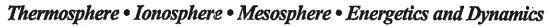


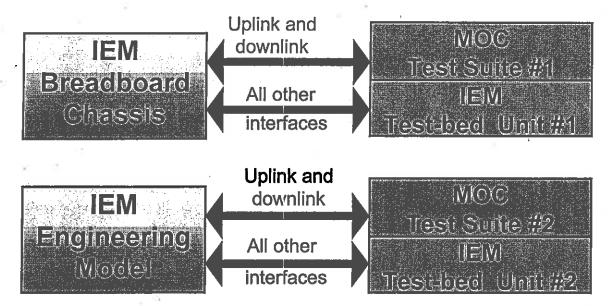
Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Integrated Electronics Module Test-bed

Tom LeFevere
Applied Physics Laboratory
room 23-208 301-953-6000 x 8433
thomas.lefevere@jhuapl.edu



IEM Test-bed Configurations


- Two IEM Test-beds with associated Mission Operation Center test suites being built to support two IEM development units and two IEM flight units.
- MOC test suite consists of
 - MOC workstation
 - Bit and Frame Sync Front End
 - Blockhouse Control Unit
 - RF Ground Station rack(s)
- Capable of functionally testing all input and output interfaces of an IEM.
- Supports
- 1) Software development
- 2) Environmental qualification
- 3) Autonomy rule verification
- MOC workstation will control the test scenarios via MOC resident script files. The IEM Test-bed acts as a slave to the MOC via Ethernet.
- All baseband and RF uplink commanding and downlink telemetry will be controlled by the MOC.

TWL-3

Two *IEM Test-beds / MOC Test Suites* are shared by four *IEM units* being developed.

IEM Test-bed Features

- VME-based chassis with embedded Pentium PC, 4 Gbyte disk drive, Ethernet, 64 Mbyte RAM running Windows NT 4.0.
- MIL-STD-1553 dual-redundant interface card.
- Custom wire-wrap card containing all interfaces to the IEM except Uplink/Downlink/GPS RF and MIL-STD-1553 bus.
 Custom interfaces include:
 - 1) Serial Relay Command interface to Power Switching Unit (PSU)
 - 2) Low Voltage Sense discrete signals from PSU
 - 3) Serial spacecraft temperature bus
 - 4) MIL-STD-1553 Bus Controller Select
 - 5) Attitude Interface Unit discrete signals
 - 6) Uplink baseband port (local or MOC controlled)
- The Test-bed *does not* support emulation of missing cards during system integration, i.e., internal PCI-bus emulation of GPS card, internal temperature sensors, etc.)

TWL-5

IEM Test-bed Features (cont'd)

- PC-based MIL-STD-1553 bus analyzer is used to debug 1553 traffic.
- CCSDS formats will be composed and decomposed within the MOC
- Verification of proper test scenario telemetry response is handled by the MOC scripting language and logged in the MOC.
- Baseband uplink may be directed to originate from the Test-bed in the form of pre-composed CLTU files. These files allow low-level testing of IEM uplink, i.e., bad commands, missing bits, bad CRC, bad code blocks.
- The MOC *Command* and *Telemetry dictionaries* are populated and exercised early in IEM development phase.
- No porting effort involved with dictionaries since they always reside on the MOC workstation throughout the program.

TWL-6

IEM Test-bed Status

- Two Test-beds with their custom interface cards are available for use.
- Cabling to the breadboard chassis from either Test-bed is complete.
- Uplink baseband testing of the Critical Command Decoder using Test-bed resident files has been completed.
- All serial Relay Commands have been verified by the Test-bed.
- Serial temperature interface is presently being verified on the Test-bed using a stand-in for the IEM circuitry.
- Main graphical user interface window and 11 sub-windows have been identified and some controls implemented.

IEM Test-bed Status (cont'd)

- Test-bed 1553 interface has been exercised and awaits fuller definition of message parameters.
- The IRIG time code interface has been verified.
- MOC to Test-bed command and telemetry Ethernet socket connections have been established.
- Test-bed command and telemetry database entry is underway. IEM command and telemetry database entry is awaiting definition.
- Front-End Processor has arrived with its uplink channel presently being cabled and verified.
- Test-bed Requirement Document (APL/JHU #7363-9326) has been written.
- Custom Interface Board Specification Document has been written.