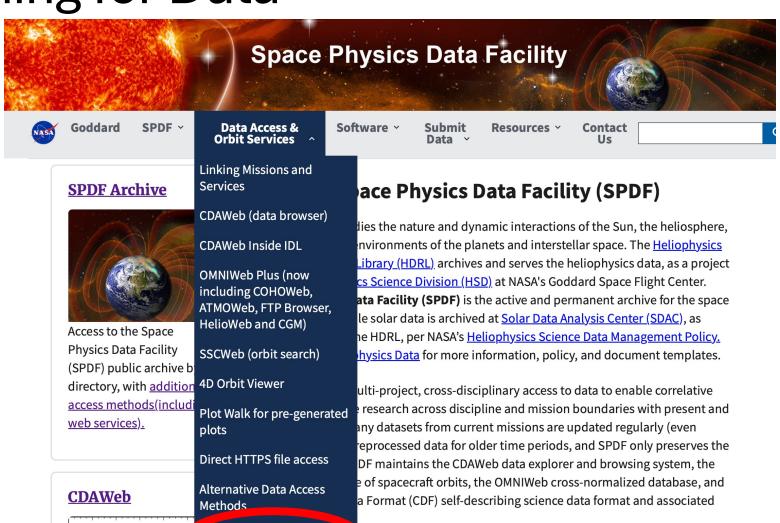


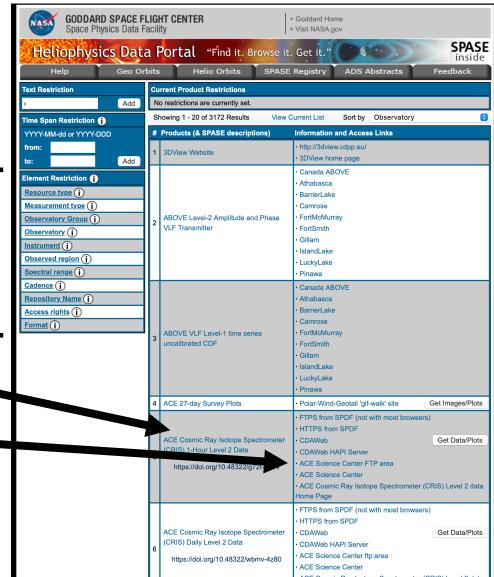
Searching for (non-Solar) Data in Heliophysics


Eric Grimes

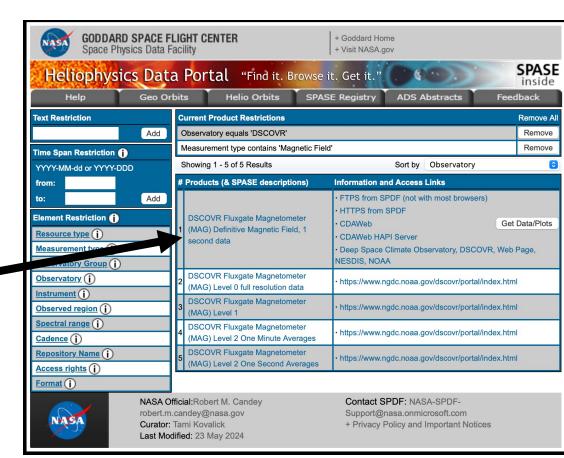
NASA GSFC/ADNET Systems

https://spdf.gsfc.nasa.gov

Searching for Data


Announcements

Heliophysics Data (search)


- See:
 - https://heliophysicsdata.gsfc.nasa.gov
- This contains a large number of datasets; in addition to the "Text Restriction" input box, you'll probably want to use the "Element Restriction" section to limit the output
- This page contains dataset names,
 and where to find the data

NASA

- For example, if you set the "Observatory" to "DSCOVR" and the "Measurement type" to "Magnetic Field", you'll find all of the B-field datasets for the DSCOVR mission
- Click on the product name to go to the SPASE description
- Note: include quotes in the text restriction text box for exact matches to the full string

Searching for Data

NASA

HPDE.io

Data Access

- FTPS from SPDF (not with most browsers)
 HTTPS from SPDF
- CDAWeb
- HAPI: CDAWeb HAPI Server

AccessInformation

DSCOVR Fluxgate Magnetometer (MAG) Definitive Magnetic Field, 1 second data

ResourceID

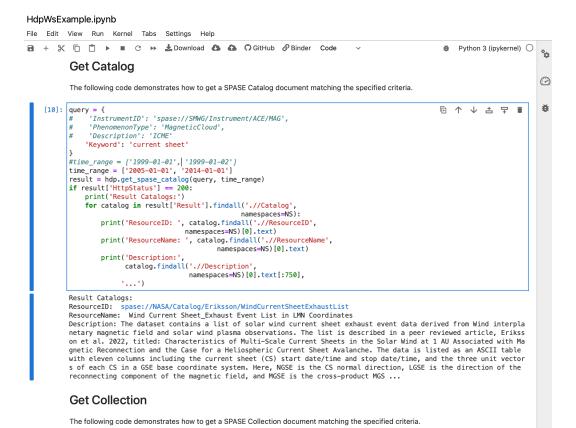
spase://NOAA/NumericalData/DSCOVR/PlasMag/FluxgateMagnetometer/CDF/PT1S

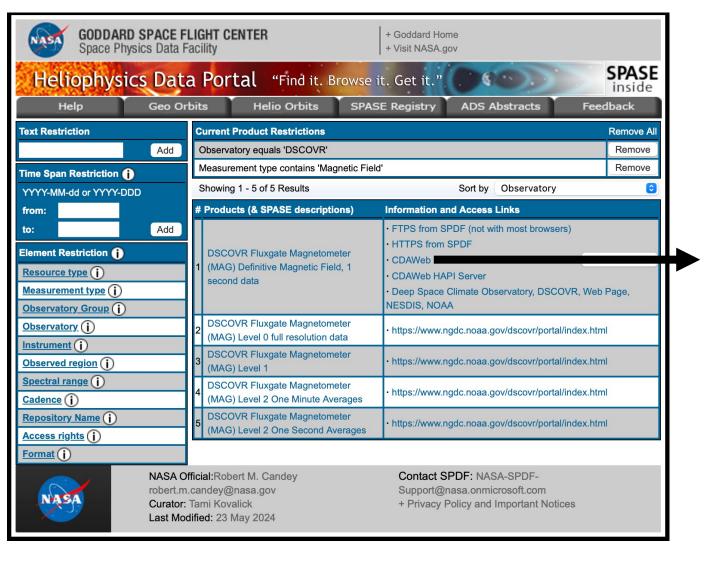
Description

spase://SMWG/Repository/NASA/GSFC/SPDF

DSCOVR Fluxgate Magnetometer (MAG) Definitive Magnetic Field, 1 s Data

Details View XML | View JSON | Edit


Version:2.3.0 NumericalData spase://NOAA/NumericalData/DSCOVR/PlasMag/FluxgateMagnetometer/CDF/PT1S ResourceHeader DSCOVR Fluxgate Magnetometer (MAG) Definitive Magnetic Field, 1 second data ReleaseDate 2021-04-27 17:52:57Z Description DSCOVR Fluxgate Magnetometer (MAG) Definitive Magnetic Field, 1 s Data **Acknowledgement** A. Koval Contacts Person StartDate StopDate Note 1. PrincipalInvestigator spase://SMWG/Person/Andriy.Koval 2. MetadataContact spase://SMWG/Person/Robert.E.McGuire 3. MetadataContact spase://SMWG/Person/Lee.Frost.Bargatze InformationURL Deep Space Climate Observatory, DSCOVR, Web Page, NESDIS, NOAA https://www.nesdis.noaa.gov/content/dscovr-deep-space-climate-observatory Deep Space Climate Observatory, DSCOVR, Web Page hosted by the National Environmental Satellite, Data, and Information Service, NESDIS, National Oceanic and Atmospheric Administration, NOAA spase://VSPO/NumericalData/DSCOVR/PlasMag/FluxgateMagnetometer/PT1S spase://NOAA/NumericalData/DSCOVR/PlasMag/FluxgateMagnetometer/PT1S



Searching for Data (from Python)

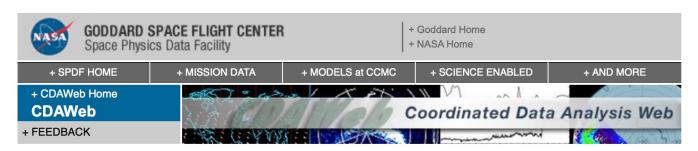
There's a library for searching the HDP web services for datasets at:

https://heliophysicsdata.gsfc.nasa.gov/WebServices/

Select zero OR more Sources	Select zero OR more Instrument
(default = All Sources if >=1 Instrument	Types
Type is selected)	(default = All Instrument Types if >=1
Balloons	Source is selected)
Geosynchronous Investigations	
Ground-Based Investigations	Activity Indices
Helio Ephemeris	Electric Fields (space)
OMNI (Combined 1AU IP Data; Magnetic	Electron Precipitation Bremsstrahlung
and Solar Indices)	☐ Energetic Particle Detector
Smallsats/Cubesats	Engineering
Sounding Rockets	☐ Ephemeris/Attitude/Ancillary
ACE	Gamma and X-Rays
AIM	Ground-Based HF-Radars
AMPTE	Ground-Based Imagers
ARTEMIS	Ground-Based Magnetometers,
Alouette	Riometers, Sounders
Apollo	☐ Ground-Based VLF/ELF/ULF, Photometers
Arase (ERG)	Housekeeping
CNOFS	☐ Imaging and Remote Sensing (ITM/Earth)
CRRES	Imaging and Remote Sensing
Cassini	(Magnetosphere/Earth)
Cluster	Imaging and Remote Sensing (Sun)
DMSP	Magnetic Fields (Balloon)
✓ DSCOVR	Magnetic Fields (space)
Dynamics Explorer	Particles (space)
Equator-S	 Plasma and Solar Wind
FAST	Pressure gauge (space)
Formosat	Radio and Plasma Waves (space)
GOES	 Spacecraft Potential Control
GOLD	UV Imaging Spectrograph (Space)
GPS	

Genesis

Geotail



 Select the dataset to create browse plots

OR

 Click "Info" for info on the dataset, as well as an example of how to access the data from Python

CDAWeb Data Selector

SELECT AT LEAST ONE DATA SET below before pressing the "Submit" button to continue.

SELECT ALL checkboxes
CLEAR ALL checkboxes

Submit

DSCOVR_H0_MAG: DSCOVR Fluxgate Magneton. 1 sec D finitive Data - A. Koval (UMBC, NASA/GSFC) [Available Time Range: 2015/06/08 00:00:00 - 2024/04/28 23:59.59] Info Metadata

Submit Reset

NASA Official: Robert M. Candey (301)286-6707, Robert.M.Candey@nasa.gov

Curator: Tami Kovalick Last Modified: 23 May 2024 Contact SPDF: NASA-SPDF-Support@nasa.onmicrosoft.com

+ Privacy Policy and Important Notices

+ Accessibility

 Clicking "Data Access Code Examples" takes
 you to a Python example DSCOVR_H0_MAG (spase://NOAA/NumericalData/DSCOVR/PlasMag/FluxgateMagnetometer/CDF/PT1S)

Description

DSCOVR Fluxgate Magnetometer 1-sec Definitive Data

Modification History

12/01/2016 Initial release

Data Variable Descriptions

Magnetic field magnitude (1 sec) [B1F1]

Average of the magnitude (F1)

Standard deviation of B magnitude (1 sec) [B1SDF1]

Standard deviation of the magnitude (F1 SIGMA)

Magnetic field vector in GSE cartesian coordinates (1 sec) [B1GSE]

ndard deviation of B vector in GSE coordinates (1 sec) [B1SDGSE]

Magnetic field vector in RTN cartesian coordinates (1 sec) [B1RTN]

Standard a viation of B vector in RTN coordinates (1 sec) [B1SDRTN]

Dataset in CDAWeb

Python™ / IDL Data Access Code Examples

Back to top

 Click "Launch Binder" to open a Jupyter notebook showing how to access these data

OR

Copy+paste the script into your terminal

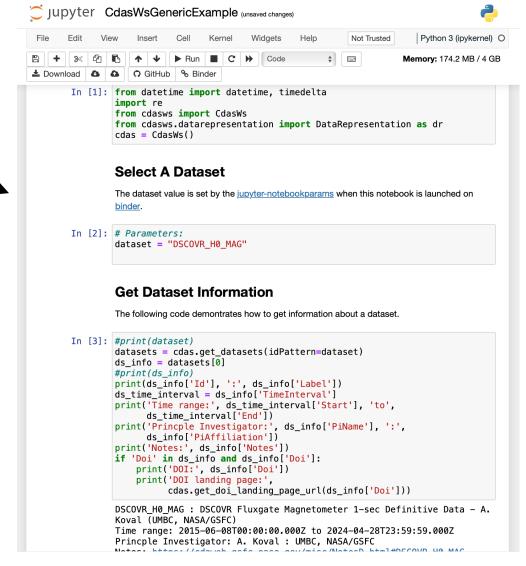
CDAS Web Service Client Code Examples

The following web service client code examples demonstrates how to access data from the <u>DSCOVR_H0_MAG</u> dataset from particular programming environments.

Jupyter Notebook on Binder

The following link launches a Python Jupyter Notebook that demonstrates using the cdasws library to access <u>DSCOVR_H0_MAG</u> data in a Jupyter Notebook. It is merely an example and does not show all the capabilities of the library. You should edit the code to suit your needs.

g launch binder


cdasws 🤚 python Library

The following code demonstrates using the cdasws library to access <u>DSCOVR_H0_MAG</u> data in Python. It is merely an example and does not show all the capabilities of the library. You should edit the code to suit your needs.

```
# Install these prerequisites once before executing the example code:
# pip install -U spacepy
# pip install -U cdasws
# Option 2
   pip install -U xarray
   pip install -U cdflib
   pip install -U cdasws
from cdasws import CdasWs
cdas = CdasWs()
dataset = 'DSCOVR_H0_MAG'
# Edit the following var_names and example_interval
# variables to suit your needs.
var_names = cdas.get_variable_names(dataset)
print('Variable names:', var_names)
example_interval = cdas.get_example_time_interval(dataset)
print('Example time interval:', example_interval)
status, data = cdas.get_data(dataset, var_names, example_interval)
if 'spacepy' in str(type(data)):
  # see https://spacepy.github.io/datamodel.html
  print(var_names[0], '=', data[var_names[0]])
  print(data[var_names[0]].attrs)
  # see https://github.com/MAVENSDC/cdflib
  print(var_names[0], '=', data.data_vars[var_names[0]].values)
  print(data.data_vars[var_names[0]].attrs)
print(data)
 Copy code to clipboard Download code
```

 This example shows the Jupyter notebook showing how to access DSCOVR MAG data from CDAWeb

