

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Mission Data Center Software

Kevin M. Lyons December 1997

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Topics

- Development Strategy
- Areas of Development
- Progress
- Software Development Approach

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Software Development Strategy based on Evolutionary Builds

Applicable when:

- All requirements cannot be defined up front.
- User needs and system requirements can be partially defined, then refined in each succeeding build.
- Requirements and interfaces "evolve" as developers and users become more knowledgeable of the need.

REFERENCE: MIL-STD-498 Application and Reference GUIDEBOOK, 1996

MDC Software Delivered in Four Builds

- 1. Early Capability Build: initially a prototype build for operational concept demonstration. Redefined as the Mini-MOC build to be used to support bench level subsystem testing. Needed at start of bench testing (late 1997).
- 2. Integration and Test (I&T) Build: direct support for spacecraft Integration and Test. Needed at start of I&T (Fall 1998).
- 3. Launch Ready Build: support launch and on orbit data processing. Needed by mission simulation tests (Six months before launch - Summer 1999).
- 4. Mission Close-Out Build: support final data archive. Needed first archive delivery mission (2001).

REFERENCE: TIMED Mission Data Center Software Development Plan

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Components of the MDC

- Telemetry Server (TS)
- Mission Database (MD)
- Data Product Production and Distribution (DPPD)
- Mission Publication (MP)

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Telemetry Server

- Capture telemetry from the Ground Station
- Build Telemetry Archive
- Serve Telemetry over network connections
 - · Near Real time
 - Play Back from Archive
- all software developed by MDC

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Mission Database

- Comprised of several databases
 - Telemetry Archive Status
 - Spacecraft ephemeris and attitude (as received from spacecraft)
 - Timelines, planned and as-flown
 - Science products and correlative data
 - Use DDS for Catalog
- Mission Assessment Database
 - no longer a software development task for MDC
 - administration only
 - Use commercial RDBMS

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Data Product Production and Distribution

- Generation of MDC data products
 - Software developed by MDC
- Distribution of all data products except telemetry
 - DDS
 - automated retrieval, cataloging and distribution
 - MDC will add enhancements as needed
- Mastering data for NASA Space Physics Data System
 - Software developed by MDC

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Mission Publication

- Public access to TIMED information at MDC
- Conform to the Common Interface defined by the Science Data System
- World Wide Web site
 - Site administer by MDC
 - Web pages developed by MDC
 - HTML
 - Java Applets

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Build 1

- Design and Build the Mini-MOC version of Telemetry Server
 - Deliveries
 - Partial Spacecraft Emulator, July 97
 - Partial Mini-MOC, Oct 97
 - Full Mini-MOC, Dec 97
- DDS Evaluation Completed
- Mission Assessment Database Feasibility Study Completed

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Telemetry Server Requirements

- Archive all received telemetry
- Receive real-time telemetry via a TCP/IP stream
- · Receive telemetry as files via FTP
- Convert input data to STF format (Offsite Ground Station)
- Deliver Telemetry Real-time
 - 25 simultaneous connections, 1Mbit/s aggregate output rate
- Playback Archived Telemetry
 - 50 simultaneous connections, 825 kbit/s aggregate output rate
 - two MOC reserved connections, 88 kbit/s output rate each

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Telemetry Server Requirements (cont.)

- Delivery in user selected format
 - Packets
 - Transfer Frame
 - Supplemented Telemetry Frames
 - Supplemented Telemetry Packets
 - POC Telemetry Packet
- Filter by
 - Source of Data and Ground Station Front End
 - CCSDS Virtual Channel and Application IDs
- Playback Ordered by
 - Ground Receipt Time
 - Spacecraft Clock (available for Builds 3 & 4)

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Telemetry Server Processes

- Real Time Router
 - accepts connections from Ground Stations and receives telemetry
 - accepts connections from clients and provides real-time filtered stream of telemetry
 - forwards stream of telemetry merged from all input sources to another "router compatible" server downstream
- Spooler -
 - writes telemetry received from router to disk
- Ingest
 - reads telemetry files created by spooler or received via FTP and build play-back archive
- · Play-Back Server
 - accepts connection from client and provides filtered streams of telemetry from archive

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

TELEMETRY SERVER DATA FLOW

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Software Development Approach

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

S/W Development Process

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Object Oriented Analysis & Design Methodology

Object Modeling Technique (OMT) Rumbaugh

- Widely documented
- UML standard based on OMT
- in-house CASE tool, StP, includes OMT component

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Reviews

- PDL and Class definitions of the design
 - Developer, MDC Lead, Software Lead, Software Segment Engineer and External Interface Representatives
- Code
 - Developer, Software Lead, Software Segment Engineer and External Interface Rep.

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Testing

- Each class responsibility of programmer
- Component test responsibility of s/w lead
- Integration with Ground System coordinated by Software Segment Engineer

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Configuration Management

- Build 1&2
 - informal control by Software Lead
- Builds 3&4
 - Software controlled by Configuration Control Board

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Documentation

- Software Development Plan (status complete)
- System Requirement Specification (Draft, 2nd Version)
- Interface Control Document (in-progress)
 - · all interfaces documented or referenced
- Software Design Documents (planned)
 - one for each component
- Test Plan and Test Report
 - one for each component
 - Telemetry Server (draft)
- Operation/User Guide for Telemetry Server