

C:\USERS\NYLUNSR1\DOCUMENTS\MISSIONS-TIMED F\DOC\MDC\TIMED_TLM_SERVER_USERS_GUIDE_V3.DOC 12/17/14 5:08 PM

TIMED Telemetry Server

User’s Guide

Revision: Version 2.0 – July 14, 2000
Author: Kenneth Heeres

Revision: Version 3.0 – April 18, 2001
Revised by: Paul Lafferty
Includes updates taken from CONTOUR Telemetry Server, User Guide,
Version 1.0 - November 9, 2000, by Leeha Herrera

The Johns Hopkins University
Applied Physics Laboratory

C:\USERS\NYLUNSR1\DOCUMENTS\MISSIONS-TIMED F\DOC\MDC\TIMED_TLM_SERVER_USERS_GUIDE_V3.DOC 12/17/14 5:08 PM

I

Table of Contents

OVERVIEW .. 1

MAIN APPLICATIONS ... 2
ROUTER .. 2

Data Input ... 3
Data Output .. 4
Control/Status ... 4
Status ... 5
Logging ... 5

SPOOLER .. 5
Control/Status ... 6
Status ...
Logging .. Error! Bookmark not defined.

INGEST .. 6
ARCHIVE SERVER .. 6

USER’S GUIDE ... ERROR! BOOKMARK NOT DEFINED.

RUNNING THE MDC ... ERROR! BOOKMARK NOT DEFINED.
LOG MESSAGES .. ERROR! BOOKMARK NOT DEFINED.
CONNECTING TO THE MDC ... ERROR! BOOKMARK NOT DEFINED.

Overview .. Error! Bookmark not defined.
Status Port .. Error! Bookmark not defined.
Output Ports ... Error! Bookmark not defined.
REAL-TIME DATA .. Error! Bookmark not defined.
PLAYBACK DATA .. Error! Bookmark not defined.

CONSOLE PORT ... ERROR! BOOKMARK NOT DEFINED.
ADDITIONAL FUNCTIONALITY ... ERROR! BOOKMARK NOT DEFINED.

FTP to MDC .. Error! Bookmark not defined.
Archive Maps ... Error! Bookmark not defined.
Archive Change Reports .. Error! Bookmark not defined.
Web Page Updates .. Error! Bookmark not defined.

REFERENCES .. 8

GLOSSARY ... 8

APPENDICES ... 9

APPENDIX A. LEOT HEADER .. 11

APPENDIX B. TIMED TELEMETRY LAYOUTS ... 9
B.1. FRAME & PACKET LAYOUTS ... 9
B.2. GROUND RECEIPT HEADER .. 9
B.3. CCSDS PACKET HEADER FORMAT ... 11
B.4. TIMED CCSDS PACKET PRIMARY HEADER ... 12
B.5. TIMED CCSDS PACKET SECONDARY HEADER .. 13

APPENDIX C. TIMED APPLICATION ID’S ... 13

APPENDIX D. CLIENT DIRECTIVES .. 13
D.1. REAL-TIME CLIENT DIRECTIVES .. 14

 II

D.2. PLAYBACK CLIENT DIRECTIVES .. 14
APPENDIX E. CONFIGURATION FILES ... 16

E.1. ROUTER CONFIGURATION FILE .. 16
APPENDIX F. CONSOLE DIRECTIVES ... 17

F.1. ROUTER CONSOLE DIRECTIVES ... 17
F.2. SPOOLER CONSOLE DIRECTIVES .. 18
F.3. ARCHIVE SERVER CONSOLE DIRECTIVES.. 18

APPENDIX G. APPLICATION STATUS .. 19
G.1. ROUTER STATUS OUTPUT .. 19
G.2. SPOOLER STATUS REPORTS ... 20
G.3. ARCHIVE SERVER STATUS ... 20

APPENDIX H. ROUTER INTERNALS ... 21

APPENDIX I. FTP MONITORING ... 21
DEFAULT PORT NUMBERS .. 23
SPECIFIC TIMED CONFIGURATIONS .. 23

Mini-MOC ... 23
JHU/APL I&T ... 23
GSFC I&T ... 23
VAB Launch .. 23
JHU/APL Operations ... 23

1

Overview

The intended audiences for this guide are end users who want to use the services to
obtain telemetry, operators who have to operate the services, and people that are curious
about how it works.

It should be sufficient for end users to read this overview and scan the appendices for
relevant information.

The system described here is called the Telemetry Server. Its basic function is to provide
a TCP/IP socket stream of telemetry data from some source to some client. This stream
may be either real-time or playback. The figure illustrates the data flow.

REAL-Time
Client

MOC MDC

TELEMETRY SERVER DATA FLOW

Archive &
Indices

REAL-Time
Client

Play-back
Client

Play-back
Client

buffered stream

unbuffered realtime stream

Off Site
Ground
Station

Spool
DirectoryAPL

Ground
Station

File Transfer via FTP

tape
spool

directory

move file

Tape

RATS

Router Router Spooler

Ingest

Archive
Server

The Telemetry Server consists of several applications:

Router – the router’s purpose is to move real-time telemetry from one system to another,
i.e. route, and to serve clients real-time telemetry. Sources of telemetry attempt to connect
to the router to deliver data and users of data attempt to connect to the router to receive
data. An additional service that the router provides is that it converts the data from
whatever input format a source delivers the data to a standard format called a STF
(Supplemented Telemetry Frame). In most cases the data already received is in that
format already.

Spooler – the spooler’s purpose is to quickly get telemetry data to a disk. The Telemetry
Server supports real-time and playback services. In order to support playback services it
needs to index the incoming data and this can take some time. The telemetry server also

 2

does not want to lose data so it needs to assure that data it receives is safely stored on the
disk. A spooler acts as a buffered client (QpassThru) to a router; data passed to a spooler
needs to be written to the disk before it will attempt to read more data.

Ingest – ingest’s purpose is to read a file from the spool directory, make a connection to
the archive server and start sending it data. Ingest is either spawned by spooler when it
starts receiving data or it is run out of a script when a file is FTP’d into the spool directory.

Archive Server – the archive server’s purpose is to index the incoming STFs by ground
receipt time (GRT) and optionally spacecraft time (SCT), place the data in an organized
archive, and provide a playback service of telemetry data to clients. The data may be
returned in either GRT or SCT order.

There are several smaller and ancillary applications but the four above are the heart of the
system. There can and often are multiple routers in the system. For example to support
field operations: there is a router in the field to support local real-time telemetry services
and to pass the data on to a router in the Mission Operations Center (MOC). The router in
the MOC provides local real-time telemetry services to the MOC and passes data on to a
router in the MDC (Mission Data Center). The router in the MDC provides local real-time
telemetry services to the MDC and remote real-time telemetry services to POCs (Payload
Operations Centers)

Main Applications

The main applications of the telemetry server are the router, spooler, and the archive
server. They are described below.

Router

The discussion above described the main functions of the router. The details are provided
here. The router is a separate executable. It is written in C++ and can execute in the
UNIX (only tested in Solaris) environment. When the router starts, it reads a configuration
file called router.ini (see Appendix D) from the local directory. The router also writes to a
log file. The location of the log file is configured in the .ini file. The router uses Internet
domain TCP/IP sockets to do all of its control and communication.

For TIMED the executable is stored in /tmdc/route, along with the .ini file. The router, with
one exception acts as a TCP/IP socket server. It has two types of connections that it
receives data from, “Input” and “LEOT”; three types of output connections, “Output”,
“Console”, and “Status”; and a special case where it acts as a client to another process,
“QPassthru” where it passes data on.

 3

router

STF

Input

LEOT

LEOT Frame

console

status

output

qpassthru

The router, as do all of the applications, have security and performance control features
which restrict what systems can access which input or output port. Restrictions are by
host name or IP address. Systems can be treated as a group and then restrictions can be
applied to a group. For example: a group of machines could be called the SABERPOC
and then a restriction could be placed that says there may only be at most 4 output
connections to the SABERPOC. These groups can be described in the .ini file or they
may be described via console commands. Security can be turned off by using the
appropriate .ini or console directive.

Data Input

The normal input to the router is a STF. A STF is a standard CCSDS Telemetry Frame
with Attached Sync Marker and an added information header (see Appendix A. for frame
and packet definitions) General information about CCSDS can be found in Reference xx.
The information header, called a GRH (Ground Receipt Header), is described in Appendix
A. There are several sources of data:

Input – The client is expected to be delivering STFs. If the router cannot handle the data
it will block incoming data. There can be up to 10 “Input” clients.

LEOT – Low Earth Orbiting Terminals, these systems produce CCSDS frames with a
slightly different header, and the router internally converts these to STFs. The format of
the LEOT header is described in Appendix A.3 and the layout of the LEOT data is
described in Appendix A.

The router acts as a socket server to sources of data. It listens on specific port numbers
for incoming data. The port numbers that are listened to are configured in the .ini file.
Different types of data have different port numbers. A source of data needs to know the
host that is running the router software and the correct port number for its type of data in
order to successfully feed data to the router. A source of data acts as socket client to the
router. The protocol used is TCP.

 4

Data Output

The router supports several different output formats and uses several different protocols.
The output formats are:

STF – normally a user of data would not use STFs. These are used for router to router
communication.

STP – Supplemented Telemetry Packet, this format (described in Appendix A) contains all
of the information of a STF but the data portion consists of only a CCSDS packet, rather
than a CCSDS frame.

PTP – POC Telemetry Packet, the format (described in Appendix A) consists of a GRH
and a CCSDS packet.

A client can specify the desired output format using directives sent to the router when the
connection is first made. Those directives are described in Appendix C.

Various protocols for data output are also available:

Output – this format is provided to give each client a “fair” chance of receiving data. It
uses a non-blocking TCP connection. When data are received by the router, it is written to
each of the active output clients. If the client would block, i.e. it cannot read the data fast
enough, the write is skipped for that client.

QPassThru – this format is provided for router to router connectivity and is meant to be a
guaranteed delivery mechanism. It uses a non-blocking TCP connection but maintains a
large, configurable, queue of incoming data. The buffer size is dynamic and nominally can
contain 30 seconds of data before dropping data. The size, in seconds, of the queue is
configurable. If data cannot be delivered to the QpassThru connection, it is dropped. The
assumption is that the data will be FTP’d later.

Except in the case of QpassThru, the router acts as a TCP server to users of the data.
The clients make a TCP connection to the router using a port number configured in the .ini
file, write ASCII directives to the router using directives described in Appendix 0, and then
begin to read the data it requested. When the client is through reading the data, it closes
the socket. The current maximum number of real-time clients is 25.

Control/Status

There are two methods of controlling the router: configuration parameters in the .ini file
that are read at startup and directives sent to the router's console port. A client can
establish a TCP connection to the console port and enter ASCII directives to the router. A
convenient way of using this feature is to establish a Telnet connection using the console
port number. The port number and the host that can use this connection are configured in
the .ini file. There is only one console port.

Configuration File (.ini)

The configuration file is called router.ini and is normally in the directory where the router
was started but can be changed on the command line. (If the designer/implementor of this
had been a UNIX weenie rather than a PC weenie the file would have been called

 5

.routerrc). The parameters that can appear in the configuration files are listed in Appendix
D.1.

 Console Directives

The console directives, with the exception of start and stop, are essentially the same as
what are in the .ini file. Console directives can be found in Appendix E.

Status

Status can be found in two ways. The first is to connect to the status port. When you do
that router writes it status out the port and disconnects. The second is to enter a status
command over a console connection.

Logging

There are several different logging levels that can be specified:

1 debug level 1
2 debug level 2
3 debug level 3
4 debug level 4
5 debug level 5
6 information messages
7 error messages
8 fatal messages that cause router termination

The lower number logging levels give more detail and include the upper numbered levels.
That is, if you specify log level = 4, you will see messages from debug level 4, debug level
5, etc.

Spooler

The spooler receives telemetry data in the form of STFs from a router using a Qpassthru
connection. Its job is to place the STFs in a temporary ingest file and spawn an ingest
process to send the data in the file to the archive server. The temporary ingest files are
named using the following naming convention: TS + date + month + year + "_" + hour +
minute.arv. For example "./TS02281994_1725.arv". Each file nominally contains the data
received in a one hour period (this time period can be set in the .ini file).

The directory that the spooler uses is configured in the .ini file but is normally
/project/timed/mdc/ops/spool. Processes that send telemetry data using FTP also place
their data in this spool directory.

 6

router Spooler

Spool
Directory

console

status

Control/Status/Logging

The same methods for controlling the router are used to control the spooler. The
configuration file options, console commands and status listings are in the Appendices.
Logging is done as in the router.

Ingest

The ingest application reads files that are being written by the spooler application to the
spool directory and files that have been FTP'd to the spool directory. An instance of the
ingest process is started for each file to process. For the case of spooler-generated files,
the spooler application spawns an ingest process instance when it opens a temporary file.
For the case of FTP'd files, there is an ftp monitoring application which will start ingest
process instances when files have been FTP'd to the spool directory. The monitor
program is documented in Appendix H.

One ingest process per ingest file reads the data from that temporary file and writes it to
an archive server socket connection. After sending the file's contents to the archive
server, the ingest process moves the file to the tape_spool directory and the RATS
process saves those files to tape.

Archive Server

The archive server is the most complicated application of the Telemetry Server. It reads
data provided by ingest processes via socket connections in the form of STF’s, indexes
the files by GRT and optionally SCT, creates daily archive and index files, and serves
clients requesting playback of data. By default, archiving by SCT time is enabled, and
archiving of duplicate STFs is disabled. These defaults can be overridden in the .ini file.
Note that only STFs originated by the spacecraft (with Source = = Spacecraft) can be
indexed by spacecraft time. The spacecraft source code is specified in
ArchiveAccessor.h.

The most natural question to ask is why is playback service combined with archive
creation and indexing task. The main reason, I believe, is latency. Playback requires that

 7

the system read the index files which are continuously open and being written to by the
indexing task. It was determined that the proper performance of the playback function
required that the indexing task lock the index file while writing. If they were separate
applications this would effectively preclude playback while data is arriving.

The archive server writes STFs to a *.tlm file, where the file is named for the year and day
of year. The server creates a new .tlm file each day, and the file can be no larger than 4
Gbytes. This limit is due to the use of 32 bit file byte offset values in the index records.
STFs are written to the file in the order they are received.

The archive server is capable of indexing by Ground Receipt Time (GRT) or Spacecraft
Time (SCT). It produces one index file of a given type for each day of data. The GRT file
has a *.gri extension and the SCT file has a *.sci extension.

The GRT index comprises a doubly-linked list of GRT index objects. The index objects
contain pointers to the previous and next index objects, byte offset in file of first byte of
STF, source ID (e.g., spacecraft), Front End ID, Virtual Channel, and GRT. The first
record in the GRT index file is an index object whose only populated members are the
previous and next indices. These are set to indicate the first and last index records in the
file.

The following discussion assumes indexing by GRT. As STFs arrive, the server
compares the GRT associated with the STF with the time from the previous STF. If the
STF has arrived out of time order, the server does a linear search from its current index
value, first backward in time, then forward, to find where the index should logically lie.
Although new index records (one is created for each STF) are always appended to the
existing list, their logical position is determined by the use of the previous and next
pointers. [Haven't yet figured out what happens if STFs arrive from previous days or for
days in the future]

On playback, the user has the option of specifying filtering options over and above what is
possible using the indexes alone. For example, the user can specify he wants STPs for a
specific APID. The server reads all STFs containing that APID, but only forms STPs from
the packets matching the APID.

The spacecraft time index system uses a two-level index. One index is similar to the GR
index, containing previous and next pointers, byte offset in file of first byte of STF,
spacecraft time, sequence number (i.e., CCSDS packet sequence number for packets
with that APID), APID, GRT, packet number (i.e., number of packet within STF), and
frame quality flag. Indices are maintained in logical time order, where time order is
determined by the combination of spacecraft time, APID, and sequence number.

The first record in the SCT index file is a secondary index, identifying the first packet for
each hour of the day. This is followed by a header Packet Time Index Data record that
indicates the index of the earliest (in the next index field) and latest (in the previous index
field) data in the file. The primary Packet Time Index Data records follow this in the file.

Ancillary Applications

RATS (Raw Archive Tape Spooler)

 8

Spool
Directory

Archive Files
Database

Archive
Directory

Volume
Database

Tar
Directory

Archive Tape

TSM (Telemetry Services Module)

References

Glossary

CCSDS Consultative Committee on Space Data Systems
FTP File Transfer Protocol
GRH Ground Receipt Header
GRT Ground Receipt Time
GSFC Goddard Space Flight Center
I&T Integration and Test
IP Internet Protocol
JHU/APL Johns Hopkins University Applied Physics Laboratory
LEOT Low Earth Orbit Terminal
MDC Mission Data Center
MOC Mission Operations Center
POC Payload Operations Center
PTP POC Telemetry Packet
RATS Raw Archive Tape Spooler
TIMED Thermosphere, Ionosphere, Mesosphere, Energetics, Dynamics
SCT Spacecraft Time
STF Supplemented Telemetry Frame
STP Supplemented Telemetry Packet
TCP Transmission Control Protocol
TCP/IP Transmission Control Protocol/Internet Protocol
VAFB Vandenberg Air Force Base

 9

•

Appendices

Appendix A. TIMED Telemetry Layouts

A.1. Frame & Packet Layouts

Primary Header Packet

Ground Receipt
Header Primary Header

Telemetry
Frame
(TF)

Supplemented
 Telemetry Frame
(STF)

22 Bytes 1048Bytes6 Bytes

Secondary
Header

Secondary
Header

Packet Packet Packet

10 Bytes

Packet Packet Packet PacketFrame
Sync

Frame
Sync

4 Bytes

Operational
Control Field

Operational
Contol Field

4 Bytes

Primary Header Application Data

Telemetry
Packet
(TP)Secondary

Header

1096 Bytes

Ground Receipt
Header

Packet Primary
Header

Supplemented
TelemetryPacket
(STP)

22 Bytes 250 Bytes6 Bytes

Packet Secondary
Header

10 Bytes

Frame
Sync

4 Bytes

Operational
Control Field

4 Bytes

Application DataFrame Primary
Header

Frame Secondary
Header

6 Bytes 6 Bytes

310 Bytes

Ground Receipt
Header

Packet Primary
Header

22 Bytes 250 Bytes

Packet Secondary
Header Application Data

6 Bytes 6 Bytes

284 Bytes

POC
TelemetryPacket
(PTP)

Frame Error
Control Field

Frame Error
Control Field

2 Bytes

Frame Error
Control Field

2 Bytes

A.2. Ground Receipt Header

Field Offset
(b)

Length
(b)

Description

Size 0 16 Size of this object including headers in bytes,
unsigned integer in MSB first order (max = 65535)

data type 16 8 type of data object, 1 = STF, 2 = STP, 3 = PTP
spare bits 24 8 undefined
GRH Version ID 32 6 version id associated with this GRH format.

(Decimal number, where this version = 2)
spacecraft ID 38 10 CCSDS SCID assigned to TIMED
GR Time 48 32 Ground receipt time in elapsed seconds since

00:00:00 UTC January 6, 1980, in MSB first order
GR Time Vernier 80 32 Microsecond offset from GR Time, in MSB first order
Frame Source Type 112 4 0001 - Emulator/Mini-MOC

 0010 - Simulator
 0011 - Loop-Back
 0100 - spacecraft

 10

Field Offset
(b)

Length
(b)

Description

 0101 - GSE
 0110 - unused
 0111 - unused
 1000 - User-Defined
 1001 - 1111 - unused

Frame Source Index 116 4 for frame source type 0001 (Emulator/Mini-MOC)
 0001 GUVI Spacecraft Emulator
 0010 SABER Spacecraft Emulator
 0011 SEE Spacecraft Emulator
 0100 TIDI Spacecraft Emulator
 0101 GNS Mini-MOC 1
 0110 GNS Mini-MOC 2
 0111 G&C Mini-MOC 1
 1000 G&C Mini-MOC 2
 1001 IEM Mini-MOC 1
 1010 IEM Mini-MOC 2
 for frame source type 0010 (Simulator)
 0001 TOPS
 0010 Software Simulation
 for frame source type 0011 (Loop-Back)
 0001 FE Hardware Simulation
 for frame source type 0100 (Spacecraft)
 0001 Spacecraft
 for frame source type 0101 (GSE)
 0001 GSE
 0010 MPCF sc1_rt instance
 0011 MPCF sc2_rt instance
 0100 MPCF dev instance
 0101 MPCF tops instance
 0110 MPCF iem_mm1_rt instance
 0111 MPCF iem_mm2_rt instance
 (where MPCF=MOC/POC Command Filter: sc1_rt,

sc2_rt, dev, tops, iem_mm1_rt, and iem_mm2_rt =
EPOCH stream names)

 for frame source type 1000 (User-Defined)
 0000-1111 - User-Defined

Path 120 4 other path information (0000 for now)
Front-end Identifier 124 4 0001 - FE1 (bench-testing)

 0010 - FE2 (I&T)
 0011 - FE3 (primary ground station)
 0100 - FE4 (spare)
 0101 - G&C
 0110 - GPS
 0111 - MOC
 1000-1101 - LEO-T or other off-site
 1110-1111 - unused

(Note that front end assignments will be finalized
later.)

R-S decode Flag 128 1 0 = disabled

 11

Field Offset
(b)

Length
(b)

Description

 1 = enabled
R-S error status 129 1 0 = frame uncorrectable

 1 = frame correct or corrected
R-S error count 130 7 0 = no error needed correction

 1..80 count of corrected errors81..127 unused
CRC Flag 137 1 0 = CRC disabled

 1 = CRC enabled
CRC Error Flag 138 1 0 = CRC failed

 1 = CRC passed
Master Channel
Sequence

139 1 0 = not checked/unknown

checked 1 = sequence number checked
Master Channel
Sequence

140 1 0 = sequence number increased by one

Number Error 1 = sequence number increased by two or more
Frame Sync Mode 141 2 00 = search

 01 = check
 10 = lock
 11 = flywheel

Frame Quality Flag 143 1 0 = data is suspect
 1= data is correct
 used to determine if the frame quality is acceptable for

output to client who requests only "good" data; No
Frame Error Detected = No RS Error & No CRC Error
& No SSR Playback Error

Frame Sync Pattern
Errors

144 4 number of errors detected in Frame Sync pattern

Frame Sync bit slips 148 4 0000 = no slip
 1001 = 1 bit late
 1010 = 2 bits late
 1011 = 3 bits late
 1101 = 1 bit early
 1110 = 2 bits early
 1111 = 3 bits early

Archive Flag 152 1 0 = do not archive this data
 1 = archive this data

SSR Playback Error 153 1 0 = No error
 1 = SSR playback error

spares 154 22 undefined

A.3. LEOT Header

A.4. CCSDS Packet Header Format

 12

A.5. TIMED CCSDS Packet Primary Header

Field Offset(b) Length(b) Description
Version Number 0 3 Packet version number
Type 3 1 0 designates a telemetry packet
SH Flag 4 1 Secondary header flag
Subsystem ID 5 4 Subsystem identifier

 0000 C&DH 1
 0001 C&DH 2
 0010 AIU 1
 0011 AIU 2
 0100 FC 1
 0101 FC 2
 0110 GNS 1
 0111 GNS 2
 1001 GUVI
 1010 TIDI
 1011 SABER
 1100 SEE

Format 9 7 Data format identifier
G Flag 16 2 Grouping Flag: 0-first packet, 1-

intermediate packet, 2-last packet, 4-
not part of a group

Source Sequence
Count

18 14 Continuous sequence count

 32 16 Number of bytes in the packet data
field -1, this includes the secondary
header. For TIMED the number is 255

Total 48

 13

A.6. TIMED CCSDS Packet Secondary Header

Field Offset(b) Length(b) Description
S/C Time 0 32 GPS unsegmented time in seconds

Optional time 32 16
Total 48

Appendix B. TIMED Application ID’s

Subsystem Number of

Identifiers
Range of Identifiers

 (Decimal) (Decimal) (Hex 11-bit
integer)

C & DH #1 128 0 thru 27 - 1 000 thru 07F

C & DH #2 128 27 thru 2 x 27 - 1 080 thru 0FF

AIU #1 128 2 x 27 thru 3 x 27 - 1 100 thru 17F

AIU #2 128 3 x 27 thru 4 x 27 - 1 180 thru 1FF

FC #1 128 4 x 27 thru 5 x 27 - 1 200 thru 27F

FC #2 128 5 x 27 thru 6 x 27 - 1 280 thru 2FF

GNS #1 128 6 x 27 thru 7 x 27 - 1 300 thru 37F

GNS #2 128 7 x 27 thru 8 x 27 - 1 380 thru 3FF

Ground
System1

128 8 x 27 thru 9 x 27 - 1 400 thru 47F

GUVI 128 9 x 27 thru 10 x 27 - 1 480 thru 4FF

TIDI 128 10 x 27 thru 11 x 27 - 1 500 thru 57F

SABER 128 11 x 27 thru 12 x 27 - 1 580 thru 5FF

SEE 128 12 x 27 thru 13 x 27 - 1 600 thru 67F

Spare 128 13 x 27 thru 14 x 27 - 1 680 thru 6FF

Spare 128 14 x 27 thru 15 x 27 - 1 700 thru 77F

Spare 128 15 x 27 thru 16 x 27 - 2 780 thru 7FE

Idle Packets2 1 16 x 27 - 1 7FF

Appendix C. Client Directives

The directives listed here are written to the server over the socket after the connection is
made. The directives are accepted until the “BEGN” directive is received and then the
selected data begins to flow out the socket. The server will no longer attempt to read the
socket. This interface is assumed to be under control of a program and thus no time is
spent doing fancy parsing.

1 as received from, or sent to, controlled equipment in the ground system
2 as contained in VC0 Telemetry Frames

 14

C.1. Real-time Client Directives
Directive Parameters Description Defaults

APID Number in
oct,hex or
decimal

Application Process ID from Packet Primary Header. You
can request multiple APIDs, one per directive. You must
specify at least one APID or SSYS to receive TP,STP,or
PTP. For all APIDs use SSYS=ALL.

(none)

BEGN RT Start to Send Data n/a
DRTY (none) Include data that has been marked as bad in the ground

receipt header. Normally this data is not passed on.
n/a

EXAPID Number in
oct,hex or
decimal

Exclude APID from stream. You can request multiple APIDs
for exclusion.

(none)

FRNT decimal
number,
"ALL","BEST"

Front-end id from Ground Receipt Header. You can request
multiple FRNTs, one per directive. You can get all of the front
ends by using the keyword ALL. The ALL option will send
duplicate streams for a source if there are multiple input
streams from the same source. When BEST is specified the
server will automatically switch which Front End the data
comes from in an attempt to supply a continuous stream
from a particular source.

(none)

SRCE decimal
number, "ALL"

Frame Source ID – Frame Source Type and Frame Source
Index from the Ground Receipt Header. You can request
multiple sources, one per directive. You can get all of the
sources by specifying ALL.

(none)

SSYS decimal
number, "ALL"

Requests all APIDs that match the subsystem ID (4 most
significant bits of the APID field in the Packet Primary
Header). You can request multiple subsystems, one per
directive . You must specify at least one APID or SSYS to
receive TP,STP or PTP. SSYS=ALL will supply all APIDs.

(none)

TYPE "TP", "STP",
"TF", "STF",
"PTP"

Specify whether to get Telemetry Packets, Supplemented
Telemetry Packets, POC Telemetry Packets, Transfer
Frames, or Supplemented Transfer Frames. Only one type
may be specified.

(none)

VCHN "0","6","7",
"ALL"

Virtual channel ID from the Transfer Frame Primary Header.
You can request multiple VCHNs, one per directive.

(non
e)

TLM_PORT decimal number Port number for remote connection of second socket
(required if second socket requested) – This was done for
SEE instrument OASYS users, whose protocol prevents it
from receiving data on the requesting socket.

(none)

TLM_HOST decimal number
ddd.ddd.ddd.dd
d

Host IP number for remote connection of second socket - if
not the same as first socket (host names not allowed)

same as IP of
first socket
connection

C.2. Playback Client Directives
Directive Parameters Description Defaults

APID Number in
oct,hex or
decimal

Application Process ID from Packet Primary Header. You
can request multiple APIDs, one per directive. You must
specify at least one APID or SSYS to receive TP,STP,or
PTP. For all APIDs use SSYS=ALL.

(none)

BEGN PB Start to send data n/a

 15

Directive Parameters Description Defaults
DRTY (none)

or
“ONLY”

If directive not given them only good data is sent.
If directive specified without parameter then stream will
include both good and bad data. If DRTY=ONLY then only
data marked as bad will be sent. Quality is defined by the
Frame Quality Flag in the ground receipt header.

n/a

EXAPID Number in
oct,hex or
decimal

Exclude APID from stream. You can request multiple APIDs
for exclusion.

(none)

FRNT decimal
number, "ALL"

Front-end id from Ground Receipt Header. You can request
multiple FRNTs, one per directive. Only meaningful for
ORDR=GR. You can get all of the front ends by using the
keyword ALL. The ALL option will send duplicate streams for
a source if there are multiple input streams from the same
source. Ignored if ORDR=SC.

(none)

NOWAIT (none) Do not wait at end of archive data even if stop time not
reached.

Off (see STOP)

ORDR "SC","GR" Spacecraft time or Ground Receipt time order. Prior to
launch only ground receipt time ordering will be available.

GR

SRCE decimal
number, "ALL"

Frame Source ID – Frame Source Type and Frame Source
Index from the Ground Receipt Header. You can request
multiple SRCEs, one per directive. You can get all of the
sources by specifying ALL.

(none)

SSYS decimal
number, "ALL"

Subsystem ID (4 most significant bits of the APID field in the
Packet Primary Header). You can request multiple SSYSs,
one per directive. You must specify at least one APID or
SSYS to receive TP,STP or PTP. SSYS=ALL will supply all
APIDs.

(none)

STRT yyyy ddd
hh:mm:ss

start time – must be before time of last data in archive start of current
utc day

STOP yyyy ddd
hh:mm:ss

end time - if end time exceeds the time of the last data in the
archive the server will wait for new data to arrive

time of last data
in archive

TYPE "TP", "STP",
"TF", "STF",
"PTP"

Specify whether to get Telemetry Packets, Supplemented
Telemetry Packets, POC Telemetry Packets, Transfer
Frames, or Supplemented Transfer Frames. Only one type
may be specified.

(none)

VCHN "0","6","7",
"ALL"

Virtual channel ID from the Transfer Frame Primary Header.
You can request multiple VCHNs, one per directive. Ignored
if ORDR=SC.

(none)

TLM_PORT decimal number Port number for remote connection of second socket
(required if second socket requested) – This was done for
SEE instrument OASYS users, whose protocol prevents it
from receiving data on the requesting socket.

(none)

TLM_HOST decimal number
ddd.ddd.ddd.dd
d

Host IP number for remote connection of second socket - if
not the same as first socket (host names not allowed)

same as IP of
first socket
connection

 16

Appendix D. Configuration Files

Each of the applications has a file that is read at start up and it is used to configure the file.
The default name of the file is “application.ini” and its default location is the directory from
which the application is started. . If the line in the configuration file begins with a “#” or
does not have an “=” sign it is ignored. The code generally looks for the key word and
then does an sscanf to get the value. If a line does not contain a key word, it is ignored.

Each application will take a command line argument which is the full path name of an
alternate start up file.

D.1. Router Configuration File
Keyword Description
CONSOLE_LISTENER_IP Valid IP address of a console front-end machine.
CONSOLE_PORT The Router’s assigned port number for the console listener

socket.
INPUT_LISTENER_IP Valid IP address of an Input front-end machine serving

supplemented telemetry frames. For all addresses you can
use either the IP address or the full domain address.

INPUT_PORT The Router’s assigned port number for the Input front-end
listener socket that serve supplemented telemetry frames.

LEAP_SECONDS Leap seconds added to the ground receipt time in the
conversion from LEO-T messages to supplemented
telemetry frames.

LEOT_LISTENER_IP Valid IP address of a LEO-T front-end machine.
LEOT_PORT The Router’s assigned port number for the LEO-T’s front-end

listener socket.
LISTENER_BYPASS Specifies whether the router will validate the IP address of

each client connection.
LOG_ALIVE_MESSAGE_DELTA The time in seconds between each logger log alive message.
LOG_FILE_PATH The absolute or relative pathname of the log file, including the

ending slash.
LOG_FILE_PREFIX The prefix to the log file name.
LOG_LEVEL Router logging level. Identifies the level of displayed and log

messages. The user is allowed to changed the log level for
debug messages only. INFO, ERROR, and FATAL
messages will be logged always.
1 – debug message (many messages)
2 – debug message
3 – debug message
4 – debug message
5 – debug message
6 – INFOrmational message
7 – ERROR message
8 – FATAL message

LOG_TO_FILE Specifies whether the Router will log to file at start up. ("YES"
or "NO")

OUTPUT_LISTENER_IP Valid IP address of an Output front-end machine.
OUTPUT_PORT The Router’s assigned port number for the output real-time

client listener socket.
PASS_THRU_CONNECTION Specifies whether the Router attempts to connect to the

PassThru client at startup. ("YES" or "NO")
PASS_THRU_IP The IP address of the PassThru client.

 17

Keyword Description
PASS_THRU_PORT The Router’s assigned port number for the pass thru client

socket.
PASS_THRU_QUE_TIME The maximum time that a STF can be in the passthru queue

in seconds.
PASS_THRU_RECONNECT_RETRIES The number of reconnect retries the Router will attempt if the

PassThru connection is lost.
PASS_THRU_RECONNECT_TIMER The delta time used in the reconnect retry logic. (seconds)
SELECTOR_WAIT_TIMER Time in seconds the selector class will wait before returning if

there is no activity on any socket on the socket list.
SPACECRAFT_ID Spacecraft ID for the TIMED Mission, set in the ground

receipt header during the conversion of LEO-T messages to
supplemented telemetry frames. Uses “%d” to sscanf for the
spacecraft ID. This is not actually checked against the
incoming data.

STATUS_LISTENER_IP Valid IP address of an Status front-end machine.
STATUS_PORT The Router’s assigned port number for the status listener

socket.
VERSION Software version this configuration file is compatible with. If

this software version does not match the application software
version, the Router will not execute with this configuation file.
Uses “%f” to sscanf for the version number.

Appendix E. Console Directives

Directives can be entered at the console for most of the applications. These directives are
used to control the console and to override the settings from the start up file.

These are the directives that can be entered from a console session. If the directive is not
one of the one listed, an error message is logged and reported back to the console. Each
directive line is read in and only the isalnum() characters ({0-9,’a’-‘z’,’A’-‘Z’}), ‘:’, ‘-‘, and
‘.’ are passed on.

E.1. Router Console Directives
Console Directive Description
HELP Display console directives
PAUSE Pause all input and output telemetry message processing
RESTART Restarts all input and output telemetry message processing
LOGLEVEL # Set new log level to #. Does an sscanf with “%d” to get the new log level.

Log level can be set to a value between 1 and 6.
LOGSTOP Stop all logging to log file.
LOGSTART Open new log file and begin logging to log file
CLOSESOCKET # Close the specified socket descriptor connection. Does a sscanf with “%d”

to get the socket number.
CLOSECONSOLE Close the active console connection
OPENPASSTHRU Attempt to connect to QPassThru client
STATUS Display status of the Router
STOP Kills the router!
ADD GROUP IP
name:ip

Add and IP address to a group. Checks for a ‘:’, strncpy’s the letters
before the ‘:’, and does an sscanf with “%s” to get the ip address.

MOD GROUP CONN
name:#

Modify the number of connections a group can have. Checks for a ‘:’,
strncpy’s the letters before the ‘:’, and does an sscanf with “%d” to get

 18

Console Directive Description
the #.

REMOVE GROUP IP
name:ip

Remove an IP address from a group. Checks for a ‘:’, strncpy’s the letters
before the ‘:’, and does an sscanf with “%s” to get the ip address.

SET ALL BYPASS
{YES,NO}

Bypass security checking on all sockets. Does a strncmp on “YES” or
“NO”, if neither

SET INPUT BYPASS Bypass security on input sockets
SET LEOT BYPASS Bypass security on LEOT sockets
SET STATUS BYPASS Bypass security on status sockets
SET CONSOLE BYPASS Bypass security on console sockets
SET OUTPUT BYPASS Bypass security on output sockets
RESET Reset counters for dropped packest on QpassThru
TIMECHECK {ON,OFF} Turn on and off time checking for bad data
PASSTHRUCONNTIME
seconds Time between reconnection tries

PASSTHRUQUETIME
seconds

The length of time that data can be held in the passthru queue before they
are dropped.

E.2. Spooler Console Directives
Console Directive Description
HELP Display console directives
PAUSE Pause all input and output telemetry message processing
RESTART Restarts all input and output telemetry message processing
LOGLEVEL # Set new log level to #. Does an sscanf with “%d” to get the new log level.

Log level can be set to a value between 1 and 6.
LOGSTOP Stop all logging to log file.
LOGSTART Open new log file and begin logging to log file
CLOSESOCKET # Close the specified socket descriptor connection. Does a sscanf with “%d”

to get the socket number.
CLOSECONSOLE Close the active console connection
CLOSESPOOL Close the current spool file
STATUS Display status of the spooler
STOP Kills the spooler

E.3. Archive Server Console Directives

Console Directive Description
HELP Display console directives
PAUSE Pause all input and output telemetry message processing
RESTART Restarts all input and output telemetry message processing
LOGLEVEL # Set new log level to #. Does an sscanf with “%d” to get the new log level.

Log level can be set to a value between 1 and 6.
LOGSTOP Stop all logging to log file.
LOGSTART Open new log file and begin logging to log file
CLOSESOCKET # Close the specified socket descriptor connection. Does a sscanf with “%d”

to get the socket number.
CLOSECONSOLE Close the active console connection
STATUS Display status of the Router
STOP Kills the router!
ADD GROUP IP
name:ip

Add and IP address to a group. Checks for a ‘:’, strncpy’s the letters
before the ‘:’, and does an sscanf with “%s” to get the ip address.

 19

Console Directive Description
MOD GROUP CONN
name:#

Modify the number of connections a group can have. Checks for a ‘:’,
strncpy’s the letters before the ‘:’, and does an sscanf with “%d” to get
the #.

REMOVE GROUP IP
name:ip

Remove an IP address from a group. Checks for a ‘:’, strncpy’s the letters
before the ‘:’, and does an sscanf with “%s” to get the ip address.

SET ALL BYPASS
{YES,NO}

Bypass security checking on all sockets. Does a strncmp on “YES” or
“NO”, if neither

SET INPUT BYPASS Bypass security on input sockets
SET LEOT BYPASS Bypass security on LEOT sockets
SET STATUS BYPASS Bypass security on status sockets
SET CONSOLE BYPASS Bypass security on console sockets
SET OUTPUT BYPASS Bypass security on output sockets
TIMECHECK {ON,OFF} Turn on and off time checking for bad data

Appendix F. Application Status

A status of the running application can be obtained by making a socket connection to the
status port or entering a “STATUS” command to an already existing console connection.

F.1. Router Status Output
BEGIN_STATUS
ROUTER IS STARTED
Input Listener, Port(3100) Sock(6)
Leot Listener, Port(3101) Sock(7)
Output Listener, Port(3102) Sock(8)
Console Listener, Port(3110) Sock(9)
Status Listener, Port(3111) Sock(10)
BadTimeDisconnect is ON, DisconnectHost(), DisconnectTime(,)
PassThru, IP(tmdc-ts2.jhuapl.edu:3200) Sock(5)
LastSendTime(05/09/2000,16:11:51) DroppedMSGCount 0 QueLength 0 QueTime 30 ReconnTime 300
Past/present inputs, Total:(24), INPUT:(24), LEOT:(0)
Current inputs, Total:(5), INPUT:(5), LEOT:(0)
Input, IP(128.244.227.165:3100) Sock(11) FE(INPUT)
 Created(05/03/2000,14:22:52) 1stMsg(05/03/2000,14:22:52) LastMsg(05/09/2000,16:11:51)
Input, IP(128.244.149.29:3100) Sock(12) FE(INPUT)
 Created(05/03/2000,14:22:53) 1stMsg(05/03/2000,14:22:53) LastMsg(05/09/2000,16:11:51)
Input, IP(128.244.149.136:3100) Sock(13) FE(INPUT)
 Created(05/03/2000,14:32:44) 1stMsg(05/03/2000,14:33:05) LastMsg(05/09/2000,16:11:51)
Input, IP(128.244.47.246:3100) Sock(14) FE(INPUT)
 Created(05/03/2000,15:48:11) 1stMsg(05/03/2000,17:56:57) LastMsg(05/09/2000,16:11:51)
Input, IP(128.244.149.51:3100) Sock(16) FE(INPUT)
 Created(05/03/2000,15:49:58) 1stMsg(,) LastMsg(,)
Past/present outputs:(36)
Current outputs:(4)
Output, IP(128.244.149.29:3102) Sock(15) Msg(STP)
 Created(05/05/2000,21:06:03) 1stMsg(05/05/2000,21:06:04) LastMsg(05/09/2000,16:11:51)
 Apid: Frnt: 1 7 Srce: 33 81 85 Ssys: 0 1 2 3 4 5 6 7 8 13 14 Vchn: 7 Drty: YES Begn: YES
Output, IP(128.244.47.246:3102) Sock(17) Msg(STP)
 Created(05/08/2000,20:18:03) 1stMsg(05/08/2000,20:18:03) LastMsg(05/09/2000,16:11:51)
 Apid: 1108 Frnt: ALL Srce: 24 81 Ssys: 2 3 4 5 8 Vchn: 7 Drty: NO Begn: YES
Output, IP(128.244.47.29:3102) Sock(20) Msg(STP)
 Created(05/08/2000,18:42:45) 1stMsg(05/08/2000,19:30:40) LastMsg(05/09/2000,16:11:51)
 Apid: 4 Frnt: 1 Srce: ALL Ssys: Vchn: ALL Drty: NO Begn: YES
Output, IP(128.244.47.29:3102) Sock(21) Msg(STP)
 Created(05/08/2000,18:43:06) 1stMsg(,) LastMsg(,)
 Apid: 4 Frnt: 3 Srce: ALL Ssys: Vchn: ALL Drty: NO Begn: YES
Number of status port hits:(319771)
Output IP Group status
 IP Group (MOC): (0) connections of (20) maximum
 IP Group (MOC) IP Address (oliver.jhuapl.edu)
 IP Group (MOC) IP Address (haney.jhuapl.edu)
 IP Group (MOC) IP Address (lisa.jhuapl.edu)

 20

 IP Group (MOC) IP Address (arnold.jhuapl.edu)
 IP Group (MOC) IP Address (ralph.jhuapl.edu)
 IP Group (MOC) IP Address (alf.jhuapl.edu)
 IP Group (MOC) IP Address (sam.jhuapl.edu)
 IP Group (MOC) IP Address (kimball.jhuapl.edu)
 IP Group (MOC) IP Address (kate.jhuapl.edu)
 IP Group (MOC) IP Address (newt.jhuapl.edu)
 IP Group (MDC): (0) connections of (10) maximum
 IP Group (MDC) IP Address (tmdc-ts2.jhuapl.edu)
 IP Group (MDC) IP Address (tmdc-dev2.jhuapl.edu)
 IP Group (MDC) IP Address (127.0.0.1)
 IP Group (MISC): (0) connections of (20) maximum
END_STATUS

F.2.

 Spooler Status Reports
Spooler IS STARTED
Input Listener, Port(3200) Sock(5)
Console Listener, Port(3210) Sock(6)
Status Listener, Port(3211) Sock(7)
Past/present inputs, Total:(1)
Current inputs, Total:(1)
Input, IP(128.244.149.37:3200) Sock(8)
 Created(05/03/2000,14:22:21) 1stMsg(05/03/2000,14:22:52) LastMsg(05/09/2000,16:12:49)
Number of status port hits:(1)
Current spool file: (/d4016/tmdc/spool/TS05092000-1548.arv)
Number of records in current spool file: (29184)
Total processed spool files: (149)
Spool file close delta time: (3600)seconds
END_STATUS

F.3. Archive Server Status
BEGIN_STATUS
ArchiveServer IS STARTED
Input Listener, Port(3300) Sock(5)
Output Listener, Port(3302) Sock(6)
Console Listener, Port(3310) Sock(7)
Status Listener, Port(3311) Sock(8)
Past/present inputs:(151)
Current inputs:(3)
Input, IP(128.244.149.37:3300) Sock(14)
 Created(05/09/2000,08:46:57) 1stMsg(05/09/2000,08:47:07) LastMsg(05/09/2000,08:48:08)
Input, IP(128.244.149.37:3300) Sock(9)
 Created(05/09/2000,08:25:10) 1stMsg(05/09/2000,08:25:20) LastMsg(05/09/2000,08:46:58)
Input, IP(128.244.149.37:3300) Sock(22)
 Created(05/09/2000,15:48:06) 1stMsg(05/09/2000,15:48:16) LastMsg(05/09/2000,16:13:43)
Past/present outputs:(5511)
Current outputs:(0)
Number of status port hits:(52219)
Output IP Group status
 IP Group (MOC): (0) connections of (20) maximum
 IP Group (MOC) IP Address (oliver.jhuapl.edu)
 IP Group (MOC) IP Address (haney.jhuapl.edu)
 IP Group (MOC) IP Address (lisa.jhuapl.edu)
 IP Group (MOC) IP Address (arnold.jhuapl.edu)
 IP Group (MOC) IP Address (ralph.jhuapl.edu)
 IP Group (MOC) IP Address (alf.jhuapl.edu)
 IP Group (MOC) IP Address (sam.jhuapl.edu)
 IP Group (MOC) IP Address (kimball.jhuapl.edu)
 IP Group (MOC) IP Address (kate.jhuapl.edu)
 IP Group (MOC) IP Address (newt.jhuapl.edu)
 IP Group (MDC): (0) connections of (5) maximum
 IP Group (MDC) IP Address (tmdc-ts2.jhuapl.edu)
 IP Group (MDC) IP Address (tmdc-dev2.jhuapl.edu)
 IP Group (MDC) IP Address (127.0.0.1)
 IP Group (MISC): (0) connections of (20) maximum
END_STATUS

 21

Appendix G. Router Internals

The following is a narrative of how the router works.
The router is basically a TCP/IP socket server. It begins by creating a number of objects
whose task it is to listen on certain ports. A select statement is used to wake up the router
when a client requests services. The following listeners are created:

1. InData – this is the normal input for STF data
2. Leot – this is the input port for LEOT data
3. Output – this is the output for real-time clients
4. Console – this is the port for control input and output
5. Status – this is the port for getting a status out of the router applicaiton

Appendix H. FTP Monitoring

The FTP monitoring task replaces the normal execute of ftpd with a program that executes
ftpd and then a script which starts the ingest application. In implementation it is a little
more complicated then that.

Inetd is a normal UNIX daemon which listens on a multiple number of ports and when a
client attempts to connect to a port it spawns an application to handle the request. The
configuration of inetd is controlled by a inetd.conf file. Under the Solaris the inetd.conf file
is in /etc. The directive for ftp normally looks like this:

ftp stream tcp nowait root /usr/sbin/in.ftpd

The syntax for this line is:

service-name endpoint-type protocol wait-status uid server-
program server-arguments

Everything after the service name is treated as arguments to the service. On all SRS
administrated programs we use an alternate FTP daemon from the University of
Washingon call wuftp and we use a TCP wrapper program for the services which allows
us to log and to restrict port access. Thus, our normal inet.conf looks like this:

ftp stream tcp nowait root /usr/etc/tcpd /usr/wu-
ftpd-2.6.0/sbin/in.ftpd -l -a

Here the server-program is /usr/etc/tcpd and the arguments are passed to it. In this case it
is just the real FTP daemon. I hope you are still following this, because it gets worse. A
program was written (ftp_wrapper) following the pattern of tcpd which first executes its
arguments and then executes a script. Thus a TIMED MDC system that has the spool
files on it will have an inetd.conf line that looks like this:

ftp stream tcp nowait root /usr/etc/tcpd
/usr/etc/ftp_wrapper /usr/wu-ftpd-2.5.0/etc/ftpd -l –a

After executing the FTP daemon, the ftp_wrapper program executes a Bourne Shell script
called /usr/etc/ftp_watcher (also written for this application). The version of the script as of
the writing of this guide is reproduced below:

 22

#!/bin/sh
/tmdc/bin/ftp_monitor >> `date -u +/tmdc/logs/%Y%m%d.log` 2>&1

This starts the ftp_monitor script, redirecting its standard output and standard error to a log
file in the /tmdc/logs directory named with the current date and time.

In the nominal case (it depends on the host running the script), this script executes
another script, “/tmdc/bin/tlm_monitor”. The ftp_monitor script is reproduced below:

#!/bin/ksh

######################################
Id #
Log #
$Name$ #
######################################

hostname="`/usr/bin/hostname`"

if [[$hostname = 'clanton' || \
 $hostname = 'tmdc-ts2' || \
 $hostname = 'dix' || \
 $hostname = 'tmdc-ts4']]
then
 /tmdc/bin/tlm_monitor &
fi

if [$hostname = 'eaton']
then
 if ["`/software/bin/whoami`" = 'root']
 then
 su timedops -c "/tmdc/bin/prod_monitor.p" &
 else
 /tmdc/bin/prod_monitor.p &
 fi
fi

The tlm_monitor PERL script uses a simple file lock as a mechanism to prevent multiple
copies of itself being instantiated as a result of successively FTP'd files.

The tlm_monitor script globs files whose names match the pattern of the Front End-
produced files (*.vc6, *.vc7, *.cmp). It then loops over that file list, first checking to see if
the ftp process is complete. It determines this by running the Unix fstat function on the file
and comparing the last modification date/time to the current time. If the times differ by
more than 5 seconds, it concludes the file transfer is complete.

If the file is complete, the script moves the file from the incoming directory to the ingest
directory and initiates an ingest process for it. It terminates when it has initiated
processing for all files or 3 hours has elapsed since it started, whichever comes first. If
one or more files were processed, it then executes the "WaitThenRunMOCArchMap.pl"
script.

 23

The WaitThenRunMOCArchMap script waits for the ingest files to be moved out of the
ingest area (this would be done by the ingest processes once the ingest was complete). If
there are still files present after 10 minutes, this script exits in error (note that this means
the system must be able to ingest some number of files within the 10 minute period). If all
the files are processed and moved within the alotted time, this script invokes another script
(MOCArchMap.pl) to create a MOC archive map file. Following file creation, the scrip
subsequently FTPs the file to the MOC "drop_out_report" directory (using the script
FTP2MOC.pl). For example, see oliver:/d3/home/epoch/timed/out/<stream
name>/drop_out_report/*.map. The files are named by YYYY + DOY + HHMMSS.map.

MOCArchMap.pl in turn executes the /tmdc/bin/ArchiveMap_sparc_solaris program,
feeding it a number of directives ultimately intended for the Archive Server to specify that it
wants data for the previous 36 hours for this spacecraft ID, all APIDs, ordered by
spacecraft time, and in STP format.

Default Port Numbers

Specific TIMED Configurations

Mini-MOC

During Mini-MOC testing there was a router in the MOC which first received the data,
serviced the clients within the MOC and passed on data to a router running in the MDC.
The MDC systems were physically collocated with the MOC but are separately managed.
The router in the MDC sends data to the spooler and the archive server picks up the data
from there.

JHU/APL I&T

GSFC I&T

VAFB Launch

JHU/APL Operations

ftp://ftp2moc.pl)/

	TIMED Telemetry Server
	User’s Guide
	Table of Contents
	Overview
	Main Applications
	Router
	Data Input
	Data Output
	Control/Status
	Configuration File (.ini)
	Console Directives

	Status
	Logging

	Spooler
	Control/Status/Logging

	Ingest
	Archive Server

	Ancillary Applications
	RATS (Raw Archive Tape Spooler)
	TSM (Telemetry Services Module)

	References
	Glossary
	Appendices
	Appendix A. TIMED Telemetry Layouts
	A.1. Frame & Packet Layouts
	A.2. Ground Receipt Header
	A.3. LEOT Header
	A.4. CCSDS Packet Header Format
	A.5. TIMED CCSDS Packet Primary Header
	A.6. TIMED CCSDS Packet Secondary Header

	Appendix B. TIMED Application ID’s
	Appendix C. Client Directives
	C.1. Real-time Client Directives
	C.2. Playback Client Directives

	Appendix D. Configuration Files
	D.1. Router Configuration File

	Appendix E. Console Directives
	E.1. Router Console Directives
	E.2. Spooler Console Directives
	E.3. Archive Server Console Directives

	Appendix F. Application Status
	F.1. Router Status Output
	F.2.
 Spooler Status Reports
	F.3. Archive Server Status

	Appendix G. Router Internals
	Appendix H. FTP Monitoring
	Default Port Numbers
	Specific TIMED Configurations
	Mini-MOC
	JHU/APL I&T
	GSFC I&T
	VAFB Launch
	JHU/APL Operations

