

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

GUIDANCE and CONTROL SYSTEM PRESENTATIONS

SYSTEM

I&T HARDWARE

SOFTWARE

ANALYSIS

WADE RADFORD

STEVE HUTCHINSON

SHANE HUTTON

WAYNE DELLINGER

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

CHANGES SINCE PDR

- SUN SENSORS ARE CROSS STRAPPED
- MAGNETOMETERS ARE CROSS STRAPPED
- 4 SENSOR HRG REPLACED WITH REDUNDANT 3 SENSOR RLG

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

TIMED G&C Functional Requirements

Operational Mode

• Commanded Attitude: ± X to Ram

+ Z to Nadir

Sun on - Y

• Implies:

1 RPO pitch rate

0 roll and yaw rates

• Control Accuracy:

 $0.5 \cdot \text{ each axis}, 3\sigma$

Requires full 3-axis active control

• YAW Maneuver every 60 days

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

TIMED G&C Functional Requirements (cont'd.)

- Attitude Knowledge: 0.03 each axis, 3σ
- Knowledge of G&C Fiducial Frame, mapped to SC coordinates

- Jitter/Stability
 - G&C Controls Low Frequencies
 - Higher frequencies met by structural rigidity

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

G&C Modes: SAFE

- NADIR Pointing Mode
 - Same as Operational Configuration but with very loose constraints
- SAFE Mode:
 - Stabilize the Spacecraft Attitude
 - Maintain Adequate Power, Thermal Protection

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

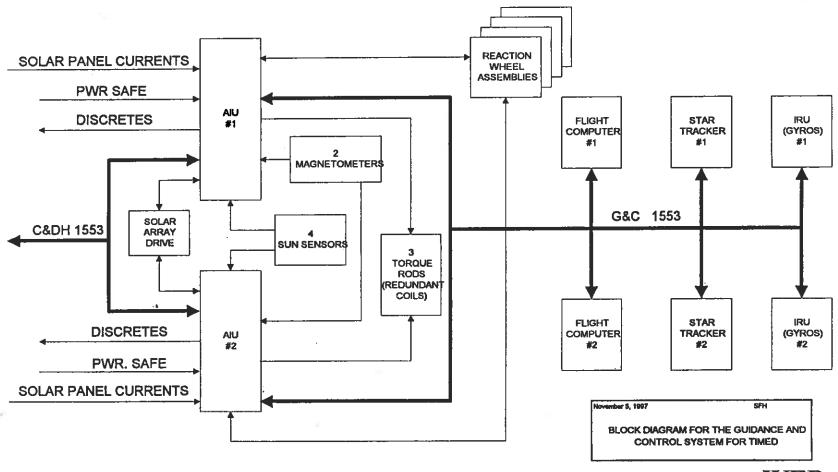
G&C Modes: Operational

- Operational Mode:
 - Nominal Commanded Attitude:

 $\pm X$ to Ram

+ Z to Nadir

Sun on - Y


- Requires IRU, Star Tracker and Orbit Data
- Stars, orbit may be stale within uploaded tolerances
 - Integrate orbit forward
 - Fly on gyros from last stellar reference
- Yaw Maneuver and Solar Panel Rotation
- Notify of impending operation(via C&DH 1553)
- Perform operation
- Notify when operation safely completed

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

BLOCK DIAGRAM

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

GUIDANCE and CONTROL SYSTEM PROCUREMENTS

Star Trackers: 2
Inertial Reference Units: 2
Reaction Wheel Assemblies: 4
Torque Rods (redundant) 3
Magnetometers: 2
Solar Panel Drives 2

Meet mission requirements in accordance with TIMED Documents:

Component Environmental Specification

Procurement Product Assurance Requirements

JHU/APL 7363-9029a

Contamination Control Plan

JHU/APL 7363-9031

EMC Control Plan and Performance Specification

JHU/APL 7363-9038

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

GUIDANCE and CONTROL SYSTEM

Procurement Decision Basis

•Minimize costs with "Off the shelf" purchase

•If changes/modifications required, consideration given only to existing/available options (No development costs)

Delivery to comply with ambitious schedule

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

GUIDANCE and CONTROL SYSTEM

Autonomous Star Tracker (AST) (2 required) **Lockheed Martin AST-201**

Star Availability: (7 to 48; Average 27)

Star Database: 6,400 for star ID and initial attitude determination

10,000 supplemental to maximize attitude accuracy

Accuracy:

Pitch, Yaw: 2.7 arcseconds

Roll:

31.9 arcseconds

Stray Light Rejection:

> 20 degrees off boresight

Interface:

Redundant 1553B

Sample rate:

5 Hz.

Power:

< 15 W each

Voltage:

28±7 V

Weight:

4.4 Kg Each

Palivery:

September 1998

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

GUIDANCE and CONTROL SYSTEM

Inertial Reference Unit (IRU) (2 required) Honeywell YG9666XX IRU

Three axis Ring Laser Gyro including the Soft Start/Current Limit, 1553B Interface and Pressure Transducer Options.

• Bias

0.036 deg/hr over 24 hours

• ARW (1 sigma)

0.008 deg/rt.hr.

Power (Steady State):

21.5 W each

Voltage:

28±7 V

Weight:

4.2 Kg each

Delivery:

September 1998

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

GUIDANCE and CONTROL SYSTEM

Reaction Wheel Assembly (RWA) (4 required)
Ithaco Inc. Type B

Angular Momentum Capacity:

16.6 N-m-s

Maximum reaction Torque:

40 mN-m

Speed:

 $0 \text{ to } \pm 5100 \text{ rpm}$

Power: steady state

5.5 W @ 200 RPM

steady state

17 W @ 5100 RPM

peak

50W @ 5100 RPM

Voltage:

28±7 V

Weight (including integrated electronics): 5.86 Kg each

Delivery:

July 1998 WER-12

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

GUIDANCE and CONTROL SYSTEM

Torque Rods (3 required) Ithaco Inc. TR100UPR

Dipole Moments (absolute Values):

Linear:

110 Am² @ 20.0 V, 122 mA

Saturation:

130 Am² @ 24.6 V, 150 mA

Residual:

 $1.0 \, \mathrm{Am}^2$

Dimensions:

33.2 in. long X 0.9 in. diameter

Power:

3.7 W each (when powered)

Weight:

2.1 Kg each

Delivery:

January 1998

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

GUIDANCE and CONTROL SYSTEM

Magnetometers (2 required)
Science Applications International Corporation (SAIC)
NT-600S Quadraxial Fluxgate

Sensor:

Ring Core Fluxgate

Sensitive Axis:

X, Y, Z and R

Dynamic range:

 $\pm 60,000 nT (\pm 600 mG)$

Frequency response:

0-30 HZ

Power:

300 mW each

Voltage:

 $28 \pm 7 \text{ V}$

Weight:

0.45 Kg each

Delivery:

January 1998

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

GUIDANCE and CONTROL SYSTEM

TIMED SOLAR ARRAY DRIVE ACTUATOR

- Purchase Specification (7363-9316) for the Solar Array Drive Actuator for the TIMED Spacecraft was written May 1997.
- Purchase Contract was awarded to Schaeffer Magnetics Inc. on June 17,1997 and Contract was signed on August 26, 1997.
- Two modified Type 3 Harmonic Drive Actuators and a four-channel Electronic Control Unit are being procured.
 - Drive rotation will be over a 110° range.
 - Position telemetry will be 0 to 5 volts over a 160° pot range.
- Critical Design Review was held November 13, 1997.
- Delivery of Flight Hardware scheduled for August 15, 1998.

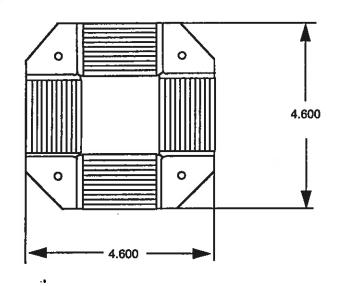
Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

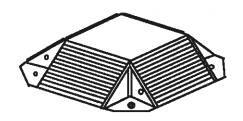
GUIDANCE and CONTROL SYSTEM Attitude Interface Unit (Made At APL/ NEAR Heritage)

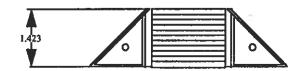
- POWER 11 WATTS EACH UNIT
- WEIGHT 6.6 Kg TOTAL
- RTX2010 PROCESSOR; 12 MHz CLOCK 64K WÖRDS RAM 64K WORDS EEPROM 8K WORDS PROM
- 1553 BUS INTERFACES

 G&C 32K WORDS RAM BUFFER

 C&DH 32K WORDS RAM BUFFER


- ANALOG INPUTS/OUTPUTS
 MAGNETOMETERS
 SUN SENSORS
 REACTION WHEELS
 SOLAR ARRAY CURRENT
 SOLAR ARRAY POSITION
- DIGITAL INPUTS/OUTPUTS
 IEM DISCRETES
 POWER SYSTEM DISCRETES
 SOLAR ARRAY DRIVE
- POWER SWITCHING INTERNAL TO AIU TORQUE RODS (ON/OFF & POLARITY) SOLAR ARRAY DRIVE IRU
- TWO INDEPENDENT UNITS IN ONE CHASSIS


- RELAYS CONTROLLED BY THE IEM DETERMINES WHICH UNIT IS IN CONTROL OF THE WHEELS, TORQUE RODS AND POWER SWITCHING
- EXTERNAL CROSS STRAPPING REACTION WHEEL SPEEDS SOLAR ARRAY CURRENT IEM DISCRETES POWER SYSTEM DISCRETES
- TOTALLY REDUNDANT SOLAR ARRAY POSITION SOLAR ARRAY DRIVE
- INTERNAL CROSS STRAPPING
 - **4 SUN SENSORS**
 - **2 MAGNETOMETERS**
 - **3 TORQUE RODS**



Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Sun Sensor

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

Launch Sequence of Events

- Launch With Both AIUs ON
- Separate From Booster—Turn Both Magnetometers ON
- Dump Tip Off Rates with Torque Rods and Magnetometers
- Power Wheels and IRU
- Null Rates in Sun Safe Mode and Point +Z Axis Close to the Sun
- Wait for ground command

Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics

STATUS SUMMARY

- AIU IN APL SHOPS: NEAR Heritage: The design is completed and the drawings are mostly complete. The chassis drawings are completed.
- PROCUREMENTS: All contracts are in place and parts procurements are in process. All contracts are on schedule.
- SUN SENSOR: The design is progressing at APL. The solar cell vendor has agreed to supply, mount and test the cells on the pyramid.