University of Michigan
Space Physics Research Laboratory

TIDI CAGE No. 0TK63
Instrument Language Compiler | Drawing No. 055-3633
Project TIDI
Design & Maintenance Contract No. NASW-5-5049
Document Page Page 1 of 15
REVISION RECORD
Rev Description Date Approval
Draft (Internal Release Only) 1 Jun 1998
Draft 2 July, 1998
A | Official Release 4 July, 1998
APPROVAL RECORD
Function Name Signature Date
Originator S. Rowe
Software Manager D. Gell
Flight Software S. Musko
Instrument Scientist W. Skinner
Program Manager C. Edmonson
Systems Engineer
R&QA John Eder

University of Michigan Drawing No. 055-3633
Space Physics Research Laboratory Filename 3633 A-ticlCompilerDesign
TICL Compiler Page 20of 15

Design & Maintenance Document

Table of Contents

I S C 1T =T Lo = RPN PPPRRTTN 4
b2 | 1 o o U Yo 4 o] o ISR PPPRR 4
b g (=Y g o (=T I U o =T o= PRSP 4
2.2 VOCADUIAIY: ...t e e e e 4

I T Y/ (o Yo [0 = 1 PP PR O PRPRR 5
4. TheOory Of OPEIaAtION ...ccciiiiiie ittt e ettt e et e e e st e e e e e aabe e e e s sbe e e e e sbneeeeanes 5
4.1 Program SITUCLUIoceiiiiiiie e ieeeettiis e ettt e e e ettt s e e e e e et e bbb s s e e e e e e eebbn s e e e e e eeesbaanneeeaaees 6
410 OPEN FIES e e et e et e e b e e e e 6
4.1.2 set up SigNal RANAIETS.........cooii i e e e e e e e e e e e e ennes 6
G =T o - T 1 T T RSO PPPRRPT 6
4.1.4 parse the lINE INtO tOKENS........ccciii i e e st rrr e e e e e e eans 7
4.1.5 echo it to the liIStiNG SIrEAMcoiiiiiii e 7
L oo o o 1= | SRR 7
4.1.7 writing error/warning Messages as NEEAE..........cuviiiiiiie i 7

4. 1.8 1ESOIVE TADEIS ...t e eeeane 7
o e N Lo =T o] 3o Lo U =T o U PPPRUT 8
4.1.10 write p-code out to the QUIPUL fil€cceoiiiiiiiieece e 8
4.1.11 write compilation statistics summary t0 lIStiNgcoocveeiiiiiiiniiiie e 8
I ol (o R I |] 1= PRSPPI 8

4.2 COMPIlALION DELAIIScciuetieeiiiiite ettt ettt e e b e e e s b e e e s nnneee s 8
4.3 Compiling CONtrol SITUCIUMES:uuiiiiiie e e e it e e e s e e e e e e s e e e e e e e s snnreaeeeeeeae s 9
e L IS Y Y [N PRSPPI 9
4.3.2 WHILE/END _WHILEooiiiiiiiiie ettt sttt staee e e st e e e anbaeeeeanes 9
4.3.3 REPEAT/IUNTIL .. cttiit ettt ettt ettt e sttt e e s st e e s ssta e e e s ssas e e e s nntneeesnssaaeesnnnneeean 10

4.4 Functional BIOCK QIagramS.......c.ciiuviiieiie e iciciiiiie e s s e e e e e s sieae e e e e e s s s st e e e e e e e s e snnrnaeees 11
4.5 Scan Table COMPIIALION........ouiiiiii e e 12
4.6 Binning Table COMPIAtioNcociiiiieec e e s e e e e e e aee s 13

5. MAINTENANCE ACHIVITIES ..viiiiiiiiiiie ittt e ettt e e sttt e e s stbe e e e s sbbeeeessbbeeeeeanes 13
5.1 Adding new values to the configuration file............ccueeiiii i 13
5.2 Adding a new simple command t0 the [angUageccceeviiieiiiiiiiee e 13
5.3 Adding a new complex command to the [anguageccccoviiiiiiiiee i 13
5.4 Adding a new iNStrument Parameter............ceieeeiiiiiiieeree e e e sietiie e e e e e e s st e e e e e e s s snnraeereaeeeans 14
5.5 Adding new columns to the instrument parameter spreadsheet.............cccovvieeeiiiieeciiieeene 14

APPENIX A, DESIGN NOTES ...eeiiiiiiiiieiite ettt ettt e s bt e e s bt et e s nbr e e e s annreee s 15

University of Michigan Drawing No. 055-3633
Space Physics Research Laboratory Filename 3633 A-ticlCompilerDesign
TICL Compiler Page 3 of 15
Design & Maintenance Document
List of Tables
Table 1 Functional Block Division by Source File ... 5
List of Figures
Figure 1 Pseudo-Code of Compiler Operationccueeeiiiieieiiiiiieeiiiiee et 6
Figure 2 Conversion Of IF/END_IFoiiiii ettt 9
Figure 3 Conversion Of IF/ELSE/END _IFccooiiiiiiiii ettt 9
Figure 4 Conversion of WHILE/END_WHILEcoooiiiiiiii it 10
Figure 5 Conversion 0f REPEAT/UNTILocuiiiiiiiiiieeiiiet et 10

University of Michigan Drawing No. 055-3633
Space Physics Research Laboratory Filename 3633 A-ticlCompilerDesign
TICL Compiler Page 4 of 15

Design & Maintenance Document

1. References

1. Musko, S., “TIDI Flight Software Requirements Specification”, SPRL File 055-3320,
15 January 1997
2. Gell, D., “TIDI Instrument Command Language Compiler Specification and User’s

Guide”, SPRL File 055-3564, 5 May 1998

2. Introduction

The purpose of this document is to educate the maintenance programmer about the TICL
Compiler so that s/he can:

e Modify/extend the compiler in the event of TICL language changes without breaking the
underlying design or weakening the underlying structure.

e Quickly identify which files to look in for the answers to technical questions about the
compiler.

e Correct any errors that are found during the lifetime of the compiler.

e Use it as a model for writing other, similar tools.

2.1 Intended Audience

This document assumes that the reader is a programmer with a good working knowledge of the
“C” programming language, and (to a lesser extent) the UNIX operating system, and the ability to
read simple syntax diagrams. No special knowledge of compiler theory is required.

2.2 Vocabulary:

Language elements can be grouped into seven categories:

Compiler Directives: These commands do not produce any executable code. They alter the
behavior of the compiler is some way.

Simple Commands: These commands require the generation of a command byte and possibly the
generation of encoded parameter bytes. They are "simple" in that they can be handled in a
generalized way with a small amount of code and a moderate data table.

Complex Commands: The commands have special needs that disqualify them from the generic
handling that is used with simple commands. Examples are commands with string parameters
instead of integer parameters, commands that require the opening of files, and commands whose
parameters require formatting other than "raw" bytes.

Control Structures: These commands translate into a series of comparisons, labels, and
conditional jumps to those labels. They do not affect instrument operations.

Parameters: Since most commands have parameters, and there is a measure of commonality with
how those parameters are parsed and compiled, it makes sense to treat parameters as language
elements in their own right. In addition, the instrument parameters need to be treated specially
because of translation from user-units to counts, read-only versus mutable and other table-driven
attributes.

University of Michigan
Space Physics Research Laboratory
TICL Compiler
Design & Maintenance Document

Drawing No. 055-3633
Filename 3633 A-ticlCompilerDesign
Page 50f15

3. Modularity

To manage the complexity of the system, it was broken into functional blocks. The functions in
each functional area are collected into a single source file, with those services that need to be used
by other functional blocks externalized as prototypes in the appropriate header file. The
functional blocks in the system, and their associated source files are listed in Table 1.

Table 1
Functional Block Division by Source File

Functional Block Description

Files containing module

Main program,
handling

command-line argument

Signal Handling

File Handling

Source Line scanning/parsing
Parsed line dispatching

Placing bytes into the p-Code stream
Instrument Parameter Compilation
Execute compiler directives

Scan table compilation

Binning table compilation

Symbol Table Handling

Control Structure compilation

Utility Functions

Ticl.*

TiclSignal.*
TiclStreams.*
TiclParse.*
TiclCommands. *
TiclCompiler. *
TiclParameters. *
TiclDirectives.*, ticlState.*
TiclScanTable. *
TiclBinTable.*
TiclDictionary.*, ticlLabels.*
TiclScope. *

TiclUtils.*

4. Theory of Operation

The job of the compiler is to translate source tokens into the byte-code commands and parameters
that the flight software expects. More complex languages require lexical scanners to identify
language tokens, and parsers to assemble these tokens into legal syntactic blocks. Literature like
Aho, Sethi, and Ulman (the so-called Dragon book) discuss compilation theory in great detail.
Fortunately, this is completely unnecessary in the case of the TICL compiler, since its operation
can be summarized in a few lines of pseudo-code as shown in Figure 1.

University of Michigan Drawing No. 055-3633
Space Physics Research Laboratory Filename 3633 A-ticlCompilerDesign
TICL Compiler Page 6 of 15

Design & Maintenance Document

Figure 1
Pseudo-Code of Compiler Operation

open files
set up signal handlers

while there are more lines

read a line

parse the line into tokens

echo it to the listing stream

compile it, writing error/warning messages as needed
end while

resolve labels
if no errors occurred
write p-code out to the output file

end if

write compilation statistics summary to listing
close all files

This is the essence of the entire program. Do not be daunted by the name "compiler"; this is a
straightforward data translation program. Section 4.1, 4.1, gives a more detailed description of
each of the lines in Figure 1.

4.1 Program Structure

The following sections provide a more detailed expansion of the pseudo-code given above.

41.1 openfiles

Files in the TICL compiler are augmented stdio FILE structures called IOStream. The IOStream
structure stores the FILE* of the file, the fully expanded name of the file, and (if reading) the
current line number of the file. This information is used in reporting error message and in
writing the listing file. All files are opened right up front, so that if there is a problem, we don’t
try to go through the compilation process with bad files.

4.1.2 set up signal handlers

Using the POSIX signal handling mechanism, traps are installed to catch those signals that can
reasonably be handled by deleting the object and listing files and exiting cleanly. Note that
certain signals cannot be trapped, and others should not. See the source file ticlSignals.c for a
complete discussion of this.

4.1.3 read aline

The source input files are stored on a stack. This allows .include directives to be handled fairly
easily. When end-of-file is reached on the current file, the readLineFromSourceStream function
transparently closes the file, pops the stack, and continues reading from the next file. Only when
all the files on the stack have been closed does this function return an EOF condition.

University of Michigan Drawing No. 055-3633
Space Physics Research Laboratory Filename 3633 A-ticlCompilerDesign
TICL Compiler Page 7 of 15

Design & Maintenance Document

4.1.4 parse the line into tokens

The grammar for TICL is so simple that "parse" is probably an overstatement. Since a TICL
command/ directive is contained entirely on a line, all that is required is to break the line into
tokens and store it in a structure called ParsedLine. The line is broken up by strtok using
whitespace characters space (ASCII 32), tab (ASCII 9), and newline (ASCII 10). There are two
exceptions. First, the semicolon character (;) that short-circuits line processing and causes
everything from the semicolon on to be taken as one token and stored in the comment field of the
parsed line structure. Second, the double-quote (") character is used to delimit constant strings.
Everything between the quote characters is taken as a single token, with the quote characters
discarded. Note that this means that commands that expect strings only have to use quotes if the
string contains whitespace.

4.1.5 echo it to the listing stream

This serves two purposes. First, it gives the user the context for error messages. Second, it gives
an inkling as to what's going on inside the compiler by providing the p-code offset for the
beginning of the line and echoes the tokens AS THEY HAVE BEEN SUBSTITUTED by their
.defined alter-egos, rather than how they appear in the source file itself. If you are ever stumped
as to why a syntax error occurs, look in the listing file and see what the compiler is really looking
at.

4.1.6 compile it

There is a lot of code hiding behind "compile it." Recall that there are actually 4 languages being
compiled. The compiler keeps track of which language is being compiled by using a state
machine (see diagram). The STORED_STATE and IMMEDIATE_STATE are similar in that they
are compiling languages with 80% overlap. The SCAN_TABLE_STATE and
BINNING_TABLE_STATE, as one might expect, shunt the compilation over to the table handling
routines rather than the TICL compilation routines. As a simplification, compiler directives
(other than .end_bin_table and .end_scan_table) are only executed in NEUTRAL, STORED and
IMMEDIATE states.

Having selected the compilation function based on the current Compiler State, one of the several
line compilation functions is called. For further details of this process, see the Compilation
Details section, below.

4.1.7 writing error/warning messages as needed

Error and warning messages are handled by the functions writeError and writeWarning. The
messages are variable argument printf-style messages, and are routed through these routines so
that statistics and common formatting can be enforced. The format chosen for messages is such
that the emacs editor can be used to parse the error messages and assist in debugging TICL
programs.

4.1.8 resolve labels

Early drafts of the command language had labels and JUMP instructions included. This was later
revised to high-level control structures IF, WHILE, and REPEAT. However, these control
structures still generate labels and JUMPs. Often, the JUMPs are generated before the labels are,
so the exact offset to JUMP to is unknown. These unresolved references are stored in a table, and
are resolved after the entire program has been compiled (if not before). Functions for handling
references are in the ticlLabels module. For details on control structure compilation, see the
Compiling Control Structures

University of Michigan Drawing No. 055-3633
Space Physics Research Laboratory Filename 3633 A-ticlCompilerDesign
TICL Compiler Page 8 of 15

Design & Maintenance Document

Another use for the unresolved label mechanism is to store the number of LOCAL variables that
need to be allocated in each subroutine. The number of LOCAL variables is unknown when the
SUBROUTINE command is compiled and needs to compile the ALLOCATE command. Likewise
for RETURN, where DEALLOCATE commands need to be generated. For these cases, the
compiler generates a unique symbol for each subroutine, the value of which is filled in when the
END command is compiled.

4.1.9 if no errors occurred

By the time the compiler tries to resolve labels, all syntax errors have been found. If label
resolution is successful (which it must be unless the program CALLed a subroutine that doesn't
exist or has mismatched control structure blocks), then no further errors can occur, and the p-
code is a complete and valid command block.

4.1.10 write p-code out to the output file

The p-code in the array maintained by ticlCompiler.c can now be written to the .tcmd file.

4.1.11 write compilation statistics summary to listing

Per the compiler spec, run-time of the compiler along with source lines compiled and bytes of
code produced need to go into the listing.

4.1.12 close all files

As noted earlier, the source files take care of themselves, but now is the time to close the listing
and object streams. If errors did occur, the object stream file is removed and the listing is left
behind for informational purposes.

At this point, the entire compilation process is complete, and an exit code of SUCCESS is returned
to the operating system.

4.2 Compilation Details

When the compiler is in the STORED or IMMEDIATE State, commands are compiled using a
data-driven approach. Each keyword in the language is stored in a static CommandTable (a
keyword/function dictionary), so a quick scan through the table identifies the function that can
handle that particular command. Many (about half) of the commands can be handled by the
same function. These are referred to as "simple" commands. The rest require individual
handling.

Simple commands are stored in a table with the keyword name, flight software command
number, and an array of characters that describe each parameter required by the command.
These commands are compiled by first emitting the command number to the p-code stream, then
building the p-code representation for the parameters.

Compilation of multiple parameters is complicated by the fact that knowledge of the type and
size of both parameters needs to be known before the first byte (the parameter descriptor) can be
written. This forces us to compile the parameters into a secondary buffer (declared in the
compileParameters function), and on completion, copy that buffer out into the actual p-code
buffer.

University of Michigan Drawing No. 055-3633
Space Physics Research Laboratory Filename 3633 A-ticlCompilerDesign
TICL Compiler Page 90of 15

Design & Maintenance Document

4.3 Compiling Control Structures:

The flight software system supports an assembly language like set of control structures consisting
of a COMPARE instruction and a set of conditional JUMP instructions. The TICL compiler
supports Pascal-like control structures IF/ELSE/END_IF, WHILE/END_WHILE, and
REPEAT/UNTIL. These high-level control structures are converted into the low-level ones
supported by the flight software as describe in the following sections.

4.3.1 IF/ELSE/END_IF

This control structure can take two forms; one with an ELSE clause (shown in

Figure 3), and one without (Figure 2).

Figure 2
Conversion of IF/END_IF
Source Language Compiles into
IF <opl> <comparison-op> <op2> COMPARE <opl> <op2>
<command-block> JUMP_<comparison-op> After if
END_TIF <command-blocks>
<whatever-else> After if:
<whatever-elses>

Figure 3
Conversion of IF/ELSE/END_IF
Source Language Compiles into
IF <opl> <comparison-op> <oOp2> COMPARE <opl> <op2>
<command-block-1> JUMP <comparison-op> After if
ELSE <command-block-1>
<command-block-2> JUMP After Else
fgﬁginer—else> After_if:
<command-block-2>
After Else:
<whatever-elses>

Notice that the IF part compiles into exactly the same thing in both cases. The conditional gets
turned into its logical opposite (ironically) by leaving the parameters in the same order in the
COMPARE command. The jump to After_if is left as an unresolved label until either an ELSE or
END_IF is found.

If an ELSE is encountered, then an unconditional JUMP to After_Else is compiled in, and then the
After_if label is resolved to be the resulting p-code offset.

The behavior of END_IF depends on whether or not an ELSE was found. If not, then the After_if
label is resolved to be the current address. If an ELSE was found, then the After_Else label is
resolved instead.

4.3.2 WHILE/END_WHILE

Figure 4 shows how a WHILE/END_WHILE loop is converted into the flight software’s control
structures.

University of Michigan Drawing No. 055-3633
Space Physics Research Laboratory Filename 3633 A-ticlCompilerDesign
TICL Compiler Page 10 of 15
Design & Maintenance Document
Figure 4

Conversion of WHILE/END_WHILE

Source Language

Compiles into

WHILE <opl> <comparison-op> <op2>
<command-block>

END WHILE

<whatever-else>

Top_of While:
COMPARE <opl> <op2>
JUMP_<comparison-op> After While
<command-blocks>
JUMP Top of While

After While:
<whatever-else>

Within a WHILE loop, the BREAK command compiles into an unconditional jump to
After_While, and CONTINUE compiles into an unconditional jump to Top_of_While.

4.3.3 REPEAT/UNTIL

The test-at-the-bottom loop is converted as shown in Figure 5.

Figure 5

Conversion of REPEAT/UNTIL

Source Language

Compiles into

REPEAT

<command-block>
UNTIL <opl> <comparison-op> <op2>
<whatever-else>

Repeat:
<command-block>
Until:
COMPARE <opl> <op2>
JUMP_<comparison-op> Repeat
After Until:
<whatever-else>

Within the scope of a REPEAT loop, BREAK compiles into an unconditional jump to After_Until
and CONTINUE into an unconditional jump to Until.

University of Michigan Drawing No. 055-3633
Space Physics Research Laboratory Filename 3633 A-ticlCompilerDesign
TICL Compiler Page 11 0f 15

Design & Maintenance Document

4.4 Functional Block diagrams

Here are some high-level functional decomposition trees for the compiler, which should provide
an idea about which functions call which other functions.

main
I
| | | |
Open é?;;zlll Compile Display Disp}ay
Streams Handlers Program Usage Version
|
| | | |
Get Next Compile Write to Write to
Line Line Listing Object
|
| | | | |
Do Dispatch Compile Compile Compile
Directive Simple Parameters Scan Line Bin Line
Compile
Parameters
I
| | | |
Get Get . .
Numeric Instruemem et Local Compile Compile
Value Parameter Variable Byte WO T d
Compile
Scan Line
|
| |
Compile Compile Build Write

Compile telescope
counts from IDR

Scan Scan Table Output Output
Directive IDR Block Block

University of Michigan Drawing No. 055-3633
Space Physics Research Laboratory Filename 3633 A-ticlCompilerDesign
TICL Compiler Page 12 of 15

Design & Maintenance Document

4.5 Scan Table Compilation

Compilation of scan tables is done by changing the state of the compiler. Once the state has been
changed, the language accepted by the compiler is radically different. Compilation of scan tables
follows the following algorithm:

Reset Scan Table Machinery
While not at end of table
Read a line
If the line is a directive
Perform it.
Else
Compile as an Interval Definition Record (IDR)
End If
End While

Scan table directives usually just store a value for later use during IDR compilation. The one real
exception is the .BIN directive, which is shorthand for loading a whole binning table while in the
process of compiling a scan table. Each of the directives is handled by its own function in
ticlScanTable.c, and is straightforward.

Compiling a scan table IDR is more complicated than it should be, because the flight software
wants to minimize the number of bytes that are uploaded to perform a particular scan. That
means that a lot of extra complication is built into the compiler. Here is how compiling an IDR
works:

Read an IDR
If the IDR is complete
Build the Output Record
Write the Output Record
Else
If this partial IDR completes the set
Build the Output Record
Write the Output Record
Else
Keep the information provided
End If
End If

Because there is not a one-to-one mapping between input records and output records for scan
tables, we have to use some fairly complicated logic to build up the output record with between
one and four input records. Each input record describes the motion for one, two, or four
telescopes. We need the motion for all four telescopes before we can build the output record.
The function compileTelescopeCountsFromIDR() does this.

Building the output record consists of saving off the state of the instrument and breaking the
telescope motion up into up to 5 pieces. The first (optional) output record is a positioning record
with a large erase time and an exposure time of zero. This record is generated automatically by
the compiler to allow the instrument mechanisms a chance to get into position for the next scan.
If the mechanisms are already in position, then this record is not generated. This logic is
contained in the function buildOutputRecord().

University of Michigan Drawing No. 055-3633
Space Physics Research Laboratory Filename 3633 A-ticlCompilerDesign
TICL Compiler Page 13 of 15

Design & Maintenance Document

The (up to four) records following that are the scan lines that move the telescopes along their
course. The first line moves the telescope with the shortest (in terms of number of steps) scan
through its entire scan, while moving the other telescopes partially through their motion. Each
line after that moves the remaining telescopes, with each subsequent line moving one or more of
the telescopes to its final position. This logic is also contained in the function
buildOutputRecord().

Finally, when an output record has been built, it can be compiled into the staging buffer. The
writeOutputRecord() function does this.

4.6 Binning Table Compilation

Compiling a binning table is very similar to compiling a scan table. The pseudo code is identical,
except that binning tables have no machinery to reset.

While not at end of table
Read a line
If the line is a directive
Perform it.
Else
Compile as an Interval Definition Record (IDR)
End If
End While

Because there is a one-to-one mapping between binning table input records and output records,
no convoluted logic is required to compile them. Still, binning tables are compiled into a holding
buffer and then spooled out to the “main” p-code stream when end-of-table is reached. The logic
for doing this spooling is identical to that for scan tables.

5. Maintenance Activities

This section describes how to perform common maintenance activities on the compiler. For in-
depth troubleshooting, see the Troubleshooting Guide.

5.1 Adding new values to the configuration file

Add the appropriate static variable declaration to ticlConfig.c. Declare the corresponding
accessor function in ticlConfig.h, and define it in ticlConfig.c. Add the fscanf statement to read it
in readConfigurationFile in ticlConfig.c.

5.2 Adding a new simple command to the language

Add the new command’s code to the list in ticlCodes.h. Add the new command, along with the
encoding of its parameters and its code to the table of simple commands in compileCommand()
in ticlCommands.c

5.3 Adding a new complex command to the language

Add the new commands code to the list in ticlCodes.h. Write a handler for the new command in
ticlCommands.c Declare that function to be static at the top of ticlCommands.c. Add the
command and the name of the handler to the list of complex command handlers in
compileCommand() in ticlCommands.c.

University of Michigan Drawing No. 055-3633
Space Physics Research Laboratory Filename 3633 A-ticlCompilerDesign
TICL Compiler Page 14 of 15

Design & Maintenance Document

5.4 Adding a new instrument parameter

Add the new parameter to the spreadsheet. Export the spreadsheet as tab-delimited text and
install it as directed in the installation document (usually placed in /usr/local/data). No code
changes are required.

5.5 Adding new columns to the instrument parameter spreadsheet

Add the new columns to the spreadsheet. Export the spreadsheet as tab-delimited text and install
it as directed in the installation document (usually placed in /usr/local/data). Add the new
symbols to the COLs enumeration at the top of ticlParameters.c. If the compiler needs to use
these new columns, then add new fields to the ParameterInfo structure in ticlParameters.h, and
add code to read them in the readLineOfParameterData function in ticlParameters.c.

University of Michigan Drawing No. 055-3633
Space Physics Research Laboratory Filename 3633 A-ticlCompilerDesign
TICL Compiler Page 15 0f 15

Design & Maintenance Document

Appendix A, Design Notes

Q: Why not use a ready-made scanner/ parser?

A: TICL is a very simple, line-oriented language. As such, I chose not to use a third-party lexical
scanner (like lex) or parser (like yacc). In fact, the bulk of the scanning and parsing of the TICL
programs is contained in a couple of functions in ticlParse.c, where strtok is used to break the
lines into their constituent tokens.

Another factor that decided me against using a traditional compiler compiler is that TICL is mode
based, i.e. depending on the keywords that have been compiled, the language accepted by the
parser changes. TICL is actually four languages: The immediate-mode TICL, the stored-program
TICL, the Scan Table language, and the Binning Table language. The TICL compiler needs to be
able to parse and translate all four of these languages. It is very hard to put several scanners and
parsers into the same executable using flex/bison and impossible using lex/yacc. Simpler (in this
case) just to do it by hand.

