

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

SPACECRAFT HARNESS

MICHAEL J. COLBY

The Johns Hopkins University Applied Physics Laboratory Laurel, MD 20723-6099 Tel: (301) 953-6000 X4237 Fax: (301) 953-6556 Email: COLBYMJ1@jhuapl.edu

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Spacecraft Harness

- Harness Design
- Development Sequence
- Power Distribution
- Signal Distribution
- 1553 Harness
- Ordnance Schematics
- Thermal Harness
- Harness Weight Estimate

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Spacecraft Harness Design

EMC considerations:

- -- Shielding of single or twisted pair signal lines will be utilized
 - -- 1553 bus is shielded with the shields tied to the connector shell.
 - -- any shielded wire(s) will have the shield tied to the connector shell

Connectors:

-- 191 D-type connectors, 6 circular pyro connectors, 6 micro-miniture connectors, 3 Torque Rod circular connectors, 2 Umbilical circular connectors, 2 Rectangular arming plug, and ~ 400 2 or 4 pin Winchestors (for Thermostats, Temperature Sensors, and heaters)

Drawings:

-- Drawings are completed in Clarisdraw on D size or can be sized to fit 11x17 paper for quick checking and presentations. (some details not readable at that reduction)

Wirelist (S/C and Thermal Harness):

-- The software used for the wirelists and Connector list is Filemaker Pro

Wire:

-- The wire type has been changed from the Durad-T teflon insulated wire used on previous programs to Tefzel MIL-W-22759/43C & 44 fluoropolymer-insulated wire for weight savings. SOR has approved this wire for use on TIMED.

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Harness Specification (7363-9022)

- Defines grounding specifics (i.e. SPG, shields tied at both ends, etc.)
- Defines wire sizing (i.e. Pwr #20AWG, signal #24AWG, etc.)
- Defines Connector selection
 (D-type unless design prohibited)
- Specifies Harness fabrication (construction, shielding, routing, etc.)
- Specifies Harness Electrical Testing (Continuity, bonding, isolation.)
- Specifies Harness Flow (design, Construction, Bakeout, etc.)
- Outlines drawing layouts and wire and connector lists.

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Harness Development Sequence

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Simplified Functional Block Diagram

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

S/C Power Distribution

Allows two stage GSE power up of the spacecraft:

- -- Command Power Bus: power to command and data handling from ground power supplies for bringing up the S/C in minimum power to verify (modify if necessary) relay status prior to Main bus turn-on
- -- Main Power Bus: power to the main power bus from ground power supplies initially, then by Battery (by ground command) supplemented by the Solar Array Simulator (SAS)

NOTE: The battery will not be able to be commanded off by s/c command. That command (Off Cmd) is only wired through the umbilical, back to the Blockhouse Control Unit(BCU), for ground use only. The BCU, during ground testing, will be able to send a 56V pulse to switch the battery relays Off.

Provides distribution of main power bus to the heaters:

- -- S/C Operational heaters, S/C Survival heaters, Battery heaters, and SA Damper heaters primary and secondary for each and Instrument Survival Heater Power.
- -- Instrument Oper Htrs are powered from the same relay as the main Inst power except for SABER which has a separate relay for Oper htr Pwr.

Power harness wiring will be routed separately from the rest of the harness where possible.

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

S/C Power Distribution (Dwg# 7363-8102)

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

S/C Signal Distribution (Dwg# 7363-8103)

- Command/telemetry;
 - -- RF; IEM to diplexer to transceiver sw to antenna
 - -- Baseband; IEM to Umbilical
 - -- Critical commands from IEM to Power Switching Electronics (PSE/DU)
- Discretes;
 - -- Attitude Interface Unit(AIU) to:
 - -- Attitude sensors, torque rods, magnetometer, reaction wheels
 - -- IEM, safe mode discretes
 - -- PSE/DU, safe mode discretes
 - -- Solar Array Drives
 - -- PSE/DU to Peak Power Tracker (PPT)
- External Temp Monitors; IEM to RIU's

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

S/C 1553 Harness (Dwgs# 7363-8104 and 7363-8105)

- Redundant Command & Data Handling (C&DH) 1553 busses
- Redundant Guidance & Control (G&C) 1553 Busses

• Documents;

-- PI-10912 Purchase Instruction for MIL-STD-1553 Harness Data Bus
-- MIL-STD-1553 Design, Manufacturing, and Quality Standards for Custom
Electromagnetic Devices for Space Applications

-- MIL-T-2103827/27 Specifications for Low power, pulse transformers,

Type TP7SXNNNNKZ

-- NHB-5300.4(3A-2) Soldering for Electrical Connections

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

S/C 1553 Harness Bus Coupler (Typ)

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Ordnance Schematics

- 2 Separation Switches;
 1st safety for power to pyros
- 1 Primary Arming Plug with current limiting resistors 1 Secondary Arming Plug with current limiting resistors 2nd safety for power to pyros
- Separate relays for enabling (only enable the specific pyros required)
- Common relays for Firing (for simultaneous firing where required)
- Pyros are category B

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Ordnance Schematics (Dwg# 7363-8101)

Ordnance enabled by separation switches to PSE/DU

• Solar Arrays: 2 Primary and 2 Redundant / wing (8 pyros total)

• GUVI SIS: 1 primary and 1 redundant (2 pyros total)
TIDI telescopes: 4 primary and 4 redundant (8 pyros total)

• Opt Bench: 2 ea Primary and Redundant (4 pyros total)

Total: 22 pyros

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Typical Ordnance Circuit

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Thermal Harness

- S/C Operational Heaters (Star Tracker):
 - -- 2 Primary and 2 Secondary Thermostats, 2 Dual Element Heaters (Pri & Sec)
- Battery Heaters (These will be part of the battery, not part of the thermal harness):
 - -- Operational Htrs: 2 Pri and 2 Sec Therm, 22 Dual Element Heaters (Pri & Sec)
 - -- Differential Htrs: 2 Pri and 2 Sec Therm, 22 Dual Element Heaters (Pri & Sec)
- SA Damper Heaters(These will be part of the SA's, not part of the thermal harness):
 - -- 10 Pri and 10 Sec Therm, 10 Dual Element Heaters (Pri & Sec)

 If more dampers are used the numbers could go from 10 to 16 each.
- S/C Survival Heaters:
 - -- +Y (IEM): 2 Pri and 2 Sec Therm, 2 Dual Element Heaters (Pri & Sec)
 - -- +Z: 2 Pri and 2 Sec Therm, 6 Dual Element Heaters (Pri & Sec)
 - --- Z: 2 Pri and 2 Sec Therm, 6 Dual Element Heaters (Pri & Sec)
 - -- +X: 2 Pri and 2 Sec Therm, 3 Dual Element Heaters (Pri & Sec)
 - --- X: 2 Pri and 2 Sec Therm, 3 Dual Element Heaters (Pri & Sec)

Note: Instrument heaters are covered in the power distribution since the s/c bus only provides power to the instrument interfaces.

MJC-15

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Harness Weight Estimate

S/C Conn Weight: 5.47kg
S/C 1553 Harness: 3.94kg
S/C Harness: 25.01kg (includes Thermal Harness)
Sub-total: 34.42kg
Miscellaneous Harness Items: 1.72kg (~5% of sub-total harness wt.)
S/C Total Harness Weight: 36.14kg