

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Mission System Engineering

Glen E. Cameron

The Johns Hopkins University Applied Physics Laboratory Laurel, Maryland 20723

(301) 953-6949

glen.cameron@jhuapl.edu

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Topics of Discussion

- PDR Action Item Status
- Mission Requirements
- Mission System Overview
- System Partitioning
- Margin Management
- Documentation
- Summary

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

PDR Action Item Status

AI No.	Assignee	Status	Memo No.
1	Yee	Open	
2	Nordeen	Closed	SEI-97-068
3	Heffernan	Closed	SRI-97-059
4	Duven	Closed	SRM-97-016
5	Perschy	Closed	SEE-97-0076
6	Bokulic	Closed	SER-97-048
7	Vernon	Closed	SEM-2-779
8	Kusnierkiewicz	Closed	SEA-97-0065
9	Kusnierkiewicz	Closed	SEA-97-0037
10	Kusnierkiewicz	Closed	SEA-97-0038

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

PDR Action Item Status

AI No.	Assignee	Status	Memo No.
11	Kusnierkiewicz	Closed	SEA-97-0039
12	Cameron	Closed	GEC-97-09
13	Reiter	Closed	SRI-97-041
14	Dakermanji/Kozuch	Closed	SEE-97-0069
15	Heffernan/Sadilek	Open	
16	Radford	Closed	SEE-97-0091
17	Mosher	Closed	SEM-1-1509
18	LeFevere	Closed	SEE-97-0087
19	Cameron	Closed	GEC-97-09
20	Harvey	Closed	SEI-97-121
21	Vernon/Yee	Closed	SEM-2-778

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

PDR Action Item Summary

AI No. 1: Reconsider the need for 99% end-to-end

data recovery to see if it can be reduced.

Ans: The 99% end-to-end data recovery

requirement has been reduced to 95%.

AI No. 2: Show that the 2 kbps command uplink is

consistent with anticipated upload volume.

Ans: It was shown that uploading the nominal

daily command volume requires ~ 50 sec.

AI No. 3: Justify the decision to not pin SEE.

Ans: It was shown that the anticipated errors

when re-attaching SEE are "in the noise".

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

PDR Action Item Summary

AI No. 4: Account for the distance separating phase centers of the GPS antennas and the CG of the spacecraft for orbit determination.

Ans: Done.

AI No. 5: Consider utilizing a common oscillator for the GNS and C&DH subsystems.

Ans: This would result in a net cost increase.

AI No. 6: Find a simple protection against damaging the transmitter card by turning on the RF power supplies in the wrong order.

Ans: Done.

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

PDR Action Item Summary

AI No. 7: Add a test to deploy or "walk out" the solar arrays while attached to the S/C.

Ans: This test was found to add exceptional risk to the S/C without commensurate benefit.

AI No. 8: Perform an analysis to demonstrate the reliability of the IEM in several different cross-strapping arrangements.

Ans: An extensive analysis was performed which concluded that reliability could be improved by eliminating the IEM cross-strapping and keeping the redundant unit powered off; this is now the baseline.

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

PDR Action Item Summary

AI No. 9: Re-examine and justify the use of the

latching relays in series with the battery.

Ans: The use of these relays was reviewed,

justified, and found to cause minimal risk.

AI No. 10: The chart showing redundancy should add

the solar array drives, antennas, etc.

Ans: Done.

AI No. 11: Develop a series of graphic plots to track the growth of mass and power.

Ans: Done.

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

PDR Action Item Summary

AI No. 12: Reconsider the surface cleanliness requirement (Class 750 at launch) to include effects of launch on contamination.

Ans: The surface cleanliness in orbit can not be verified; the Class 750 launch requirement considered the effects of launch sources.

AI No. 13: Consider adding a calibration channel to each RIU and adding external ID straps.

Ans: Both suggestions incorporated into design.

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

PDR Action Item Summary

AI No. 14: Consider changing the fusing approach to use the "NASA Standard" fuse topology.

Ans: No "NASA Standard" fuse topology exists; the approach planned for TIMED was shown to provide adequate protection.

AI No. 15: Demonstrate that the alignment plan properly budgets alignment errors and meets instrument requirements.

Ans: ???

AI No. 16: Demonstrate that the separation attitude capture sequence (no star cameras) works regardless of beta angle or initial attitude.

Ans: Done.

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

PDR Action Item Summary

AI No. 17: Will the power up of reaction wheels while attached to the Delta LV cause problems?

Ans: No.

AI No. 18: Does the IEM test bed fully support testing of IEM redundancy, e.g., cross-strapping?

Ans: IEM cross-strapping has been eliminated.

AI No. 19: Clean up the requirements for orbit determination accuracy for the GNS.

Ans: An inconsistency in orbit determination requirements was corrected.

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

PDR Action Item Summary

AI No. 20: Does safe mode work in eclipse? Does ambiguity about the sun vector adversely

affect the thermal state of the spacecraft?

Ans: Safe mode works in eclipse; the worst case

thermal state in safe mode is acceptable.

AI No. 21: Perform a complete glint analysis.

Ans: A glint analysis has been completed; no

problems were discovered.

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Mission Requirements

- All top-level requirements are captured in the System Requirements Document, 7363-9001 Rev. B
- This revision, released 01 December 1997, captures changes in requirements since PDR in February 97
- All of the mission-level requirements are shown in this presentation, with changes shown in <u>underline</u>
- A summary of the mission-level requirements changes is provided in the next chart

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Mission Requirements Changes

- The circular orbit has changed from 600 km/74.4° inclination to 625 km/74.1° inclination
- The LV manufacturer (McDonnell-Douglas) is now Boeing (but the LV remains the same)

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Orbit Description

• Insertion Altitude: 625 ± 25 km

• Inclination: $74.1 \pm 0.1^{\circ}$

• Nodal Regression Rate: 720 ± 10 deg/year

• Orbit Maintenance: None

• Mission Lifetime: 2 years

• Total Radiation Dose: 5 krads (2 years, 2X safety margin)

Launch Constraints:

 The injection orbit shall provide for observation of the Summer Mesopause Temperature Minimum for the SABER instrument

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Launch Vehicle (LV)

• TIMED is planned to launch on a <u>Boeing Delta II</u> 7920-10 Medium Expendable Launch Vehicle

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Redundancy

- Redundancy is a GOAL for all Critical Subsystems
- A Critical Subsystem is one whose failure would end the mission (if not redundant).
- NO SINGLE INSTRUMENT IS CONSIDERED TO BE MISSION CRITICAL

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Cleanliness

- Materials lists to be screened per NASA RP 1124
 - -TML < 1%
 - CVCM < 0.1%
- Bakeout of subsystems on a case-by-case basis
- I&T Environment
 - Class 100,000 in APL Clean Room
 - Class 100,000 in Test Facilities at Goddard Space Flight Center
- Launch Processing Environment
 - Class 100,000 in Shipping Container
 - Class 100,000 at Spacecraft Processing Facility

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Cleanliness (Continued)

- LV Environment
 - Class 100,000 in LV Fairing during launch
- Nitrogen Purge
 - Shall be provided for all instruments from spacecraft integration until launch
 - Nitrogen shall be boil-off gas from liquid N_2 or equivalent purity
- Surface Cleanliness
 - Spacecraft surface cleanliness shall be Class 750 or better at the time of launch

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Communications

- The communication system shall utilize frequency assignments in the S-Band spectrum
- Communications protocols for command and telemetry shall be in accordance with CCSDS
- High data rate and signaling format shall be selected to allow 24 hours of stored telemetry to be downlinked in a single pass at the Primary GS
- Data rates and formats shall be selected to allow 24 hours of stored telemetry to be downlinked in a single cluster of passes at the Backup GS
- Low data rate and format shall be selected to allow real-time engineering housekeeping telemetry to be downlinked to a remote station or network

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Integration & Test (I&T)

- The Integration and Test Segment is required to:
 - Prepare a comprehensive integration and test plan
 - Plan and execute effective Integration and Test operations in accordance with the objectives established in the I&T Plan
 - Command the S/C from arrival of the first subsystem to launch
 - Maintain spacecraft command and TM dictionaries during I&T
 - Process and transmit all spacecraft commands during I&T
 - Process and evaluate all spacecraft telemetry data during I&T
 - Collect and archive all raw telemetry during I&T
 - Collect, process, and transmit commands from the instrument Payload Operations Centers (POCs) to their instruments
 - Transmit all science telemetry data to the POCs and coordinate with them to assure the proper operation of the instruments
 - Establish the capability of the spacecraft bus and payload to carry out the TIMED mission in accordance with the SRD

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Mission Operations (MO)

- The Mission Operations Segment is required to:
 - Plan and execute effective Mission operations in accordance with the science objectives of the TIMED program
 - Command the spacecraft from launch to the end of mission
 - Collect, process, and transmit commands from the TIMED instrument Payload Operations Centers to the instruments
 - Collect all raw telemetry
 - Process all spacecraft health and status telemetry data and maintain the spacecraft
 - Assess spacecraft performance and adapt operations to changes
 - Collect all science data for processing and distribution to POCs
 - Maintain command and TM dictionaries during the flight phase

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Data Analysis (DA)

- The Science Data System (SDS) is required to:
 - Archive and serve all raw telemetry
 - Serve all data products needed to support the mission, including level 0-4 products required by the PIs and science community
 - Provide access to ground-based measurements
 - Provide timely data distribution among program elements
 - Provide scientifically useful products derived from the TIMED measurements to the scientific community in a timely manner
 - Provide relevant and useful educational products derived from the data to K-12 educators and the public in a timely manner
 - Provide for the long term utility and archiving of data products generated by the TIMED program in cooperation with the Space Physics Data System (SPDS) Archive

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Launch Site

• The launch site will be selected to be compatible with TIMED orbit injection requirements and the selected Launch Vehicle; it is presently assumed that TIMED will be launched from the Western Range (Vandenberg Air Force Base)

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Spacecraft Processing Facility

- The SPF shall be an existing facility
- The SPF shall provide at least a Class 100,000 clean room environment for processing
- The SPF shall provide at least 1000 sq. ft. space for the spacecraft and clean room GSE
- The SPF shall provide (8) 120 VAC single-phase 20A receptacles for power
- The SPF shall provide an overhead crane with a capacity of 5 tons or greater
- The SPF shall have existing comm capabilities compatible with I&T requirements

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

I&T Operations Center (ITOC)

- The ITOC shall be an existing facility, preferably co-located with the SPF
- The ITOC shall provide a shirtsleeve environment for I&T Operations personnel
- The ITOC shall provide at least 400 sq. ft. of space for the Ground Support System
- The ITOC shall provide a single 208 VAC threephase 100A receptacle for power
- The ITOC shall have existing comm capabilities compatible with I&T requirements
- The ITOC shall be located with access to office facilities sufficient to support 15 people

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

I&T Communications

- The I&T Operations Team shall require a primary and backup voice network joining the SPF, ITOC and MOC during all operations at the launch site
- A primary and backup voice network shall be required joining the ITOC and MOC to the countdown net during launch operations
- I&T Operations shall require a primary and backup data network joining the SPF, ITOC and MOC during all operations at the launch site
- I&T Operations shall require a video circuit to allow personnel at the ITOC to monitor the SPF

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Daily Operations

- The primary TIMED Ground Station shall be selected to keep operations costs low
- The TIMED Ground Station shall have a backup
- Pass times shall be selected to require only singleshift (daytime) operations
- The Mission Operations Center location shall be selected to keep operations costs low
- Spacecraft command uploads shall be prepared at the Mission Operations Center
- Instrument command uploads shall be prepared at the Payload Operations Centers and forwarded to the Mission Operations Center on a daily basis

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Software Quality Assurance

- Differing requirements will apply to spacecraft and instrument software; software requirements will be separately negotiated with each instrument team
- The following requirements apply to s/c software:
 - All software development efforts shall adhere to an established development process
 - Quality Assurance Mechanisms shall be established to monitor development processes
 - Configuration Control shall be maintained throughout the development life cycle
 - Software development shall be in accordance with SDO-9989,
 Space Department Software Quality Assurance Guidelines

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Performance Assurance (PA)

- Different PA Requirements will apply to spacecraft and instrument hardware; PA guidelines will be developed by the institution fabricating the instrument in coordination with APL
- The following apply to spacecraft hardware:
 - Flight Model designs shall be reviewed in formal design reviews in accordance with Space Department Design Review Guidelines, SDO-8336, dated February 6, 1987
 - Spacecraft Flight Hardware shall be fabricated to Hardware Type A (fully Qualified) and Drawing Level 2 (fully configured) per APL TSD-STD-400.1
 - Flight harnesses shall be fabricated to Level 2a drawings (redlined prints acceptable)

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Performance Assurance (Cont'd)

- Subcontractor control shall be through Interface Control Documents (ICDs) or standard specifications
- NASA Grade Levels 1, 2, and 3 EEE parts are approved for flight use; other EEE parts shall require qualification by screening, thermal cycling, or other appropriate tests
- SOR shall assess performance capabilities of EEE parts that do not have demonstrated high reliability
- Electrical, Electronic, and Electromechanical (EEE) parts shall be procured to Hi-Rel Military Specifications, Hi-Rel manufacturer's P/N, or design specifications; special Purchase Instructions (PIs) shall be reviewed by SOR
- SOR shall monitor supplier PA activities and perform source inspection for critical flight parts

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Performance Assurance (Cont'd)

- EEE parts that cannot be purchased screened will be screened or tested for flight acceptability
- EEE parts shall be issued under control of SOR
- EEE part identification and controls shall be maintained on the flight hardware
- Failure analysis and corrective actions shall be conducted for critical flight parts and components
- The as-built configuration for the flight model shall be maintained and verified during fabrication
- The disposition of non-conforming parts and materials shall be documented in accordance with TIMED Material Review Board (MRB) procedures

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Safety

- All Integration and Test activities at APL, GSFC, and at the launch site shall be conducted according to approved test procedures and in accordance with the TIMED Program Safety Plan
- The spacecraft must be in compliance with Western/Eastern Range Regulation 127-1 and NASA KSC Safety Regulations

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

TIMED Mission Overview

- TIMED is an atmospheric remote sensing mission sponsored by the NASA Office of Space Science; TIMED is the first *Solar Connections* program
- TIMED is a two-year mission intended to launch in MAY 2000 on a Delta co-manifested with Jason-1
- TIMED will launch into a 625-km circular orbit inclined 74.1° with a 720° per year nodal regression
- The four TIMED instruments (GUVI, SABER, SEE, and TIDI) operate on a 100% duty-cycle
- The TIMED instruments, spacecraft and ground system incorporate advanced autonomy features and use a decoupled operations concept to lower the cost of Mission Operations and Data Analysis

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Reducing Operations Costs

- Post-launch MO&DA cost is dominated by staffing costs; to save on MO&DA, you must cut out people
- For TIMED, choices were early on made to save MO&DA costs without degrading science goals:
 - All operations will use a single shift of operators each day
 - » All operations are essentially daytime-only (6 AM to 6 PM)
 - Time-consuming analytical functions (orbit determination and propagation, attitude determination) are automated on-board
 - A common ground system will be used for I&T and MO&DA
 - The Ground System will incorporate autonomy to the greatest extent possible within the limits of reason and cost efficiency
 - Instrument and spacecraft operations will be decoupled to reduce the overhead associated with resource deconfliction; TIMED will use a unique ops concept to save on MO&DA costs

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Event-Based Commanding

- Spacecraft activities are usually driven by events
 - terminator or polar crossings, geographical location, etc.
- Spacecraft commands are usually time-tagged
 - complex to schedule; requires prediction of event times
- TIMED will use Event-Based Commanding (EBC)
 - events are announced on-board and each instrument responds
- EBC eliminates the need to predict the timing of events to generate daily command uploads
- Command uploads can be reused day after day, orbit after orbit, until events warrant changes

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

TIMED Mission System

- The TIMED Mission System is envisioned as being composed of five major elements or functions:
 - Instruments (Payload)
 - Spacecraft
 - Ground System
 - Integration and Test
 - Mission Operations and Data Analysis

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

System Partitioning

SPACECRAFT			
Integrated Electronics Module C&DH Processor Solid State Recorder		Payload ol (G&C) Flight Computer GUVI SABER	
CMD/TLM GNS Interface Uplink Downlink	Battery PPT Sun Sensors Solar Arrays PSE/DIST IRU	Reaction Wheels SEE Torque Rods TIDI	
Primary Mission Operations Center (MOC) Ground Stations Payload Operations Centers (POCs) GUVI SABER SEE TIDI Mission Data Center (MDC) Science Data System Center (MDC)			
GROUND SYSTEM			

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

TIMED Instruments (Payload)

GUVI (Aerospace/APL)

- COMPOSITION
- TEMPERATURE
- AURORAL INPUTS
- ELECTRON DENSITY

Global Ultra-Violet Imager

SABER (LaRC/SDL)

- PRESSURE
- TEMPERATURE
- INFRARED COOLING
- COMPOSITION

Sounding of the Atmosphere using Broadband Emission Radiometry

TIDI (SPRL/APL)

- VECTOR WINDS
- TEMPERATURE
- COMPOSITION

TIMED Doppler Interferometer

SEE (LASP)

- SOLAR EUV
- COMPOSITION

Solar EUV Experiment

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

TIMED Spacecraft

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

TIMED Ground System

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

TIMED Operations Concept

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Margin Management

- Explicit margin is carried in three primary categories in the TIMED Spacecraft and Ground System
 - Power margins are maintained by the Power System Lead Engineer;
 - Weight margin is maintained by the Structural Lead Engineer;
 - Data Rate margin is maintained by the Ground System Engineer;
- Other margins (pointing, alignment, thermal, etc.) are implicit in the budgets assigned and tracked for those quantities by the lead engineers in the related discipline

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Documentation

NUMBER	DOCUMENT TITLE	WRITTEN BY	DATE
7363-9001	TIMED Requirements Document	GECameron	Jan-94
7363-9010	TIMED Component Environmental Specification	GECameron	May-97
7363-9020	TIMED Test Plan	SFKozuch	Sep-97
7363-9021	Mission Operations Requirements Document	WLMitnick	Oct-96
7363-9022	TIMED Spacecraft Harness Specification	MJColby	Feb-97
7363-9023	TIMED Star Camera Specification	WERadford	Sep-96
7363-9024	TIMED Torque Rod Specification	WERadford	Sep-96
7363-9025	TIMED Gyro Specification	WERadford	Sep-96
7363-9026	TIMED Reaction Wheel Specification	WERadford	Sep-96
7363-9027	TIMED Flight Computer Specification	WERadford	Sep-96
7363-9028	TIMED Product Assurance Implementation Plan	LMMastracci	Sep-96
7363-9029	TIMED Procurement Product Assurance Requirements	LMMastracci	Aug-96
7363-9030	TIMED Launch Vehicle Interface Document	LEMosher	Oct-96
7363-9031	TIMED Spacecraft Contamination Control Plan	Syed Ali	Nov-97
7363-9032	TIMED Spacecraft Package Count List	MJColby	Nov-97
7363-9034	TIMED Spacecraft Optical Alignment Procedure	ACSadilek	TBS 1998
7363-9035	Mission Operations Center Software Development Plan	WLMitnick	Jan-97
7363-9036	Mission Operations Center Preliminary Software Design Specification	WLMitnick	Nov-96
7363-9037	Concept of Operations Document	RNordeen	Mar-97
7363-9038	TIMED EMC Control Plan and EMI Performance Requirements Specification	GSeylar	Nov-97
7363-9041	TIMED S/C Harness Part's List	VLBailey	Nov-97
7363-9042	TIMED Spacecraft Connector List	VLBailey	Dec-97
7363-9043	TIMED Spacecraft Wire List	VLBailey	Dec-97
7363-9044	TIMED Spacecraft Harness Verification Procedure	VLBailey	Jun-98

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

NUMBER	DOCUMENT TITLE	WRITTEN BY	DATE
7363-9045	TIMED Spacecraft Thermal Wire List	MJColby	Feb-98
7363-9046	GUVI Instrument Specific Instrument Interface Specification	KJHeffernan	Jul-96
7363-9047	SABER Instrument Specific Instrument Interface Specification	KJHeffernan	Jul-96
7363-9048	SEE Instrument Specific Instrument Interface Specification	KJHeffernan	. Jul-96
7363-9049	TIDI Instrument Specific Instrument Interface Specification	KJHeffernan	Jul-96
7363-9050	TIMED Spacecraft General Instrument Interface Specification	KJHeffernan	Jul-96
7363-9051	TIMED Mechanical I&T Procedures	SRVernon	TBS 1998
7363-9052	TIMED Spacecraft Handling Procedure	SRVernon	TBS 1998
7363-9053	GSS Setup and Validation Procedures	WCDove	TBS 1998
7363-9054	TIMED Launch Site Test Plan	SFKozuch	Sep-99
7363-9055	Launch Countdown Procedure	SFKozuch	Oct-99
7363-9056	TIMED Program Introduction Document	JJohnson	Jul-97
7363-9057	TIMED Program Requirements Document	JJohnson	Dec-98
7363-9058	TIMED Spacecraft Vibration Test Procedure	ESchaefer	TBS 1998
7363-9059	TIMED Spacecraft Acoustic Test Procedure	ESchaefer	TBS 1998
7363-9060	TIMED Spacecraft Thermal Vacuum Test Procedure	BWilliams	Jun-99
7363-9061	Spacecraft Shock Test Procedure	ESchaefer	TBS 1998
7363-9062	TIMED Program GSFC/APL Test Interfaces and Requirements Document (TIRDOC) WESkullney	
7363-9063	TIMED Spacecraft Static Load Test Procedure	E Schaefer	TBS 1998
7363-9065	TIMED Program Safety Plan	SKDion	Aug-97
7363-9066	TIMED Preliminary Missile System Prelaunch Safety Package	SKDion	Apr-98
7363-9067	TIMED Final Missile System Prelaunch Safety Package	SKDion	Jul-99
7363-9068	TIMED Debris Assessment	SKDion	Jan-98
7363-9070	TIMED Spacecraft GUVI Instrument Integration Procedure	SFKozuch	Apr-98

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

NUMBER	DOCUMENT TITLE	WRITTEN BY	DATE
7363-9071	TIMED SABER Instrument Integration Procedure	SFKozuch	Apr-98
7363-9072	TIMED Spacecraft SEE Instrument Integration Procedure	SFKozuch	Apr-98
7363-9073	TIMED Spacecraft TIDI Instrument Integration Procedure	SFKozuch	Apr-98
7363-9074	TIMED Spacecraft Guidance & Control Subsystem Integration Procedure	SFKozuch	Jun-98
7363-9075	TIMED Spacecraft IEM Subsystem #1 Integration Procedure	MJColby	Mar-98
7363-9076	TIMED Spacecraft IEM Subsystem #2 Integration Procedure	MJColby	Apr-98
7363-9077	TIMED Spacecraft SSR #1 Integration Procedure	MJColby	Feb-98
7363-9078	TIMED Spacecraft SSR #2 Integration Procedure	MJColby	Mar-97
7363-9079	TIMED Spacecraft Antennas & RF Switch Assembly Integration Procedure	MJColby	Feb-98
7363-9080	TIMED Spacecraft Power System Integration Procedure	MJColby	May-98
7363-9081	TIMED Spacecraft Survival Thermal Control System Checkout Procedure	MJColby	Aug-98
7363-9082	TIMED Spacecraft Operational Thermal Control System Checkout Procedure	MJColby	Aug-98
7363-9083	TIMED Spacecraft Battery Thermal Control System Checkout Procedure	MJColby	Aug-98
7363-9087	TIMED Spacecraft System Functional Test Procedure	MJColby	Oct-98
7363-9088	TIMED Spacecraft System Performance Test Procedure	MJColby	Nov-98
7363-9089	NiCd Battery Charge and Reconditioning Procedure	MButler	Oct-98
7363-9090	Power Cartridge PC16-005 Checkout Procedure	REBachtell	Jun-98
7363-9091	Instrument Cover Pyrotechnic Checkout Procedure	REBachtell	Jun-98
7363-9092	Ordnance Installation Procedure	REBachtell	Jun-98
7363-9093	Ordnance Stray/No Voltage and Arming Procedure	REBachtell	Jun-98
7363-9094	Operations Requirements Document (OR)	JJohnson	Jul-99
7363-9095	Mission Requirements Document (TBD)	JJohnson	TBS
7363-9096	Specification, TIMED Ni-H battery Cell 50 Ah (Rabbit Ear Configuration)	MButler	Jun-97
7363-9097	Specification, Solar Cell Lay Down for the TIMED Solar Array Panels	MButler	Aug-97

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

NUMBER	DOCUMENT TITLE	WRITTEN BY	DATE
7363-9098	Specification, Solar Cell Laydown for the TIMED Sun Sensors	MButler	Aug-97
7363-9101	TIMED Software Quality Assurance Plan	HKUtterback	Sep-97
7363-9102	TIMED Mission Data Center Software Development Plan	KHeeres	Oct-96
7363-9103	TIMED Attitude S/W Development Plan	SHutton	Dec-96
7363-9104	TIMED Attitude Boot Program Requirements	SHutton	Nov-97
7363-9105	TASTIE Requirements	SHutton	Aug-97
7363-9106	TASTIE Functional Configuration	SHutton	Aug-97
7363-9110	TIMED Command & Data Handling Computer Software Requirements Specification	SWilliams	Jul-97
7363-9111	TIMED C & DH 1553 Bus Specification	SWilliams	Jul-97
7363-9112	TIMED C & DH PCI Bus Specification	SWilliams	
7363-9113	TIMED C & DH Functional Design Document	SWilliams	ļ
7363-9114	TIMED C & DH Software Independent Verification and Validation Test	JHueber	Aug-98
7363-9115	TIMED C & DH Command Specification Document	RFPLatte	TBS
7363-9300	TIMED Command & Data Handling Computer Software Development Plan	SWilliams	Jan-97
7363-9316	TIMED Solar Array Drive Accuator Purchase Spec	TSholar	
7363-9317	End-to-End Data System Developer's Guide	HWinters	Sep-97
7363-9318	TIMED Ground Requirements Document	SGemeny	Jul-97
7363-9319	TIMED Purge System Operation Procedure	ACSadilek	TBS 1998
7363-9320	TIMED Spacecraft Transportation Plan	SKozuch	
7363-9321	Mission Operations Readiness Demonstration (MORD)	RNordeen	draft in 1998
7363-9323	TIMED S/C Modal Survey Procedure	ESchaefer	TBS 1998
7363-9324	TIMED Payload Attach Fitting (PAF) Separation Test	SRVernon	TBS 1998
7363-9325	POC-to-Instrument End-to-End Simulation Data Requirements Document	TLefevere	Sep-97
7363-9326	IEM Testbed Requirements Document	TLefevere	Sep-97

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

NUMBER	DOCUMENT TITLE	WRITTEN BY	DATE
7363-9327	TIMED Mission Data Center Software Requirements Document	KHeeres	Oct-97
	TIMED Project Data Management Plan	RDeMajistre	Nov-97
	S/W Development Plan for the GPS Navigation Subsystem	AChacos	Mar-97
	Software Requirements Specification for the GPS Navigation Subsystem	AChacos	Sep-97
	GPS, Software-Hardware Interfaces for the GPS Navigation System (GNS)	WDevereux	Sep-97

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Conclusions and Assertions

- All but two Action Items from the Preliminary Design Review (PDR) have been addressed
- The TIMED Mission Requirements are well understood and documented in 7363-9001 Rev. B
- A partitioned Mission System design has evolved that flows down requirements to the system elements
- Margins are being managed and are under control
- All requirements are being met by the TIMED instruments, spacecraft, and ground system
- This review will demonstrate that TIMED is ready to proceed into the fabrication phase