeecee ettt r et e s sneeeeeneenseens 252
TT2000t0UNIXTIIMEveeieveeiieiiieeiteeete et e et et e s teeteestaeebeeeseeesbeessseassaessseasseessseansaassseasseassseassaesssensseesseesaanseean 253
UniXTimEtOTT2000 eeeeieeeiieitieeieectee et et e ete et estteerbeeetbe e beessseesseessseasseessseesaassseasseassseassaesssessseessseesaenseeas 253

8 CDF Utility MethOdS...uueciccceesssnneeccsssssnnneccsssssnss 299

8.1
8.2
83
84
85
8.6
8.7
8.8
89
8.10
8.11
8.12
8.13

L) 2 T 1<) 2] £ TSP TS 255
CDFZEtCRECKSUMVALTEoouieiieieieeieeteee sttt ettt ettt ettt et e et e tesaeesseeneesseensesseensesseensenseenseeseansesneensennes 255
CDFgetCompressionTYPEVALUC......cc.eecieviiiieitieieciieteettete ettt sttt eesae s aesbeentesseensesseensesseenseeneensennes 255
CDFZEtDAtaTYPEVALUEc.eeeuieiieiieiieieeie ettt ettt s et e et et e et e ste st esseeneesseensesseensesseensesseenseaseanseeneensennes 256
CDFZetDeCOAINZVAIUEcvieeieiieieie ettt ettt ettt et e st e s s e s neessesnaesseensesseensesseensesseenseennensennes 256
CDFZEtENCOAINZVAIUC......cueieeieiieieie ettt sttt ettt et e st e s s e e e e sseensesseensesseensesseenseaseenseeneensennes 257
CDFZEtFOIMAtVAIUEoeeeiieiieiieieeie ettt ettt st e et e et et e st e s s e s e e ssesnsesseensesseensesseenseeneenseeneensennes 257
CDFZEtMAJOTIEY VAIUEcoueieeieii ettt ettt ettt et e et e et e st e s atessesseesseensesseensesseensasseensesneenseeneensennes 258
CDFgetSparseRECOIAVAIUE..........ooieiieieieeiecieeet ettt ettt et ae et esbe et e s st e sesseenseeneenseeneenseenes 258

CDFgetStringCRECKSUM.......oouiiiiiiceieeeecieee ettt ettt et s et e st e e s st e e et e enteeneanteeneeseeneesseensesseensesnean 258

CDFgetStringCompPreSSIONTYPEcecvieieriieieeiieieeieieeieste ettt e st e te st e e tesse e tesseenseeneateeneesseensesseensesseensesnean 258

CDFetStriNgDataTyPE ..c.ceuveieuieiiririiriieierte sttt ettt ettt ettt ettt sa ettt et et e st ebeebesaesbeebesbeseeneen 259

CDFEtSrINZDECOMINGeouveuteiieiiriieiirtieterte sttt ettt ettt ettt e b sb e sttt et et e e et et et e st ebeebesaesaeebesbeseeneen 259

8.14 CDFZetStrINZENCOMING ...c..eovertiriirtititentertetet ettt ettt ettt ettt ettt ettt ettt et eb e e bt sbesbeeb e besaesaesenee 259

8.15 CDFZEtSIIINZIFOIIMALc.eeueiuieiiriirtietitentent ettt ettt ettt ettt ettt s bt et ettt et et e e ese e st eneebeebesbesbeebesbeseeseensenee 259
8.160 CDFZEtSIIINZIMAJOTILY ..c..eoverveereriirtintirtententetet et et et et et et sue st et e st se et e b e se et e b et eseene et eneebeebesbesbeebesbesaestensenee 259
8.17 CDFgetStringSparsCRECOITcciviiiiirieiieiierie ettt ettt et et et e s et e e e s st etesaeesesneesesneensesnsenseensensenns 260
9 CDF Exception Methodscceeeeecccccssnnnecccsssssnnneccsssssssssessssssssssssssssssssssssssssssnes 201
0.1 CDFZELCUITENESTALUS ..eeuvveeuveiiieeieeieeeteeste et estte et esbeeeteesbtesabe e teesateesstesaseenbeeeabeebeesabeesstesateenstesaseensaesaseenseess 261

0.2 CDFGEESTAUSIMISE ...ttt ettt ettt et stt e et b et et e e bt e st e e bt e sa bt e bt e eabe e beeeabeebeesabeesstesateebtesaseenbaeeaseenseesn 261

Chapter 1

1 Compiling

VB-CDF distribution is packaged in a self-extracting installer. Once the installer is downloaded and run, all distributed
files, i.e., APIs, test programs, batch files, help information and the document, will be placed into a directory of choice,
and environment variables, PATH and CsharpCDFDir, are automatically set. If an older version already exists in the

host machine, the installer will try to remove it before the new one is installed.

To VB, CDF library is unmanaged code distributed in the native DLL. The distributed .DLLs were built from a 32-bit
(x86) Windows and they can be run on a 32-bit Windows via the x86-compatible Common Language Runtime (CLR),
as well as a 64-bit Windows under WOW64.

1.1 Namespaces

Several classes are created for VB applications that facilitate the calls to the native CDF DLL. The CDF namespace
has been set up to include these CDF related classes: CDFConstants, CDFException, CDFAPIs. and CDFUtils.
CDFConstants provides commonly used constants that mimic to those defined in the .DLL CDFException provides the
exception handling when a failed CDF operation is detected. CDFAPIs provide all (static) public (and private) methods
that VB applications can call to interact with the similar, underlining functions provided by the CDF Standard Interface
in the .DLL. CDFUltils provides several small utility tools. These classes are distributed in the form of signed
assemblies , as .DLLs. To facilitate the access to functions in DLL, each VB application must use the “cdf’
namespace in order to call the VB-CDF APIs. The following namespaces should be included by VB applications that
call CDF APIs:

imports System
imports System.Runtime.InteropServices
imports CDF

1.2 Base Classes

CDFAPIs is the main class that provides the VB-CDF APIs. Class CDFAPISs inherits from CDFConstants class, which
defines all constants referenced by the CDF. A VB application, if inheriting from the CDFAPIs class, can call all

CDFAPIs methods and refer CDFConstants’ constants directly, without specifying their class names. CDFException
class inherits from VB’s Exception class and CDFUtils class inherits from CDFConstants class as well, .

1.3 Compiling with Compiler Options

If a test application, e.g., TestCDF.vb, resides in the same directory as all distributed .dll files, the following command
can be used to create an executable

vbc /platform:x86 /r:CDFAPIs.dll,CDFException.dll,
CDFConstants.dll,CDFUtils.dll TestCDF.vb

vbc.exe, the VB compiler, can be called automatically from an IDE such as Visual Studio
.NET, or run from the command line if the PATH environment variable is set properly.
vbc.exe can be found in the Windows'’s .NET Framework directory,
<windows>\Microsoft.NET\Framework\v#.# (v#.# as v3.5 or in the latest release version).

/platform:x86 option is required for the Windows running 64-bit OS as VB-CDF is built on an x86 (32-bit) platform.

When the VB-CDF package is installed, the PATH environment variable is automatically modified to include the
installation directory so the native CDF .DLL, dlledfesharp.dll , becomes available when a VB application calls CDF
functions. Once the executable, TestCDF.exe, is created, it can be run from any directory.

If the VB applications that call CDF APIs reside in the directories other than the VB-
CDF installation directory, the following compilation command can be used to create an
executable (.exe):

vbc /platform:x86
/1ib:%CsharpCDFDir$%
/r:cdfapis.dll, cdfconstants.dll, cdfexception.dll, cdfutils.dll
TestCDF.vb

where environment variable CsharpCDFDir, the installation directory for VB-CDF package, .is set when the installer is
run.

When the executable is run, an exception of "“FileNotFoundException” will be encountered
as CDFAPIs could not be 1loaded. 1It’s Dbecause the distributed CDF assemblies are
considered private in the .NET environment. The .NET Framework’s runtime, Common
Language Runtime (CLR), will not be able to locate the files if the application resides
in a different directory from the called assemblies. To make these assemblies global so
CLR can locate, they need to be placed in the Global Assembly Cache (GAC) repository. Use the
following steps to do so:

gacutil /i CDFConstants.dll
gacutil /i CDFException.dll
gacutil /i CDFAPIs.dll
gacutil /i CDFUtils.dll

gacutil.exe (Global Assembly Cache utility) is a Microsoft Software Development Kits (SDKs) utility that can
insert, list and remove the assemblies to and from GAC. Gacutil.exe usually can be found at <Program
Files>\Microsoft SDKs\Windows\v#.#\bin (v#.# as v6.0A or in the latest release version). Use “gacutil /u” to remove
assemblies of older versions form GAC.

ildasm.exe is another SDKs utility that can be used to browse the assemblies for information as versions, keys, etc..

1.4 Sample programs

A couple of sample programs are included for distribution. Qst2vb.vb and Qst2vb2.vb, the quick test programs for
VB. Qst2vb.vb uses the VB value type for data read and write to a CDF file. Qst2vb2.vb passes in the base class
objects for arguments while reading the data from a CDF. Qts2cEpoch.vb , Qst2cEpoch16.vb and Qst2¢TT2000.vb
are three sample programs that show how EPOCH-related functions are used. A batch file, tocompileVB.bat, is
distributed along with the sample programs. Execute it from a Command Prompt window to compile the programs into
executables (.exe). Run totestvh.bat to test the executables to make sure they all work fine.

Chapter 2

2 Programming Interface

2.1 Item Referencing

The following sections describe various aspects of the programming interface for VB applications.

For VB applications, all item numbers are referenced starting at zero (0). These include variable, attribute, and
attribute entry numbers, record numbers, dimensions, and dimension indices. Note that both rVariables and zVariables
are numbered starting at zero (0).

2.2 Compatible Types

As VB and CDF .DLL may have different sizes of the same data types, e.g. long, the size compatibility must be
enforced when passing the data between the two. On 32-bit Windows, 4-byte long has been used all over in the CDF
.DLL. However, long in VB is defined as 8-byte. So, to make the size compatible, 4-byte integer is used, instead, in
VB for each long type variable in the .DLL. For CDF data of type CDF_CHAR, or CDF_UCHAR, it is represented by
a string in VB. They are not size compatible, so conversion, performed in the APIs, is needed between a character array
in .DLL and string in VB.

The VB-CDF operations normally involve two variables: the operation status, status, and the CDF identifier, id:

status All VB-CDF functions, except CDFvarNum, CDFgetVarNum, CDFattrNum and
CDFgetAttrNum, return an operation status. This status is defined as an integer in
.DLL and VB. The CDFerror method can be used to inquire the meaning of any
status code. Appendix A lists the possible status codes along with their
explanations. Chapter 5 describes how to interpret status codes.

id An identifier (or handle) for a CDF that must be used when referring to a CDF.
This identifier has a type of long in VB. A new identifier is established whenever a
CDF is created or opened, establishing a connection to that CDF on disk. This long
value is used in all subsequent operations on a particular CDF. The value must not
be altered by an application.

2.3 CDFConstants

CDF defines a set of constants that are used all over the .DLL. These constants are mimicked in CDFConstants class
with compatible data types.

2.4 CDF status

These constants are of same type as the operation status, mentioned in 2.2.
CDF _OK A status code indicating the normal completion of a CDF function.
CDF_WARN Threshold constant for testing severity of non-normal CDF status codes.

Status less than CDF_OK normally indicate an error. For most cases, an exception will be thrown.

2.5 CDF Formats

SINGLE FILE The CDF consists of only one file. This is the default file format.

MULTI FILE The CDF consists of one header file for control and attribute data and one
additional file for each variable in the CDF.

2.6 CDF Data Types

One of the following constants must be used when specifying a CDF data type for an attribute entry or variable.

CDF BYTE 1-byte, signed integer.
CDF _CHAR 1-byte, signed character.
CDF INTI 1-byte, signed integer.
CDF_UCHAR 1-byte, unsigned character.
CDF _UINT1 1-byte, unsigned integer.
CDF _INT2 2-byte, signed integer.
CDF _UINT2 2-byte, unsigned integer.
CDF INT4 4-byte, signed integer.

CDF _UINT4 4-byte, unsigned integer.

CDF _INTS 8-byte, signed integer.
CDF REAILA4 4-byte, floating point.
CDF _FLOAT 4-byte, floating point.
CDF REALS 8-byte, floating point.
CDF DOUBLE 8-byte, floating point.
CDF_EPOCH 8-byte, floating point.

CDF _EPOCH16 two 8-byte, floating point.

CDF _TIME TT2000 8-byte, signed integer.

The following table depicts the equivalent data type between the CDF and VB:

CDF Data Type VB Data Type
CDF_BYTE sbyte
CDF_INT1 sbyte
CDF_UINT1 byte
CDF_INT2 short
CDF_UINT2 ushort
CDF_INT4 integer
CDF_UINT4 uinteger
CDF_INTS8 long
CDF_REAL4 single
CDF_FLOAT single
CDF_REALS double
CDF_DOUBLE double
CDF_EPOCH double
CDF_EPOCHI16 double(2):
CDF_TIME_TT20001 long
CDF_CHAR string
CDF_UCHAR string

CDF_CHAR and CDF _UCHAR are considered character data types. These are significant because only variables of
these data types may have more than one element per value (representing the length of the string, where each element is
a character).

NOTE: Keep in mind that an long is 8 bytes and that an integer is 4 bytes. Use integer for CDF data types CDF_INT4
and CDF_UINTH4, rather than long. Use long for CDF _INT8 and CDF _TIME TT2000 data types.

! CDF_EPOCH16 has two doubles, which corresponds to an array as double() in VB.

2.7 Data Encodings

A CDF's data encoding affects how its attribute entry and variable data values are stored (on disk). Attribute entry and
variable values passed into the CDF library (to be written to a CDF) should always be in the host machine's native
encoding. Attribute entry and variable values read from a CDF by the CDF library and passed out to an application
will be in the currently selected decoding for that CDF (see the Concepts chapter in the CDF User's Guide).

HOST _ENCODING

NETWORK ENCODING

VAX ENCODING

ALPHAVMSd ENCODING

ALPHAVMSg ENCODING

ALPHAVMSi ENCODING

ALPHAOSF1_ENCODING
SUN_ENCODING
SGi ENCODING

DECSTATION_ENCODING

IBMRS_ENCODING
HP_ENCODING
IBMPC_ENCODING
NeXT_ENCODING
MAC_ENCODING
ARM_LITTLE_ENCODING
ARM _BIG_ENCODING

1A64VMSi ENCODING

Indicates host machine data representation (native). This is the default
encoding, and it will provide the greatest performance when
reading/writing on a machine of the same type.

Indicates network transportable data representation (XDR).

Indicates VAX data representation. Double-precision floating-point
values are encoded in Digital's D FLOAT representation.

Indicates DEC Alpha running OpenVMS data representation. Double-
precision floating-point values are encoded in Digital's D FLOAT
representation.

Indicates DEC Alpha running OpenVMS data representation. Double-
precision floating-point values are encoded in Digital's G_FLOAT

representation.

Indicates DEC Alpha running OpenVMS data representation. Double-
precision floating-point values are encoded in IEEE representation.

Indicates DEC Alpha running OSF/1 data representation.
Indicates SUN data representation.

Indicates Silicon Graphics Iris and Power Series data representation.

Indicates DECstation data representation.

Indicates IBMRS data representation (IBM RS6000 series).
Indicates HP data representation (HP 9000 series).

Indicates PC data representation.

Indicates NeXT data representation.

Indicates Macintosh data representation.

Indicates ARM architecture running little-endian data representation.
Indicates ARM architecture running big-endian data representation.

Indicates Itanium 64 running OpenVMS data representation. Double-
precision floating-point values are encoded in IEEE representation.

[A64VMSd ENCODING Indicates Itanium 64 running OpenVMS data representation. Double-
precision floating-point values are encoded in Digital’s D FLOAT

representation.

[A64VMSg ENCODING Indicates Itanium 64 running OpenVMS data representation. Double-
precision floating-point values are encoded in Digital’s G_FLOAT
representation.

When creating a CDF (via CDFcreate) or respecifying a CDF's encoding (via CDFsetEncoding), you may specify any
of the encodings listed above. Specifying the host machine's encoding explicitly has the same effect as specifying
HOST ENCODING.

When inquiring the encoding of a CDF, either NETWORK ENCODING or a specific machine encoding will be
returned. (HOST ENCODING is never returned.)

2.8 Data Decodings

A CDF's decoding affects how its attribute entry and variable data values are passed out to a calling application. The
decoding for a CDF may be selected and reselected any number of times while the CDF is open. Selecting a decoding
does not affect how the values are stored in the CDF file(s) - only how the values are decoded by the CDF library. Any
decoding may be used with any of the supported encodings. The Concepts chapter in the CDF User's Guide describes a
CDF's decoding in more detail.

HOST DECODING Indicates host machine data representation (native). This is the default
decoding.

NETWORK DECODING Indicates network transportable data representation (XDR).

VAX DECODING Indicates VAX data representation. Double-precision floating-point
values will be in Digital's D FLOAT representation.

ALPHAVMSd DECODING Indicates DEC Alpha running OpenVMS data representation. Double-
precision floating-point values will be in Digital's D FLOAT
representation.

ALPHAVMSg DECODING Indicates DEC Alpha running OpenVMS data representation. Double-
precision floating-point values will be in Digital's G FLOAT
representation.

ALPHAVMSi DECODING Indicates DEC Alpha running OpenVMS data representation. Double-
precision floating-point values will be in IEEE representation.

ALPHAOSF1 DECODING Indicates DEC Alpha running OSF/1 data representation.

SUN_DECODING Indicates SUN data representation.

SGi_ DECODING Indicates Silicon Graphics Iris and Power Series data representation.

DECSTATION_DECODING Indicates DECstation data representation.

IBMRS DECODING Indicates IBMRS data representation (IBM RS6000 series).

HP DECODING Indicates HP data representation (HP 9000 series).

IBMPC DECODING Indicates PC data representation.

NeXT DECODING Indicates NeXT data representation.

MAC DECODING Indicates Macintosh data representation.

ARM LITTLE DECODING Indicates ARM architecture running little-endian data representation.

ARM BIG DECODING Indicates ARM architecture running big-endian data representation.

1A64VMSi DECODING Indicates Itanium 64 running OpenVMS data representation. Double-
precision floating-point values are encoded in IEEE representation.

[A64VMSd DECODING Indicates Itanium 64 running OpenVMS data representation. Double-
precision floating-point values are encoded in Digital’s D FLOAT
representation.

[A64VMSg DECODING Indicates Itanium 64 running OpenVMS data representation. Double-
precision floating-point values are encoded in Digital’s G_FLOAT
representation.

The default decoding is HOST DECODING. The other decodings may be selected via the CDFsetDecoding method.
The Concepts chapter in the CDF User's Guide describes those situations in which a decoding other than
HOST DECODING may be desired.

2.9 Variable Majorities

A CDF's variable majority determines the order in which variable values (within the variable arrays) are stored in the
CDF file(s). The majority is the same for rVariables and zVariables.

ROW_MAJOR C-like array ordering for variable storage. The first dimension in each
variable array varies the slowest. This is the default.

COLUMN_MAJOR Fortran-like array ordering for variable storage. The first dimension in
each variable array varies the fastest.

Knowing the majority of a CDF's variables is necessary when performing hyper reads and writes. During a hyper read
the CDF library will place the variable data values into the memory buffer in the same majority as that of the variables.
The buffer must then be processed according to that majority. Likewise, during a hyper write, the CDF library will
expect to find the variable data values in the memory buffer in the same majority as that of the variables.

The majority must also be considered when performing sequential reads and writes. When sequentially reading a
variable, the values passed out by the CDF library will be ordered according to the majority. When sequentially
writing a variable, the values passed into the CDF library are assumed (by the CDF library) to be ordered according to
the majority.

As with hyper reads and writes, the majority of a CDF's variables affect multiple variable reads and writes. When
performing a multiple variable write, the full-physical records in the buffer passed to the CDF library must have the

10

CDF's variable majority. Likewise, the full-physical records placed in the buffer by the CDF library during a multiple
variable read will be in the CDF's variable majority.

For C applications the compiler-defined majority for arrays is row major. The first dimension of multi-dimensional
arrays varies the slowest in memory.

2.10 Record/Dimension Variances

Record and dimension variances affect how variable data values are physically stored.

VARY True record or dimension variance.

NOVARY False record or dimension variance.
If a variable has a record variance of VARY, then each record for that variable is physically stored. If the record
variance is NOVARY, then only one record is physically stored. (All of the other records are virtual and contain the
same values.)
If a variable has a dimension variance of VARY, then each value/subarray along that dimension is physically stored. If

the dimension variance is NOVARY, then only one value/subarray along that dimension is physically stored. (All
other values/subarrays along that dimension are virtual and contain the same values.)

2.11 Compressions

The following types of compression for CDFs and variables are supported. For each, the required parameters are also
listed. The Concepts chapter in the CDF User's Guide describes how to select the best compression type/parameters for
a particular data set. Among the available types, GZIP provides the best result.
NO_COMPRESSION No compression.
RLE COMPRESSION Run-length encoding compression. There is one parameter.
1. The style of run-length encoding. Currently, only the run-length
encoding of zeros is supported. This parameter must be set to
RLE OF ZEROs.
HUFF _COMPRESSION Huffman compression. There is one parameter.

1. The style of Huffman encoding. Currently, only optimal encoding
trees are supported. An optimal encoding tree is determined for each
block of bytes being compressed. This parameter must be set to
OPTIMAL ENCODING TREES.

AHUFF COMPRESSION Adaptive Huffman compression. There is one parameter.

1. The style of adaptive Huffman encoding. Currently, only optimal
encoding trees are supported. An optimal encoding tree is determined

11

for each block of bytes being compressed. This parameter must be set
to OPTIMAL ENCODING TREES.

GZIP_COMPRESSION Gnu's “zip" compression.> There is one parameter.
1. The level of compression. This may range from 1 to 9. 1 provides the
least compression and requires less execution time. 9 provide the most
compression but require the most execution time. Values in-between

provide varying compromises of these two extremes. 6 normally
provides a better balance between compression and execution.

2.12 Sparseness

2.12.1 Sparse Records

The following types of sparse records for variables are supported.
NO_SPARSERECORDS No sparse records.

PAD SPARSERECORDS Sparse records - the variable's pad value is used when reading values from
a missing record.

PREV_SPARSERECORDS Sparse records - values from the previous existing record are used when

reading values from a missing record. If there is no previous existing
record the variable's pad value is used.

2.12.2 Sparse Arrays

The following types of sparse arrays for variables are supported.

NO_SPARSEARRAYS No sparse arrays.

Note: sparse array is not supported and will not be implemented.

2.13 Attribute Scopes

Attribute scopes are simply a way to explicitly declare the intended use of an attribute by user applications (and the
CDF toolkit).

GLOBAL SCOPE Indicates that an attribute's scope is global (applies to the CDF as a
whole).

2 Disabled for PC running 16-bit DOS/Windows 3.x.
3 Obviously, sparse arrays are not yet supported.

12

VARIABLE SCOPE Indicates that an attribute's scope is by variable. (Each rEntry or zEntry
corresponds to an rVariable or zVariable, respectively.)

2.14 Read-Only Modes

Once a CDF has been opened, it may be placed into a read-only mode to prevent accidental modification (such as when
the CDF is simply being browsed). Read-only mode is selected via CDFsetReadOnlyMode method. When read-only
mode is set, all metadata is read into memory for future reference. This improves overall metadata access performance
but is extra overhead if metadata is not needed. Note that if the CDF is modified while not in read-only mode,
subsequently setting read-only mode in the same session will not prevent future modifications to the CDF.

READONLYon Turns on read-only mode.

READONLY off Turns off read-only mode.

2.15 zModes

Once a CDF has been opened, it may be placed into one of two variations of zMode. zMode is fully explained in the
Concepts chapter in the CDF User's Guide. A zMode is selected via CDFsetzMode method.

zMODEoff Turns off zMode.
zMODEon1 Turns on zMode/1.
zMODEon2 Turns on zMode/2.

2.16 -0.0 to 0.0 Modes

Once a CDF has been opened, the CDF library may be told to convert -0.0 to 0.0 when read from or written to that
CDF. This mode is selected via CDFsetNegtoPosfpOMode method.

NEGtoPOS{fpOon Convert -0.0 to 0.0 when read from or written to a CDF.

NEGtoPOSfpOoff Do not convert -0.0 to 0.0 when read from or written to a CDF.

2.17 Operational Limits

These are limits within the CDF library. If you reach one of these limits, please contact CDF User Support.

CDF MAX DIMS Maximum number of dimensions for the rVariables or a zVariable.

13

CDF_MAX PARMS Maximum number of compression or sparseness parameters.

The CDF library imposes no limit on the number of variables, attributes, or attribute entries that a CDF may have. on
the PC, however, the number of rVariables and zVariables will be limited to 100 of each in a multi-file CDF because of
the 8.3 naming convention imposed by MS-DOS.

2.18 Limits of Names and Other Character Strings

CDF _PATHNAME LEN Maximum length of a CDF file name. A CDF file name may contain disk
and directory specifications that conform to the conventions of the
operating systems being used (including logical names on OpenVMS
systems and environment variables on UNIX systems).

CDF_VAR NAME LEN256 Maximum length of a variable name.

CDF _ATTR NAME LEN256 Maximum length of an attribute name.
CDF_COPYRIGHT LEN Maximum length of the CDF Copyright text.

CDF _STATUSTEXT LEN Maximum length of the explanation text for a status code.

2.19 Backward File Compatibility with CDF 2.7

By default, a CDF file created by CDF V3.0 or a later release is not readable by any of the CDF releases before CDF
V3.0 (e.g. CDF 2.7.x, 2.6.x, 2.5.x, etc.). The file incompatibility is due to the 64-bit file offset used in CDF 3.0 and
later releases (to allow for files greater than 2G bytes). Note that before CDF 3.0, 32-bit file offset was used.

There are two ways to create a file that’s backward compatible with CDF 2.7 and 2.6, but not 2.5. A method,
CDFsetFileBackward, can be called to control the backward compatibility from an application before a CDF file is
created (i.e. CDFcreateCDF). This method takes an argument to control the backward file compatibility. Passing a
flag value of BACKWARDFILEon, defined in CDFConstants, to the method will cause new files being created to
be backward compatible. The created files are of version V2.7.2, not V3.*. This option is useful for those who wish to
create and share files with colleagues who still use a CDF V2.7/V2.6 library. If this option is specified, the maximum
file size is limited to 2G bytes. Passing a flag value of BACKWARDFILEoff will use the default file creation mode
and newly created files will not be backward compatible with older libraries. The created files are of version 3.* and
thus their file sizes can be greater than 2G bytes. Not calling this method has the same effect of calling the method
with an argument value of BACKWARDFILEoff.

The following example creates two CDF files: “MY_TEST1.cdf” is a V3.* file while “MY_TEST2.cdf” a V2.7 file.

dim id1 as long, id2 as long ¢ CDF identifier.
Dim status as integer ¢ Returned status code.
try

status = CDFcreateCDF(“MY_TEST1”, id1)

14

CDFsetFileBackward(BACKWARDFILEon)
status = CDFCreateCDF(“MY_ TEST2”, id2)

catch ex as Exception

end try

Another method is through an environment variable and no method call is needed (and thus no code change involved in
any existing applications). The environment variable, CDF_FILEBACKWARD on Windows, is used to control the
CDF file backward compatibility. If its value is set to “TRUE”, all new CDF files are backward compatible with CDF
V2.7 and 2.6. This applies to any applications or CDF tools dealing with creation of new CDFs. If this environment
variable is not set, or its value is set to anything other than “TRUE”, any files created will be of the CDF 3.* version
and these files are not backward compatible with the CDF 2.7.2 or earlier versions .

Normally, only one method should be used to control the backward file compatibility. If both methods are used, the
method call through CDFsetFileBackward will take the precedence over the environment variable.

You can use the CDFgetFileBackward method to check the current value of the backward-file-compatibility flag. It
returns 1 if the flag is set (i.e. create files compatible with V2.7 and 2.6) or 0 otherwise.

dim flag as integer ¢ Returned status code.

flag = CDFgetFileBackward()

2.20 Checksum

To ensure the data integrity while transferring CDF files from/to different platforms at different locations, the
checksum feature was added in CDF V3.2 as an option for the single-file format CDF files (not for the multi-file
format). By default, the checksum feature is not turned on for new files. Once the checksum bit is turned on for a
particular file, the data integrity check of the file is performed every time it is open and a new checksum is computed
and stored when it is closed. This overhead (performance hit) may be noticeable for large files. Therefore, it is
strongly encouraged to turn off the checksum bit once the file integrity is confirmed or verified.

If the checksum bit is turned on, a 16-byte signature message (a.k.a. message digest) is computed from the entire file
and appended to the end of the file when the file is closed (after any create/write/update activities). Every time such
file is open, other than the normal steps for opening a CDF file, this signature, serving as the authentic checksum, is
used for file integrity check by comparing it to the re-computed checksum from the current file. If the checksums
match, the file’s data integrity is verified. Otherwise, an error message is issued. Currently, the valid checksum modes
are: NO_CHECKSUM and MD5S_CHECKSUM, both defined in CDFConstants class. With MD5 CHECKSUM, the
MDS algorithm is used for the checksum computation. The checksum operation can be applied to CDF files that were
created with V2.7 or later.

There are several ways to add or remove the checksum bit. One way is to use the method call with a proper checksum
mode. Another way is through the environment variable. Finally, CDFedit and CDFconvert (CDF tools included as
part of the standard CDF distribution package) can be used for adding or removing the checksum bit. Through the
Interface call, you can set the checksum mode for both new or existing CDF files while the environment variable
method only allows to set the checksum mode for new files.

15

The environment variable CDF_CHECKSUM on Windows is used to control the checksum option. If its value is set
to “MDS”, all new CDF files will have their checksum bit set with a signature message produced by the MD5
algorithm. If the environment variable is not set or its value is set to anything else, no checksum is set for the new files.

The following example set a new CDF file with the MD5 checksum and set another existing file’s checksum to none.

Dim idl as long, id2 as long ¢ CDF identifier.
Dim status as integer ¢ Returned status code.
Dim checksum as integer ¢ Checksum code.

étatus = CDFCreateCDF(“MY_TEST1”, idl)

étatus = CDFsetChecksum (id1, MD5 CHECKSUM)
étatus = CDFclose(id1)

étatus = CDFopen(“MY_TEST2”, id2)

étatus = CDFsetChecksum (id2, NO CHECKSUM)

status = CDFclose(id2)

2.21 Data Validation

To ensure the data integrity of CDF files and secure operation of CDF-based applications, a data validation feature has
been added to the CDF opening logic. This process, as the default, performs sanity checks on the data fields in the
CDF's internal data structures to make sure that the values are within valid ranges and consistent with the defined
values/types/entries. It also ensures that the variable and attribute associations within the file are valid. Any
compromised CDF files, if not validated properly, could cause applications to function unexpectedly, e.g.,
segmentation fault due to a buffer overflow. The main purpose of this feature is to safeguard the CDF operations, catch
any bad data in the file and end the application gracefully if any bad data is identified. Using this feature, in most
cases, will slow down the file opening process especially for large or very fragmented files. Therefore, it is
recommended that this feature be turned off once a file’s integrity is confirmed or verified. Or, the file in question may
need a file conversion, which will consolidate the internal data structures and eliminate the fragmentations. Check the
cdfconvert tool program in the CDF User’s Guide for further information. #

This validation feature is controlled by setting/unsetting the environment variable CDF_VALIDATE on Windows is
not set or set to “yes”, all CDF files are subjected to the data validation process. If the environment variable is set to
“no”, then no validation is performed. The environment variable can be set at logon or through the command line,
which goes into effect during a terminal session, or within an application, which is good only while the application is
running. Setting the environment variable, using C method CDFsetValidate, at application level will overwrite the
setup from the command line. The validation is set to be on when VALIDATEFILEon is passed in as an argument.
VALIDATEFILEoff will turn off the validation. The function, CDFgetValidate,will return the validation mode, 1
(one) means data being validated, 0 (zero) otherwise. If the environment variable is not set, the default is to validate the

4 The data validation during the open process will not check the variable data. It is still possible that data could be
corrupted, especially compression is involved. To fully validate a CDF file, use cdfdump tool with “-detect” switch.

16

CDF file upon opening.

The following example sets the data validation on when the CDF file, “TEST”, is open.

dim id as long ¢ CDF identifier.
Dim status as integer ¢ Returned status code.

CDFsetValidate (VALIDATEFILEon)
status = CDFopen(“TEST”, id)

The following example turns off the data validation when the CDF file, “TEST” is open.

dim id as long ¢ CDF identifier.
Dim status as integer ¢ Returned status code.

CDFsetValidate (VALIDATEFILEoff)
status = CDFopen(“TEST”, id)

2.22 8-Byte Integer

Both data types of CDF _INT8 and CDF_TIME TT2000 use 8-byes signed integer. VB’s “long” type is the one that
matches to these two types.

2.23 Leap Seconds

CDF’s CDF_TIME_TT2000 is the epoch value in nanoseconds since J2000 (2000-01-01T12:00:00.000000000) with
leap seconds included. The CDF uses an external or internal table for computing the leap seconds. The external table, if
present and properly pointed to by a predefined environment variable, will be used over the internal one. When the VB
package is installed, the external table and environment variables are set so it can be used. If the external table is
deleted or no longer pointed by the environment variable, the internal, hard-coded table in the library is used. When a
new leap second is added, if the external table is updated accordingly, then the software does not need to be upgraded.
Refer to CDF User’s Guide for leap seconds.

A tool program, CDFleapsecondsInfo distributed with the CDFpackage, will show how the table is referred and when
the last leap second was added. Optionally, it can dump the table contents.

17

18

Chapter 3

3 Understanding the Application
Interface

This chapter provides some basic information about the VB‘s Application Interfaces (APIs) to CDF, and the native
CDF .DLL The following chapter will describe each API in detail.

3.1 Arguments Passing

Each CDF API has a sequence of parameters, which define the set of arguments that must be provided for that method
in VB applications. Being a strongly typed language, VB’s APIs to CDF follow the same rules for the parameters.
Arguments for APIs that perform CDF data get, put or inquire operations are required to have the signatures of the
defined VB value/string type or basic Object classes.

The input parameters in APIs for the CDF identifier, variable number, attribute number, entry number, record
number, record counts and record indices, etc, are always of fixed types. They must be a scalar of type long for
CDF identifier, integer for variable/attribute/entry number and record number/count, or an array of integers, integer(),
for variable dimensional sizes/variances and record data indices, counts and intervals. The output parameters must be
in either of the defined type or the VB base Object class. For example, for a returned data of type integer, the passing
argument in the calling application can be either a defined integer variable, or a variable of object class. Compilation
error will occur if any one of the such arguments from the applications does not match to that defined in the APIL.

A CDF identifier, when a CDF is open or created, is presented as a long variable, even in the underlying C# and CDF
native library it is a pointer.

For example, CDFsetEncoding and CDFgetEncoding are used to set and get the data encoding of a CDF. Both APIs
take two parameters, the CDF identifier, always a long, and the encoding, an integer. CDFsetEncoding take both
parameters from applications for input, while CDFgetEncoding has the CDF identifier as input and the encoding for
output. The following code shows how these methods can be used.

To set a CDF’s encoding,
dim status as integer

dim id as long
dim encoding as integer

19

encoding = IBMPC_ENCODING
status = CDFsetEncoding(id, encoding)

The CDF identifier, id, is set when a CDF is open or created. The encoding is set to PC encoding, defined in
CDFConstants class.

Similarly, to get the CDF’s encoding:

status = CDFgetEncoding(id, encoding)

APIs that read or write CDF data, either variable’s data (and their pad value) or metadata, are flexible when dealing
with data of different pre-defined CDF types, e.g., CDF INT1, CDF UINTI, CDF FLOAT, CDF CHAR,
CDF_EPOCH, etc. To pass the data value(s) to the APIs, one of the following forms can be used, depending on the
data type: VB numeric type or string in a scalar or array or simply the VB base object class. String or an array of
strings involves data of CDF_CHAR or CDF_UCHAR type. As VB’s character/string has a different characteristic
from the ASCII-based code in the CDF native DLL library, some manipulations are performed by the APIs when
dealing with such data. VB objects can be used, as a general form for all data value(s), when reading/writing data from
CDF. The called APIs will handle the passed object and map it to its corresponding CDF data type. Type casting the
objects returned by the APIs may be needed.

For example, methods: CDFputzVarData and CDFgetzVarData are used to write and read a single data value for an
zVariable in a CDF. Both take five parameters. The first four, the CDF identifier, variable number, record number and
indices, are for input and of fixed types of: long, integer, integer and an array of integers (integer()), respectively.
The last parameter is for data value, as an input for CDFputzVarData or an output for CDFgetzVarData. To call
CDFputzVarData, the data value has to be defined to match to variable’s underlying data type and given a value. It is
passed in as is. To retrieve the data by CDFgetzVarData, just specifies the variable with a proper data type and pass in
to the API.

The following samples show how these arguments are set up to write a data value to record 1, indices (1,1) for
zVariable, “zVarl”, a 2-dimentional of CDF_INT?2.

dim status as integer

dim id as long

dim varNum as integer

dim recNum as integer = 1

dim indices() as integer = {1,1}

dim value as short = 100

varNum = CDFvarNum (id, “zVarl”)

status = CDFputzVarData(id, varNum, recNum, indices, value)
To read the data value the same variable at the same record and indices:
dim value as short

status = CDFgetzVarData(id, varNum, recNum, indices, value)

Similarly, value can be defined as a VB base object:

Dim valueo as object
status = CDFgetzVarData(id, varNum, recNum, indices, valueo)

Either use such statement:

20

Dim value as short = valueo

Or, use a proper type casting method, such as CType or DirectCast for a scalar, to make it a value type after the object
is returned. For object of an array, just assign it to a properly type-defined, dimensional variable.

dim value as short = Ctype(valueo, short)

APIs that handle multiple data values reads and writes, e.g., CDFputzVarRecordData and
CDFgetzVarRecordData for writing and reading a full data record an zVariable, are similar. They both take four
parameters: the first three, as input, are the CDF identifier, variable number, record number of the fixed types of long,
integer and integer, respectively, and the last one is the data values, input for CDFputzVarRecordData or output for
CDFgetzVarRecordData. The data values have to be defined (and assigned for input), according to the variable’s
underlying data type, and passed in as is.

The following samples show how the arguments are set in CDFputzVarRecordData to write the full record 1 for
zVariable, “zVarl”, a 2-dim (2,3) of type short. The first one passes the data value object as is, while the second one
uses a pointer to the data values.

dim status as integer

dim id as long

dim varNum as integer

dim recNum as integer = 1

dim values(;,) as short = {{1,2,3},{11,12,13}}

varNum = CDFvarNum (id, “zVarl”)
status = CDFputzVarRecordData(id, varNum, recNum, values)

For CDFgetzVarRecordData to read back the same variable’s record data, one can use the same arguments as
CDFputzVarRecordData.

dim id as long

dim varNum as integer

dim recNum as integer = 1

dim values (;,) as short

varNum = CDFvarNum (id, “zVarl”)

status = CDFgetzVarRecordData(id, varNum, recNum, values)

Console.WriteLine(*“{0},{1},{2}”+Environment.Newline+”{3},{4},{5}”,values(0.0),values(0.1), values(0.2),
values(1.0),values(1.1), values(1.2))

Alternatively, use a base object for the output:

dim valueso as object

status = CDFgetzVarRecordData(id, varNum, recNum, valueso)
dim values(,) as short = valueo

Console.WriteLine(*“{0},{1},{2}”+Environment.Newline+”{3},{4},{5}”,values(0.0),values(0.1), values(0.2),
values(1.0),values(1.1), values(1.2))

21

3.2 Multi-Dimensional Arrays

For data involved multidimensional arrays, CDF’s native .DLL data structure is equivalent to the rectangular array in
VB. Multidimensional arrays of jagged type are not supported by APIs. An extra dimension is added to the retrieved
data if the operations involve multiple records. For example, to read two full records from a variable of two-
dimensions, 3-by-4 by the hyper get method, the returned will be a three-dimensional, 2-by-3-by-4, object. Conversely,
if the hyper read skips certain dimension(s) from an operation, the returned object’s dimensionality will be reduced
accordingly. For example, to read a row or column from a variable’s two-dimensional record, the returned will be a
single array of either column or row count.

3.3 Data Type Equivalent

The following list shows the data types used by CDF and their corresponding types in VB:

e CDF INTI1 sbyte

e CDF INT2 short

e CDF INT4 int

e CDF INTS long

e CDF UINTI byte

e CDF UINT2 ushort

e CDF UINT4 uint

e CDF BYTE sbyte

e CDF REAL single

e CDF FLOAT single

e CDF DOUBLE double

e CDF REAL8 double

e CDF EPOCH double

e CDF EPOCHI16 double(2)

e CDF TIME TT2000 long

e CDF CHAR string (with manipulation)
e CDF UCHAR string (with manipulation)

34 Fixed Statement

Fixed statement is required to pin VB managed data objects, mainly arrays of numeric data, so that pointers of the
objects can be safely used and passed to the CDF APIs. By doing so, the objects’ addresses in the heap won’t be moved
around by the garbage collector during the operation.

For example, CDFhyperGetzVarData method can be called to retrieve a number of data values for a zVariable. For
instance, the following application code can be used to read the first four (4) records from a zVariable of 2-dim (2,3) of
type CDF _INT4. The declared data buffer, a 3-dimensional of int, is blocked in the fixed statement when the call is
made.

22

dim id as long

dim status as integer

dim varNum as integer

dim recNum as integer = 0, recCount as integer = 4, recInterval as integer = |

dim indices() as integer = {0, 0}

dim counts() as integer = {2, 3}

dim intervals() as integer = {1,1}

dim data(4,2,3) as integer ¢ Dimension: record number, row, column

status = CDFhyperGetzVarData (id, varNum, recNum, recCount, recInterval, indices, counts, intervals, data)

3.5 Exception Handling

Except a few APIs, each call to a CDF method will return an operation status. If the status is abnormal, less than
CDF_OK, an exception might be thrown. It is recommended that the code for the CDF-based application be surrounded
by a try-catch block so an exception can be caught and handled. The methods to check the existence of a CDF entity,
e.g., entry, attribute, variable, will not throw exception if that entity is not in the CDF. The returned, informational
status will reflect so. Once an exception is thrown, the thrown object, if initiated from the CDF APIs, is a
CDFException class object. There are a couple of class methods, GetCurrentStatus and GetStatusMsg ,which can be
used to acquire the status when an exception is thrown and the descriptive information about that exception.

dim id as long
dim status as integer
dim encoding as integer
try
status = CDFopen(“TEST”, id)

status = CDFgetEncoding(id, encoding)

status = CDFclose(id)
catch ex as Exception
Console.WriteLine(“Exception: “+ex.toString())
Or,
dim status] as integer = ex.GetCurrentStatus()
Console.WriteLine(“Exception: “+ex.GetStatusMsg(status1))

}

3.6 Dimensional Limitations

The VB to CDF APIs follow the same dimensional restriction as in the CDF native DLL: a limit of ten (10) dimensions
a CDF variable’s numeric typed data record can have. For string typed data, represented in a CDF file with
CDF_CHAR or CDF_UCHAR type, a limit of four (4) dimensions is applied.

23

24

Chapter 4

4 Application Interface

This chapter covers all Application Interfaces (APIs) that VB applications can call to interact with CDF. Since C# APIs
to CDF had already been developed, they are the base for all .Net Framework applications for CDF. Pointers are used
extensively for passing the data, e.g., CDF identifier as void *, between C# applications, C# APIs and CDF native
DLL. Such pointer-based functions are hard to handle in VB application. For that, a new set of APIs is added to C#
APIs suite to specifically allow VB applications to use C# functions without the use of pointers.

There are two types of variables (rVariable and zVariable) in CDF, and they can happily coexist in a CDF: Every
rVariable in a CDF must have the same number of dimensions and dimension sizes while each zVariable can have its
own dimensionality. Since all the rVariables in a CDF must have the same dimensions and dimension sizes, there'll be
a lot of disk space wasted if a few variables need big arrays and many variables need small arrays. Since zVariable is
more efficient in terms of storage and offers more functionality than rVariable, use of zVariable is strongly
recommended. As a matter of fact, there’s no reason to use rVariables at all if you are creating a CDF file from scratch.
One may wonder why there are rVariables and zVariables, not just zVariables. When CDF was first introduced, only
rVariables were available. The inefficiencies with rVariables were quickly realized and addressed with the introduction
of zVariables in later CDF releases.

The description for each API will detail its parameters: their types, for input or output and what the method returns.
APIs that handle read/write of variable data and attribute entry may use a special indicator: TYPE, to specify the
parameters that can have different signatures. The acceptable data types for such method are specified. For example,
CDFgetzVarData method, returning a single zVariable value, is described as:

integer CDFgetEncoding (out -- Completion status code.
id as long, ¢ in-- CDF identifier.
varNum as integer, in -- Variable number.
recNum as integer, in -- Record number.
indices as integer(), in -- Dimension indices.
value as TYPE) ¢ out -- Data value.
‘ TYPE -- VB value/string type or object

TYPE, as specified, can be defined a VB value or string (matching to the variable’s underlying data type) or simply a
VB base Object. The following sample shows how the API is used to retrieve a data value from the zVariable
“my_var”, a 2-dimensional, CDF_INT4 type at indices of {1,1} for record 1:

dim status as integer

dim indices() as integer = {1, 1}
dim id as long

dim value as integer

.s.tél.tus = CDFgetEncoding(id, CDFvarNum(id, “my_var”), 1, indices, value)

25

Alternatively, value can be defined as object:
dim value as object

.s.tél.tus = CDFgetEncoding(id, CDFvarNum(id, “my_var”), 1, indices, value)

APIs are grouped, based on the CDF entities they operate on. These groups consist of general library information, CDF
as a whole, variable and attribute/entry.

4.1 Library Information

The functions in this section are related to the current CDF library being used for the CDF operations, and they provide
useful information such as the current library version number and Copyright notice.

4.1.1 CDFgetDataTypeSize

3

integer CDFgetDataTypeSize (out -- Completion status code.
dataType as integer, ¢ in-- CDF data type.
numBytes as integer) ¢ out -- # of bytes for the given type.

CDFgetDataTypeSize returns the size (in bytes) of the specified CDF data type.
The arguments to CDFgetDataTypeSize are defined as follows:
dataType The CDF supported data type.

numBytes The size of dataType.

4.1.1.1. Example(s)

The following example returns the size of the data type CDF INT4 that is 4 bytes.

dim status as integer ¢ Returned status code.
Dim numBytes as integer ¢ Number of bytes.
try

status = CDFgetDataTypeSize(CDF_INT4, &numBytes)

catch ex as Exception

26

end try

4.1.2 CDFgetLibraryCopyright

3

integer CDFgetLibraryCopyright (
copyright as string)

out -- Completion status code.
out -- Library copyright.

3

CDFgetLibraryCopyright returns the Copyright notice of the CDF library being used.
The arguments to CDFgetLibraryCopyright are defined as follows:

copyright The Copyright notice.

4.1.2.1. Example(s)

The following example returns the Copyright of the CDF library being used.

dim status as integer ¢ Returned status code.
Dim copyright as string ¢ CDF library copyright.
try

status = CDFgetLibraryCopyright(copyright)

catch ex as Exception

end try

4.1.3 CDFgetLibraryVersion

integer CDFgetLibraryVersion (
version as integer,

release as integer,

increment as integer,
subIncrement as string)

out -- Completion status code.
out -- Library version.

out -- Library release.

out -- Library increment.

out -- Library sub-increment.

CDFgetLibrary Version returns the version and release information of the CDF library being used.

The arguments to CDFgetLibraryVersion are defined as follows:

27

version The library version number.

release The library release number.
increment The library incremental number.
subIncrement The library sub-incremental string, a single character.

4.1.3.1. Example(s)

The following example returns the version and release information of the CDF library that is being used.

dim status as integer ¢ Returned status code.

Dim version as integer ¢ CDF library version number.

Dim release as integer CDF library release number.

Dim increment as integer CDF library incremental number.

Dim sublncrement as string CDF library sub-incremental character.

3
3

try
status = CDFgetLibraryVersion(version, release, increment, sublncrement)

catch ex as Exception

end try

4.1.4 CDFgetStatusText

3

dim varNum as integer CDFgetStatusText(
status as integer,
message as string)

out -- Completion status code.
in -- The status code.
out -- The status text description.

3

3

CDFgetStatusText is identical to CDFerror, a legacy CDF function, (see section 4.2.8), and the use of this method is
strongly encouraged over CDFerror as it might not be supported in the future. This method is used to inquire the text
explanation of a given status code. Chapter 5 explains how to interpret status codes and Appendix A lists all of the
possible status codes.
The arguments to CDFgetStatusText are defined as follows:

status The status code to check.

message The explanation of the status code.

28

4.1.4.1. Example(s)

The following example displays the explanation text for the error code that is returned from a call to CDFopenCDF.

dim id as long ¢ CDF identifier.

dim status as integer ¢ Returned status code.
Dim text as string ¢ Explanation text.

try

status = CDFopenCDF ("giss wetl", id)
status = CDFclose(id)
catch ex as Exception

text = CDFgetStatusMsg(ex.CDFgetCurrentStatus()) ...
end try

4.2 CDF

The functions in this section provide CDF file-specific operations. Any operations involving variables or attributes are
described in the following sections. This CDF has to be a newly created or opened from an existing one.

4.2.1 CDFclose

Integer CDFclose(¢ out -- Completion status code.
id as long) ¢ in-- CDF identifier.

CDFclose closes the specified CDF. The CDF's cache buffers are flushed the CDF's open file is closed (or files in the
case of a multi-file CDF) and the CDF identifier is made available for reuse.

NOTE: You must close a CDF with CDFclose to guarantee that all modifications you have made will actually be
written to the CDF's file(s). If your program exits, normally or otherwise, without a successful call to CDFclose, the
CDF's cache buffers are left unflushed.

The arguments to CDFclose are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

4.2.1.1. Example(s)

29

The following example will close an open CDF.

dim id as long ¢ CDF identifier.
dim status as integer ¢ Returned status code.
try

status = CDFopen(“...”, id)
status = CDFclose (id)
catch ex as Exception

end try

4.2.2 CDFcloseCDF

Integer CDFcloseCDF (¢ out -- Completion status code.
id as long) ¢ in-- CDF identifier.

CDFcloseCDF closes the specified CDF. This method is identical to CDFclose, a legacy CDF function. The use of this
method is strongly encouraged over CDFclose as it might not be supported in the future. The CDF's cache buffers are
flushed the CDF's open file is closed (or files in the case of a multi-file CDF) and the CDF identifier is made available
for reuse.

NOTE: You must close a CDF with CDFcloseCDF to guarantee that all modifications you have made will actually be
written to the CDF's file(s). If your program exits, normally or otherwise, without a successful call to CDFcloseCDF,
the CDF's cache buffers are left unflushed.

The arguments to CDFcloseCDF are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreateCDF or
CDFopenCDF.

4.2.2.1. Example(s)

The following example will close an open CDF.

dim id as long ¢ CDF identifier.
dim status as integer ¢ Returned status code.
try

30

status = CDFopenCDF ("giss wetl", id)

status = CDFcloseCDF (id)

catch ex as Exception

end try

4.2.3 CDFcreate

Integer CDFcreate(
CDFname as string,
numDims as integer,
dimSizes as integer(),
encoding as integer,
majority as integer,
id as long)

out -- Completion status

¢ in -- CDF file name.

in -- Number of dimensions, rVariables.
in -- Dimension sizes, rVariables.

in -- Data encoding.

in -- Variable majority.

¢ out-- CDF identifier.

CDFcreate, a legacy CDF function, creates a CDF as defined by the arguments. A CDF cannot be created if it already
exists. (The existing CDF will not be overwritten.) If you want to overwrite an existing CDF, you must first open it
with CDFopenCDF, delete it with CDFdeleteCDF, and then recreate it with CDFcreate. If the existing CDF is
corrupted, the call to CDFopen will fail. (An error code will be returned.) In this case you must delete the CDF at the
command line. Delete the dotCDF file (having an extension of .cdf), and if the CDF has the multi-file format, delete all
of the variable files (having extensions of .v0,.v1,. . . and .z0,.z1,.. .).

The arguments to CDFcreate are defined as follows:

CDFname

numDims

dimSizes

encoding

majority

id

The file name of the CDF to create. (Do not specify an extension.) This may be at most
CDF PATHNAME LEN characters. A CDF file name may contain disk and directory
specifications that conform to the conventions of the operating system being used (including
logical names on OpenVMS systems and environment variables on UNIX systems).

UNIX: File names are case-sensitive.

Number of dimensions the rVariables in the CDF are to have. This may be as few as zero
(0) and at most CDF. MAX DIMS.

The size of each dimension. Each element of dimSizes specifies the corresponding
dimension size. Each size must be greater then zero (0). For 0-dimensional rVariables this

argument is ignored (but must be present).

The encoding for variable data and attribute entry data. Specify one of the encodings
described in Section 2.7.

The majority for variable data. Specify one of the majorities described in Section 2.9.

The identifier for the created CDF. This identifier must be used in all subsequent operations
on the CDF.

When a CDF is created, both read and write access are allowed. The default format for a CDF created with CDFcreate
is specified in the configuration file of your CDF distribution. Consult your system manager for this default.

31

NOTE: CDFclose must be used to close the CDF before your application exits to ensure that the CDF will be correctly
written to disk.

4.2.3.1. Example(s)

The following example creates a CDF named “testl.cdf” with network encoding and row majority.

dim id as long ¢ CDF identifier.

Dim status as integer Returned status code.

dim numDims as integer = 3 ¢ Number of dimensions, rVariables.
Dim dimSizes() as integer = {180,360,10} ¢ Dimension sizes, rVariables.

dim majority as integer = ROW_MAJOR ¢ Variable majority.

try

status = CDFcreate ("testl", numDims, dimSizes, NETWORK ENCODING, majority, id)
catch ex as Exception

end try

4.2.4 CDFcreateCDF

Integer CDFcreateCDF(¢ out -- Completion status code.
cdfName as string, ‘¢ in -- CDF file name.
id as long) ¢ out-- CDF identifier.

CDFcreateCDF creates a CDF file. This method is a simple form of CDFcreate without the number of dimensions,
dimensional sizes, encoding and majority arguments. It is the better method if only zVariables are to be created in the
CDF. The created CDF will use the default encoding (HOST ENCODING) and majority (ROW_MAIJOR). A CDF
cannot be created if it already exists. (The existing CDF will not be overwritten.) If you want to overwrite an existing
CDF, you can either manually delete the file or open it with CDFopenCDF ,delete it with CDFdeleteCDF, and then
recreate it with CDFcreateCDF. If the existing CDF is corrupted, the call to CDFopenCDF will fail. (An error code
will be returned.) In this case you must delete the CDF at the command line. Delete the dotCDF file (having an
extension of .cdf), and if the CDF has the multi-file format, delete all of the variable files (having extensions of .v0,.v1,.
..and .z0,.z1,.. .).

Note that a CDF file created with CDFcreateCDF can only accept zVariables, not rVariables. But this is fine since
zVariables are more flexible than rVariables. See the third paragraph of Chapter 3 for the differences between
rVariables and zVariables.

The arguments to CDFcreateCDF are defined as follows:
CDFname The file name of the CDF to create. (Do not specify an extension.) This may be at most
CDF PATHNAME LEN characters. A CDF file name may contain disk and directory

specifications that conform to the conventions of the operating system being used (including
logical names on OpenVMS systems and environment variables on UNIX systems).

32

UNIX: File names are case-sensitive.

id The identifier for the created CDF. This identifier must be used in all subsequent operations
on the CDF.

When a CDF is created, both read and write access are allowed. The default format for a CDF created with
CDFcreateCDF is specified in the configuration file of your CDF distribution. Consult your system manager for this
default.

NOTE: CDFcloseCDF must be used to close the CDF before your application exits to ensure that the CDF will be
correctly written to disk.

4.2.4.1. Example(s)

The following example creates a CDF named “test1.cdf” with the default encoding and majority.

dim id as long ¢ CDF identifier.
dim status as integer ¢ Returned status code.
try

status = CDFcreateCDF ("testl", id)
status = CDFclose (id)
catch ex as Exception

end try

4.2.5 CDFdelete

integer CDFdelete(¢ out -- Completion status code.
id as long) ¢ in-- CDF identifier.

CDFdelete, a legacy CDF function, deletes the specified CDF. The CDF files deleted include the dotCDF file (having
an extension of .cdf), and if a multi-file CDF, the variable files (having extensions of .v0,.v1,. . . and .z0,.z1,.. .).

You must open a CDF before you are allowed to delete it. If you have no privilege to delete the CDF files, they will
not be deleted. If the CDF is corrupted and cannot be opened, the CDF file(s) must be deleted at the command line.

The arguments to CDFdelete are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

33

4.2.5.1. Example(s)

The following example will open and then delete an existing CDF.

dim id as long ¢ CDF identifier.
Dim status as integer ¢ Returned status code.
try

status = CDFopen ("test2", id)
status = CDFdelete (id)

catch ex as Exception

end try

4.2.6 CDFdeleteCDF

integer CDFdeleteCDF(¢ out -- Completion status code.
id as long) ¢ in-- CDF identifier.

CDFdeleteCDF deletes the specified CDF. This method is identical to CDFdelete, and the use of this method is
strongly encouraged over CDFdelete as it might not be supported in the future. The CDF files deleted include the
dotCDF file (having an extension of .cdf), and if a multi-file CDF, the variable files (having extensions of .v0,.v1,. . .
and .z0,.z1,.. .).

You must open a CDF before you are allowed to delete it. If you have no privilege to delete the CDF files, they will
not be deleted. If the CDF is corrupted and cannot be opened, the CDF file(s) must be deleted at the command line.

The arguments to CDFdeleteCDF are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

4.2.6.1. Example(s)

The following example will open and then delete an existing CDF.

dim id as long ¢ CDF identifier.

34

dim status as integer ¢ Returned status code.

try
.sltél.tus = CDFopenCDF ("test2", id)
.sltéltus = CDFdeleteCDF(id)

C.';l.'['Ch ex as Exception

end try

4.2.7 CDFdoc

integer CDFdoc(¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.

version as integer, ‘ out -- Version number.
release as integer, out -- Release number.
copyright as string) out -- copyright.

CDFdoc is used to inquire general information about a CDF. The version/release of the CDF library that created the
CDF is provided (e.g., CDF V3.1 is version 3, release 1) along with the CDF copyright notice. The copyright notice is
formatted for printing without modification.

The arguments to CDFdoc are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopen.

version The version number of the CDF library that created the CDF.
release The release number of the CDF library that created the CDF.
copyright The Copyright notice of the CDF library that created the CDF. This string will contain a

newline character after each line of the Copyright notice.

4.2.7.1. Example(s)

The following example returns and displays the version/release and copyright notice.

dim id as long ¢ CDF identifier.

dim status as integer Returned status code.

Dim version as integer ¢ CDF version number.
Dim release as integer CDF release number.
Dim copyright as string ¢ Copyright notice.

3

35

try
status = CDFdoc (id, version, release, copyright)
catch ex as Exception

end try

4.2.8 CDFerror®

3

integer CDFerror(
status as integer,
message as string)

out -- Completion status code.
in -- Status code.
out -- Explanation text.

3

3

CDFerror, a legacy CDF function, is used to inquire the explanation of a given status code (not just error codes).
Chapter 5 explains how to interpret status codes and Appendix A lists all of the possible status codes.

The arguments to CDFerror are defined as follows:
status The status code to check.

message The explanation of the status code.

4.2.8.1. Example(s)

The following example displays the explanation text if an error code is returned from a call to CDFopen.

dim id as long ¢ CDF identifier.

Dim status as integer Returned status code.
Dim text as string ¢ Explanation text.

try

status = CDFopen ("giss_wetl", id)

catch ex as Exception
dim status as integerl = CDFerror(ex.GetCurrentStatus(), out text) ...
end try

5 A legacy CDF function. While it is still available in V3.1, CDFgetStatusText is the preferred function for it.

36

4.2.9 CDFgetCacheSize

integer CDFgetCacheSize (¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.
numBuffers as integer) ¢ out -- CDF’s cache buffers.

CDFgetCacheSize returns the number of cache buffers being used for the dotCDF file when a CDF is open. Refer to
the CDF User’s Guide for description of caching scheme used by the CDF library.

The arguments to CDFgetCacheSize are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreateCDF (or CDFcreate) or CDFopen.

numBuffers The number of cache buffers.

4.2.9.1. Example(s)

The following example returns the cache buffers for the open CDF file.

dim id as long ¢ CDF identifier.

dim status as integer Returned status code.
dim numBuffers as integer ¢ CDF’s cache buffers.
try

status = CDFgetCacheSize (id, numBuffers)

catch ex as Exception

end try

4.2.10 CDFgetChecksum

integer CDFgetChecksum (¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.
checksum as integer) ‘ out-- CDF’s

CDFgetChecksum returns the checksum mode of a CDF. The CDF checksum mode is described in Section 2.20.

The arguments to CDFgetChecksum are defined as follows:

37

id The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreateCDF (or CDFcreate) or CDFopen.

checksum The checksum mode (NO CHECKSUM or MD5 CHECKSUM).

4.2.10.1. Example(s)

The following example returns the checksum code for the open CDF file.

dim id as long ¢ CDF identifier.

dim status as integer ¢ Returned status code.
dim checksum as integer ¢ CDF’s checksum.

try

status = CDFgetChecksum (id, checksum)

catch ex as Exception

end try

4.2.11 CDFgetCompression

integer CDFgetCompression (out -- Completion status code.
id as long, ¢ in-- CDF identifier.
compressionType as integer, out -- CDF’s compression type.
compressionParms as integer(), out -- Compression parameters.
compressionPercentage as integer) out -- Compressed percentage.

CDFgetCompression gets the compression information of the CDF. It returns the compression type (method) and, if
compressed, the compression parameters and compression rate. CDF compression types/parameters are described in
Section 2.11. The compression percentage is the result of the compressed file size divided by its original, uncompressed
file size.®

The arguments to CDFgetCompression are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

® The compression ratio is (100 — compression percentage): the lower the compression percentage, the better the
compression ratio.

38

compressionType The type of the compression.
compressionParms The parameters of the compression.

compressionPercentage The compression rate.

4.2.11.1. Example(s)

The following example returns the compression information of the open CDF file.

dim id as long ¢ CDF identifier.

dim status as integer ¢ Returned status code.
dim compressType as integer CDF’s compression type.
Dim compressionParms() as integer Compression parameters.
dim compressionPercentage as integer Compression rate.

3

try
status = CDFgetCompression (id, compression, compressionParms, compressionPercentage)

catch ex as Exception

end try

4.2.12 CDFgetCompressionCacheSize

3

integer CDFgetCompressionCacheSize (out -- Completion status code.
id as long, ¢ in-- CDF identifier.
numBuffers as integer) ¢ out-- CDF’s compressed cache buffers.

CDFgetCompressionCacheSize gets the number of cache buffers used for the compression scratch CDF file. Refer to
the CDF User’s Guide for description of caching scheme used by the CDF library.
The arguments to CDFgetCompressionCacheSize are defined as follows:

Id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

numBuffers The number of cache buffers.

39

4.2.12.1. Example(s)

The following example returns the number of cache buffers used for the scratch file from the compressed CDF file.

dim id as long ¢ CDF identifier.

dim status as integer ¢ Returned status code.

dim numBuffers as integer ¢ Compression cache buffers.
try

status = CDFgetCompressionCacheSize (id, numBuffers)

catch ex as Exception

end try

4.2.13 CDFgetCompressionInfo

out -- Completion status code.
in -- CDF name.

out -- CDF compression type.
out -- Compression parameters.
out -- CDF compressed size.
out -- CDF uncompressed size.

integer CDFgetCompressionInfo (
CDFname as string,

compType as integer,

cParms.as integer()

cSize as long.

uSize as long).

CDFgetCompressionInfo returns the compression type/parameters of a CDF without having to open the CDF. This
refers to the compression of the CDF - not of any compressed variables.

The arguments to CDFgetCompressionInfo are defined as follows:

CDFname The pathname of a CDF file without the .cdf file extension.
compType The CDF compression type.

cParms The CDF compression parameters.

cSize The compressed CDF file size.

uSize The size of CDF when decompress the originally compressed CDF.

4.2.13.1. Example(s)

The following example returns the compression information from a “unopen” CDF named “MY_TEST.cdf”.

40

3

Returned status code.
Compression type.
Compression parameters.

dim status as integer
dim compType as integer
dim cParms as integer()

3

3

Dim cSize as long ¢ Compressed file size.
Dim uSize as long ¢ Decompressed file size.
try

status = CDFgetCompressionInfo(“MY_TEST”, compType, cParms, cSize, uSize)

catch ex as Exception

end try

4.2.14 CDFgetCopyright

integer CDFgetCopyright (

3

out -- Completion status code.

id as long, ¢ in-- CDF identifier.

copyright as string)

3

out -- Copyright notice.

CDFgetCopyright gets the Copyright notice in a CDF.

The arguments to CDFgetCopyright are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate

(or CDFcreateCDF) or CDFopenCDF.

copyright CDF Copyright.

4.2.14.1. Example(s)

The following example returns the Copyright in a CDF.

dim id as long ¢ CDF identifier.

dim status as integer ¢ Returned status code.
Dim copyright as string ¢ CDF’s copyright.

try

41

status = CDFgetCopyright (id, copyright)

catch ex as Exception

end try

4.2.15 CDFgetDecoding

3

integer CDFgetDecoding (out -- Completion status code.
id as long, ¢ in-- CDF identifier.
decoding as integer) out -- CDF decoding.
CDFgetDecoding returns the decoding code for the data in a CDF. The decodings are described in Section 2.8.

The arguments to CDFgetDecoding are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

decoding The decoding of the CDF.

4.2.15.1. Example(s)

The following example returns the decoding for the CDF.

dim id as long ¢ CDF identifier.

dim status as integer ¢ Returned status code.
dim decoding as integer ¢ Decoding.

try

status = CDFgetDecoding(id, decoding)
catch ex as Exception
end try

4.2.16 CDFgetEncoding

42

3

integer CDFgetEncoding (out -- Completion status code.
id as long, ¢ in-- CDF identifier.
encoding as integer) ‘ out -- CDF encoding.
CDFgetEncoding returns the data encoding used in a CDF. The encodings are described in Section 2.7.

The arguments to CDFgetEncoding are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

encoding The encoding of the CDF.

4.2.16.1. Example(s)

The following example returns the data encoding used for the given CDF.

dim id as long ¢ CDF identifier.

dim status as integer ¢ Returned status code.
dim encoding as integer ¢ Encoding.

try

status = CDFgetEncoding(id, encoding)

catch ex as Exception

end try

4.2.17 CDFgetFileBackward

integer CDFgetFileBackward() ¢ out — File Backward Mode.

CDFgetFileBackward returns the backward mode information dealing with the creation of a new CDF file. A mode of
value 1 indicates when a new CDF file is created, it will be a backward version of V2.7, not the current library version.

The arguments to CDFgetFileBackward are defined as follows:

N/A

43

4.2.17.1. Example(s)

In the following example, the CDF’s file backward mode is acquired.

dim id as long ¢ CDF identifier.

dim status as integer ¢ Returned status code.
dim mode as integer ¢ Backward mode.

try

mode = CDFgetFileBackward ()
if mode = 1 then

end if
catch ex as Exception

end try

4.2.18 CDFgetFormat

integer CDFgetFormat (¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.
format as integer) ¢ out -- CDF format.

CDFgetFormat returns the file format, single or multi-file, of the CDF. The formats are described in Section 2.5.
The arguments to CDFgetFormat are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

format The format of the CDF.

4.2.18.1. Example(s)

The following example returns the file format of the CDF.

dim id as long ¢ CDF identifier.
dim status as integer ¢ Returned status code.

44

dim format as integer ¢ Format.
try
status = CDFgetFormat(id, format)

catch ex as Exception

end try

4.2.19 CDFgetLeapSecondLastUpdated

integer CDFgetLeapSecondLastUpdated (¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.
lastUpdated as integer) ¢ out -- CDF format.

CDFgetLeapSecondLastUpdated returns the leap second last updated date from the CDF. This value indicates what/if
the leap second table this CDF is based on. It is of YYYYMMDD form. The value can also be negative 1 (-1), the field
not set (for older CDFs), or zero (0) if the leap second table is not being accessed. This field is only relevant to TT2000
data in the CDF.

The arguments to CDFgetLeapSecondLastUpdated are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

lastUpdated The date that the latest leap second was added to the leap second table.

4.2.19.1. Example(s)

The following example returns the date that the last leap second was added to the leap second table from the CDF.

dim id as long ¢ CDF identifier.

dim status as integer ¢ Returned status code.
dim lastUpdatedas integer ¢ Format.

try

status = CDFgetLeapSecondLastUpdated(id, lastUpdated)

catch ex as Exception

end try

45

4.2.20 CDFgetMajority

3

integer CDFgetMajority (out -- Completion status code.
id as long, ¢ in-- CDF identifier.
majority as integer) ‘¢ out -- Variable majority.

CDFgetMajority returns the variable majority, row or column-major, of the CDF. The majorities are described in
Section 2.9.
The arguments to CDFgetMajority are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

majority The variable majority of the CDF.

4.2.20.1. Example(s)

The following example returns the majority of the CDF.

dim id as long ¢ CDF identifier.

dim status as integer Returned status code.
dim majority as integer ¢ Majority.

try

status = CDFgetMajority (id, majority)

catch ex as Exception

end try

4.2.21 CDFgetName

3

integer CDFgetName (out -- Completion status code.
id as long, ¢ in-- CDF identifier.
name as string) ¢ out -- CDF name.

CDFgetName returns the file name of the specified CDF.

46

The arguments to CDFgetName are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

name The file name of the CDF.

4.2.21.1. Example(s)

The following example returns the name of the CDF.

dim id as long ¢ CDF identifier.

dim status as integer ‘¢ Returned status code.
Dim name as string ¢ Name of the CDF.
try

status = CDFgetName (id, name)

catch ex as Exception

end try

4.2.22 CDFgetNegtoPosfp0Mode

integer CDFgetNegtoPosfpOMode (¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.
negtoPosfp0 as integer) ¢ out -- -0.0 to 0.0 mode.

CDFgetNegtoPosfpOMode returns the —0.0 to 0.0 mode of the CDF. You can use CDFsetNegtoPosfp0 method to set
the mode. The —0.0 to 0.0 modes are described in Section 2.16.

The arguments to CDFgetNegtoPosfpOMode are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

negtoPosfp0 The —0.0 to 0.0 mode of the CDF.

4.2.22.1. Example(s)

47

The following example returns the —0.0 to 0.0 mode of the CDF.

dim id as long ¢ CDF identifier.

dim status as integer ¢ Returned status code.
Dim negtoPosfp0 as integer ¢ -0.0 to 0.0 mode.

try

status = CDFgetNegtoPosfp0Mode (id, negtoPosfp0)

catch ex as Exception

end try

4.2.23 CDFgetReadOnlyMode

integer CDFgetReadOnlyMode(¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.
readOnlyMode as integer) ¢ out-- CDF read-only mode.

CDFgetReadOnlyMode returns the read-only mode for a CDF. You can use CDFsetReadOnlyMode to set the mode of
readOnlyMode. The read-only modes are described in Section 2.14.
The arguments to CDFgetReadOnlyMode are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

readOnlyMode The read-only mode (READONLYon or READONLY off).

4.2.23.1. Example(s)

The following example returns the read-only mode for the given CDF.

dim id as long ¢ CDF identifier.

Dim status as integer

dim readMode as integer ¢ CDF read-only mode.
try

48

status = CDFgetReadOnlyMode (id, readMode)

catch ex as Exception

end try

4.2.24 CDFgetStageCacheSize

3

integer CDFgetStageCacheSize(out -- Completion status code.
id as long, ¢ in-- CDF identifier.
numBuffers as integer) ‘ out -- The stage cache size.

CDFgetStageCacheSize returns the number of cache buffers being used for the staging scratch file a CDF. Refer to the
CDF User’s Guide for the description of the caching scheme used by the CDF library.
The arguments to CDFgetStageCacheSize are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

numBuffers The number of cache buffers.

4.2.24.1. Example(s)

The following example returns the number of cache buffers used in a CDF.

dim id as long ¢ CDF identifier.

Dim status as integer

dim numBuffers as integer ¢ The number of cache buffers.
try

status = CDFgetStageCacheSize (id, numBuffers)

catch ex as Exception

end try

49

4.2.25 CDFgetValidate

integer CDFgetValidate() ¢ out — CDF validation mode.

CDFgetValidate returns the data validation mode. This information reflects whether when a CDF is open, its certain
data fields are subjected to a validation process. 1 is returned if the data validation is to be performed, 0 otherwise.

The arguments to CDFgetVersion are defined as follows:

N/A

4.2.25.1. Example(s)

In the following example, it gets the data validation mode.

dim id as long ¢ CDF identifier.

dim status as integer ¢ Returned status code.
dim validate as integer ¢ Data validation flag.
try

validate = CDFgetValidate ()

catch ex as Exception

end try

4.2.26 CDFgetVersion

integer CDFgetVersion(out -- Completion status code.
id as long, ¢ in-- CDF identifier.

version as integer, out -- CDF version.

release as integer, out -- CDF release.

increment as integer) out -- CDF increment.

CDFgetVersion returns the version/release information for a CDF file. This information reflects the CDF library that
was used to create the CDF file.

The arguments to CDFgetVersion are defined as follows:

50

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

version The CDF version number.
release The CDF release number.
increment The CDF increment number.

4.2.26.1. Example(s)

In the following example, a CDF’s version/release is acquired.

dim id as long ¢ CDF identifier.
dim status as integer ¢ Returned status code.
dim version as integer ¢ CDF version.

dim release as integer ¢ CDF release
dim increment as integer ¢ CDF increment.

try
status = CDFgetVersion (id, version, release, increment)

catch ex as Exception

end try

4.2.27 CDFgetzMode

integer CDFgetzMode(‘¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.
zMode as integer) ¢ out-- CDF zMode.

CDFgetzMode returns the zMode for a CDF file. The zModes are described in Section 2.15.
The arguments to CDFgetzMode are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

zMode The CDF zMode.

51

4.2.27.1. Example(s)

In the following example, a CDF’s zMode is acquired.

dim id as long ¢ CDF identifier.

dim status as integer ¢ Returned status code.
dim zMode as integer ¢ CDF zMode.

try

status = CDFgetzMode (id, zMode)

catch ex as Exception

end try

4.2.28 CDFinquire

integer CDFinquire(out -- Completion status code.

id as long, ¢ in-- CDF identifier

numDims as integer, out -- Number of dimensions, rVariables.
dimSizes as integer(), out -- Dimension sizes, rVariables.

encoding as integer, out -- Data encoding.

majority as integer, out -- Variable majority.

maxRec as integer, out -- CDF’s maximum record number, rVariables.
numVars as integer, ‘¢ out -- Number of rVariables in the CDF.

numAttrs as integer) ¢ out -- Number of attributes in the CDF.

CDFinquire returns the basic characteristics of a CDF. An application needs to know the number of rVariable
dimensions and their sizes before it can access rVariable data (since all rVariables’ dimension and dimension size are
the same). Knowing the variable majority can be used to optimize performance and is necessary to properly use the
variable hyper functions (for both rVariables and zVariables).

The arguments to CDFinquire are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopen.

numDims The number of dimensions for the rVariables in the CDF.
dimSizes The dimension sizes of the rVariables in the CDF. dimSizes is a 1-dimensional array
containing one element per dimension. Each element of dimSizes receives the

corresponding dimension size. For 0-dimensional rVariables this argument is ignored (but
must be present).

52

id as long,
numDims as integer,
dimSizes as integer(),

encoding The encoding of the variable data and attribute entry data. The encodings are defined in
Section 2.7.

majority The majority of the variable data. The majorities are defined in Section 2.9.

maxRec The maximum record number written to an rVariable in the CDF. Note that the maximum
record number written is also kept separately for each rVariable in the CDF. The value of
maxRec is the largest of these. Some rVariables may have fewer records actually written.
Use CDFrVarMaxWrittenRecNum to inquire the maximum record written for an
individual rVariable.

numVars The number of rVariables in the CDF.

numAttrs The number of attributes in the CDF.

4.2.28.1. Example(s)

The following example returns the basic information about a CDF.

dim id as long

dim status as integer

dim numDims as integer
Dim dimSizes() as integer
dim encoding as integer
dim majority as integer
dim maxRec as integer

dim numVars as integer
dim numAttrs as integer

try

status = CDFinquire (id, numDims, dimSizes, encoding, majority,

maxRec, numVars, numAttrs)
catch ex as Exception

end try

4.2.29 CDFinquireCDF

53

CDF identifier.

Returned status code.

Number of dimensions, rVariables.
Dimension sizes, rVariables

Data encoding.

Variable majority.

Maximum record number,
rVariables.

Number of rVariables in CDF.
Number of attributes in CDF.

integer CDFinquireCDF(‘¢ out -- Completion status code.

¢ in -- CDF identifier

out -- Number of dimensions for rVariables.
out -- Dimension sizes for rVariables.

encoding as integer,
majority as integer,
maxrRec as integer,
numrVars as integer,
maxzRec as integer,
numzVars as integer,
numALttrs as integer)

out -- Data encoding.

out -- Variable majority.

out -- Maximum record number among rVariables .
out -- Number of rVariables in the CDF.

out -- Maximum record number among zVariables .
¢ out -- Number of zVariables in the CDF.

‘¢ out -- Number of attributes in the CDF.

CDFinquireCDF returns the basic characteristics of a CDF. This method expands the method CDFinquire by acquiring
extra information regarding the zVariables. Knowing the variable majority can be used to optimize performance and is
necessary to properly use the variable hyper-get/put functions.

The arguments to CDFinquireCDF are defined as follows:

id

numDims

dimSizes

encoding

majority

maxrRec

numrVars

maxzRec

numzVars

numAttrs

4.2.29.1. Example(s)

The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

The number of dimensions for the rVariables in the CDF. Note that all the rVariables’
dimensionality in the same CDF file must be the same.

The dimension sizes of the rVariables in the CDF (note that all the rVariables’ dimension
sizes in the same CDF file must be the same). dimSizes is a l-dimensional array
containing one element per dimension. FEach element of dimSizes receives the
corresponding dimension size. For 0-dimensional rVariables this argument is ignored (but
must be present).

The encoding of the variable data and attribute entry data. The encodings are defined in
Section 2.7.

The majority of the variable data. The majorities are defined in Section 2.9.

The maximum record number written to an rVariable in the CDF. Note that the maximum
record number written is also kept separately for each rVariable in the CDF. The value of
maxRec is the largest of these.

The number of rVariables in the CDF.

The maximum record number written to a zVariable in the CDF. Note that the maximum
record number written is also kept separately for each zVariable in the CDF. The value of
maxRec is the largest of these. Some zVariables may have fewer records than actually
written. Use CDFgetzVarMaxWrittenRecNum to inquire the actual number of records
written for an individual zVariable.

The number of zVariables in the CDF.

The number of attributes in the CDF.

The following example returns the basic information about a CDF.

54

CDF identifier.

Returned status code.

Number of dimensions, rVariables.
Dimension sizes, rVariables .

Data encoding.

Variable majority.

Maximum record number, rVariables.
Number of rVariables in CDF.
Maximum record number, zVariables.
Number of zVariables in CDF.
Number of attributes in CDF.

dim id as long

dim status as integer
dim numDims as integer
Dim dimSizes() as integer
dim encoding as integer
dim majority as integer
dim maxRec as integer
dim numrVars as integer
dim maxzRec as integer
dim numzVars as integer
dim numAttrs as integer

try
status = CDFinquireCDF (id, numDims, dimSizes, encoding, majority,
maxrRec, numrVars, maxzRec, numzVars, numAttrs)

catch ex as Exception

end try

4.2.30 CDFopen

integer CDFopen(¢ out -- Completion status code.
CDFname as string, ¢ in -- CDF file name.
id as long) ¢ out-- CDF identifier.

CDFopen, a legacy CDF function, opens an existing CDF. The CDF is initially opened with only read access. This
allows multiple applications to read the same CDF simultaneously. When an attempt to modify the CDF is made, it is
automatically closed and reopened with read/write access. (The method will fail if the application does not have or
cannot get write access to the CDF.)

The arguments to CDFopen are defined as follows:

CDFname The file name of the CDF to open. (Do not specify an extension.) This may be at most
CDF PATHNAME LEN characters. A CDF file name may contain disk and directory
specifications that conform to the conventions of the operating system being used (including
logical names on OpenVMS systems and environment variables on UNIX systems).

UNIX: File names are case-sensitive.

id The identifier for the opened CDF. This identifier must be used in all subsequent operations
on the CDF.

NOTE: CDFclose must be used to close the CDF before your application exits to ensure that the CDF will be correctly
written to disk.

55

4.2.30.1. Example(s)

The following example will open a CDF named “NOAA1.cdf”.

dim id as long ¢ CDF identifier.

dim status as integer ¢ Returned status code.
Dim CDFname as string = "NOAA1" ¢ file name of CDF.

try

status = CDFopen (CDFname, id)
catch ex as Exception

end try

4.2.31 CDFopenCDF

Integer CDFopenCDF(¢ out -- Completion status code.
CDFname as string, ¢ in -- CDF file name.
id as long) ¢ out-- CDF identifier.

CDFopenCDF opens an existing CDF. This method is identical to CDFopen, and the use of this method is strongly
encouraged over CDFopen as it might not be supported in the future. The CDF is initially opened with only read
access. This allows multiple applications to read the same CDF simultaneously. When an attempt to modify the CDF
is made, it is automatically closed and reopened with read/write access. The method will fail if the application does not
have or cannot get write access to the CDF.

The arguments to CDFopenCDF are defined as follows:

CDFname The file name of the CDF to open. (Do not specify an extension.) This may be at most
CDF PATHNAME LEN characters. A CDF file name may contain disk and directory
specifications that conform to the conventions of the operating system being used (including
logical names on OpenVMS systems and environment variables on UNIX systems).

UNIX: File names are case-sensitive.

id The identifier for the opened CDF. This identifier must be used in all subsequent operations
on the CDF.

NOTE: CDFcloseCDF must be used to close the CDF before your application exits to ensure that the CDF will be
correctly written to disk.

56

4.2.31.1. Example(s)

The following example will open a CDF named “NOAA1.cdf”.

dim id as long ¢ CDF identifier.

dim status as integer ¢ Returned status code.
Dim CDFname as string = "NOAAI1" ¢ file name of CDF.

try

status = CDFopenCDF (CDFname, id)

catch ex as Exception

end try

4.2.32 CDFselect

integer CDFselect(¢ out -- Completion status code.
id as long) ¢ in-- CDF identifier.

CDFselect selects an opened CDF as the current CDF. Only one CDF is allowed to be current. To access data from a
CDF, that CDF must be selected as the current. This method is no longer needed as the methods involved CDF
operations always need the CDF identifier, as the first argument, so it can be set as current before other operations can
be applied.

The arguments to CDFselect are defined as follows:

id The identifier for the opened CDF. This identifier must be used in all subsequent operations
on the CDF.

NOTE: When a CDF is opened, it becomes the current. No CDF is current after CDFcloseCDF is called to close the
file.

4.2.32.1. Example(s)

The following example will select a CDF named “NOAA1.cdf” as the current CDF while another file “NOAA2.cdf” is
also opened.

dim id1 as long, id2 as long ¢ CDF identifier.

57

dim status as integer ¢ Returned status code.

Dim CDFnamel as string = "NOAAI1" ¢ file name of CDF.
Dim CDFname?2 as string = "NOAA2" ¢ file name of CDF.
try

.sltél.tus = CDFopenCDF (CDFnamel, idl)
status = CDFopenCDF (CDFname2, id2)
status = CDFselect(id1)
's.t'z.ltus = CDFclose(id1)
status = CDFclose(id2)

catch ex as Exception

end try

4.2.33 CDFselectCDF

integer CDFselectCDF(¢ out -- Completion status code.
id as long) ¢ in-- CDF identifier.

CDFselectCDF selects an opened CDF as the current CDF. Only one CDF is allowed to be current. To access data from
a CDF, that CDF must be selected as the current. This method is no longer needed as the methods involved CDF
operations always need the CDF identifier, as the first argument, so it can be set as current before other operations can
be applied. This method is identical to CDFselect.

The arguments to CDFselectCDF are defined as follows:

id The identifier for the opened CDF. This identifier must be used in all subsequent operations
on the CDF.

NOTE: When a CDF is opened, it becomes the current. No CDF is current after CDFcloseCDF is called to close the
file.

4.2.33.1. Example(s)

The following example will select a CDF named “NOAA1.cdf” as the current CDF while another file “NOAA2.cdf” is
also opened.

dim id1 as long, i2 as long ¢ CDF identifier.

dim status as integer ¢ Returned status code.
Dim CDFnamel as string = "NOAA1" ¢ file name of CDF.
Dim CDFname? as string = "NOAA2" ¢ file name of CDF.

58

try
.sltél.tus = CDFopenCDF (CDFnamel, idl)
status = CDFopenCDF (CDFname2, id2)
status = CDFselectCDF(id1)
's.t'z.ltus = CDFclose(id1)
status = CDFclose(id2)

catch ex as Exception

end try

4.2.34 CDFsetCacheSize

integer CDFsetCacheSize (¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.
numBuffer as integer) ¢ in -- CDF’s cache buffers.

CDFsetCacheSize specifies the number of cache buffers being used for the dotCDF file when a CDF is open. Refer to
the CDF User’s Guide for the description of the cache scheme used by the CDF library.

The arguments to CDFsetCacheSize are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

numBuffers The number of cache buffers.

4.2.34.1. Example(s)

The following example extends the number of cache buffers to 500 for the open CDF file. The default number is 300
for a single-file format CDF on Unix systems.

dim id as long ¢ CDF identifier.
dim status as integer ¢ Returned status code.
dim cacheBuffers as integer ¢ CDF’s cache buffers.

cacheBuffers = 500
try

status = CDFsetCacheSize (id, cacheBuffers)

59

catch ex as Exception

end try

4.2.35 CDFsetChecksum

integer CDFsetChecksum (¢ out -- Completion status code.

id as long, ¢ in-- CDF identifier.

checksum as integer) ¢ in -- CDF’s checksum mode.
CDFsetChecksum specifies the checksum mode for the CDF. The CDF checksum mode is described in Section 2.20.

The arguments to CDFsetChecksum are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

checksum The checksum mode (NO_CHECKSUM or MD5 CHECKSUM).

4.2.35.1. Example(s)

The following example turns off the checksum flag for the open CDF file..

dim id as long ¢ CDF identifier.
dim status as integer ¢ Returned status code.
dim checksum as integer ¢ CDF’s checksum.

checksum=NO CHECKSUM
try

status = CDFsetChecksum (id, checksum)

catch ex as Exception

end try

4.2.36 CDFsetCompression

3

integer CDFsetCompression (out -- Completion status code.
id as long, ¢ in-- CDF identifier.

60

3

compressionType as integer,
CompressionParms as integer())

in -- CDF’s compression type.
in -- CDF’s compression parameters.

3

CDFsetCompression specifies the compression type and parameters for a CDF. This compression refers to the CDF,
not of any variables. The compressions are described in Section 2.11.

The arguments to CDFsetCompression are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

compressionType The compression type .

compressionParms The compression parameters.

4.2.36.1. Example(s)

The following example uses GZIP.6 to compress the CDF file.

dim id as long ¢ CDF identifier.

dim status as integer ¢ Returned status code.

dim compressionType as integer CDF’s compression type.

Dim compressionParms(1) as integer CDF’s compression parameters.

compressionType = GZIP_ COMPRESSION
compressionParms(0) = 6

try
status = CDFsetCompression (id, compressionType, compressionParms) ...
catch ex as Exception

end try

4.2.37 CDFsetCompressionCacheSize

3

integer CDFsetCompressionCacheSize (out -- Completion status code.
id as long, ¢ in-- CDF identifier.
numBuffers as integer) ¢ in -- CDF’s compressed cache buffers.

CDFsetCompressionCacheSize specifies the number of cache buffers used for the compression scratch CDF file. Refer
to the CDF User’s Guide for the description of the cache scheme used by the CDF library.

The arguments to CDFsetCompressionCacheSize are defined as follows:

61

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

compressionNumBuffers The number of cache buffers.

4.2.37.1. Example(s)

The following example extends the number of cache buffers used for the scratch file from the compressed CDF file to
100. The default cache buffers is 80 for Unix systems.

dim id as long ¢ CDF identifier.

dim status as integer ¢ Returned status code.

dim numBuffers as integer = 100 ¢ CDF’s compression cache buffers.
try

status = CDFsetCompressionCacheSize (id, numBufters)

catch ex as Exception

end try

4.2.38 CDFsetDecoding

3

integer CDFsetDecoding (out -- Completion status code.
id as long, ¢ in-- CDF identifier.
decoding as integer) ¢ in -- CDF decoding.
CDFsetDecoding sets the decoding of a CDF. The decodings are described in Section 2.8.

The arguments to CDFsetDecoding are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

decoding The decoding of a CDF.

4.2.38.1. Example(s)

The following example sets NETWORK DECODING to be the decoding scheme in the CDF.

62

dim id as long ¢ CDF identifier.
Dim status as integer ¢ Returned status code.
Dim decoding as integer ¢ Decoding.

decoding = NETWORK DECODING
try

status = CDFsetDecoding (id, decoding)

catch ex as Exception

end try

4.2.39 CDFsetEncoding

3

integer CDFsetEncoding (out -- Completion status code.
id as long, ¢ in-- CDF identifier.
encoding as integer) ¢ in -- CDF encoding.

CDFsetEncoding specifies the data encoding of the CDF. A CDF’s encoding may not be changed after any variable
values have been written. The encodings are described in Section 2.7.
The arguments to CDFsetEncoding are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

encoding The encoding of the CDF.

4.2.39.1. Example(s)

The following example sets the encoding to HOST ENCODING for the CDF.

dim id as long ¢ CDF identifier.
Dim status as integer ¢ Returned status code.
Dim encoding as integer ¢ Encoding.

encoding = HOST ENCODING
try

63

status = CDFsetEncoding(id, encoding)

catch ex as Exception

end try

4.2.40 CDFsetFileBackward

void CDFsetFileBackward(
mode as integer) ¢ in -- File backward Mode.

CDFsetFileBackward sets the backward mode. When the mode is set as FILEBACKWARDon, any new CDF files
created are of version 2.7, instead of the underlining library version. If mode FILEBACKWARDofT is used, the default
for creating new CDF files, the library version is the version of the file.

The arguments to CDFsetFileBackward are defined as follows:

mode The backward mode.

4.2.40.1. Example(s)

In the following example, it sets the file backward mode to FILEBACKWARDoff, which means that any files to be
created will be of version V3.*, the same as the library version.

try
CDFsetFileBackward (FILEBACKWARDofY)

catch ex as Exception

end try

4.2.41 CDFsetFormat

integer CDFsetFormat (¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.
format as integer) ¢ in -- CDF format.

64

CDFsetFormat specifies the file format, either single or multi-file format, of the CDF. A CDF’s format may not be
changed after any variable values have been written. The formats are described in Section 2.5.

The arguments to CDFsetFormat are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

format The file format of the CDF.

4.2.41.1. Example(s)

The following example sets the file format to MULTI_FILE for the CDF. The default is SINGLE FILE format.

dim id as long ¢ CDF identifier.
Dim status as integer ¢ Returned status code.
Dim format as integer ¢ Format.

format = MULTI_FILE
try

status = CDFsetFormat(id, format)

catch ex as Exception

end try

4.2.42 CDFsetLeapSecondLastUpdated

integer CDFsetLeapSecondLastUpdated (‘¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.
lastUpdated as integer) ‘¢ in -- Leap second last updated date

CDFsetLeapSecondLastUpdated respecifies the leap second last updated date in the CDF. The value, in YYYYMMDD
form, indicates what/if the leap second table this CDF is based upon. The value is either a valid entry in the currently
used leap second table, or zero (0). Value zero means the CDF is not using any leap second table. This field is only
relevant to TT2000 data. Normally, this function is used for older CDFs that have not had the field set.

The arguments to CDFsetLeapSecondLastUpdated are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

lastUpdated The date the latest leap second was added to the leap second table.

65

4.2.42.1. Example(s)

The following example resets the leap second last updated date in the CDF. Likely, the file’s field was not set originally
(an older CDF).

dim id as long ¢ CDF identifier.
dim status as integer ¢ Returned status code.
dim lastUpdated as integer ¢ Leap second last updated.

lastUpdated = 20150701
try

status = CDFsetLeapSecondLastUpdated (id, lastUpdated)

catch ex as Exception

end try

4.2.43 CDFsetMajority

3

integer CDFsetMajority (out -- Completion status code.
id as long, ¢ in-- CDF identifier.
majority as integer) ¢ in -- CDF variable majority.

CDFsetMajority specifies the variable majority, either row or column-major, of the CDF. A CDF’s majority may not be
changed after any variable values have been written. The majorities are described in Section 2.9.

The arguments to CDFsetMajority are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

majority The variable majority of the CDF.

4.2.43.1. Example(s)

The following example sets the majority to COLUMN_ MAJOR for the CDF. The default is ROW_MAJOR.

dim id as long ¢ CDF identifier.

66

Dim status as integer ¢ Returned status code.
Dim majority as integer ¢ Majority.

majority = COLUMN_ MAJOR
try

status = CDFsetMajority (id, majority)

catch ex as Exception

end try

4.2.44 CDFsetNegtoPosfp0Mode

integer CDFsetNegtoPosfpOMode (¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.
negtoPosfp0 as integer) ¢ in -- -0.0 to 0.0 mode.

CDFsetNegtoPosfpOMode specifies the —0.0 to 0.0 mode of the CDF. The —0.0 to 0.0 modes are described in Section
2.16.

The arguments to CDFsetNegtoPosfpOMode are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

negtoPosfp0 The —0.0 to 0.0 mode of the CDF.

4.2.44.1. Example(s)

The following example sets the —0.0 to 0.0 mode to ON for the CDF.

dim id as long ¢ CDF identifier.
Dim status as integer ¢ Returned status code.
Dim negtoPosfp0 as integer ¢ -0.0 to 0.0 mode.

negtoPosfp0 = NEGtoPOS{pOon
try

status = CDFsetNegtoPosfpOMode (id, negtoPosfp0)

catch ex as Exception

67

end try

4.2.45 CDFsetReadOnlyMode

integer CDFsetReadOnlyMode(¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.
readOnlyMode as integer) ¢ in -- CDF read-only mode.
CDFsetReadOnlyMode specifies the read-only mode for a CDF. The read-only modes are described in Section 2.14.

The arguments to CDFsetReadOnlyMode are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

readOnlyMode The read-only mode.

4.2.45.1. Example(s)

The following example sets the read-only mode to OFF for the CDF.

dim id as long ¢ CDF identifier.
Dim readMode as integer ¢ CDF read-only mode.
Dim status as integer

readMode = READONLY off
try

status = CDFsetReadOnlyMode (id, readMode)

catch ex as Exception

end try

4.2.46 CDFsetStageCacheSize

integer CDFsetStageCacheSize(‘¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.
numBuffers as integer) ¢ in -- The stage cache size.

68

CDFsetStageCacheSize specifies the number of cache buffers being used for the staging scratch file a CDF. Refer to
the CDF User’s Guide for the description of the caching scheme used by the CDF library.

The arguments to CDFsetStageCacheSize are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

numBuffers The number of cache buffers.

4.2.46.1. Example(s)

The following example sets the number of stage cache buffers to 10 for a CDF.

dim id as long ¢ CDF identifier.
Dim numBufffers as integer ¢ The number of cache buffers.
Dim status as integer

numBufffers = 10
try

status = CDFsetStageCacheSize (id, numBuffers)

catch ex as Exception

end try

4.2.47 CDFsetValidate

void CDFsetValidate(
mode as integer) ¢ in -- File Validation Mode.

CDFsetValidate sets the data validation mode. The validation mode dedicates whether certain data in an open CDF file
will be validated. This mode should be set before the any files are opened. Refer to Data Validation Section 2.21.
The arguments to CDFgetVersion are defined as follows:

mode The validation mode.

69

4.2.47.1. Example(s)

In the following example, it sets the validation mode to be on, so any following CDF files are subjected to the data
validation process when they are open.

try

C']')'l-:setValidate (VALIDATEFILEon)
C.’s.llt(.:h ex as Exception
en.(.i.try

4.2.48 CDFsetzMode

integer CDFsetzMode(‘¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.
zMode as integer) ¢ in -- CDF zMode.

CDFsetzMode specifies the zMode for a CDF file. The zModes are described in Section 2.15 and see the Concepts
chapter in the CDF User’s Guide for a more detailed information on zModes. zMode is used when dealing with a CDF
file that contains 1) rVariables, or 2) rVariables and zVariables. If you want to treat rVariables as zVariables, it’s
highly recommended to set the value of zMode to zMODEon2.

The arguments to CDFsetzMode are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

zMode The CDF zMode.

4.2.48.1. Example(s)

In the following example, a CDF’s zMode is specified to zMODEon2: all rVariables are treated as zVariables with
NOVARY dimensions being eliminated.

dim id as long ¢ CDF identifier.
Dim status as integer Returned status code.

Dim zMode as integer ¢ CDF zMode.

zMode = zMODEon2
try

70

status = CDFsetzMode (id, zMode)

catch ex as Exception

end try

4.3 Variables

The methods in this section are all CDF variable-specific. A variable, either a rVariable or zVariable, is identified by
its unique name in a CDF or a variable number. Before you can perform any operation on a variable, the CDF in which
it resides in must be opened.

4.3.1 CDFcloserVar

3

integer CDFcloserVar(out -- Completion status code.
id as long, ¢ in-- CDF identifier.
varNum as integer) ¢ in -- rVariable number.

CDFcloserVar closes the specified rVariable file from a multi-file format CDF. Note that rVariables in a single-file
CDF don’t need to be closed. The variable's cache buffers are flushed before the variable's open file is closed.
However, the CDF file is still open.

NOTE: For the multi-file CDF, you must close all open variable files to guarantee that all modifications you have
made will actually be written to the CDF's file(s). If your program exits, normally or otherwise, without a successful
call to CDFcloseCDF, the CDF's cache buffers are left unflushed.

The arguments to CDFcloserVar are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum The variable number for the open rVariable’s file. This identifier must have been initialized by a call
to CDFcreaterVar or CDFgetVarNum.

4.3.1.1. Example(s)

The following example will close an open rVariable file from a multi-file CDF.

dim id as long ¢ CDF identifier.
Dim status as integer ¢ Returned status code.
Dim varNum as integer ¢ rVariable number.

71

try

v;r'I;Ium = CDFgetVarNum (id, “VAR NAME1”)
'status = CDFcloserVar (id, varNum)
;:'.';1tch ex as Exception

end try

4.3.2 CDFclosezVar

3

integer CDFclosezVar(out -- Completion status code.
id as long, ¢ in-- CDF identifier.
varNum as integer) ‘ in -- zVariable number.

CDFclosezVar closes the specified zVariable file from a multi-file format CDF. Note that zVariables in a single-file
CDF don’t need to be closed. The variable's cache buffers are flushed before the variable's open file is closed.
However, the CDF file is still open.

NOTE: For the multi-file CDF, you must close all open variable files to guarantee that all modifications you have
made will actually be written to the CDF's file(s). If your program exits, normally or otherwise, without a successful
call to CDFcloseCDF, the CDF's cache buffers are left unflushed.

The arguments to CDFclosezVar are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum The variable number for the open zVariable’s file. This identifier must have been initialized by a call
to CDFcreatezVar or CDFgetVarNum.

4.3.2.1. Example(s)

The following example will close an open zVariable file from a multi-file CDF.

dim id as long ¢ CDF identifier.
Dim status as integer ¢ Returned status code.
Dim varNum as integer ¢ zVariable number.

try

varNum = CDFgetVarNum (id, “VAR NAME1")

72

status = CDFclosezVar (id, varNum)
catch ex as Exception

end try

4.3.3 CDFconfirmrVarExistence

3

integer CDFconfirmrVarExistence(out -- Completion status code.
id as long, ¢ in-- CDF identifier.
varName as string) ¢ in -- rVariable name.

CDFconfirmrVarExistence confirms the existence of a rVariable with a given name in a CDF. If the rVariable does not
exist, an error code will be returned. No exception is thrown if the variable is not found.

The arguments to CDFconfirmrEntryExistence are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varName The rVariable name to check.

4.3.3.1. Example(s)

The following example checks the existence of rVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
Dim status as integer ¢ Returned status code.
try

status = CDFconfirmrVarExistence (id, “MY_VAR”)
if status <> CDF_OK then UserStatusHandler (status)

catch ex as Exception
end try

4.3.4 CDFconfirmrVarPadValueExistence

73

3

integer CDFconfirmrVarPadValueExistence(out -- Completion status code.
id as long, ¢ in-- CDF identifier.
varNum as integer) ¢ in -- rVariable number.

CDFconfirmrVarPadValueExistence confirms the existence of an explicitly specified pad value for the specified
rVariable in a CDF. If an explicit pad value has not been specified, the informational status code
NO PADVALUE SPECIFIED will be returned. No exception is thrown if the variable’s pad value is not defined.

The arguments to CDFconfirmrVarPadValueExistence are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number.

4.3.4.1. Example(s)

The following example checks the existence of the pad value of rVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
Dim status as integer ¢ Returned status code.
Dim varNum as integer ¢ rVariable number.

try
varNum = CDFgetVarNum(id, “MY_VAR”)
status = CDFconfirmrVarPadValueExistence (id, varNum)
if status <> NO PADVALUE SPECIFIED then

end if

catch ex as Exception

end try

4.3.5 CDFconfirmzVarExistence

3

integer CDFconfirmzVarExistence(out -- Completion status code.
id as long, ¢ in-- CDF identifier.
varName as string) ¢ in -- zVariable name.

74

CDFconfirmzVarExistence confirms the existence of a zVariable with a given name in a CDF. If the zVariable does
not exist, an error code will be returned. No exception is thrown if the variable is not found.

The arguments to CDFconfirmrEntryExistence are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varName The zVariable name to check.

4.3.5.1. Example(s)

The following example checks the existence of zVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
Dim status as integer ¢ Returned status code.
try

status = CDFconfirmzVarExistence (id, “MY_VAR?”)
if status <> CDF_OK then UserStatusHandler (status)
catch ex as Exception

end try

4.3.6 CDFconfirmzVarPadValueExistence

3

integer CDFconfirmzVarPadValueExistence(out -- Completion status code.
id as long, ¢ in-- CDF identifier.
varNum as integer) ‘ in -- zVariable number.

CDFconfirmzVarPadValueExistence confirms the existence of an explicitly specified pad value for the specified
zVariable in a CDF. If an explicit pad value has not been specified, the informational status code
NO PADVALUE SPECIFIED will be returned. No exception is thrown if the variable’s pad value is not defined.

The arguments to CDFconfirmzVarPadValueExistence are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

75

4.3.6.1. Example(s)

The following example checks the existence of the pad value of zVariable “MY_VAR” in a CDF.

dim id as longid
Dim status as integer
Dim varNum as integer

try
varNum = CDFgetVarNum(id, “MY_VAR”)

status = CDFconfirmzVarPadValueExistence (id, varNum)
if status <> NO PADVALUE SPECIFIED then

“end if

catch ex as Exception

end try

4.3.7 CDFcreaterVar

integer CDFcreaterVar(

id as long,

varName as string,
dataType as integer,
numElements as integer,
recVariance as integer,
dimVariances as integer(),
varNum as integer)

¢ CDF identifier.
¢ Returned status code.
¢ zVariable number.

out -- Completion status code.

in -- CDF identifier.

in -- rVariable name.

in -- Data type.

in -- Number of elements (of the data type).
in -- Record variance.

in -- Dimension variances.

out -- rVariable number.

CDFcreaterVar is used to create a new rVariable in a CDF. A variable (rVariable or rVariable) with the same name

must not already exist in the CDF.

The arguments to CDFcreaterVar are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varName The name of the rVariable to create. This may be at most CDF_ VAR NAME LEN256
characters. Variable names are case-sensitive.

dataType The data type of the new rVariable. Specify one of the data types defined in Section 2.6.

76

numElements

The number of elements of the data type at each value. For character data types
(CDF_CHAR and CDF_UCHAR), this is the number of characters in the string (each
value consists of the entire string). For all other data types this must always be one (1) -
multiple elements at each value are not allowed for non-character data types.

The rVariable's record variance. Specify one of the variances defined in Section 2.10.
The rVariable's dimension variances. Each element of dimVariances specifies the

corresponding dimension variance. For each dimension specify one of the variances
defined in Section 2.10. For 0-dimensional rVariables this argument is ignored (but must

The number assigned to the new rVariable. This number must be used in subsequent
CDF function calls when referring to this rVariable. An existing rVariable's number may

recVariance
dimVariances
be present).
varNum
be determined with the CDFgetVarNum function.
4.3.7.1. Example(s)

The following example will create several rVariables in a 2-dimensional CDF.

dim id as long

Dim status as integer

Dim EPOCHrecVary as integer = VARY

Dim LATrecVary as integer = NOVARY

Dim LONrecVary as integer = NOVARY

Dim TMPrecVary as integer = VARY

Dim EPOCHdimVarys() as integer = {NOVARY,NOVARY}
Dim LATdimVarys() as integer = {VARY,VARY}
Dim LONdimVarys() as integer = {VARY,VARY}
Dim TMPdimVarys() as integer = {VARY,VARY}
Dim EPOCHvarNum as integer

Dim LATvarNum as integer

Dim LONvarNum as integer

Dim TMPvarNum as integer

try

CDF identifier.

Returned status code.
EPOCH record variance.
LAT record variance.

LON record variance.

TMP record variance.
EPOCH dimension variances.
LAT dimension variances.
LON dimension variances.
TMP dimension variances.
EPOCH rVariable number.
LAT rVariable number.
LON rVariable number.
TMP rVariable number.

status = CDFcreaterVar (id, "EPOCH", CDF_EPOCH, 1, EPOCHrecVary, _

EPOCHdimVarys, EPOCH varNum)

status = CDFcreaterVar (id, "LATITUDE", CDF_INT2, 1, LATrecVary, LATdimVarys, LATvarNum)
status = CDFcreaterVar (id, "INTITUDE", CDF _INT2, 1, LONrecVary, LONdimVarys, LONvarNum)
status = CDFcreaterVar (id, "TEMPERATURE", CDF_REALA4, 1, TMPrecVary, _

TMPdimVarys, TMPvarNum)

catch ex as Exception

end try

77

4.3.8 CDFcreatezVar

integer CDFcreatezVar(
id as long,

varName as string,
dataType as integer,
numElements as integer,
numDims as integer,
dimSizes as integer(),
recVariance as integer,
dimVariances as integer(),

out -- Completion status code.
in -- CDF identifier.

in -- zVariable name.

in -- Data type.

in -- Number of dimensions.
in -- Dimension sizes

in -- Record variance.

in -- Dimension variances.

in -- Number of elements (of the data type).

varNum as integer)

out -- zVariable number.

CDFcreatezVar is used to create a new zVariable in a CDF. A variable (rVariable or zVariable) with the same name
must not already exist in the CDF.

The arguments to CDFcreatezVar are defined as follows:

id

varName

dataType

numElements

numDims

dimSizes

recVariance

dimVariances

varNum

The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

The name of the zVariable to create. This may be at most CDF VAR NAME LEN256
characters. Variable names are case-sensitive.

The data type of the new zVariable. Specify one of the data types defined in Section 2.6.

The number of elements of the data type at each value. For character data types
(CDF_CHAR and CDF_UCHAR), this is the number of characters in the string (each
value consists of the entire string). For all other data types this must always be one (1) -
multiple elements at each value are not allowed for non-character data types.

Number of dimensions the zVariable. This may be as few as zero (0) and at most
CDF _MAX DIMS.

The size of each dimension. Each element of dimSizes specifies the corresponding
dimension size. Each size must be greater then zero (0). For 0-dimensional zVariables this
argument is ignored (but must be present).

The zVariable's record variance. Specify one of the variances defined in Section 2.10.

The zVariable's dimension variances. Each element of dimVariances specifies the
corresponding dimension variance. For each dimension specify one of the variances
defined in Section 2.10. For 0O-dimensional zVariables this argument is ignored (but
must be present).

The number assigned to the new zVariable. This number must be used in subsequent

CDF function calls when referring to this zVariable. An existing zVariable's number
may be determined with the CDFgetVarNum function.

78

4.3.8.1. Example(s)

The following example will create several zVariables in a CDF. In this case EPOCH is a 0-dimensional, LAT and

LON are 2-diemnational, and TMP is a 1-dimensional.

dim id as long

Dim status as integer

Dim EPOCHrecVary as integer = VARY

Dim LATrecVary as integer = NOVARY

Dim LONrecVary as integer = NOVARY

Dim TMPrecVary as integer = VARY

Dim EPOCHdimVarys() as integer = (NOVARY}
Dim LATdimVarys() as integer = {VARY,VARY}
Dim LONdimVarys() as integer = {VARY,VARY}
Dim TMPdimVarys() as integer = {VARY,VARY}
Dim EPOCHvarNum as integer

Dim LATvarNum as integer

Dim LONvarNum as integer

Dim TMPvarNum as integer

Dim EPOCHdimSizes() as integer = {3}

Dim LATLONdimSizes() as integer = {2,3}

Dim TMPdimSizes() as integer = {3}

try

CDF identifier.

Returned status code.
EPOCH record variance.
LAT record variance.

LON record variance.

TMP record variance.
EPOCH dimension variances.
LAT dimension variances.
LON dimension variances.
TMP dimension variances.
EPOCH zVariable number.
LAT zVariable number.
LON zVariable number.
TMP zVariable number.
EPOCH dimension sizes.
LAT/LON dimension sizes.
TMP dimension sizes.

status = CDFcreatezVar (id, "EPOCH", CDF_EPOCH, 1, 0, EPOCHdimSizes, EPOCHrecVary, _

EPOCHdimVarys, EPOCHvarNum)

status = CDFcreatezVar (id, "LATITUDE", CDF_INT2, 1,2, LATLONdimSizes,LATrecVary, _

LATdimVarys, LATvarNum)

status = CDFcreatezVar (id, "INTITUDE", CDF _INT2, 1,2, LATLONdimSizes, LONrecVary, _

LONdimVarys, LONvarNum)

status = CDFcreatezVar (id, "TEMPERATURE", CDF_REALA4, 1, 1, TMPdimSizes, TMPrecVary, _

TMPdimVarys, TMPvarNum)

catch ex as Exception

end try

4.3.9 CDFdeleterVar

integer CDFdeleterVar(
id as long,
varNum as integer)

CDFdeleterVar deletes the specified rVariable from a CDF.

The arguments to CDFdeleterVar are defined as follows:

79

out -- Completion status code.

¢ in -- CDF identifier.

in -- rVariable identifier.

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number to be deleted.

4.3.9.1. Example(s)

The following example deletes the rVariable named MY VAR in a CDF.

dim id as long ¢ CDF identifier.
Dim status as integer ‘¢ Returned status code.
Dim varNum as integer ¢ rVariable number.

try
varNum = CDFgetVarNum (id, “MY_VAR”)
status = CDFdeleterVar (id, varNum)

catch ex as Exception

end try

4.3.10 CDFdeleterVarRecords

integer CDFdeleterVarRecords(¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.

varNum as integer, in -- rVariable identifier.
startRec as integer, in -- Starting record number.
endRec as integer) in -- Ending record number.

CDFdeleterVarRecords deletes a range of data records from the specified rVariable in a CDF. If this is a variable with
sparse records, the remaining records after deletion will not be renumbered.’
The arguments to CDFdeleterVarRecords are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum The identifier of the rVariable.

7 Normal variables without sparse records have contiguous physical records. Once a section of the records get deleted,
the remaining ones automatically fill the gap.

80

startRec ~ The starting record number to delete.

endRec The ending record number to delete.

4.3.10.1. Example(s)

The following example deletes 11 records (from record numbered 11 to 21) from the rVariable “MY_VAR” in a CDF.

Note: The first record is numbered as 0.

dim id as long

Dim status as integer
Dim varNum as integer
Dim startRec as integer
Dim endRec as integer

try

varNum = CDFgetVarNum (id, “MY_VAR”)
startRec = 10
endRec =20

status = CDFdeleterVarRecords (id, varNum, startRec, endRec)

catch ex as Exception

end try

4.3.11 CDFdeleterVarRecordsRenumber

integer CDFdeleterVarRecordsRenumber(
id as long,

varNum as integer,

startRec as integer,

endRec as integer)

¢ CDF 1identifier.

¢ Returned status code.

¢ rVariable number.

¢ Starting record number.
¢ Ending record number.

out -- Completion status code.
in -- CDF identifier.

in -- rVariable identifier.

in -- Starting record number.
in -- Ending record number.

CDFdeleterVarRecordsRenumber deletes a range of data records from the specified rVariable in a CDF. If this is a
variable with sparse records, the remaining records after deletion will be renumbered, just like non-sparse variable’s

records.

The arguments to CDFdeleterVarRecordsRenumber are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or

CDFcreateCDF) or CDFopenCDF.

81

varNum The identifier of the rVariable.
startRec ~ The starting record number to delete.

endRec The ending record number to delete.

4.3.11.1. Example(s)

The following example deletes 11 records (from record numbered 11 to 21) from the rVariable “MY_VAR” in a CDF.
Note: The first record is numbered as 0. If the last record number is 100, then after the deletion, the record will be 89.

dim id as long ¢ CDF identifier.
Dim status as integer ¢ Returned status code.
Dim varNum as integer ¢ rVariable number.

Dim startRec as integer ¢ Starting record number.
Dim endRec as integer ¢ Ending record number.

try

varNum = CDFgetVarNum (id, “MY_VAR”)
startRec = 10
endRec =20

status = CDFdeleterVarRecordsRenumber (id, varNum, startRec, endRec)

catch ex as Exception

end try

4.3.12 CDFdeletezVar

integer CDFdeletezVar(‘¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.

varNum as integer) ¢ in -- zVariable identifier.
CDFdeletezVar deletes the specified zVariable from a CDF.

The arguments to CDFdeletezVar are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number to be deleted.

82

4.3.12.1. Example(s)

The following example deletes the zVariable named MY VAR in a CDF.

dim id as long ¢ CDF identifier.
Dim status as integer ¢ Returned status code.
Dim varNum as integer ¢ zVariable number.

try
varNum = CDFgetVarNum (id, “MY_VAR”)
status = CDFdeletezVar (id, varNum)

catch ex as Exception

end try

4.3.13 CDFdeletezVarRecords

integer CDFdeletezVarRecords(¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.

varNum as integer, in -- zVariable identifier.
startRec as integer, in -- Starting record number.
endRec as integer) in -- Ending record number.

CDFdeletezVarRecords deletes a range of data records from the specified zVariable in a CDF. If this is a variable with
sparse records, the remaining records after deletion will not be renumbered.
The arguments to CDFdeletezVarRecords are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum The identifier of the zVariable.
startRec ~ The starting record number to delete.

endRec The ending record number to delete.

83

4.3.13.1. Example(s)

The following example deletes 11 records (from record numbered 11 to 21) from the zVariable “MY_VAR” in a CDF.
Note: The first record is numbered as 0.

dim id as long ¢ CDF identifier.

Dim status as integer ¢ Returned status code.
Dim varNum as integer zVariable number.

Dim startRec as integer Starting record number.
Dim endRec as integer Ending record number.

3
3

3

try

varNum = CDFgetVarNum (id, “MY_VAR”)
startRec = 10
endRec =20

status = CDFdeletezVarRecords (id, varNum, startRec, endRec)

catch ex as Exception

end try

4.3.14 CDFdeletezVarRecordsRenumber

integer CDFdeletezVarRecordsRenumber(out -- Completion status code.
id as long, ¢ in-- CDF identifier.

varNum as integer, in -- zVariable identifier.
startRec as integer, in -- Starting record number.
endRec as integer) in -- Ending record number.

CDFdeletezVarRecordsRenumber deletes a range of data records from the specified zVariable in a CDF. If this is a
variable with sparse records, the remaining records after deletion will be renumbered, just like non-sparse variable’s
records.

The arguments to CDFdeletezVarRecordsRenumber are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum The identifier of the zVariable.
startRec ~ The starting record number to delete.

endRec The ending record number to delete.

84

4.3.14.1. Example(s)

The following example deletes 11 records (from record numbered 11 to 21) from the zVariable “MY_VAR” in a CDF.
Note: The first record is numbered as 0. If the last record number is 100, then after the deletion, the record will be 89.

dim id as long ¢ CDF identifier.

Dim status as integer ¢ Returned status code.
Dim varNum as integer zVariable number.

Dim startRec as integer Starting record number.
Dim endRec as integer Ending record number.

3
3

3

try

varNum = CDFgetVarNum (id, “MY_VAR”)
startRec = 10
endRec =20

status = CDFdeletezVarRecordsRenumber (id, varNum, startRec, endRec)

catch ex as Exception

end try

4.3.15 CDFgetMaxWrittenRecNums

integer CDFgetMaxWrittenRecNums (¢ out -- Completion status code.

id as long, ¢ in-- CDF identifier.

rVarsMaxNum as integer, out -- Maximum record number among all rVariables.
zVarsMaxNum as integer) out -- Maximum record number among all zVariables.

CDFgetMaxWrittenRecNums returns the maximum written record number for the rVariables and zVariables in a CDF.
The maximum record number for rVariables or zVariables is one less than the maximum number of records among all
respective variables.

The arguments to CDFgetMaxWrittenRecNums are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

rVarsMaxNum The maximum record number among all rVariables.

zVarsMaxNum The maximum record number among all zVariables.

85

4.3.15.1. Example(s)

The following example returns the maximum written record numbers among all rVariables and zVariables of the CDF.

dim id as long
Dim status as integer

¢ CDF identifier.
¢ Returned status code.

Dim rVarsMaxNum as integer ¢ Maximum record number among all rVariables.
Dim zVarsMaxNum as integer ¢ Maximum record number among all zVariables.
try

status = CDFgetMax WrittenRecNums (id, rVarsMaxNum, zVarsMaxNum)

catch ex as Exception

end try

4.3.16 CDFgetNumrVars

integer CDFgetNumrVars (

id as long,
numVars as integer)

3

out -- Completion status code.
¢ in -- CDF identifier.
¢ out -- Total number of rVariables.

CDFgetNumrVars returns the total number of rVariables in a CDF.

The arguments to CDFgetNumrVars are defined as follows:

id

numVars

4.3.16.1. Example(s)

The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

The number of rVariables.

The following example returns the total number of rVariables in a CDF.

dim status as integer
dim id as long

¢ Returned status code.
¢ CDF identifier.

Dim numVars as integer ¢ Number of zVariables.

86

try
status = CDFgetNumrVars (id, numVars)

catch ex as Exception

end try

4.3.17 CDFgetNumzVars

3

integer CDFgetNumzVars (out -- Completion status code.

id as long, ¢ in-- CDF identifier.

numVars as integer) ¢ out -- Total number of zVariables.
CDFgetNumzVars returns the total number of zVariables in a CDF.

The arguments to CDFgetNumzVars are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

numVars The number of zVariables.

4.3.17.1. Example(s)

The following example returns the total number of zVariables in a CDF.

dim status as integer Returned status code.
dim id as long ¢ CDF identifier.

Dim numVars as integer ¢ Number of zVariables.
try

status = CDFgetNumzVars (id, numVars)

catch ex as Exception

end try

87

4.3.18 CDFgetrVarAllocRecords

integer CDFgetrVarAllocRecords(‘¢ out -- Completion status code.

id as long, ¢ in-- CDF identifier.

varNum as integer, in -- Variable number.

numRecs as integer) out -- Allocated number of records.

3

CDFgetrVarAllocRecords returns the number of records allocated for the specified rVariable in a CDF. Refer to the
CDF User’s Guide for a description of allocating variable records in a single-file CDF.

The arguments to CDFgetrVarAllocRecords are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number.

numRecs The number of allocated records.

4.3.18.1. Example(s)

The following example returns the number of allocated records for rVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.

Dim varNum as integer ¢ rVariable number.
Dim numRecs as integer ¢ The allocated records.
Dim status as integer

try
varNum = CDFgetVarNum (id, “MY_VAR”)

status = CDFgetrVarAllocRecords (id, varNum, numRecs)

catch ex as Exception

end try

4.3.19 CDFgetrVarBlockingFactor

3

integer CDFgetrVarBlockingFactor(out -- Completion status code.

88

id as long, ¢ in-- CDF identifier.
varNum as integer, ¢ in -- Variable number.
bf as integer) out -- Blocking factor.

3

CDFgetrVarBlockingFactor returns the blocking factor for the specified rVariable in a CDF. Refer to the CDF User’s
Guide for a description of the blocking factor.

The arguments to CDFgetrVarBlockingFactor are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number.
bf The blocking factor. A value of zero (o) indicates that the default blocking factor will be
used.

4.3.19.1. Example(s)

The following example returns the blocking factor for the rVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
Dim varNum as integer ¢ rVariable number.
Dim bf as integer ¢ The blocking factor.
Dim status as integer.

try
varNum = CDFgetVarNum (id, “MY_VAR?”)

status = CDFgetrVarBlockingFactor (id, varNum, bf) .
catch ex as Exception

end try

4.3.20 CDFgetrVarCacheSize

integer CDFgetrVarCacheSize(‘¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.

varNum as integer, in -- Variable number.
numBuffers as integer) out -- Number of cache buffers.

CDFgetrVarCacheSize returns the number of cache buffers being for the specified rVariable in a CDF. This operation
is not applicable to a single-file CDF. Refer to the CDF User’s Guide for a description of caching scheme used by the
CDF library.

89

The arguments to CDFgetrVarCacheSize are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number.

numBuffers The number of cache buffers.

4.3.20.1. Example(s)

The following example returns the number of cache buffers for rVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.

Dim varNum as integer ¢ rVariable number.

Dim numBuffers as integer ¢ The number of cache buffers.
dim status as integer

try
varNum = CDFgetVarNum (id, “MY_VAR?”)

status = CDFgetrVarCacheSize (id, varNum, numBuffers)

catch ex as Exception

end try

4.3.21 CDFgetrVarCompression

integer CDFgetrVarCompression(out -- Completion status code.
id as long, ¢ in-- CDF identifier.

varNum as integer, in -- Variable number.
compType as integer, out -- Compression type.
cParms as integer(), out -- Compression parameters.
cPct as integer) out -- Compression percentage.

CDFgetrVarCompression returns the compression type/parameters and compression percentage of the specified
rVariable in a CDF. Refer to Section 2.11 for a description of the CDF supported compression types/parameters. The
compression percentage is the result of the compressed size from all variable records divided by its original,
uncompressed variable size.

The arguments to CDFgetrVarCompression are defined as follows:

90

id

varNum
compType
cParms

cPct

4.3.21.1. Example(s)

The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

The rVariable number.
The compression type.
The compression parameters.

The percentage of the uncompressed size of rVariable’s data values needed to store the
compressed values.

The following example returns the compression information for rVariable “MY_VAR” in a CDF.

dim id as long
Dim varNum as integer

¢ CDF identifier.
¢ rVariable number.

Dim compType as integer ¢ The compression type.
Dim cParms(1) as integer ¢ The compression parameters.

Dim cPct as integer

try

¢ The compression percentage.

varNum = CDFgetVarNum (id, “MY_VAR?”)
status = CDFgetrVarCompression (id, varNum, compType, cParms, cPct)

catch ex as Exception

end try

4.3.22 CDFgetrVarData

integer CDFgetrVarData(
id as long,

varNum as integer,
recNum as integer,
indices as integer(),
value as TYPE)

CDFgetrVarData returns a

out -- Completion status code.

¢ in -- CDF identifier.

in -- Variable number.

in -- Record number.

in -- Dimension indices.

out -- Data value.

TYPE -- VB value/string type or object.

data value from the specified indices, the location of the element, in the given record of the

specified rVariable in a CDF.

The arguments to CDFgetrVarData are defined as follows:

91

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number.

recNum The record number.

indices The dimension indices within the record.
value The data value.

4.3.22.1. Example(s)

The following example returns two data values, the first and the fifth element, in Record 0 from rVariable “MY_VAR”,
a 2-dimensional (2 by 3) CDF_DOUBLE type variable, in a row-major CDF.

dim id as long ¢ CDF identifier.

Dim varNum as integer ¢ rVariable number.
Dim recNum as integer The record number.
Dim indices(2) as integer The dimension indices.
Dim valuel as double, value2 as double The data values.

3
3

3

try
varNum = CDFgetVarNum (id, “MY_VAR?”)
recNum = 0
indices(0) =0
indices(1) =0
status = CDFgetrVarData (id, varNum, recNum, indices, valuel)
indices(0) =1
indices(1) =1
object value2o
status = CDFgetrVarData (id, varNum, recNum, indices, value20)
value2 = value2o

catch ex as Exception

end try

4.3.23 CDFgetrVarDataType

3

integer CDFgetrVarDataType(out -- Completion status code.
id as long, ¢ in-- CDF identifier.
varNum as integer, ¢ in -- Variable number.

92

3

dataType as integer) out -- Data type.

CDFgetrVarDataType returns the data type of the specified rVariable in a CDF. Refer to Section 2.6 for a description
of the CDF data types.
The arguments to CDFgetrVarDataType are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number.

dataType The data type.

4.3.23.1. Example(s)

The following example returns the data type of rVariable “MY_VAR” ina CDF.

dim id as long ¢ CDF identifier.
Dim varNum as integer ¢ rVariable number.
Dim dataType as integer ¢ The data type.
dim status as integer

try

varNum = CDFgetVarNum (id, “MY_VAR?”)

status = CDFgetrVarDataType (id, varNum, dataType)
catch ex as Exception

end try

4.3.24 CDFgetrVarDimVariances

integer CDFgetrVarDimVariances(out -- Completion status code.
id as long, ¢ in-- CDF identifier.

varNum as integer, in -- Variable number.
dimVarys as integer()) out -- Dimension variances.

CDFgetrVarDimVariances returns the dimension variances of the specified rVariable in a CDF. For 0-dimensional
rVariable, this operation is not applicable. The dimension variances are described in section 2.10.

The arguments to CDFgetrVarDimVariances are defined as follows:

93

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number.

dimVarys The dimension variances.

4.3.24.1. Example(s)

The following example returns the dimension variances of the 2-dimensional rVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
Dim dimVarys(2) as integer ¢ The dimension variances.
try

status = CDFgetrVarDimVariances (id, CDFgetVarNum (id, “MY_VAR”), dimVarys)

catch ex as Exception

end try

4.3.25 CDFgetrVarlInfo

integer CDFgetrVarInfo(¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.

varNum as integer, in -- Variable number.
dataType as integer, out -- Data type.

numElems as integer, out -- Number of elements.
numDims as integer, out -- Number of dimensions.
dimSizes as integer()) out -- Dimension sizes.

CDFgetrVarInfo returns the basic information about the specified rVariable in a CDF.
The arguments to CDFgetrVarInfo are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number.

94

dataType The data type of the variable.

numElems The number of elements for the data type of the variable.
numDims The number of dimensions.

dimSizes The dimension sizes.

4.3.25.1. Example(s)

The following example returns the basic information of rVariable “MY_VAR” in a CDF.

dim id as long

Dim dataType as integer
Dim numElems as integer
Dim numDims as integer
Dim dimSizes() as integer
dim status as integer

try

CDF identifier.
The data type.

¢ The number of elements.
¢ The number of dimensions.

The dimension sizes.

status = CDFgetrVarInfo (id, CDFgetVarNum (id, “MY_VAR?”), dataType, numElems,

numDims, dimVarys)

catch ex as Exception

end try

4.3.26 CDFgetrVarMaxAllocRecNum

integer CDFgetrVarMaxAllocRecNum(
id as long,

varNum as integer,

maxRec as integer)

out -- Completion status code.

in -- CDF identifier.

in -- Variable number.

out -- Maximum allocated record #.

CDFgetrVarMaxAllocRecNum returns the number of records allocated for the specified rVariable in a CDF.

The arguments to CDFgetrVarMaxAllocRecNum are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to

CDFcreate (or CDFcreateCDF) or CDFopenCDF.

95

varNum The rVariable number.

maxRec The number of records allocated.

4.3.26.1. Example(s)

The following example returns the maximum allocated record number for the rVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
Dim maxRec as integer ¢ The maximum record number.
Dim status as integer.

try
status = CDFgetrVarMaxAllocRecNum (id, CDFgetVarNum (id, “MY_VAR”), maxRec)

catch ex as Exception

end try

4.3.27 CDFgetrVarMaxWrittenRecNum

integer CDFgetrVarMaxWrittenRecNum (¢ out -- Completion status code.

id as long, ¢ in-- CDF identifier.

varNum as integer, in -- Variable number.

maxRec as integer) out -- Maximum written record number.
CDFgetrVarMax WrittenRecNum returns the maximum record number written for the specified rVariable in a CDF.

The arguments to CDFgetrVarMaxWrittenRecNum are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number.

maxRec The maximum written record number.

4.3.27.1. Example(s)

The following example returns the maximum record number written for the rVariable “MY_VAR” in a CDF.

96

dim id as long ¢ CDF identifier.
Dim maxRec as integer ¢ The maximum record number.
Dim status as integer.

try
status = CDFgetrVarMaxWrittenRecNum (id, CDFgetVarNum (id, “MY_VAR”), maxRec)

catch ex as Exception

end try

4.3.28 CDFgetrVarName

integer CDFgetrVarName(out -- Completion status code.
id as long, ¢ in-- CDF identifier.

varNum as integer, in -- Variable number.
varName as string) out -- Variable name.
CDFgetrVarName returns the name of the specified rVariable, by its number, in a CDF.

The arguments to CDFgetrVarName are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number.

varName The name of the variable.

4.3.28.1. Example(s)

The following example returns the name of the rVariable whose variable number is 1.

dim id as long ¢ CDF identifier.

Dim varNum as integer ¢ rVariable number.

Dim varName as string ¢ The name of the variable.
Dim status as integer.

varNum = 1
try

97

status = CDFgetrVarName (id, varNum, varName)

catch ex as Exception

end try

4.3.29 CDFgetrVarNumElements

integer CDFgetrVarNumElements(out -- Completion status code.
id as long, ¢ in-- CDF identifier.

varNum as integer, in -- Variable number.
numElems as integer) out -- Number of elements.

CDFgetrVarNumElements returns the number of elements for each data value of the specified rVariable in a CDF. For
character data type (CDF_CHAR and CDF_UCHAR), the number of elements is the number of characters in the string.
For other data types, the number of elements will always be one (1).

The arguments to CDFgetrVarNumElements are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number.

numElems The number of elements.

4.3.29.1. Example(s)

The following example returns the number of elements for the data type from rVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
Dim numElems as integer ¢ The number of elements.
Dim status as integer.

try
status = CDFgetrVarNumElements (id, CDFgetVarNum (id, “MY_VAR”), numElems) ...
catch ex as Exception

end try

98

4.3.30 CDFgetrVarNumRecsWritten

integer CDFgetrVarNumRecsWritten(¢ out -- Completion status code.

id as long, ¢ in-- CDF identifier.

varNum as integer, in -- Variable number.

numRecs as integer) out -- Number of written records.

CDFgetrVarNumRecsWritten returns the number of records written for the specified rVariable in a CDF. This number
may not correspond to the maximum record written if the rVariable has sparse records.
The arguments to CDFgetrVarNumRecsWritten are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number.

numRecs The number of written records.

4.3.30.1. Example(s)

The following example returns the number of written records from rVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
Dim numRecs as integer ¢ The number of written records.
Dim status as integer.

try
status = CDFgetrVarNumRecsWritten (id, CDFgetVarNum (id, “MY_VAR”), numRecs)

catch ex as Exception

end try

4.3.31 CDFgetrVarPadValue

integer CDFgetrVarPadValue(¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.
varNum as integer, in -- Variable number.
value as TYPE) ‘ out -- Pad value.
¢ TYPE -- VB value/string type or object.

99

CDFgetrVarPadValue returns the pad value of the specified rVariable in a CDF. If a pad value has not been explicitly
specified for the rVariable through CDFsetrVarPadValue, the informational status code
NO_PADVALUE_SPECIFIED will be returned. Since a variable’s pad value is an optional, no exception is thrown
while trying to get its value if its value is not set. It’s recommended to check the returned status after the method is
called.

The arguments to CDFgetrVarPadValue are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number.

value The pad value.

4.3.31.1. Example(s)

The following example returns the pad value from rVariable “MY_VAR”, a CDF INT4 type variable, in a CDF.

dim id as long ¢ CDF identifier.
Dim padValue as integer ¢ The pad value.
Dim status as integer.

try
object padValueo
status = CDFgetrVarPadValue (id, CDFgetVarNum (id, “MY_VAR”), padValueo)
if status <> NO PADVALUE SPECIFIED then

. padValue = Ctype(padValueo, integer)
end if

catch ex as Exception

end try

4.3.32 CDFgetrVarRecordData

integer CDFgetrVarRecordData(¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.
varNum as integer, in -- Variable number.
dim recNum as integer, in -- Record number.
buffer as TYPE) ‘¢ out -- Record data.
¢ TYPE -- VB value/string type (likely
an array) or object.

100

CDFgetrVarRecordData returns an entire record at a given record number for the specified rVariable in a CDF. The
buffer should be large enough to hold the entire data values form the variable.

The arguments to CDFgetrVarRecordData are defined as follows:

id

varNum

recNum

buffer

4.3.32.1. Example(s)

The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

The rVariable number.
The record number.

The buffer holding the entire record data.

The following example will read two full records (record numbers 2 and 5) from rVariable “MY_VAR?”, a 2-dimension
(2 by 3), CDF_INT4 type variable, in a CDF. The variable’s dimension variances are all VARY.

dim id as long
Dim varNum

Dim bufferl(,) as integer

¢ CDF identifier.
¢ rVariable number.
The data holding buffer — pre-allocation.

3

Dim buffer2(,) as integer ¢ The data holding buffer — API allocation.

Dim status as integer.

try

varNum = CDFgetVarNum (id, “MY_VAR?”)

status = CDFgetrVarRecordData (id, varNum, 2, bufferl)
dim buffer2o as object

status = CDFgetrVarRecordData (id, varNum, 5, buffer20)

buffer2 = buffer2o

catch ex as Exception

end try

4.3.33 CDFgetrVarRecVariance

integer CDFgetrVarRecVariance(

id as long,
varNum as integer,
recVary as integer)

out -- Completion status code.
¢ in -- CDF identifier.

in -- Variable number.

out -- Record variance.

101

CDFgetrVarRecVariance returns the record variance of the specified rVariable in a CDF. The record variances are
described in Section 2.10.

The arguments to CDFgetrVarRecVariance are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number.

recVary The record variance.

4.3.33.1. Example(s)

The following example returns the record variance for the rVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
Dim recVary as integer ¢ The record variance.
.Dim status as integer

try
status = CDFgetrVarRecVariance (id, CDFgetVarNum (id, “MY_VAR?”), recVary) ...
catch ex as Exception

end try

4.3.34 CDFgetrVarReservePercent

integer CDFgetrVarReservePercent(out -- Completion status code.
id as long, ¢ in-- CDF identifier.

varNum as integer, in -- Variable number.
percent as integer) out -- Reserve percentage.

CDFgetrVarReservePercent returns the compression reserve percentage being used for the specified rVariable in a
CDF. This operation only applies to compressed rVariables. Refer to the CDF User’s Guide for a description of the
reserve scheme used by the CDF library.

The arguments to CDFgetrVarReservePercent are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number.

102

percent The reserve percentage.

4.3.34.1. Example(s)

The following example returns the compression reserve percentage from the compressed rVariable “MY_VAR” in a
CDF.

dim id as long ¢ CDF identifier.
Dim percent as integer ¢ The compression reserve percentage.
dim status as integer

try
status = CDFgetrVarReservePercent (id, CDFgetVarNum (id, “MY_VAR”), percent)

catch ex as Exception

end try

4.3.35 CDFgetrVarsDimSizes

3

integer CDFgetrVarsDimSizes(out -- Completion status code.
id as long, ¢ in-- CDF identifier.
dimSizes as integer()) ¢ out -- Dimension sizes.

CDFgetrVarsDimSizes returns the size of each dimension for the rVariables in a CDF. (all rVariables have the same
dimensional sizes.) For 0-dimensional rVariables, this operation is not applicable.

The arguments to CDFgetrVarsDimSizes are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

dimSizes The dimension sizes. Each element of dimSizes receives the corresponding dimension size.

4.3.35.1. Example(s)

The following example returns the dimension sizes for rVariables in a CDF.

103

dim id as long ¢ CDF identifier.
dim dimSizes() as integer ¢ Dimensional sizes.
Dim status as integer

Ary

status = CDFgetrVarsDimSizes (id, dimSizes)

catch ex as Exception

end try

4.3.36 CDFgetrVarSeqData

integer CDFgetrVarSeqData(¢ out -- Completion status code.

id as long, ¢ in-- CDF identifier.

varNum as integer, in -- Variable number.

value as TYPE) ¢ out -- Data value.

TYPE -- VB value/string type or object.

CDFgetrVarSeqData reads one value from the specified rVariable in a CDF at the current sequential value (position).
After the read, the current sequential value is automatically incremented to the next value. An error is returned if the
current sequential value is past the last record of the rVariable. Use CDFsetrVarSeqPos method to set the current
sequential value (position).

The arguments to CDFgetrVarSeqData are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number from which to read data.

value The buffer to store the value.

4.3.36.1. Example(s)

The following example will read the first two data values from the beginning of record number 2 (from a 2-dimensional
rVariable whose data type is CDF_INT4) in a CDF.

dim id as long ¢ CDF identifier.

Dim varNum as integer ¢ The variable number from which to read data
Dim valuel as integer, value2 as integer The data value.

Dim indices(2) as integer The indices in a record.

Dim recNum as integer The record number.

Dim status as integer.

3
3

3

104

recNum = 2
indices(0) =0
indices(1) =0
try

status = CDFsetrVarSeqPos (id, varNum, recNum, indices)
status = CDFgetrVarSeqData (id, varNum, valuel)

object value2o

status = CDFgetrVarSeqData (id, varNum, value20)
value2 = value2o

catch ex as Exception

end try

4.3.37 CDFgetrVarSeqPos

integer CDFgetrVarSeqPos(out -- Completion status code.
id as long, ¢ in-- CDF identifier.

varNum as integer, in -- Variable number.
recNum as integer, out -- Record number.

indices as integer()) out -- Indices in a record.

CDFgetrVarSeqPos returns the current sequential value (position) for sequential access for the specified rVariable in a
CDF. Note that a current sequential value is maintained for each rVariable individually. Use CDFsetrVarSeqPos
method to set the current sequential value.

The arguments to CDFgetrVarSeqPos are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number.
recNum The rVariable record number.
indices The dimension indices. Each element of indices receives the corresponding dimension

index. For O-dimensional rVariable, this argument is ignored, but must be presented.

4.3.37.1. Example(s)

The following example returns the location for the current sequential value (position), the record number and indices
within it, from a 2-dimensional rVariable named MY VAR in a CDF.

dim id as long ¢ CDF identifier.
Dim recNum as integer ¢ The record number.

105

Dim indices() as integer ¢ The indices.
dim status as integer

try
status = CDFgetrVarSeqPos (id, CDFgetVarNum (id, “MY_VAR”), recNum, indices)
catch ex as Exception

end try

4.3.38 CDFgetrVarsMaxWrittenRecNum

integer CDFgetrVarsMax WrittenRecNum(¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.
recNum as integer) ‘¢ out -- Maximum record number.

CDFgetrVarsMaxWrittenRecNum returns the maximum record number among all of the rVariables in a CDF. Note
that this is not the number of written records but rather the maximum written record number (that is one less than the
number of records). A value of negative one (-1) indicates that rVariables contain no records. The maximum record
number for an individual rVariable may be acquired using the CDFgetrVarMax WrittenRecNum method call.

Suppose there are three rVariables in a CDF:Varl, Var2, and Var3. If Varl contains 15 records, Var2 contains 10
records, and Var3 contains 95 records, then the value returned from CDFgetrVarsMaxWrittenRecNum would be 95.

The arguments to CDFgetrVarsMaxWrittenRecNum are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

recNum The maximum written record number.

4.3.38.1. Example(s)

The following example returns the maximum record number for all of the rVariables in a CDF.

dim id as long ¢ CDF identifier.
Dim recNum as integer ¢ The maximum record number.
Dim status as integer.
try
status = CDFgetrVarsMaxWrittenRecNum (id, recNum)

catch ex as Exception

106

end try

4.3.39 CDFgetrVarsNumDims

3

integer CDFgetrVarsNumDims(out -- Completion status code.
id as long, ¢ in-- CDF identifier.
numDims as integer) ¢ out -- Number of dimensions.
CDFgetrVarsNumDims returns the number of dimensions (dimensionality) for the rVariables in a CDF.

The arguments to CDFgetrVarsNumDims are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

numDims The number of dimensions.

4.3.39.1. Example(s)

The following example returns the number of dimensions for rVariables in a CDF.

dim id as long ¢ CDF identifier.
Dim numDims as integer ¢ The dimensionality of the variable.
Dim status as integer.

try
status = CDFgetrVarsNumDims (id, numDims)

catch ex as Exception

end try

4.3.40 CDFgetrVarSparseRecords

integer CDFgetrVarSparseRecords(out -- Completion status code.
id as long, ¢ in-- CDF identifier.

varNum as integer, in -- The variable number.
sRecordsType as integer) out -- The sparse records type.

107

CDFgetrVarSparseRecords returns the sparse records type of the rVariable in a CDF. Refer to Section 2.12.1 for the
description of sparse records.

The arguments to CDFgetrVarSparseRecords are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The variable number.

sRecordsType The sparse records type.

4.3.40.1. Example(s)

The following example returns the sparse records type of the rVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
Dim sRecordsType as integer ¢ The sparse records type.
Dim status as integer.

try
status = CDFgetrVarSparseRecords (id, CDFgetVarNum (id, “MY_VAR?”), sRecordsType) ...
catch ex as Exception

end try

4.3.41 CDFgetVarNum 3

integer CDFgetVarNum(¢ out -- Variable number.
id as long, ¢ in-- CDF identifier.
varName as string) ‘ in -- Variable name.

CDFgetVarNum returns the variable number for the given variable name (rVariable or zVariable). If the variable is
found, CDFgetVarNum returns its variable number - which will be equal to or greater than zero (0). If an error occurs
(e.g., the variable does not exist in the CDF), an error code (of type int) is returned, and an exception is thrown. Error
codes are less than zero (0). The returned variable number should be used in the functions of the same variable type,
rVariable or zVariable. If it is an rVariable, functions dealing with rVariables should be used. Similarly, functions for
zVariables should be used for zVariables.

The arguments to CDFgetVarNum are defined as follows:

8 Since no two variables, either rVariable or zVariable, can have the same name, this function now returns the variable
number for the given rVariable or zVariable name (if the variable name exists in a CDF).

108

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varName The name of the variable to search. This may be at most CDF VAR NAME LEN256
characters. Variable names are case-sensitive.

CDFgetVarNum may be used as an embedded function call where an rVariable or zVariable number is needed.

4.3.41.1. Example(s)

In the following example CDFgetVarNum is used as an embedded function call when inquiring about a zVariable.

dim id as longid ¢ CDF identifier.

Dim status as integer Returned status code.

Dim varName as string Variable name.

Dim dataType as integer Data type of the zVariable.

Dim numElements as integer Number of elements (of the data type).
Dim numDims as integer Number of dimensions.

Dim dimSizes() as integer Dimension sizes.

Dim recVariance as integer Record variance.

Dim dimVariances() as integer Dimension variances.

try
status = CDFinquirezVar (id, CDFgetVarNum (id,"LATITUDE"), varName, dataType,
numElements, numDims, dimSizes , recVariance, dimVariances)

catch ex as Exception

end try
In this example the zVariable named LATITUDE was inquired. Note that if LATITUDE did not exist in the CDF, the
call to CDFgetVarNum would have returned an error code. Passing that error code to CDFinquirezVar as a zVariable
number would have resulted in CDFinquirezVar also returning an error code. Also note that the name written into

varName is already known (LATITUDE). In some cases the zVariable names will be unknown - CDFinquirezVar
would be used to determine them. CDFinquirezVar is described in Section 4.3.66.

4.3.42 CDFgetzVarAllocRecords

integer CDFgetzVarAllocRecords(¢ out -- Completion status code.

id as long, ¢ in-- CDF identifier.

varNum as integer, in -- Variable number.

numRecs as integer) out -- Allocated number of records.

109

CDFgetzVarAllocRecords returns the number of records allocated for the specified zVariable in a CDF. Refer to the

CDF User’s Guide for a description of allocating variable records in a single-file CDF.

The arguments to CDFgetzVarAllocRecords are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to

CDFcreate (or CDFcreateCDF) or CDFopenCDF.
varNum The zVariable number.

numRecs The number of allocated records.

4.3.42.1. Example(s)

The following example returns the number of allocated records for zVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
Dim varNum as integer ¢ zVariable number.

Dim numRecs as integer ¢ The allocated records.

Dim status as integer.
try

varNum = CDFgetVarNum (id, “MY_VAR”)

status = CDFgetzVarAllocRecords (id, varNum, numRecs)
catch ex as Exception

end try

4.3.43 CDFgetzVarBlockingFactor

integer CDFgetzVarBlockingFactor(
id as long, ¢ in-- CDF identifier.

varNum as integer, in -- Variable number.
bf as integer) out -- Blocking factor.

out -- Completion status code.

CDFgetzVarBlockingFactor returns the blocking factor for the specified zVariable in a CDF. Refer to the CDF User’s

Guide for a description of the blocking factor.

The arguments to CDFgetzVarBlockingFactor are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to

CDFcreate (or CDFcreateCDF) or CDFopenCDF.

110

varNum The zVariable number.

bf The blocking factor. A value of zero (o) indicates that the default blocking factor will be
used.

4.3.43.1. Example(s)

The following example returns the blocking factor for the zVariable “MY_VAR” in a CDF.

dim id as long ’ ¢ CDF identifier.
Dim varNum as integer ¢ zVariable number.
Dim bf as integer ¢ The blocking factor.
dim status as integer

try
varNum = CDFgetVarNum (id, “MY_VAR?”)

status = CDFgetzVarBlockingFactor (id, varNum, bf) .
catch ex as Exception

end try

4.3.44 CDFgetzVarCacheSize

integer CDFgetzVarCacheSize(‘¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.

varNum as integer, in -- Variable number.
numBuffers as integer) out -- Number of cache

CDFgetzVarCacheSize returns the number of cache buffers being for the specified zVariable in a CDF. This operation
is not applicable to a single-file CDF. Refer to the CDF User’s Guide for a description of caching scheme used by the
CDF library.

The arguments to CDFgetzVarCacheSize are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

numBuffers The number of cache buffers.

111

4.3.44.1. Example(s)

The following example returns the number of cache buffers for zVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.

Dim varNum as integer ¢ zVariable number.

Dim numBuffers as integer ¢ The number of cache buffers.
Dim status as integer.

try
varNum = CDFgetVarNum (id, “MY_VAR?”)

status = CDFgetzVarCacheSize (id, varNum, numBuffers)

catch ex as Exception

end try

4.3.45 CDFgetzVarCompression

integer CDFgetzVarCompression(out -- Completion status code.
id as long, ¢ in-- CDF identifier.

varNum as integer, in -- Variable number.
compType as integer, out -- Compression type.
cParms as integer(), out -- Compression parameters.
cPct as integer) out -- Compression percentage.

CDFgetzVarCompression returns the compression type/parameters and compression percentage of the specified
zVariable in a CDF. Refer to Section 2.11 for a description of the CDF supported compression types/parameters. The
compression percentage is the result of the compressed size from all variable records divided by its original,
uncompressed variable size.

The arguments to CDFgetzVarCompression are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

compType The compression type.

cParms The compression parameters.

cPct The percentage of the uncompressed size of zVariable’s data values needed to store the

compressed values.

112

4.3.45.1. Example(s)

The following example returns the compression information for zVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.

Dim varNum as integer ¢ zVariable number.

Dim compType as integer ¢ The compression type.

Dim cParms() as integer ¢ The compression parameters.
Dim cPct as integer ¢ The compression percentage.

Dim status as integer.
try
varNum = CDFgetVarNum (id, “MY_VAR?”)
status = CDFgetzVarCompression (id, varNum, compType, cParms, cPct)

catch ex as Exception

end try

4.3.46 CDFgetzVarData

integer CDFgetzVarData(¢ out -- Completion status code.

id as long, ¢ in-- CDF identifier.

varNum as integer, in -- Variable number.

dim recNum as integer, in -- Record number.

indices as integer(), in -- Dimension indices.

value as TYPE) ¢ out -- Data value.

TYPE -- VB value/string type or object.

CDFgetzVarData returns a data value from the specified indices, the location of the element, in the given record of the
specified zVariable in a CDF.
The arguments to CDFgetzVarData are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

recNum The record number.

indices The dimension indices within the record.
value The data value.

113

4.3.46.1. Example(s)

The following example returns two data values, the first and the fifth element, in Record 0 from zVariable
“MY_VAR?”, a 2-dimensional (2 by 3) CDF_DOUBLE type variable, in a row-major CDF.

dim id as long ¢ CDF identifier.

Dim varNum as integer ¢ zVariable number.
Dim recNum as integer The record number.
Dim indices(2) as integer The dimension indices.
Dim valuel as double, value2 as double The data values.

3
3

3

try
varNum = CDFgetVarNum (id, “MY_VAR?”)
recNum =0
indices(0) =0
indices(1) =0
status = CDFgetzVarData (id, varNum, recNum, indices, valuel)
indices(0) =1
indices(1) =1
object value2o
status = CDFgetzVarData (id, varNum, recNum, indices, value20)
value2 = value2o

catch ex as Exception

end try

4.3.47 CDFgetzVarDataType

3

integer CDFgetzVarDataType(out -- Completion status code.
id as long, ¢ in-- CDF identifier.

varNum as integer, in -- Variable number.
dataType as integer) out -- Data type.

3

CDFgetzVarDataType returns the data type of the specified zVariable in a CDF. Refer to Section 2.6 for a description
of the CDF data types.

The arguments to CDFgetzVarDataType are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

114

varNum The zVariable number.

dataType The data type.

4.3.47.1. Example(s)

The following example returns the data type of zVariable “MY_VAR” ina CDF.

dim id as long ¢ CDF identifier.
Dim varNum as integer ¢ zVariable number.
Dim dataType as integer ¢ The data type.
Dim status as integer.

try

varNum = CDFgetVarNum (id, “MY_VAR?”)

status = CDFgetzVarDataType (id, varNum, dataType)
catch ex as Exception

end try

4.3.48 CDFgetzVarDimSizes

integer CDFgetzVarDimSizes(out -- Completion status code.
id as long, ¢ in-- CDF identifier.

varNum as integer, in -- Variable number.
dimSizes as integer) out -- Dimension sizes.

CDFgetzVarDimSizes returns the size of each dimension for the specified zVariable in a CDF. For 0-dimensional
zVariables, this operation is not applicable.
The arguments to CDFgetzVarDimSizes are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number

dimSizes The dimension sizes. Each element of dimSizes receives the corresponding dimension size.

115

4.3.48.1. Example(s)

The following example returns the dimension sizes for zVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
dim dimSizes() as integer ¢ Dimensional sizes.
Dim status as integer

Ary

status = CDFgetzVarDimSizes (id, CDFgetVarNum (id, “MY_VAR”), dimSizes)

catch ex as Exception

end try

4.3.49 CDFgetzVarDimVariances

integer CDFgetzVarDimVariances(out -- Completion status code.
id as long, ¢ in-- CDF identifier.

varNum as integer, in -- Variable number.
dimVarys as integer()) out -- Dimension variances.

CDFgetzVarDimVariances returns the dimension variances of the specified zVariable in a CDF. For 0-dimensional
zVariable, this operation is not applicable. The dimension variances are described in section 2.10.

The arguments to CDFgetzVarDimVariances are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

dimVarys The dimension variances.

4.3.49.1. Example(s)

The following example returns the dimension variances of the 2-dimensional zVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
Dim dimVarys() as integer ¢ The dimension variances.

116

Dim status as integer.
try

status = CDFgetzVarDimVariances (id, CDFgetVarNum (id, “MY_VAR”), dimVarys)

catch ex as Exception

end try

4.3.50 CDFgetzVarlInfo

integer CDFgetzVarInfo(¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.

varNum as integer, in -- Variable number.
dataType as integer, out -- Data type.

numElems as integer, out -- Number of elements.
numDims as integer, out -- Number of dimensions.
dimSizes as integer()) out -- Dimension sizes.

CDFgetzVarInfo returns the basic information about the specified zVariable in a CDF.

The arguments to CDFgetzVarInfo are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

dataType The data type of the variable.

numElems The number of elements for the data type of the variable.
numDims The number of dimensions.

dimSizes The dimension sizes.

4.3.50.1. Example(s)

The following example returns the basic information of zVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
Dim dataType as integer ¢ The data type.

117

Dim numElems as integer ¢ The number of elements.
Dim numDims as integer ¢ The number of dimensions.
Dim dimSizes() as integer ¢ The dimension sizes.

Dim status as integer.

try

status = CDFgetzVarlnfo (id, CDFgetVarNum (id, “MY_VAR?”), dataType, numElems,
numDims, dimVarys)

catch ex as Exception

end try

4.3.51 CDFgetzVarMaxAllocRecNum

integer CDFgetzVarMaxAllocRecNum(¢ out -- Completion status code.

id as long, ¢ in-- CDF identifier.

varNum as integer, in -- Variable number.

maxRec as integer) out -- Maximum allocated record #.
CDFgetzVarMaxAllocRecNum returns the number of records allocated for the specified zVariable in a CDF.

The arguments to CDFgetzVarMaxAllocRecNum are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

maxRec The number of records allocated.

4.3.51.1. Example(s)

The following example returns the maximum allocated record number for the zVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
Dim maxRec as integer ¢ The maximum record number.
dim status as integer

try

status = CDFgetzVarMaxAllocRecNum (id, CDFgetVarNum (id, “MY_VAR”), maxRec)

118

catch ex as Exception

end try

4.3.52 CDFgetzVarMaxWrittenRecNum

integer CDFgetzVarMax WrittenRecNum (¢ out -- Completion status code.

id as long, ¢ in-- CDF identifier.

varNum as integer, in -- Variable number.

maxRec as integer) out -- Maximum written record number.
CDFgetzVarMaxWrittenRecNum returns the maximum record number written for the specified zVariable in a CDF.

The arguments to CDFgetzVarMaxWrittenRecNum are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

maxRec The maximum written record number.

4.3.52.1. Example(s)

The following example returns the maximum record number written for the zVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
Dim maxRec as integer ¢ The maximum record number.
Dim status as integer

try

status = CDFgetzVarMaxWrittenRecNum (id, CDFgetVarNum (id, “MY_VAR”), maxRec)

catch ex as Exception

end try

119

4.3.53 CDFgetzVarName

integer CDFgetzVarName(out -- Completion status code.
id as long, ¢ in-- CDF identifier.

varNum as integer, in -- Variable number.
varName as string) out -- Variable name.
CDFgetzVarName returns the name of the specified zVariable, by its number, in a CDF.

The arguments to CDFgetzVarName are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

varName The name of the variable.

4.3.53.1. Example(s)

The following example returns the name of the zVariable whose variable number is 1.

dim id as long ¢ CDF identifier.

Dim varNum as integer ¢ zVariable number.

Dim varName as string ¢ The name of the variable.
Dim status as integer.

varNum = 1
try

status = CDFgetzVarName (id, varNum, varName)

catch ex as Exception

end try

4.3.54 CDFgetzVarNumDims

integer CDFgetzVarNumDims(out -- Completion status code.
id as long, ¢ in-- CDF identifier.

varNum as integer, in -- Variable number.
numDims as integer) out -- Number of dimensions.

120

CDFgetzVarNumDims returns the number of dimensions (dimensionality) for the specified zVariable in a CDF.
The arguments to CDFgetzVarNumDims are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number

numDims The number of dimensions.

4.3.54.1. Example(s)

The following example returns the number of dimensions for zVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
Dim numDims as integer ¢ The dimensionality of the variable.
Dim status as integer.

try
status = CDFgetzVarNumDims (id, CDFgetVarNum (id, “MY_VAR”), numDims)

catch ex as Exception

end try

4.3.55 CDFgetzVarNumElements

integer CDFgetzVarNumElements(out -- Completion status code.
id as long, ¢ in-- CDF identifier.

varNum as integer, in -- Variable number.
numElems as integer) out -- Number of elements.

CDFgetzVarNumElements returns the number of elements for each data value of the specified zVariable in a CDF. For
character data type (CDF_CHAR and CDF_UCHAR), the number of elements is the number of characters in the string.
For other data types, the number of elements will always be one (1).

The arguments to CDFgetzVarNumElements are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

121

numElems The number of elements.

4.3.55.1. Example(s)

The following example returns the number of elements for the data type from zVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
dim numElems as integer ¢ The number of elements.
Dim status as integer.

try
status = CDFgetzVarNumElements (id, CDFgetVarNum (id, “MY_VAR”), numElems) ...
catch ex as Exception

end try

4.3.56 CDFgetzVarNumRecsWritten

integer CDFgetzVarNumRecsWritten(¢ out -- Completion status code.

id as long, ¢ in-- CDF identifier.

varNum as integer, in -- Variable number.

numRecs as integer) out -- Number of written records.

CDFgetzVarNumRecsWritten returns the number of records written for the specified zVariable in a CDF. This number
may not correspond to the maximum record written if the zVariable has sparse records.

The arguments to CDFgetzVarNumRecsWritten are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

numRecs The number of written records.

4.3.56.1. Example(s)

The following example returns the number of written records from zVariable “MY_VAR” in a CDF.

122

dim id as long ¢ CDF identifier.
Dim numRecs as integer ¢ The number of written records.
Dim status as integer.

try
status = CDFgetzVarNumRecsWritten (id, CDFgetVarNum (id, “MY_VAR”), numRecs)

catch ex as Exception

end try

4.3.57 CDFgetzVarPadValue

integer CDFgetzVarPadValue(¢ out -- Completion status code.

id as long, ¢ in-- CDF identifier.

varNum as integer, in -- Variable number.

value as TYPE) ‘ out -- Pad value.

TYPE -- VB value/string type or object

CDFgetzVarPadValue returns the pad value of the specified zVariable in a CDF. If a pad value has not been explicitly
specified for the zVariable through CDFsetzVarPadValue, the informational status code
NO_PADVALUE_SPECIFIED will be returned. Since a variable’s pad value is an optional, no exception is thrown
while trying to get its value if its value is not set. It’s recommended to check the returned status after the method is
called.

The arguments to CDFgetzVarPadValue are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

value The pad value.

4.3.57.1. Example(s)

The following example returns the pad value from zVariable “MY_VAR?”, a CDF_INT4 type variable, in a CDF.

dim id as long ¢ CDF identifier.
Dim padValue as integer ¢ The pad value.
Dim status as integer.

123

try

dim padValueo as object
status = CDFgetzVarPadValue (id, CDFgetVarNum (id, “MY_VAR?”), padValueo)
if status <> NO_PADVALUE_SPECIFIED then
. padValue = Ctype(padValueo, integer)
end if

catch ex as Exception

end try

4.3.58 CDFgetzVarRecordData

integer CDFgetzVarRecordData(¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.
varNum as integer, in -- Variable number.
dim recNum as integer, in -- Record number.
buffer as TYPE) ‘¢ out -- Record data.
¢ TYPE -- VB value/string type (likely an
array) or object

CDFgetzVarRecordData returns an entire record at a given record number for the specified zVariable in a CDF. The
buffer should be large enough to hold the entire data values form the variable.
The arguments to CDFgetzVarRecordData are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.
recNum The record number.
buffer The buffer holding the entire record data.

4.3.58.1. Example(s)

The following example will read two full records (record numbers 2 and 5) from zVariable “MY_VAR?”, a 2-dimension
(2 by 3), CDF_INT4 type variable, in a CDF. The variable’s dimension variances are all VARY.

dim id as long ¢ CDF identifier.
Dim varNum as integer ¢ zVariable number.

124

Dim buffer1(2,3) as integer ¢ The data holding buffer — pre-allocation.
Dim buffer2 as object ¢ The data holding buffer — API allocation.

Dim status as integer.

try
varNum = CDFgetVarNum (id, “MY_VAR?”)
status = CDFgetzVarRecordData (id, varNum, 2, buffer1)
status = CDFgetzVarRecordData (id, varNum, 5, buffer2)

catch ex as Exception

end try

4.3.59 CDFgetzVarRecVariance

integer CDFgetzVarRecVariance(
id as long,

varNum as integer,

recVary as integer)

CDFgetzVarRecVariance returns the record variance of the specified zVariable
described in Section 2.10.

The arguments to CDFgetzVarRecVariance are defined as follows:

out -- Completion status code.
in -- CDF identifier.

in -- Variable number.

out -- Record variance.

in a CDF. The record variances are

id The identifier of the current CDF. This identifier must have been initialized by a call to

CDFcreate (or CDFcreateCDF) or CDFopenCDF.
varNum The zVariable number.

recVary The record variance.

4.3.59.1. Example(s)

The following example returns the record variance for the zVariable “MY_VAR” in a CDF.

dim id as long
Dim recVary as integer
dim status as integer

try

¢ CDF identifier.
¢ The record variance.

status = CDFgetzVarRecVariance (id, CDFgetVarNum (id, “MY_VAR”), recVary) ...

125

catch ex as Exception

end try

4.3.60 CDFgetzVarReservePercent

integer CDFgetzVarReservePercent(out -- Completion status code.
id as long, ¢ in-- CDF identifier.

varNum as integer, in -- Variable number.
percent as integer) out -- Reserve percentage.

CDFgetzVarReservePercent returns the compression reserve percentage being used for the specified zVariable in a
CDF. This operation only applies to compressed zVariables. Refer to the CDF User’s Guide for a description of the
reserve scheme used by the CDF library.

The arguments to CDFgetzVarReservePercent are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

percent The reserve percentage.

4.3.60.1. Example(s)

The following example returns the compression reserve percentage from the compressed zVariable “MY_VAR” in a
CDF.

dim id as long ¢ CDF identifier.
Dim percent as integer ¢ The compression reserve percentage.
Dim status as integer.

try

status = CDFgetzVarReservePercent (id, CDFgetVarNum (id, “MY_VAR”), percent)

catch ex as Exception

end try

126

4.3.61 CDFgetzVarSeqData

integer CDFgetzVarSeqData(¢ out -- Completion status code.

id as long, ¢ in-- CDF identifier.

varNum as integer, in -- Variable number.

value as TYPE) ¢ out -- Data value.

TYPE -- VB value/string type or object

CDFgetzVarSeqData reads one value from the specified zVariable in a CDF at the current sequential value (position).
After the read, the current sequential value is automatically incremented to the next value. An error is returned if the
current sequential value is past the last record of the zVariable. Use CDFsetzVarSeqPos method to set the current
sequential value (position).

The arguments to CDFgetzVarSeqData are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number from which to read data.

value The buffer to store the value.

4.3.61.1. Example(s)

The following example will read the first two data values from the beginning of record number 2 (from a 2-dimensional
zVariable whose data type is CDF_INT4) in a CDF.

dim id as long ¢ CDF identifier.

Dim varNum as integer ¢ The variable number from which to read data
Dim valuel as integer, value2 as integer The data value.

Dim indices(2) as integer The indices in a record.

Dim recNum as integer The record number.

Dim status as integer.

3
3

3

recNum =2

indices(0) =0

indices(1) =0

try
status = CDFsetzVarSeqPos (id, varNum, recNum, indices)
status = CDFgetzVarSeqData (id, varNum, valuel)
dim value2o as object

status = CDFgetzVarSeqData (id, varNum, value20)
value2 = value2o

catch ex as Exception

end try

127

4.3.62 CDFgetzVarSeqPos

integer CDFgetzVarSeqPos(out -- Completion status code.
id as long, ¢ in-- CDF identifier.

varNum as integer, in -- Variable number.
recNum as integer, out -- Record number.

indices as integer()) out -- Indices in a record.

CDFgetzVarSeqPos returns the current sequential value (position) for sequential access for the specified zVariable in a
CDF. Note that a current sequential value is maintained for each zVariable individually. Use CDFsetzVarSeqPos
method to set the current sequential value.

The arguments to CDFgetzVarSeqPos are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.
recNum The zVariable record number.
indices The dimension indices. Each element of indices receives the corresponding dimension

index. For O-dimensional zVariable, this argument is ignored, but must be presented.

4.3.62.1. Example(s)

The following example returns the location for the current sequential value (position), the record number and indices
within it, from a 2-dimensional zVariable named MY VAR in a CDF.

dim id as long ¢ CDF identifier.
Dim recNum as integer ¢ The record number.
Dim indices() as integer ¢ The indices.

Dim status as integer.
try

“s.t.atus = CDFgetzVarSeqPos (id, CDFgetVarNum (id, “MY_VAR”), recNum, indices)
;:'.';1tch ex as Exception

end try

4.3.63 CDFgetzVarsMaxWrittenRecNum

128

integer CDFgetzVarsMaxWrittenRecNum(‘¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.
recNum as integer) ‘¢ out -- Maximum record number.

CDFgetzVarsMaxWrittenRecNum returns the maximum record number among all of the zVariables in a CDF. Note
that this is not the number of written records but rather the maximum written record number (that is one less than the
number of records). A value of negative one (-1) indicates that zVariables contain no records. The maximum record
number for an individual zVariable may be acquired using the CDFgetzVarMax WrittenRecNum method call.

Suppose there are three zVariables in a CDF:Varl, Var2, and Var3. If Varl contains 15 records, Var2 contains 10
records, and Var3 contains 95 records, then the value returned from CDFgetzVarsMaxWrittenRecNum would be 95.

The arguments to CDFgetzVarsMaxWrittenRecNum are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

recNum The maximum written record number.

4.3.63.1. Example(s)

The following example returns the maximum record number for all of the zVariables in a CDF.

dim id as long ¢ CDF identifier.
Dim recNum as integer ¢ The maximum record number.
dim status as integer

try
status = CDFgetzVarsMaxWrittenRecNum (id, recNum)

catch ex as Exception

end try

4.3.64 CDFgetzVarSparseRecords

integer CDFgetzVarSparseRecords(out -- Completion status code.
id as long, ¢ in-- CDF identifier.

varNum as integer, in -- The variable number.
sRecordsType as integer) out -- The sparse records type.

CDFgetzVarSparseRecords returns the sparse records type of the zVariable in a CDF. Refer to Section 2.12.1 for the
description of sparse records.

129

The arguments to CDFgetzVarSparseRecords are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The variable number.

sRecordsType The sparse records type.

4.3.64.1. Example(s)

The following example returns the sparse records type of the zVariable “MY_VAR” in a CDF.

dim id as long
Dim sRecordsType as integer
dim status as integer

try

¢ CDF identifier.
¢ The sparse records type.

status = CDFgetzVarSparseRecords (id, CDFgetVarNum (id, “MY_VAR?”), sRecordsType) ...

catch ex as Exception

end try

4.3.65 CDFhyperGetrVarData

integer CDFhyperGetrVarData(¢ out -- Completion status code.

id as long, ¢ in-- CDF identifier.

varNum as integer, ¢ in -- rVariable number.

recStart as integer, ¢ in -- Starting record number.

recCount as integer, ¢ in -- Number of records.

recInterval as integer, ‘ in -- Reading interval between records.

o

indices as integer(), in --

Dimension indices of starting value.

counts as integer(), ¢ in -- Number of values along each dimension.
intervals as integer(), ¢ in -- Reading intervals along each dimension.
buffer as TYPE) ‘ out -- Buffer of values.

TYPE -- VB value/string type (likely an array)

or object

CDFhyperGetrVarData is used to read one or more values for the specified rVariable. It is important to know the
variable majority of the CDF before using this method because the values placed into the data buffer will be in that
majority. CDFinquireCDF can be used to determine the default variable majority of a CDF distribution. The Concepts

chapter in the CDF User's Guide describes the variable majorities.

130

The record number starts at 0, not 1. For example, if you want to read the first 5 records, the starting record number
(recStart), the number of records to read (recCount), and the record interval (recInterval) should be 0, 5, and 1,
respectively. Note: you need to provide dummy arrays, with at least one (1) element, for indices, counts and intervals
for scalar variables.

The arguments to CDFhyperGetrVarData are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number from which to read data. This number may be determined with a call to
CDFgetVarNum.

recStart The record number at which to start reading.

recCount The number of records to read.

recInterval The reading interval between records (e.g., an interval of 2 means read every other record).

indices The dimension indices (within each record) at which to start reading. Each element of indices

specifies the corresponding dimension index. For 0-dimensional rVariable, this argument is
ignored (but must be present).

counts The number of values along each dimension to read. Each element of counts specifies the
corresponding dimension count. For 0-dimensional rVariable, this argument is ignored (but must
be present).

intervals For each dimension, the dimension interval between reading (e.g., an interval of 2 means read
every other value). Each element of intervals specifies the corresponding dimension interval.
For 0-dimensional rVariable, this argument is ignored (but must be present).

buffer The data holding buffer for the read values. The majority of the values in this buffer will be the
same as that of the CDF. This buffer must be large to hold the values. CDFinquirerVar can be
used to determine the rVariable's data type and number of elements (of that data type) at each
value. If a dimensional array of strings is expected, then use object type.

4.3.65.1. Example(s)

The following example will read 3 records of data, starting at record number 13 (14 record), from a rVariable named
Temperature The variable is a 3-dimensional array with sizes (180,91,10) and the CDF’s variable majority is
ROW_MAJOR. The record variance is VARY, the dimension variances are (VARY,VARY,VARY), and the data type
is CDF REAL4. This example is similar to the CDFgetrVarData example except that it uses a single call to
CDFhyperGetrVarData (rather than numerous calls to. CDFgetrVarData).

dim id as long ¢ CDF identifier.

Dim status as integer Returned status code.

Dim tmp(,,,) as single Temperature values.

Dim varN as integer rVariable number.

Dim recStart as integer = 13 Start record number.

Dim recCount as integer = 3 Number of records to read

Dim reclnterval as integer = 1 Record interval — read every record

131

Dim indices() as integer = {0,0,0} ¢ Dimension indices.

Dim counts() as integer = {180,91,10} ¢ Dimension counts.
Dim intervals() as integer = {1,1,1} ¢ Dimension intervals — read all
try
status = CDFhyperGetrVarData (id, varN, recStart, recCount, recInterval, indices, counts, intervals,
tmp)

catch ex as Exception

end try
Note that if the CDF's variable majority had been COLUMN_ MAJOR, the tmp array would have been declared float
tmp(10,91,180,3) for proper indexing.

4.3.66 CDFhyperGetzVarData

integer CDFhyperGetzVarData(¢ out -- Completion status code.

id as long, ¢ in-- CDF identifier.

varNum as integer, in -- zVariable number.

recStart as integer, in -- Starting record number.

recCount as integer, in -- Number of records.

recInterval as integer, in -- Reading interval between records.
indices as integer(), in -- Dimension indices of starting value.

counts as integer(), ¢ in -- Number of values along each dimension.
intervals as integer(), ¢ in -- Reading intervals along each dimension.
buffer as TYPE) ‘ out -- Buffer of values.
* TYPE -- VB value/string type (likely an array)
¢ or object.

CDFhyperGetzVarData is used to read one or more values for the specified zVariable. It is important to know the
variable majority of the CDF before using this method because the values placed into the data buffer will be in that
majority. CDFinquireCDF can be used to determine the default variable majority of a CDF distribution. The Concepts
chapter in the CDF User's Guide describes the variable majorities.

The record number starts at 0, not 1. For example, if you want to read the first 5 records, the starting record number
(recStart), the number of records to read (recCount), and the record interval (recInterval) should be 0, 5, and 1,
respectively. Note: you need to provide dummy arrays, with at least one (1) element, for indices, counts and intervals
for scalar variables.

The arguments to CDFhyperGetzVarData are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number from which to read data. This number may be determined with a call to
CDFgetVarNum.
recStart The record number at which to start reading.

132

recCount

recInterval

indices

counts

intervals

buffer

The number of records to read.
The reading interval between records (e.g., an interval of 2 means read every other record).

The dimension indices (within each record) at which to start reading. Each element of indices
specifies the corresponding dimension index. For 0-dimensional zVariable, this argument is
ignored (but must be present).

The number of values along each dimension to read. Each element of counts specifies the
corresponding dimension count. For 0-dimensional zVariable, this argument is ignored (but
must be present).

For each dimension, the dimension interval between reading (e.g., an interval of 2 means read
every other value). Each element of intervals specifies the corresponding dimension interval.
For 0-dimensional zVariable, this argument is ignored (but must be present).

The data holding buffer for the read values. The majority of the values in this buffer will be the
same as that of the CDF. This buffer must be large to hold the values. CDFinquirezVar can be
used to determine the zVariable's data type and number of elements (of that data type) at each
value. If a dimensional array of strings is expected, then use object type.

4.3.66.1. Example(s)

The following example will read 3 records of data, starting at record number 13 (14" record), from a zVariable named
Temperature The variable is a 3-dimensional array with sizes (180,91,10) and the CDF’s variable majority is
ROW_MAIJOR. The record variance is VARY, the dimension variances are {VARY,VARY,VARY}, and the data
type is CDF_REAL4. This example is similar to the CDFgetzVarData example except that it uses a single call to
CDFhyperGetzVarData (rather than numerous calls to. CDFgetzVarData).

dim id as long

Dim status as integer

Dim tmp(,,,) as single

Dim varN as integer

Dim recStart as integer = 13
Dim recCount as integer = 3
Dim reclnterval as integer = 1
Dim indices() as integer = {0,0,0}

¢ CDF identifier.

Returned status code.

Temperature values.

zVariable number.

Start record number.

Number of records to read

Record interval — read every record
Dimension indices.

Dim counts() as integer = {180,91,10} ¢ Dimension counts.

Dim intervals() as integer = {1,1,1}

try

Dimension intervals — read all

varN = CDFgetVarNum (id, "Temperature")

status = CDFhyperGetzVarData (id, varN, recStart, recCount, recInterval, indices, counts, intervals,

tmp)

catch ex as Exception

133

end try

Note that if the CDF's variable majority had been COLUMN_ MAJOR, the tmp array would have been declared float
tmp(10,91,180,3) for proper indexing.

4.3.67 CDFhyperPutrVarData

integer CDFhyperPutrVarData(¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.

varNum as integer, ¢ in -- rVariable number.
recStart as integer, ¢ in -- Starting record number.

in -- Number of records.

in -- Writing interval between records.

indices as integer(), in -- Dimension indices of starting value.

counts as integer(), in -- Number of values along each dimension.

intervals as integer(), in -- Writing intervals along each dimension.
g g g

buffer as TYPE) ¢ in -- Buffer of values.

TYPE -- VB value/string type (likely an array)

recCount as integer,
recInterval as integer,

CDFhyperPutrVarData is used to write one or more values from the data holding buffer to the specified rVariable. It is
important to know the variable majority of the CDF before using this method because the values in the data buffer will
be written using that majority. CDFinquireCDF can be used to determine the default variable majority of a CDF
distribution. The Concepts chapter in the CDF User's Guide describes the variable majorities.

The record number starts at 0, not 1. For example, if you want to write 2 records (10" and 11" record), the starting
record number (recStart), the number of records to write (recCount), and the record interval (recInterval) should be 9, 2,
and 1, respectively. Note: you need to provide dummy arrays, with at least one (1) element, for indices, counts and
intervals for scalar variables.

The arguments to CDFhyperPutrVarData are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number to which write data. This number may be determined with a call to
CDFgetVarNum.

recStart The record number at which to start writing.

recCount The number of records to write.

reclnterval The interval between records for writing (e.g., an interval of 2 means write every other record).

indices The indices (within each record) at which to start writing. Each element of indices specifies the

corresponding dimension index. For 0-dimensional rVariable this argument is ignored (but must
be present).

counts The number of values along each dimension to write. Each element of counts specifies the

corresponding dimension count. For 0-dimensional rVariable this argument is ignored (but must
be present).

134

intervals For each dimension, the interval between values for writing (e.g., an interval of 2 means write
every other value). Each element of intervals specifies the corresponding dimension interval.
For 0-dimensional rVariable this argument is ignored (but must be present).

buffer The data holding buffer of values to write. The majority of the values in this buffer must be the
same as that of the CDF. The values starting at memory address buffer are written to the CDF.

4.3.67.1. Example(s)

The following example writes 2 records to a rVariable named LATITUDE that is a 1-dimensional array with dimension
sizes (181). The dimension variances are {VARY}, and the data type is CDF INT2. This example is similar to the
CDFputrVarData example except that it uses a single call to CDFhyperPutrVarData rather than numerous calls to
CDFputrVarData.

dim id as long ¢ CDF identifier.

Dim status as integer Returned status code.
Dim i as integer, j as integer Latitude value.

Dim lats(2,181) as short ¢ Buffer of latitude values.
Dim varN as integer rVariable number.
Dim recStart as integer = 0 Record number.

Dim recCount as integer = 2 Record counts.

Dim reclnterval as integer = 1 Record interval.

Dim indices() as integer = {0} Dimension indices.
Dim counts() as integer = {181} Dimension counts.
Dim intervals() as integer = {1} Dimension intervals.

try
varN = CDFgetVarNum (id, "LATITUDE")
fori=0 tol
forj=-90 to 90
lats(i,90+1at) = Ctype(j, short)
next j
next i

...status = CDFhyperPutrVarData (id, varN, recStart, recCount, recInterval, indices, counts, intervals, lats)

catch ex as Exception

end try

4.3.68 CDFhyperPutzVarData

integer CDFhyperPutzVarData(¢ out -- Completion status code.

135

id as long,

varNum as integer,
recStart as integer,
recCount as integer,
recInterval as integer,
indices as integer(),
counts as integer(),
intervals as integer(),
buffer as TYPE)

¢ in-- CDF identifier.

in -- zVariable number.
¢ in -- Starting record number.

in -- Number of records.

in -- Writing interval between records.

in -- Dimension indices of starting value.

in -- Number of values along each dimension.
in -- Writing intervals along each dimension.

in -- Buffer of values.

TYPE -- VB value/string type (likely an array).

CDFhyperPutzVarData is used to write one or more values from the data holding buffer to the specified zVariable. It is
important to know the variable majority of the CDF before using this method because the values in the data buffer will
be written using that majority. CDFinquireCDF can be used to determine the default variable majority of a CDF
distribution. The Concepts chapter in the CDF User's Guide describes the variable majorities.

The record number starts at 0, not 1. For example, if you want to write 2 records (10" and 11" record), the starting
record number (recStart), the number of records to write (recCount), and the record interval (recInterval) should be 9, 2,
and 1, respectively. Note: you need to provide dummy arrays, with at least one (1) element, for indices, counts and
intervals for scalar variables.

The arguments to CDFhyperPutzVarData are defined as follows:

id

varNum

recStart

recCount

recInterval

indices

counts

intervals

buffer

The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

The zVariable number to which write data. This number may be determined with a call to
CDFgetVarNum.

The record number at which to start writing.

The number of records to write.

The interval between records for writing (e.g., an interval of 2 means write every other record).
The indices (within each record) at which to start writing. Each element of indices specifies the
corresponding dimension index. For O-dimensional zVariable this argument is ignored (but must
be present).

The number of values along each dimension to write. Each element of counts specifies the
corresponding dimension count. For O-dimensional zVariable this argument is ignored (but must
be present).

For each dimension, the interval between values for writing (e.g., an interval of 2 means write
every other value). Each element of intervals specifies the corresponding dimension interval.

For 0-dimensional zVariable this argument is ignored (but must be present).

The data holding buffer of values to write. The majority of the values in this buffer must be the
same as that of the CDF. The values starting at memory address buffer are written to the CDF.

4.3.68.1. Example(s)

136

The following example writes 2 records to a zVariable named LATITUDE that is a l-dimensional array with
dimension sizes (181). The dimension variances are {VARY}, and the data type is CDF _INT2. This example is
similar to the CDFputzVarData example except that it uses a single call to CDFhyperPutzVarData rather than

numerous calls to CDFputzVarData.

dim id as long

Dim status as integer

Dim i as integer, j as integer
Dim lats(2,181) as short

Dim varN as integer

Dim recStart as integer = 0
Dim recCount as integer = 2
Dim reclnterval as integer = 1
Dim indices() as integer = {0}
Dim counts() as integer = {181}
Dim intervals() as integer = {1}

try

varN = CDFgetVarNum (id, "LATITUDE")

fori=0 to 1
forj= -90 to 90

lats(i,90+1at) = Ctype(j, short)

next j
next i

¢ CDF identifier.
Returned status code.
Latitude value.
Buffer of latitude wvalues.
zVariable number.
Record number.
Record counts.
Record interval.
Dimension indices.
Dimension counts.
Dimension intervals.

...status = CDFhyperPutzVarData (id, varN, recStart, recCount, recInterval, indices, counts, intervals, lats)

catch ex as Exception

end try

4.3.69 CDFinquirerVar

integer CDFinquirezVar(
id as long,

varNum as integer,
varName as string,
dataType as integer,
numElements as integer,
numDims as integer,
dimSizes as integer(),
recVariance as integer,
dimVariances as integer())

137

out -- Completion status code.

in -- CDF identifier.

in -- rVariable number.

out -- rVariable name.

out -- Data type.

out -- Number of elements (of the data type).
out -- Number of dimensions.

out -- Dimension sizes

out -- Record variance.

out -- Dimension variances.

CDFinquirerVar is used to inquire about the specified rVariable. This method would normally be used before reading
rVariable values (with CDFgetrVarData or CDFhyperGetrVarData) to determine the data type and number of elements

of that data type.

The arguments to CDFinquirezVar are defined as follows:

id

varNum

varName
dataType

numElements

numDims

dimSizes

recVariance

dimVariances

4.3.69.1. Example(s)

The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

The number of the rVariable to inquire. This number may be determined with a call to
CDFgetVarNum (see Section 4.3.41).

The rVariable's name.

The data type of the rVariable. The data types are defined in Section 2.6.

The number of elements of the data type at each rVariable value. For character data types
(CDF_CHAR and CDF _UCHAR), this is the number of characters in the string. (Each
value consists of the entire string.) For all other data types, this will always be one (1) -
multiple elements at each value are not allowed for non-character data types.

The number of dimensions.

The dimension sizes. It is a 1-dimensional array, containing one element per dimension.
Each element of dimSizes receives the corresponding dimension size. For 0-dimensional
zVariables this argument is ignored (but must be present).

The record variance. The record variances are defined in Section 2.10.

The dimension variances. Each element of dimVariances receives the corresponding

dimension variance. The dimension variances are described in Section 2.10. For 0-
dimensional zVariables this argument is ignored (but a placeholder is necessary).

The following example returns information about a rVariable named HEAT FLUX in a CDF.

dim id as long

Dim status as integer

Dim varName as string
Dim dataType as integer
Dim numElems as integer
Dim recVary as integer
Dim numDims as integer
Dim dimSizes() as integer
Dim dimVarys() as integer

try

¢ CDF identifier.

Returned status code.

rVariable name.

Data type of the rVariable.
Number of elements (of data type).
Record variance.

Number of dimensions.

Dimension sizes

Dimension variances

138

status = CDFinquirerVar(id, CDFgetVarNum (id,"HEAT FLUX"), varName, dataType,
numElems, numDims, dimSizes, recVary, dimVarys)

catch ex as Exception

end try

4.3.70 CDFinquirezVar

integer CDFinquirezVar(
id as long,

varNum as integer,
varName as string,
dataType as integer,
numElements as integer,
numDims as integer,
dimSizes as integer(),
recVariance as integer,
dimVariances as integer())

out --

Completion status code.

in -- CDF identifier.
in -- zVariable number.

out -- zVariable name.

out -- Data type.

out -- Number of elements (of the data type).
out -- Number of dimensions.

out -- Dimension sizes

out -- Record variance.

out -- Dimension variances.

CDFinquirezVar is used to inquire about the specified zVariable. This method would normally be used before reading
zVariable values (with CDFgetzVarData or CDFhyperGetzVarData) to determine the data type and number of elements

of that data type.

The arguments to CDFinquirezVar are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to

varNum

varName
dataType

numElements

numDims

dimSizes

recVariance

CDFcreate (or CDFcreateCDF) or CDFopenCDF.

The number of the zVariable to inquire. This number may be determined with a call to
CDFgetVarNum (see Section 4.3.41).

The zVariable's name.

The data type of the zVariable. The data types are defined in Section 2.6.

The number of elements of the data type at each zVariable value. For character data types
(CDF_CHAR and CDF _UCHAR), this is the number of characters in the string. (Each
value consists of the entire string.) For all other data types, this will always be one (1) -
multiple elements at each value are not allowed for non-character data types.

The number of dimensions.

The dimension sizes. It is a 1-dimensional array, containing one element per dimension.
Each element of dimSizes receives the corresponding dimension size. For 0-dimensional

zVariables this argument is ignored (but must be present).

The record variance. The record variances are defined in Section 2.10.

139

dimVariances The dimension variances.
dimension variance.

4.3.70.1. Example(s)

Each element of dimVariances receives the corresponding

The dimension variances are described in Section 2.10. For 0-
dimensional zVariables this argument is ignored (but a placeholder is necessary).

The following example returns information about an zVariable named HEAT FLUX in a CDF.

dim id as long

Dim status as integer

Dim varName as string
Dim dataType as integer
Dim numElems as integer
Dim recVary as integer
Dim numDims as integer
Dim dimSizes() as integer
Dim dimVarys() as integer

try

CDF identifier.

Returned status code.

zVariable name.

Data type of the zVariable.
Number of elements (of data type).
Record variance.

Number of dimensions.

Dimension sizes

Dimension variances

status = CDFinquirezVar(id, CDFgetVarNum (id,"HEAT FLUX"), varName, dataType,
numElems, numDims, dimSizes, recVary, dimVarys)

catch ex as Exception

end try

4.3.71 CDFputrVarData

integer CDFputrVarData(
id as long,

varNum as integer,
recNum as integer,
indices as integer(),
value as TYPE)

out -- Completion status code.
in -- CDF identifier.

in -- Variable number.

in -- Record number.

in -- Dimension indices.

in -- Data value.

TYPE -- VB value/string type

CDFputrVarData writes a single data value to the specified index, the location of the element, in the given record of the

specified rVariable in a CDF.

The arguments to CDFputrVarData are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

140

varNum The rVariable number.

recNum The record number.
indices The dimension indices within the record.
value The data value.

4.3.71.1. Example(s)

The following example will write two data values, the first and the fifth element, in Record 0 from rVariable
“MY_VAR?”, a 2-dimensional (2 by 3), CDF _DOUBLE type variable, in a row-major CDF. The first put operation
passes the pointer of the data value, while the second operation passes the data value as an object.

dim id as long ¢ CDF identifier.

Dim varNum as integer ¢ rVariable number.
Dim recNum as integer The record number.
Dim indices(2) as integer The dimension indices.
Dim valuel as double, value2 as double The data values.

Dim status as integer.

3
3

3

try
varNum = CDFgetVarNum (id, “MY_VAR”)
recNum = 0
indices(0) =0
indices(1) =0
valuel = 10.1
status = CDFputrVarData (id, varNum, recNum, indices, valuel)
indices(0) = 1
indices(1) =1
value2 =20.2
status = CDFputrVarData (id, varNum, recNum, indices, value2)

catch ex as Exception

end try

4.3.72 CDFputrVarPadValue

integer CDFputrVarPadValue(¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.
varNum as integer, ¢ in -- Variable number.
value as TYPE) ¢ in -- Pad value.
‘ TYPE — VB value/string type

141

CDFputrVarPadValue specifies the pad value for the specified rVariable in a CDF. A rVariable's pad value may be
specified (or respecified) at any time without affecting already written values (including where pad values were used).
The Concepts chapter in the CDF User's Guide describes variable pad values.

The arguments to CDFputrVarPadValue are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number.

value The pad value.

4.3.72.1. Example(s)

The following example sets the pad value to —9999 for rVariable “MY_VAR”, a CDF INT4 type variable, and
cxdRxE” for another rVariable “MY_VAR2”, a CDF_CHAR type with a number of elements of five (5), in a CDF.

dim id as long ¢ CDF identifier.

Dim padValuel as integer = -9999 ¢ An integer pad value.
Dim padValue2 as string = “###**> ¢ A string pad value. °
try

status = CDFputrVarPadValue (id, CDFgetVarNum (id, “MY_VAR?”), padValuel)

status = CDFputrVarPadValue (id, CDFgetVarNum (id, “MY_VAR2”), padValue2)

catch ex as Exception

end try

4.3.73 CDFputrVarRecordData

integer CDFputrVarRecordData(¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.

varNum as integer, in -- Variable number.
recNum as integer, in -- Record number.

buffer as TYPE) ¢ in -- Record data.
¢ TYPE -- VB value/string type (likely an
¢ array)

142

CDFputrVarRecordData writes an entire record at a given record number for the specified rVariable in a CDF. The
buffer should hold the entire data values for the variable. The data values in the buffer should be in the order that
corresponds to the variable majority defined for the CDF.

The arguments to CDFputrVarRecordData are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number.
recNum The record number.
buffer The buffer holding the entire record values.

4.3.73.1. Example(s)

The following example will write one full record (numbered 2) from rVariable “MY_VAR”, a 2-dimension (2 by 3),
CDF_INT4 type variable, in a CDF. The variable’s dimension variances are all VARY.

dim id as long ¢ CDF identifier.

Dim varNum as integer ¢ rVariable number.

Dim buffer(2,3) as integer = {{1,2,3},{4,5,6}} ¢ The data holding buffer.
try

varNum = CDFvarNum (id,”"MY_VAR?”)
status = CDFputrVarRecordData (id, varNum, 2, buffer)
catch ex as Exception

end try

4.3.74 CDFputrVarSeqData

integer CDFputrVarSeqData(‘¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.
varNum as integer, in -- Variable number.
value as TYPE) ¢ in -- Data value.
* TYPE -- VB value/string type

143

CDFputrVarSeqData writes one value to the specified rVariable in a CDF at the current sequential value (position) for
that variable. After the write, the current sequential value is automatically incremented to the next value. Use
CDFsetrVarSeqPos method to set the current sequential value (position).

The arguments to CDFputrVarSeqData are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number.

value The buffer holding the data value.

4.3.74.1. Example(s)

The following example will write two data values starting at record number 2 from a 2-dimensional rVariable whose
data type is CDF _INT4. The first write will pass in a pointer from the data value, while the second write will pass in
the data value object directly.

dim id as long ¢ CDF identifier.

Dim varNum as integer ¢ The variable number.
Dim valuel as integer, value2 as integer The data value.

Dim indices(2) as integer The indices in a record.
Dim recNum as integer The record number.
dim status as integer

3
3

3

recNum = 2
indices(0) = 1
indices(1) =2

try
valuel = 10
value2 = -20.

status = CDFsetrVarSeqPos (id, varNum, recNum, indices)
status = CDFputrVarSeqData (id, varNum, valuel)
status = CDFputrVarSeqData (id, varNum, value2)

catch ex as Exception

end try

4.3.75 CDFputzVarData

integer CDFputzVarData(‘¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.

varNum as integer, in -- Variable number.
recNum as integer, in -- Record number.

144

3

indices as integer(), in -- Dimension indices.
value as TYPE) ¢ in -- Data value.
¢ TYPE -- VB value/string type

CDFputzVarData writes a single data value to the specified index, the location of the element, in the given record of the
specified zVariable in a CDF.
The arguments to CDFputzVarData are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

recNum The record number.

indices The dimension indices within the record.
value The data value.

4.3.75.1. Example(s)

The following example will write two data values, the first and the fifth element, in Record 0 from zVariable
“MY_VAR?”, a 2-dimensional (2 by 3), CDF _DOUBLE type variable, in a row-major CDF. The first put operation
passes the pointer of the data value, while the second operation passes the data value as an object.

dim id as long ¢ CDF identifier.

dim varNum as integer ¢ zVariable number.

dim recNum as integer The record number.
Dim indices(2) as integer The dimension indices.
Dim valuel as double, value2 as double The data values.

Dim status as integer.

3
3

3

try
varNum = CDFgetVarNum (id, “MY_VAR”)
recNum = 0
indices(0) =0
indices(1) =0
valuel =10.1
status = CDFputzVarData (id, varNum, recNum, indices, valuel)
indices(0) = 1
indices(1) =1
value2 =20.2
status = CDFputzVarData (id, varNum, recNum, indices, value2)

catch ex as Exception

145

end try

4.3.76 CDFputzVarPadValue

integer CDFputzVarPadValue(¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.
varNum as integer, in -- Variable number.
value as TYPE) ¢ in -- Pad value.
* TYPE -- VB value/string type

CDFputzVarPadValue specifies the pad value for the specified zVariable in a CDF. A zVariable's pad value may be
specified (or respecified) at any time without affecting already written values (including where pad values were used).
The Concepts chapter in the CDF User's Guide describes variable pad values.

The arguments to CDFputzVarPadValue are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

value The pad value.

4.3.76.1. Example(s)

The following example sets the pad value to —9999 for zVariable “MY_VAR”, a CDF_INT4 type variable, and
cxdrxE> for another zVariable “MY_ VAR2”, a CDF_CHAR type with a number of elements of five (5), in a CDF.

dim id as long ¢ CDF identifier.
dim padValuel as integer = -9999 ¢ An integer pad value.
Dim padValue?2 as string = “##*#**> ‘¢ A string pad value. °

Dim status as integer.
try
status = CDFputzVarPadValue (id, CDFgetVarNum (id, “MY_VAR”), padValuel)

status = CDFputzVarPadValue (id, CDFgetVarNum (id, “MY_VAR2”), padValue2)

catch ex as Exception

end try

146

4.3.77 CDFputzVarRecordData

integer CDFputzVarRecordData(¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.

varNum as integer, in -- Variable number.
recNum as integer, in -- Record number.

buffer as TYPE) ¢ in -- Record data.
¢ TYPE -- VB value/string type (likely an
¢ array)

CDFputzVarRecordData writes an entire record at a given record number for the specified zVariable in a CDF. The
buffer should hold the entire data values for the variable. The data values in the buffer should be in the order that
corresponds to the variable majority defined for the CDF.

The arguments to CDFputzVarRecordData are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.
recNum The record number.
buffer The buffer holding the entire record values.

4.3.77.1. Example(s)

The following example will write one full record (numbered 2) from zVariable “MY_VAR?”, a 2-dimension (2 by 3),
CDF_INT4 type variable, in a CDF. The variable’s dimension variances are all VARY.

dim id as long ¢ CDF identifier.

dim varNum as integer ¢ zVariable number.

Dim buffer(,)as integer = {{1,2,3},{4,5,6}} ¢ The data holding buffer.
Dim status as integer

try

varNum = CDFvarNum (id,”"MY_VAR?”)

status = CDFputzVarRecordData (id, varNum, 2, buffer)
catch ex as Exception

end try

147

4.3.78 CDFputzVarSeqData

integer CDFputzVarSeqData(¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.
varNum as integer, in -- Variable number.
value as TYPE) ¢ in -- Data value.
¢ TYPE -- VB value/string type

CDFputzVarSeqData writes one value to the specified zVariable in a CDF at the current sequential value (position) for
that variable. After the write, the current sequential value is automatically incremented to the next value. Use
CDFsetzVarSeqPos method to set the current sequential value (position).

The arguments to CDFputzVarSeqData are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

value The buffer holding the data value.

4.3.78.1. Example(s)

The following example will write two data values starting at record number 2 from a 2-dimensional zVariable whose
data type is CDF _INT4. The first write will pass in a pointer from the data value, while the second write will pass in
the data value object directly.

dim id as long ¢ CDF identifier.

dim varNum as integer ¢ The variable number.
dim valuel as integer, value2 as integer The data value.

Dim indices(2) as integer The indices in a record.
dim recNum as integer The record number.
Dim status as integer

3
3

3

recNum = 2
indices(0) = 1
indices(1) =2

try
valuel =10
value2 = -20.

status = CDFsetzVarSeqPos (id, varNum, recNum, indices)
status = CDFputzVarSeqData (id, varNum, valuel)
status = CDFputzVarSeqData (id, varNum, value2)

catch ex as Exception

end try

148

4.3.79 CDFrenamerVar

integer CDFrenamerVar(out -- Completion status code.
id as long, ¢ in-- CDF identifier.

varNum as integer, in -- rVariable number.
varName as string) in -- New name.

CDFrenamerVar is used to rename an existing rVariable. A variable (rVariable or zVariable) with the same name must
not already exist in the CDF.
The arguments to CDFrenamerVar are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum The number of the rVariable to rename. This number may be determined with a call to
CDFgetVarNum.
varName The new rVariable name. This may be at most CDF VAR NAME LEN256 characters.

Variable names are case-sensitive.

4.3.79.1. Example(s)

In the following example the rVariable named TEMPERATURE is renamed to TMP (if it exists). Note that if
CDFgetVarNum returns a value less than zero (0) then that value is not an rVariable number but rather an error code.

dim id as long ¢ CDF identifier.
dim status as integer ¢ Returned status code.
dim varNum as integer ¢ zVariable number.
try

varNum = CDFgetVarNum (id, "TEMPERATURE")

status = CDFrenamerVar (id, varNum, "TMP")

catch ex as Exception

end try

149

4.3.80 CDFrenamezVar

integer CDFrenamezVar(out -- Completion status code.
id as long, ¢ in-- CDF identifier.

varNum as integer, in -- zVariable number.
varName as string) in -- New name.

CDFrenamezVar is used to rename an existing zVariable. A variable (rVariable or zVariable) with the same name
must not already exist in the CDF.
The arguments to CDFrenamezVar are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum The number of the zVariable to rename. This number may be determined with a call to
CDFgetVarNum.
varName The new zVariable name. This may be at most CDF VAR NAME LEN256 characters.

Variable names are case-sensitive.

4.3.80.1. Example(s)

In the following example the zVariable named TEMPERATURE is renamed to TMP (if it exists). Note that if
CDFgetVarNum returns a value less than zero (0) then that value is not an zVariable number but rather an error code.

dim id as long ¢ CDF identifier.
dim status as integer ¢ Returned status code.
dim varNum as integer ¢ zVariable number.

try
varNum = CDFgetVarNum (id, "TEMPERATURE")
status = CDFrenamezVar (id, varNum, "TMP")

catch ex as Exception

end try

4.3.81 CDFsetrVarAllocBlockRecords

integer CDFsetrVarAllocBlockRecords(¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.

150

3

in -- Variable number.
in -- First record number.
in -- Last record number.

varNum as integer,
firstRec as integer,
lastRec as integer)

3

3

CDFsetrVarAllocBlockRecords specifies a range of records to be allocated (not written) for the specified rVariable in a
CDF. This operation is only applicable to uncompressed rVariable in single-file CDFs. Refer to the CDF User’s Guide
for the descriptions of allocating variable records.

The arguments to CDFsetrVarAllocBlockRecords are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number.
firstRec The first record number to allocate.
lastRec The last record number to allocate.

4.3.81.1. Example(s)

The following example allocates 10 records, from record numbered 10 to 19, for rVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
dim firstRec as integer, lastRec as integer ¢ The first/last record numbers.
Dim status as integer.

firstRec = 10
lastRec = 19

try

status = CDFsetrVarAllocBlockRecords (id, CDFgetVarNum (id, “MY_VAR?), firstRec, lastRec)

catch ex as Exception

end try

4.3.82 CDFsetrVarAllocRecords

integer CDFsetrVarAllocRecords(¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.

varNum as integer, in -- Variable number.
numRecs as integer) in -- Number of records.

151

CDFsetrVarAllocRecords specifies a number of records to be allocated (not written) for the specified rVariable in a
CDF. The records are allocated beginning at record number zero (0). This operation is only applicable to uncompressed
rVariable in single-file CDFs. Refer to the CDF User’s Guide for the descriptions of allocating variable records.

The arguments to CDFsetrVarAllocRecords are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number.

numRecs The number of records to allocate.

4.3.82.1. Example(s)

The following example allocates 100 records, from record numbered 0 to 99, for rVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
dim numRecs as integer ¢ The number of records.
dim status as integer

numRecs = 100
try

status = CDFsetrVarAllocRecords (id, CDFgetVarNum (id, “MY_VAR”), numRecs)

catch ex as Exception

end try

4.3.83 CDFsetrVarBlockingFactor

integer CDFsetrVarBlockingFactor(out -- Completion status code.
id as long, ¢ in-- CDF identifier.

varNum as integer, in -- Variable number.

bf as integer) in -- Blocking factor.

CDFsetrVarBlockingFactor specifies the blocking factor (number of records allocated) for the specified rVariable in a
CDF. Refer to the CDF User’s Guide for a description of the blocking factor.
The arguments to CDFsetrVarBlockingFactor are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

152

varNum The rVariable number.

bf The blocking factor. A value of zero (0) indicates that the default blocking factor is being
used.

4.3.83.1. Example(s)

The following example sets the blocking factor to 100 records for rVariable “MY VAR” in a CDF.

dim id as long ¢ CDF identifier.
Dim bf as integer ¢ The blocking factor.
dim status as integer

bf =100
try

status = CDFsetrVarBlockingFactor (id, CDFgetVarNum (id, “MY_VAR?”), bf)

catch ex as Exception

end try

4.3.84 CDFsetrVarCacheSize

integer CDFsetrVarCacheSize(‘¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.

varNum as integer, in -- Variable number.
numBuffers as integer) in -- Number of cache buffers.

CDFsetrVarCacheSize specifies the number of cache buffers being for the rVariable in a CDF. This operation is not
applicable to a single-file CDF. Refer to the CDF User’s Guide for description about caching scheme used by the CDF
library.

The arguments to CDFsetrVarCacheSize are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number.

numBuffers The number of cache buffers.

153

4.3.84.1. Example(s)

The following example sets the number of cache buffers to 10 for rVariable “MY_ VAR” in a CDF.

dim id as long ¢ CDF identifier.
Dim numBuffers as integer ¢ The number of cache buffers.
dim status as integer

numBuffers = 10
try

status = CDFsetrVarCacheSize (id, CDFgetVarNum (id, “MY_VAR?”), numBuffers)

catch ex as Exception

end try

4.3.85 CDFsetrVarCompression

integer CDFsetrVarCompression(out -- Completion status code.
id as long, ¢ in-- CDF identifier.

varNum as integer, in -- Variable number.
compType as integer, in -- Compression type.
cParms as integer()) in -- Compression parameters.

CDFsetrVarCompression specifies the compression type/parameters for the specified rVariable in a CDF. Refer to
Section 2.11 for a description of the CDF supported compression types/parameters.
The arguments to CDFsetrVarCompression are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number.
compType The compression type.
cParms The compression parameters.

4.3.85.1. Example(s)

The following example sets the compression to GZIP.6 for rVariable “MY_VAR” in a CDF.

154

dim id as long ¢ CDF identifier.

Dim compType as integer ¢ The compression type.

Dim cParms(1) as integer ¢ The compression parameters.
dim status as integer

compType = GZIP_ COMPRESSION
cParms(0) = 6
try

status = CDFsetrVarCompression (id, CDFgetVarNum (id, “MY_VAR?”), compType, cParms)

catch ex as Exception

end try

4.3.86 CDFsetrVarDataSpec

integer CDFsetrVarDataSpec(¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.

varNum as integer, in -- Variable number.
dataType as integer) in -- Data type.

CDFsetrVarDataSpec respecifies the data type of the specified rVariable in a CDF. The variable’s data type cannot be
changed if the new data type is not equivalent (type having a different data size) to the old data type and any values
(including the pad value) have been written. Data specifications are considered equivalent if the data types are
equivalent. Refer to the CDF User’s Guide for equivalent data types.

The arguments to CDFsetrVarDataSpec are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number.

dataType The new data type.

4.3.86.1. Example(s)

The following example respecifies the data type to CDF INT2 (from its original CDF UINT2) for rVariable
“MY_VAR” in a CDF.

155

dim id as long ¢ CDF identifier.
Dim dataType as integer ¢ The data type.
Dim status as integer.

dataType = CDF_INT2
try

status = CDFsetrVarDataSpec (id, CDFgetVarNum (id, “MY_VAR?”), dataType)

catch ex as Exception

end try

4.3.87 CDFsetrVarDimVariances

integer CDFsetrVarDimVariances(out -- Completion status code.
id as long, ¢ in-- CDF identifier.

varNum as integer, in -- Variable number.
dimVarys as integer()) in -- Dimension variances.

CDFsetrVarDimVariances respecifies the dimension variances of the specified rVariable in a CDF. For 0-dimensional
rVariable, this operation is not applicable. The dimension variances are described in Section 2.10.
The arguments to CDFsetrVarDimVariances are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number.

dimVarys The dimension variances.

4.3.87.1. Example(s)

The following example resets the dimension variances to true (VARY) and true (VARY) for rVariable “MY_VAR?”, a
2-dimensional variable, in a CDF.

dim id as long ¢ CDF identifier.

dim varNum as integer ¢ rVariable number.

Dim dimVarys() as integer = {VARY, VARY} ¢ The dimension variances.
dim status as integer

try

varNum = CDFgetVarNum (id, “MY_VAR”)

156

status = CDFsetrVarDimVariances (id, varNum, dimVarys)

catch ex as Exception

end try

4.3.88 CDFsetrVarlnitialRecs

integer CDFsetrVarlnitialRecs(‘¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.

varNum as integer, in -- Variable number.
numRecs as integer) in -- Number of records.

CDFsetrVarlnitialRecs specifies a number of records to initially write to the specified rVariable in a CDF. The records
are written beginning at record number 0 (zero). This may be specified only once per rVariable and before any other
records have been written to that rVariable. If a pad value has not yet been specified, the default is used (see the
Concepts chapter in the CDF User’s Guide). If a pad value has been explicitly specified, that value is written to the
records. The Concepts chapter in the CDF User's Guide describes initial records.

The arguments to CDFsetrVarInitialRecs are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number.

numRecs The initially written records.

4.3.88.1. Example(s)

The following example writes the initial 100 records to rVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.

dim varNum as integer ¢ rVariable number.

dim numRecs as integer ¢ The number of records.
Dim status as integer.

try
varNum = CDFgetVarNum (id, “MY_VAR”)

numRecs = 100
status = CDFsetrVarInitialRecs (id, varNum, numRecs)

catch ex as Exception

157

end try

4.3.89 CDFsetrVarRecVariance

integer CDFsetrVarRecVariance(out -- Completion status code.
id as long, ¢ in-- CDF identifier.

varNum as integer, in -- Variable number.
recVary as integer) in -- Record variance.

CDFsetrVarRecVariance specifies the record variance of the specified rVariable in a CDF. The record variances are
described in Section 2.10.
The arguments to CDFsetrVarRecVariance are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number.

recVary The record variance.

4.3.89.1. Example(s)

The following example sets the record variance to VARY (from NOVARY) for rVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
dim recVary as integer ¢ The record variance.
Dim status as integer.

recVary = VARY
try

status = CDFsetrVarRecVariance (id, CDFgetVarNum (id, “MY_VAR?”), recVary)

catch ex as Exception

end try

4.3.90 CDFsetrVarReservePercent

3

integer CDFsetrVarReservePercent(out -- Completion status code.

158

id as long, ¢ in-- CDF identifier.
varNum as integer, ¢ in -- Variable number.
percent as integer) in -- Reserve percentage.

3

CDFsetrVarReservePercent specifies the compression reserve percentage being used for the specified rVariable in a
CDF. This operation only applies to compressed rVariables. Refer to the CDF User’s Guide for a description of the
reserve scheme used by the CDF library.

The arguments to CDFsetrVarReservePercent are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number.

percent The reserve percentage.

4.3.90.1. Example(s)

The following example sets the reserve percentage to 10 for rVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
dim percent as integer ¢ The reserve percentage.
Dim status as integer.

percent = 10
try

status = CDFsetrVarReservePercent (id, CDFgetVarNum (id, “MY_VAR?”), percent)

catch ex as Exception

end try

4.3.91 CDFsetrVarsCacheSize

integer CDFsetrVarsCacheSize(‘¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.
numBuffers as integer) ¢ in -- Number of cache buffers.

CDFsetrVarsCacheSize specifies the number of cache buffers to be used for all of the rVariable files in a CDF. This
operation is not applicable to a single-file CDF. The Concepts chapter in the CDF User's Guide describes the caching
scheme used by the CDF library.

159

The arguments to CDFsetrVarsCacheSize are defined as follows:
id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

numBuffers The number of buffers.

4.3.91.1. Example(s)

The following example sets the number of cache buffers to 10 for all rVariables in a CDF.

dim id as long ¢ CDF identifier.
dim numBuffers as integer ¢ The number of cache buffers.
Dim status as integer.

numBuffers = 10
try

status = CDFsetrVarsCacheSize (id, numBuffers)

catch ex as Exception

end try

4.3.92 CDFsetrVarSeqPos

integer CDFsetrVarSeqPos(‘¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.

varNum as integer, in -- Variable number.

dim recNum as integer, in -- Record number.

indices as integer()) in -- Indices in a record.

CDFsetrVarSeqPos specifies the current sequential value (position) for sequential access for the specified rVariable in
a CDF. Note that a current sequential value is maintained for each rVariable individually. Use CDFgetrVarSeqPos
method to get the current sequential value.

The arguments to CDFsetrVarSeqPos are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number.

recNum The rVariable record number.

160

indices The dimension indices. Each element of indices receives the corresponding dimension
index. For O-dimensional rVariable, this argument is ignored, but must be presented.

4.3.92.1. Example(s)

The following example sets the current sequential value to the first value element in record number 2 for a rVariable, a
2-dimensional variable, in a CDF.

dim id as long ¢ CDF identifier.

Dim varNum as integer ¢ The variable number.
dim recNum as integer The record number.
Dim indices(2) as integer The indices.

3

3

recNum = 2
indices(0) =0
indices(1) =0
try

status = CDFsetrVarSeqPos (id, varNum, recNum, indices)
catch ex as Exception

end try

4.3.93 CDFsetrVarSparseRecords

integer CDFsetrVarSparseRecords(out -- Completion status code.
id as long, ¢ in-- CDF identifier.

varNum as integer, in -- The variable number.
sRecordsType as integer) in -- The sparse records type.

CDFsetrVarSparseRecords specifies the sparse records type of the specified rVariable in a CDF. Refer to Section
2.12.1 for the description of sparse records.
The arguments to CDFsetrVarSparseRecords are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number.

sRecordsType The sparse records type.

161

4.3.93.1. Example(s)

The following example sets the sparse records type to PAD SPARSERECORDS from its original type for rVariable
“MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
dim sRecordsType as integer ¢ The sparse records type.
Dim status as integer.

sRecordsType = PAD SPARSERECORDS

try
status = CDFsetrVarSparseRecords (id, CDFgetVarNum (id, “MY_VAR”), sRecordsType)

catch ex as Exception

end try

4.3.94 CDFsetzVarAllocBlockRecords

integer CDFsetzVarAllocBlockRecords(¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.

varNum as integer, in -- Variable number.
firstRec as integer, in -- First record number.
lastRec as integer) in -- Last record number.

CDFsetzVarAllocBlockRecords specifies a range of records to be allocated (not written) for the specified zVariable in
a CDF. This operation is only applicable to uncompressed zVariable in single-file CDFs. Refer to the CDF User’s
Guide for the descriptions of allocating variable records.

The arguments to CDFsetzVarAllocBlockRecords are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.
firstRec The first record number to allocate.
lastRec The last record number to allocate.

4.3.94.1. Example(s)

The following example allocates 10 records, from record numbered 10 to 19, for zVariable “MY_VAR” in a CDF.

162

dim id as long ¢ CDF identifier.
dim firstRec as integer, lastRec as integer ¢ The first/last record numbers.
dim status as integer

firstRec = 10
lastRec = 19

try

status = CDFsetzVarAllocBlockRecords (id, CDFgetVarNum (id, “MY_VAR?”), firstRec, lastRec)

catch ex as Exception

end try

4.3.95 CDFsetzVarAllocRecords

integer CDFsetzVarAllocRecords(¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.

varNum as integer, in -- Variable number.
numRecs as integer) in -- Number of records.

CDFsetzVarAllocRecords specifies a number of records to be allocated (not written) for the specified zVariable in a
CDF. The records are allocated beginning at record number zero (0). This operation is only applicable to uncompressed
zVariable in single-file CDFs. Refer to the CDF User’s Guide for the descriptions of allocating variable records.

The arguments to CDFsetzVarAllocRecords are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

numRecs The number of records to allocate.

4.3.95.1. Example(s)

The following example allocates 100 records, from record numbered 0 to 99, for zVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
Dim numRecs as integer ¢ The number of records.
Dim status as integer.

163

numRecs = 100
try

status = CDFsetzVarAllocRecords (id, CDFgetVarNum (id, “MY_VAR”), numRecs)

catch ex as Exception

end try

4.3.96 CDFsetzVarBlockingFactor

integer CDFsetzVarBlockingFactor(out -- Completion status code.
id as long, ¢ in-- CDF identifier.

varNum as integer, in -- Variable number.

bf as integer) in -- Blocking factor.

CDFsetzVarBlockingFactor specifies the blocking factor (number of records allocated) for the specified zVariable in a
CDF. Refer to the CDF User’s Guide for a description of the blocking factor.
The arguments to CDFsetzVarBlockingFactor are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.
bf The blocking factor. A value of zero (0) indicates that the default blocking factor is being
used.

4.3.96.1. Example(s)

The following example sets the blocking factor to 100 records for zVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
Dim bf as integer ¢ The blocking factor.
Dim status as integer.

bf=100
try
status = CDFsetzVarBlockingFactor (id, CDFgetVarNum (id, “MY_VAR?”), bf)

catch ex as Exception

164

end try

4.3.97 CDFsetzVarCacheSize

integer CDFsetzVarCacheSize(¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.

varNum as integer, in -- Variable number.
numBuffers as integer) in -- Number of cache buffers.

CDFsetzVarCacheSize specifies the number of cache buffers being for the zVariable in a CDF. This operation is not
applicable to a single-file CDF. Refer to the CDF User’s Guide for description about caching scheme used by the CDF
library.

The arguments to CDFsetzVarCacheSize are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

numBuffers The number of cache buffers.

4.3.97.1. Example(s)

The following example sets the number of cache buffers to 10 for zVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
Dim numBuffers as integer ¢ The number of cache buffers.
Dim status as integer.

numBuffers = 10
try
status = CDFsetzVarCacheSize (id, CDFgetVarNum (id, “MY_VAR”), numBuffers)

catch ex as Exception
end try

4.3.98 CDFsetzVarCompression

165

integer CDFsetzVarCompression(out -- Completion status code.
id as long, ¢ in-- CDF identifier.

varNum as integer, in -- Variable number.
compType as integer, in -- Compression type.
cParms as integer()) in -- Compression parameters.

CDFsetzVarCompression specifies the compression type/parameters for the specified zVariable in a CDF. Refer to
Section 2.11 for a description of the CDF supported compression types/parameters.
The arguments to CDFsetzVarCompression are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.
compType The compression type.
cParms The compression parameters.

4.3.98.1. Example(s)

The following example sets the compression to GZIP.6 for zVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
Dim compType as integer ¢ The compression type.
Dim cParms(1) as integer ¢ The compression parameters.

compType = GZIP_ COMPRESSION
cParms(0) = 6
try

status = CDFsetzVarCompression (id, CDFgetVarNum (id, “MY_VAR?”), compType, cParms)

catch ex as Exception

end try

4.3.99 CDFsetzVarDataSpec

integer CDFsetzVarDataSpec(‘¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.

varNum as integer, in -- Variable number.
dataType as integer) in -- Data type.

166

CDFsetzVarDataSpec respecifies the data type of the specified zVariable in a CDF. The variable’s data type cannot be
changed if the new data type is not equivalent (type having a different data size) to the old data type and any values
(including the pad value) have been written. Data specifications are considered equivalent if the data types are
equivalent. Refer to the CDF User’s Guide for equivalent data types.

The arguments to CDFsetzVarDataSpec are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

dataType The new data type.

4.3.99.1. Example(s)

The following example respecifies the data type to CDF INT2 (from its original CDF UINT2) for zVariable
“MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
Dim dataType as integer ¢ The data type.
Dim status. as integer

dataType = CDF_INT2
try

status = CDFsetzVarDataSpec (id, CDFgetVarNum (id, “MY_VAR?”), dataType)

catch ex as Exception

end try

4.3.100 CDFsetzVarDimVariances

integer CDFsetzVarDimVariances(out -- Completion status code.
id as long, ¢ in-- CDF identifier.

varNum as integer, in -- Variable number.
dimVarys as integer()) in -- Dimension variances.

CDFsetzVarDimVariances respecifies the dimension variances of the specified zVariable in a CDF. For 0-dimensional
zVariable, this operation is not applicable. The dimension variances are described in Section 2.10.

167

The arguments to CDFsetzVarDimVariances are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to

CDFcreate (or CDFcreateCDF) or CDFopenCDF.
varNum The zVariable number.

dimVarys The dimension variances.

4.3.100.1. Example(s)

The following example resets the dimension variances to true (VARY) and true (VARY) for zVariable “MY_VAR?”, a

2-dimensional variable, in a CDF.

dim id as long

dim varNum as integer

Dim dimVarys()as integer = {VARY, VARY}
Dim status as integer

try
varNum = CDFgetVarNum (id, “MY_VAR”)
status = CDFsetzVarDimVariances (id, varNum, dimVarys)

catch ex as Exception

end try

4.3.101 CDFsetzVarlnitialRecs

integer CDFsetzVarlnitialRecs(
id as long,

varNum as integer,

numRecs as integer)

¢ CDF identifier.

3

zVariable number.

¢ The dimension variances.

out -- Completion status code.
in -- CDF identifier.

in -- Variable number.

in -- Number of records.

CDFsetzVarlnitialRecs specifies a number of records to initially write to the specified zVariable in a CDF. The records
are written beginning at record number 0 (zero). This may be specified only once per zVariable and before any other
records have been written to that zVariable. If a pad value has not yet been specified, the default is used (see the
Concepts chapter in the CDF User’s Guide). If a pad value has been explicitly specified, that value is written to the

records. The Concepts chapter in the CDF User's Guide describes initial records.

The arguments to CDFsetzVarlInitialRecs are defined as follows:

168

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

numRecs The initially written records.

4.3.101.1. Example(s)

The following example writes the initial 100 records to zVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.

dim varNum as integer ¢ zVariable number.
Dim numRecsas integer ¢ The number of records.
dim status as integer

try
varNum = CDFgetVarNum (id, “MY_VAR”)
numRecs = 100
status = CDFsetzVarlnitialRecs (id, varNum, numRecs)

catch ex as Exception

end try

4.3.102 CDFsetzVarRecVariance

integer CDFsetzVarRecVariance(out -- Completion status code.
id as long, ¢ in-- CDF identifier.

varNum as integer, in -- Variable number.
recVary as integer) in -- Record variance.

CDFsetzVarRecVariance specifies the record variance of the specified zVariable in a CDF. The record variances are
described in Section 2.10.
The arguments to CDFsetzVarRecVariance are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

recVary The record variance.

169

4.3.102.1. Example(s)

The following example sets the record variance to VARY (from NOVARY) for zVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
Dim recVary as integer ¢ The record variance.
Dim status as integer

recVary = VARY
try

status = CDFsetzVarRecVariance (id, CDFgetVarNum (id, “MY_VAR?”), recVary)

catch ex as Exception

end try

4.3.103 CDFsetzVarReservePercent

integer CDFsetzVarReservePercent(out -- Completion status code.
id as long, ¢ in-- CDF identifier.

varNum as integer, in -- Variable number.
percent as integer) in -- Reserve percentage.

CDFsetzVarReservePercent specifies the compression reserve percentage being used for the specified zVariable in a
CDF. This operation only applies to compressed zVariables. Refer to the CDF User’s Guide for a description of the
reserve scheme used by the CDF library.

The arguments to CDFsetzVarReservePercent are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

percent The reserve percentage.

4.3.103.1. Example(s)

The following example sets the reserve percentage to 10 for zVariable “MY_VAR” in a CDF.

170

dim id as long ¢ CDF identifier.
Dim percent as integer ¢ The reserve percentage.
Dim status as integer

percent = 10
try

status = CDFsetzVarReservePercent (id, CDFgetVarNum (id, “MY_VAR”), percent)

catch ex as Exception

end try

4.3.104 CDFsetzVarsCacheSize

integer CDFsetzVarsCacheSize(¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.
numBuffers as integer) ¢ in -- Number of cache buffers.

CDFsetzVarsCacheSize specifies the number of cache buffers to be used for all of the zVariable files in a CDF. This
operation is not applicable to a single-file CDF. The Concepts chapter in the CDF User's Guide describes the caching
scheme used by the CDF library.
The arguments to CDFsetzVarsCacheSize are defined as follows:
id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

numBuffers The number of buffers.

4.3.104.1. Example(s)

The following example sets the number of cache buffers to 10 for all zVariables in a CDF.

dim id as long ¢ CDF identifier.
Dim numBuffers as integer ¢ The number of cache buffers.
.dim status as integer

numBuffers = 10
try

status = CDFsetzVarsCacheSize (id, numBuffers)

171

catch ex as Exception

end try

4.3.105 CDFsetzVarSeqPos

integer CDFsetzVarSeqPos(¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.

varNum as integer, in -- Variable number.

dim recNum as integer, in -- Record number.

indices as integer as integer()) in -- Indices in a record.

CDFsetzVarSeqPos specifies the current sequential value (position) for sequential access for the specified zVariable in
a CDF. Note that a current sequential value is maintained for each zVariable individually. Use CDFgetzVarSeqPos
method to get the current sequential value.

The arguments to CDFsetzVarSeqPos are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.
recNum The zVariable record number.
indices The dimension indices. Each element of indices receives the corresponding dimension

index. For O-dimensional zVariable, this argument is ignored, but must be presented.

4.3.105.1. Example(s)

The following example sets the current sequential value to the first value element in record number 2 for a zVariable, a
2-dimensional variable, in a CDF.

dim id as long ¢ CDF identifier.

dim varNum as integer ¢ The variable number.
Dim recNum as integer The record number.
Dim indices(2) as integer The indices.

3

3

recNum =2
indices(0) =0
indices(1) =0
try
status = CDFsetzVarSeqPos (id, varNum, recNum, indices)

172

catch ex as Exception

end try

4.3.106 CDFsetzVarSparseRecords

integer CDFsetzVarSparseRecords(out -- Completion status code.
id as long, ¢ in-- CDF identifier.

varNum as integer, in -- The variable number.
sRecordsType as integer) in -- The sparse records type.

CDFsetzVarSparseRecords specifies the sparse records type of the specified zVariable in a CDF. Refer to Section
2.12.1 for the description of sparse records.
The arguments to CDFsetzVarSparseRecords are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

sRecordsType The sparse records type.

4.3.106.1. Example(s)

The following example sets the sparse records type to PAD SPARSERECORDS from its original type for zVariable
“MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
dim sRecordsType as integer ¢ The sparse records type.
Dim status as integer.
sRecordsType = PAD SPARSERECORDS
try
status = CDFsetzVarSparseRecords (id, CDFgetVarNum (id, “MY_VAR?”), sRecordsType)

catch ex as Exception

end try

173

4.3.107 CDFvarClose’

3

integer CDFvarClose(out -- Completion status code.
id as long, ¢ in-- CDF identifier.
varNum as integer) ¢ in -- rVariable number.

CDFvarClose closes the specified rVariable file from a multi-file format CDF. The variable's cache buffers are flushed
before the variable's open file is closed. However, the CDF file is still open.

NOTE: You must close all open variable files to guarantee that all modifications you have made will actually be
written to the CDF's file(s). If your program exits, normally or otherwise, without a successful call to CDFclose, the
CDF's cache buffers are left unflushed.

The arguments to CDFclose are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

varNum The variable number for the open rVariable’s file. This identifier must have been initialized by a call
to CDFgetVarNum.

4.3.107.1. Example(s)

The following example will close an open rVariable in a multi-file CDF.

dim id as long ¢ CDF identifier.
dim status as integer ¢ Returned status code.
try

status = CDFvarClose (id, CDFvarNum (id, “Flux”))
catch ex as Exception

end try

4.3.108 CDFvarCreate!’

3

integer CDFvarCreate(out -- Completion status code.

® A legacy CDF function, handling rVariables only. While it is still available in V3.1, CDFcloserVar is the preferred
function for it.

10°A legacy CDF function, handling rVariables only. While it is still available in V3.1, CDFcreaterVar is the preferred
function for it.

174

id as long,

varName as string,
dataType as integer,
numElements as integer,
recVariance as integer,
dimVariances as integer(),
varNum as integer)

¢ in -- CDF identifier.

in -- rVariable name.

in -- Data type.

in -- Number of elements (of the data type).
in -- Record variance.

in -- Dimension variances.

out -- rVariable number.

CDFvarCreate is used to create a new rVariable in a CDF. A variable (rVariable or zVariable) with the same name
must not already exist in the CDF.

The arguments to CDFvarCreate are defined as follows:

id

varName

dataType

numElements

recVariance

dimVariances

varNum

The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopen.

The name of the rVariable to create. This may be at most CDF_ VAR NAME LEN256
characters. Variable names are case-sensitive.

The data type of the new rVariable. Specify one of the data types defined in Section 2.6.

The number of elements of the data type at each value. For character data types
(CDF_CHAR and CDF_UCHAR), this is the number of characters in the string (each
value consists of the entire string). For all other data types this must always be one (1) -
multiple elements at each value are not allowed for non-character data types.

The rVariable's record variance. Specify one of the variances defined in Section 2.10.

The rVariable's dimension variances. Each element of dimVariances specifies the
corresponding dimension variance. For each dimension specify one of the variances
defined in Section 2.10. For 0-dimensional rVariables this argument is ignored (but must
be present).

The number assigned to the new rVariable. This number must be used in subsequent
CDF function calls when referring to this rVariable. An existing rVariable's number may
be determined with the CDFvarNum or CDFgetVarNum function.

4.3.108.1. Example(s)

The following example will create several rVariables in a 2-dimensional CDF.

dim id as long
dim stats as integer

¢ CDF identifier.
Returned status code.

dim EPOCHrecVary as integer = VARY ¢ EPOCH record variance.
Dim LATrecVary as integer = NOVARY ¢ LAT record variance.

Dim LONrecVary as integer = NOVARY ¢ LON record variance.

Dim TMPrecVary as integer = VARY ¢ TMP record variance.

Dim EPOCHdimVarys() as integer = {NOVARY,NOVARY} ¢ EPOCH dimension variances.
Dim LATdimVarys() as integer = {VARY,VARY} ¢ LAT dimension variances.

175

Dim LONdimVarys() as integer = {VARY,VARY} ¢ LON dimension variances.

Dim TMPdimVarys() as integer = {VARY,VARY} ¢ TMP dimension variances.
Dim EPOCHvarNum as integer ¢ EPOCH zVariable number.
Dim LATvarNum as integer ¢ LAT zVariable number.
Dim LONvarNum as integer ¢ LON zVariable number.
Dim TMPvarNum as integer ¢ TMP zVariable number.
try

status = CDFvarCreate (id, "EPOCH", CDF_EPOCH, 1, _
EPOCHrecVary, EPOCHdimVarys, EPOCHvarNum)

status = CDFvarCreate (id, "LATITUDE", CDF INT2, 1,
LATrecVary, LATdimVarys, LATvarNum)

status = CDFvarCreate (id, "INTITUDE", CDF INT2, 1,
LONrecVary, LONdimVarys, LONvarNum)

status = CDFvarCreate (id, "TEMPERATURE", CDF REAL4, 1,
TMPrecVary, TMPdimVarys, TMPvarNum)
catch ex as Exception

end try

4.3.109 CDFvarGet!!

integer CDFvarGet(¢ out -- Completion status code.

id as long, ¢ in-- CDF identifier.

varNum as integer, in -- rVariable number.

dim recNum as integer, in -- Record number.

indices as integer(), in -- Dimension indices.

value as TYPE) out-- Value.

TYPE -- VB value/string type or object

CDFvarGet is used to read a single value from an rVariable.

The arguments to CDFvarGet are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopen.

varNum The rVariable number from which to read data.
recNum The record number at which to read.
indices The dimension indices within the record.

1A legacy CDF function, handling rVariables only. While it is still available in V3.1, CDFgetrVarData is the preferred
function for it.

176

value The data value read. This buffer must be large enough to hold the value.

4.3.109.1. Example(s)

The following example returns two data values, the first and the fifth element, in Record 0 from an rVariable named
MY VAR, a 2-dimensional (2 by 3) CDF_DOUBLE type variable, in a row-major CDF. The first get operation passes
the value pointer, while the second operation uses “out” argument modifier.

dim id as long

dim recNum as integer

dim varNum as integer

Dim indices(2) as integer

Dim valuel as double, value2 as double
Dim status as integer.

try
varNum = CDFvarNum (id, “MY_VAR”)
recNum = 0
indices(0) =0
indices(1) =0
status = CDFvarGet (id, varNum, recNum, indices, valuel)
indices(0) =1
indices(1) =1
object value2o
status = CDFvarGet (id, varNum, recNum, indices, value20)

value2 = value2o
catch ex as Exception

end try

4.3.110 CDFvarHyperGet'?

integer CDFvarHyperGet(

id as long, in --
varNum as integer, ¢ in --
recStart as integer, ¢ in --

o

recCount as integer, in --
recInterval as integer, in --
indices as integer(), in --
counts as integer(), “in --
intervals as integer(), in --

¢ CDEF identifier.

¢ The record number.
The variable number.
The dimension indices.
The data values.

3

3

3

out -- Completion status code.

CDF identifier.

rVariable number.

Starting record number.

Number of records.

Subsampling interval between records.
Dimension indices of starting value.

Number of values along each dimension.
Subsampling intervals along each dimension.

values as TYPE) ¢ out-- Values.

12 A legacy CDF function, handling rVariables only. While it is still available in V3.1, CDFhyperGetrVarData is the

preferred function for it.

177

¢ TYPE -- VB value/string type or object

CDFvarHyperGet is used to fill a buffer of one or more values from the specified rVariable. It is important to know the
variable majority of the CDF before using CDFvarHyperGet because the values placed into the buffer will be in that
majority. CDFinquire can be used to determine the default variable majority of a CDF distribution. The Concepts
chapter in the CDF User's Guide describes the variable majorities. Note: you need to provide dummy arrays, with at
least one (1) element, for indices, counts and intervals for scalar variables.

4.3.110.1. Example(s)

The following example will read an entire record of data from an rVariable. The CDF’s rVariables are 3-dimensional
with sizes (180,91,10) and CDF’s variable majority is ROW_MAJOR. For the rVariable the record variance is VARY,
the dimension variances are {VARY,VARY,VARY}, and the data type is CDF_REAL4. This example is similar to the
example provided for CDFvarGet except that it uses a single call to CDFvarHyperGet rather than numerous calls to
CDFvarGet.

dim id as long ¢ CDF identifier.

Dim status as integer Returned status code.
Dim tmp(,,) as single Temperature values.
Dim varN as integer rVariable number.
Dim recStart as integer = 13 Record number.

Dim recCount as integer = 1 Record counts.

Dim reclnterval as integer = 1 Record interval.

Dim indices() as integer = {0,0,0} Dimension indices.
Dim counts() as integer = {180,91,10} ¢ Dimension counts.
Dim intervals() as integer = {1,1,1} Dimension intervals.

try

varN = CDFgetVarNum (id, "Temperature")

status = CDFvarHyperGet (id, varN, recStart, recCount, recInterval, indices, counts, intervals, tmp)
catch ex as Exception
end try

Note that if the CDF's variable majority had been COLUMN_MAJOR, the tmp array would have been declared simple
type of tmp(10,91,180) for proper indexing.

4.3.111 CDFvarHyperPut"

3

integer CDFvarHyperPut(out -- Completion status code.

13 A legacy CDF function, handling rVariables only. While it is still available in V3.1, CDFhyperPutrVarData is the
preferred function for it.

178

id as long, ¢ in-- CDF identifier.

varNum as integer, in -- rVariable number.

recStart as integer, ¢ in -- Starting record number.

recCount as integer, in -- Number of records.

recInterval as integer, in -- Interval between records.

indices as integer(), in -- Dimension indices of starting value.

counts as integer(), in -- Number of values along each dimension.
intervals as integer(), in -- Interval between values along each dimension.
buffer as TYPE) ‘ in -- Buffer of values.

TYPE -- VB value/string type (likely an array)

CDFvarHyperPut is used to write one or more values from the data holding buffer to the specified rVariable. It is
important to know the variable majority of the CDF before using this routine because the values in the buffer to be
written must be in the same majority. CDFinquire can be used to determine the default variable majority of a CDF
distribution. The Concepts chapter in the CDF User's Guide describes the variable majorities. Note: you need to
provide dummy arrays, with at least one (1) element, for indices, counts and intervals for scalar variables.

4.3.111.1. Example(s)

The following example writes values to the rVariable LATITUDE of a CDF that is an 2-dimensional array with
dimension sizes (360,181). For LATITUDE the record variance is NOVARY, the dimension variances are
{NOVARY,VARY}, and the data type is CDF _INT2. This example is similar to the CDFvarPut example except that it
uses a single call to CDFvarHyperPut rather than numerous calls to CDFvarPut.

dim id as long ¢ CDF identifier.

Dim status as integer Returned status code.
Dim i as integer Latitude value.

Dim lats(181) as short ¢ Buffer of latitude values.
Dim varN as integer rVariable number.
Dim recStart as integer = 0 Record number.

Dim recCount as integer = 1 Record counts.

Dim reclnterval as integer = 1 Record interval.

Dim indices()as integer = {0,0} Dimension indices.
Dim counts() as integer = {1,181} Dimension counts.
Dim intervals() as integer = {1,1} Dimension intervals.

try
varN = CDFvarNum (id, "LATITUDE")
fori= -90 to 90
lats(90+i) = CType(i, short)
next lat
status = CDFvarHyperPut (id, varN, recStart, recCount, recInterval, indices, counts, intervals, lats)

catch ex as Exception

end try

179

4.3.112 CDFvarInquire

integer CDFvarlnquire(
id as long,

varNum as integer,
varName as string,
dataType as integer ,

numElements as integer,

recVariance as integer,

dimVariances as integer())

out -- Completion status code.

¢ in -- CDF identifier.

in -- rVariable number.

out -- rVariable name.

out -- Data type.

out -- Number of elements (of the data type).
out -- Record variance.

out -- Dimension variances.

CDFvarlnquire is used to inquire about the specified rVariable. This method would normally be used before reading
rVariable values (with CDFvarGet or CDFvarHyperGet) to determine the data type and number of elements (of that

data type).

The arguments to CDFvarInquire are defined as follows:

id

varNum

varName
dataType

numElements

recVariance

dimVariances

The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopen.

The number of the rVariable to inquire. This number may be determined with a call to
CDFvarNum (see Section 4.3.113).

The rVariable's name.

The data type of the rVariable. The data types are defined in Section 2.6.

The number of elements of the data type at each rVariable value. For character data types
(CDF_CHAR and CDF _UCHAR), this is the number of characters in the string. (Each
value consists of the entire string.) For all other data types, this will always be one (1) -
multiple elements at each value are not allowed for non-character data types.

The record variance. The record variances are defined in Section 2.10.

The dimension variances. Each element of dimVariances receives the corresponding

dimension variance. The dimension variances are defined in Section 2.10. For 0-
dimensional rVariables this argument is ignored (but a placeholder is necessary).

4.3.112.1. Example(s)

The following example returns about an rVariable named HEAT FLUX in a CDF. Note that the rVariable name
returned by CDFvarlnquire will be the same as that passed in to CDFgetVarNum.

dim id as long
Dim status as integer

¢ CDF 1identifier.
¢ Returned status code.

180

rVariable name.

Data type of the rVariable.

Dim numElems as integer Number of elements (of data type).

Dim recVary as integer Record variance.

Dim dimVarys(CDF_MAX DIMS) as integer Dimension variances (allocate to allow the
maximum number of dimensions).

Dim varName as string
Dim dataType as integer

try
status = CDFvarlnquire (id, CDFgetVarNum (id,"HEAT FLUX"), varName, dataType,
numElems, recVary, dimVarys)

catch ex as Exception

end try

4.3.113 CDFvarNum'

3

integer CDFvarNum(out -- Variable number.
id as long, ¢ in-- CDF identifier.
varName as string) ‘ in -- Variable name.

CDFvarNum is used to determine the number associated with a given variable name. If the variable is found,
CDFvarNum returns its variable number - which will be equal to or greater than zero (0). If an error occurs (e.g., the
variable does not exist in the CDF), an error code (of type Int) is returned. Error codes are less than zero (0). The
returned variable number should be used in the functions of the same variable type, rVariable or zVariable. If it is an
rVariable, functions dealing with rVariables should be used. Similarly, functions for zVariables should be used for
zVariables.

The arguments to CDFvarNum are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopen.

varName The name of the variable to search. This may be at most CDF VAR NAME LEN256
characters. Variable names are case-sensitive.

4.3.113.1. Example(s)

In the following example CDFvarNum is used as an embedded function call when inquiring about an rVariable.

dim id as long ¢ CDF identifier.
dim status as integer ¢ Returned status code.

14 A legacy CDF function. It used to handle only rVariables. It has been extended to include zVariables. While it is still
available in V3.1, CDFgetVarNum is the preferred function for it.

181

dim varName as string ¢ Variable name.

dim dataType as integer ¢ Data type of the rVariable.

dim numElements integer ¢ Number of elements (of the data type).
dim recVariance as integer ¢ Record variance.

dim dimVariances(CDF_MAX DIMS) as integer ¢ Dimension variances.

try

status = CDFvarlnquire (id, CDFvarNum (id,"LATITUDE"), varName, dataType,
numElements, recVariance, dimVariances)

catch ex as Exception

end try
In this example the rVariable named LATITUDE was inquired. Note that if LATITUDE did not exist in the CDF, the
call to CDFgetVarNum would have returned an error code. Passing that error code to CDFvarlnquire as an rVariable
number would have resulted in CDFvarlnquire also returning an error code. Also note that the name written into

varName is already known (LATITUDE). In some cases the rVariable names will be unknown - CDFvarlnquire would
be used to determine them. CDFvarlnquire is described in Section 4.3.112.

4.3.114 CDFvarPut'®

integer CDFvarPut(‘¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.
varNum as integer, in -- rVariable number.
recNum as integer, in -- Record number.
indices as integer(), in -- Dimension indices.
value as TYPE) ‘¢ in -- Value.

¢ TYPE -- VB value/string type

CDFvarPut writes a single data value to an rVariable. CDFvarPut may be used to write more than one value with a
single call.

The arguments to CDFvarPut are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopen.

varNum The rVariable number to which to write. This number may be determined with a call to
CDFvarNum.

recNum The record number at which to write.

indices The dimension indices within the specified record at which to write. Each element of

indices specifies the corresponding dimension index. For 0-dimensional variables, this
argument is ignored (but must be present).

15 A legacy CDF function, handling rVariables only. While it is still available in V3.1, CDFputrVarData is the preferred
function for it.

182

value The data value to write.

4.3.114.1. Example(s)

The following example will write two data values (1% and 5" elements) of a 2-dimensional rVariable (2 by 3) named
MY _ VAR to record number 0.

dim id as long ¢ CDF identifier.

dim varNum as integer ¢ rVariable number.

dim recNum as integer The record number.
Dim indices(2) as integer The dimension indices.
Dim valuel as double, value2 as double The data values.

3
3

3

try
varNum = CDFgetVarNum (id, “MY_VAR?”)
recNum = 0
indices(0) =0
indices(1) =0
valuel = 10.1
status = CDFvarPut (id, varNum, recNum, indices, valuel)
indices(0) =1
indices(1) =1
value2 =20.2
status = CDFvarPut (id, varNum, recNum, indices, value2)

catch ex as Exception

end try

4.3.115 CDFvarRename!®

integer CDFvarRename(out -- Completion status code.
id as long, ¢ in-- CDF identifier.

varNum as integer, in -- rVariable number.
varName as string) in -- New name.

CDFvarRename is used to rename an existing rVariable. A variable (rVariable or zVariable) name must be unique.

The arguments to CDFvarRename are defined as follows:

16 A legacy CDF function, handling rVariables only. While it is still available in V3.1, CDFrenamerVar is the preferred
function for it.

183

id

varNum

varName

The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopen.

The rVariable number to rename. This number may be determined with a call to
CDFvarNum.

The new rVariable name. The maximum length of the new name is
CDF VAR NAME LEN256 characters. Variable names are case-sensitive.

4.3.115.1. Example(s)

In the following example

the rVariable named TEMPERATURE is renamed to TMP (if it exists). Note that if

CDFvarNum returns a value less than zero (0) then that value is not an rVariable number but rather a warning/error

code.

dim id as long
Dim status as integer
Dim varNum as integer

try

¢ CDF identifier.
¢ Returned status code.
¢ rVariable number.

varNum = CDFvarNum (id, "TEMPERATURE")

}

catch ex as Exception

end try

4.4 Attributes/Entries

This section provides functions that are related to CDF attributes or attribute entries. An attribute is identified by its
name or an number in the CDF. Before you can perform any operation on an attribute or attribute entry, the CDF in
which it resides must be opened.

4.4.1 CDFattrC

integer CDFattrCreate(
id as long,

attrName as string,
attrScope as integer,
attrNum as integer)

reate!”

out -- Completion status code.
‘ in-- CDF identifier.

in -- Attribute name.

in -- Scope of attribute.

out -- Attribute number.

17 Same as CDFcreateAttr.

184

CDFattrCreate creates an attribute in the specified CDF. An attribute with the same name must not already exist in the
CDF.

The arguments to CDFattrCreate are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopen.

attrName The name of the attribute to create. This may be at most CDF_ ATTR NAME LEN256
characters. Attribute names are case-sensitive.

attrScope The scope of the new attribute. Specify one of the scopes described in Section 2.13.

attrNum The number assigned to the new attribute. This number must be used in subsequent CDF

function calls when referring to this attribute. An existing attribute's number may be
determined with the CDFgetAttrNum function.

4.4.1.1. Example(s)

The following example creates two attributes. The TITLE attribute is created with global scope - it applies to the entire
CDF (most likely the title of the data set stored in the CDF). The Units attribute is created with variable scope - each
entry describes some property of the corresponding variable (in this case the units for the data).

dim id as long ¢ CDF identifier.

Dim status as integer ¢ Returned status code.

Dim UNITSattrName as string = "Units" ¢ Name of "Units" attribute.
Dim UNITSattrNum as integer ¢ "Units" attribute number.
Dim TITLEattrNum as integer ¢ "TITLE" attribute number.
Dim TITLEattrScope as integer = GLOBAL SCOPE ¢ "TITLE" attribute scope.
try

status = CDFattrCreate (id, "TITLE", TITLEattrScope, TITLEattrNum)
status = CDFattrCreate (id, UNITSattrName, VARIABLE SCOPE, UNITSattrnum)

catch ex as Exception

end try

4.4.2 CDFattrEntrylnquire

integer CDFattrEntryInquire(‘¢ out -- Completion status code.

185

id as long,

attrNum as integer,
entryNum as integer,
dataType as integer,
numElements as integer)

‘ in-- CDF identifier.
‘ in -- Attribute number.
in -- Entry number.
out -- Data type.
out -- Number of elements (of the data type).

CDFattrEntryInquire is used to inquire about a specific attribute entry. To inquire about the attribute in general, use
CDFattrlnquire. CDFattrEntrylnquire would normally be called before calling CDFattrGet in order to determine the
data type and number of elements (of that data type) for an entry. This would be necessary to correctly allocate enough
memory to receive the value read by CDFattrGet.

The arguments to CDFattrEntryInquire are defined as follows:

id

attrNum

entryNum

dataType

NumElements

4.4.2.1. Example(s)

The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopen.

The attribute number for which to inquire an entry. This number may be determined
with a call to CDFattrNum (see Section 4.4.5).

The entry number to inquire. If the attribute is global in scope, this is simply the gEntry
number and has meaning only to the application. If the attribute is variable in scope, this
is the number of the associated rVariable (the rVariable being described in some way by
the rEntry).

The data type of the specified entry. The data types are defined in Section 2.6.
The number of elements of the data type. For character data types (CDF_CHAR and

CDF_UCHAR), this is the number of characters in the string (An array of characters).
For all other data types this is the number of elements in an array of that data type.

The following example returns each entry for an attribute. Note that entry numbers need not be consecutive - not
every entry number between zero (0) and the maximum entry number must exist. For this reason NO_SUCH_ENTRY
is an expected error code. Note also that if the attribute has variable scope, the entry numbers are actually rVariable

numbers.

dim id as long

Dim status as integer
Dim attrN as integer

Dim entryN as integer
Dim attrName as string
Dim attrScope as integer
Dim maxEntry as integer
Dim dataType as integer
Dim numElems as integer

try

¢ CDF identifier.

¢ Returned status code.

¢ attribute number.

¢ Entry number.

¢ attribute name.

¢ attribute scope.

¢ Maximum entry number used.

¢ Data type.

¢ Number of elements (of the data type).

186

attrN = CDFgetAttrNum (id, "TMP")
status = CDFattrInquire (id, attrN, attrName, attrScope, maxEntry)

for entryN = 0 to maxEntry
status = CDFattrEntryInquire (id, attrN, entryN, dataType, numElems)

next entryN

}

catch ex as Exception

end try

4.43 CDFattrGet'8

integer CDFattrGet(

id as long,

integer attrNum,
integer entryNum,
value as TYPE)

out -- Completion status code.

‘ in-- CDF identifier.

in -- Attribute number.

in -- Entry number.

out -- Attribute entry value.

TYPE -- VB value/string type or object

CDFattrGet is used to read an attribute entry from a CDF. In most cases it will be necessary to call
CDFattrEntryInquire before calling CDFattrGet in order to determine the data type and number of elements (of that

data type) for the entry.

The arguments to CDFattrGet are defined as follows:

id

attrNum

entryNum

value

The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopen.

The attribute number. This number may be determined with a call to CDFattrNum (Section
4.4.5).

The entry number. If the attribute is global in scope, this is simply the gEntry number and
has meaning only to the application. If the attribute is variable in scope, this is the number
of the associated rVariable (the rVariable being described in some way by the rEntry).

The value read. This buffer must be large enough to hold the value. The method
CDFattrEntrylnquire would be used to determine the entry data type and number of
elements (of that data type). The value is read from the CDF and placed into memory at
address value.

18 A legacy CDF function. While it is still available in V3.1, CDFgetAttrgEntry or CDFgetAttrrEntry is the preferred

function for it.

187

4.4.3.1. Example(s)

The following example displays the value of the UNITS attribute for the rEntry corresponding to the PRES LVL
rVariable (but only if the data type is CDF_CHAR).

dim id as long ¢ CDF identifier.

dim status as integer ¢ Returned status code.

Dim attrN as integer Attribute number.

Dim entryN as integer Entry number.

Dim dataType as integer Data type.

Dim numElems as integer Number of elements (of data type).

3
3

3

try
attrN = CDFattrNum (id, "UNITS")
entryN = CDFvarNum (id, "PRES LVL") ¢ The rEntry number is the rVariable number.

status = CDFattrEntryInquire (id, attrN, entryN, dataType, numElems)

if dataType = CDF_CHAR then
dim buffer as string
status = CDFattrGet (id, attrN, entryN, buffer)
end if
catch ex as Exception

end try

4.4.4 CDFattrInquire”

integer CDFattrInquire(out -- Completion status code.

id as long, ¢ in-- CDF identifier.

attrNum as integer, in -- Attribute number.

attrName as string, out -- Attribute name.

attrScope as integer, out -- Attribute scope.

maxEntry as integer) out -- Maximum gEntry/rEntry number.

CDFattrlnquire is used to inquire about the specified attribute. To inquire about a specific attribute entry, use
CDFattrEntryInquire.
The arguments to CDFattrInquire are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopen.

19 A legacy function. While it is still available in V3.1, CDFinquireAttr is the preferred function for it.

188

attrNum The number of the attribute to inquire. This number may be determined with a call to
CDFattrNum (see Section 4.4.5).

attrName The attribute's name. This string length is limited to CDF_ ATTR NAME LEN256.
attrScope The scope of the attribute. Attribute scopes are defined in Section 2.13.
maxEntry For gAttributes this is the maximum gEntry number used. For vAttributes this is the

maximum rEntry number used. In either case this may not correspond with the number of
entries (if some entry numbers were not used). If no entries exist for the attribute, then a
value of -1 will be passed back.

4.4.4.1. Example(s)

The following example displays the name of each attribute in a CDF. The number of attributes in the CDF is first
determined using the method CDFinquire. Note that attribute numbers start at zero (0) and are consecutive.

dim id as long ¢ CDF identifier.

Dim status as integer Returned status code.

Dim numDims as integer Number of dimensions.

Dim dimSizes() as integer Dimension sizes (allocate to allow the
maximum number of dimensions).
Dim encoding as integer Data encoding.

Dim majority as integer Variable majority.

Dim maxRec as integer Maximum record number in CDF.
Dim numVars as integer ¢ Number of variables in CDF.

Dim numAttrs as integer ¢ Number of attributes in CDF.
Dim attrN as integer attribute number.

Dim attrName as string attribute name.

Dim attrScope as integer attribute scope.

Dim maxEntry as integer Maximum entry number.

try
status = CDFinquire (id, numDims, dimSizes, encoding, majority, maxRec, numVars,
numaAttrs)

for attrN = 0 to (numAttrs-1)
status = CDFattrInquire (id, attrN, attrName, attrScope, maxEntry)

next attrN
catch ex as Exception

end try

189

4.4.5 CDFattrNum?’

integer CDFattrNum(‘ out -- attribute number.
id as long, ‘in-- CDF id
attrName as string) ¢ in -- Attribute name

CDFattrNum is used to determine the attribute number associated with a given attribute name. If the attribute is found,
CDFattrNum returns its number - which will be equal to or greater than zero (0). If an error occurs (e.g., the attribute
name does not exist in the CDF), an error code (of type Int) is returned. Error codes are less than zero (0).

The arguments to CDFattrNum are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopen.

attrName The name of the attribute for which to search. This may be at most
CDF_ATTR NAME LEN256 characters. Attribute names are case-sensitive.

CDFattrNum may be used as an embedded function call when an attribute number is needed.

4.4.5.1. Example(s)

In the following example the attribute named pressure will be renamed to PRESSURE with CDFattrNum being used as
an embedded function call. Note that if the attribute pressure did not exist in the CDF, the call to CDFattrNum would
have returned an error code. Passing that error code to CDFattrRename as an attribute number would have resulted in
CDFattrRename also returning an error code.

dim id as long ¢ CDF identifier.
Dim status as integer ¢ Returned status code.
try

status = CDFattrRename (id, CDFattrNum (id,"pressure"), "PRESSURE")
catch ex as Exception

end try

4.4.6 CDFattrPut

integer CDFattrPut(¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.

20 A legacy CDF function. While it is still available in V3.1, CDFgetAttrNum is the preferred function for it.

190

integer attrNum,
integer entryNum,
integer dataType,
integer numElements,
value as TYPE)

in -- Attribute number.

in -- Entry number.

in -- Data type of this entry.

in -- Number of elements (of the data type).
in -- Attribute entry value.

¢ TYPE -- VB value/string type

CDFattrPut is used to write an entry to a global or rVariable attribute in a CDF. The entry may or may not already
exist. If it does exist, it is overwritten. The data type and number of elements (of that data type) may be changed when

overwriting an existing entry.

The arguments to CDFattrPut are defined as follows:

id

attrNum

entryNum

dataType

numElements

value

4.4.6.1. Example(s)

The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopen.

The attribute number. This number may be determined with a call to CDFgetAttrNum.

The entry number. If the attribute is global in scope, this is simply the gEntry number
and has meaning only to the application. If the attribute is variable in scope, this is the
number of the associated rVariable (the rVariable being described in some way by the
rEntry).

The data type of the specified entry. Specify one of the data types defined in Section
2.6.

The number of elements of the data type. For character data types (CDF_CHAR and
CDF _UCHAR), this is the number of characters in the string (an array of characters).
For all other data types this is the number of elements in an array of that data type.

The value(s) to write. The entry value is written to the CDF from memory address
value.

The following example writes two attribute entries. The first is to gEntry number zero (0) of the gAttribute TITLE.
The second is to the variable scope attribute VALIDs for the rEntry that corresponds to the rVariable TMP.

dim id as long
Dim status as integer

Dim TITLE LEN as integer = 10
Dim entryNum as integer

Dim numElements as integer

Dim title as string = "CDF title."
Dim TMPvalids() as short = {15,30}

entryNum = 0

CDF identifier.

Returned status code.

Entry string length.

Entry number.

Number of elements (of data type).
Value of TITLE attribute, entry number 0.
Value(s) of VALIDs attribute,

¢ rEntry for rVariable TMP.

191

try
status = CDFattrPut (id, CDFgetAttrNum (id,"TITLE"), entryNum, CDF _CHAR, TITLE LEN, title)

numElements = 2
status = CDFattrPut (id, CDFgetAttrNum (id,"VALIDs"), CDFgetVarNum (id,"TMP"),
CDF_INT2, numElements, TMPvalids)

catch ex as Exception

end try

4.4.7 CDFattrRename?!

integer CDFattrRename(out -- Completion status code.
id as long, ¢ in-- CDF identifier.

attrNum as integer, in -- Attribute number.
attrName as string) in -- New attribute name.

CDFattrRename is used to rename an existing attribute. An attribute with the new name must not already exist in the
CDF.
The arguments to CDFattrRename are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopen.

attrNum The number of the attribute to rename. This number may be determined with a call to
CDFattrNum (see Section 4.4.5).

attrName The new attribute name. This may be at most CDF_ ATTR NAME LEN256 characters.
Attribute names are case-sensitive.

4.4.7.1. Example(s)

In the following example the attribute named LAT is renamed to LATITUDE.

dim id as long ¢ CDF identifier.
Dim status as integer Returned status code.
try

status = CDFattrRename (id, CDFgetAttrNum (id,"LAT"), "LATITUDE")

21 A legacy CDF function. While it is still available in V3.1, CDFrenameAdttr is the preferred function for it.

192

catch ex as Exception

end try

4.4.8 CDFconfirmAttrExistence

integer CDFconfirmAttrExistence(¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.
attrName as string) ‘ in -- Attribute name.

CDFconfirmAttrExistence confirms whether an attribute exists for the given attribute name in a CDF. If the attribute
doesn’t exist, the informational status code, NO_SUCH_ATTR, is returned and no exception is thrown.

The arguments to CDFconfirmAttrExistence are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrName The attribute name to check.

4.4.8.1. Example(s)

The following example checks whether an attribute by the name of “ATTR NAME]1” is in a CDF.

dim id as long ¢ CDF identifier.
Dim status as integer ¢ Returned status code.
try

status = CDFconfirmAttrExistence (id, “ATTR NAME1”)
if status = NO_SUCH_ATTR then

end if
catch ex as Exception

end try

193

4.4.9 CDFconfirmgEntryExistence

integer CDFconfirmgEntryExistence(out -- Completion status code.
id as long, ¢ in-- CDF identifier.

attrNum as integer, in -- Attribute number.
entryNum as integer) in -- gEntry number.

CDFconfirmgEntryExistence confirms the existence of the specified entry (gEentry), in a global attribute from a CDF.
If the gEntry does not exist, the informational status code NO SUCH_ENTRY will be returned and no exception is
thrown.

The arguments to CDFconfirmgEntryExistence are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum The (global) attribute number.

entryNum The gEntry number.

4.4.9.1. Example(s)

The following example checks the existence of a gEntry numbered 1 for attribute “MY_ATTR” in a CDF.

dim id as long ¢ CDF identifier.

Dim status as integer Returned status code.
dim attrNum as integer Attribute number.
Dim entryNum as integer gEntry number.

try
attrNum = CDFgetAttrNum (id, “MY_ATTR”)
entryNum = 1

status = CDFconfirmgEntryExistence (id, attrNum, entryNum)
if status = NO_SUCH_ENTRY then UserStatusHandler (status)

4.4.10 CDFconfirmrEntryExistence

integer CDFconfirmrEntryExistence(out -- Completion status code.
id as long, ¢ in-- CDF identifier.

attrNum as integer, in -- Attribute number.
entryNum as integer) in -- rEntry number.

194

CDFconfirmrEntryExistence confirms the existence of the specified entry (rEntry), corresponding to an rVariable, in a
variable attribute from a CDF. If the rEntry does not exist, the informational status code NO SUCH_ENTRY will be
returned and no exception is thrown.

The arguments to CDFconfirmrEntryExistence are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum The variable attribute number.

entryNum The rEntry number.

4.4.10.1. Example(s)

The following example checks the existence of an rEntry, corresponding to rVariable “MY_VAR”, for attribute
“MY_ATTR” in a CDF.

dim id as long ¢ CDF identifier.

dim status as integer ¢ Returned status code.
dim attrNum as integer ¢ Attribute number.
dim entryNum as integer ¢ rEntry number.

try

attrNum = CDFgetAttrNum (id, “MY_ATTR”)

entryNum = CDFgetVarNum (id, “MY_VAR”)

status = CDFconfirmrEntryExistence (id, attrNum, entryNum)
if status = NO_SUCH_ENTRY then UserStatusHandler (status)

catch ex as Exception

end try

4.4.11 CDFconfirmzEntryExistence

integer CDFconfirmzEntryExistence(out -- Completion status code.
id as long, ¢ in-- CDF identifier.

attrNum as integer, in -- Attribute number.
entryNum as integer) in -- zEntry number.

195

CDFconfirmzEntryExistence confirms the existence of the specified entry (zEntry), corresponding to a zVariable, in a
variable attribute from a CDF. If the zEntry does not exist, the informational status code NO_SUCH_ENTRY will be
returned and no exception is thrown.

The arguments to CDFconfirmzEntryExistence are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum The (variable) attribute number.

entryNum The zEntry number.

4.4.11.1. Example(s)

The following example checks the existence of the zEntry corresponding to zVariable “MY_VAR?” for the variable
attribute “MY_ATTR” in a CDF.

dim id as long ¢ CDF identifier.

Dim status as integer ¢ Returned status code.
dim varNum as integer ¢ Attribute number.
dim entryNum as integer ¢ zEntry number.

try

attrNum = CDFgetAttrNum (id, “MY_ATTR”)
entryNum = CDFgetVarNum (id, “MY_VAR”)
status = CDFconfirmzEntryExistence (id, attrNum, entryNum)
if status = NO_SUCH_ENTRY then UserStatusHandler (status)

catch ex as Exception

end try

4.4.12 CDFcreateAttr

integer CDFcreateAttr(¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.
attrName as string, in -- Attribute name.
attrScope as integer, in -- Scope of attribute.
attrNum as integer) out -- Attribute number.

CDFcreateAttr creates an attribute with the specified scope in a CDF. It is identical to the method CDFattrCreate. An
attribute with the same name must not already exist in the CDF.

196

The arguments to CDFcreateAttr are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

attrName The name of the attribute to create. This may be at most CDF_ ATTR NAME LEN256
characters. Attribute names are case-sensitive.

attrScope The scope of the new attribute. Specify one of the scopes described in Section 2.13.

attrNum The number assigned to the new attribute. This number must be used in subsequent CDF

function calls when referring to this attribute. An existing attribute's number may be
determined with the CDFgetAttrNum function.

4.4.12.1. Example(s)

The following example creates two attributes. The TITLE attribute is created with global scope - it applies to the entire
CDF (most likely the title of the data set stored in the CDF). The Units attribute is created with variable scope - each
entry describes some property of the corresponding variable (in this case the units for the data).

dim id as longid ¢ CDF identifier.

Dim status as integer ¢ Returned status code.

Dim UNITSattrName as string = "Units" ¢ Name of "Units" attribute.
Dim UNITSattrNum as integer ¢ "Units" attribute number.
Dim TITLEattrNum as integer ¢ "TITLE" attribute number.
Dim TITLEattrScope as integer = GLOBAL SCOPE ¢ "TITLE" attribute scope.
try

status = CDFcreateAttr (id, "TITLE", TITLEattrScope, TITLEattrNum)
status = CDFcreateAttr (id, UNITSattrName, VARIABLE SCOPE, UNITSattrnum)

catch ex as Exception

end try

4.4.13 CDFdeleteAttr

integer CDFdeleteAttr(¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.
attrNum as integer) ‘¢ in -- Attribute identifier.

CDFdeleteAttr deletes the specified attribute from a CDF.

The arguments to CDFdeleteAttr are defined as follows:

197

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum The attribute number to be deleted.

4.4.13.1. Example(s)

The following example deletes an existing attribute named MY ATTR from a CDF.

dim id as long ¢ CDF identifier.

Dim status as integer ¢ Returned status code.
dim attrNum as integer ¢ Attribute number.

try

attrNum = CDFgetAttrNum (id, “MY_ATTR”)
status = CDFdeleteAttr (id, attrNum)

catch ex as Exception

end try

4.4.14 CDFdeleteAttrgEntry

integer CDFdeleteAttrgEntry(¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.
attrNum as integer, ‘¢ in -- Attribute identifier.

entryNum as integer in -- gEntry identifier.
ry g gbntry

CDFdeleteAttrgEntry deletes the specified entry (gEntry) in a global attribute from a CDF.
The arguments to CDFdeleteAttrgEntry are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum The global attribute number from which to delete an attribute entry.

entryNum The gEntry number to delete.

198

4.4.14.1. Example(s)

The following example deletes the entry number 5 from an existing global attribute MY ATTR in a CDF.

dim id as long ¢ CDF identifier.

Dim status as integer ¢ Returned status code.
dim varNum as integer Attribute number.
dim entryNum as integer gEntry number.

3

3

try
attrNum = CDFgetAttrNum (id, “MY_ATTR”)
entryNum = 5
status = CDFdeleteAttrgEntry (id, attrNum, entryNum)

catch ex as Exception

end try

4.4.15 CDFdeleteAttrrEntry

integer CDFdeleteAttrrEntry(¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.

attrNum as integer, ‘¢ in -- Attribute identifier.
entryNum as integer) in -- rEntry identifier.

CDFdeleteAttrrEntry deletes the specified entry (rEntry), corresponding to an rVariable, in an (variable) attribute from
a CDF.

The arguments to CDFdeleteAttrrEntry are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum The (variable) attribute number.

entryNum The rEntry number.

4.4.15.1. Example(s)

The following example deletes the entry corresponding to rVariable “MY_ VARI1” from the variable attribute
“MY_ATTR” in a CDF.

199

dim id as long ¢ CDF identifier.

Dim status as integer ¢ Returned status code.
dim varNum as integer ¢ Attribute number.
dim entryNum as integer ¢ rEntry number.

try

attrNum = CDFgetAttrNum (id, “MY_ATTR”)
entryNum = CDFgetVarNum (id, “MY_VARI1”)
status = CDFdeleteAttrrEntry (id, attrNum, entryNum)

catch ex as Exception

end try

4.4.16 CDFdeleteAttrzEntry

integer CDFdeleteAttrzEntry(¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.
attrNum as integer, ‘¢ in -- Attribute identifier.

entryNum as integer) in -- zEntry identifier.

CDFdeleteAttrzEntry deletes the specified entry (zEntry), corresponding to a zVariable, in an (variable) attribute from a
CDF.

The arguments to CDFdeleteAttrzEntry are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum The identifier of the variable attribute.

entryNum The zEntry number to be deleted that is the zVariable number.

4.4.16.1. Example(s)

The following example deletes the variable attribute entry named MY ATTR that is attached to the zVariable
MY _ VARI.

dim id as long ¢ CDF identifier.

200

Dim status as integer ¢ Returned status code.
dim attrNum as integer ¢ Attribute number.
dim entryNum as integer ¢ zEntry number.

try
attrNum = CDFgetAttrNum (id, “MY_ATTR”)
entryNum = CDFgetVarNum (id, “MY_VARI1”)
status = CDFdeleteAttrzEntry (id, attrNum, entryNum)

catch ex as Exception

end try

4.4.17 CDFgetAttrgEntry

integer CDFgetAttrgEntry (¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.

attrNum as integer, ‘¢ in -- Attribute identifier.
entryNum as integer, ¢ in -- gEntry number.

value as TYPE) out -- gEntry data.
TYPE -- VB value/string type or object

This method is identical to the method CDFattrGet. CDFgetAttrgEntry is used to read a global attribute entry from a
CDF. In most cases it will be necessary to call CDFinquireAttrgEntry before calling CDFgetAttrgEntry in order to
determine the data type and number of elements (of that data type) for the entry.

The arguments to CDFgetAttrgEntry are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

attrNum The attribute number. This number may be determined with a call to CDFgetAttrNum.

entryNum The global attribute entry number.

value The value read.

4.4.17.1. Example(s)

The following example displays the value of the global attribute called HISTORY.

dim id as long ¢ CDF identifier.
Dim status as integer ¢ Returned status code.

201

3

Attribute number.
Entry number.

Dim attrN as integer
Dim entryN as integer
Dim dataType as integer Data type.

Dim numElems as integer Number of elements (of data type).
Dim buffer as Object ¢ Buffer to receive value.

3

3

try
attrN = CDFattrNum (id, "HISTORY™")
entryN = 0
status = CDFinquireAttrgEntry (id, attrN, entryN, dataType, numElems)
status = CDFgetAttrgEntry (id, attrN, entryN, buffer)

if dataType = CDF_CHAR then
¢ buffer is a string

end if
catch ex as Exception

end try

4.4.18 CDFgetAttrgEntryDataType

integer CDFgetAttrgEntryDataType (‘¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.
attrNum as integer, ‘¢ in -- Attribute identifier.

entryNum as integer,
dataType as integer)

in -- gEntry number.
out -- gEntry data type.

CDFgetAttrgEntryDataType returns the data type of the specified global attribute and gEntry number in a CDF. The
data types are described in Section 2.6.

The arguments to CDFgetAttrgEntryDataType are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum The global attribute number.
entryNum The gEntry number.

dataType The data type of the gEntry.

4.4.18.1. Example(s)

The following example gets the data type for the gEntry numbered 2 from the global attribute “MY_ATTR” in a CDF.

202

dim id as long ¢ CDF identifier.

Dim status as integer ¢ Returned status code.
Dim attrNum as integer ¢ Attribute number.
dim entryNum as integer ¢ gEntry number.

dim dataType as integer ¢ gEntry data type.

try
attrNum = CDFgetAttrNum (id, “MY_ATTR”)
entryNum = 2
status = CDFgetAttrgEntryDataType (id, attrNum, entryNum, dataType)

catch ex as Exception

end try

4.4.19 CDFgetAttrgEntryNumElements

integer CDFgetAttrgEntryNumElements (out -- Completion status code.

id as long, ¢ in-- CDF identifier.

attrNum as integer, ‘¢ in -- Attribute identifier.

entryNum as integer, in -- gEntry number.

numElems as integer) out -- gEntry’s number of elements.

CDFgetAttrgEntryNumElements returns the number of elements of the specified global attribute and gentry number in
a CDF.
The arguments to CDFgetAttrgEntryNumElements are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum The identifier of the global attribute.
entryNum The gEntry number.

numElems The number of elements of the gEntry.

4.4.19.1. Example(s)

The following example gets the number of elements from the gEntry numbered 2 from the global attribute
“MY_ATTR” in a CDF.

203

dim id as long ¢ CDF identifier.

Dim status as integer ¢ Returned status code.

dim attrNum as integer ¢ Attribute number.

dim entryNum as integer ¢ gEntry number.

dim numElements as integer gEntry’s number of elements.

3

try
attrNum = CDFgetAttrNum (id, “MY_ATTR”)
entryNum = 2
status = CDFgetAttrgEntryNumElements (id, attrNum, entryNum, numElements)

catch ex as Exception

end try

4.4.20 CDFgetAttrMaxgEntry

integer CDFgetAttrMaxgEntry (‘¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.
attrNum as integer, ‘¢ in -- Attribute identifier.

maxEntry as integer out -- The last gEntry number.
ry g gentry

CDFgetAttrMaxgEntry returns the last entry number of the specified global attribute in a CDF.
The arguments to CDFgetAttrMaxgEntry are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum The identifier of the global attribute.

maxEntry The last gEntry number.

4.4.20.1. Example(s)

The following example gets the last entry number from the global attribute “MY_ATTR” in a CDF.

dim id as long ¢ CDF identifier.
Dim attrNum as integer ¢ Attribute number.

204

dim maxEntry as integer ¢ The last gEntry number.

try

attrNum = CDFgetAttrNum (id, “MY_ATTR”)

status = CDFgetAttrMaxgEntry (id, attrNum, maxEntry)
catch ex as Exception

end try

4.4.21 CDFgetAttrMaxrEntry

integer CDFgetAttrMaxrEntry (out -- Completion status code.

id as long, ¢ in-- CDF identifier.

attrNum as integer, ‘¢ in -- Attribute identifier.

maxEntry as integer) out -- The maximum rEntry number.

CDFgetAttrMaxrEntry returns the last rEntry number (rVariable number) to which the given variable attribute is
attached.

The arguments to CDFgetAttrMaxrEntry are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum The identifier of the variable attribute.

maxEntry The last rEntry number (rVariable number) to which attrNum is attached..

4.4.21.1. Example(s)

The following example gets the last entry, corresponding to the last rVariable number, from the variable attribute
“MY_ATTR” in a CDF.

dim id as long ¢ CDF identifier.

Dim status as integer ¢ Returned status code.
dim attrNum as integer Attribute number.

dim maxEntry as integer The last rEntry number.

3

try

205

attrNum = CDFgetAttrNum (id, “MY_ATTR”)
status = CDFgetAttrMaxrEntry (id, attrNum, maxEntry)

catch ex as Exception

end try

4.4.22 CDFgetAttrMaxzEntry

integer CDFgetAttrMaxzEntry (¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.
attrNum as integer, ‘¢ in -- Attribute identifier.

maxEntry as integer out -- The maximum zEntry number.
ry g ry

CDFgetAttrMaxzEntry returns the last entry number, corresponding to the last zVariable number, to which the given
variable attribute is attached.
The arguments to CDFgetAttrMaxzEntry are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum The identifier of the variable attribute.

maxEntry The last zEntry number (zVariable number) to which attrNum is attached..

4.4.22.1. Example(s)

The following example gets the last entry, corresponding to the last zVariable number, attached to the variable attribute
MY _ ATTR in a CDF.

dim id as long ¢ CDF identifier.

Dim status as integer ¢ Returned status code.
dim attrNum as integer Attribute number.

dim maxEntry as integer The last zEntry number

3

3

try
attrNum = CDFgetAttrNum (id, “MY_ATTR”)
status = CDFgetAttrMaxzEntry (id, attrNum, maxEntry)

catch ex as Exception

206

end try

4.4.23 CDFgetAttrName

integer CDFgetAttrName (¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.
attrNum as integer, ‘¢ in -- Attribute identifier.

attrName as string) out -- The attribute name.

CDFgetAttrName gets the name of the specified attribute (by its number) in a CDF.
The arguments to CDFgetAttrName are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum The identifier of the attribute.

attrName The name of the attribute.

4.4.23.1. Example(s)

The following example retrieves the name of the attribute number 2, if it exists, in a CDF.

dim id as long ¢ CDF identifier.
Dim status as integer ¢ Returned status code.
dim attrNum as integer ¢ Attribute number.

3

Dim attrName as string The attribute name.

attrNum = 2
try

status = CDFgetAttrName (id, attrNum, attrName)
catch ex as Exception

end try

207

4.4.24 CDFgetAttrNum

integer CDFgetAttrNum (‘¢ out -- Attribute number.
id as long, ¢ in-- CDF identifier.
attrName as string) ¢ in -- The attribute name.

CDFgetAttrNum is used to determine the attribute number associated with a given attribute name. If the attribute is
found, CDFgetAttrNum returns its number - which will be equal to or greater than zero (0). If an error occurs (e.g., the
attribute name does not exist in the CDF), an error code (of type Int) is returned. Error codes are less than zero (0).

The arguments to CDFgetAttrNum are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

attrName The name of the attribute for which to search. This may be at most
CDF_ATTR NAME LEN256 characters. Attribute names are case-sensitive.

CDFgetAttrNum may be used as an embedded function call when an attribute number is needed.

4.4.24.1. Example(s)

In the following example the attribute named pressure will be renamed to PRESSURE with CDFgetAttrNum being
used as an embedded function call. Note that if the attribute pressure did not exist in the CDF, the call to
CDFgetAttrNum would have returned an error code. Passing that error code to CDFattrRename as an attribute number
would have resulted in CDFattrRename also returning an error code.

dim id as long ¢ CDF identifier.
Dim status as integer ¢ Returned status code.
try

status = CDFrenameAttr (id, CDFgetAttrNum (id,"pressure"), "PRESSURE")
catch ex as Exception

end try

4.4.25 CDFgetAttrrEntry

integer CDFgetAttrrEntry (¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.
attrNum as integer, ‘¢ in -- Attribute identifier.

entryNum as integer, in -- Entry number.

208

value as TYPE) ¢ out -- Entry data.
¢ TYPE -- VB value/string type or object

This method is identical to the method CDFattrGet. CDFgetAttrrEntry is used to read an rVariable attribute entry from
a CDF. In most cases it will be necessary to call CDFinquireAttrrEntry before calling CDFgetAttrrEntry in order to
determine the data type and number of elements (of that data type) for the entry.

The arguments to CDFgetAttrrEntry are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

attrNum The attribute number. This number may be determined with a call to CDFgetAttrNum.

entryNum The rVariable attribute entry number that is the rVariable number from which the attribute is
read.

value The entry value read.

4.4.25.1. Example(s)

The following example displays the value of the UNITS attribute for the rEntry corresponding to the PRES LVL
rVariable (but only if the data type is CDF_CHAR).

dim id as longid ¢ CDF identifier.

Dim status as integer ¢ Returned status code.

Dim attrN as integer Attribute number.

Dim entryN as integer Entry number.

Dim dataType as integer Data type.

Dim numElems as integer Number of elements (of data type).

3
3

3

try
attrN = CDFattrNum (id, "UNITS")
entryN = CDFvarNum (id, "PRES LVL") ¢ The rEntry number is the rVariable number.
status = CDFinquireAttrrEntry (id, attrN, entryN, out dataType, out numElems)
if dataType = CDF_CHAR then

Dim buffer as string
status = CDFgetAttrrEntry (id, attrN, entryN, buffer)

end if .
catch ex as Exception

end try

209

4.4.26 CDFgetAttrrEntryDataType

integer CDFgetAttrrEntryDataType (‘¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.
attrNum as integer, ‘¢ in -- Attribute identifier.

in -- rEntry number.
out -- rEntry data type.

entryNum as integer,
dataType as integer)

CDFgetAttrrEntryDataType returns the data type of the rEntry from an (variable) attribute in a CDF. The data types are
described in Section 2.6.
The arguments to CDFgetAttrrEntryDataType are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum The identifier of the variable attribute.
entryNum The rEntry number.

dataType The data type of the rEntry.

4.4.26.1. Example(s)

The following example gets the data type for the entry of rVariable “MY_ VARI1” in the (variable) attribute
“MY_ATTR” in a CDF.

dim id as long ¢ CDF identifier.
Dim status as integer ¢ Returned status code.
dim attrNum as integer ¢ Attribute number.

3

rEntry number.
rEntry data type.

dim entryNum as integer
dim dataType as integer

3

try
attrNum = CDFgetAttrNum (id, “MY_ATTR”)

entryNum = CDFgetVarNum (id, “MY_VARI1”)
status = CDFgetAttrrEntryDataType (id, attrNum, entryNum, dataType)

catch ex as Exception

end try

210

4.4.27 CDFgetAttrrEntryNumElements

integer CDFgetAttrrEntryNumElements (out -- Completion status code.

id as long, ¢ in-- CDF identifier.

attrNum as integer, ‘¢ in -- Attribute identifier.

startRec as integer, in -- rEntry number.

numElems as integer) out -- rEntry’s number of elements.
CDFgetAttrrEntryNumElements returns the number of elements of the rEntry from an (variable) attribute in a CDF.
The arguments to CDFgetAttrrEntryNumElements are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum The identifier of the variable attribute.
entryNum The rEntry number.

numElems The number of elements of the rEntry.

4.4.27.1. Example(s)

The following example gets the number of elements for the entry of rVariable “MY_VARI1” in the (variable) attribute
“MY_ATTR” in a CDF.

dim id as long ¢ CDF identifier.

Dim status as integer ¢ Returned status code.
dim attrNum as integer ¢ Attribute number.
dim entryNum as integer ¢ rEntry number.

3

dim numElements as integer rEntry’s number of elements.

try
attrNum = CDFgetAttrNum (id, “MY_ATTR”)
entryNum = CDFgetVarNum (id, “MY_VARI1”)
status = CDFgetAttrrEntryNumElements (id, attrNum, entryNum, numElements)

catch ex as Exception

end try

211

4.4.28 CDFgetAttrScope

integer CDFgetAttrScope (‘¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.

attrNum as integer, in -- Attribute number.
attrScope as integer) out -- Attribute scope.

CDFgetAttrScope returns the attribute scope (GLOBAL SCOPE or VARIABLE SCOPE) of the specified attribute in
a CDF. Refer to Section 2.13 for the description of the attribute scopes.
The arguments to CDFgetAttrScope are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum The attribute number.

attrScope The scope of the attribute.

4.4.28.1. Example(s)

The following example gets the scope of the attribute “MY_ ATTR” in a CDF.

dim id as long ¢ CDF identifier.

Dim status as integer ¢ Returned status code.
dim attrNum as integer ¢ Attribute number.
dim attrScope as integer ¢ Attribute scope.

try

attrNum = CDFgetAttrNum (id, “MY_ATTR”)
status = CDFgetAttrScope (id, attrNum, attrScope)

catch ex as Exception

end try

4.4.29 CDFgetAttrzEntry

integer CDFgetAttrzEntry(¢ out -- Completion status code.

212

id as long, ¢ in-- CDF identifier.

attrNum as integer, in -- Variable attribute number.
entryNum as integer, in -- Entry number.

value as TYPE) ‘ out -- Entry value.

TYPE -- VB value/string type or object

CDFgetAttrzEntry is used to read zVariable’s attribute entry.. In most cases it will be necessary to call
CDFinquireAttrzEntry before calling this method in order to determine the data type and number of elements (of that
data type) for the entry.

The arguments to CDFgetAttrzEntry are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

attrNum The variable attribute number. This number may be determined with a call to
CDFgetAttrNum.
entryNum The variable attribute entry number that is the zVariable number from which the attribute

entry is read

value The entry value read.

4.4.29.1. Example(s)

The following example displays the value of the UNITS attribute for the PRES LVL zVariable (but only if the data
type is CDF_CHAR).

dim id as long ¢ CDF identifier.

Dim status as integer Returned status code.

Dim attrN as integer Attribute number.

Dim entryN as integer Entry number.

Dim dataType as integer Data type.

Dim numElems as integer Number of elements (of data type).

3
3

3

try
attrN = CDFgetAttrNum (id, "UNITS")
entryN = CDFgetVarNum (id, "PRES LVL") ¢ The zEntry number is the zVariable number.
status = CDFinquireAttrzEntry (id, attrN, entryN, dataType, numElems)
if dataType = CDF_CHAR then
dim buffer as string
status = CDFgetAttrzEntry (id, attrN, entryN, buffer)
end if

catch ex as Exception

end try

213

4.4.30 CDFgetAttrzEntryDataType

integer CDFgetAttrzEntryDataType (¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.
attrNum as integer, ‘¢ in -- Attribute identifier.

in -- zEntry number.
out -- zEntry data type.

entryNum as integer,
dataType as integer)

CDFgetAttrzEntryDataType returns the data type of the zEntry for the specified variable attribute in a CDF. The data
types are described in Section 2.6.
The arguments to CDFgetAttrzEntryDataType are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum The identifier of the variable attribute.
entryNum The zEntry number that is the zVariable number.

dataType The data type of the zEntry.

4.4.30.1. Example(s)

The following example gets the data type of the attribute named MY ATTR for the zVariable MY VARI in a CDF.

dim id as long ¢ CDF identifier.
Dim status as integer Returned status code.
dim attrNum as integer ¢ Attribute number.

3

zEntry number.
zEntry data type.

dim entryNum as integer
dim dataType as integer

3

try
attrNum = CDFgetAttrNum (id, “MY_ATTR”)
entryNum = CDFgetVarNum (id, “MY_VARI1”)
status = CDFgetAttrzEntryDataType (id, attrNum, entryNum, dataType)

catch ex as Exception

end try

214

4.4.31 CDFgetAttrzEntryNumElements

integer CDFgetAttrzEntryNumElements (out -- Completion status code.

id as long, ¢ in-- CDF identifier.

attrNum as integer, ‘¢ in -- Attribute identifier.
entryNum as integer , in -- zEntry number.

numElems as integer) out -- zEntry’s number of elements.

CDFgetAttrzEntryNumElements returns the number of elements of the zEntry for the specified variable attribute in a
CDF.
The arguments to CDFgetAttrzEntryNumElements are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum The identifier of the variable attribute.
entryNum The zEntry number that is the zVariable number.

numElems The number of elements of the zEntry.

4.4.31.1. Example(s)

The following example returns the number of elements for attribute named MY ATTR for the zVariable MY VARI in
a CDF

dim id as long ¢ CDF identifier.

Dim status as integer Returned status code.

dim attrNum as integer ¢ Attribute number.

dim entryNum as integer zEntry number.

dim numElements as integer zEntry’s number of elements.

3

3

try
attrNum = CDFgetAttrNum (id, “MY_ATTR”)
entryNum = CDFgetVarNum (id, “MY_VARI1”)
status = CDFgetAttrzEntryNumElements (id, attrNum, entryNum, out numElements)

catch ex as Exception

end try

215

4.4.32 CDFgetNumAttrgEntries

integer CDFgetNumAttrgEntries (¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.

attrNum as integer, in -- Attribute number.

entries as integer) out -- Total gEntries.

CDFgetNumAttrgEntries returns the total number of entries (gEntries) written for the specified global attribute in a
CDF.
The arguments to CDFgetNumAttrgEntries are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

attrNum The attribute number.

entries Number of gEntries for attrNum.

4.4.32.1. Example(s)

The following example retrieves the total number of gEntries for the global attribute MY ATTR in a CDF.

dim status as integer ¢ Returned status code.
dim id as long ¢ CDF identifier.

Dim attrNum as integer ¢ Attribute number.
Dim numEntries as integer ¢ Number of entries.

Dim i as integer

try
attrNum = CDFgetAttrNum (id, “MUY_ATTR”)
status = CDFgetNumAttrgEntries (id, attrNum, numEntries)
for i=0 to (numEntries-1)
¢ process an entry
next i

catch ex as Exception

end try

216

4.4.33 CDFgetNumAttributes

integer CDFgetNumAttributes (¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.
numAttrs as integer) ¢ out -- Total number of attributes.

CDFgetNumAttributes returns the total number of global and variable attributes in a CDF.
The arguments to CDFgetNumAttributes are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

numAttrs The total number of global and variable attributes.

4.4.33.1. Example(s)

The following example returns the total number of global and variable attributes in a CDF.

dim status as integer ¢ Returned status code.
dim id as long ¢ CDF identifier.

dim numAttrs as integer ¢ Number of attributes.
try

status = CDFgetNumAttributes (id, out numAttrs)

catch ex as Exception

end try

4.4.34 CDFgetNumAttrrEntries

integer CDFgetNumAttrrEntries (‘¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.
attrNum as integer , ‘¢ in -- Attribute number.

217

3

entries as integer) out -- Total rEntries.

CDFgetNumAttrrEntries returns the total number of entries (rEntries) written for the rVariables in the specified
(variable) attribute of a CDF.
The arguments to CDFgetNumAttrrEntries are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

attrNum The attribute number.

entries Total rEntries.

4.4.34.1. Example(s)

The following example returns the total number of rEntries from the variable attribute “MY_ATTR” in a CDF.

dim status as integer ¢ Returned status code.

dim id as long

dim attrNum as integer ¢ Attribute number.
dim entries as integer ¢ Number of entries.

try

attrNum = CDFgetAttrNum (id, “MY_ATTR”)
status = CDFgetNumAttrrEntries (id, attrNum, entries)

catch ex as Exception

end try

4.4.35 CDFgetNumAttrzEntries

integer CDFgetNumAttrzEntries (¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.

attrNum as integer, in -- Attribute number.

entries as integer) out -- Total zEntries.

CDFgetNumAttrzEntries returns the total number of entries (zEntries) written for the zVariables in the specified
variable attribute in a CDF.

218

The arguments to CDFgetNumAttrzEntries are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

attrNum The attribute number.

entries Total zEntries.

4.4.35.1. Example(s)

The following example returns the total number of zEntries for the variable attribute MY ATTR in a CDF.

dim status as integer Returned status code.
dim id as long ¢ CDF identifier.

dim attrNum as integer ¢ Attribute number.
dim entries as integer ¢ Number of entries.
try

attrNum = CDFgetAttrNum (id, “MY_ATTR”)
status = CDFgetNumAttrzEntries (id, attrNum, entries)
catch ex as Exception

end try

4.4.36 CDFgetNumgAttributes

integer CDFgetNumgAttributes (¢ out -- Completion status code.

id as long, ¢ in-- CDF identifier.

numAttrs as integer) ¢ out -- Total number of global attributes.
CDFgetNumgAttributes returns the total number of global attributes in a CDF.

The arguments to CDFgetNumgAttributes are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

numALttrs The number of global attributes.

219

4.4.36.1. Example(s)

The following example returns the total number of global attributes in a CDF.

dim status as integer ¢ Returned status code.

dim id as long ¢ CDF identifier.

dim numAttrs as integer ¢ Number of global attributes.
try

status = CDFgetNumgAdttributes (id, numAttrs)

catch ex as Exception

end try

4.4.37 CDFgetNumvAttributes

integer CDFgetNumvAttributes (¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.
numAttrs as integer) ‘ out -- Total number of variable attributes.

CDFgetNumvAttributes returns the total number of variable attributes in a CDF.
The arguments to CDFgetNumvAttributes are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

numAttrs The number of variable attributes.

4.4.37.1. Example(s)

The following example returns the total number of variable attributes of a CDF.

220

dim status as integer
dim id as long
dim numAttrs as integer

try

¢ Returned status code.
¢ CDF identifier.
‘ Number of variable attributes.

status = CDFgetNumvAttributes (id, numAttrs)

catch ex as Exception

end try

4.4.38 CDFinquireAttr

integer CDFinquireAttr(
id as long,

attrNum as integer,
attrName as string,
attrScope as integer,
maxgEntry as integer,
maxrEntry as integer,
maxzEntry as integer)

out -- Completion status code.

¢ in-- CDF identifier.

in -- Attribute number.

out -- Attribute name.

out -- Attribute scope.

out -- Maximum gEntry number.
out -- Maximum rEntry number.
out -- Maximum zEntry number.

CDFinquireAttr is used to inquire information about the specified attribute. This method expands the method
CDFattrInquire to provide an extra information about zEntry if the attribute has a variable scope.

The arguments to CDFinquireAttr are defined as follows:

id

attrNum

attrName

attrScope

maxgEntry

The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

The attribute number to inquire. This number may be determined with a call to
CDFgetAttrNum.

The attribute's name that corresponds to attrNum. This string length is limited to
CDF _ATTR NAME LEN256.

The scope of the attribute (GLOBAL SCOPE or VARIABLE SCOPE). Attribute scopes
are defined in Section 2.13.

For vAttributes, this value of this field is -1 as it doesn’t apply to global attribute entry
(gEntry). For gAttributes, this is the maximum entry (gentry) number used. This number
may not correspond with the number of entries (if some entry numbers were not used). If
no entries exist for the attribute, then the value of -1 is returned.

221

maxrEntry For gAttributes, this value of this field is -1 as it doesn’t apply to rVariable attribute entry
(rEntry). For vAttributes, this is the maximum rVariable attribute entry (rEntry) number
used. This number may not correspond with the number of entries (if some entry numbers
were not used). If no entries exist for the attribute, then the value of -1 is returned.

maxzEntry For gAttributes, this value of this field is -1 as it doesn’t apply to zVariable attribute entry
(zEntry). For vAttributes, this is the maximum zVariable attribute entry (zEntry) number
used. This may not correspond with the number of entries (if some entry numbers were not
used). If no entries exist for the attribute, then the value of -1 is returned.

4.4.38.1. Example(s)

The following example displays the name of each attribute in a CDF. The number of attributes in the CDF is first
determined by calling the method CDFinquireCDF. Note that attribute numbers start at zero (0) and are consecutive.

CDF identifier.

Returned status code.

Number of dimensions.
Dimension sizes (allocate to allow the
maximum number of dimensions).
Data encoding.

Variable majority.

Maximum record number in CDF.
Number of variables in CDF.
Number of attributes in CDF.
attribute number.

attribute name.

attribute scope.

dim id as long

Dim status as integer
Dim numDims as integer
Dim dimSizes() as integer

Dim encoding as integer
Dim majority as integer
Dim maxRec as integer
Dim numVars as integer
Dim numAttrs as integer
Dim attrN as integer

Dim attrName as string
Dim attrScope as integer
Dim maxgEntry as integer
Dim maxrEntry as integer
Dim maxzEntry as integer

3
3

3

3

Maximum entry numbers.

try
status = CDFinquireCDF (id, numDims, dimSizes, encoding, majority, maxRec, numVars, numAttrs)
forattrN = 0 to (numAttrs-1)
status = CDFinquireAttr (id, attrN, attrName, attrScope, maxgEntry, maxrEntry, maxzEntry)
next attrN

catch ex as Exception

end try

222

4.4.39 CDFinquireAttrgEntry

integer CDFinquireAttrgEntry (out -- Completion status code.

id as long, ¢ in-- CDF identifier.

attrNum as integer, in -- attribute number.

entryNum as integer, in -- Entry number.

dataType as integer, out -- Data type.

numElements as integer) out -- Number of elements (of the data type).

This method is identical to CDFattrEntryInquire. CDFinquireAttrgEntry is used to inquire information about a global
attribute entry.
The arguments to CDFinquireAttrgEntry are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

attrNum The attribute number to inquire. This number may be determined with a call to
CDFgetAttrNum.

entryNum The entry number to inquire.

dataType The data type of the specified entry. The data types are defined in Section 2.6.

numElements The number of elements of the data type. For character data types (CDF_CHAR and

CDF_UCHAR), this is the number of characters in the string. For all other data types
this is the number of elements in an array of that data type.

4.4.39.1. Example(s)

The following example returns each entry for a global attribute named TITLE. Note that entry numbers need not be
consecutive - not every entry number between zero (0) and the maximum entry number must exist. For this reason
NO _SUCH_ENTRY is an expected error code.

CDF identifier.

Returned status code.
attribute number.

Entry number.

attribute name.

attribute scope.

Maximum entry number used.
Data type.

Number of elements

dim id as long

Dim status as integer
Dim attrN as integer

Dim entryN as integer
Dim attrName as string
Dim attrScope as integer
Dim maxEntry as integer
Dim dataType as integer
Dim numElems as integer

try
attrN = CDFgetAttrNum (id, "TITLE")
status = CDFattrInquire (id, attrN, attrName, attrScope, maxEntry)

223

for entryN = 0 to maxEntry
status = CDFinquireAttrgEntry (id, attrN, entryN, dataType, numElems)

¢ process entries

next entryN

catch ex as Exception

end try

4.4.40 CDFinquireAttrrEntry

integer CDFinquireAttrrEntry (

id as long,

attrNum as integer,
entryNum as integer,
dataType as integer,
numElements as integer)

out -- Completion status code.
‘ in-- CDF identifier.

in -- Attribute number.

in -- Entry number.

out -- Data type.

out -- Number of elements

This method is identical to the method CDFattrEntrylnquire. CDFinquireAttrrEntry is used to inquire about an

rVariable’s attribute entry.

The arguments to CDFinquireAttrrEntry are defined as follows:

id

attrNum

entryNum

dataType

numElements

4.4.40.1. Example(s)

The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

The attribute number to inquire. This number may be determined with a call to
CDFgetAttrNum.

The entry number to inquire. This is the rVariable number (the rVariable being
described in some way by the rEntry).

The data type of the specified entry. The data types are defined in Section 2.6.
The number of elements of the data type. For character data types (CDF _CHAR and

CDF_UCHAR), this is the number of characters in the string. For all other data types
this is the number of elements in an array of that data type.

The following example determines the data type of the “UNITS” attribute for the rVariable “Temperature”, then
retrieves and displays the value of the UNITS attribute.

224

dim id as long

Dim status as integer
Dim attrN as integer

Dim entryN as integer
Dim dataType as integer
Dim numElems as integer

try

¢ CDF identifier.

¢ Returned status code.
Attribute number.
Entry number.

Data type.

¢ Number of elements.

3

3

3

attrN = CDFgetAttrNum (id, "UNITS")

entryN = CDFgetVarNum (id, "Temperature")

status = CDFinquireAttrrEntry (id, attrN, entryN, dataType, numElems)
if dataType = CDF_CHAR then

dim buffer as string

status = CDFgetAttrrEntry (id, attrN, entryN, buffer)

end if
catch ex as Exception

end try

4.4.41 CDFinquireAttrzEntry

integer CDFinquireAttrzEntry (

id as long,

attrNum as integer,
entryNum as integer,
dataType as integer,
numElements as integer)

out -- Completion status code.

‘ in-- CDF identifier.

‘¢ in -- (Variable) Attribute number.

in -- zEntry number.

out -- Data type.

out -- Number of elements (of the data type).

CDFinquireAttrzEntry is used to inquire about a zVariable’s attribute entry.

The arguments to CDFinquireAttrzEntry are defined as follows:

id

attrNum

entryNum

dataType

numElements

The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

The (variable) attribute number for which to inquire an entry. This number may be
determined with a call to CDFgetAttrNum (see Section 4.4.24).

The entry number to inquire. This is the zVariable number (the zVariable being
described in some way by the zEntry).

The data type of the specified entry. The data types are defined in Section 2.6.
The number of elements of the data type. For character data types (CDF_CHAR and

CDF_UCHAR), this is the number of characters in the string. For all other data types
this is the number of elements in an array of that data type.

225

4.4.41.1. Example(s)

The following example determines the data type of the UNITS attribute for the zVariable Temperature, then retrieves
and displays the value of the UNITS attribute.

dim id as long ¢ CDF identifier.

Dim status as integer Returned status code.
Dim attrN as integer ¢ attribute number.
Dim entryN as integer ¢ Entry number.

Dim dataType as integer ¢ Data type.

Dim numElems as integer ¢ Number of elements .
try

attrN = CDFgetAttrNum (id, "UNITS")
entryN = CDFgetVarNum (id, "Temperature")

status = CDFinquireAttrzEntry (id, attrN, entryN, dataType, numElems)
if dataType = CDF_CHAR then
dim buffer as string
status = CDFgetAttrzEntry (id, attrN, entryN, buffer)
end if
catch ex as Exception

end try

4.4.42 CDFputAttrgEntry

integer CDFputAttrgEntry(¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.
attrNum as integer, ‘¢ in -- Attribute number.

in -- Attribute entry number.
dataType as integer, in -- Data type of this entry.
numElements as integer, in -- Number of elements in the entry (of the data type).
value as TYPE) ¢ in -- Attribute entry value.
¢ TYPE -- VB value/string type.

entryNum as integer,

CDFputAttrgEntry is used to write a global attribute entry. The entry may or may not already exist. If it does exist, it
is overwritten. The data type and number of elements (of that data type) may be changed when overwriting an existing
entry. A global attribute can have one or more attribute entries.

The arguments to CDFputAttrgEntry are defined as follows:

226

id

attrNum
entryNum

dataType

numElements

value

4.4.42.1. Example(s)

The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

The attribute number. This number may be determined with a call to CDFgetAttrNum.
The attribute entry number.

The data type of the specified entry. Specify one of the data types defined in Section
2.6.

The number of elements of the data type. For character data types (CDF_CHAR and
CDF _UCHAR), this is the number of characters in the string (An array of characters).
For all other data types this is the number of elements in an array of that data type.

The value(s) to write. The entry value is written to the CDF from memory address
value.

The following example writes a global attribute entry to the global attribute called TITLE.

dim id as long
Dim status as integer
Dim entryNum as integer

¢ CDF identifier.
¢ Returned status code.
¢ Attribute entry number.

Dim title as string = "CDF title." Value of TITLE attribute.
entryNum = 0
try

status = CDFputAttrgEntry (id, CDFgetAttrNum (id,"TITLE"), entryNum, CDF CHAR, title.Length, title)

catch ex as Exception

end try

4.4.43 CDFputAttrrEntry

integer CDFputAttrrEntry(
id as long,

attrNum as integer,
entryNum as integer,
dataType as integer,
numElems as integer,
value as TYPE)

out -- Completion status code.
‘ in-- CDF identifier.

in -- Attribute number.

in — Attribute entry number.
in -- Data type.

in -- Number of elements.

in -- tribute entry value.

227

¢ TYPE -- VB value/string type.

This method is identical to the method CDFattrPut. CDFputAttrrEntry is used to write rVariable’s attribute entry. The
entry may or may not already exist. If it does exist, it is overwritten. The data type and number of elements (of that
data type) may be changed when overwriting an existing entry.

The arguments to CDFputAttrrEntry are defined as follows:

id

attrNum

entryNum

dataType

numElements

value

4.4.43.1. Example(s)

The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

The attribute number. This number may be determined with a call to CDFgetAttrNum.

The attribute entry number that is the rVariable number to which this attribute entry
belongs.

The data type of the specified entry. Specify one of the data types defined in Section
2.6.

The number of elements of the data type. For character data types (CDF_CHAR and
CDF _UCHAR), this is the number of characters in the string (An array of characters).
For all other data types this is the number of elements in an array of that data type.

The value(s) to write. The entry value is written to the CDF from memory address
value.

The following example writes to the variable scope attribute VALIDs for the entry, of two elements, that corresponds

to the rVariable TMP.

dim id as long

Dim status as integer

Dim entryNum as integer
Dim numElements as integer
Dim TMPvalids() as short =

numElements = 2
try

¢ CDF identifier.
 Returned status code.
Entry number.
Number of elements (of data type).
{15,30} ¢ Value(s) of VALIDs attribute,
¢ rEntry for rVariable TMP.

3

3

status = CDFputAttrrEntry (id, CDFgetAttrNum (id,"VALIDs"), CDFgetVarNum (id,"TMP"),

catch ex as Exception

end try

CDF_INT2, numElements, TMPvalids)

228

4.4.44 CDFputAttrzEntry

integer CDFputAttrzEntry(

id as long,
attrNum as integer,

entryNum as integer,
dataType as integer,
numElements as integer,

value as TYPE)

out -- Completion status code.
‘ in-- CDF identifier.

in -- Attribute number.

¢ in -- Attribute entry number.

in -- Data type of this entry.

in -- Number of elements in the entry (of the data type)
¢ in -- Attribute entry value.

¢ TYPE -- VB value/string type.

CDFputAttrzEntry is used to write zVariable’s attribute entry. The entry may or may not already exist. If it does exist,
it is overwritten. The data type and number of elements (of that data type) may be changed when overwriting an

existing entry.

The arguments to CDFputAttrzEntry are defined as follows:

id

attrNum

entryNum

dataType

numElements

value

4.4.44.1. Example(s)

The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

The (variable) attribute number. This number may be determined with a call to
CDFgetAttrNum (see Section 4.4.24).

The entry number that is the zVariable number to which this attribute entry belongs.

The data type of the specified entry. Specify one of the data types defined in Section
2.6.

The number of elements of the data type. For character data types (CDF_CHAR and
CDF _UCHAR), this is the number of characters in the string (An array of characters).
For all other data types this is the number of elements in an array of that data type.

The value(s) to write. The entry value is written to the CDF from memory address
value.

The following example writes a zVariable’s attribute entry. The entry has two elements (that is two values for non-
CDF_CHAR type). The zEntry in the variable scope attribute VALIDs corresponds to the zVariable TMP.

dim id as long

Dim status as integer
Dim numElements as integer

¢ CDF identifier.
¢ Returned status code.
¢ Number of elements (of data type).

Dim TMPvalids() as short = {15,30} ¢ Value(s) of VALIDs attribute,

229

¢ zEntry for zVariable TMP.
numElements = 2
try

status = CDFputAttrzEntry (id, CDFgetAttrNum (id,"VALIDs"), CDFgetVarNum (id,"TMP"),
CDF _INT2, numElements, TMPvalids)

catch ex as Exception

end try

4.4.45 CDFrenameAttr

integer CDFrenameAttr(out -- Completion status code.
id as long, ¢ in-- CDF identifier.

attrNum as integer, in -- Attribute number.
attrName as string) in -- New attribute name.

This method is identical to method CDFattrRename. CDFrenameAttr renames an existing attribute.

4.4.45.1. Example(s)

In the following example the attribute named LAT is renamed to LATITUDE.

dim id as long ¢ CDF identifier.
Dim status as integer ¢ Returned status code.
try

status = CDFrenameAttr (id, CDFgetAttrNum (id,"LAT"), "LATITUDE")
catch ex as Exception

end try

4.4.46 CDFsetAttrgEntryDataSpec

230

integer CDFsetAttrgEntryDataSpec (‘¢ out -- Completion status code.
id as long, ¢ in-- CDF identifier.

attrNum as integer, in -- Attribute number.
entryNum as integer, in -- gEntry number.
dataType as integer) in -- Data type.

CDFsetAttrgEntryDataSpec respecifies the data type of a gEntry of a global attribute in a CDF. The new and old data
type must be equivalent. Refer to the CDF User’s Guide for descriptions of equivalent data types.
The arguments to CDFsetAttrgEntryDataSpec are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

attrNum The global attribute number.
entryNum The gEntry number.
dataType The new data type.

4.4.46.1. Example(s)

The following example modifies the third entry’s (entry number 2) data type of the global attribute MY ATTR in a
CDF. It will change its original data type from CDF INT2 to CDF_UINT?2.

dim id as long ¢ CDF identifier.

Dim status as integer ¢ Returned status code.
Dim entryNum as integer gEntry number.

Dim dataType as integer The new data type

3

3

entryNum = 2
dataType = CDF_UINT2
numElems = 1
try
status = CDFsetAttrgEntryDataSpec (id, CDFgetAttrNum (id, “MY_ATTR”), entryNum, dataType)

catch ex as Exception

end try

4.4.47 CDFsetAttrrEntryDataSpec

integer CDFsetAttrrEntryDataSpec (‘¢ out -- Completion status code.

231

id as long, ¢ in-- CDF identifier.
attrNum as integer, in -- Attribute number.
entryNum as integer, ¢ in -- rEntry number.
dataType as integer, in -- Data type.

numElements as integer) in -- Number of elements.

CDFsetAttrrEntryDataSpec respecifies the data specification (data type and number of elements) of an rEntry of a
variable attribute in a CDF. The new and old data type must be equivalent, and the number of elements must not be
changed. Refer to the CDF User’s Guide for descriptions of equivalent data types.

The arguments to CDFsetAttrrEntryDataSpec are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

attrNum The variable attribute number.
entryNum The rEntry number.

dataType The new data type.
numElements The new number of elements.

4.4.47.1. Example(s)

The following example modifies the data specification for an rEntry, corresponding to rVariable “MY_VAR”, in the
variable attribute “MY_ATTR” in a CDF. It will change its original data type from CDF INT2 to CDF _UINT?2.

dim id as long ¢ CDF identifier.

Dim status as integer Returned status code.

Dim dataType as integer

Dim numElements as integer ¢ Data type and number of elements.

dataType = CDF_UINT2
numElems = 1

try

status = CDFsetAttrrEntryDataSpec (id, CDFgetAttrNum (id, “MY_ATTR”),
CDFgetVarNum (id, “MY_VAR?”), dataType, numElems)

catch ex as Exception

end try

232

4.4.48 CDFsetAttrScope

integer CDFsetAttrScope (
id as long,

attrNum as integer,

scope as integer)

out -- Completion status code.
‘ in-- CDF identifier.

in -- Attribute number.

in -- Attribute scope.

CDFsetAttrScope respecifies the scope of an attribute in a CDF. Specify one of the scopes described in Section 2.13.
Global-scoped attributes will contain only gEntries, while variable-scoped attributes can hold rEntries and zEntries.

The arguments to CDFsetAttrScope are defined as follows:

id

attrNum

scope

4.4.48.1. Example(s)

The identifier of the current CDF. This identifier must have been initialized by a call to
CDFecreate (or CDFcreateCDF) or CDFopenCDF.

The attribute number.

The new attribute scope. The value should be either VARIABLE SCOPE or
GLOBAL_SCOPE.

The following example changes the scope of the global attribute named MY ATTR to a variable attribute

(VARIABLE_SCOPE).

dim id as long
Dim status as integer
Dim scope as integer

¢ CDF identifier.
¢ Returned status code.
¢ New attribute scope.

scope = VARIABLE SCOPE

try

status = CDFsetAttrScope (id, CDFgetAttrNum (id, “MY_ATTR?”), scope)

catch ex as Exception

end try

4.4.49 CDFsetAttrzEntryDataSpec

integer CDFsetAttrzEntryDataSpec (¢ out -- Completion status code.

id as long,
attrNum as integer,

¢ in -- CDF identifier.
¢ in -- Attribute number.

233

3

in -- zEntry number.
in -- Data type.

entryNum as integer,
dataType as integer)

3

CDFsetAttrzEntryDataSpec modifies the data type of a zEntry of a variable attribute in a CDF. The new and old data
type must be equivalent. Refer to the CDF User’s Guide for the description of equivalent data types.

The arguments to CDFsetAttrzEntryDataSpec are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

attrNum The variable attribute number.
entryNum The zEntry number that is the zVariable number.
dataType The new data type.

4.4.49.1. Example(s)

The following example respecifies the data type of the attribute entry of the attribute named MY ATTR that is
associated with the zVariable MY VAR. It will change its original data type from CDF INT2 to CDF UINT2.

dim id as long ¢ CDF identifier.

Dim status as integer ¢ Returned status code.
dim dataType as integer ¢ Data type

try

dataType = CDF_UINT2
numElems = 1
status = CDFsetAttrzEntryDataSpec (id, CDFgetAttrNum (id, “MY_ATTR”),
CDFgetVarNum (id, “MY_VAR?”), dataType)
. catch ex as Exception

end try

234

Chapter 5

S Interpreting CDF Status Codes

Most CDF APIs return a status code of type int. The symbolic names for these codes are defined in CDFException.cs
and should be used in your applications rather than using the true numeric values. Appendix A explains each status
code. When the status code returned from a CDF API is tested, the following rules apply.

status > CDF _OK Indicates successful completion but some additional information is
provided. These are informational codes.

status = CDF_OK Indicates successful completion.

CDF_WARN < status < CDF_OK Indicates that the function completed but probably not as expected.
These are warning codes.

status < CDF_WARN Indicates that the function did not complete. These for most cases
are error codes, thus an exception might be thrown.

The following example shows how you could check the status code returned from CDF functions.

dim status as integer

try

i status = CDFfunction (...) ¢ any CDF function returning integer

;:atch ex as Exception

end try
In your own status handler you can take whatever action is appropriate to the application. An example status handler
follows. Note that no action is taken in the status handler if the status is CDF_OK.

dim status as integer = ex.GetCurrentStatus()

dim errorMsg as string = ex.GetStatusMsg(status)

Explanations for all CDF status codes are available to your applications through the method CDFerror. CDFerror
encodes in a text string an explanation of a given status code.

235

Chapter 6

6 EPOCH Utility Routines

Several functions exist that compute, decompose, parse, and encode CDF_EPOCH and CDF_EPOCH!16 values. These
functions may be called by applications using the CDF_EPOCH and CDF _EPOCHI16 data types and are included in
the CDF library. The Concepts chapter in the CDF User's Guide describes EPOCH values. All these APIs are defined
as static methods in CDFAPIs class. The date/time components for CDF_EPOCH and CDF_EPOCH16 are UTC-
based, without leap seconds.

The CDF_EPOCH and CDF_EPOCHI16 data types are used to store time values referenced from a particular epoch.

For CDF that epoch values for CDF_EPOCH and CDF_EPOCHI16 are 01-Jan-0000 00:00:00.000 and 01-Jan-0000
00:00:00.000.000.000.000, respectively.

6.1 computeEPOCH

double computeEPOCH(¢ out -- CDF_EPOCH value returned.
year as integer, ‘in -- Year (AD, e.g., 1994).
month as integer, ‘in -- Month (1-12).

day as integer, “in -- Day (1-31).

hour as integer, ¢ in -- Hour (0-23).

minute as integer, ‘in -- Minute (0-59).

second as integer, “in -- Second (0-59).

msec as integer) ¢ in -- Millisecond (0-999).

computeEPOCH calculates a CDF _EPOCH value given the individual components. If an illegal component is
detected, the value returned will be ILLEGAL EPOCH_VALUE.

NOTE: There are two variations on how computeEPOCH may be used. If the month argument is 0 (zero), then the
day argument is assumed to be the day of the year (DOY) having a range of 1 through 366. Also, if the hour, minute,
and second arguments are all 0 (zero), then the msec argument is assumed to be the millisecond of the day having a
range of 0 through 86400000.

236

6.2 EPOCHbreakdown

void EPOCHbreakdown(

epoch as double, ‘in -- The CDF_EPOCH value.
year as integer, ‘ out -- Year (AD, e.g., 1994).
month as integer, ¢ out -- Month (1-12).

day as integer, ¢ out -- Day (1-31).

hour as integer, ¢ out -- Hour (0-23).

minute as integer, ¢ out -- Minute (0-59).

second as integer, “ out -- Second (0-59).

msec as integer) ¢ out -- Millisecond (0-999).

EPOCHbreakdown decomposes a CDF_EPOCH value into the individual components.

6.3 toEncodeEPOCH

string toEncodeEPOCH(¢ out -- Encode date/time string.
epoch as double) ¢ in -- The CDF_EPOCH value.
string toEncodeEPOCH(¢ out -- Encode date/time string.
epoch as double, ‘in -- The CDF_EPOCH value.
style as int) ¢ in -- The encoding style.
string[] toEncodeEPOCH(¢ out -- Encode date/time strings.
epochs as double[]) “in -- The CDF_EPOCH values.
string[] toEncodeEPOCH(¢ out -- Encode date/time strings.
epochs as double[], “in -- The CDF_EPOCH values.

style as int) in -- The encoding style.

toEncodeEPOCH encodes a CDF_EPOCH value(s) into a date/time character string(s) in one of the standard forms.
The style is between the value 0 and 4. With style 0, it is similar to calling encodeEPOCH. With style 1, 2 3 and 4, it is
similar to calling encodeEPOCH]1, encodeEPOCH2, encodeEPOCH3 and encodeEPOCH4, respectively. Without style,
the default style, 4, is used. Refer the following sections to see what a standard date/time string looks like for each
style.

6.4 encodeEPOCH

void encodeEPOCH(
epoch as double ¢ in -- The CDF_EPOCH value.
epString as string) ¢ out -- The standard date/time string.

encodeEPOCH encodes a CDF _EPOCH value into the standard date/time character string. The format of the string is
dd-mmm-yyyy hh:mm:ss.ccc where dd is the day of the month (1-31), mmm is the month (Jan, Feb, Mar, Apr, May,
Jun, Jul, Aug, Sep, Oct, Nov, or Dec), yyyy is the year, hh is the hour (0-23), mm is the minute (0-59), ss is the second
(0-59), and ccc is the millisecond (0-999).

237

6.5 encodeEPOCH1

void encodeEPOCH]1(
epoch as double ¢ in -- The CDF_EPOCH value.
epString as string) © out -- The alternate date/time string.

encodeEPOCH]1 encodes a CDF_EPOCH value into an alternate date/time character string. The format of the string is
yyyymmdd.ttttttt, where yyyy is the year, mm is the month (1-12), dd is the day of the month (1-31), and ttttttt is the
fraction of the day (e.g., 5000000 is 12 o'clock noon).

6.6 encodeEPOCH?2

void encodeEPOCH2(
epoch as double ¢ in -- The CDF_EPOCH value.
epString as string) © out -- The alternate date/time string.

encodeEPOCH2 encodes a CDF_EPOCH value into an alternate date/time character string. The format of the string is
yyyymoddhhmmss where yyyy is the year, mo is the month (1-12), dd is the day of the month (1-31), hh is the hour (0-
23), mm is the minute (0-59), and ss is the second (0-59).

6.7 encodeEPOCH3

void encodeEPOCH3(
epoch as double ¢ in -- The CDF_EPOCH value.
epString as string) “ out -- The alternate date/time string.

encodeEPOCH3 encodes a CDF_EPOCH value into an alternate date/time character string. The format of the string is
yyyy-mo-ddThh:mm:ss.cccZ where yyyy is the year, mo is the month (1-12), dd is the day of the month (1-31), hh is
the hour (0-23), mm is the minute (0-59), ss is the second (0-59), and ccc is the millisecond (0-999).

6.8 encodeEPOCHA4

void encodeEPOCH4(
epoch as double ¢ in -- The CDF_EPOCH value.
epString as string) ¢ out -- The ISO 8601 date/time string.

encodeEPOCH3 encodes a CDF_EPOCH value into an alternate, ISO 8601 date/time character string. The format of

the string is yyyy-mo-ddThh:mm:ss.ccc where yyyy is the year, mo is the month (1-12), dd is the day of the month (1-
31), hh is the hour (0-23), mm is the minute (0-59), ss is the second (0-59), and ccc is the millisecond (0-999).

238

6.9 encodeEPOCHXx

void encodeEPOCHXx(

epoch as double ¢ in -- The CDF_EPOCH value.
format as string ¢ in -- The format string.

encoded as string) out -- The custom date/time string.

3

encodeEPOCHx encodes a CDF_EPOCH value into a custom date/time character string. The format of the encoded
string is specified by a format string.

The format string consists of EPOCH components, which are encoded, and text that is simply copied to the encoded
custom string. Components are enclosed in angle brackets and consist of a component token and an optional width.
The syntax of a component is: <token[.width]>. If the optional width contains a leading zero, then the component will
be encoded with leading zeroes (rather than leading blanks).

The supported component tokens and their default widths are as follows. . .

Token Meaning Default
dom Day of month (1-31) <dom.0>
doy Day of year (001-366) <doy.03>
month Month (‘Jan',"Feb',...,"Dec") <month>
mm Month (1,2,...,12) <mm.0>
year Year (4-digit) <year.04>
yr Year (2-digit) <yr.02>
hour Hour (00-23) <hour.02>
min Minute (00-59) <min.02>
sec Second (00-59) <sec.02>
fos Fraction of second. <fos.3>
fod Fraction of day. <fod.8>

Note that a width of zero indicates that as many digits as necessary should be used to encoded the component. The
<month> component is always encoded with three characters. The <fos> and <fod> components are always encoded
with leading zeroes.

If a left angle bracket is desired in the encoded string, then simply specify two left angle brackets (<<) in the format
string (character stuffing).

For example, the format string used to encode the standard EPOCH date/time character string (see Section 6.3) would
be. ..

<dom.02>-<month>-<year> <hour>:<min>:<sec>.<fos>

6.10 toParseEPOCH

double toParseEPOCH(¢ out -- The CDF_EPOCH value.
epString as string) in -- The date/time string.

double[] toParseEPOCH(¢ out -- The CDF_EPOCH values.
epStrings as string[]) in -- The date/time strings.

239

toParseEPOCH parses an encoded, standard date/time character string(s) and returns a CDF_EPOCH value(s). The
format of the string is that produced by one of the encoding functions, e.g., toEncodeEPOCH, encodeEPOCH,
encodeEPOCHI1, etc. If an illegal field is detected in the string, the value returned will be
ILLEGAL EPOCH_VALUE.

6.11 parseEPOCH

double parseEPOCH(¢ out -- CDF_EPOCH value.
epString as string) “ in -- The standard date/time string.

parseEPOCH parses a standard date/time character string and returns a CDF_EPOCH value. The format of the string is

that produced by the encodeEPOCH method described in Section 6.3. If an illegal field is detected in the string the
value returned will be ILLEGAL EPOCH_VALUE.

6.12 parseEPOCHI1

double parseEPOCH]1(¢ out -- CDF_EPOCH value.
epString as string) ¢ in -- The alternate date/time string.

parseEPOCHI parses an alternate date/time character string and returns a CDF_EPOCH value. The format of the

string is that produced by the encodeEPOCH1 method described in Section 6.5. If an illegal field is detected in the
string the value returned will be ILLEGAL EPOCH_VALUE.

6.13 parseEPOCH2

double parseEPOCH2(¢ out -- CDF_EPOCH value.
epString as string) ¢ in -- The alternate date/time string.

parseEPOCH?2 parses an alternate date/time character string and returns a CDF_EPOCH value. The format of the
string is that produced by the encodeEPOCH2 method described in Section 6.6. If an illegal field is detected in the
string the value returned will be ILLEGAL EPOCH_VALUE.

6.14 parseEPOCH3

double parseEPOCH3(¢ out -- CDF_EPOCH value.
epString as string) ¢ in -- The alternate date/time string.

240

parseEPOCH3 parses an alternate date/time character string and returns a CDF_EPOCH value. The format of the
string is that produced by the encodeEPOCH3 method described in Section 6.7. If an illegal field is detected in the
string the value returned will be ILLEGAL _EPOCH_VALUE.

6.15 parseEPOCH4

double parseEPOCH4(¢ out -- CDF_EPOCH value.
epString as string) ¢ in -- The alternate date/time string.

parseEPOCH3 parses an alternate, ISO 8601 date/time character string and returns a CDF _EPOCH value. The

format of the string is that produced by the encodeEPOCH3 method described in Section 6.8. If an illegal field is
detected in the string the value returned will be ILLEGAL EPOCH_VALUE.

6.16 computeEPOCHI16

double computeEPOCH16(¢ out -- status code returned.
year as integer, ‘in -- Year (AD, e.g., 1994).
month as integer, ‘in -- Month (1-12).

day as integer, “in -- Day (1-31).

hour as integer, ‘in -- Hour (0-23).

minute as integer, ‘in -- Minute (0-59).

second as integer, “in -- Second (0-59).

msec as integer, “in -- Millisecond (0-999).
microsec as integer, ‘ in -- Microsecond (0-999).
nanosec as integer, ‘ in -- Nanosecond (0-999).
picosec as integer, ¢ in -- Picosecond (0-999).
epoch as double()) ¢ out-- CDF_EPOCHI16 value

computeEPOCH16 calculates a CDF_EPOCH16 value given the individual components. If an illegal component is
detected, the value returned will be ILLEGAL EPOCH_VALUE.

6.17 EPOCHI16breakdown

void EPOCH16breakdown(

epoch as double(), ‘ in -- The CDF_EPOCHI16 value.
year as integer, “ out -- Year (AD, e.g., 1994).
month as integer, ‘ out -- Month (1-12).

day as integer, ¢ out -- Day (1-31).

hour as integer, ¢ out -- Hour (0-23).

minute as integer, ¢ out -- Minute (0-59).

second as integer, “ out -- Second (0-59).

msec as integer, ¢ out -- Millisecond (0-999).
microsec as integer, ¢ out -- Microsecond (0-999).

nanosec as integer, out -- Nanosecond (0-999).

241

picosec as integer) ¢ out -- Picosecond (0-999).

EPOCH16breakdown decomposes a CDF_EPOCH16 value into the individual components.

6.18 toEncodeEPOCHI16

string toEncodeEPOCH16(¢ out -- Encode date/time string.
epoch as double[]) “in -- The CDF_EPOCH value.
string toEncodeEPOCH16(¢ out -- Encode date/time string.
epoch as double[], “in -- The CDF_EPOCH value.

style as int) in -- The encoding style.
toEncodeEPOCH16 encodes a CDF_EPOCH16 value, a two-double array, into a date/time character string in one of
the standard forms. The style is between the value 0 and 4. With style 0, it is similar to calling encodeEPOCH16. With
style 1, 2 3 and 4, it is similar to calling encodeEPOCHI16 1, encodeEPOCH16 2, encodeEPOCH16 3 and
encodeEPOCH16_4, respectively. Without style, the default style, 4, is used. Refer the following sections to see what a
date/time string looks like for each style.

6.19 encodeEPOCHI16

void encodeEPOCH16(
epoch as double(), “in -- The CDF_EPOCHI16 value.
epString as string) ‘ out -- The date/time string.

encodeEPOCH16 encodes a CDF_EPOCHI16 value into the standard date/time character string. The format of the
string is dd-mmm-yyyy hh:mm:ss.mmm:uuu:nnn:ppp where dd is the day of the month (1-31), mmm is the month
(Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, or Dec), yyyy is the year, hh is the hour (0-23), mm is the
minute (0-59), ss is the second (0-59), mmm is the millisecond (0-999), uuu is the microsecond (0-999), nnn is the
nanosecond (0-999), and ppp is the picosecond (0-999).

6.20 encodeEPOCH16 1

void encodeEPOCH16 1(
epoch as double(), “in -- The CDF_EPOCHI16 value.
epString as string) ¢ out -- The date/time string.

encodeEPOCH16 1 encodes a CDF_EPOCH16 value into an alternate date/time character string. The format of the

string is yyyymmdd.ttttttttttttttt, where yyyy is the year, mm is the month (1-12), dd is the day of the month (1-31), and
ttttttttttttttt is the fraction of the day (e.g., 500000000000000 is 12 o'clock noon).

242

6.21 encodeEPOCH16 2

void encodeEPOCH16 2(
epoch as double(), “in -- The CDF_EPOCHI16 value.
epString as string) ¢ out -- The date/time string.

encodeEPOCH16 2 encodes a CDF_EPOCH16 value into an alternate date/time character string. The format of the
string is yyyymoddhhmmss where yyyy is the year, mo is the month (1-12), dd is the day of the month (1-31), hh is the
hour (0-23), mm is the minute (0-59), and ss is the second (0-59).

6.22 encodeEPOCHI16 3

void encodeEPOCH16 3(
epoch as double(), “in -- The CDF_EPOCHI16 value.
epString as string) ¢ out -- The alternate date/time string.

encodeEPOCH16 3 encodes a CDF_EPOCH16 value into an alternate date/time character string. The format of the
string is yyyy-mo-ddThh:mm:ss.mmm:uuu:nnn:pppZ where yyyy is the year, mo is the month (1-12), dd is the day of
the month (1-31), hh is the hour (0-23), mm is the minute (0-59), ss is the second (0-59), mmm is the millisecond (0-
999), uuu is the microsecond (0-999), nnn is the nanosecond (0-999), and ppp is the picosecond (0-999).

6.23 encodeEPOCHI16 4

void encodeEPOCH16_4(
epoch as double(), “in -- The CDF_EPOCHI16 value.
epString as string) “ out -- The alternate date/time string.

encodeEPOCH16 3 encodes a CDF_EPOCHI16 value into an alternate, ISO 8601 date/time character string. The
format of the string is yyyy-mo-ddThh:mm:ss.mmmuuunnnppp where yyyy is the year, mo is the month (1-12), dd is
the day of the month (1-31), hh is the hour (0-23), mm is the minute (0-59), ss is the second (0-59), mmm is the
millisecond (0-999), uuu is the microsecond (0-999), nnn is the nanosecond (0-999), and ppp is the picosecond (0-999).

6.24 encodeEPOCH16 x

void encodeEPOCH16_ x(

epoch as double(), “in -- The CDF_EPOCHI16 value.
format as string ¢ in -- The format string.

encoded as string) out -- The date/time string.

3

encodeEPOCH16_x encodes a CDF_EPOCHI16 value into a custom date/time character string. The format of the
encoded string is specified by a format string.

243

The format string consists of EPOCH components, which are encoded, and text that is simply copied to the encoded
custom string. Components are enclosed in angle brackets and consist of a component token and an optional width.
The syntax of a component is: <token[.width]>. If the optional width contains a leading zero, then the component will
be encoded with leading zeroes (rather than leading blanks).

The supported component tokens and their default widths are as follows. . .

Token Meaning Default
dom Day of month (1-31) <dom.0>
doy Day of year (001-366) <doy.03>
month Month (‘Jan',"Feb',...,"Dec") <month>
mm Month (1,2,...,12) <mm.0>
year Year (4-digit) <year.04>
yr Year (2-digit) <yr.02>
hour Hour (00-23) <hour.02>
min Minute (00-59) <min.02>
sec Second (00-59) <sec.02>
msc Millisecond (000-999) <msc.3>
usc Microsecond (000-999) <usc.3>
nsc Nanosecond (000-999) <nsc.3>
psc Picosecond (000-999) <psc.3>
fos Fraction of second. <fos.12>
fod Fraction of day. <fod.8>

Note that a width of zero indicates that as many digits as necessary should be used to encoded the component. The
<month> component is always encoded with three characters. The <fos> and <fod> components are always encoded
with leading zeroes.

If a left angle bracket is desired in the encoded string, then simply specify two left angle brackets (<<) in the format
string (character stuffing).

For example, the format string used to encode the standard EPOCH date/time character string would be. . .

<dom.02>-<month>-<year> <hour>:<min>:<sec>.<msc>.<usc>.<nsc>.<psc>.<fos>

6.25 toParseEPOCHI16

double[] toParseEPOCH16(¢ out -- The CDF_EPOCH16 value.
epString as string) ‘ in -- The date/time string.

toParseEPOCH16 parses a encoded, standard date/time character string and returns a CDF_EPOCH]16 value, a two-
double array. The format of the string is that produced by one of the encoding functions, e.g., toEncodeEPOCH16,
encodeEPOCH16, encodeEPOCHI16 1, etc. If an illegal field is detected in the string, the value returned will be
ILLEGAL EPOCH_VALUE.

6.26 parseEPOCHI16

double parseEPOCH16(¢ out -- The status code returned.

244

3

epString as string, in -- The date/time string.
epoch as double()) ¢ out -- The CDF_EPOCH]16 value returned

parseEPOCH16 parses a standard date/time character string and returns a CDF_EPOCH16 value. The format of the

string is that produced by the encodeEPOCH16 function. If an illegal field is detected in the string the value returned
will be ILLEGAL EPOCH_VALUE.

6.27 parseEPOCH16 1

double parseEPOCH16 1(¢ out -- The status code returned.
epString as string, ‘ in -- The date/time string.
epoch as double()) ¢ out -- The CDF_EPOCH]16 value returned

parseEPOCH16 1 parses an alternate date/time character string and returns a CDF_EPOCH16 value. The format of
the string is that produced by the encodeEPOCHI16 1 function. If an illegal field is detected in the string the value
returned will be ILLEGAL EPOCH_VALUE.

6.28 parseEPOCH16 2

double parseEPOCH16 2(¢ out -- The status code returned.
epString as string, ¢ in -- The date/time string.
epoch as double()) ¢ out -- The CDF_EPOCH]16 value returned

parseEPOCHI16 2 parses an alternate date/time character string and returns a CDF_EPOCH16 value. The format of
the string is that produced by the encodeEPOCHI16 2 function. If an illegal field is detected in the string the value
returned will be ILLEGAL EPOCH_VALUE.

6.29 parseEPOCHI16 3

double parseEPOCH16 3(¢ out -- The status code returned.
epString as string, ‘ in -- The date/time string.
epoch as double()) ¢ out -- The CDF_EPOCH]16 value returned

parseEPOCH16 3 parses an alternate date/time character string and returns a CDF_EPOCH16 value. The format of
the string is that produced by the encodeEPOCHI16 3 function. If an illegal field is detected in the string the value
returned will be ILLEGAL EPOCH_VALUE.

6.30 parseEPOCHI16 4

245

double parseEPOCH16 4(¢ out -- The status code returned.
epString as string, “in -- The ISO 8601 date/time string.
epoch as double()) ¢ out -- The CDF_EPOCH]16 value returned

parseEPOCH16_4 parses an alternate date/time character string and returns a CDF_EPOCH16 value. The format of
the string is that produced by the encodeEPOCHI16 3 function. If an illegal field is detected in the string the value
returned will be ILLEGAL EPOCH_VALUE.

6.31 EPOCHtoUnixTime

double EPOCHtoUnixTime(¢ out -- The Unix time returned.
epoch as double) “in -- The CDF_EPOCH value
double() EPOCHtoUnixTime(¢ out -- The Unix times returned.
epochs as double()) “in -- The CDF_EPOCH values

EPOCHtoUnixTime converts an epoch time(s) in CDF_EPOCH type into a Unix time(s). A CDF_EPOCH epoch, a
double, is milliseconds from 0000-01-01T00:00:00.000 while Unix time, also a double, is seconds from 1970-01-
01T00:00:00.000. The Unix time can have sub-second, with a time resolution of microseconds, in its fractional part.

6.32 UnixTimetoEPOCH

double UnixTimetoEPOCH (¢ out -- The CDF_EPOCH epoch value.
unixTime as double) in -- The Unix time value

double() UnixTimetoEPOCH (¢ out -- The CDF_EPOCH epoch values.
unixTimes as double()) in -- The Unix time values

UnixTimetoEPOCH converts a Unix time(s) to an epoch time(s) in CDF_EPOCH. A CDF_EPOCH epoch, a double, is
milliseconds from 0000-01-01T00:00:00.000 while Unix time, also a double, is seconds from 1970-01-
01T00:00:00.000. The Unix time can have sub-second, with a time resolution of microseconds, in its fractional part.
Converting the Unix time to EPOCH will only keep the resolution to milliseconds.

6.33 EPOCH16toUnixTime

double EPOCH16toUnixTime(¢ out -- The Unix time returned.
epoch as double()) ‘ in -- The CDF_EPOCH16 value

EPOCHI16toUnixTime converts an epoch time in CDF _EPOCHI16 type, a two-double array, to a Unix time. A
CDF_EPOCH16 epoch is picoseconds from 0000-01-01T00:00:00.000.000.000.000, while Unix time, a double, is

246

seconds from 1970-01-01T00:00:00.000. The Unix time can have sub-second, with a time resolution of microseconds,
in its fractional part. Note: As CDF_EPOCH16 has much higher time resolution, sub-microseconds portion of its time
might get lost during the conversion.

6.34 UnixTimetoEPOCH16

double() UnixTimetoEPOCH16 (¢ out -- The CDF_EPOCH16 epoch value.
unixTimes as double) ¢ in -- The Unix time value

UnixTimetoEPOCH16 converts a Unix time to an epoch time in CDF_EPOCH16. A CDF_EPOCH]16 epoch, a two-
double array, is picoseconds from 0000-01-01T00:00:00.000.000.000.000, while Unix time, also a double, is seconds
from 1970-01-01T00:00:00.000. The Unix time can have sub-second, with a time resolution of microseconds, in its
fractional part. Sub-microseconds will be filled with 0’s when converting from Unix time to EPOCH16.

247

7 TT2000 Utility Routines

Several functions exist that compute, decompose, parse, and encode CDF_TIME TT2000 values. These functions may
be called by applications using the CDF_TIME TT2000 data type and is included in the CDF library. The Concepts
chapter in the CDF User's Guide describes TT2000 values. All these APIs are defined as static methods in CDFAPIs
class. The date/time components for CDF_TIME TT2000 are UTC-based, with leap seconds.

The CDF_TIME_TT2000 data type is used to store time values referenced from J2000 (2000-01-
01T12:00:00.000000000). For CDF, values in CDF_TIME_TT2000 are nanoseconds from J2000 with leap seconds
included. TT2000 data can cover years between 1707 and 2292.

7.1 computeTT2000

compueTT2000 is a overloaded function.

long computeTT2000(¢ out -- CDF TIME TT2000 value.
year as double, ‘in -- Year (AD, e.g., 1994).
month as double, ‘in -- Month (1-12).

day as double) “in -- Day (1-31).

long computeTT2000(¢ out -- CDF TIME TT2000 value.
year as double, ‘in -- Year (AD, e.g., 1994).
month as double, ‘in -- Month (1-12).

day as double, “in -- Day (1-31).

hour as double) ‘in -- Hour (0-23).

long computeTT2000(¢ out -- CDF TIME TT2000 value.
year as double, ‘in -- Year (AD, e.g., 1994).
month as double, ‘in -- Month (1-12).

day as double, “in -- Day (1-31).

hour as double, ‘in -- Hour (0-23).

minute as double) ‘in -- Minute (0-59).

long computeTT2000(¢ out -- CDF TIME TT2000 value.
year as double, ‘in -- Year (AD, e.g., 1994).
month as double, ‘in -- Month (1-12).

day as double, “in -- Day (1-31).

hour as double, ‘in -- Hour (0-23).

minute as double, ‘in -- Minute (0-59).

second as double) “in -- Second (0-59 or 0-60 if leap second).
long computeTT2000(¢ out -- CDF TIME TT2000 value.
year as double, ‘in -- Year (AD, e.g., 1994).
month as double, ‘in -- Month (1-12).

day as double, “in -- Day (1-31).

hour as double, ‘in -- Hour (0-23).

249

minute as double,
second as double,
msec as double)

long computeTT2000(¢

year as double,
month as double,
day as double,
hour as double,
minute as double,
second as double,
msec as double,
usec as double)

long computeTT2000(¢

year as double,
month as double,
day as double,
hour as double,
minute as double,
second as double,
msec as double,
usec as double,
nsec as double)

computeTT2000 calculates a CDF_TIME TT2000 value given the individual, UTC-based date/time components. If
an illegal component is detected, the value returned will be ILLEGAL TT2000 VALUE. The day componment can be
presented in day of the month or day of the year (DOY). If DOY form is used, the month componment must have a

value(s) of one (1).

NOTE: Even though this overloaded function uses double for all its parameter fields, all but the very last parameter
can not have a non-zero fractional part for simplifying the computation. An exception will be thrown if the rule is not

followed. For example, this call is allowed:
dm tt2000 as long = computeTT2000(2010.0, 10.0, 10.5)
But, this call will fail:

dim tt2000 as long = computeTT2000(2010.0, 10.0, 10.5, 12.5)

7.2 TT2000breakdown

void TT2000breakdown(
tt2000 as long,

year as double,

month as double,

day as double,

hour as double,

minute as double,

second as double,

msec as double,

250

in --

in --
in --

Minute (0-59).
Second (0-59 or 0-60 if leap second).
Millisecond (0-999).

out - CDF_TIME_TT2000 value.

in --
in --
in --
in --
in --
in --
in --
in --

Year (AD, e.g., 1994).

Month (1-12).

Day (1-31).

Hour (0-23).

Minute (0-59).

Second (0-59 or 0-60 if leap second).
Millisecond (0-999).

Microsecond (0-999).

out - CDF_TIME_TT2000 value.

in --
in --
in --
in --
in --
in --
in --
in --
in --

Year (AD, e.g., 1994).

Month (1-12).

Day (1-31).

Hour (0-23).

Minute (0-59).

Second (0-59 or 0-60 if leap second).
Millisecond (0-999).

Microsecond (0-999).

Nanosecond (0-999).

“in -- The CDF_TIME_TT2000.
‘ out -- Year (AD, e.g., 1994).
out -- Month (1-12).

¢ out -- Day (1-31).

¢ out -- Hour (0-23).

¢ out -- Minute (0-59).
¢ out -- Second (0-59 or 0-60 if leap second).
¢ out -- Millisecond (0-999).

usec as double, ¢ out -- Microsecond (0-999).
nsec as double) ¢ out -- Nanosecond (0-999).

TT2000breakdown decomposes a CDF _TIME TT2000 value into the individual components.

7.3 toEncodeTT2000

string toEncodeTT2000(¢ out -- Encode date/time string.
epoch as long) in -- The TT2000 value.

string toEncodeTT2000(¢ out -- Encode date/time string.
epoch as long, in -- The TT2000 value.
style as int) in -- The encoding style.

string() toEncodeTT2000(¢ out -- Encode date/time strings.
epochs as long()) in -- The TT2000 values.

string() toEncodeTT2000(¢ out -- Encode date/time strings.
epochs as long(), “in -- The TT2000 values.
style as int) in -- The encoding style.

toEncodeTT2000 encodes a CDF _TIME TT2000 value(s) into a date/time character string(s) in one of the standard
forms. The style is between the value 0 and 4. Without style, the default style is used, which is style 3. Refer the
following section to see what a date/time string looks like for each style.

7.4 encodeTT2000

encodeTT2000 is a overloaded function.

void encodeTT2000(
tt2000 as long ‘in -- The CDF_TIME TT2000.
EpString as string) out -- The standard date/time string.

void encodeTT2000(

tt2000 as long “in -- The CDF_TIME_TT2000.
epString as string. out -- The standard date/time string.
style as int) in -- The encoded string style.

encodeTT2000 encodes a CDF TIME TT2000 value into one of the standard date/time UTC character strings.
Without the style, the default style of 3 is used, which makes the string in ISO 8601 format: yyyy-mm-ddT
hh:mm:ss.mmmuuunnn where yyyy is the year (1707-2292), mm is the month (01-12), dd is the day of the month (1-
31), hh is the hour (0-23), mm is the minute (0-59), ss is the second (0-59 or 0-60 if leap second), mmm is the
millisecond (0-999), uuu is the microsecond (0-999) and nnn is the nanosecond (0-999).

For a style of value 0, the encoded UTC string is DD-Mon-YYYY hh:mm:ss.mmmuuunnn, where DD is the day of
the month (1-31), Mon is the month (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, or Dec), YYYY is the
year, hh is the hour (0-23), mm is the minute (0-59 or 0-60 if leap second), ss is the second (0-59), mmm is the
millisecond (0-999), uuu is the microsecond (0-999), and nnn is the nanosecond (0-999). The encoded string has a
length of TT2000 0 STRING LEN (30).

251

For a style of value 1, the encoded UTC string is YYYYMMDD.ttttttttt, where YYY'Y is the year, MM is the month
(1-12) DD is the day of the month (1-31), and ttttttttt is sub-day.(0-999999999). The encoded string has a length of
TT2000 1 STRING LEN (19).

For a style of value 2, the encoded UTC string is YYYYMMDDhhmmss, where YYYY is the year, MM is the month
(1-12) DD is the day of the month (1-31), hh is the hour (0-23), mm is the minute (0-59),and ss is the second (0-59 or
0-60 if leap second). The encoded string has a length of TT2000 2 STRING LEN (14).

For a style of value 3, the encoded UTC string is YYYY-MM-DDThh:mm:ss.mmmuuunnn, where YYYY is the
year, MM is the month (1-12), DD is the day of the month (1-31), hh is the hour (0-23), mm is the minute (0-59 or 0-60
if leap second), ss is the second (0-59), mmm is the millisecond (0-999), uuu is the microsecond (0-999), and nnn is the
nanosecond (0-999). The encoded string has a length of TT2000 3 STRING_LEN (29).

For a style of value 4, the encoded UTC string is similar to style 3, with an addition of “Z” appended to the end. The
encoded string has a length of TT2000 4 STRING LEN (30).

7.5 toParseTT2000

long toParseTT2000(¢ out -- CDF _TIME TT2000 value.
epString as string) in -- The standard date/time string.

long() toParseTT2000(¢ out -- CDF _TIME TT2000 values.
epString as string()) in -- The encoded date/time strings.

toParseTT2000 parses a encoded date/time character string(s) and returns a CDF_TIME TT2000 value(s). The format
of the string is that produced by the toEncodeTT2000 or encodeTT2000 method described in Section 6.3 or 7.4. If an
illegal field is detected in the string, the value(s) returned will be ILLEGAL TT2000 VALUE.

7.6 parseTT2000

long parseTT2000(¢ out -- CDF _TIME TT2000 value.
epString as string) ‘in -- The encoded date/time string.

parseTT2000 parses an encoded date/time character string and returns a CDF_TIME TT2000 value. The format of the
string is that produced by the encodeTT2000 method described in Section 7.3 or 7.4. If an illegal field is detected in
the string the value returned will be ILLEGAL_TT2000 VALUE.

7.7 CDFgetLastDateinLeapSecondsTable

void CDFgetLastDateinLeapSecondsTable(
year as integer

3

out -- The year.

252

3

month as integer out -- The month.
day as integer) ¢ out -- The day.

CDFgetLastDateinLeapSecondsTable returns the last entry in the leap second table used by the CDF processing. This

date comes from the leap second table, either through an external text file, or the hard-coded table in the library code.
This information can tell whether the leap second table is up-to-date.

7.8 TT2000toUnixTime

double TT2000toUnixTime(¢ in -- The Unix time value.
epoch as long) “in -- The TT2000 epoch value.
double() TT2000toUnixTime(¢ in -- The Unix time values.
epochs as long()) “in -- The TT2000 epoch values.

TT2000toUnixTime converts epoch time(s) in CDF _TIME TT2000 (TT2000) type into Unix time(s). A
CDF_TIME TT2000 epoch, a 8-byte integer, is nanoseconds from J2000 with leap seconds, while Unix time, a double,
is seconds from 1970-01-01T00:00:00.000. The Unix time can have sub-second, with a time resolution of
microseconds, in its fractional part. Note: As CDF_TIME TT2000 has much higher time resolution, sub-microseconds
portion of its time might get lost during the conversion. Also, TT2000’s leap seconds will get lost during conversion.

7.9 UnixTimetoTT2000

long UnixTimetoTT2000 (¢ in -- The TT2000 epoch value.
epoch as double) ¢ in -- The Unix time value.
long() UnixTimetoTT2000 (¢ in -- The TT2000 epoch values.
epochs as double()) “in -- The Unix time values.

UnixTimetoTT2000 converts Unix time(s) into epoch time(s) in CDF_TIME TT2000 (TT2000) type. A Unix time, a
double, is seconds from 1970-01-01T00:00:00.000 while a CDF TIME TT2000 epoch, a 8-byte integer, is
nanoseconds from J2000 with leap seconds. The Unix time can have sub-second, with a time resolution of
microseconds, in its fractional part. Sub-microseconds will be filled with 0’s when converting from Unix time to
TT2000.

253

8 CDF Utility Methods

Several methods are created that are mainly used to decipher the strings and their corresponding constant values or vice
verse. All these APIs are defined as static methods in CDFUtils class. The constant values are defined in
CDFConstants class.

8.1 CDFFileExists

boolean CDFFileExists(¢ out -- The file existence flag.
filename as string) “ in -- The file name.

CDFFileExists method checks whether a CDF file by the given file name, with or without the .cdf extension, exists.
Even the file exists, CDFFileExists will not be able to verify whether it is a valid one. (Use CDFopen to validate it).

8.2 CDFgetChecksumValue

integer CDFgetChecksumValue(¢ out -- The checksum value.
checksum as string) ¢ in -- The file checksum type string.

CDFgetChecksumValue method returns the corresponding file checksum type value, based on the passed string. The
file checksum types and their values are as follows:

Type Value

NONE NO_CHECKSUM (0)
MDS5 MDS5 CHECKSUM (1)
OTHER OTHER CHECKSUM

8.3 CDFgetCompressionTypeValue

3

out -- The compression type.
in -- The compression type string.

integer CDFgetCompressionTypeValue(
compressionType as string) ‘
CDFgetCompressionTypeValue method returns the corresponding compression type value, based on the passed string.
The compression types and values are as follows:

Type Value
NONE NO_COMPRESSION (0)

255

RLE RLE_COMPRESSION (1)

Huffman HUFF_COMPRESSION (2)
Adaptive Huffman AHUFF_COMPRESSION (3)
GZIP GZIP_COMPRESSION (5)

8.4 CDFgetDataTypeValue

3

integer CDFgetDataTypeValue(
dataType as string)

out -- The data type.
¢ in -- The data type string.
CDFgetDataTypeValue method returns the corresponding data type value, based on the passed string. The data types
and their values are as follows:

Type Value

CDF _BYTE CDF_BYTE (41)
CDF_CHAR CDF_CHAR (51)
CDF_UCHAR CDF_UCHAR (52)
CDF _INTI CDF_INTI1 (1)
CDF_UINT1 CDF_UINT1 (11)
CDF_INT2 CDF_INT2 (2)
CDF_UINT2 CDF_UINT2 (12)
CDF_INT4 CDF_INT4 (4)
CDF_UINT4 CDF_UINT4 (14)
CDF_INTS CDF_INTS (8)
CDF_REAL4 CDF_REALA4 (21)
CDF_FLOAT CDF_FLOAT (44)
CDF_REALS CDF_REALS (22)
CDF_DOUBLE CDF_DOUBLE (45)
CDF_EPOCH CDF_EPOCH (31)
CDF_EPOCH16 CDF_EPOCH16 (32)
CDF_TIME_TT2000 CDF_TIME TT2000 (33)

8.5 CDFgetDecodingValue

3

integer CDFgetDecodingValue(
decoding as string)

out -- The decoding value.
¢ in -- The data decoding string.
CDFgetDecodingValue method returns the corresponding data decoding value, based on the passed string. The data
decodings and their values are as follows:

Type Value

NETWORK NETWORK DECODING (1)
SUN SUN_ DECODING (2)

VAX VAX DECODING (3)
DECSTATION DECSTATION DECODING (4)
SGi SGi_ DECODING (5)

IBMPC IBMPC _DECODING (6)
IBMRS IBMRS DECODING (7)

256

HOST HOST DECODING (8)

PPC PPC_DECODING (9)

HP HP_DECODING (11)

NeXT NeXT_DECODING (12)
ALPHAOSF1 ALPHAOSF1_DECODING (13)
ALPHAVMSd ALPHAVMSd_DECODING (14)
ALPHAVMSg ALPHAVMSg_DECODING (15)
ALPHAVMSi ALPHAVMSi_DECODING (16)

8.6 CDFgetEncodingValue

3

out -- The encoding value.
in -- The data encoding string.

integer CDFgetEncodingValue(
encoding as string) ¢
CDFgetEncodingValue method returns the corresponding data encoding value, based on the passed string. The data
encodings and their values are as follows:

Type Value

NETWORK NETWORK ENCODING (1)
SUN SUN_ENCODING (2)

VAX VAX ENCODING (3)
DECSTATION DECSTATION ENCODING (4)
SGi SGi_ ENCODING (5)

IBMPC IBMPC_ENCODING (6)

IBMRS IBMRS ENCODING (7)

HOST HOST ENCODING (8)

PPC PPC_ENCODING (9)

HP HP ENCODING (11)

NeXT NeXT ENCODING (12)
ALPHAOSF1 ALPHAOSF1 ENCODING (13)
ALPHAVMSd ALPHAVMSd ENCODING (14)
ALPHAVMSg ALPHAVMSg ENCODING (15)
ALPHAVMSIi ALPHAVMSi ENCODING (16)

8.7 CDFgetFormatValue

3

out -- The format value.
in -- The file format string.

integer CDFgetFormatValue(
format as string) ¢
CDFgetFormatValue method returns the corresponding file format value, based on the passed string. The file formats
and their values are as follows:

Type Value
SINGLE® SINGLE_FILE (1)
MULTI MULTI FILE (2)

257

8.8 CDFgetMajorityValue

3

out -- The majority value.
in -- The data majority string.

integer CDFgetMajority Value(
majority as string) ¢
CDFgetMajorityValue method returns the corresponding file majority value, based on the passed string. The file
majorities and their values are as follows:

Type Value
ROW ROW_MAIJOR (1)
COLUMN COLUMN_MAIJOR (2)

8.9 CDFgetSparseRecordValue

3

out -- The sparse record value.
in -- The sparse record string.

integer CDFgetSparseRecordValue(
sparseRecord as string) ¢
CDFgetSparseRecordValue method returns the corresponding sparse record value, based on the passed string. The
sparse records types and their values are as follows:

Type Value

NONE NO_SPARSERECORDS (0)
PAD PAD SPARSERECORDS (1)
PREV PREV_SPARSERECORDS (2)

8.10 CDFgetStringChecksum

string CDFgetStringChecksum(¢ out -- The checksum string.
checksum as integer) ¢ in -- The file checksum type.

CDFgetStringChecksum method returns the corresponding file checksum string, based on the passed type. The file
checksum types and their values are the same as those defined in CDFgetChecksumValue method.

8.11 CDFgetStringCompressionType

3

out -- The compression string.
in -- The compression type.

string CDFgetStringCompressionType(
compressionType as integer)

3

CDFgetStringCompressionType method returns the corresponding compression type string, based on the passed type.
The file checksum types and their values are the same as those defined in CDFgetCompressionTypeValue method.

258

8.12 CDFgetStringDataType

3

string CDFgetStringDataType(out -- The data type string.
dataType as integer) ¢ in -- The data type.

CDFgetStringDataType method returns the corresponding data type string, based on the passed type. The data types
and their values are the same as those in CDFgetDataTypeValue method:

8.13 CDFgetStringDecoding

3

out -- The decoding string.
in -- The data decoding type.

string CDFgetStringDecoding(
decoding as integer) ¢
CDFgetStringDecoding method returns the corresponding data decoding string, based on the passed type. The data
decodings and their values are as same as those defined in CDFgetDecodingValue:

8.14 CDFgetStringEncoding

3

out -- The encoding string.
in -- The data encoding type.

string CDFgetStringEncoding(
encoding as integer) ¢
CDFgetStringEncoding method returns the corresponding data encoding string, based on the passed type. The data
encodings and their values are the same as those defined in CDFgetEncodingValue method.

8.15 CDFgetStringFormat

3

out -- The format string.
in -- The file format type.

string CDFgetStringFormat(
format as integer) ¢
CDFgetStringFormat method returns the corresponding file format string, based on the passed type. The file formats
and their values are the same as those defined in CDFgetFormatValue method.:

8.16 CDFgetStringMajority

3

out -- The majority string.
in -- The data majority type.

string CDFgetStringMajority(
majority as integer)

3

CDFgetStringMajority method returns the corresponding file majority string, based on the passed type. The file
majorities and their values are the same as those defined in CDFgetMajorityValue method.

259

8.17 CDFgetStringSparseRecord

3

string CDFgetStringSparseRecord(
sparseRecord as integer)

out -- The sparse record string.
in -- The sparse record type.

3

CDFgetStringSparseRecord method returns the corresponding sparse record string, based on the passed type. The
sparse records types and their values are the same as those defined in CDFgetSparseRecordValue method.:

260

9 CDF Exception Methods

Several methods in the CDFexception class can be used to check what happens when an exception is thrown by the
CDFAPIs, and react to it if necessary. All these APIs are defined as static methods. CDFException inherits from VB’s
Exception class.

9.1 CDFgetCurrentStatus

integer CDFgetCurrentStatus() ¢ out -- The status.

CDFgetCurrentStatus method returns the status when an exception is detected. The status value should be a negative
value. Chapter 5 covers all possible status codes. Use the following CDFgetStatusMsg method to decipher what the
status means.

9.2 CDFgetStatusMsg

3

out -- The descriptive message.
in -- The exception status.

string CDFgetStatusMsg(
status as integer)

3

CDFgetStatusMsg method returns the descriptive information of the passed status.

261

Appendix A

A.1 Introduction

A status code is returned from most CDF functions. The CDFConstants class contains the numerical values (constants)
for each of the status codes (and for any other constants referred to in the explanations). The method CDFerror can be
used within a program to inquire the explanation text for a given status code.

There are three classes of status codes: informational, warning, and error. The purpose of each is as follows:

Informational Indicates success but provides some additional information that may be of interest to an
application.

Warning Indicates that the method completed but possibly not as expected.

Error Indicates that a fatal error occurred and the function aborted.

Status codes fall into classes as follows:
Error codes < CDF_WARN < Warning codes < CDF _OK < Informational codes

CDF_OK indicates an unqualified success (it should be the most commonly returned status code). CDF_WARN is
simply used to distinguish between warning and error status codes.

A.2 Status Codes and Messages

The following list contains an explanation for each possible status code. Whether a particular status code is considered
informational, a warning, or an error is also indicated.

ATTR _EXISTS Named attribute already exists - cannot create or rename. Each
attribute in a CDF must have a unique name. Note that trailing
blanks are ignored by the CDF library when comparing attribute
names. [Error]

ATTR NAME TRUNC Attribute name truncated to CDF ATTR NAME LEN256
characters. The attribute was created but with a truncated name.
[Warning]

BAD ALLOCATE RECS An illegal number of records to allocate for a variable was

specified. For RV variables the number must be one or greater.
For NRYV variables the number must be exactly one. [Error]

BAD ARGUMENT An illegal/undefined argument was passed. Check that all
arguments are properly declared and initialized. [Error]

263

BAD ATTR_NAME

BAD ATTR_NUM

BAD BLOCKING_FACTOR?*?

BAD CACHESIZE

BAD CDF EXTENSION

BAD_CDF_ID

BAD CDF NAME

BAD_INT

BAD CHECKSUM

BAD COMPRESSION PARM

BAD DATA TYPE

BAD DECODING

BAD DIM_COUNT

BAD DIM_INDEX

BAD DIM INTERVAL

BAD DIM _SIZE

Illegal attribute name specified. Attribute names must contain at
least one character, and each character must be printable. [Error]

Illegal attribute number specified. Attribute numbers must be
zero (0) or greater for C applications and one (1) or greater for
Fortran applications. [Error]

An illegal blocking factor was specified. Blocking factors must
be at least zero (0). [Error]

An illegal number of cache buffers was specified. The value
must be at least zero (0). [Error]

An illegal file extension was specified for a CDF. In general, do
not specify an extension except possibly for a single-file CDF
that has been renamed with a different file extension or no file
extension. [Error]

CDF identifier is unknown or invalid. The CDF identifier
specified is not for a currently open CDF. [Error]

Illegal CDF name specified. CDF names must contain at least
one character, and each character must be printable. Trailing
blanks are allowed but will be ignored. [Error]

Unknown CDF status code received. The CDF library does not
use the status code specified. [Error]

An illegal checksum mode received. It is invalid or currently not
supported. [Error]

An illegal compression parameter was specified. [Error]

An unknown data type was specified or encountered. The CDF
data types are defined in CDFConstants class for VB
applications. [Error]

An unknown decoding was specified. The CDF decodings are
defined in CDFConstants class for VB applications. [Error]

Illegal dimension count specified. A dimension count must be at
least one (1) and not greater than the size of the dimension.
[Error]

One or more dimension index is out of range. A valid value must
be specified regardless of the dimension variance. Note also that
the combination of dimension index, count, and interval must not
specify an element beyond the end of the dimension. [Error]

[llegal dimension interval specified. Dimension intervals must be
at least one (1). [Error]

Illegal dimension size specified. A dimension size must be at
least one (1). [Error]

22 The status code BAD_BLOCKING_FACTOR was previously named BAD _EXTEND RECS.

264

BAD ENCODING

BAD ENTRY NUM

BAD FNC OR_ITEM

BAD FORMAT

BAD _INITIAL RECS

BAD MAJORITY

BAD MALLOC

BAD NEGtoPOSfp0 MODE

BAD NUM_DIMS

BAD NUM_ELEMS

BAD NUM_VARS

BAD READONLY MODE

BAD REC_COUNT

BAD REC INTERVAL

BAD REC NUM

BAD_SCOPE

Unknown data encoding specified. The CDF encodings are
defined in CDFConstants class for VB applications. [Error]

Illegal attribute entry number specified. Entry numbers must be
at least zero (0) for VB applications. [Error]

The specified function or item is illegal. Check that the proper
number of arguments are specified for each operation being
performed. [Error]

Unknown format specified. The CDF formats are defined in
CDFConstants class for VB applications. [Error]

An illegal number of records to initially write has been specified.
The number of initial records must be at least one (1). [Error]

Unknown variable majority specified. =~ The CDF variable
majorities are defined in CDFConstants class for VB
applications. [Error]

Unable to allocate dynamic memory - system limit reached.
Contact CDF User Support if this error occurs. [Error]

An illegal -0.0 to 0.0 mode was specified. The -0.0 to 0.0 modes
are defined in CDFConstants class for VB applications. [Error]

The number of dimensions specified is out of the allowed range.
Zero (0) through CDF_MAX DIMS dimensions are allowed. If
more are needed, contact CDF User Support. [Error]

The number of elements of the data type is illegal. The number
of elements must be at least one (1). For variables with a non-
character data type, the number of elements must always be one
(1). [Error]

Illegal number of variables in a record access operation. [Error]

[llegal read-only mode specified. The CDF read-only modes are
defined in CDFConstants class for VB applications. [Error]

Illegal record count specified. A record count must be at least
one (1). [Error]

Illegal record interval specified. A record interval must be at
least one (1). [Error]

Record number is out of range. Record numbers must be at least
zero (0) for C applications and at least one (1) for Fortran
applications. Note that a valid value must be specified regardless
of the record variance. [Error]

Unknown attribute scope specified. The attribute scopes are
defined in CDFConstants class for VB applications. [Error]

265

BAD SCRATCH DIR

BAD SPARSEARRAYS PARM

BAD VAR NAME

BAD VAR NUM

BAD zMODE

CANNOT ALLOCATE RECORDS

CANNOT_CHANGE

An illegal scratch directory was specified. The scratch directory
must be writeable and accessible (if a relative path was specified)
from the directory in which the application has been executed.
[Error]

An illegal sparse arrays parameter was specified. [Error]

Illegal variable name specified. Variable names must contain at
least one character and each character must be printable. [Error]

Illegal variable number specified. Variable numbers must be
zero (0) or greater for VB applications. [Error]

Illegal zMode specified. The CDF zModes are defined in
CDFConstants class for VB applications. [Error]

Records cannot be allocated for the given type of variable (e.g., a
compressed variable). [Error]

Because of dependencies on the value, it cannot be changed.
Some possible causes of this error follow:

1. Changing a CDF's data encoding after a variable value
(including a pad value) or an attribute entry has been
written.

[\

. Changing a CDF's format after a variable has been created
or if a compressed single-file CDF.

(98]

. Changing a CDF's variable majority after a variable value
(excluding a pad value) has been written.

4. Changing a variable's data specification after a value
(including the pad value) has been written to that variable
or after records have been allocated for that variable.

5. Changing a variable's record variance after a value
(excluding the pad value) has been written to that variable
or after records have been allocated for that variable.

6. Changing a variable's dimension variances after a value
(excluding the pad value) has been written to that variable
or after records have been allocated for that variable.

7. Writing “initial” records to a variable after a value
(excluding the pad value) has already been written to that
variable.

8. Changing a variable's blocking factor when a compressed
variable and a value (excluding the pad value) has been
written or when a variable with sparse records and a
value has been accessed.

9. Changing an attribute entry's data specification where the

new specification is not equivalent to the old
specification.

266

CANNOT_COMPRESS

CANNOT_SPARSEARRAYS

CANNOT_SPARSERECORDS

CDF _CLOSE ERROR

CDF _CREATE ERROR

CDF DELETE ERROR

CDF_EXISTS

CDF_INTERNAL ERROR

CDF_NAME_TRUNC

CDF_OK

CDF OPEN_ERROR

CDF_READ ERROR

CDF_WRITE ERROR

CHECKSUM_ERROR

CHECKSUM_NOT ALLOWED

The CDF or variable cannot be compressed. For CDFs, this
occurs if the CDF has the multi-file format. For variables, this
occurs if the variable is in a multi-file CDF, values have been
written to the variable, or if sparse arrays have already been
specified for the variable. [Error]

Sparse arrays cannot be specified for the variable. This occurs if
the variable is in a multi-file CDF, values have been written to
the variable, records have been allocated for the variable, or if
compression has already been specified for the variable. [Error]

Sparse records cannot be specified for the variable. This occurs
if the variable is in a multi-file CDF, values have been written to
the variable, or records have been allocated for the variable.
[Error]

Error detected while trying to close CDF. Check that sufficient
disk space exists for the dotCDF file and that it has not been
corrupted. [Error]

Cannot create the CDF specified - error from file system. Make
sure that sufficient privilege exists to create the dotCDF file in
the disk/directory location specified and that an open file quota
has not already been reached. [Error]

Cannot delete the CDF specified - error from file system.
Insufficient privileges exist the delete the CDF file(s). [Error]

The CDF named already exists - cannot create it. The CDF
library will not overwrite an existing CDF. [Error]

An unexpected condition has occurred in the CDF library. Report
this error to CDFsupport. [Error]

CDF file name truncated to CDF PATHNAME LEN characters.
The CDF was created but with a truncated name. [Warning]

Function completed successfully.

Cannot open the CDF specified - error from file system. Check
that the dotCDF file is not corrupted and that sufficient privilege
exists to open it. Also check that an open file quota has not

already been reached. [Error]

Failed to read the CDF file - error from file system. Check that
the dotCDF file is not corrupted. [Error]

Failed to write the CDF file - error from file system. Check that
the dotCDF file is not corrupted. [Error]

The data integrity verification through the checksum failed.
[Error]

The checksum is not allowed for old versioned files. [Error]

267

COMPRESSION ERROR

CORRUPTED V2 CDF

DECOMPRESSION ERROR

DID NOT _COMPRESS

EMPTY COMPRESSED CDF

END_OF VAR

FORCED PARAMETER

IBM_PC_OVERFLOW

ILLEGAL EPOCH VALUE

ILLEGAL FOR SCOPE

ILLEGAL IN zMODE

ILLEGAL ON_V1 _CDF

MULTI FILE FORMAT

NA FOR VARIABLE

An error occurred while compressing a CDF or block of variable
records. This is an internal error in the CDF library. Contact
CDF User Support. [Error]

This Version 2 CDF is corrupted. An error has been detected in
the CDF's control information. If the CDF file(s) are known to
be valid, please contact CDF User Support. [Error]

An error occurred while decompressing a CDF or block of
variable records. The most likely cause is a corrupted dotCDF
file. [Error]

For a compressed variable, a block of records did not compress to
smaller than their uncompressed size. They have been stored
uncompressed. This can result If the blocking factor is set too
low or if the characteristics of the data are such that the
compression algorithm chosen is unsuitable. [Informational]

The compressed CDF being opened is empty. This will result if a
program, which was creating/modifying, the CDF abnormally
terminated. [Error]

The sequential access current value is at the end of the variable.
Reading beyond the end of the last physical value for a variable is
not allowed (when performing sequential access). [Error]

A specified parameter was forced to an acceptable value (rather
than an error being returned). [Warning]

An operation involving a buffer greater than 64k bytes in size has
been specified for PCs running 16-bit DOS/Windows 3.*.
[Error]

Illegal component is detected in computing an epoch value or an
illegal epoch value is provided in decomposing an epoch value.
[Error]

The operation is illegal for the attribute's scope. For example,
only gEntries may be written for gAttributes - not rEntries or
zEntries. [Error]

The attempted operation is illegal while in zMode. Most
operations involving rVariables or rEntries will be illegal.
[Error]

The specified operation (i.e., opening) is not allowed on Version
1 CDFs. [Error]

The specified operation is not applicable to CDFs with the multi-
file format. For example, it does not make sense to inquire
indexing statistics for a variable in a multi-file CDF (indexing is
only used in single-file CDFs). [Informational]

The attempted operation is not applicable to the given variable.
[Warning]

268

NEGATIVE FP ZERO

NO_ATTR SELECTED

NO_CDF_SELECTED

NO_DELETE_ACCESS

NO_ENTRY SELECTED

NO_MORE_ACCESS

NO_PADVALUE SPECIFIED

NO_STATUS SELECTED

NO_SUCH_ATTR

NO_SUCH_CDF

NO _SUCH ENTRY
NO_SUCH_RECORD

NO_SUCH_VAR

NO_VAR_SELECTED

NO_VARS_IN_CDF

NO_WRITE_ACCESS

NOT_A_CDF

NOT A CDF OR NOT SUPPORTED

One or more of the values read/written are -0.0 (An illegal value
on VAXes and DEC Alphas running OpenVMS). [Warning]

An attribute has not yet been selected. First select the attribute on
which to perform the operation. [Error]

A CDF has not yet been selected. First select the CDF on which
to perform the operation. [Error]

Deleting is not allowed (read-only access). Make sure that
delete access is allowed on the CDF file(s). [Error]

An attribute entry has not yet been selected. First select the entry
number on which to perform the operation. [Error]

Further access to the CDF is not allowed because of a severe
error. If the CDF was being modified, an attempt was made to
save the changes made prior to the severe error. in any event, the
CDF should still be closed. [Error]

A pad value has not yet been specified. The default pad value is
currently being used for the variable. The default pad value was
returned. [Informational]

A CDF status code has not yet been selected. First select the
status code on which to perform the operation. [Error]

The named attribute was not found. Note that attribute names are
case-sensitive. [Error]

The specified CDF does not exist. Check that the file name
specified is correct. [Error]

No such entry for specified attribute. [Error]
The specified record does not exist for the given variable. [Error]

The named variable was not found. Note that variable names are
case-sensitive. [Error]

A variable has not yet been selected. First select the variable on
which to perform the operation. [Error]

This CDF contains no rVariables. The operation performed is
not applicable to a CDF with no rVariables. [Informational]

Write access is not allowed on the CDF file(s). Make sure that
the CDF file(s) have the proper file system privileges and
ownership. [Error]

Named CDF is corrupted or not actually a CDF. Contact CDF
User Support if you are sure that the specified file is a CDF that
should be readable by the CDF distribution being used. [Error]

This can occur if an older CDF distribution is being used to read
a CDF created by a more recent CDF distribution. Contact CDF

269

PRECEEDING RECORDS ALLOCATED

READ ONLY DISTRIBUTION

READ ONLY MODE

SCRATCH CREATE ERROR

SCRATCH DELETE ERROR

SCRATCH READ ERROR

SCRATCH WRITE ERROR

SINGLE FILE FORMAT

SOME ALREADY ALLOCATED

TOO_MANY_PARMS

TOO_MANY_VARS

UNKNOWN_ COMPRESSION

UNKNOWN_SPARSENESS

UNSUPPORTED_ OPERATION
VAR ALREADY CLOSED

VAR CLOSE ERROR

VAR _CREATE ERROR

User Support if you are sure that the specified file is a CDF that
should be readable by the CDF distribution being used. CDF is
backward compatible but not forward compatible. [Error]

Because of the type of variable, records preceding the range of
records being allocated were automatically allocated as well.
[Informational]

Your CDF distribution has been built to allow only read access to
CDFs. Check with your system manager if you require write

access. [Error]

The CDF is in read-only mode - modifications are not allowed.
[Error]

Cannot create a scratch file - error from file system. If a scratch
directory has been specified, ensure that it is writeable. [Error]

Cannot delete a scratch file - error from file system. [Error]
Cannot read from a scratch file - error from file system. [Error]
Cannot write to a scratch file - error from file system. [Error]
The specified operation is not applicable to CDFs with the single-
file format. For example, it does not make sense to close a

variable in a single-file CDF. [Informational]

Some of the records being allocated were already allocated.
[Informational]

A type of sparse arrays or compression was encountered having
too many parameters. This could be causes by a corrupted CDF
or if the CDF was created/modified by a CDF distribution more
recent than the one being used. [Error]

A multi-file CDF on a PC may contain only a limited number of
variables because of the 8.3 file naming convention of MS-DOS.
This consists of 100 rVariables and 100 zVariables. [Error]

An unknown type of compression was specified or encountered.
[Error]

An unknown type of sparseness was specified or encountered.
[Error]

The attempted operation is not supported at this time. [Error]

The specified variable is already closed. [Informational]

Error detected while trying to close variable file. Check that
sufficient disk space exists for the variable file and that it has not

been corrupted. [Error]

An error occurred while creating a variable file in a multi-file
CDF. Check that a file quota has not been reached. [Error]

270

VAR DELETE ERROR

VAR _EXISTS

VAR NAME_TRUNC

VAR OPEN ERROR

VAR _READ ERROR

VAR WRITE ERROR

VIRTUAL RECORD DATA

An error occurred while deleting a variable file in a multi-file
CDF. Check that sufficient privilege exist to delete the CDF
files. [Error]

Named variable already exists - cannot create or rename. Each
variable in a CDF must have a unique name (rVariables and
zVariables can not share names). Note that the CDF library when
comparing variable names ignores trailing blanks. [Error]

Variable name truncated to CDF VAR NAME LEN256
characters. The variable was created but with a truncated name.
[Warning]

An error occurred while opening variable file. Check that
sufficient privilege exists to open the variable file. Also make
sure that the associated variable file exists. [Error]

Failed to read variable as requested - error from file system.
Check that the associated file is not corrupted. [Error]

Failed to write variable as requested - error from file system.
Check that the associated file is not corrupted. [Error]

One or more of the records are virtual (never actually written to
the CDF). Virtual records do not physically exist in the CDF
file(s) but are part of the conceptual view of the data provided by
the CDF library. Virtual records are described in the Concepts
chapter in the CDF User's Guide. [Informational]

271

Appendix B

B.1 VB-CDF APIs

The APIs that have the TYPE symbol use a general form for dealing with data, either variable value(s) or attribute
entry, in various data type for input and output. TYPE can be specified either in VB basic value or string type (scalar
or array) for writing out and reading from a CDF. The VB base Object class can also be used to represent a data object
reading from a CDF, which will be a scalar or array of value or string type

integer CDFattrCreate (id, attrName, attrScope, attrNum)

id as long “in
attrName as string “in
attrScope as integer “in
attrNum as integer ‘ out
integer CDFattrEntryInquire (id, attrNum, entryNum, dataType, numElements)

id as long “in
attrNum as integer “in
entryNum as integer “in
dataType as integer ‘ out
numElements as integer ‘ out
integer CDFattrGet (id, attrNum, entryNum, value)

id as long “in
attrNum as integer “in
entryNum as integer “in
value as TYPE ‘ out
integer CDFattrInquire (id, attrNum, attrName, attrScope, maxEntry)

id as long “in
attrNum as integer “in
attrName as string ‘ out
attrScope as integer ‘ out
maxEntry as integer ‘ out
integer CDFattrNum (id, attrName)

id as long “in
attrName as string “in
integer CDFattrPut (id, attrNum, entryNum, dataType, numElements, value)

id as long “in
attrNum as integer “in
entryNum as integer “in
dataType as integer “in
numElements as integer “in

273

value as TYPE ‘in

integer CDFattrRename (id, attrNum, attrName)

id as long “in
attrNum as integer “in
attrName as string “in

integer CDFclose (id)
id as long in

integer CDFcloseCDF (id)
id as long in

integer CDFcloserVar (id, varNum)
id as long in
varNum as integer in

integer CDFclosezVar (id, varNum)
id as long in
varNum as integer in

integer CDFconfirmAttrExistence (id, attrName)
id as long in

attrName as string in

integer CDFconfirmgEntryExistence (id, attrNum, entryNum)

id as long “in
attrNum as integer “in
entryNum as integer “in

integer CDFconfirmrEntryExistence (id, attrNum, entryNum)

id as long “in
attrNum as integer “in
entryNum as integer “in

integer CDFconfirmrVarExistence (id, varNum)
id as long in
varNum as integer in

integer CDFconfirmrVarPadValueExistence (id, varNum)
id as long in

varNum as integer in

integer CDFconfirmzEntryExistence (id, attrNum, entryNum)

id as long “in
attrNum as integer “in
entryNum as integer “in

integer CDFconfirmzVarExistence (id, varNum)
id as long in
varNum as integer in

integer CDFconfirmzVarPadValueExistence (id, varNum)

id as long in
varNum as integer in

274

integer CDFcreate (CDFname, numDims, dimSizes, encoding, majority, id)

CDFname as string “in
numDims as integer “in
dimSizes as integer() “in
encoding as integer “in
majority as integer “in
id as long ‘ out

integer CDFcreateAttr (id, attrName, scope, attrNum)

id as long “in
attrName as string “in
scope as integer ‘in
attrNum as integer ‘ out
integer CDFcreateCDF (CDFname, id)

CDFname as string “in
id as long ‘ out
integer CDFcreaterVar (id, varName, dataType, numElements, recVary, dimVarys, varNum)

id as long “in
varName as string “in
dataType as integer “in
numElements as integer “in
recVary as integer “in
dimVarys as integer() “in
varNum as integer ‘ out

integer CDFcreatezVar (id, varName, dataType, numElements, numDims, dimSizes, recVary, dimVarys, varNum)

id as long ‘in
varName as string “in
dataType as integer “in
numElements as integer “in
numDims as integer “in
dimSizes as integer() “in
recVary as integer “in
dimVarys as integer() “in
varNum as integer ‘ out
integer CDFdelete (id)

id as long “in
integer CDFdeleteAttr (id, attrNum)

id as long “in
attrNum as integer “in
integer CDFdeleteAttrgEntry (id, attrNum, entryNum)

id as long “in
attrNum as integer “in
entryNum as integer “in
integer CDFdeleteAttrrEntry (id, attrNum, entryNum)

id as long “in
attrNum as integer “in
entryNum as integer “in

integer CDFdeleteAttrzEntry (id, attrNum, entryNum)

275

id as long in
attrNum as integer in
entryNum as integer in

integer CDFdeleteCDF (id)
id as long in

integer CDFdeleterVar (id, varNum)
id as long in

varNum as integer in

integer CDFdeleterVarRecords (id, varNum, startRec, endRec)

id as long “in
varNum as integer “in
startRec as integer “in
endRec as integer ‘in

integer CDFdeleterVarRecordsRenumber (id, varNum, startRec, endRec)

id as long “in
varNum as integer “in
startRec as integer “in
endRec as integer ‘in

integer CDFdeletezVar (id, varNum)
id as long in
varNum as integer in

integer CDFdeletezVarRecords (id, varNum, startRec, endRec)

id as long “in
varNum as integer “in
startRec as integer “in
endRec as integer ‘in

integer CDFdeletezVarRecordsRenumber (id, varNum, startRec, endRec)

id as long “in
varNum as integer “in
startRec as integer “in
endRec as integer ‘in

integer CDFdoc (id, version, release, text)
id as long in

version as integer ‘ out
release as integer ‘ out
text as string ‘ out

integer CDFerror (status, message)
status as integer in

message as string ‘ out
integer CDFgetAttrgEntry (id, attrNum, entryNum, value)

id as long “in
attrNum as integer “in
entryNum as integer “in
value as TYPE ‘ out

integer CDFgetAttrgEntryDataType (id, attrNum, entryNum, dataType)

276

id as long in

attrNum as integer “in
entryNum as integer “in
dataType as integer ‘ out
integer CDFgetAttrgEntryNumElements (id, attrNum, entryNum, numElems)

id as long “in
attrNum as integer “in
entryNum as integer “in
numElems as integer ‘ out
integer CDFgetAttrMaxgEntry (id, attrNum, entryNum)

id as long “in
attrNum as integer “in
entryNum as integer ‘ out
integer CDFgetAttrMaxrEntry (id, attrNum, entryNum)

id as long “in
attrNum as integer “in
entryNum as integer ‘ out
integer CDFgetAttrMaxzEntry (id, attrNum, entryNum)

id as long “in
attrNum as integer “in
entryNum as integer ‘ out
integer CDFgetAttrName (id, attrNum, attrName)

id as long “in
attrNum as integer “in
attrName as string ‘ out
integer CDFgetAttrNum (id, attrName)

id as long “in
attrName as string “in
integer CDFgetAttrrEntry (id, attrNum, entryNum, value)

id as long “in
attrNum as integer “in
entryNum as integer “in
value as TYPE ‘ out
integer CDFgetAttrrEntryDataType (id, attrNum, entryNum, dataType)

id as long “in
attrNum as integer “in
entryNum as integer “in
dataType as integer ‘ out
integer CDFgetAttrrEntryNumElements (id, attrNum, entryNum, numElems)

id as long “in
attrNum as integer “in
entryNum as integer “in
numElems as integer ‘ out
integer CDFgetAttrScope (id, attrNum, scope)

id as long “in
attrNum as integer “in

277

scope as integer ‘ out
integer CDFgetAttrzEntry (id, attrNum, entryNum, value)

id as long “in
attrNum as integer “in
entryNum as integer “in
value as TYPE ‘ out
integer CDFgetAttrzEntryDataType (id, attrNum, entryNum, dataType)

id as long “in
attrNum as integer “in
entryNum as integer “in
dataType as integer ‘ out
integer CDFgetAttrzEntryNumElements (id, attrNum, entryNum, numElems)

id as long “in
attrNum as integer “in
entryNum as integer “in
numElems as integer ‘ out

integer CDFgetCacheSize (id, numBuffers)
id as long in
numBuffers as integer out

integer CDFgetChecksum (id, checksum)
id as long in
checksum as integer out

integer CDFgetCompression (id, compType, compParms, compPercent)
id as long in

compType as integer ‘ out
compParms as integer ‘ out
compPercent as integer ‘ out

integer CDFgetCompressionCacheSize (id, numBuffers)
id as long in
numBuffers as integer out

integer CDFgetCompressionlnfo (cdfName, compType, compParms, compSize, uncompSize)
cdfName as string in

compType as integer ‘ out
compParms as integer() ‘ out
compSize as long ‘ out
uncompSize as long ‘ out

integer CDFgetCopyright (id, copyright)
id as long in
copyright as string out

integer CDFgetDataTypeSize (dataType, numBytes)
dataType as integer in
numBytes as integer out

integer CDFgetDecoding (id, decoding)

id as long in
decoding as integer out

278

integer CDFgetEncoding (id, encoding)
id as long in
encoding as integer out

integer CDFgetFileBackward ()

integer CDFgetFormat (id, format)
id as long in

format as integer ‘ out
integer CDFgetLibraryCopyright (copyright)

copyright as string ‘ out
integer CDFgetLibraryVersion (version, release, increment, subIncrement)

version as integer ‘ out
release as integer ‘ out
increment as integer ‘ out
subIncrement as string ‘ out

integer CDFgetLeapSecondLastUpdated (id, lastUpdated)
id as long in
lastUpdate as integer out

integer CDFgetMajority (id, majority)
id as long in
majority as integer out

integer CDFgetMaxWrittenRecNums (id, maxRecrVars, maxReczVars)

id as long in
maxRecrVars as integer out
maxReczVars as integer out

integer CDFgetName (id, name)
id as long in
name as string out

integer CDFgetNegtoPosfpOMode (id, negtoPosfp0)
id as long in

negtoPosfp0 as integer ‘ out
integer CDFgetNumAttrgEntries (id, attrNum, entries)

id as long “in
attrNum as integer “in
entries as integer ‘ out

integer CDFgetNumAttributes (id, numAttrs)
id as long in

numAttrs as integer ‘ out
integer CDFgetNumAttrrEntries (id, attrNum, entries)

id as long “in
attrNum as integer “in
entries as integer ‘ out

integer CDFgetNumAttrzEntries (id, attrNum, entries)

279

id as long in
attrNum as integer in
entries as integer out

integer CDFgetNumgAttributes (id, numAttrs)
id as long in
numAttrs as integer out

integer CDFgetNumrVars (id, numVars)
id as long in
numrVars as integer out

integer CDFgetNumvAttributes (id, numAttrs)
id as long in
numAttrs as integer out

integer CDFgetNumzVars (id, numVars)
id as long in
numzVars as integer out

integer CDFgetReadOnlyMode (id, mode)
id as long in

mode as integer ‘ out
integer CDFgetrVarAllocRecords (id, varNum, allocRecs)

id as long “in
varNum as integer “in
allocRecs as integer ‘ out
integer CDFgetrVarBlockingFactor (id, varNum, bf)

id as long “in
varNum as integer “in
bf as integer ‘ out
integer CDFgetrVarCacheSize (id, varNum, numBuffers)

id as long “in
varNum as integer “in
numBuffers as integer ‘ out
integer CDFgetrVarCompression (id, varNum, cType, cParms, cPercent)

id as long “in
varNum as integer “in
compType as integer ‘ out
cParms as integer() ‘ out
cPercent as integer ‘ out
integer CDFgetrVarData (id, varNum, recNum, indices, value)

id as long “in
varNum as integer “in
recNum as integer “in
indices as integer() “in
value as TYPE ‘ out
integer CDFgetrVarDataType (id, varNum, dataType)

id as long “in
varNum as integer “in

280

dataType as integer ‘ out
integer CDFgetrVarsDimSizes (id, varNum, dimSizes)

id as long “in
varNum as integer “in
dimSizes as integer() ‘ out
integer CDFgetrVarDimVariances (id, varNum, dimVarys)

id as long “in
varNum as integer “in
dimVarys as integer() ‘ out
integer CDFgetrVarInfo (id, varNum, dataType, numElems, numDims, dimSizes)

id as long “in
varNum as integer “in
dataType as integer ‘ out
numElems as integer ‘ out
numDims as integer ‘ out
dimSizes as integer() ‘ out
integer CDFgetrVarMaxAllocRecNum (id, varNum, maxRec)

id as long “in
varNum as integer “in
maxRec as integer ‘ out
integer CDFgetrVarMaxWrittenRecNum (id, varNum, maxRec)

id as long “in
varNum as integer “in
maxRec as integer ‘ out
integer CDFgetrVarName (id, varNum, varName)

id as long “in
varNum as integer “in
varName as string ‘ out
integer CDFgetrVarsNumDims (id, varNum, numDims)

id as long “in
varNum as integer “in
numDims as integer ‘ out
integer CDFgetrVarNumElements (id, varNum, numElems)

id as long “in
varNum as integer “in
numElems as integer ‘ out
integer CDFgetrVarNumRecsWritten (id, varNum, numRecs)

id as long “in
varNum as integer “in
numRecs as integer ‘ out
integer CDFgetrVarPadValue (id, varNum, padValue)

id as long “in
varNum as integer “in
padValue as TYPE ‘ out

integer CDFgetrVarRecordData (id, varNum, recNum, buffer)

281

id as long
varNum as integer
recNum as integer
buffer as TYPE

integer CDFgetrVarRecVariance (id, varNum, recVary)
id as long

varNum as integer

recVary as integer

integer CDFgetrVarReservePercent (id, varNum, percent)
id as long

varNum as integer

percent as integer

integer CDFgetrVarsDimSizes (id, dimSizes)
id as long
dimSizes as integer()

integer CDFgetrVarSeqData (id, varNum, value)
id as long

varNum as integer

value as TYPE

integer CDFgetrVarSeqPos (id, varNum, recNum, indices)
id as long

varNum as integer

recNum as integer

indices as integer()

integer CDFgetrVarsMaxWrittenRecNum (id, recNum)
id as long
recNum as integer

integer CDFgetrVarsNumDims (id, numDims)
id as long
numDims as integer

integer CDFgetrVarSparseRecords (id, varNum, sRecords)
id as long

varNum as integer

sRecords as integer

integer CDFgetStageCacheSize (id, numBuffers)
id as long
numBuffers as integer

integer CDFgetStatusText (status, text)
status as integer

text as string

integer CDFgetValidate ()

integer CDFgetVarNum (id, varName)

id as long
varName as string

282

in
in
in
out

in
in
out

in
in
out

in
out

in
in
out

in
in
out
out

in
out

in
out

in
in
out

in
out

in

out

in
in

integer CDFgetVersion (id, version, release, increment)
id as long in

version as integer ‘ out
release as integer ‘ out
increment as integer ‘ out

integer CDFgetzMode (id, zMode)
id as long in

zMode as integer ‘ out
integer CDFgetzVarAllocRecords (id, varNum, allocRecs)

id as long “in
varNum as integer “in
allocRecs as integer ‘ out
integer CDFgetzVarBlockingFactor (id, varNum, bf)

id as long “in
varNum as integer “in
bf as integer ‘ out
integer CDFgetzVarCacheSize (id, varNum, numBuffers)

id as long “in
varNum as integer “in
numBuffers as integer ‘ out
integer CDFgetzVarCompression (id, varNum, cType, cParms, cPercent)

id as long “in
varNum as integer “in
compType as integer ‘ out
cParms as integer() ‘ out
cPercent as integer ‘ out
integer CDFgetzVarData (id, varNum, recNum, indices, value)

id as long “in
varNum as integer “in
recNum as integer “in
indices as integer() “in
value as TYPE ‘ out
integer CDFgetzVarDataType (id, varNum, dataType)

id as long “in
varNum as integer “in
dataType as integer ‘ out
integer CDFgetzVarDimSizes (id, varNum, dimSizes)

id as long “in
varNum as integer “in
dimSizes as integer() ‘ out
integer CDFgetzVarDimVariances (id, varNum, dimVarys)

id as long “in
varNum as integer “in
dimVarys as integer() ‘ out

integer CDFgetzVarInfo (id, varNum, dataType, numElems, numDims, dimSizes)

283

id as long in
varNum as integer in

dataType as integer ‘ out
numElems as integer ‘ out
numDims as integer ‘ out
dimSizes as integer() ‘ out
integer CDFgetzVarMaxAllocRecNum (id, varNum, maxRec)

id as long “in
varNum as integer “in
maxRec as integer ‘ out
integer CDFgetzVarMaxWrittenRecNum (id, varNum, maxRec)

id as long “in
varNum as integer “in
maxRec as integer ‘ out
integer CDFgetzVarName (id, varNum, varName)

id as long “in
varNum as integer “in
varName as string ‘ out
integer CDFgetzVarNumDims (id, varNum, numDims)

id as long “in
varNum as integer “in
numDims as integer ‘ out
integer CDFgetzVarNumElements (id, varNum, numElems)

id as long “in
varNum as integer “in
numElems as integer ‘ out
integer CDFgetzVarNumRecsWritten (id, varNum, numRecs)

id as long “in
varNum as integer “in
numRecs as integer ‘ out
integer CDFgetzVarPadValue (id, varNum, padValue)

id as long “in
varNum as integer “in
padValue as TYPE ‘ out
integer CDFgetzVarRecordData (id, varNum, recNum, data)

id as long “in
varNum as integer “in
recNum as integer “in
data as TYPE ‘out
integer CDFgetzVarRecVariance (id, varNum, recVary)

id as long “in
varNum as integer “in
recVary as integer ‘ out
integer CDFgetzVarReservePercent (id, varNum, percent)

id as long “in
varNum as integer “in

284

percent as integer ‘ out
integer CDFgetzVarSeqData (id, varNum, value)

id as long “in
varNum as integer “in
value as TYPE ‘ out
integer CDFgetzVarSeqPos (id, varNum, recNum, indices)

id as long “in
varNum as integer “in
recNum as integer ‘ out
indices as integer() ‘ out

integer CDFgetzVarsMaxWrittenRecNum (id, recNum)
id as long in

recNum as integer ‘ out
integer CDFgetzVarSparseRecords (id, varNum, sRecords)

id as long “in
varNum as integer “in
sRecords as integer ‘ out

integer CDFhyperGetrVarData (id, varNum, recNum, recCount, recInterval, indices, counts, intervals, buffer)

id as long ‘in
varNum as integer “in
recNum as integer “in
recCount as integer “in
recInterval as integer “in
indices as integer() “in
counts as integer() “in
intervals as integer() “in
buffer as TYPE ‘ out

integer CDFhyperGetzVarData (id, varNum, recNum, recCount, recInterval, indices, counts, intervals, buffer)

id as long ‘in
varNum as integer “in
recNum as integer “in
recCount as integer “in
recInterval as integer “in
indices as integer() “in
counts as integer() “in
intervals as integer() “in
buffer as TYPE ‘ out

integer CDFhyperPutrVarData (id, varNum, recNum, recCount, recInterval, indices, counts, intervals, buffer)

id as long ‘in
varNum as integer “in
recNum as integer “in
recCount as integer “in
recInterval as integer “in
indices as integer() “in
counts as integer() “in
intervals as integer() “in
buffer as TYPE “in

integer CDFhyperPutzVarData (id, varNum, recNum, recCount, recInterval, indices, counts, intervals, data)

285

id as long in

varNum as integer “in
recNum as integer “in
recCount as integer “in
recInterval as integer “in
indices as integer() “in
counts as integer() “in
intervals as integer() “in
data as TYPE “in

integer CDFinquire (id, numDims, dimSizes, encoding, majority, maxRec, numVars, numAttrs)
id as long in

numDims as integer ‘ out
dimSizes as integer() ‘ out
encoding as integer ‘ out
majority as integer ‘ out
maxRec as integer ‘ out
numVars as integer ‘ out
numAttrs as integer ‘ out
integer CDFinquireAttr (id, attrNum, attrName, attrScope, maxgEntry, maxrEntry, maxzEntry)

id as long “in
attrNum as integer “in
attrName as string ‘ out
attrScope as integer ‘ out
maxgEntry as integer ‘ out
maxrEntry as integer ‘ out
maxzEntry as integer ‘ out
integer CDFinquireAttrgEntry (id, attrNum, entryNum, dataType, numElems)

id as long “in
attrNum as integer “in
entryNum as integer “in
dataType as integer ‘ out
numElems as integer ‘ out
integer CDFinquireAttrrEntry (id, attrNum, entryNum, dataType, numElems)

id as long “in
attrNum as integer “in
entryNum as integer “in
dataType as integer ‘ out
numElems as integer ‘ out
integer CDFinquireAttrzEntry (id, attrNum, entryNum, dataType, numElems)

id as long “in
attrNum as integer “in
entryNum as integer “in
dataType as integer ‘ out
numElems as integer ‘ out

integer CDFinquireCDF (id, numDims, dimSizes, encoding, majority, maxrRec, numrVars, maxzRec,
numzVars, numAttrs)
id as long in

numDims as integer ‘ out
dimSizes as integer () ‘ out
encoding as integer ‘ out

286

majority as integer ‘ out
maxrRec as integer ‘ out
numrVars as integer ‘ out
maxzRec as integer ‘ out
numzVars as integer ‘ out
numAttrs as integer ‘ out

integer CDFinquirerVar (id, varNum, varName, dataType, numElems, numDims, dimSizes, recVary, dimVarys)

id as long ‘in
varNum as integer “in
varName as string ‘ out
dataType as integer ‘ out
numElems as integer ‘ out
numDims as integer ‘ out
dimSizes as integer() ‘ out
recVary as integer ‘ out
dimVarys as integer() ‘ out
integer CDFinquirezVar (id, varNum, varName, dataType, numElems, numDims, dimSizes, recVary, dimVarys)
id as long “in
varNum as integer “in
varName as string ‘ out
dataType as integer ‘ out
numElems as integer ‘ out
numDims as integer ‘ out
dimSizes as integer() ‘ out
recVary as integer ‘ out
dimVarys as integer() ‘ out
integer CDFopen (CDFname, id)

CDFname as string “in
id as long ‘ out
integer CDFopenCDF (CDFname, id)

CDFname as string “in
id as long ‘ out
integer CDFselectCDF (id)

id as long “in
integer CDFputAttrgEntry (id, attrNum, entryNum, dataType, numElems, value)

id as long “in
attrNum as integer “in
entryNum as integer “in
dataType as integer “in
numElems as integer “in
value as TYPE “in
integer CDFputAttrrEntry (id, attrNum, entryNum, dataType, numElems, value)

id as long “in
attrNum as integer “in
entryNum as integer “in
dataType as integer “in
numElems as integer “in
value as TYPE “in

287

integer CDFputAttrzEntry (id, attrNum, entryNum, dataType, numElems, value)
id as long

attrNum as integer

entryNum as integer

dataType as integer

numElems as integer

value as TYPE

integer CDFputrVarData (id, varNum, recNum, indices, value)
id as long

varNum as integer

recNum as integer

indices as integer()

value as TYPE

integer CDFputrVarPadValue (id, varNum, padValue)
id as long

varNum as integer

padValue as TYPE

integer CDFputrVarRecordData (id, varNum, recNum, values)
id as long

varNum as integer

recNum as integer

values as TYPE

integer CDFputrVarSeqData (id, varNum, value)
id as long

varNum as integer

value as TYPE

integer CDFputzVarData (id, varNum, recNum, indices, value)
id as long

varNum as integer

recNum as integer

indices as integer()

value as TYPE

integer CDFputzVarPadValue (id, varNum, padValue)
id as long

varNum as integer

padValue as TYPE

integer CDFputzVarRecordData (id, varNum, recNum, values)
id as long

varNum as integer

recNum as integer

values as TYPE

integer CDFputzVarSeqData (id, varNum, value)
id as long

varNum as integer

value as TYPE

integer CDFrenameAttr (id, attrNum, attrName)
id as long

288

in
in
in
in
in
in

in
in
in
in
in

in
in
in

in
in
in
in

in
in
in

in
in
in
in
in

in
in
in

in
in
in
in

in
in
in

in

attrNum as integer
attrName as string

integer CDFrenamerVar (id, varNum, varName)
id as long

varNum as integer

varName as string

integer CDFrenamezVar (id, varNum, varName)
id as long

varNum as integer

varName as string

integer CDFselect (id)
id as long

integer CDFselectCDF (id)
id as long

integer CDFsetAttrgEntryDataSpec (id, attrNum, entryNum, dataType)
id as long

attrNum as integer

entryNum as integer

dataType as integer

integer CDFsetAttrrEntryDataSpec (id, attrNum, entryNum, dataType)
id as long

attrNum as integer

entryNum as integer

dataType as integer

integer CDFsetAttrScope (id, attrNum, scope)
id as long

attrNum as integer

scope as integer

integer CDFsetAttrzEntryDataSpec (id, attrNum, entryNum, dataType)
id as long

attrNum as integer

entryNum as integer

dataType as integer

integer CDFsetCacheSize (id, numBuffers)
id as long
numBuffers as integer

integer CDFsetChecksum (id, checksum)
id as long
checksum as integer

integer CDFsetCompression (id, compressionType, compressionParms)
id as long
compressionType as integer

compressionParms as integer()

integer CDFsetCompressionCacheSize (id, numBuffers)

289

in
in

in
in
in

in
in
in

in

in

in
in
in
in

in
in
in
in

in
in
in

in
in
in
in

in
in

in
in

in
in
in

id as long in
numBuffers as integer in

integer CDFsetDecoding (id, decoding)
id as long in
decoding as integer in

integer CDFsetEncoding (id, encoding)
id as long in
encoding as integer in

void CDFsetFileBackward (mode)
mode as integer in

integer CDFsetFormat (id, format)
id as long in
format as integer in

integer CDFsetLeapSecondLastUpdated (id, lastUpdated)
id as long in
lastUpdated as integer in

integer CDFsetMajority (id, majority)
id as long in
majority as integer in

integer CDFsetNegtoPosfpOMode (id, negtoPosfp0)
id as long in
negtoPosfp0 as integer in

integer CDFsetReadOnlyMode (id, readOnly)
id as long in
readOnly as integer in

integer CDFsetrVarAllocBlockRecords (id, varNum, firstRec, lastRec)

id as long “in

varNum as integer “in

firstRec as integer ‘in
g

lastRec as integer ‘in
g

integer CDFsetrVarAllocRecords (id, varNum, numRecs)

id as long “in
varNum as integer “in
numRecs as integer “in

integer CDFsetrVarBlockingFactor (id, varNum, bf)

id as long “in
varNum as integer “in
bf as integer “in

integer CDFsetrVarCacheSize (id, varNum, numBuffers)

id as long “in
varNum as integer “in
numBuffers as integer “in

integer CDFsetrVarCompression (id, varNum, compressionType, compressionParms)

290

id as long in

varNum as integer “in
compressionType as integer ‘in
compressionParms as integer() “in

integer CDFsetrVarDataSpec (id, varNum, dataType)

id as long “in
varNum as integer “in
dataType as integer “in

integer CDFsetrVarDimVariances (id, varNum, dimVarys)

id as long “in
varNum as integer “in
dimVarys as integer() “in

integer CDFsetrVarlnitialRecs (id, varNum, initialRecs)

id as long “in
varNum as integer “in
initialRecs as integer “in

integer CDFsetrVarRecVariance (id, varNum, recVary)

id as long “in
varNum as integer “in
recVary as integer “in

integer CDFsetrVarReservePercent (id, varNum, reservePercent)

id as long “in
varNum as integer “in
reservePercent as integer “in

integer CDFsetrVarsCacheSize (id, numBuffers)
id as long in
numBuffers as integer in

integer CDFsetrVarSeqPos (id, varNum, recNum, indices)

id as long “in
varNum as integer “in
recNum as integer “in
indices as integer() “in

integer CDFsetrVarSparseRecords (id, varNum, sRecords)

id as long “in
varNum as integer “in
sRecords as integer ‘in

integer CDFsetStageCacheSize (id, numBuffers)
id as long in
numBuffers as integer in

void CDFsetValidate (mode)
mode as integer in

integer CDFsetzMode (id, zMode)

id as long in
zMode as integer in

201

integer CDFsetzVarAllocBlockRecords (id, varNum, firstRec, lastRec)

id as long “in

varNum as integer “in

firstRec as integer ‘in
g

lastRec as integer ‘in
g

integer CDFsetzVarAllocRecords (id, varNum, numRecs)

id as long “in
varNum as integer “in
numRecs as integer “in

integer CDFsetzVarBlockingFactor (id, varNum, bf)

id as long “in
varNum as integer “in
bf as integer “in

integer CDFsetzVarCacheSize (id, varNum, numBuffers)

id as long “in
varNum as integer “in
numBuffers as integer “in

integer CDFsetzVarCompression (id, varNum, compressionType, compressionParms)

id as long “in
varNum as integer “in
compressionType as integer ‘in
compressionParms as integer() ‘in

integer CDFsetzVarDataSpec (id, varNum, dataType)

id as long “in
varNum as integer “in
dataType as integer “in

integer CDFsetzVarDimVariances (id, varNum, dimVarys)

id as long “in
varNum as integer “in
dimVarys as integer() “in

integer CDFsetzVarlnitialRecs (id, varNum, initialRecs)

id as long “in
varNum as integer “in
initialRecs as integer “in

integer CDFsetzVarRecVariance (id, varNum, recVary)

id as long “in
varNum as integer “in
recVary as integer “in

integer CDFsetzVarReservePercent (id, varNum, reservePercent)

id as long “in
varNum as integer “in
reservePercent as integer “in

integer CDFsetzVarsCacheSize (id, numBuffers)
id as long in
numBuffers as integer in

292

integer CDFsetzVarSeqPos (id, varNum, recNum, indices)

id as long “in
varNum as integer “in
recNum as integer “in
indices as integer() “in

integer CDFsetzVarSparseRecords (id, varNum, sRecords)

id as long “in
varNum as integer “in
sRecords as integer ‘in

integer CDFvarClose (id, varNum)
id as long in
varNum as integer in

integer CDFvarCreate (id, varName, dataType, numElements, recVariance, dimVariances, varNum)

id as long ‘in
varName as string “in
dataType as integer “in
yp 2
numElements as integer “in
recVariance as integer “in
dimVariances as integer “in
g

varNum as integer ‘ out
integer CDFvarGet (id, varNum, recNum, indices, value)

id as long “in
varNum as integer “in
recNum as integer “in
indices as integer() “in
value as TYPE ‘ out

integer CDFvarHyperGet (id, varNum, recStart, recCount, recInterval, indices, counts, intervals, buffer)

id as long ‘in
varNum as integer “in
recStart as integer “in
recCount as integer “in
recInterval as integer “in
indices as integer() “in
counts as integer() “in
intervals as integer() “in
buffer as TYPE ‘ out

integer CDFvarHyperPut (id, varNum, recStart, recCount, recInterval, indices, counts, intervals, buffer)

id as long ‘in
varNum as integer “in
recStart as integer “in
recCount as integer “in
recInterval as integer “in
indices as integer() “in
counts as integer() “in
intervals as integer() “in
buffer as TYPE “in

integer CDFvarlnquire (id, varNum, varName, dataType, numElements, recVariance, dimVariances)

3

id as long in

varNum as integer in

293

varName as string
dataType as integer
numElements as integer
recVariance as integer
dimVariances as integer()

integer CDFvarNum (id, varName)
id as long
varName as string

integer CDFvarPut (id, varNum, recNum, indices, value)

id as long

varNum as integer
recNum as integer
indices as integer()
value as TYPE

integer CDFvarRename (id, varNum, varName)
id as long

varNum as integer

varName as string

294

out
out
out
out
out

in
in

in
in
in
in
in

in
in
in

295

B.2 EPOCH Utility Methods

double computeEPOCH (year, month, day, hour, minute, second, msec)

year as integer “in
month as integer “in
day as integer “in
hour as integer “in
minute as integer “in
second as integer ‘in
msec as integer “in

void EPOCHbreakdown (epoch, year, month, day, hour, minute, second, msec)
epoch as double in

year as integer ¢ out
month as integer ¢ out
day as integer ¢ out
hour as integer ¢ out
minute as integer ¢ out
second as integer ¢ out
msec as integer ‘¢ out
string toEncodeEPOCH (epoch)

epoch as double “in
string toEncodeEPOCH (epoch, style)

epoch as double “in
style as integer ‘in
string() toEncodeEPOCH (epoch)

epoch as double() “in
string() toEncodeEPOCH (epoch, style)

epoch as double() “in
style as integer ‘in

void encodeEPOCH (epoch, epString)
epoch as double in
epString as string out

void encodeEPOCHI1 (epoch, epString)
epoch as double in
epString as string out

void encodeEPOCH2 (epoch, epString)
epoch as double in
epString as string out

void encodeEPOCH3 (epoch, epString)
epoch as double in

epString as string ¢ out
void encodeEPOCH4 (epoch, epString)
epoch as double “in

297

epString as string ¢ out
void encodeEPOCHx (epoch, format, epString)

epoch as double “in
format as string “in
epString as string ¢ out
double toParseEPOCH (epString)

epString as string “in
double() toParseEPOCH (epString)

epString as string() “in
double parseEPOCH (epString)

epString as string “in
double parseEPOCHI1 (epString)

epString as string “in
double parseEPOCH2 (epString)

epString as string “in
double parseEPOCH3 (epString)

epString as string “in
double parseEPOCH4 (epString)

epString as string “in

double computeEPOCH16 (year, month, day, hour, minute, second, msec, microsec, nanosec, picosec)

3

year as integer in
month as integer “in
day as integer “in
hour as integer “in
minute as integer “in
second as integer ‘in
msec as integer “in
microsec as integer “in
nanosec as integer “in
picosec as integer “in
epoch as double() ‘ out

void EPOCHI16breakdown (epoch, year, month, day, hour, minute, second, msec, microsec, nanosec, picosec)

3

epoch as double() in

year as integer ¢ out
month as integer ¢ out
day as integer ¢ out
hour as integer ¢ out
minute as integer ¢ out
second as integer ¢ out
msec as integer ‘¢ out
microsec as integer ‘¢ out
nanosec as integer ¢ out
picosec as integer ‘¢ out
string toEncodeEPOCH16 (epoch)

epoch as double() “in

298

string toEncodeEPOCH16 (epoch, style)
epoch as double()
style as integer

void encodeEPOCH16 (epoch, epString)
epoch as double()
epString as string

void encodeEPOCH16 1 (epoch, epString)
epoch as double()
epString as string

void encodeEPOCH16 2 (epoch, epString)
epoch as double()
epString as string

void encodeEPOCH16 3 (epoch, epString)
epoch as double()
epString as string

void encodeEPOCH16 4 (epoch, epString)
epoch as double()
epString as string

void encodeEPOCH16 x (epoch, format, epString)
epoch as double()

format as string

epString as string

double() toParseEPOCH16 (epString)
epString as string

double parseEPOCH16 (epString, epoch)
epString as string
epoch as double()

double parseEPOCH16 1 (epString)
epString as string
epoch as double()

double parseEPOCH16 2 (epString)
epString as string
epoch as double()

double parseEPOCH16 3 (epString)
epString as string
epoch as double()

double parseEPOCH16 4 (epString)
epString as string

epoch as double()

long computeTT2000 (year, month, day)
year as double

299

in
in

in
out

in
out

in
out

in
out

in
out

in
in
out

in

in
out

in
out

in
out

in
out

in
out

in

month as double in

day as double “in
long computeTT2000 (year, month, day, hour)

year as double “in
month as double “in
day as double “in
hour as double “in

long computeTT2000 (year, month, day, hour, minute)

year as double “in
month as double ‘in
day as double “in
hour as double ‘in
minute as double ‘in

long computeTT2000 (year, month, day, hour, minute, second)

year as double “in
month as double ‘in
day as double “in
hour as double ‘in
minute as double ‘in
second as double ‘in

long computeTT2000 (year, month, day, hour, minute, second, msec)

year as double “in
month as double ‘in
day as double “in
hour as double ‘in
minute as double ‘in
second as double ‘in
msec as double ‘in

long computeTT2000 (year, month, day, hour, minute, second, msec, usec)

year as double “in
month as double ‘in
day as double “in
hour as double ‘in
minute as double ‘in
second as double ‘in
msec as double ‘in
usec as double ‘in

long computeTT2000 (year, month, day, hour, minute, second, msec, usec, nsec)

year as double “in
month as double ‘in
day as double “in
hour as double ‘in
minute as double ‘in
second as double ‘in
msec as double ‘in
usec as double ‘in
nsec as double ‘in

void TT2000breakdown (epoch, year, month, day, hour, minute, second, msec, usec, nsec)
epoch as long “in

300

year as double ¢ out
month as double ‘¢ out
day as double ¢ out
hour as double ‘¢ out
minute as double ‘¢ out
second as double ‘¢ out
msec as double ‘¢ out
usec as double ‘¢ out
nsec as double ‘¢ out
string toEncodeTT2000 (epoch)

epoch as long “in
string toEncodeTT2000 (epoch, style)

epoch as long “in
style as integer ¢ in
string() toEncodeTT2000 (epoch)

epoch as long() “in
string() toEncodeTT2000 (epoch, style)

epoch as long() “in
style as integer ‘in
void encodeTT2000 (epoch, epString, style)

epoch as long “in
epString as string ¢ out
style as string “in
long toParseTT2000 (epString)

epString as string “in
long() toParseTT2000 (epString)

epString as string() “in
long parseTT2000 (epString)

epString as string “in
void CDFgetLastDateinLeapSecondsTable (year, month, day)

year as integer ‘ out
month as integer ‘ out
day as integer ‘ out
double EPOCHtoUnixTime (epoch)

epoch as double “in
double() EPOCHtoUnixTime (epoch)

epoch as double() “in
double UnixTimetoEPOCH (unixTime)

unixTime as double “in
double() UnixTimetoEPOCH (unixTime)

unixTime as double() “in

double EPOCHI16toUnixTime (epoch)

301

epoch as double()

double() UnixTimetoEPOCH16 (unixTime)
unixTime as double

double TT2000toUnixTime (epoch)
epoch as long

double() TT2000toUnixTime (epoch)
epoch as long()

long UnixTimetoTT2000 (unixTime)
unixTime as double

long() UnixTimetoTT2000 (unixTime)
unixTime as double()

302

in

in

in

in

in

in

B.3 CDF Utility Methods

boolean CDFFileExists (fileName)
filename as string

integer CDFgetChecksumValue(checksum)
fileName as string

integer CDFgetCompressionTypeValue(compressionType)
compressionType as string

integer CDFgetDataTypeValue(dataType)
dataType as string

integer CDFgetDecodingValue(decoding)
decoding as string

integer CDFgetEncodingValue(encoding)
encoding as string

integer CDFgetFormatValue(format)
format as string

integer CDFgetMajority Value(majority)
majority as string

integer CDFgetSparseRecordValue(sparseRecord)
sparseRecord as string

string CDFgetStringChecksum(checksum)
checksum as integer

string CDFgetStringCompressionType(compressionType)
compressionType as integer

string CDFgetStringDataType(dataType)
dataType as integer

string CDFgetStringDecoding(decoding)
decoding as integer

string CDFgetStringEncoding(encoding)
encoding as integer

string CDFgetStringFormat(format)
format as integer

string CDFgetStringMajority(majority)
majority as integer

string CDFgetStringSparseRecord(sparseRecord)
sparseRecord as integer

303

in

in

in

in

in

in

in

in

in

in

in

in

in

in

in

in

in

B.4 CDF Exception Methods

integer CDFgetCurrentStatus ()

string CDFgetStatusMsg(status)
status as integer

304

Index

ALPHAOSF1_DECODING
ALPHAOSF1_ENCODING
ALPHAVMSd DECODING
ALPHAVMSd ENCODING
ALPHAVMSg DECODING
ALPHAVMSg ENCODING
ALPHAVMSi_DECODING
ALPHAVMSi_ENCODING
ARM_BIG_DECODING
ARM_BIG_ENCODING
ARM_LITTLE DECODING
ARM _LITTLE_ENCODING
attribute
inquiring
number
inquiring
renaming
attributes
checking existence
creation
entries
global entry
checking existence
inquiring
reading
writing
naming
inquiring
number of
inquiring
scopes
constants
GLOBAL _SCOPE
VARIABLE SCOPE
inquiring
Attributes
entries
global entry
deleting
reading
Attributes
deleting
entries
rVariable entry
checking existence
zVariable entry
checking existence
Attributes
entries
rVariable entry
deleting
Attributes
entries

—_—

—_
0O 0O 00 \O 0O 0 N\O 0N\

188

190
192

193
184, 196

194
185
187
190
14, 185, 197
189

52
12
12

13
188, 221

198
201
197
194

195

199

305

zVariable entry
deleting
Attributes
entries
global entry
data type
inquiring
Attributes
entries
global entry
number of elements
inquiring
Attributes
entries
global entry
last entry number
inquiring
Attributes
entries
rVariable entry
last entry number
inquiring
Attributes
entries
zVariable entry
last entry number
inquiring
Attributes
name
inquiring
Attributes
number
inquiring
Attributes
entries
rVariable entry
reading
Attributes
entries
global entry
data type
inquiring
Attributes
entries
global entry
number of elements
inquiring
Attributes
scope
inquiring
Attributes
entries
zVariable entry

200

202

203

204

205

206

207

208

208

210

211

212

reading
Attributes
entries
zVariable entry
data type
inquiring
Attributes
entries
zVariable entry
number of elements
inquiring
Attributes
entries
global entries
number of
inquiring
Attributes
number of
inquiring
Attributes
entries
rEntries
number of
inquiring
Attributes
entries
zEntries
number of
inquiring
Attributes
inquiring
Attributes
entries
global entry
inquiring
Attributes
entries
rVariable entry
inquiring
Attributes
entries
zVariable entry
inquiring
Attributes
entries
global entry
writing
Attributes
entries
rVariable entry
writing
Attributes
entries
zVariable entry
writing
Attributes
renaming
Attributes
entries
global entry
data specification
resetting

212

214

215

216

217

217

218

221

223

224

225

226

227

229

230

230

Attributes
entries
rVariable entry
data specification
resetting
Attributes
scope
resetting
Attributes
entries
zVariable entry
data specification
resetting
CDF
backward file
backward file flag
getting
setting
cache size
compression
resetting
Checksum
closing
Copyright
inquiring
creation
deleting
exception methods
Long Integer
opening
selecting
set
majority
utility methods
Validation
CDF getNegtoPosfpOMode
CDF library
copy right notice
max length
modes
-0.0t0 0.0
constants
NEGtoPOSfpOoff
NEGtoPOSfpOon
decoding
constants
ALPHAOSF1_DECODING
ALPHAVMSd DECODING
ALPHAVMSg DECODING
ALPHAVMSi_DECODING
DECSTATION_DECODING
HOST _DECODING
HP_DECODING
IBMPC_DECODING
IBMRS DECODING
MAC DECODING
NETWORK DECODING
NeXT DECODING
SGi_DECODING
SUN_DECODING
VAX DECODING
MegToPosFpOMode

231

233

233
14

15
14

61
15
29

41

31
33,34
261
17
55,56
57,58

66
255

16
47

14

13

O O © O O O

selecting
read-only
constants
READONLYoff
READONLYon
selecting
zMode
constants
zZMODEoff
zMODEonl
zMODEon2
selecting
CDF setNegtoPosfp0Mode
CDF_ATTR NAME LEN256
CDF _BYTE
CDF_CHAR
CDF_COPYRIGHT LEN
CDF _DOUBLE
CDF_EPOCH
CDF_EPOCH16
CDF_FLOAT
CDF _INT1
CDF _INT2
CDF_INT4
CDF _INT8
CDF_MAX DIMS
CDF_MAX PARMS
CDF _OK
CDF_PATHNAME LEN
CDF_REAL4
CDF_REALS
CDF_STATUSTEXT_LEN
CDF_TIME_TT2000
CDF _UCHAR
CDF _UINT1
CDF _UINT2
CDF _UINT4
CDF_VAR NAME LEN256
CDF_WARN
CDFattrCreate
CDFattrEntryInquire
CDFattrGet
CDFattrInquire
CDFattrNum
CDFattrPut
CDFattrRename
CDEFclose
CDEFcloseCDF
CDFcloserVar
CDEFclosezVar
CDFconfirmAttrExistence
CDFconfirmgEntryExistence
CDFconfirmrEntryExistence
CDFconfirmrVarExistence
CDFconfirmrVarPadValueExistence
CDFconfirmzEntryExistence
CDFconfirmzVarExistence
CDFconfirmzVarPadValueExistence
CDFcreate
CDFcreateAttr
CDFcreateCDF
CDFcreaterVar

13

13
13
13

— O\ e
AW W WLWW

—

—_ —_—

—_
ENEEN e e e N B I N S IR e W e e SN BEN BEN BEN B Yo Ne Y

—_
o) —_
o)

185
187
188
190
190
192
29
30
71
72
193
194
194
73
73
195
74
75
31
196
32
76

307

CDFcreatezVar
CDFdelete
CDFdeleteAttr
CDFdeleteAttrgEntry
CDFdeleteAttrrEntry
CDFdeleteAttrzEntry
CDFdeleteCDF
CDFdeleterVar
CDFdeleterVarRecords
CDFdeletezVar
CDFdeletezVarRecords
CDFdoc
CDFerror
CDFerror
CDFException

CDFgetCurrentStatus

CDFgetStatusMsg

utility methods

CDFgetCurrentStatus
CDFgetStatusMsg

CDFFileExists
CDFgetAttrgEntry
CDFgetAttrgEntryDataType
CDFgetAttrMaxrEntry
CDFgetAttrMaxzEntry
CDFgetAttrName
CDFgetAttrNum
CDFgetAttrrEntry
CDFgetAttrrEntryDataType
CDFgetAttrrEntryNumElements
CDFgetAttrScope
CDFgetAttrzEntry
CDFgetAttrzEntryDataType
CDFgetAttrzEntryNumElements
CDFgetCacheSize
CDFgetChecksumValue
CDFgetCkecksum
CDFgetCompression
CDFgetCompressionCacheSize
CDFgetCompressionInfo
CDFgetCompressionTypeValue
CDFgetCopyright
CDFgetCurrentStatus
CDFgetDataTypeSize
CDFgetDataTypeValue
CDFgetDecoding
CDFgetDecodingValue
CDFgetEncoding
CDFgetEncodingValue
CDFgetFileBackward
CDFgetFormat
CDFgetFormatValue

CDFgetLastDateinLeapSecondsTable

CDFgetLibraryCopyright
CDFgetLibraryVersion
CDFgetMajority
CDFgetMajorityValue
CDFgetMaxWrittenRecNums
CDFgetName
CDFgetNumAttrgEntries
CDFgetNumAttributes
CDFgetNumAttrrEntries

78

33
197
198
199
200
34

79

80, 81
82

83, 84
35
263
36

261
261

261
261
255
201
202
205
206
207
208
208
210
211
212
212
214
215
37
255
37
38
39
40
255
41
261
26
256
42
256
42
257
43

44,45

257

252,253

27
27
46
258
85
46
216
217
217

CDFgetNumAttrzEntries
CDFgetNumgAttributes
CDFgetNumrVars
CDFgetNumvAttributes
CDFgetNumzVars
CDFgetReadOnlyMode
CDFgetrVarAllocRecords
CDFgetrVarBlockingFactor
CDFgetrVarCacheSize
CDFgetrVarCompression
CDFgetrVarData
CDFgetrVarDataType
CDFgetrVarDimVariances
CDFgetrVarlnfo
CDFgetrVarMaxAllocRecNum
CDFgetrVarMaxWrittenRecNum
CDFgetrVarName
CDFgetrVarNumElements
CDFgetrVarNumRecsWritten
CDFgetrVarPadValue
CDFgetrVarRecordData
CDFgetrVarRecVariance
CDFgetrVarReservePercent
CDFgetrVarsDimSizes
CDFgetrVarSeqData
CDFgetrVarSeqPos
CDFgetrVarsMaxWrittenRecNum
CDFgetrVarsNumDims
CDFgetrVarSparseRecords
CDFgetSparseRecordValue
CDFgetStageCacheSize
CDFgetStatusMsg
CDFgetStatusText
CDFgetStringChecksum
CDFgetStringCompressionType
CDFgetStringDataType
CDFgetStringDecoding
CDFgetStringEncoding
CDFgetStringFormat
CDFgetStringMajority
CDFgetStringSparseRecord
CDFgetValidae
CDFgetVarNum
CDFgetVersion
CDFgetzMode
CDFgetzVarAllocRecords
CDFgetzVarBlockingFactor
CDFgetzVarCacheSize
CDFgetzVarCompression
CDFgetzVarData
CDFgetzVarDataType
CDFgetzVarDimSizes
CDFgetzVarDimVariances
CDFgetzVarlnfo
CDFgetzVarMaxAllocRecNum
CDFgetzVarMaxWrittenRecNum
CDFgetzVarName
CDFgetzVarNumDims
CDFgetzVarNumElements
CDFgetzVarNumRecs Written
CDFgetzVarPadValue
CDFgetzVarRecordData

218
219
86
220
87
48
88
88
89
90
91
92
93
94
95
96
97

99

99
100
101
102
103
104
105
106
107
107
258

49
261

28
258
258
259
259
259
259
259
260

50
108

50

51
109
110
111
112
113
114
115
116
117
118
119
120
120
121
122
123
124

308

CDFgetzVarRecVariance
CDFgetzVarReservePercent
CDFgetzVarSeqData
CDFgetzVarSeqPos
CDFgetzVarsMax WrittenRecNum
CDFgetzVarSparseRecords
CDFhyperGetrVarData
CDFhyperGetzVarData
CDFhyperPutrVarData
CDFhyperPutzVarData
CDFinquire
CDFinquireAttr
CDFinquireAttrgEntry
CDFinquireAttrrEntry
CDFinquireAttrzEntry
CDFinquireCDF
CDFinquirerVar
CDFinquirezVar
CDFopen
CDFopenCDF
CDFputAttrgEntry
CDFputAttrrEntry
CDFputAttrzEntry
CDFputrVarData
CDFputrVarPadValue
CDFputrVarRecordData
CDFputrVarSeqData
CDFputzVarData
CDFputzVarPadValue
CDFputzVarRecordData
CDFputzVarSeqData
CDFrenameAttr
CDFrenamerVar
CDFrenamezVar
CDFs
compression
inquiring
CDFs
browsing
cache size
inquiring
checksum
inquiring
closing
compression types/parameters
copy right notice
max length
reading
corrupted
creation
decoding
constants
ARM_BIG_DECODING
ARM_LITTLE _DECODING
[A64VMSd DECODING
[A64VMSg DECODING
[A64VMSi_DECODING
encoding
constants
ALPHAOSF1 _ENCODING
ALPHAVMSd ENCODING
ALPHAVMSg ENCODING

125
126
127
128
128
129
130
132
134
135

52
221
223
224
225

53
137
139

55

56
226
227
229
140
141
142
143
144
146
147
148
230
149
150

38,40
13

37

ALPHAVMSi ENCODING
ARM_BIG_ENCODING
ARM_LITTLE ENCODING
DECSTATION_ENCODING
HOST_ENCODING
HP_ENCODING
[A64VMSd_ENCODING
[A64VMSg ENCODING
[A64VMSi_ENCODING
IBMPC_ENCODING
IBMRS _ENCODING
MAC_ENCODING
NETWORK ENCODING
NeXT _ENCODING
SGi_ ENCODING
SUN_ENCODING
VAX ENCODING
default
format
constants
MULTI FILE
SINGLE FILE
default
naming
overwriting
version
inquiring

CDFs

cache size
compression
inquiring

CDFs

decoding
inquiring

CDFs

decoding
inquiring

CDFs

file backard
inquiring

CDFs

format
inquiring

CDFs

format
inquiring

CDFs

majority
inquiring

CDFs

name
inquiring

CDFs

-0.0 to 0.0 mode
inquiring

CDFs

read-only mode
inquiring

CDFs

cache size
stage
inquiring

OO CO OO0 OO 00 OO OO0 OO OO0 OO0 \O \O G0 CO OO0 OO0 OO0 0

NN

14,31, 32
31,32

35

39

42

42

43

44

45

46

46

47

48

49

309

CDFs
validation
inquiring
CDFs
version
inquiring
CDFs
zMode
inquiring
CDFs
encoding
inquiring
CDFs
inquiring
CDFs
naming
CDFs
naming
CDFs
cache size
resetting
CDFs
checksum
resetting
CDFs
compression
resetting
CDFs
decoding
resetting
CDFs
encoding
resetting
CDFs
File Backward
resetting
CDFs
format
resetting
CDFs
format
resetting
CDFs
-0.0 to 0.0 Mode
resetting
CDFs
read-only mode
resetting
CDFs
cache size
stage
resetting
CDFs
validation
resetting
CDFs
zMode
resetting
CDFs
record numbers
maximum written
zVariables and rVariables

50

50

51

52

53

55

56

59

60

60

62

63

64

64

65

67

68

68

69

70

85

CDFs
rVariables
number of rVariables
inquiring
CDFs
zVariables
number of zVariables
inquiring
CDFs
global attributes
number of
inquiring
CDFs
variable attributes
number of
inquiring
CDFselect
CDFselectCDF
CDFsetAttrgEntryDataSpec
CDFsetAttrrEntryDataSpec
CDFsetAttrScope
CDFsetAttrzEntryDataSpec
CDFsetCacheSize
CDFsetChecksum
CDFsetCompression
CDFsetCompressionCacheSize
CDFsetDecoding
CDFsetEncoding
CDFsetFileBackward
CDFsetFormat
CDFsetMajority
CDFsetReadOnlyMode
CDFsetrVarAllocBlockRecords
CDFsetrVarAllocRecords
CDFsetrVarBlockingFactor
CDFsetrVarCacheSize
CDFsetrVarCompression
CDFsetrVarDataSpec
CDFsetrVarDimVariances
CDFsetrVarlnitialRecs
CDFsetrVarRecVariance
CDFsetrVarReservePercent
CDFsetrVarsCacheSize
CDFsetrVarSeqPos
CDFsetrVarSparseRecords
CDFsetStageCacheSize
CDFsetValidate
CDFsetzMode
CDFsetzVarAllocBlockRecords
CDFsetzVarAllocRecords
CDFsetzVarBlockingFactor
CDFsetzVarCacheSize
CDFsetzVarCompression
CDFsetzVarDataSpec
CDFsetzVarDimVariances
CDFsetzVarlnitialRecs
CDFsetzVarRecVariance
CDFsetzVarReservePercent
CDFsetzVarsCacheSize
CDFsetzVarSeqPos
CDFsetzVarSparseRecords
CDFUftils

86

87

219

220
57
58

230

231

233

233
59
60
60
61
62
63
64

64, 65

68
150
151
152
153
154
155
156
157
158
158
159
160
161

68

69

70
162
163
164
165
165
166
167
168
169
170
171
172
173

310

CDFFileExists
CDFgetChecksumValue
CDFgetCompressionTypeValue
CDFgetDataTypeValue
CDFgetDecodingValue
CDFgetEncodingValue
CDFgetFormatValue
CDFgetMajorityValue
CDFgetSparseRecordValue
CDFgetStringChecksum
CDFgetStringCompressionType
CDFgetStringDataType
CDFgetStringDecoding
CDFgetStringEncoding
CDFgetStringFormat
CDFgetStringMajority
CDFgetStringSparseRecord
utility methods

CDFFileExists

CDFgetChecksumValue

CDFgetCompressionTypeValue

CDFgetDataTypeValue
CDFgetDecodingValue
CDFgetEncodingValue
CDFgetFormatValue
CDFgetMajority Value
CDFgetSparseRecordValue
CDFgetStringChecksum

CDFgetStringCompressionType

CDFgetStringDataType
CDFgetStringDecoding
CDFgetStringEncoding
CDFgetStringFormat
CDFgetStringMajority
CDFgetStringSparseRecord
CDFvarClose
CDFvarCreate
CDFvarGet
CDFvarHyperGet
CDFvarHyperPut
CDFvarlnquire
CDFvarNum
CDFvarPut
CDFvarRename
Ckecksum
Classes
closing
rVar in a multi-file CDF
zVar in a multi-file CDF
COLUMN_MAJOR
compiling
Compiling
compression
types/parameters
computeEPOCH
computeEPOCH16
computeTT2000
Data type
size
inquiring
data types
constants

255
255
255
256
256
257
257
258
258
258
258
259
259
259
259
259
260

255
255
255
256
256
257
257
258
258
258
258
259
259
259
259
259
260
174
174
176
177
178
180
181
182
183
37, 60

71
72
10

11
236
241
249

26

CDF BYTE
CDF_CHAR
CDF_DOUBLE
CDF_EPOCH
CDF_EPOCHI16
CDF_FLOAT
CDF_INTI
CDF_INT2
CDF_INT4
CDF_INT8
CDF_REAL4
CDF_REALS
CDF_TIME_TT2000
CDF_UCHAR
CDF_UINTI
CDF_UINT2
CDF_UINT4
DECSTATION_DECODING
DECSTATION_ENCODING
dimensions
limit
encodeEPOCH
encodeEPOCH1
encodeEPOCH16
encodeEPOCH16 1
encodeEPOCH16 2
encodeEPOCH16 3
encodeEPOCH16 4
encodeEPOCH16_x
encodeEPOCH2
encodeEPOCH3
encodeEPOCH4
encodeEPOCHx
encodeTT2000
EPOCH
computing
decomposing
encoding

237, 242,

236,
237,
237,238, 239, 242, 243,

parsing 239, 240, 241, 244, 245, 246,

utility routines
computeEPOCH
computeEPOCH16
encodeEPOCH
encodeEPOCH1
encodeEPOCH16
encodeEPOCH16 1
encodeEPOCH16 2
encodeEPOCH16 3
encodeEPOCH16 4
encodeEPOCH16_x
encodeEPOCH2
encodeEPOCH3
encodeEPOCH4
encodeEPOCHx
EPOCH16breakdown
EPOCHbreakdown
parseEPOCH
parseEPOCH1
parseEPOCH16
parseEPOCH16 1
parseEPOCH16_2
parseEPOCH16_3

237, 242,

239,

OO 1A I I I 1A I I I

13
251
238
242
242
243
243
243
243
238
238
238
239
251

241
241
251
247
236
236
241
251
238
242
242
243
243
243
243
238
238
238
239
241
237
240
240
244
245
245
245

parseEPOCH16_4
parseEPOCH2
parseEPOCH3
parseEPOCH4
EPOCH16breakdown
EPOCHbreakdown
Equivalent data types
examples
CDF
-0.0 to 0.0 mode
set67
attribute
name
get
scope
get
checksum
set60
compression
get
compression cache size
set62
Copyright
get
decoding
get
encoding
set63
file backward
set64
global attribute
entry
data type
get
get
entry
number of elements
get
number of entries
get
inquiring
number of attributes
get
read-only mode
set68
rVariable attribute
entry
get
entry
data type
get
stage cache size
set69
validate
set70
validation
get
version
get
zMode
get
set70

245, 246, 247
240

240

241

241

237

22

207

212

39

41

42,43

202
201
203

216
54

217

209

210

50
51

52

CDF
cache size
get
checksum
get
close
create
delete
CDF
compression cache size
get
CDF
compression information
get
CDF
file backward
get
CDF
format
get
CDF
format
get
CDF
majority
get
CDF
name
get
CDF
-0.0 to 0.0 mode
get
CDF
read-only mode
get
CDF
cache buffer size
get
CDF
open
CDF
select
CDF
select
CDF
cache size
set59
CDF
compression
set61
CDF
decoding
set62
CDF
format
set65
CDF
format
set66
CDF
majority
set66

37

38
30
33
34

40

40

44

44

45

46

47

47

48

49

57

57

58

312

CDF
rVar
close
CDF
zVar
close
CDF
rVariable
existence
confirm
CDF
rVariable
pad value existence
confirm
CDF
zVariable
existence
confirm
CDF
zVariable
pad value existence
confirm
CDF
rVariable
create
CDF
zVariable
create
CDF
rVariable
delete
CDF
rVariable
data records
delete
CDF
rVariable
data records
delete
CDF
zVariable
delete
CDF
zVariable
data records
delete
CDF
zVariable
data records
delete
CDF
max record numbers

zVariables and rVariables

get
CDF
number of rVariables
get
CDF
number of zVariables
get
CDF
rVariable

71

72

73

74

75

76

71

79

80

81

82

83

84

85

86

86

87

number of records allocated
get
CDF
rVariable
blocking factor
get
CDF
rVariable
cache size
get
CDF
rVariable
compression
get
CDF
rVariable
variable data
get
CDF
rVariable
data type
get
CDF
rVariable
dimension variances
get
CDF
rVariable
information
get
CDF
rVariable
maximum number of records allocated
get
CDF
rVariable
maximum record number
get
CDF
rVariable
name
get
CDF
rVariable
number of elements
get
CDF
rVariable
number of records written
get
CDF
rVariable
pad value
get
CDF
rVariable
record data
get
CDF
rVariable
record variance
get

88

&9

90

91

92

93

94

95

96

96

97

98

99

100

101

102

313

CDF
rVariable
compression reserve percentage
get
CDF
rVariable
dimension sizes
get
CDF
rVariable
data value
get
CDF
rVariable
read position
get
CDF
rVariables
maximum record number
get
CDF
rVariable
dimensionality
get
CDF
rVariable
sparse record type
get
CDF
Variable number
get
CDF
zVariable
number of records allocated
get
CDF
zVariable
blocking factor
get
CDF
zVariable
cache size
get
CDF
zVariable
compression
get
CDF
zVariable
variable data
get
CDF
zVariable
data type
get
CDF
zVariable
dimension sizes
get
CDF
zVariable
dimension variances

103

103

104

105

106

107

108

109

110

111

112

113

114

115

116

get
CDF
rVariable
information
get
CDF
zVariable

maximum number of records allocated

get
CDF
zVariable
maximum record number
get
CDF
zVariable
name
get
CDF
zVariable
dimensionality
get
CDF
zVariable
number of elements
get
CDF
zVariable
number of records written
get
CDF
zVariable
pad value
get
CDF
zVariable
record data
get
CDF
zVariable
record variance
get
CDF
zVariable
compression reserve percentage
get
CDF
zVariable
data value
get
CDF
zVariable
read position
get
CDF
zVariables
maximum record number
get
CDF
zVariable
sparse record type
get
CDF

116

117

118

119

120

121

122

122

123

124

125

126

127

128

129

130

314

rVariable
multiple values or records
get
CDF
zVariable
multiple values or records
get
CDF
rVariable
data values
write
CDF
zVariable
data values
write
CDF
rVariable
inquire
CDF
zVariable
inquire
CDF
rVariable
data value
write
CDF
rVariable
pad value
set142
CDF
rVariable
record data
write
CDF
rVariable
data value
sequential write
CDF
zVariable
data value
write
CDF
zVariable
pad value
set146
CDF
zVariable
record data
write
CDF
zVariable
data value
sequential write
CDF
zVariable
rename
CDF
zVariable
rename
CDF
rVariable
data records

131

133

135

136

138

140

141

143

144

145

147

148

149

150

block
allocate
CDF
rVariable
data records
sequential
allocate
CDF
rVariable
blocking factor
setl53
CDF
rVariable
cache size
setl54
CDF
rVariable
compression
setl54
CDF
rVariable
data type
setl55
CDF
rVariable
dimension variances
setl56
CDF
rVariable
number of initial records
set157
CDF
rVariable
record variance
setl58
CDF
rVariable
compression reserve percentage
set159
CDF
rVariable
cache size
set160
CDF
rVariable
sequential location
setl61
CDF
rVariable
sparse record flag
set162
CDF
zVariable
data records
block
allocate
CDF
zVariable
data records
sequential
allocate
CDF

151

152

162

163

315

zVariable
blocking factor
set164
CDF
zVariable
cache size
setl165
CDF
zVariable
compression
set166
CDF
zVariable
data type
set167
CDF
zVariable
dimension variances
set168
CDF
zVariable
number of initial records
set169
CDF
zVariable
record variance
set170
CDF
zVariable
compression reserve percentage
set170
CDF
zVariable
cache size
setl71
CDF
zVariable
sequential location
setl72
CDF
zVariable
sparse record flag
set173
CDF
attribute
existence
confirm
CDF
gentry
existence
confirm
CDF
rEntry
existence
confirm
CDF
zEntry
existence
confirm
CDF
attribute
create

193

194

195

196

197

CDF
attribute
delete
CDF
global attribute
entry
delete
CDF
rVariable attribute
entry
delete
CDF
zVariable attribute
entry
delete
CDF
global attribute
last Entry number
get
CDF
rVariable attribute
last Entry number
get
CDF
zVariable attribute
last entry number
get
CDF
attribute
number
get
CDF
rVariable attribute
entry
number of elements
get
CDF
zVariable attribute
entry
get
CDF
zVariable attribute
entry
data type
get
CDF
zVariable attribute
entry
number of elements
get
CDF
rVariable attribute
number of entries
get
CDF
zVariable attribute
number of entries
get
CDF
number of global attributes
get
CDF

198

199

199

200

204

205

206

208

211

213

214

215

218

219

220

number of variable attributes
get
CDF
attribute
information
get
CDF
global attribute
entry
information
get
CDF
rVariable attribute
entry
information
get
CDF
zVariable attribute
entry
information
get
CDF
global attribute
entry
write
CDF
rVariable attribute
entry
write
CDF
zVariable attribute
entry
write
CDF
attribute
rename
CDF
global attribute
entry
specification
set231
CDF
rVariable attribute
entry
specification
set232
CDF
attribute
data scope
set233
CDF
zVariable attribute
entry
specification
set234
closing
CDF
rVariable
creating
attribute
CDF
rVariable

220

222

223

224

226

227

228

229

230

29
174

185
32
175

deleting
CDF
get
CDF
Copyright
library version
data type size
rVariable
data
inquiring
attribute
entry
attribute number
CDF

error code explanation text

rVariable
variable number
interpreting
status codes
opening
CDF
reading
attribute entry
rVariable values
hyper
renaming
attribute
rVariable
status handler
writing
attribute
gEntry
rEntry
rVariable
multiple records/values
rVariable
Exception handling
Fixed statement
getAttrgEntryNumElements
getAttrMaxgEntry
GLOBAL _SCOPE
HOST_DECODING
HOST_ENCODING
HP_DECODING
HP_ENCODING
[A64VMSd DECODING
[A64VMSd _ENCODING
[A64VMSg DECODING
[A64VMSg ENCODING
[A64VMSi_DECODING
[A64VMSi_ENCODING
IBMPC_DECODING
IBMPC_ENCODING
IBMRS DECODING
IBMRS _ENCODING
id5
inquiring
CDF information
Interface
Leap Seconds
Library
error text

34

27
28
26

177
189

186
190

35,53
29, 36

180
181

235

56
188
178
192

184
235

191
191

179
183
23
22
203
204
12

10

10

10

10

10

35
19, 25
17

317

inquiring
Library
Copyright
inquiring
version
inquiring
Limitation
dimensions
limits
attribute name
Copyright text
dimensions
explanation/status text
file name
parameters
variable name
Limits of names
MAC_DECODING
MAC_ENCODING
MULTI_FILE
multidimensional arrays
namespace
NEGtoPOS{pOoff
NEGtoPOS{fpOon
NETWORK DECODING
NETWORK ENCODING
NeXT DECODING
NeXT _ENCODING
NO_COMPRESSION
NO_SPARSEARRAYS
NO_SPARSERECORDS
NOVARY
PAD SPARSERECORDS
parseEPOCH
parseEPOCH]1
parseEPOCH16
parseEPOCH16 1
parseEPOCH16_2
parseEPOCH16_3
parseEPOCH16_4
parseEPOCH2
parseEPOCH3
parseEPOCH4
parseTT2000
Passing arguments
PREV_SPARSERECORDS
programming interface
CDF id
CDF status
READONLYoff
READONLYon
ROW_MAJOR
rVariables
data records
deleting
rVariables
check existence
creation
deleting
pad value
checking existence
rVariables

28

27
27
23

14
14
13
14
14
14
14
14
10
8

6
22
1
13
13
9

8
10
8
11
12
12
11
12
240
240
239, 244
245
245
245
245, 246, 247
240
240
241
252
19
12

5
5
13
13
10

80, 81
73
76
79

73

record numbers
allocated records
inquiring
rVariables
blocking factor
inquiring
rVariables
cache size
inquiring
rVariables
compression
inquiring
rVariables
reading
single value
rVariables
data type
inquiring
rVariables
dimension variances
inquiring
rVariables
information
inquiring
rVariables
record numbers
maximum allocated records
inquiring
rVariables
record numbers
maximum written record
inquiring
rVariables
name
inquiring
rVariables
number of elements
inquiring
rVariables
written records
inquiring
rVariables
pad value
inquiring
rVariables
reading
one record
rVariables
record variance
inquiring
rVariables
compression
reserve percentage
inquiring
rVariables
dimension sizes
inquiring
rVariables
reading
sequential data
rVariables
sequential position

88

88

89

90

91

92

93

94

95

96

97

98

99

99

100

101

102

103

104

318

inquiring
rVariables
maximum written record
rVariables
rVariables
dimensionality
inquiring
rVariables
sparse records type
inquiring
rVariables
reading
multiple values or records
rVariables
writing
multiple values or records
rVariables
inquiring
rVariables
writing
single data
rVariables
pad value
resetting
rVariables
writing
record data
rVariables
writing
sequential data
rVariables
renaming
rVariables
records
allocation
rVariables
records
allocation
rVariables
blocking factor
resetting
rVariables
cache size
resetting
rVariables
compression
resetting
rVariables
data specification
resetting
rVariables
dimension variances
resetting
rVariables
records
writing initially
rVariables
record variance
resetting
rVariables
compression
reserve percentage

105

106

107

107

130

134

137

140

141

142

143

149

150

151

152

153

154

155

156

157

158

resetting
rVariables
cache size
resetting
rVariables
sequential position
resetting
rVariables
sparse records type
resetting
rVariables
close
rVariables
creation
rVariables
reading
single value
rVariables
hyper read

multiple values or records

rVariables
hyper put

multiple values or records

rVariables
writing
single value
rVariables
renaming
sample programs
SGi_ DECODING
SGi_ ENCODING
SINGLE FILE
sparse arrays
types
sparse records
types
status
status codes
constants
CDF_OK
CDF_WARN
error
explanation text
inquiring
max length
informational
interpreting
warning
SUN_DECODING
SUN_ENCODING
TT2000
computing
decomposing
encoding
info
parsing
utility routines

CDFgetLastDateinLeapSecondsTable

computeTT2000
encodeTT2000
parseTT2000
TT2000breakdown

158 TT2000breakdown
VARIABLE SCOPE

variables
159 compression
types/parameters
data specification
160 data type
inquiring
number of elements
161 inquiring
dimensionality
174 inquiring
inquiring
174 majority
considering
constants
176 COLUMN_MAJOR
ROW_MAJOR
maximum records
177 inquiring
name
inquiring
178 naming
max length
records
182 sparse
sparse arrays
183 types
3 variable number
9 inquiring
8 variances
6 constants
NOVARY
12 VARY
Variables
12 variable number
5 inquiring
VARY
6,235 VAX DECODING
6 VAX ENCODING
6 VB-CDF Interface
263 zMODEoff
zMODEon1
36 zMODEon2
14 zVariables
263 data records
235 deleting
263 zVariables
9 check existence
8 creation
deleting
249 pad value
250 checking existence
251 zVariables
252,253 record numbers
252 allocated records
249 inquiring
252,253 zVariables
249 blocking factor
251 inquiring
252 zVariables
250 cache size

319

250
13

11

180
180

52
52

10
10
10
10
52
180
76,78, 175
14
12
12
181
11

11
11

108
11

19, 25
13

13
83, 84
74

78

82

75

109

110

inquiring
zVariables
compression
inquiring
zVariables
reading data
zVariables
data type
inquiring
zVariables
dimension sizes
inquiring
zVariables
dimension variances
inquiring
zVariables
information
inquiring
zVariables
record numbers
maximum allocated record
inquiring
zVariables
record numbers
maximum written record
inquiring
zVariables
name
inquiring
zVariables
dimensionality
inquiring
zVariables
number of elements
inquiring
zVariables
record numbers
written records
inquiring
zVariables
pad value
inquiring
zVariables
reading
one record
zVariables
record variance
inquiring
zVariables
compression
reserve percentage
inquiring
zVariables
sequential data
reading one value
zVariables
sequential position
inquiring
zVariables
record numbers
written records
maximum

111

112

113

114

115

116

117

118

119

120

120

121

122

123

124

125

126

127

128

320

rVariables and zVariables
zVariables
sparse records type
inquiring
zVariables
reading
multiple values or records
zVariables
writing
multiple values or records
zVariables
inquiring
zVariables
writing
single data
zVariables
pad value
resetting
zVariables
writing
record data
zVariables
writing
sequential data
zVariables
renaming
zVariables
records
allocation
zVariables
records
allocation
zVariables
blocking factor
resetting
zVariables
cache size
resetting
zVariables
compression
resetting
zVariables
data specification
resetting
zVariables
dimension variances
resetting
zVariables
records
writing initially
zVariables
record variance
resetting
zVariables
compression
reserve percentage
resetting
zVariables
cache size
resetting
zVariables
sequential position

128

129

132

135

139

144

146

147

148

150

162

163

164

165

165

166

167

168

169

170

171

resetting 172 sparse records type
zVariables resetting 173

321

