

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Ground Station Selection

W. P. Knopf, JHU/APL

Phone: 301-953-6416 Fax: 301-953-1093

william_knopf@jhuapl.edu

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Changes Since PDR

- At PDR Primary and Backup antennas were at APL; 2-meter antenna for uplink, 60-ft antenna for downlink
- Non-Advocate Review (NAR) raised concern that the two antenna uplink/downlink concept would be awkward, and subsequent study did reveal problems
- Current concept:
 - single uplink/downlink antenna will be used per contact
 - Primary support is not required to be at APL
 - If primary support is at APL, backup support will be off-site

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Ground Station Support

- Four types of support required:
 - Primary
 - Backup
 - Contingency
 - Early Launch Support (ELS)
- All stations (except ELS) are required to support commanding
 - S-band frequency: 2039.645833 MHz (+/- 1 ppm)
 - 16 kHz subcarrier (+/- 50 ppm)
 - 2 kbits/sec data rate (+/- 50 ppm)
 - Residual carrier PM, BPSK modulated on subcarrier, NRZ-L

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Ground Station Support

• Primary

- One to two passes/day nominal throughout life of mission, providing 20 minutes of contact time per day
- Must be capable of supporting all downlink modulation modes:
 - » Mode 1a (4 Megabits/sec, RS, Randomized DQPSK, min. G/T=16.3 dB/k)
 - » Mode 1b (2 Megabits/sec, RS, Randomized DQPSK, min. G/T=12.9 dB/k)
 - » Mode 2 (9 Kilobits/sec, RS & Convolutional Rate 1/2, k=7, Residual Carrier PM modulated directly on carrier in biphase-L format, min. G/T=12.9 dB/k)
- May be on or off APL campus

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Ground Station Support

Backup

- Must be available/scheduled for at least one contact/week
- Must be capable of supporting downlink modulation modes 1b and 2 (as described for Primary Ground Station)
- Mode 1a support not required of the Backup station
 - » driven by LEO-T marginal operation at 4 Mb/sec

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Ground Station Support

Contingency

- Must be available and easily scheduled on short notice from TIMED Mission Operations
- Must be capable of supporting downlink modulation mode 2 (as described for Primary Ground Station)

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Ground Station Support

• Early Launch Support

- Desired for coverage shortly after orbit injection
- Station location should be a minimum of 75 degrees latitude (North or South)
 - » Current timeline shows orbit injection in Pacific, southbound over Antarctica; ground stations in that area are being evaluated
- Must be capable of supporting downlink modulation mode 2 (as described for Primary Ground Station)
- Commanding not required of ELS stations, but highly desirable

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

- APL Satellite Control Facility
- NASA/Wallops (LEO-T, TOTS)
- Allied Signal
- Universal Spacenet

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

- APL Satellite Control Facility
 - 5m, 10m, and 60' existing antennas were considered
 - Scheduling, upgrade, and interference issues were considered among the three existing assets; addition of a backup antenna was also evaluated
 - 60' antenna is recommended as a *candidate* for Primary Ground Station; requires upgrade to support TIMED
 - Backup and contingency services will be sought off-site
 - » geographic diversity
 - » eliminates on-site RF interference issue

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Ground Station Candidates

NASA/Wallops

- LEO-T (Low Earth Orbiter Terminal)
 - » located at Poker Flat, Alaska
 - » considering for Backup, Contingency and ELS Ground Station support
 - » near-polar ground station location desirable for TIMED
- TOTS (Transportable Orbital Tracking System)
 - » considering for ELS operations
 - » may be place at a variety of locations
 - » location TBD, based on orbit injection point

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

- Allied Signal (commercial)
 - LEO-T-class station in Puerto Rico
 - » purchased by JHU for FUSE mission
 - Second station is proposed for Hawaii
 - Both Puerto Rico and Hawaii ground stations would be shared with FUSE program

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

- Universal Space Net (commercial)
 - Three Phase 1 assets (September 1998)
 - » North Pole, AK; Kona, HI; Horsham, PA
 - Two Phase 2 assets (late 1999)
 - » Southern Florida; Spitzbergen, Norway
 - Two Phase 3 assets
 - » Kodiak, Alaska; Seychelle Islands
 - Two Network Management Centers
 - » Newport Beach, CA; Horsham, PA

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Ground Station Selection Process

- Ground station selection to be based on:
 - Ground Station Requirements Document
 - Off-Site Ground Station Services Statement of Work
 - » Off-Site Ground Station Services Scoring Plan
 - Agency/vendor visits
- Off-site ground stations scored for each type of ground station service (Primary, Backup, Contingency, ELS)

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Ground Station Selections

- APL SCF is selected as Primary Ground Station Service Provider
- Benefits:
 - Track record of SCF
 - Co-location of SCF, Mission Operations Center, and Spacacraft during Integration & Test
 - » more opportunities for interface and compatibility testing
 - » operations and maintenance personnel are on-site
 - "Ownership" minimizes the potential for scheduling conflicts

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Ground Station Selections

- Universal SpaceNet is selected as the Backup and Contingency Ground Station Service Provider
 - Universal SpaceNet is considered capable, but marginal in the role of sole Primary Ground Station Service Provider for the TIMED Mission
- Benefits:
 - Geographic diversity of planned assets
 - Redundant Network Management Centers
 - Candidate for ELS

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Ground Station Selections

- ELS ground stations still being evaluated
 - Universal SpaceNet Spitzbergen, Norway
 - TOTS (southern hemisphere)
 - Hartebeesthoek, Africa, (and others...)