

DATA SET CATALOG #48

Smithsonian Astrophysical Observatory

CORRSOA

2 tapes

Table of Contents

1. Introduction
2. Errata/Change Log
3. **LINKS TO RELEVANT INFORMATION IN THE ONLINE NSSDC INFORMATION SYSTEM**
4. Catalog Materials
 - a. Associated Documents
 - b. Core Catalog Materials

1. INTRODUCTION:

The documentation for this data set was originally on paper, kept in NSSDC's Data Set Catalogs (DSCs). The paper documentation in the Data Set Catalogs have been made into digital images, and then collected into a single PDF file for each Data Set Catalog. The inventory information in these DSCs is current as of July 1, 2004. This inventory information is now no longer maintained in the DSCs, but is now managed in the inventory part of the NSSDC information system. The information existing in the DSCs is now not needed for locating the data files, but we did not remove that inventory information.

The offline tape datasets have now been migrated from the original magnetic tape to Archival Information Packages (AIP's).

A prior restoration may have been done on data sets, if a requestor of this data set has questions; they should send an inquiry to the request office to see if additional information exists.

2. ERRATA/CHANGE LOG:

NOTE: Changes are made in a text box, and will show up that way when displayed on screen with a PDF reader.

When printing, special settings may be required to make the text box appear on the printed output.

Version	Date	Person	Page	Description of Change
---------	------	--------	------	-----------------------

01				
----	--	--	--	--

02				
----	--	--	--	--

3 LINKS TO RELEVANT INFORMATION IN THE ONLINE NSSDC INFORMATION SYSTEM:

<http://nssdc.gsfc.nasa.gov/nmc/>

[NOTE: This link will take you to the main page of the NSSDC Master Catalog. There you will be able to perform searches to find additional information]

4. CATALOG MATERIALS:

- a. Associated Documents To find associated documents you will need to know the document ID number and then click here.
<http://nssdcftp.gsfc.nasa.gov/miscellaneous/documents/>

- b. Core Catalog Materials

DRIVER
 EXTERNAL FORMULA NUMBER - SOURCE STATEMENT - INTERNAL FORMULA NUMBER(S)
 02/14/66

C FORTRAN DRIVER

```

C
DIMENSION RROUT(1),ROUT(30)
COMMON /PIFTC1/PCCC/PIFTC2/IN(1)/PIFTC3/JUNK,JCUT(1)
EQUIVALENCE (ROUT(1),JOUT(1))
IJ=0
1 CALL PIFTAO (1HA)
IF(IPCC .EQ. 1) GO TO 1
IF(IPCC .EQ.0) GO TO 100
GO TO 3
100 IJ=IJ+1
IF(IG=0
IF(IJ .LT. 3) GO TO 2
IF(IJ .EQ. 1308) GO TO 2
IF(IJ .GT. 2613) GO TO 2
GO TO 1
2 DO 10 I=1,1500,30
K=I+20
L=1
DO 11 J=I+K
JOUT(L)=JOUT(J)
11 L=L+1
ROUT(1)=(FLOAT(IOUT(L)))/2.0**26
ROUT(2)=IOUT(2)
ROUT(3)=(FLOAT(IOUT(3)))/2.0**26
ROUT(4)=IOUT(4)
ROUT(5)=(FLOAT(IOUT(5)))/2.0**31
ROUT(6)=(FLOAT(IOUT(6)))/2.0**30
ROUT(7)=IOUT(7)
ROUT(8)=(FLOAT(IOUT(8)))/2.0**31
ROUT(9)=(FLOAT(IOUT(9)))/2.0**30
ROUT(10)=IOUT(10)
ROUT(11)=(FLOAT(IOUT(11)))/2.0**37
ROUT(12)=(FLOAT(IOUT(12)))/2.0**35
ROUT(12)=ROUT(12)+1E50.
ROUT(13)=(FLOAT(IOUT(13)))/2.0**26
ROUT(14)=(FLOAT(IOUT(14)))/2.0**37
ROUT(15)=(FLOAT(IOUT(15)))/2.0**35
ROUT(15)=ROUT(15)+1E50.
ROUT(15)=(FLOAT(IOUT(16)))/2.0**26
ROUT(17)=IOUT(17)
ROUT(18)=IOUT(18)
ROUT(19)=IOUT(19)
ROUT(20)=IOUT(20)
ROUT(21)=IOUT(21)
ROUT(22)=IOUT(22)
ROUT(23)=IOUT(23)
ROUT(24)=IOUT(24)
ROUT(25)=IOUT(25)
ROUT(26)=(FLOAT(IOUT(26)))/2.0**26
ROUT(27)=(FLOAT(IOUT(27)))/2.0**26
ROUT(28)=(FLOAT(IOUT(28)))/2.0**26
ROUT(29)=IOUT(29)
ROUT(30)=IOUT(30)
IF(IJ .EQ. 1) GO TO 4
IF(IJ .EQ. 1308) GO TO 5
      .1
      .2
      .3   .4
      .6   .7
      .9
      .10
      .11
      .12   .13
      .15   .16
      .18   .19
      .21
      .22
      .23
      .24
      .25
      .26
      .27   .28
      .29
      .30
      .31
      .32
      .33
      .34
      .35
      .36
      .37
      .38
      .39
      .40
      .41
      .42
      .43
      .44
      .45
      .46
      .47
      .48
      .49
      .50
      .51
      .52
      .53
      .54
      .55
      .56
      .57
      .58
      .59
      .60   .61
      .63   .64

```

ENT - 02/14/66 INTERNAL FORMULA NUMBER(S)

PAGE 1

T(1)

+1
+2
+3 +4 +5
+6 +7 +8
+9
+10
+11
+12 +13 +14
+15 +16 +17
+18 +19 +20
+21
+22
+23
+24
+25
+26
+27 +28
+29
+30
+31
+32
+33
+34
+35
+36
+37
+38
+39
+40
+41
+42
+43
+44
+45
+46
+47
+48
+49
+50
+51
+52
+53
+54
+55
+56
+57
+58
+59
+60 +61 +62
+63 +64 +65

DRIVER EXTERNAL FORMULA NUMBER	SOURCE STATEMENT	02/14/66 INTERNAL FORMULA NUMBER(S)
IF(IJ .GE. 2514) GO TO 6		
GC TO 13		*66 *67
4 IF(IFLAG .EQ. 1) GO TO 13		*69
IFLAG=1		*70 *71
WRITE(3,12)		*73
GC TO 13		*74 *75
5 IF(IFLAG .EQ. 1) GO TO 13		*76
IFLAG=1		*77 *78
WRITE(3,14)		*80
GC TO 13		*81 *82
6 IF(IFLAG .EQ. 1) GO TO 13		*83
IFLAG=1		*84 *85
WRITE(3,15)		*87
13 WRITE(3,19)		*88 *89
WRITE(3,9) (ROUT(IK), IK=1,6)		*90 *91
WRITE(3,20)		*92 *93
WRITE(3,9) (ROUT(IK), IK=7,12)		*97 *98
WRITE(3,21)		*99 *100
WRITE(3,9) (ROUT(IK), IK=13,18)		*104 *105
WRITE(3,22)		*106 *107
WRITE(3,17) (ROUT(IK), IK=19,24)		*111 *112
WRITE(3,23)		*113 *114
WRITE(3,9) (ROUT(IK), IK=25,30)		*118 *119
10 CONTINUE		*120 *121
IF(IJ .GE. 2615) GO TO 3		*125 *126
GC TO 1		*127 *128
3 CALL CLOSE		*130
STOP		*131
12 FORMAT(1H1,15HRECORDS 1 AND 2)		*132
14 FORMAT(1H1,1HRECORD 13CE)		
15 FORMAT(1H1,21HRECORDS 2614 AND 2615)		
19 FORMAT(//120H DECLINATION		
ASCENSION STAR PROP MOT INCL VIS MAG RT		
20 FORMAT(1/120H PHOT MAG PROP MOT RT AS STAN DE		
3DEV PROP MOT PHOTO MAG DECLIN OBS		
4)		
21 FORMAT(1/120H STAN DEV VIS MAG RT ASC		
5 DEV STAN DEV DM ZONE DM NO		
6)		
22 FORMAT(1/120H SMITH BK NO SPECTRAL TYPE GL + VA		
7R STAR SPECTRAL TYPE ACC VIS MAG ACC PHOTO MAG		
8)		
23 FORMAT(1/120H CAT STAR NO DECLIN OBS STAN		
9DEV RT ASC OBS UNUSED CHECKSUM		
17 FORMAT(3E20.7+17X,A3,2E20.7)		
END		

STATEMENT - 02/14/65
INTERNAL FORMULA NUMBER(S)

PAGE 2

*66	*67	*68
*69		
*70	*71	*72
*73		
*74	*75	
*76		
*77	*78	*79
*80		
*81	*82	
*83		
*84	*85	*86
*87		
*88	*89	
*90	*91	
*92	*93	*94
*97	*98	*95
*99	*100	*101
*104	*105	*102
*106	*107	*103
*111	*112	
*113	*114	*115
*118	*119	*116
*120	*121	*117
*125	*126	*123
*127	*128	*124
*130		
*131		
*132		

VIS MAG RT
INCL STAN DE

RT AS STAN
DECL IN DBS

MAG RT ASC
DM NO

L TYPE DBL + VA
ACC PHOTO MAG

DBS STAN
CHECKSUM

*133

D-0249
3-02200

SAO STAR CATALOG BINARY TAPES

K. L. Haramundanis

June 1967

Smithsonian Institution
Astrophysical Observatory
Cambridge, Massachusetts, 02138

SAO STAR CATALOG BINARY TAPES

K. L. Haramundanis

June 1967

Smithsonian Institution
Astrophysical Observatory
Cambridge, Massachusetts, 02138

705-10

TABLE OF CONTENTS

<u>Section</u>		<u>Page</u>
1	INTRODUCTION.....	1
2	BINARY TAPE FORMAT.....	3
3	CODES.....	5
4	BOOK NUMBERS.....	9
5	ORDER OF FILES ON TAPES.....	10
6	INTERNAL IBM BCD CODE.....	11
7	GENERAL FORTRAN INTERPRETER (By R. E. Briggs)...	12
8	SAMPLE OF INTERPRETED DATA	17
9	ELEMENTARY DESCRIPTION OF DATA STORAGE ON MAGNETIC TAPES.....	19
10	FORMULATION OF STAR CATALOG.....	21
11	BIBLIOGRAPHY	28

SAO STAR CATALOG BINARY TAPES

K. L. Haramundanis

1. INTRODUCTION

The Smithsonian Astrophysical Observatory has compiled a Star Catalog containing positions and proper motions for 258,997 stars. The equator and equinox of the Catalog are 1950.0; the positions are given (1) at epoch of observation and (2) with proper motions applied to epoch 1950.0.

The data recorded for each star on the binary tape are listed in the format (Section 2). An elementary description of data storage on magnetic tapes is given in Section 9, for those unfamiliar with this type of machine-accessible storage. Codes (Section 3) and book numbers (Section 4) indicate precise sources for the recorded data. The stars have been sorted by increasing right ascension within 10° bands of declination at epoch 1950.0. For the order of the files on the tapes and the number of records in each file, see Section 5.

For general use, the Catalog is stored on magnetic tapes compatible with IBM 729 II tape units at 556 bpi (bytes per inch), and nearly fills two 2400-foot 7-track reels. Since these tapes were originally written by the IBM 7094, which uses 36-bit words, the tape format was designed for this computer. Thus the information for one star is stored in 11 consecutive 36-bit words (396 consecutive bits). One tape record consists of data for exactly 50 stars (19,800 consecutive binary bits). Short records are padded with words of binary one's to bring them to full length, and occasionally a star has been deleted from the tapes by inserting in its place an 11-word set of binary one's.

Spectral type, an alpha-numeric field in word 8, has been recorded in the internal BCD code of the IBM 7094. To facilitate its interpretation on other computers, this code is given in Section 6. As an aid to the use of the tapes, a general Fortran interpreter is described in Section 7, and samples of interpreted data from file 1, record 1 of each tape are given in Section 8. Formulation of the Catalog is described in Section 10.

All inquiries concerning these tapes should be directed to: Star Catalog, Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, Massachusetts, 02138, USA (telephone 617-864-7910).

2. ELEVEN-WORD BINARY TAPE FORMAT

Equator and equinox are 1950.0; epoch is (words 1,2) 1950.0, or (words 9,10) epoch of observation.

Each tape record contains 50 stars (550 words); short records are padded with words of binary one's to bring them to full length.

The contents of each word, by bits, are as follows:

Word 1:	S, 1-30(B4)	δ_{1950} , in radians
	31-35(B35)	code 10 ⁸ (visual magnitude)
Word 2:	S, 1-30(B4)	α_{1950} , in radians
	31-35(B35)	code 20 ⁸ (star numbers and footnotes)
Word 3:	S, 1-17[B(-14)]	annual μ_{α} , in radians
	18-31(B1)	annual σ_{α} , in radians
	32-35(B35)	code 30 ⁸ (photographic magnitude)
Word 4:	S, 1-17[B(-14)]	annual μ_{δ} , in radians
	18-31(B1)	annual σ_{δ} , in radians
	32-35(B35)	code 40 ⁸ (proper motion)
Word 5:	S, 1-11(B4)	photographic magnitude
	12-23(B18)	epoch of δ_0 , in years minus 1850.00
	24-35(B9)	σ_{δ_0} , in radians
Word 6:	S, 1-11(B4)	visual magnitude
	12-23(B18)	epoch of α_0 , in years minus 1850.00
	24-35(B9)	σ_{α_0} , in radians
Word 7:	S, 1-7(B7)	DM zone
	8-22(B22)	DM number
	23-29(B29)	Smithsonian book number (see Section 4)
	30-32(B32)	code 51 ⁸ (spectral type)
	33-35(B35)	code 52 ⁸ (double and variable stars)

Word 8: S.1-17	spectral type (BCD, see Section 6)
18(B18)	code 60* (accuracy of visual magnitude)
19(B19)	code 70* (accuracy of photographic magnitude)
20-35(B35)	source catalog star number
Word 9: S.1-22[B(-4)]	δ_0 , in radians, low-order 22 bits only (use high-order 8 bits from word 1, sign bit from word 9)
23-35(B9)	σ_{1950} , in radians (one value given that per- tains to either α or δ)
Word 10: S.1-30(B4)	α_0 , in radians
31-35	not used

Word 11: checksum of words 1-10

Note: Spectral types have no signs; they begin with a letter and are followed by a single-digit number, occasionally by a letter and a number. The exception is +++ (see Section 3, code 51).

The notation follows, in order of appearance:

S = sign bit

B = placement of binary point, i.e., the bit after which the separa-
tion between integral and fractional part of the binary number
is implied (fixed-point format)

α = right ascension

δ = declination

σ = standard deviation

μ = annual proper motion in right ascension

μ' = annual proper motion in declination

DM = Durchmusterungen, identification catalogs of the last century

subscript xx_0 = at epoch of observation

subscript xx_{1950} = at epoch 1950.0

* = See Section 3, codes.

3. CODES

3.1 Code 10: Visual Magnitude

Code	Photo- Visual visual	Magnitude source
0		Does not appear in source catalog
1	21	Determined by source catalog
2		Determined by source catalog or by authority in footnote
3	23	Source cited in source catalog introduction
	24	Source unspecified
5		Taken from BD
8		Based on Durchmusterung magnitudes and visual estimates
9		Taken from AGK 1
10		Taken from Cordoba Zones (Resultados)
12		Taken from CGA or Cordoba Zones
13		Taken from Harvard Publications
14		Taken from Harvard or San Luis Photometry
15		Taken from Henry Draper
16		Combined magnitude of component stars
17		Arithmetic mean of maximum and minimum magnitudes of a variable star

Where no figures were reported for magnitudes of a variable star, 0.00 was stored on the tapes (i.e., always check code 52 when using magnitudes). When blank, code = 0, and field = zeros.

3.2 Code 20: Star Number and Footnotes

Footnote without with	Star number
0 16	Source catalog only
1 17	Source catalog and BD
2 18	Source catalog and CD
3 19	Source catalog and CPD
4 20	Cordoba B (Resultados) and CD
5 21	Cordoba A (Resultados) and CD
6 22	AGK1 and BD
7	GC and BD
8 24	Cordoba B (Resultados) and CPD
9	Cordoba A (Resultados) and CPD

When blank, code for DM is 0 or 16, footnote is 0 through 9, and field is zeros. Footnotes and star numbers are those appearing in the source catalogs.

3.3 Code 30: Photographic Magnitude

Code	Source
0	Does not appear in source catalog
1	Determined by source catalog
4	Taken from magnitudes of the CPD and diameters of the Cape Astrographic Catalog
8	Source cited in source catalog introduction
9	Columbia Contributions Nos. 30 and 31 (Schilt)

When blank, code is 0, field is zeros.

3.4 Code 40: Proper Motion

Code	Source
1	Determined in source catalog
3	Determined by comparison of catalog and Greenwich AC
5	Determined by comparison of catalog and AGK 1
6	Determined by comparison of catalog and Greenwich AC on the basis of the smallest difference in positions (see Section 10.3)
8	Determined by comparison of catalog with AGK 1 on the basis of the smallest difference in positions (see Section 10.3)

when blank, code is 0, field is zeros.

3.5 Code 51: Spectral Type

Code	Source
0	Taken from the Henry Draper or no spectrum in source catalog
1	Taken from the HD with M stars reclassified by Miss Cannon
2	Classified by G. G. Gillie
3	Classified by Goedcke
4	Classified by D. Hoffleit
5	Classified by M. V. Mayall
6	Classified by McCormick Observatory
7	Classified by Nassau and Seyfert

Where no spectra were recorded, the code is 0 and the field is BCD
blanks. If the spectrum is composite, +++ is stored in the field, and the code
is 0.

3.6 Code 52: Miscellaneous

Code	Meaning
0	No additional information
1	Double star, see source catalog for source
2	Double star in Aitken's Double Star Catalog
3	Double star in Burnham's Double Star Catalog
4	Variable star in visual magnitude in source catalog
5	Variable star in photographic magnitude in source catalog
6	Variable star in both magnitudes
7	Both double and variable, in either visual or photographic magnitudes

When blank, code is 0, no field involved.

3.7 Code 60: Accuracy of Visual Magnitude

Listed on tape as 0 or 1; 0 indicates the magnitude was reported in source catalog to $0^m.00$; 1, to $0^m.0$.

3.8 Code 70: Accuracy of Photographic Magnitude

Listed on tape as 0 or 1; 0 indicates the magnitude was reported in source catalog to $0^m.00$; 1, to $0^m.0$.

4. BOOK NUMBERS FOR SOURCE CATALOGS

No.	Abbreviated Title
01	AGK 2, vol. 1
02	AGK 2, vol. 2
03	AGK 2, vol. 5
04	AGK 2, vol. 6
05	AGK 2, vol. 7
06	AGK 2, vol. 8
20	Yale Transactions, vol. 11
21	Yale Transactions, vol. 12 I
22	Yale Transactions, vol. 12 II
23	Yale Transactions, vol. 13 I
24	Yale Transactions, vol. 13 II
25	Yale Transactions, vol. 14
26	Yale Transactions, vol. 16
27	Yale Transactions, vol. 17
28	Yale Transactions, vol. 18
29	Yale Transactions, vol. 19
30	Yale Transactions, vol. 20
31	Yale Transactions, vol. 21
32	Yale Transactions, vol. 22 I
33	Yale Transactions, vol. 22 II
34	Yale Transactions, vol. 24
35	Yale Transactions, vol. 25
36	Yale Transactions, vol. 26 I
37	Yale Transactions, vol. 26 II
38	Yale Transactions, vol. 27
40	Cape Annals, vol. 17
41	Cape Annals, vol. 18
42	Cape Annals, vol. 19
43	Cape Annals, vol. 20
48	Cape Zone
60	Melbourne 3
61	Melbourne 4
70	General Catalogue
71	FK3
74	FK4

5. ORDER OF FILES ON TAPE, AND NUMBER OF STARS IN EACH FILE

File	Band of 5	No. of stars (a)	No. of records		Padding (d)
			(b)	(c)	
1	+80*	4 015	81	(4 050)	35
2	70	6 921	139	(6 950)	29
3	60	10 086	202	(10 100)	14
4	50	14 984	300	(15 000)	16
5	40	17 587	352	(17 600)	13
6	30	20 115	403	(20 150)	35
7	20	17 964	360	(18 000)	36
8	10	17 308	347	(17 350)	42
9	+ 0	<u>19 567</u>	<u>392</u>	<u>(19 600)</u>	<u>33</u>
Total		128 547	2 576	(128 800)	253
1	- 0*	18 504	<u>371</u>	(18 550)	46
2	10	18 958	<u>380</u>	(19 000)	42
3	20	26 325	<u>527</u>	(26 350)	25
4	30	22 603	<u>453</u>	(22 650)	47
5	40	16 966	<u>340</u>	(17 000)	34
6	50	16 203	<u>325</u>	(16 250)	47
7	60	7 522	<u>151</u>	(7 550)	28
8	70	2 579	<u>52</u>	(2 600)	21
9	-80	<u>790</u>	<u>16</u>	<u>(800)</u>	<u>10</u>
Total		130 450	2 615	(130 750)	300
		<u>+128 547</u>	<u>150</u>	<u>50</u>	
		<u>258 997</u>			

[50b = c; c-d = a]

6. INTERNAL IBM BDC CODE

Character	In storage	On tape	Character	In storage	On tape
0	00 0000	00 1010	-	10 0000	10 0000
1	00 0001	00 0001	J	10 0001	10 0001
2	00 0010	00 0010	K	10 0010	10 0010
3	00 0011	00 0011	L	10 0011	10 0011
4	00 0100	00 0100	M	10 0100	10 0100
5	00 0101	00 0101	N	10 0101	10 0101
6	00 0110	00 0110	O	10 0110	10 0110
7	00 0111	00 0111	P	10 0111	10 0111
8	00 1000	00 1000	Q	10 1000	10 1000
9	00 1001	00 1001	R	10 1001	10 1001
#	00 1011	00 1011	\bar{O}	10 1010	10 1010
\$	00 1100	00 1100	S	10 1011	10 1011
&	01 0000	11 0000	=	10 1100	10 1100
A	01 0001	11 0001	blank	11 0000	01 0000
B	01 0010	11 0010	/	11 0001	01 0001
C	01 0011	11 0011	S	11 0010	01 0010
D	01 0100	11 0100	T	11 0011	01 0011
E	01 0101	11 0101	U	11 0100	01 0100
F	01 0110	11 0110	V	11 0101	01 0101
G	01 0111	11 0111	W	11 0110	01 0110
H	01 1000	11 1000	X	11 0111	01 0111
I	01 1001	11 1001	Y	11 1000	01 1000
Ø	01 1010	11 1010	Z	11 1001	01 1001
	01 1011	11 1011	‡	11 1010	01 1010
II	01 1100	11 1100	.	11 1011	01 1011
			%	11 1100	01 1100

7. GENERAL FORTRAN INTERPRETER

Binary information for one star is contained in 396 consecutive bits. These bits were originally written on the tape from 11 words of a computer having 36-bit words. One tape record consists of data for 50 stars, i.e., 19,800 consecutive binary bits. A tape record may be copied by a standard binary read operation into the central memory of a second computer. When this second computer has a word length different from 36, correct interpretation of the binary information is complicated by two facts. First, data for the N th star in the record will not generally begin with the first bit of a memory word. Second, bits denoting signs will not generally occupy the sign-bit position of their respective words. The following method of interpreting tape records should go far toward minimizing confusion and incorrect manipulation of bit groups.

As a first step it is convenient to define three integers. Let λ be the number of bits per central memory word for the second computer used. Then let α be the smallest integer for which $\alpha\lambda \geq 396$, and let β be the smallest integer for which $\beta\lambda \geq 19,800$. In Fortran statements that appear below, it must be stressed that the symbols λ , α , and β represent not variables but integer constants corresponding to a particular computer.

The second step is to create a special-purpose subprogram, which we might call JEM. It will need to be written in a language closer to basic machine language than Fortran because it will need to make use of elementary shift operations built into the computer. JEM must have the following properties:

.. Parameters used by JEM are passed in a manner that is compatible with the calling sequence generated for function subprograms by the Fortran compiler at the installation. A typical call to JEM is the Fortran statement $K = JEM (N, NAME, M)$.

2. The word at K receives N consecutive bits taken from storage. The bits are right adjusted in K with zero fill to the left.
3. The first bit is taken from the Mth bit position from the left in the word at location NAME. Additional bits are taken from the right of this position.
4. If $(M + N - 1) > \lambda$, then extra bits are taken from the left end of the next word in the array to which NAME belongs.
5. $N > \lambda$ is invalid. Error indication is optional.

After a tape record has been read into storage, the 396 bits for a desired star should be placed in a standard configuration with the first bit at the beginning of a word. The following Fortran subroutine will do the job:

```
SUBROUTINE STARGET (LARGE, L, LITTLE)
DIMENSION LARGE (B), LITTLE (a)
J = 396 = (L - 1)
K = J/\lambda
M = 1 + J - K * \lambda
DO 1 I = 1, a
N = I + K
1 LITTLE (I) = JEM (\lambda, LARGE (N), M)
RETURN
END
```

The main program then will contain statements such as:

```
DIMENSION JACK (B), JILL (a)
```

```
CALL STARGET (JACK, N, JILL)
```

Execution of this call places the binary information for the N th star of the record in the array JILL. Any star parameter can now be easily extracted from JILL by using the function JEM and a reference table such as Table 1.

A brief description of the table follows. The four left-hand columns describe the interpretation of the bit sequence and are independent of the computer. The columns headed "word" and "bit" depend on λ , and are shown for three different word sizes. Word and bit columns can be written down for any other value of λ in a minute or two. Begin each column with a 1. Each successive bit number is found by adding the bit number above to its corresponding N . If the sum exceeds λ , then subtract λ and increase the word count. Use of the table can best be shown with examples.

Example 1. On a machine with 32 bit words, find the epoch of α_0 . Two Fortran statements are sufficient:

```
x = JEM (12, JILL (5), 29)/  
EPOCH = 1850. + x/32.
```

Example 2. In the $\lambda = 24$ case, find the visual magnitude. Here a sign bit is involved. One Fortran solution is:

```
KING = JEM (1, JILL (8), 13)  
x = JEM (11, JILL (8), 14)  
VIS = X/128.  
IF (KING) 2, 2, 1  
1 VIS = -VIS  
2 - - - -
```

Example 3. In the $\lambda = 60$ case, find α_0 . Again, two statements are enough:

```
x = JEM (31, JILL (6), 25)  
ALF = x/67108864.
```

If the word length is shorter, it might be troublesome to preserve the full accuracy of a_0 . Not all computers have real-number (floating-point) arithmetic that is accurate to 31 binary places. In such cases a_0 would have to be split up into two numbers and treated with double-precision instructions. If these instructions are not available, then their equivalents have to be worked out explicitly by the programmer.

The last parameter, checksum, was computed by the original 36-bit word machine. It is the add-and-carry logical sum of the previous words of star data (overflow bits are added back in at the low-order position). To compare this checksum to a similar sum computed on a machine of different word length is a fairly sophisticated problem. Probably no practical way exists to do this in Fortran. However, omitting this test for reading accuracy should not be a matter of serious concern provided that the tape-reading equipment performs parity testing against the check bits on the tape.

Table 1. Storage Format - 11-Word Binary Tapes*

Quantity	Sign Bit	Divisor	N	λ = 24		λ = 32		λ = 60	
				Word	Bit	Word	Bit	Word	Bit
δ_{1950}	✓	$2^{26} \frac{1}{2}$	31	1	1	1	1	1	1
Code 10			5	2	8	1	32	1	32
α_{1950}		$2^{26} \frac{1}{2}$	31	2	13	2	9	1	37
Code 20			5	3	20	3	4	2	8
Annual μ	✓	$2^{31} \frac{5}{6}$	18	4	1	3	9	2	13
Annual $\sigma \mu$		$2^{30} \frac{1}{6}$	14	4	19	3	27	2	31
Code 30			4	5	9	4	9	2	45
Annual μ	✓	$2^{31} \frac{5}{6}$	18	5	13	4	13	2	49
Annual $\sigma \mu$		$2^{30} \frac{1}{6}$	14	6	7	4	31	3	7
Code 40			4	6	21	5	13	3	21
Photographic magnitude	✓	$2^7 \frac{1}{11}$	12	7	1	5	17	3	25
Epoch of δ_0 minus 1850.0		$2^5 \frac{1}{11}$	12	7	13	5	29	3	37
$\pi \delta_0$		$2^{26} \frac{1}{2}$	12	8	1	6	9	3	49
Visual magnitude	✓	$2^7 \frac{1}{11}$	12	8	13	6	21	4	1
Epoch of α_0 minus 1850.0		$2^5 \frac{1}{11}$	12	9	1	7	1	4	13
$\pi \alpha_0$		$2^{26} \frac{1}{2}$	12	9	13	7	13	4	25
DM zone	✓		8	10	1	7	25	4	37
DM number			15	10	9	8	1	4	45
Smithsonian book number			7	10	24	8	16	4	60
Code 51			3	11	10	8	26	5	10
Code 52			3	11	7	8	23	5	7
Spectral type (in BCD)			18	11	13	8	29	5	13
Code 60			1	12	7	9	15	5	31
Code 70			1	12	8	9	16	5	32
Source catalog star number			16	12	9	9	17	5	33
δ_0 (low order 22 bits)	✓	$2^{26} \frac{1}{2}$	23	13	4	10	1	5	49
α_{1950}		$2^{26} \frac{1}{2}$	13	13	24	10	24	6	12
α_0		$2^{26} \frac{1}{2}$	21	14	13	11	5	6	25
(Not used)			5	15	20	12	4	6	56
Checksum			36	16	1	12	9	7	1

* Notation for this table is described on page 4.

Table 2. File 1, record 1, north tape

Table 3. File 1, record 1, month 1902

9. ELEMENTARY DESCRIPTION OF DATA STORAGE ON MAGNETIC TAPE

All computers have information storage devices that allow them to store data accessibly (core storage, magnetic drum, etc.). In this storage unit, information is stored in binary (BIN) or binary-coded-decimal (BCD). A programmer may restrict himself to the BCD mode, but for handling large amounts of data, this is generally inefficient.

A computer stores data in units called words, each computer having a set word length. The IBM 7094, for example, has a word length of 36 bits, the CDC 6400, one of 60 bits. Additionally, each computer has a known maximum capacity, i.e., the maximum number of words that can be accommodated at the same time in the storage unit. Since the SAO Star Catalog was processed on an IBM 7094, it was constructed according to the capacity and word length of this computer.

The binary format (Section 2) of the Catalog contains eleven 36-bit words per star, all the numerical information being stored in fixed-point. The first bit of each word is the sign bit; in this bit a 0 = +, a 1 = -. The remaining 35 bits contain the magnitude of the number. The point that separates the integral from the fractional part of the word is called the binary point, and is indicated for each word on the format (Section 2). Conversion from binary to decimal is, for example,

The less efficient BCD system allocates a 6-bit binary number for each character, as given in Section 6 (for the BCD spectral type).

It is possible to convert the entire Star Catalog into the BCD mode, as was done in order to produce the book form of the Catalog; but, because of the inefficiency of the BCD format, in this mode the Catalog occupies 14 tapes rather than 2.

Binary information can be stored on punched cards, but in quantity is more generally stored on magnetic tapes. Information in this form is recorded magnetically in seven parallel channels (tracks) along the tape. On the tape, six of the channels are used to accommodate data, while the seventh contains a check bit, which merely checks the reliability of the data stored. As data are recorded on the tape the check bits are automatically computed by the tape control circuits; as a tape is read the check bit is recomputed and compared with the one previously read, discrepancies being indicated.

The IBM 7094 records data in 36-bit words, each word being divided into 6-bit bytes for storage on tape. Each byte with its check bit is recorded on tape in a vertical column; a tape can be recorded at 200, 556, or 800 bpi (bytes per inch). The Star Catalog is recorded at 556 bpi.

Any block of words recorded consecutively on a tape is called a record, no matter what its length. Following a record on a tape is a 3/4-inch blank space called an end-of-record gap or record gap. The Star Catalog contains fifty 11-word stars, or 550 words per record. An entire record must be stored in the computer at one time to prevent loss of data while copying or processing a Star Catalog tape.

Records may be grouped into files, each of which is separated from other files by a 3.7-inch blank space followed by a tape mark (the end-of-file record). The Star Catalog has been divided into 10° bands of declination, each band being stored in a separate file on the tapes.

10. FORMULATION OF THE STAR CATALOG

The SAO Star Catalog was compiled from several earlier catalogs, all of which are cited in the bibliography. In the compilation, all stars were reduced to a common fundamental system, the FK4, with the application of systematic corrections as given in the bibliography (Section 2.2), and to a common equator and equinox, 1950.0. Where necessary, proper motions and spectral types were added to the data for the recorded stars. The compilation gives positions and proper motions for 258,997 stars, with an average distribution of 6 stars per square degree. The star positions have an average standard deviation of 0.2 arcsec at epoch of observation or 0.5 arcsec at epoch 1963.5.

The SAO catalog includes the following information for each star:

1. Right ascension (α_{1950}) and declination (δ_{1950}) for equator, equinox, and epoch 1950.0.
2. Standard deviation (σ) of the position at epoch 1950.0.
3. Right ascension (α_0) and declination (δ_0) for the equator and equinox 1950.0, at the mean epoch of the original observations.
4. Standard deviations (σ, σ') of α_0 and δ_0 .
5. Mean epochs (t_0, t'_0) of the original observations in right ascension and declination.
6. Annual proper motions for right ascension (μ) and declination (μ').
7. Standard deviations (σ) of μ and μ' .
8. Visual magnitude (for 99% of the stars).
9. Photographic magnitude (for 50% of the stars).
10. Spectral type (for 83% of the stars).
11. Durchmusterung number (BD, CD, CPD).
12. Source catalog.
13. Star number from source catalog.
14. Explanatory notes.

10.1 Precession

Stars from catalogs that were referred to an equinox other than that of 1950.0 were precessed to 1950.0 by use of Newcomb's constant and the rigorous formulas,

$$l_0 = \cos \alpha_0 \cos \delta_0 ,$$

$$m_0 = \sin \alpha_0 \cos \delta_0 ,$$

$$n_0 = \sin \delta_0 ,$$

where

α_0, δ_0 = right ascension and declination at equinox of the source catalog, epoch t_0 .

l_0, m_0, n_0 = direction cosines referred to equinox of t_0 .

Setting up the matrix, we have:

$$\begin{pmatrix} i \\ m \\ n \end{pmatrix} = \begin{pmatrix} \cos \kappa \cos \omega \cos \nu - \sin \kappa \sin \omega \\ \cos \kappa \sin \omega \cos \nu + \sin \kappa \cos \omega \\ \cos \kappa \sin \nu \end{pmatrix} \begin{pmatrix} -\sin \kappa \cos \omega \cos \nu - \cos \kappa \sin \omega \\ -\sin \kappa \sin \omega \cos \nu + \cos \kappa \cos \omega \\ -\sin \kappa \sin \nu \end{pmatrix} \begin{pmatrix} l_0 \\ m_0 \\ n_0 \end{pmatrix}$$

where

i, m, n = direction cosines referred to the equinox of 1950.0.

κ, ω, ν = angles given by the expressions:

$$\kappa = (23042''53 + 1.39''73\tau + 0''06\tau^2)T + (30'23 - 0'27\tau)T^2 + 18'00 T^3,$$

$$\omega = \kappa + (79'27 + 0'66\tau)T^2 + 0'32 T^3,$$

$$\nu = (20046''85 - 85''33\tau - 0''37\tau^2)T + (-42'67 - 0'37\tau)T^2 - 41'80 T^3,$$

in which

$$\tau = \frac{t_0 - 1900.0}{1000.0}$$

$$T = \frac{1950.0 - t_0}{1000.0}$$

and t_0 = epoch of original equinox in tropical years.

The positions at equinox 1950 are given by the relations

$$\alpha = \arctan \frac{m}{t} ,$$

$$\delta = \arcsin n .$$

This method is inaccurate within 10 arcmin of the pole; however, no stars within this region were processed.

10.2 Standard Deviations

Standard deviations (standard errors) of position were taken as given in the source catalogs. Probable errors (r) were converted to standard deviations by the formula,

$$\sigma = \frac{3}{2} r .$$

Where no standard deviations were given, but weights according to the number of observations were available from the GC (for meridian catalogs), the standard deviations were derived by use of the relations

$$\sigma = \frac{0\text{''}45}{\sqrt{w}} , \quad \sigma' = \frac{0\text{''}45}{\sqrt{w'}} ,$$

where w and w' are the weights for right ascension and declination, respectively, and $0\text{''}45$ is the GC standard deviation of unit weight.

Standard deviations of position from AGK 2 were computed (Schorr, 1951; Kohlschütter, 1957; Heckmann, 1955) by the formula

$$\sigma = \sigma' = \left\{ [(m - 9.12)^2 \cdot 0061 + 0.145]^2 + 0.0036 \right\}^{1/2}$$

where m = photographic magnitude.

While some source catalogs gave standard deviation of the components of proper motion for each star, others gave only one value applicable to all its proper motions. In either case, standard deviations are given for proper motions of each star in the SAO catalog.

Standard deviations for proper motions computed at SAO were computed from the standard deviations of the positions:

$$\sigma_{\mu} = \frac{(\sigma_2^2 + \sigma_1^2)^{1/2}}{t_2 - t_1}$$

$$\sigma_{\mu'} = \frac{(\sigma_2'^2 + \sigma_1'^2)^{1/2}}{t_2 - t_1}$$

where subscripts 1 and 2 refer to earlier and later epochs, respectively. Since the standard deviations in α and δ for each star were very close, if not identical, the positional uncertainty at 1950.0 is indicated by a single number, given by the formula,

$$\sigma_{1950} = \left\{ \frac{(\sigma)^2 + [\sigma_{\mu}(1950.0 - t_0)]^2 + (\sigma')^2 + [\sigma_{\mu'}(1950.0 - t_0')]^2}{2} \right\}^{1/2}$$

An additional term in this formula, which would make it more precise, is omitted because it cannot generally be evaluated from data given in the source catalogs, since it depends upon exact knowledge of the method of computing proper motions and on the epoch of observation of all positions used in determining proper motions.

All standard deviations in the printed SAO catalog are expressed in seconds of great circle arc, and on the magnetic tapes, in radians.

10.3 Proper Motions

Proper motions for AGK 2 stars were computed by comparing the AGK 2 positions (in the FK 3 system) with early epoch positions from either the AGK 1 or the Greenwich AC (in the FK 3 system), after identity of stars from these three catalogs had been determined by a series of tests on positions, BD numbers, and magnitudes. The following formulas were used:

$$\mu = \frac{\alpha_2 - \alpha_1}{t_2 - t_1},$$

$$\mu' = \frac{\delta_2 - \delta_1}{t_2 - t_1},$$

where μ , μ' are the proper motions in right ascension and declination, and the subscripts 1 and 2 refer to earlier and later epochs, respectively.

If two stars at t_1 or t_2 had the same BD number, the star for which the sum

$$(\alpha_2 - \alpha_1)^2 + (\delta_2 - \delta_1)^2$$

had the lowest value was used. When such a choice has been made, the fact is indicated in the catalog notes. When more than three stars at either t_1 or t_2 fulfilled all requirements for identification, the stars were omitted.

Proper motions were computed for approximately 56,000 stars in the AGK 2.

Proper motions in right ascension, given in the source catalogs in seconds of great circle arc, were multiplied by the term $\sec 6/15$ and converted to seconds of time. In the printed catalog, the proper motions are given for right ascension in seconds of time, and for declination in arcsec. On the magnetic tapes all proper motions are given in radians.

10.4 Positions at 1950.0

Right ascension and declination at epoch 1950.0 are given by the equations

$$\alpha_{1950} = \alpha_0 + \mu (1950.0 - t_0)$$

$$\delta_{1950} = \delta_0 + \mu' (1950.0 - t_0')$$

10.5 Numbering System and Order

For the tapes of general interest and for the printed version of the catalog, the stars at epoch 1950.0 were sorted by right ascension within 10° bands of declination and, in the printed catalog, numbered consecutively (see Section 5).

10.6 Supplementary Information

Magnitudes, spectral types, and star numbers from the source catalogs have been included in the SAO catalog with explanatory notes citing the specific origin of each. Source-catalog entries indicating double or variable stars have also been incorporated in the explanatory notes. About 36,000 spectral types from the HD were added to the zones covered by the AGK 2, and Durchmusterung numbers were added to stars in the GC and the FK 4.

10.7 Duplicate Entries

When a star was listed in more than one source catalog, the duplicates were removed from the SAO catalog, insofar as this was possible. Stars were considered as duplicates when all the following were true: their positions, at the common epoch of 1900.0, agreed within 10'0 in both coordinates; they had identical DM numbers; their visual magnitudes did not differ by more than 3.0 mag; they came from different catalogs; they were not noted as members of a double system.

When duplication occurred, the entry retained was that appearing first in the following list of catalogs: FK 4; FK 3; GC; Cape volumes 20, 19, 18, 17; Yale volumes 27, 26 II, 26 I, 25, 24, 22 II, 22 I, 21, 20, 19, 18, 17, 16, 14, 13 II, 13 I, 12 II, 12 I, 11; AGK 2 volumes 8, 7, 6, 5, 2, 1; Cape Zone; Me 4; Me 3.

11. BIBLIOGRAPHICAL SOURCES

11.1 Chief Sources

The chief sources used for the SAO catalog are listed under the abbreviated titles by which they are referred to in the text:

AGK 1

Doubiago, D.

1898. Catalog der Astronomischen Gesellschaft, No. 1. Zone +75°
bis +80°, Kasan Sternwarte.

Courvoisier, L.

1910. Catalog der Astronomischen Gesellschaft, No. 2. Zone +70°
bis +75°, Berlin Sternwarte.

Fearnley, C., and Geelmuyden, H.

1890. Catalog der Astronomischen Gesellschaft, No. 3. Zone +65°
bis +70°, Christiania Sternwarte.

Kruger, A.

1890. Catalog der Astronomischen Gesellschaft, No. 4. Zone +55°
bis +65°, Helsingfors und Gotha Sternwarten.

Deichmüller, F.

1894. Catalog der Astronomischen Gesellschaft, No. 6. Zone +40°
bis +50°, Bonn Sternwarte.

Engstrom, F., and Psilander, A. A.

1902. Catalog der Astronomischen Gesellschaft, No. 7. Zone +35°
bis +40°, Lund Sternwarte.

Wiltordink, J. H.

1902. Catalog der Astronomischen Gesellschaft, No. 8. Zone +30°
bis +35°, Leiden Sternwarte.

AGK 2

Schorr, R., and Kohlschütter, A.

1951 - 1953. Zweiter Katalog der Astronomischen Gesellschaft
für das Äquinoctium 1950. Vol. 1, +70° bis +90°; vol. 2,
+60° bis +70°; vol. 5, +45° bis +50°; vol. 6, +40° bis +45°;
vol. 7, +35° bis +40°; vol. 8, +30° bis +35°.

BD

Argelander, F. W. A.

1859 - 1862. Bonner Sternverzeichniss, Sec. 1-3. Astron. Beob.
Sternwarte Konigl. Rhein. Friedrich-Wilhelms-Univ. Bonn,
vols. 3, 4, 5.

Schönfeld, E.

1886. Bonner Sternverzeichniss, Sec. 4. Astron. Beob. Sternwarte
Konigl. Rhein. Friedrich-Wilhelms-Univ. Bonn, vol. 8.

CAPE

Jackson, J., and Stoy, R. H.

1954 - 1958. Cape Photographic Catalogue for 1950.0. Ann. Cape
Obs. Vol. 17, -30° to -35°; vol. 18, -35° to -40°; vol. 19,
-52° to -56°; vol. 20, -56° to -64°.

CAPE ZONE

Gill, D., and Hough, S. S.

1923. Zone Catalogue of 20,843 Stars, Equinox 1900. Royal Obs.,
Cape of Good Hope.

Spencer Jones, H., and Jackson, J.

1936. Proper Motions of Stars in the Zone Catalogue of 20,843 Stars.
1900. Royal Obs., Cape of Good Hope.

CD

Thome, J. M.

1892 - 1913. Cordoba Durchmusterung, Parts I - IV. Resultados Obs. Nacional Argentino, vol. 16, -22° to -32°; vol. 17, -32° to -42°; vol. 18, -42° to -52°; vol. 21, -52° to -62°.

Perrine, C. D.

1932. Cordoba Durchmusterung, Part V. Resultados Obs. Nacional Argentino, vol. 21, -62° to -90°.

CPD

Gill, D., and Kapteyn, J. C.

1896 - 1900. Cape Photographic Durchmusterung, Parts I - III. Annals Cape Obs., vol. 3, Zones -18° to -37°; vol. 4, zones -38° to -52°; vol. 5, zones -53° to -89°.

FK 3

Kopff, A.

1937 - 1938. Dritter Fundamentalkatalog des Berliner Astronomischen Jahrbuchs. Part I, Die Auwers-Sterne für die Epochen 1925 und 1950, Veröff. Astron. Rechen-Inst., No. 54. Berlin-Dahlem Part II, Die Zusatzsterne für die Epoche 1950, Abh. Preuss. Akad. Wiss., Phys.-math. Kl., No. 3.

FK 4

Fricke, W., and Kopff, A.

1963. Fourth Fundamental Catalogue. Veröff. Astron. Rechen-Inst. Heidelberg, No. 10.

GC

Boss, B.

1936. General Catalogue of 33,342 Stars for the Epoch 1950, vols.
2 - 5. Carnegie Inst. Washington, Publ. No. 468.

GREENWICH AC

Dyson, F. W.

1914. Astrographic Catalogue 1900.0. Greenwich Section, vol. 3,
+64° to +90°.

HD

Cannon, A. J., and Pickering, E. C.

1918 - 1924. The Henry Draper Catalogue. Ann. Astron. Obs. Harvard
Coll., vols. 91 - 99.

Me 3

Ellery, R. L. J., and Baracchi, P.

1917. Third Melbourne General Catalogue of 3,068 Stars for the
Equinox 1890.

Me 4

1959. Fourth Melbourne General Catalogue, Reduced without Proper
Motion to the Equinox 1900.0 (Microfilm.) Mt. Stromlo Obs.,
Canberra, Australia.

YALE

Schlesinger, F., and Barney, I.

1939. Catalogue of 8,101 Stars, -10° to -14° . Trans. Astron. Obs. Yale Univ., vol. 11.

1940. Catalogue of the Positions and Proper Motions of 8,563 Stars, -14° to -18° . Trans. Astron. Obs. Yale Univ., vol. 12, Part I.

1940. Catalogue of the Positions and Proper Motions of 4,553 Stars, -18° to -20° . Trans. Astron. Obs. Yale Univ., vol. 12, Part II.

1943. Catalogue of the Positions and Proper Motions of 4,292 Stars, -20° to -22° . Trans. Astron. Obs. Yale Univ., vol. 13, Part I.

1943. Catalogue of the Positions and Proper Motions of 9,455 Stars, -27° to -30° . Trans. Astron. Obs. Yale Univ., vol. 13, Part II.

1943. Catalogue of the Positions and Proper Motions of 15,110 Stars, -22° to -27° . Trans. Astron. Obs. Yale Univ., vol. 14.

Barney, I.

1945. Catalogue of the Positions and Proper Motions of 8,248 Stars, -6° to -10° . Trans. Astron. Obs. Yale Univ., vol. 16.

1945. Catalogue of the Positions and Proper Motions of 8,108 Stars, -2° to -6° . Trans. Astron. Obs. Yale Univ., vol. 17.

1947. Catalogue of the Positions and Proper Motions of 9,092 Stars, $+15^{\circ}$ to $+20^{\circ}$. Trans. Astron. Obs. Yale Univ., vol. 18.

1948. Catalogue of the Positions and Proper Motions of 8,967 Stars, $+10^{\circ}$ to $+15^{\circ}$. Trans. Astron. Obs. Yale Univ., vol. 19.

1949. Catalogue of the Positions and Proper Motions of 7,996 Stars, $+1^{\circ}$ to $+5^{\circ}$. Trans. Astron. Obs. Yale Univ., vol. 20.

1950. Catalogue of the Positions and Proper Motions of 5,583 Stars, -2° to $+1^{\circ}$. Trans. Astron. Obs. Yale Univ., vol. 21.

1950. Catalogue of the Positions and Proper Motions of 9,060 Stars, $+5^{\circ}$ to $+9^{\circ}$. Trans. Astron. Obs. Yale Univ., vol. 22, Part I.

Barney, I. (Cont.)

1950. Catalogue of the Positions and Proper Motions of 1,904 Stars,
-9° to +10°. Trans. Astron. Obs. Yale Univ., vol. 22,
Part II.

1953. Revised Catalogue of the Positions and Proper Motions of 10,358
Stars, +25° to +30°. Trans. Astron. Obs. Yale Univ.,
vol. 24.

1954. Revised Catalogue of 8,703 Stars, +20° to +25°. Trans. Astron.
Obs. Yale Univ., vol. 25.

Barney, I., and van Woerkom, A. J. J.

1954. Catalogue of 1,031 Stars, +85° to +90°. Trans. Astron. Obs.
Yale Univ., vol. 26, Part I.

Barney, I., Hoffleit, D., and Jones, R.

1959. Catalogue of 8,380 Stars, +50° to +55°. Trans. Astron. Obs.
Yale Univ., vol. 26, Part II.

1959. Catalogue of 8,164 Stars, +55° to +60°. Trans. Astron. Obs.
Yale Univ., vol. 27.

11.2 Supplementary References

Barney, I.

1951. Supplementary Volume to the Yale Zone Catalogues, -30° to +30°
Trans. Astron. Obs. Yale Univ., vol. 23.

Boss, B.

1936. General Catalogue of 33,342 Stars for the Epoch 1950. Carnegie
Inst. Washington Publ. No. 468. Vol. 1, Appendix III,
pp. 165-339.

Heckmann, O.

1955. Correction to magnitude equation published in AGK 2, vol. 1.
Personal communication to Dr. Luigi G. Jacchia.

Kopff, A.

1939. Vergleich des FK 3 mit dem General Catalogue von B. Boss.
Astron. Nachr. vol. 269, pp. 160-167.

Mönichmeyer, C.

1909. Verbesserte Orter des A. G. K. Bonn. Veröff. Konigl. Sternwarte Bonn, No. 9.

Schilt, J., and Hill, S. J.

1937. Photographic magnitudes of 6,902 stars in the zone $+5^{\circ}$ to $+60^{\circ}$.

Contr. Rutherford Obs. Columbia Univ., No. 30, 32 pp.

1938. Photographic magnitudes of 7,280 stars in the zone $+50^{\circ}$ to $+55^{\circ}$.
Contr. Rutherford Obs. Columbia Univ., No. 31, 36 pp.

Schorr, R., and Kohlschütter, A.

1951. Introduction to AGK 2, vol. I. Hamburg-Bergedorf.

1957. Bericht über die im Bonner Anteil des AGK 2 verwendeten Methoden. Introduction to AGK 2, vol. II. Bonn.

Williams, E. T. R.

1947. An investigation of stellar motions, part III. Astron. Journ., vol. 53, pp. 58-63.

11.3 Errata

In addition to the errata listed in the catalogs themselves, corrections from the following sources were also incorporated in the SAO catalog:

Abetti, A.

1900. Cometa 1900 II (1900b). Astron. Nachr., vol. 154, pp. 61-64.

Barney, I.

1948. Corrections to the Albany General Catalogue. Astron. Journ., vol. 54, pp. 154-155.

Courvoisier, L.

1911. Berichtigungen zum Katalog der Astronomischen Gesellschaft, Zone $+70^{\circ}$ bis $+75^{\circ}$, Berlin. Astron. Nachr., vol. 187, pp. 159-160.

Douibiago, D.

1913. Positions corrigées du Catalogue A. G. Kasan. Astron. Nachr.,
vol. 196, pp. 321-322.

Duncombe, J. S.

1961. Corrections to the General Catalog. Personal communication
to Joan Sears, October 2.

Ebell, M.

1903. Notiz Betr. AG. Helsingfors 7016. Astron. Nachr., vol. 164,
pp. 155-156.

Graff, K.

1914. Beobachtungen von Kometen, Planeten und Fixsternen. Astron.
Nachr., vol. 199, pp. 337-360.

Hedrick, J. T.

1903. Places of the older variable stars with faint minima. Astron.
Nachr., vol. 163, pp. 113-118.

Jenkins, L. F.

1943. Corrections to the General Catalogue. Astron. Journ., vol. 50,
pp. 142-144.

1945. Corrections to the General Catalogue, second list. Astron.
Journ., vol. 51, p. 152.

Kreutz, H.

1904. Notiz. Betr. AG. Helsingfors 8117 = BD + 57° 1534. Astron.
Nachr., vol. 165, pp. 251-254.

Ristenpart, F.

1909. Fehlerverzeichnis zu den Sternkatalogen des 18. und 19.
Jahrhunderts. Astron. Abh. Ergänzungshefte Astron.
Nachr., vol. 3, No. 16, pp. 1-509.

Spencer Jones, H.

1928. Catalogue of 4,569 Stars. First Gape Catalogue of Stars for
the Equinox 1925.0, p. vi.

Wanach, B.

1893. Berichtigungen zu Sternkatalogen. Astron. Nachr., vol. 135,
pp. 245-246.

Wirtz, C. W.

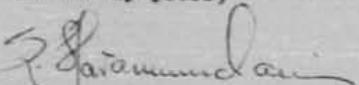
1903. Über den Stern var. 59.1903 Cygni und eine Berichtigung zu
AG Lund 9237. Astron. Nachr., vol. 164, pp. 23-24.

Wolf, M.

1909. Berichtigung. Astron. Nachr., vol. 181, pp. 15-16.

1910. Berichtigung. Astron. Nachr., vol. 185, pp. 143-144.

SMITHSONIAN INSTITUTION
ASTROPHYSICAL OBSERVATORY
80 GARDEN STREET, CAMBRIDGE, MASSACHUSETTS 02138
TELEPHONE 617 844-7910


20 March 1969

Joe Johns
National Space Sciences Data Center
Code 601
NASA
Goddard Space Flight Center
Greenbelt, Maryland 20771

Dear Mr. Johns:

For your information I enclose the documentation concerning the magnetic tape version of the SAO Star Catalog. Dr. Gaposchkin has promised me two tapes for your copy of the Catalog which will be sent on to you separately.

Sincerely yours,

(Mrs.) K.L. Haramundanis

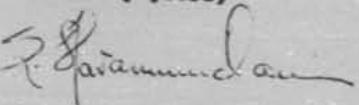
KLM/lbc

enclosure

#3180
p

w/ documentation

SMITHSONIAN INSTITUTION
ASTROPHYSICAL OBSERVATORY
20 GARDEN STREET, CAMBRIDGE MASSACHUSETTS 02138
TELEPHONE 617 864-7810


20 March 1969

Joe Johns
National Space Sciences Data Center
Code 601
NASA
Goddard Space Flight Center
Greenbelt, Maryland 20771

Dear Mr. Johns:

For your information I enclose the documentation concerning the magnetic tape version of the SAO Star Catalog. Dr. Gaposchkin has promised me two tapes for your copy of the Catalog which will be sent on to you separately.

Sincerely yours,

(Mrs.) K.L. Haramundanis

KLM/lbc

enclosure

MAR 24 1969 W/Documentation
#3100
P

PROGRAM DOCUMENTATION

SAPIF
Smithsonian Astrophysical Observatory

Programmer: Nancy A. Norman
Date: August 8, 1969

Prepared by:

Wolf Research and Development Corporation
Riverdale, Maryland

Prepared for:

National Space Science Data Center
Space Sciences Division
GSFC
NASA

Under Contract NAS 5-8060

PROGRAM DOCUMENTATION

Programmer: Nancy A. Norman
Date: August 8, 1969

Prepared by:

Wolf Research and Development Corporation
Riverdale, Maryland

Prepared for:

National Space Science Data Center
Space Sciences Division
GSFC
NASA

Under Contract NAS 5-8060

I. ABSTRACT

SAPIF unpacks the Smithsonian Astrophysical Observatory data and converts it from integer to real, printing-out a listing of the data in decimal notation.

II. IDENTIFICATION

A. Source Language

FORTRAN IV

B. Required Peripheral Equipment

Two tape units

1. One tape unit (A5) for input
2. One tape unit (A3) for off-line printer and decimal listing.

C. Computer

IBM 7094/11

D. Operating System

IBSYS (February 14, 1966 - Goddard Space Flight Center tape system).

E. Subroutines Required

PIFTA\$ - FL\$AT - QCL\$SE

COMMON /PIFTC1/IPCC/PIFTC2/IN(1)/PIFTC3/JUNK,J\$UT(1)

F. Storage Requirements

43647₁₀

III. DESCRIPTION

PIFTA\$ is used to read and close the SA\$ binary tape. The data is converted from integer to real with the subroutine FL\$AT. A listing is printed containing record indicators, field titles and the decimal data.

IV. PROGRAM SETUP

A. Input Requirements

Tape

Tape Unit (5)

- (1) Parity - odd
- (2) 556 BPI
- (3) No label
- (4) Format, See Figure 2
- (5) Disposition - save

B. Output Description

Printer Output

C. Control Cards

Control Card Sequence is shown in Deck Setup, Figure 1.

D. Run Time Estimate

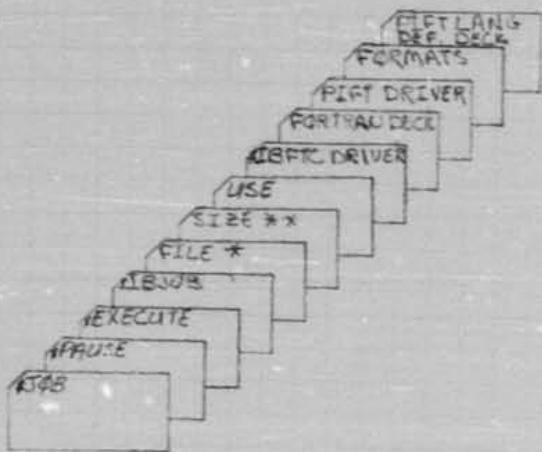
15 minutes

E. Run Request Card

SPONSOR NUMBER	PROGRAMMER ID	PROJECT NO.	CTGY	TYPE	PROGRAM NUMBER	PROGRAMMER PRESENT				
_____	_____	_____	_____	_____	_____	_____				
7084 MODE	<input type="checkbox"/> 1	<input type="checkbox"/> 2	<input checked="" type="checkbox"/> 32K	<input type="checkbox"/> 65K	<input type="checkbox"/> DISK	<input type="checkbox"/> DCC	<input type="checkbox"/> CARD READER	<input type="checkbox"/> PUNCH	<input type="checkbox"/> PRINTER	
TIME EST.	HR. <u>15</u>	MIN.	PRINT EST.	REELS						
LOGICAL	A	5	B	A	A	A	A			
TAPE NUMBER	X-	348								
DISPOSITION	L	F	R	L	F	R	L	F	R	
LOGICAL	B	B	B	B	B	B	B			
TAPE NUMBER										
DISPOSITION	L	F	M	L	F	R	L	F	R	
KEYS						SENSE				
LOAD CARDS	<input type="checkbox"/>	ONLINE	<input type="checkbox"/>	OFFLINE	<input type="checkbox"/>	LOAD TAPE				
DUMP IF	<input type="checkbox"/>	MAX TIME	<input type="checkbox"/>	ROUBLE	<input type="checkbox"/>	EXCESSIVE O/P				
SEE REVERSE	<input type="checkbox"/>	SCHEDULED HALT								

PRINT TAPES

LOGICAL	1, 2, PC	FILES	COPIES	FORM	LOOP
A3	PC	1	1	Std	


PUNCH TAPES

LOGICAL	FILES	CARD FORM

V. PROGRAM MAINTENANCE

Flow Chart, Figure 3.

FIGURE 1

* FILE 'ARB, TAPE, INPUT, A(1), DEFER, BIN, SSB, NOD,
BUK=550, INPUT

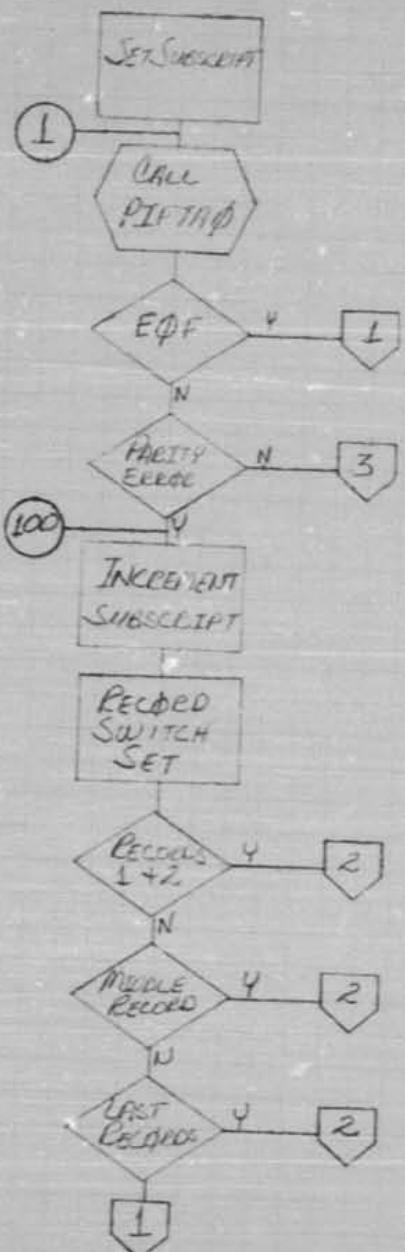

** SIZE // = 8

FIGURE 2
Page 1 of 1

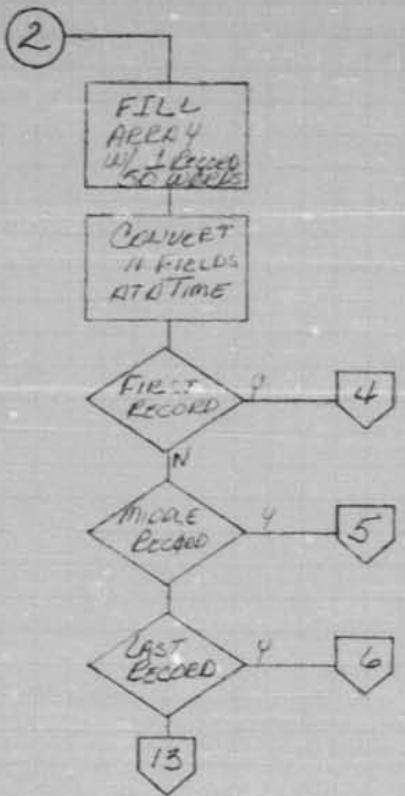
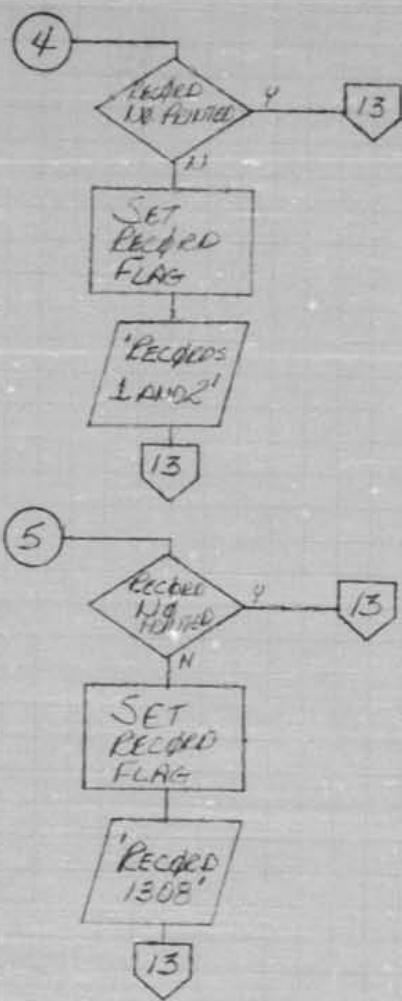
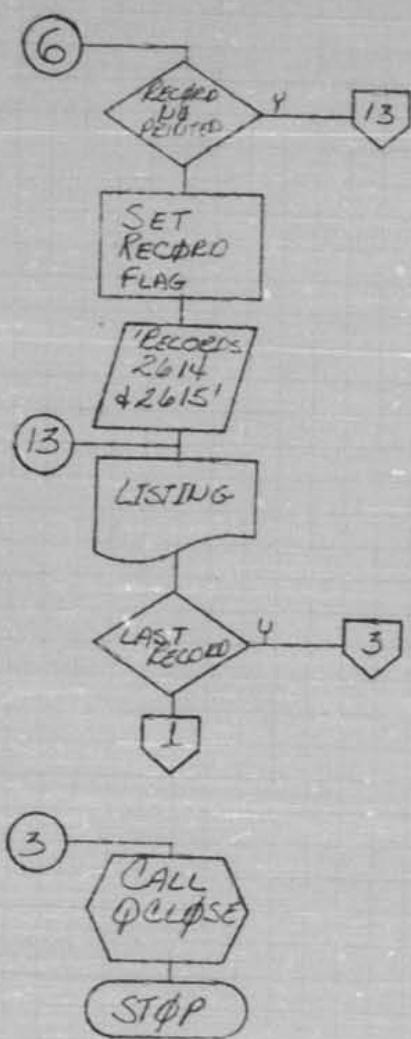

Word	BITS	Description
1	S, 1-30 (B4) 31-35 (B35)	declination in radians visual magnitude
2	S, 1-30 (B4) 31-35 (B35)	right ascension in radians star numbers and footnotes
3	S, 1-17 B(-14) 18-31 (B1) 32-35 (B35)	proper motion in declination in radians standard deviation in radians photographic magnitude
4	S, 1-17 B(-14) 18-31 32-35	proper motion in right ascension - radians standard deviation in radians proper motion
5	S, 1-11 (B4) 12-23 (B18) 24-35 (B9)	photographic magnitude declination observation standard deviation in radians
6	S, 1-11 (B4) 12-23 (B18) 24-35 (B9)	visual magnitude right ascension observation standard deviation in radians
7	S, 1-7 (B7) 8-22 (B22) 23-29 (B29) 30-32 (B32) 33-35 (B35)	DM zone DM number Smithsonian book number spectral type double and variable stars
8	S, 1-7 18 (B18) 19 (B19) 20-35 (B35)	spectral type accuracy of visual magnitude accuracy of photographic magnitude source catalog star number
9	S, 1-22 B(-14) 23-35 (B9)	declination observation in radians standard deviation in radians
10	S, 1-20 (B4) 31-35	right ascension observation unused
11		Checksum

FIGURE 3


SDU-MFT
1 or 4


SAB-RIFT
2 OF 4

SAQ-VIET
3 of 4

SAG-FIFT
4 of 4

72153	00000000	ROP00002336	00000000	ROP00001023	00000000	ROP00001262	000
72157	00000000	ROP00001745	00000000	ROP00000604	00000000	ROP00001465	000
72163	00000000	ROP00001522	00000000	ROP00000365	00000000	ROP00001573	000
72167	00000000	ROP00001513	00000000	ROP00000335	00000000	ROP00002542	000
72173	00000000	ROP00001365	00000000	ROP00000360	00000000	ROP00000753	000
72177	00000000	ROP00001702	00000000	ROP00000472	00000000	ROP00001506	000
72203	00000000	ROP00002661	00000000	00002240	00000000	ROP00003364	000
72207	00000000	ROP00002772	00000000	ROP00000667	00000000	ROP00013244	000
72213	00000000	ROP00002133	00000000	ROP00001516	00000000	ROP0002075	000
72217	00000000	ROP00003750	00000000	00002003	00000000	ROP0002546	000
72223	00000000	ROP00002722	00000000	ROP00001407	00000000	ROP0003374	000
72227	00000000	ROP00004351	00000000	ROP0001655	00000000	ROP0004255	000
72233	00000000	00006340	00000000	ROP00007257	00000000	ROP00013745	000
72237	00000000	ROP000037046	00000000	ROP00061154	00000000	ROP00123434	000
72243	00000000	ROP00152206	00000000	ROP00113264	00000000	00056006	000
72247	00000000	ROP00011275	00000000	ROP00004130	00000000	ROP0004675	000
72253	00000000	ROP00001207	00000000	ROP00000716	00000000	ROP0000376	000
72257	00000000	ROP00001060	00000000	ROP00002647	00000000	ROP0000736	000
72263	00000000	ROP00001017	00000000	ROP0001416	00000000	ROP0001127	000
72267	00000000	ROP00001116	00000000	ROP00001165	00000000	ROP0002111	000
72273	00000000	ROP00000733	00000000	ROP00000535	00000000	ROP0000351	000
72277	00000000	ROP00001150	00000000	ROP00002517	00000000	ROP0001013	000
72303	00000000	ROP00001415	00000000	ROP0001625	00000000	ROP00001714	000
72307	00000000	ROP00001466	00000000	ROP00001331	00000000	ROP0002166	000
72313	00000000	ROP00001022	00000000	ROP00001045	00000000	0000540	000
72317	00000000	ROP00002072	00000000	00003200	00000000	ROP0001011	000
72323	00000000	ROP00001160	00000000	ROP00001565	00000000	ROP0002204	000
72327	00000000	ROP00002661	00000000	ROP00001362	00000000	ROP0002556	000
72333	00000000	ROP00002454	00000000	ROP00002443	00000000	ROP0002344	000
72337	00000000	ROP000006715	00000000	00017340	00000000	ROP00020647	000
72343	00000000	ROP000031621	00000000	ROP00031334	00000000	ROP00013636	000
72347	00000000	ROP00003116	00000000	ROP00003615	00000000	ROP0002647	000
72353	00000000	ROP00001232	00000000	ROP00001430	00000000	ROP0000661	000
72357	00000000	ROP00000530	00000000	ROP00003117	00000000	ROP0000423	000
72363	00000000	ROP00000401	00000000	ROP00001571	00000000	ROP0000376	000
72367	00000000	ROP00000316	00000000	ROP00001334	00000000	ROP0000335	000
72373	00000000	ROP00000366	00000000	ROP00000704	00000000	ROP0000415	000
72377	00000000	ROP00000555	00000000	ROP00002747	00000000	ROP0000560	000
72403	00000000	ROP00001534	00000000	ROP00003470	00000000	ROP0002071	000
72407	00000000	ROP000001366	00000000	ROP00001715	00000000	ROP0000771	000
72413	00000000	ROP000001107	00000000	ROP000002052	00000000	ROP00001541	000
72417	00000000	ROP000002346	00000000	ROP00004417	00000000	ROP00001522	000
72423	00000000	ROP00001577	00000000	ROP00002635	00000000	ROP00002146	000
72427	00000000	ROP000003131	00000000	ROP000002710	00000000	ROP00001674	000
72433	00000000	ROP000005050	00000000	ROP000010063	00000000	ROP000013114	000
72437	00000000	ROP000034767	00000000	ROP000064750	00000000	ROP000120601	000
72443	00000000	ROP000147155	00000000	ROP000116141	00000000	ROP000053401	000
72447	00000000	ROP000007230	00000000	ROP000005634	00000000	ROP00002136	000
72453	00000000	ROP00001330	00000000	ROP00000433	00000000	ROP00000706	000
72457	00000000	ROP000001542	00000000	ROP00002145	00000000	ROP00001316	000
72463	00000000	ROP000001357	00000000	ROP00001120	00000000	ROP00001363	000
72467	00000000	ROP000001363	00000000	ROP00000726	00000000	ROP00002411	000
72473	00000000	ROP00001203	00000000	ROP00000273	00000000	ROP00000535	000
72477	00000000	ROP00001346	00000000	ROP00002211	00000000	ROP00001315	000
72503	00000000	ROP000001502	00000000	ROP00001775	00000000	ROP00001711	000
72507	00000000	ROP000002113	00000000	ROP00001050	00000000	ROP00002632	000
72513	00000000	ROP00001423	00000000	ROP00000464	00000000	ROP00000776	000
72517	00000000	ROP00002044	00000000	ROP00002534	00000000	ROP00001752	00000
72523	00000000	ROP000001766	00000000	ROP00001437	00000000	00001500	00000
72527	00000000	ROP000001566	00000000	ROP00001464	00000000	ROP00003106	00000

1023	00000000	RCP00001262	00000000	RCP00000637
1604	00000000	RCP0001465	00000000	RCP00000426
1365	00000000	RCP0001573	00000000	RCP00000335
335	00000000	RCP0002542	00000000	RCP00000355
360	00000000	RCP00000753	00000000	RCP00000452
472	00000000	RCP0001506	00000000	RCP00001262
240	00000000	RCP00003364	00000000	RCP00002220
667	00000000	RCP00003244	00000000	RCP00001112
516	00000000	RCP00002075	00000000	RCP00002131
003	00000000	RCP0002546	00000000	RCP00001267
407	00000000	RUPC0003374	00000000	RCP00002462
655	00000000	RCP00004255	00000000	RCP00004453
257	00000000	ROP00013745	00000000	RCP0017744
154	00000000	ROPC0123434	00000000	REP00155101
264	00000000	00056006	00000000	RCP00023314
130	00000000	RCP0004675	00000000	00001500
716	00000000	RCP0000376	00000000	RCP00001671
547	00000000	RCP00000736	00000000	RCP00001435
416	00000000	RCP0001127	00000000	RCP00001262
165	00000000	RCP0002111	00000000	RCP00001203
35	00000000	RDP0000351	00000000	RCP00001442
17	00000000	RDP0001013	00000000	RCP00001634
25	00000000	RDP00001714	00000000	RCP00002121
31	00000000	RDP00002166	00000000	RCP00001466
45	00000000	00000540	00000000	00002022
00	00000000	RDP0001011	00000000	00002017
65	00000000	RDP0002204	00000000	RCP00001414
62	00000000	RDP00002556	00000000	RCP00002301
43	00000000	RDP00002344	00000000	RCP00005252
40	00000000	RDP00020647	00000000	RCP00045571
34	00000000	RDP00013636	00000000	RCP00012453
15	00000000	RDP00002647	00000000	RCP00002450
30	00000000	RDP00000661	00000000	RCP00002166
17	00000000	RDP00000423	00000000	RCP00001574
71	00000000	RDP00000376	00000000	RCP00001431
34	00000000	RDP00000335	00000000	RCP00001354
14	00000000	RDP00000415	00000000	RCP00001702
47	00000000	RDP00000560	00000000	RCP00002407
10	00000000	RDP00002071	00000000	RCP00003557
5	00000000	RDP00000771	00000000	RCP00002136
2	00000000	RDP00001541	00000000	RCP00003533
7	00000000	RDP00001522	00000000	RCP00002412
5	00000000	RDP00002146	00000000	RCP00003605
0	00000000	RDP00001674	00000000	RCP00005707
3	00000000	RDP000013114	00000000	RCP00021524
0	00000000	RDP00120601	00000000	RCP00160222
1	00000000	RDP00053401	00000000	RCP00025445
4	00000000	RDP00002136	00000000	RCP00001134
3	00000000	RDP00000706	00000000	RCP00001206
5	00000000	RDP00001316	00000000	RCP00001023
0	00000000	RDP00001363	00000000	RCP00001021
5	00000000	RDP00002411	00000000	RCP00000726
3	00000000	RDP00000535	00000000	RCP00001222
1	00000000	RDP00001315	00000000	RCP00001150
5	00000000	RDP00001711	00000000	RCP00001647
0	00000000	RDP00002632	00000000	RCP00001001
0	00000000	RDP00000776	00000000	RCP00001776
00000000	00000000	RDP00001752	00000000	RCP00001043
00000000	00000000	00001500	00000000	RCP00002363
00000000	00000000	RDP00003106	00000000	RCP00002414

72533	00000000	ROP00002641	00000000	ROP0002402	00000000	ROP00004671	00000000	
72537	00000000	ROP00013315	00000000	ROP0017245	00000000	0036040	00000000	ROP0
72543	00000000	ROP00040173	00000000	ROP0021046	00000000	C0016037	00000000	ROP0
72547	00000000	ROP00003626	00000000	ROP00001353	00000000	ROP00003043	STA20027546	FSB3
72553	SCA34017001	FDV33144645	SSU43302014	FDV33710233	STA20142022	TH565502465	ADL45636522	STA2
72557	STL47202224	LDL44446125	THS65147420	STA20202020	SCA34017001	FDV33106110	STQ21010370	STA2
72563	SAL61202224	LDL44446151	FAD30202121	QRS02273303	LOA12700120	STA20202002	STA20202020	LRS0
72567	STA20042020	STA20200520	STA20202020	QLS06202020	STA20202020	FDV3320220	STA20202020	STA2
72573	STA20202020	STA20202020	STA20202020	STA20202020	STA20202020	STA20202020	STA20202020	STA2
72577	STA20202020	STA20202020	STA20202020	STA20202020	STA20202020	STA20202020	STA20202020	STA2
72603	LDA1202020	ARS01012020	STA20102020	STA20200103	STA20202001	ENQ04202020	ARS01052020	STA2
72607	STA20742020	STA20202020	SCA34012733	ARS01063471	ENQ04330127	74330527	FDV33710333	ALSO
72613	THS65237320	STQ21012733	ARS01063471	ENQ04330127	BEGW	74330527 33710321	ARS01273320	STA2
72617	STA20202020	ENA10347104	FDV33062774	FDV33052733	RS871032101	DVF27331034	ALSO5273371	ENQ0
72623	BEGW	74330527 33710374	SCA34012721	ARS01273301	QLS06710533	STA20052733	RS871033304	DVF2
72627	FDV33107101	FDV33042733	RSB71052121	74202020	SCA34017001	FDV33106110	STQ21012733	ADD1
72633	INI151618765	AJP22206646	INI151206465	QRJ2365323	SBL46512220	ADD14337101	FDV33142020	SAL6
72637	STA20143371	ARS01331420	STA20626122	THS65642046	ADL45201433	RSB71033314	ARJ22655024	THS6
72643	AJP22142101	DVF27331470	RSG73257320	STA20612565	RS073202020	INI15144220	STA20204524	LDL4
72647	QJP23227333	STA20632322	RS073212265	63732020	STA20652561	ADL45222020	STA20206643	MUI2
72653	STA20206125	THS65732020	STA20514422	STA20204524	LDL44627347	QJP23227320	XMIT	63232221 2
72657	STA20206525	SAL61452220	STA20206643	MUI24272020	STA20654565	INI151673014	BEGW	74202020 2
72663	SCA34012720	FDV33106110	STQ21012733	ADD14612565	INI151616765	AJP22206645	INI151206465	QRJ2
72667	SBL46512220	ADD14337101	FDV33142020	SAL61456420	STA20143371	ARS01331420	STA20626122	THS6
72673	ADL45201433	RSB71033314	ARJ22655024	THS65456365	AJP22142101	DVF27331470	RSC73257320	STA2
72677	RS073202020	INI15144220	STA204524	LDL44627347	QJP23227333	STA20632322	RSC73212265	6
72703	STA20652561	ADL45222020	STA20206643	MUI24272020	STA20206125	THS65732020	STA20514422	STA2
72707	LDL44627347	QJP23227320	XMIT	63232221 22656320	STA20206525	SAL61452220	STA20206643	MUI2
72713	STA20654565	INI151673014	BEGW	74202020 202C2020	SCA34012733	SBL46023302	SCA34012733	MEQ6
72717	FDV33012733	MEQ66067302	FDV33012733	MEQ66037312	FDV33022733	MEQ66117302	FDV33022733	MEQ6
72723	FDV33022733	MEQ66011273	QRS02743301	DVF27336607	RS073017420	STA20202020	SCA34011027	FDV3
72727	QRJ23614322	STA20143366	ARS01127302	FDV33012733	MEQ66011273	QRS02330127	FCV33660101	RSC7
72733	QRS02273366	ARS01127302	FDV33012733	MEQ66011273	CRS02332020	ARS01273366	ARS01017302	74
72737	SCA34017001	FDV33146125	THS65516167	THS65202025	SAL61432465	AJP22202066	SBL46512023	RAD70
72743	STA20234623	SAL61432020	INI151244520	STA20147420	UJP75076752	RTJ75473755	LCA12076764	INA18
72747	INA1000000	AJP22272756	ENG04072553	ENAI000063	RTJ75454141	INI15000010	RTJ75454215	ROP0
72753	00000000	AJP01076764	RTJ75455020	NOP50000000	LJP75074003	NOP50000000	ENA10000000	STA20
72757	LDA12076770	INA11077765	INA11000000	AJP22373012	ENA10002322	STA20074034	LDA12076775	STA20
72763	RTJ75473646	NOP50000000	UJP75073010	NOP50000000	ENA10000001	STA20073655	RTJ75473664	NOP50
72767	ENA1000001	STA20073673	RTJ75473703	NOP50000000	LIL53173630	ENI50200002	LDA12102002	INA11
72773	LRS03000060	LLS07000060	DVI25074051	STA20073740	RTJ75473743	NOP50000000	INA11077776	INA11
72777	AJP22273002	NOP50000000	ENA1000001	STA20073740	RTJ75473743	NOP50000000	LIL53373740	LCA12
73003	STA20102002	INI15104000	IJP55272772	RA072073655	RTJ75473661	NOP50000000	INA11077756	AJP22
73007	RA072073637	RTJ75473643	SUB15076764	AJP22372765	AJP22072765	NOP50000000	LCA12076770	INA11
73013	AJP22373915	AJP22073131	INI11077775	AJP22373133	ENQ04072561	ENAI0000063	RTJ75454141	INI15
73017	ENA10000001	STA20073655	RTJ75473664	NOP50000000	RTJ75454215	RDP00073023	RCP00073655	ARS01
73023	RA072073655	KTJ75473661	INA11077766	AJP22373021	RTJ75455020	NOP50000000	ENA10000001	STA20
73027	RTJ75473646	NOP50000000	UJP75073127	NOP50000000	ENQ04072610	ENAI0000063	RTJ75454141	INI15
73033	ENA10000001	STA20073673	RTJ75473703	NOP50000000	RTJ75454215	RCPC0073037	RCP00073631	ARS01
73037	RA072073673	RTJ75473700	INA11077756	AJP22373035	RTJ75454215	RDP00073043	RCP00073637	ARS01
73043	ENA10000001	STA20073673	RTJ75473703	NOP50000000	RTJ75454215	RDP00073047	RCP00073631	ARS01
73047	RA072073673	RTJ75473700	INA11077756	AJP22373045	RTJ75454215	RCPC0073053	RCP00073637	ARS01
73053	ENA10000001	STA20073673	RTJ75473703	NOP50000000	RTJ75454215	RCPC0073057	RCP00073631	ARS01
73057	ENA10000002	RAD70073673	RTJ75473703	NOP50000000	INA11077757	AJP22373055	RTJ75454215	RDP000
73063	RDP00073637	ARS01022604	ENA10000002	STA20073673	RTJ75473703	NOP50000000	RTJ75454215	RCP000
73067	RDP00073631	ARS01016002	ENA10000002	RA070073673	RTJ75473703	NOP50000000	RTJ75454215	RCP000
73073	RTJ75454215	RDP00073075	RDP00073637	ARS01023005	RTJ75455020	NOP50000000	INA11077756	AJP22
73077	LIL53173637	LDA12142046	INA11077776	AJP22173102	LDA12074051	STA20074017	LCA12074052	STA20
73103	RTJ75454141	INI151000036	ENA10000001	STA20073673	RTJ75473703	NOP50000000	ENQ04072624	ENA10
73107	ROP00073631	ARS01033046	RA072073673	RTJ75473700	INA11077756	AJP22373106	RTJ75454215	RDP000

0002402 COCOC000 RCP00004671 00000000 00006031
 00017245 00000000 00036040 00000000 RCP00030617
 00021046 00000000 00016037 00000000 RCP0003554
 00001353 00000000 RCP0003043 STA20027546 FSB31463146
 33710233 STA20142022 THS65502465 ADL45636522 STA20224271
 202C2020 SC434017001 FDV33106110 STC21010370 STA20646123
 02273303 LDA12700120 STA20202002 STA20202020 LRS03202020
 16202020 STA20202020 FDV33202020 STA20202020 STA20202020
 202C2020 STA20202020 STA20202020 STA20202020 STA20202020
 002C0406 RAD70072020 STA20201020 STA20202011 STA20202001
 02000103 STA20202001 ENQ04202020 ARS01052020 STA20010620
 01063471 ENQ04330127 74330527 FDV33710333 ALS05702064
 14330127 BEGN 74330527 33710321 ARS01273320 STA20202020
 3052733 RSB71032101 DVF27331034 ALS05273371 ENQ04330127
 1273301 QLS06710533 STA20052733 RSB71033304 DVF27336110
 4202020 SCA34017001 FDV33106110 STQ21012733 ADD14612565
 3656323 SBL46512220 ADD14337101 FDV33142020 SAL61456420
 5642046 ADL45201433 RS871033314 ARJ22655024 THS65456365
 0612565 RS073202020 IN151442220 STA20204524 LDL44627347
 3732020 STA20652561 ADL45222020 STA20206643 MU124272020
 0204524 LDL44627347 QJP23227320 XMIT 63232221 22656320
 4272020 STA20654565 IN151673014 BEGR 74202020 20202020
 4612565 IN151616765 AJP22206645 IN151206465 QRJ23656323
 1456420 STA20143371 ARS01331420 STA20626122 THS65642046
 5456365 AJP22142101 DVF27331470 RSC73257320 STA20612565
 4627347 QJP23227333 STA20632322 RSC73212265 63732020
 4272020 STA20206125 THS65732020 STA20514422 STA20204524
 2656320 STA20206525 SAL61452220 STA20206643 MU124272020
 022C2020 SCA34012733 SBL46023302 SCA34012733 MEQ66107302
 5037312 FDV33022733 MEQ66117302 FDV33022733 MEQ66117302
 7336607 RS073017420 STA20202020 SCA34011027 FDV33142346
 0102733 MEQ66011273 QRS02330127 FDV33660101 RSC73023302
 0111273 QRS02332020 ARS01273366 ARS01017302 74202020
 1202025 SAL61432465 AJP22202066 SBL46512023 RAD70712220
 0147420 UJP75076752 RTJ75473755 LCA12076764 IN41107773
 0000063 RTJ75454141 IN151000010 RTJ75454215 ROP00072754
 0000000 UJP75074003 NCP50000000 ENA10000000 STA20074034
 0373012 ENA10002322 STA20074034 LDA12076775 STA20073637
 0000000 ENA10000001 STA20073655 RTJ75473664 NCP50000000
 0000000 LIL53173630 EN150200002 LDA12102002 INA11000005
 073740 RTJ75473743 NCP50000000J INA11077776 INA11000000
 073740 RTJ75473743 NCP50000000 LIL53373740 LCA12363422
 073655 RTJ75473661 NCP50000000 INA11077756 AJP22372767
 372765 AJP22072765 NCP50000000 LCA12076770 INA11077775
 373133 ENQ04072561 ENA10000063 RTJ75454141 IN15100026
 0000000 RTJ75454215 ROP00073023 RCP00073655 ARS01044446
 373021 RTJ75455020 NCP50000000 ENA10000001 STA20073637
 0000000 ENQ04072610 ENA10000063 RTJ75454141 IN15100031
 0000000 RTJ75454215 ROP00073037 RCP00073631 ARS01006002
 373035 RTJ75454215 ROP00073043 RCP00073637 ARS01022202
 0000000 RTJ75454215 ROP00073047 RCP00073631 ARS01012002
 373045 RTJ75454215 ROP00073053 RCP00073637 ARS01022403
 0000000 RTJ75454215 ROP00073057 RCP00073631 ARS01016002
 0000000 INA11077757 AJP22373055 RTJ75454215 RCP00073064
 073673 RTJ75473703 NCP50000000 RTJ75454215 RCP00073070
 073673 RTJ75473703 NCP50000000 INA11077756 AJP22373066
 023005 RTJ75455020 NCP50000000 LCA12074052 STA20074017
 073102 LDA12074053 STA20074017 ENQ04072624 ENA10000063
 073673 RTJ75473703 NCP50000000 RTJ75454215 ROP00073110
 073700 INA11077756 AJP22373106 RTJ75454215 RCP00073115

SEE
1000 20 1000