

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

TIMED CDR

Primary Ground Station
December 1997

Steve Gemeny

301-953-6000 X4864 steve.gemeny@jhuapl.edu Johns Hopkins University / Applied Physics Laboratory Laurel, MD

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Topics

- Changes since PDR
- Ground Station Description
- Overview
- Antenna Subsystem
- Ground Station Electronics
- Reliability

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Changes Since PDR

- Primary will be the APL 60 ft.
- Uplink will be added
- No free standing uplink
- Backup will be off campus
- Scheduling included in the Front End Processor

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Ground Station Description

- Prime Ground Station for TIMED is the existing APL 60 Foot Antenna system
- Modification of existing tracking feed to include Uplink capability
- Preservation of tracking ability without degrading performance
- Additional, TIMED Specific, station electronics added

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Overview

- Selection was driven by RF interference issues and the need to co-exist with other assets on a noninterfering basis
- Required modifications were determined to be within the bounds of sound engineering practice and within the limits of the available resources
- The modified 60 foot antenna system was determined to be capable of supporting the mission requirements

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Station Diagram

Overview

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Telemetry Data Flow

QPSK Receiver

Bit & Frame Sync

Front End Processor

FTP & Sockets

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

MOC

Command Data Flow

Command Data

Sockets via TCP/IP

Que For Transmission

Front End Processor

BPSK Transmitter

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Station Antenna Subsystem

- Feed Modification
 - Electrical
 - Mechanical
 - Testing
- Tracking Electronics
- Antenna Control System
- Control Software
- Mechanical Analysis
- Obscura
- Reliability

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Station Antenna Subsystem Feed Modification

- Adds uplink capability to the 60 Ft. Antenna
- Prevents uplink interference to the downlink
- Preserves tracking capability
 - Feed Block Diagram
 - Component Specifications
 - Link Budget
 - Mechanical
 - Testing
 - Documentation
 - Areas needing special precautions

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Feed Block Diagram

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Feed Modification Component Specifications

• Diplexer

Insertion Loss

0.8 dB max.

- Rejection

70 dB min.

- Power

43 dBm min.

Delay equalization

 \pm 5 deg. max.

Dual Filter

Insertion Loss

0.8 dB max.

- Rejection

70 dB min.

Delay equalization

 \pm 5 deg. max.

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Feed ModificationComponent Specifications (cont.)

• 90 Deg. Hybrid

- Loss

0.3 dB max.

- Power

43 dBm min.

• LNA

- Noise Figure

0.4 dB max.

- Gain

30 dB typ.

Boost Amplifier

Noise Figure

2.0 dB max.

- Gain

30 dB typ.

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Feed Modification Link Budget

Item	Existing		Planned	
	Loss	T eff	Loss	Teff
Feed cable	0.15	10.19	0.15	10.19
Diplexer	0.00	0.00	0.80	58.66
Mono pulse comparitor	0.30	20.74	0.30	20.74
cable 2	0.15	10.19	0.15	10.19
90 deg combiner	0.50	35.39	0.50	35.39
cable 3	0.15	10.19	0.15	10.19
Monoscan converter	0.80	58.66	0.80	58.66
cable 4	0.15	10.19	0.00	0.00
Relay	0.20	13.67	0.00	0.00
cable 5	0.15	10.19	0.15	10.19
coupler	0.20	13.67	0.20	13.67
cable 6	0.15	10.19	0.15	10.19
Filter	0.50	35.39	0.50	35.39
LNA (NF)	0.75	54.67	0.40	27.98
Ta=(assumed)		42.00		42.00
SUMS (Loss Temp)	3.40	335.32	3.85	343.43
Ga=(cal .5 eff)	49.48		49.48	
Geff=(Ga-L)	46.08		45.63	
T=(10*log(K))	25.25		25.36	
G/T =(Ga-T)	24.23		24.12	

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Feed Modification Mechanical

- Feed housing
 - Pre-modification
 - Post-modification
- Feed electronics and structure
 - Pre-modification
 - Post-modification
- Filter bracket details

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Feed Housing

Pre-modification

Post-modification

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Feed Electronics and Structure

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Finished Feed

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Feed Modification Testing

- Pre modification Baseline testing
 - Tracking performance with simulated uplink
 - Feed characteristics
- Feed components verification
 - Sum feed to tracking element coupling
 - Calibration of internal losses
 - Adjustments to phase matching
- Post modification Verification Testing
 - Feed characteristics
 - Tracking performance
 - -G/T

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Testing Status

Tracking system required to support TIMED

- Tracking performance with simulated uplink testing currently underway
 - Test passes conducted while tracking MSX daily
 - Simulated uplink injected from dish vertex into tracking feed at up to 10 dB over anticipated post-modification level
 - Various frequencies and modulation formates are used
- No indication of any degradation in tracking performance has been detected
- Feed characteristics measurements planned for mid November

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Documentation

- As-built documentation
 - Original SA documentation
 - APL archived performance data
 - Pre-modification performance measurements
 - Component characterizations
- Mechanical/Fabrication documents
- Final performance results
 - New component characterizations
 - Post-modification performance measurements
 - Antenna system
 - » G/T
 - Patterns
 - Tracking performance

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Areas needing special precautions

- Retaining the exact X, Y, Z & Rotational coordinates within the support structure when reinstalling the modified modified housing (keying).
- This will be accomplished by the use of precision measuring equipment in the shop and index marks

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Station Antenna Subsystem

Tracking Electronics

- Existing MonoScan Feed (Scientific Atlanta)
- ± X and ± Y error signals summed onto downlink
 RF
- Separate Tracking Receiver
- MonoScan drive/demultiplexer & servo interface
 - APL Designed and built in 1987
 - Well maintained, documented, understood
 - Excellent "track" record

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Station Antenna Subsystem

Antenna Control System

SCF Provided

- Hardware
 - Tracking Receiver
 - APL custom servo control electronics
- Planned Capital Software Improvements
 - (FY 98 non-TIMED)
 - 2 Line ELSETS
 - True SGP-4
 - TCP/IP Control interface

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Station Antenna Subsystem

Control Software

- Improved Software (DeWitt & Associates Deliverables)
- WIN 95 or WIN NT
- Written in C++
- Object Oriented
- Easily upgraded

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Control Software

Features

- SCF Provided upgrade
- Electronic entry of ephemeris by TIMED Front End Processor
 - 2 line ELSETS
 - FTP a file then notify via socket
- Passes generated on user request
- Remote scheduling
 - FTP a file then notify via socket
- Sockets require user ID and password

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

TIMED Modifications

- Station Software
 - Status output to socket connection (remote status)
 - Redefine software elevation limit from 7 deg to 5 deg
 - » System hard limits and overshoot allowances permit this

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Station Antenna Subsystem

Mechanical Analysis

- Antenna pedestal is counter balanced by 25 Tons of counterweight
- Any additional weight added to the feed is insignificant even considering an 8:1 mechanical advantage due to length of moment arm
- No further mechanical analysis is required

APL 60 Ft. Antenna Limits

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Station Antenna Subsystem

Reliability & Maintenance studies

R. Denisson SEA-97-072

• Electronic Systems

- Redesigned and remanufactured in 1985
- Designers and all design data still at APL
- Extensive documentation
- Detailed design descriptions and transfer functions
- No parts availability problems
- Major parts ordered for spares... still in stock

Mechanical Systems

- Solid surface... no maintenance anticipated
- Feed replaced in 1987
- Pedestal refurbished in 1983... only minor PM anticipated
- Spare hydraulic parts on hand... supported by various vendors
- Maintenance and alignment staff in house

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Maintenance Studies continued

• Tracking System

- Installed / upgraded in 1987
- Entire design done in house
- Full documentation including software
- Designer and programmer currently assigned to TIMED

• Summary

- 60 Foot system newer than it appears
- All major components replaced or refurbished in the mid 1980's
- No significant down time since upgraded

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Summary of Successes

GEOSAT operations summary as of February 28, 1990

- 1814 operational days
 - Data recovered from 9729 passes
 - 3484 Recorder dumps
 - 1790 passes below 10 deg.
- Down time
 - 71 passes
- Availability 99.3 %

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Tracking Performance Data

- Recent SCF data available
 - (Strip chart recordings of AGC, Error voltage, etc.)
- Analysis shows:
 - Autotrack is good
 - Program track subject to ELSET quality
- Detailed analysis is ongoing

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Coverage statistics

- Software limit of the 60 ft. antenna moves to 5 deg.
 - Coverage statistics are now similar to those of the 10 meter
 - Change in software limits cause old analysis to be invalid
- New coverage analysis required
 - Design new analysis filter to compare 10 min. passes between 60 ft. and 10 meter
 - Determine the number of 10 min. passes missed by 60 ft.
 antenna due to pointing limits

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Station Electronics

- Downlink Electronics
- Uplink Electronics
- Front End Processor
- Data Flow
- Scheduling a Pass

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Station Detailed Block Diagram Downlink

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Station Detailed Block Diagram

Uplink DIGI वृत्कामात्रावाभेत्वस्य १०० Twist To Antenna To Downlink CIk To Spare **Electronics** Receiver Data CIk Data 488 Clk Uplink S-Band Data (1) y silbe lide **्र**धनीतिलह (c(1);- 14.\e/s IEEE 488 Data Data े स्वीत IRIG-B Modulated illians. Subcarrier Uplink IEEE Sylida S-Band 488 Forest and the second of Modulated EL10.019 Subcarrier Data Clock Data D1- emira mico **ા** ભીવિત્ iito Liu (eta), wee Data Clk $\mathbf{l}_{i} \in \mathbb{L}_{0}$ Data

IRIG-B

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Front End Processor

- The primary interface to the rest of the Ground System
- Identical to the FEP to be used by LEO-T Ground Stations being developed for NASA Wallops Flight Facility.
- Provides all the real-time functions of the Ground Station.
- Comprised of commercial off the shelf components
- Controlled by EPOCH 2000 version 2, the same software found in the MOC

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Downlink Duties

- Ingests TTL telemetry data from the DSI 7715 bit synchronizers
- Process telemetry data via the Avtec telemetry processor
 - » Frame synchronization
 - » De-randomization
 - » De-interleaving
 - » Reed-Solomon decoding
 - » Adds Ground Receipt header with time tag
- Store Telemetry data on the 18 GB hard disk
- Established real-time sockets and post-pass FTP connections with MOC/MDC

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Command related duties

- Accepts Telecommand Transfer Frames from MOC via TCP/IP
- Generates CCSDS compliant CLTUs and simulated telemetry for test inject testing
- Outputs TTL serial data
 - Coherent with external clock from subcarrier generator
 - Pseudo-randomization
 - BCH encoding
 - Interleaving
 - Sync marker insertion

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Station related duties

- Remains synchronized to UTC within 1 microsecond
- Provides for monitor and control for all TIMED specific Ground Station equipment
- Handles scheduling of all TIMED contacts
- Control of the antenna related functions is provided by separate equipment accessed via TCP/IP

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Block Diagram

Front End Processor

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Front End Processor Components

- A MODCOMP 12 slot rack mountable VME chassis
- 50 Mhz 88110 CPU Card
 - REAL/IX Real Time UNIX
 - 64 MB RAM
 - SCSI Controller
 - Ethernet Controller
 - 4 ASYNC Ports
- Avtek model AV-RSENC serializer
- Avtec AV-RSDEC CCDS/TDM telemetry processor
- CCSDS/TDM telemetry simulator card (Motorola WME1300 PowerBase PowerPC)
- 18 GB of storage for telemetry data
 - 2 Modcomp model 2417 9GB hard drives.
- 150 MB cartridge Tape Drive
- DAT Drive
- Fast Ethernet Transition Module for connection to the LAN
 - Modcomp MVME712B
- IRIG-B Time Code Interface Card
 - Odetics Model TPRO-VME synchronizable time code generator
- IEEE-488 Interface Card
 - Modcomp Model 2453
- 8 port ASYNC serial interface card
 - Modcomp Model 2448 Eight Port asynchronous RS-232 Serial Controller

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Scheduling a Pass

- MOC submits weekly schedule
- Final schedule posted on Schedule Server
- Scheduler accessible remotly by the MOC
 - Passes can be added up to 30 min. prior to a pass
 - Pass deletions at any time
- Automatically downloads ELSET from MOC server
- Transfers ELSET and configuration file to Antenna Control System via FTP
- Announces pass to Antenna Control System via Socket