

Solar Imager Radio Array (SIRA) High Energy Transfer

System Overview Gabe Karpati - GSFC

28 August 2003

Competition Sensitive

Outline

- Requirements / Customer Inputs
- Baseline Configuration
- Trades / Options
- Comments, Issues, Concerns

Study Overview

Integrated Mission Design Center

Mission objective

- Image low frequency (<15 MHz) from coronal mass ejections, interplanetary shocks, etc."
- Also serve as a pathfinder for more complex interferometry missions

Additional constraints, challenges

Up to 16 satellites within MIDEX cost constraints

Purpose of Study

Establish baseline requirements in preparation of a MIDEX (SEC) Proposal

Length of Study

- 4 days

Science Overview

	Mission Objective	Measurement	Performance Drivers	Priority
1	Image and track propagation of CMEs from 2 R_sun to 1 AU	bursts from 2 R_sun to 1 AU; image thermal emission from CMEs from 2	system sensitivity~100 kJy; ~16 microsats = >100 baselines; uniform u-v aperture plane covererage in 20 km constelllation	
2	Understand particle acceleration by flares and CME-driven shocks	Image type II and type III (particularly type IIIL) bursts from 2 R_sun to 1 AU	same	4
3	Improve the prediction of CME Earth arrival times for space weather forecasting	Image type II bursts from 2 R_sun to 1 AU; need snapshot image within ~24 hr (12 hrs preferable), update every 5 min	same	2
4	Provide global imaging of Earth's magnetosphere to better understand its response to CMEs, etc.	Image the terrestrial magnetosphere (scattering limited resolution); 5 min time resolution	same (L1 halo orbit not favorable)	3
5	6) Image galactic and extragalactic radio sources from 0.3-15 MHz, providing the first high resolution full- sky map at these frequencies	rreq. from 0.3-15 MHz W/ angular	higher system sensitivity required (100 Jy) obtained by integrating over entire mission	5

High Energy Transfer Concept, Baseline System Configuration

Mission	Launch	Orbit Tupe	Stationkeeping	Mission total delta-v
	10/1/2009	Distant retrograde orbit" (DRO) at 500.000		Dispersion Correction: 10 m/s
	Launch in early phase of solar maximum	km from Earth	of 5 - 25 km radius	Orbit Insertion: 500 m/s
	desired ~ 2009-2010 (no later than 2012)*	Orbit inclination relative to the ecliptic "20	Station coordinates calculated on gnd	Stationkeeping / Repositionings: cold gas
		degrees	and uplinked	ACS / Momemtum Unloading: cold gas
		DRO instertion take 7 days using Lunar	Inter-microsat ranging to 3 m	EOL Disposal: n/a
		gravity assist plus 500 m/s for orbit	Absolute orientation of the constellation	
		insertion	knowledge 0.5 deg	
		(alt. option is low energy transfer: takes 272	mioritage old atg	
		days plus 50 m/s)		
L¥	LY.1	LV 2	Stack Propulsion Module	Alternate Orbit Inject, Motor
	Delta 2925H-10	Delta 2925-10	Custom Built biprop system	Star 24, 560 kNs, 218.2 kg w/ 200 kg
	Throw mass: 1495 kg	Throw mass: 1240 kg		propellant
				(Not suitable for LY dispersion
				correction)
MA, QA	<u>Life</u>	Size Consumables / Quote	Redundancy	Disposal
	2 yrs req / 4 yrs goal	4 grs	Single string for each microsat	Not required
			System level redundancy for common	
			functions (Stack / Layer Controllers in	
			Cruise Phase, Time reference)	
Observe	Boresight	Attitudes	Observations	Data Rates
Ops	12 - 16 słc	Microsats are 3-axis stabilized	Absolute timing *0.1 sec	Science data downlink rate 8 Mbps
	All sky monitoring	Dipole antennas parallel to within 2 deg	Relative timing of µsats ~1 µsec	Yary observ. duty cycle
	Each microsat has 2 orthogonal dipoles	(know to 1 deg) on all microsats	Oscillators phase locked to a common	Downlink microsats sequentially over 6 -
	with receivers		reference	7 hrs once per day

High Energy Transfer Concept, Baseline S/C Bus Subsystems Configuration

Prop.	biprop + cold gas	1x440N 4x22N Biprop and 4 1N spin- up spin-down	500m/sec	250kg	4 12" tanis
Stack	Greenbank, WV	MOC/LZP @ GSFC, 8x5, 9.8 FTEs @ L+12 to EOM	Sixteen 25 Minute Downlinks/Day Delta-v's	CCSDS Propellant quantities	10-5 Reed-Solomon for Downlink
Mission Ops	GND stations	MOC. Staffing Approach	Latencies	Communications Protocols	Error Correction, BERs
S¥	C&DH, ACS, PSE flight software	3-axis stablized ACS	MAP/ST-5 C&DH and PSE FSW heritage		
Flight	SS Config Descr:	Key s/w functions:	Development approach	Test approach	Support
RF Comm	Downlink data volumes 8 Mbps Downlink,2 kbps HSK Range tones -1Mbps crosslink	Bands, Gnd Stations X-Band, YHF, UHF	S/c antennas 0.6 M HGA, 6 omnis	Contacts 1-25 min contact/s/c/day	Ranging Solution Crosslink tones, DSN
	Power PC 603/750	20 Gbits	Single String 1 us relative timing accuracy	CpCI MIL-STD-1553	50 krads
C#DH	СРИ	Redundance	Data storage	Bus(ses)	
	Bus at 104.1 watts, MAP like 28 Vdc EPS. 202 partial eclipses assumed. Battery discharge during Com Transmitt Mode	282 efficent solar cells @ .467 M2 at 70 Deg C. 20 deg cosine angle.	Single axis solar array drive.	Single Saft 9 ah, 8 cell battery	MAP Like PSE
Power	Max. avg. load. Bus Yoltage:	Arrays, Cells	S/A Drives:	Energy storage, cycles:	PSE
	ST5 style cold gas	4 x 2H	64 m/s for 4 years	4.5 kg	1@10"d X 16"length, 16
Prop.	Prop. types	Thrusters	Delta-v's	Propellant quantities	Tanks
	Maintain S/C bus between -10C and 40C, propulsion system at 15C	Passive, heaters, thermostats, MLI, coatings	0.5 m2 with MS43G paint	10C	
Therm.	Requirements	Technologies	Radiators.	Heaters, Htr Pwr;	
	Cost	Control: +/- 2 deg Knowledge: +/- 1 deg	Three-Axis Stabilized with Momentum Bias	Star Tracker (1) Sun Sensor (1) Reaction Wheel (1)	Earth Pointing Sun Pointing Safehold (optional)
ACS	Driving Requirements	ACS type	Seasors	Actuators	ACS Modes:
	Triangle, composite		structure, comm antenna mount, deployable& articulate solar array		Cost - Copies 1-4 (ETU, Prototype, 2 flight units) - \$1.36M FY03 Copies 5-n - \$1.06M FY03
Mech	Structure, Mat'ls.	Payload Accommodations	Mechanisms	Yolume and CG	Comments

High Energy Transfer Concept, Baseline Cruise Phase Overview

Integrated Mission Design Center

Configuration overview

- Two microsats dedicated as stack controllers (A/B redundancy)
 - Stack controller microsats ON during the entire cruise
 - Star tracker FOV on side of stack: placement OK for cruise
 - Comm w/ ground thru omni antennas on side of stack: placement OK for cruise
- Bottom row microsats' batteries are pooled to power the Stack Propulsion Module

Timeline

- Dispersion correction 6 12 hrs after launch
- Orbit insertion burn L+5 to L+7 days
 - Biprop system heaters on a few hours before operations
 - Ground trajectory verification and telemetry check before burn
 - Firing via uplinked timed commands
- Jettison the Stack Propulsion Module
 - · Let it slowly drift away

High Energy Transfer Concept, Baseline Destack and Disperse Operations

- 24 hours DSN support required during destack and disperse ops
 - Two microsats (for redundancy) dedicated in each layer (6 microsats) as "layer controllers A/B"
- Destack
 - Destack all three (four) layers at the same time
 - Wait for layers to drift apart to a safe distance before any action is taken
 - Perform ranging and downlink it to ground
 - Ground to compute coordinates / attitudes / velocities and uplinks commands
 - Disperse all microsat in all three layers
 - Each microsats issues its own jettisoning command simultaneously
 - Wait for all microsats to drift apart to safe distances before any action taken
 - Perform ranging and downlink it all to the ground for every microsats
 - Ground to compute coordinates / attitudes / velocities and uplink fire commands for each microsat
- Microsat cold gas systems must be sized with sufficient authority to recover from worst case drifting apart
 - Assess max time durations before firings take place

High Energy Transfer Concept, Baseline One Microsat Mass Summary

SCIENCE PAYLOAD [kg]		
	<u>Actual</u>	Contingent
Payload	3.0	3.9
Total	3.0	3.9
S/C BUS SUBSYSTEMS. & STRUCTURE [kg]		
	<u>Actual</u>	Contingent
Mechanical	24.4	29.2
ACS	3.0	3.6
Thermal	2.0	2.4
Propulsion (4.5 kg cold gas, 3.5 kg plumbing)	7.0	8.4
Power	8.3	10.0
C&DH	9.7	11.6
RF Comm 1-3	25.0	30.0
RF Comm 4-16	23.0	27.6
Total (s/c 1-3)	79.4	95.2

High Energy Transfer Concept, Baseline Mission Mass Summary

Integrated Mission Design Center

TOTAL MASS w/ 16 Microsats [kg]		
	<u>Actual</u>	Contingent
PAYLOAD TOTAL	48.0	62.4
BUS SUBSYSTEMS DRY TOTAL	1243.8	1495.7
Observatory Stack Total Dry Mass	1380.8	1597.1
PROPELLANT	245.0	245.0
OBSERVATORY WET MASS	1625.8	1842.1
Launch Venicle capability to baseline orbit	1495.0	1495.0
Margin [kg]	-130.8	-347.1
Margin [%]	-8.7	
TOTAL MASS w/ 12 Microsats [kg]		
	<u>Actual</u>	Actual
PAYLOAD TOTAL	36.0	46.8
BUS SUBSYSTEMS DRY TOTAL	934.3	1124.8
Observatory Dry Mass	1045.3	1196.6
PROPELLANT	245.0	245.0
OBSERVATORY WET MASS	1290.3	1441.6
Launch Venicle capability to baseline orbit	1495.0	1495.0
Margin [kg]	204.7	53.4

System, p10

Final Version

28 August 2003 Competition Sensitive SIRA

High Energy Transfer Concept, Baseline First Microsat Bus Subsystems Cost

	<u>Actual</u>	w/ Cont.
Mechanical Hardware	0.1	0.2
Mechanical Labor	0.0	0.0
ACS Hardware	0.2	0.3
ACS Labor	0.0	0.0
Thermal Hardware	0.1	0.1
Thermal Labor	0.1	0.1
Propulsion Hardware	0.6	0.8
Propulsion Labor	1.4	1.8
Power Hardware	1.6	2.1
Power Labor	0.5	0.7
C&DH Hardware	1.8	2.3
C&DH Labor	2.9	3.8
TT&C Hardware	2.1	2.7
TT&C Labor	0.3	0.4
Flight Software Hardware Recurrent	0.1	0.1
Flight Software Labor Recurrent	0.1	0.1
Direct GSE (5% overhead on s/c hardware)	0.0	0.0
Spacecraft Bus Total	11.9	15.5

28 August 2003

SIRA

High Energy Transfer Concept, Baseline Mission w/ 16 S/C Total Cost

Integrated Mission Design Center

TOTAL COST w/ 16 microsats	200	3 \$'s
per SMAD Mass Prod Est. S= .85 [\$M]	<u>Acitulal</u>	w/ Cont.
PROJECT WANAGEWENT	6.6	7.3
PRE-LAUNCH INSTRUMENT TEAM SUPPORT	5.3	5.3
INSTRUWENTS TOTAL COST	excl.	excl.
16 SPACECRAFT BUS SUBSYSTEMS TOTAL COST	120.0	156.6
STACK PROPULSION MODULE TOTAL COST	1.1	1.4
FLIGHT SOFTWARE TOTAL COST	11.4	14.9
WISSION SYSTEMS ENGINEERING	3.9	4.9
ATLO & MISSION READINESS	20.8	26.2
LAUNCH VEHICLE	75.2	75.2
GROUND SYSTEM DEVELOPMENT	9.0	10.8
MISSION READINESS VERIFICATION	1.9	2.2
OPERATIONS OPERATIONS	5.7	6.8
MISSION TOTAL	260.8	311.5

System, p12

Final Version

High Energy Transfer Concept, Baseline Mission w/ 12 S/C Total Cost

Mission TOTAL COST w/ 12 microsats [\$M])3 \$'s
per SMAD Mass Prod Est. S=.85 [\$M]	Actual	w/ Cont.
PROJECT MANAGEMENT	6.6	7.3
PRE-LAUNCH INSTRUMENT TEAM SUPPORT	5.3	5.3
INSTRUMENTS TOTAL COST	excl.	excl.
12 SPACECRAFT BUS SUBSYSTEMS TOTAL COST	96.0	124.8
STACK PROPULSION MODULE TOTAL COST	1.1	1.4
FLIGHT SOFTWARE TOTAL COST	11.4	14.9
MISSION SYSTEMS ENGINEERING	3.9	4.9
ATLO & MISSION READINESS	20.8	26.2
LAUNCH VEHICLE	75.2	75.2
GROUND SYSTEM DEVELOPMENT	9.0	10.8
MISSION READINESS VERIFICATION	1.9	2.2
OPERATIONS .	5.7	6.8
MISSION TOTAL	236.8	279.7

Grassroots Costing Guidelines

Integrated Mission Design Center

Subsystem Hardware Costs Include

- Cost of all items and services purchased for the given Subsystem of the given Mission
 - All purchased components, materials, devices, etc.
 - All shipping costs, incoming inspection, and acceptance tests
- All specialized tools, manufacturing and lab supplies, test equipment specifically purchased for and charged to the given Mission
- Facility and services costs if used specifically for the given Subsystem of the given Mission
 - Such as subsystem level vibration test facility costs
- All specialized support services when specifically purchased for and charged to the given Mission
 - Examples: EMI verification of an in house electrical box by outside lab; Spectral characterization of an
 optical components by outside lab; Finite element analysis by outside agent of a structure designed in
 house
- The cost of all business travel directly related to acquire and manage the foregoing

Subsystem Labor Costs Include

- All direct subsystem production manpower
 - All the labor cost required to carry out all work for the given subsystem, that results in the subsystem product delivered to observatory/mission level I&T
 - Include the cost of analyses, design, validation, construction, subsystem testing, subsystem integration, subsystem verification
- All subsystem manpower that supports observatory/mission level I&T, launch operations, and in orbit checkout
 - Usually a dwindling number of key subsystem engineers
- All subsystem manpower that supports mission operations
 - · Usually a fairly low figure, if any at all
- The cost of all business travel directly related to carry out the foregoing

System, p14

Final Version

Orbit Trade

Integrated Mission Design Center

Low energy transfer

- Long (>230 days) cruise & associated costs
- Needs a hydrazine "cluster level" propulsion system w/ ~ 50m/s

High energy transfer w/ Lunar gravity assist

- Short (7-8 days) cruise
- Needs a byprop or solid "cluster level" propulsion system w/ ~ 500m/s

CONCLUSION

High energy transfer baselined

Insertion Config Trade

Integrated Mission Design Center

Individual insertion Pros

- Each microsat uses its own propulsion
 - No separate hardware item to build and test
- Cruise phase doesn't represent a distinctly separate mission phase
 - No cruise phase: controllers, power configuration, thermal configuration, and associated software, verification, etc.

Individual insertion Cons

- Composite result of uncertainties: possibly excessive or irrecoverable dispersion of microsats
 - Uncertainties / differences in propulsion and/or gravity assist maneuvers,
 - Varying cruise phase disturbances

CONCLUSION

Clustered (all microsats under one propulsion) insertion baselined

Mother-ship Trade

Integrated Mission Design Center

Standalone mother-ship PROS

- Easy dispersing and ranging to keep satellites on surface of sphere
- Acts as central time reference broadcast
- Acts as central RF comm relay to/from ground
- Allows microsats to have small (S band?) comm subsystems

Standalone mother-ship CONS

- Must be fully redundant, fully capable s/c
- Not a cost effective solution: ROM estimate > ~\$60M

CONCLUSION

- No mother-ship used, microsats simply clamped to each other
- A "stack propulsion module" is clamped to the bottom of the stack

Structure Layout Trade

Integrated Mission Design Center

Orbcomm-like layout

- Solar arrays are hidden during cruise phase
- Orbcomm-like layout well adapted to Pegasus not Delta

Brick-like microsats in a flat side-by-side wall-like layout

- Stack is non spinning during cruise phase, s/a's sun pointing
- Stack propulsion unit at bottom of stack
- Advantage is that all microsats solar arrays see the sun at all times.
 - Either microsat can run in cruise phase solely on it's own solar cells, no interconnected power system / batteries required.
- Front panel area available for s/a's is limited by fairing
 - 1.64m x 1.64m base area x 5.1 m height allows for .41m x 1.26 m s/a panels on each microsat

Triangle base for individual microsats, clustered into hexagons

- Fit nicely in fairing, forming a hexagon base
- Spinning through the cruise phase
- Interconnected power system / batteries required

CONCLUSION

Triangle base microsats selected

Microsat Attitude/Ops Trade

Integrated Mission Design Center

Baseline

- 3-axis stabilized stabilized
- Fixed-mounted high gain antenna always faces earth
- Articulated solar array
- No reorienting satellite between data-taking and data-dump attitudes

Option 1

- 3-axis stabilized
- Fixed-mounted high gain antenna
- Fixed-mounted solar array
- Satellite reorienting each day between data-taking and data-dump attitudes

Option 2

- Slow spinner (<5° per second, which is <0.8rpm)
- Fixed-mounted antenna always pointing to earth
- Solar arrays on deployed and fixed panels
- No reorienting satellite between data-taking and data-dump attitudes

High Energy Transfer Concept, Option 1 Resources Summary

Integrated	Mission	Design	Center
------------	---------	--------	--------

SCIENCE PAYLOAD [kg]		
<u></u>		
	<u>Actual</u>	Contingent
Payload	3.0	3.8
Total	3.0	3.8
S/C BUS SUBSYSTEMS. & STRUCTURE [kg]		
	Actual	Contingent
Mechanical	11.7	14.7
ACS	5.0	6.0
Thermal	2.0	2.4
Propulsion	7.0	8.4
Power	9.5	11.4
C&DH	9.7	11.6
RF Comm	23.0	27.6
RF Comm 4-16	21.0	27.3
Total	67.9	82.1
Biprop Stack Propulsion System Dry Mass	75.0	25.0
	, 0.0	25.0
	245.0	245.0
Biprop Stack Propulsion System		
Biprop Stack Propulsion System		
Biprop Stack Propulsion System		
Biprop Stack Propulsion System	245.0	245.0
Biprop Stack Propulsion System TOTAL MASS w/ 14 Microsats [kg]	245.0 Actual	245.0 Contingent
Biprop Stack Propulsion System TOTAL MASS w/ 14 Microsats [kg] PAYLOAD TOTAL	245.0 Actual 42.0	245.0 Contingent 52.5
Biprop Stack Propulsion System TOTAL MASS w/ 14 Microsats [kg] PAYLOAD TOTAL BUS SUBSYSTEMS DRY TOTAL	245.0 Actual 42.0 927.2	245.0 Contingent 52.5 1125.6
Biprop Stack Propulsion System TOTAL MASS w/ 14 Microsats [kg] PAYLOAD TOTAL BUS SUBSYSTEMS DRY TOTAL Observatory Dry Mass	245.0 Actual 42.0 927.2 1058.2	245.0 Contingent 52.5 1125.6 1217.1
Biprop Stack Propulsion System TOTAL MASS w/ 14 Microsats [kg] PAYLOAD TOTAL BUS SUBSYSTEMS DRY TOTAL Observatory Dry Mass PROPELLANT	245.0 Actual 42.0 927.2 1058.2 245.0	245.0 Contingent 52.5 1125.6 1217.1 245.0
Biprop Stack Propulsion System TOTAL MASS w/ 14 Microsats [kg] PAYLOAD TOTAL BUS SUBSYSTEMS DRY TOTAL Observatory Dry Mass PROPELLANT	245.0 Actual 42.0 927.2 1058.2 245.0	245.0 Contingent 52.5 1125.6 1217.1 245.0
Biprop Stack Propulsion System TOTAL MASS w/ 14 Microsats [kg] PAYLOAD TOTAL BUS SUBSYSTEMS DRY TOTAL Observatory Dry Mass PROPELLANT OBSERVATORY WET MASS	Actual 42.0 927.2 1058.2 245.0	245.0 Contingent 52.5 1125.6 1217.1 245.0 1462.1

Configuration overview

- 3-axis stabilized
- Fixed-mounted high gain antenna
- Fixed-mounted solar array
- Satellite reorienting each day between data-taking and data-dump attitudes
- Mass only slightly less than Baseline Option
- Costs nearly identical to Baseline Option

CONCLUSION

- May accommodate 14 microsats
- Option not baselined
 - Dismissed based on the risk and complications associated with w/ RF Comm operations
 - This option is a close runner-up to the Baseline, and could just as well be flown

High Energy Transfer Concept, Option 1 First Microsat Bus Subsystems Cost

	<u>Actual</u>	w/ Cont.
Mechanical Hardware	0.1	0.1
Mechanical Labor	0.0	0.0
ACS Hardware	0.3	0.3
ACS Labor	0.0	0.0
Thermal Hardware	0.1	0.1
Thermal Labor	0.1	0.1
Propulsion Hardware	0.0	0.0
Propulsion Labor	0.0	0.0
Power Hardware	1.7	2.2
Power Labor	0.5	0.7
C&DH Hardware	1.8	2.3
C&DH Labor	2.9	3.8
TT&C Hardware	2.0	2.5
TT&C Labor	0.3	0.4
Flight Software Hardware Recurrent	0.1	0.1
Flight Software Labor Recurrent	0.1	0.1
Direct GSE (5% overhead on s/c hardware)	0.0	0.0
Spacecraft Bus Total	9.8	12.8

High Energy Transfer Concept, Option 1 Mission Total Cost w/ 16 S/C

per SMAD Mass Prod Est. S=.85 [\$M]	<u>Actual</u>	w/ Cont.
PROJECT MANAGEMENT	6.6	7.3
PRE-LAUNCH INSTRUMENT TEAM SUPPORT	5.3	5.3
INSTRUMENTS TOTAL COST	excl.	excl.
16 SPACECRAFT BUS SUBSYSTEMS TOTAL COST	100.0	130.0
STACK PROPULSION MODULE TOTAL COST	1.0	1.3
FLIGHT SOFTWARE NR TOTAL COST	11.4	14.9
MISSION SYSTEMS ENGINEERING	3.9	4.9
ATLO & MISSION READINESS	20.8	26.2
LAUNCH VEHICLE	75.2	75.2
GROUND SYSTEM DEVELOPMENT	9.0	10.8
MISSION READINESS VERIFICATION	1.9	2.3
OPERATIONS OPERATIONS	5.8	6.9
MISSION TOTAL	240.9	285.0

High Energy Transfer Concept, Option 1 Mission Total Cost w/ 14 S/C

per SMAD Mass Prod Est. S=.85 [\$M]	<u>Actual</u>	w/ Cont.
PROJECT MANAGEMENT	6.6	7.3
PRE-LAUNCH INSTRUMENT TEAM SUPPORT	5.3	5.3
INSTRUMENTS TOTAL COST	excl.	excl.
14 SPACECRAFT BUS SUBSYSTEMS TOTAL COST	90.0	117.0
STACK PROPULSION MODULE TOTAL COST	1.0	1.3
FLIGHT SOFTWARE TOTAL COST	11.4	14.9
MISSION SYSTEMS ENGINEERING	3.9	4.9
ATLO & MISSION READINESS	20.8	26.2
LAUNCH VEHICLE	75.2	75.2
GROUND SYSTEM DEVELOPMENT	9.0	10.8
MISSION READINESS VERIFICATION	1.9	2.3
OPERATIONS OPERATIONS	5.8	6.9
MISSION TOTAL	230.9	272.0

High Energy Transfer Concept, Option 2 Resources Summary

Integrated N	Mission Desi	gn Center
--------------	--------------	-----------

SCIENCE PAYLOAD [kg]		
	Actual	Contingent
Payload	3.0	3.8
Total	3.0	3.8
S/C BUS SUBSYSTEMS. & STRUCTURE [kg]		
	Actual	Contingent
Mechanical	14.9	17.9
ACS	2.0	2.4
Thermal	2.0	2.4
Propulsion	10.0	12.0
Power	11.3	13.6
C&DH	12.7	15.2
RF Comm	25.0	30.0
RF Comm 4-16	23.0	
Total	77.9	93.5
Biprop Stack Propulsion System Dry Mass	75.0	25.0
Biprop Stack Propulsion System	245.0	245.0
TOTAL MASS w/ 13 Microsats [kg]		
10 17 10 Minor William To Mile 1030 13 [rig]	Actual	Contingent
PAYLOAD TOTAL	39.0	48.8
BUS SUBSYSTEMS DRY TOTAL	991.2	1193.9
Observatory Dry Mass	1030.2	1242.6
PROPELLANT	245.0	245.0
OBSERVATORY WET MASS	1275.2	1487.6
OBSERVATORY WET MINOS	1270.2	107.0
Delta 2925H-10 capability	1495.0	1495.0
Margin [kg]	219.8	7.4
Margin [%]	14.7	0.5

Configuration overview

- Slow spinner (<5° per second, which is <0.8rpm)
- Fixed-mounted antenna always pointing to earth
- Solar arrays on deployed and fixed panels
- No reorienting satellite between data-taking and data-dump attitudes
- Mass only slightly less than with the Baseline Option
- Costs nearly identical to Baseline Option

CONCLUSION

- May accommodate 14 microsats
- Option not baselined
 - Complications w/ data reduction (non-parallel antennas)
 - Less than optimal s/a utilization

High Energy Transfer Concept, Option 2 First Microsat Bus Subsystems Cost

SPACECRAFT BUS SUBSYSTEMS* [\$M]		
	Actual	w/ Cont.
Mechanical Non-Recurrent HW	0.1	0.1
Mechanical Recurrent HW	0.0	0.0
ACS Non-Recurrent HW	0.2	0.2
ACS Recurrent HW	0.0	0.0
Thermal Non-Recurrent HW	0.1	0.1
Thermal Recurrent HW	0.1	0.1
Propulsion Non-Recurrent HW	0.0	0.0
Propulsion Recurrent HW	0.0	0.0
Power Non-Recurrent HW	0.0	0.0
Power Recurrent HW	0.0	0.0
C&DH Non-Recurrent HW	1.2	1.4
C&DH Recurrent HW	2.9	3.5
RF Comm Non-Recurrent HW	0.0	0.0
RF Comm Recurrent HW	0.0	0.0
Flt S/W Non-Recurrent HW	0.6	0.7
Flt S/W Recurrent HW	9.9	11.9
Direct GSE (5% overhead on s/c hardware)	0.0	0.0
Spacecraft Bus Tota	15.0	18.0

ACS Trade

Integrated Mission Design Center

Earth sensor

- Earth is a at 1.4 deg visible (part of orbit) and infrared (entire orbit) source
- Unusable during portion of the orbit when the Earth is near the Sun (drowned out)
- Significant problem with Lunar disturbances

Radar receive signal strength peak-up

- +/-1 degree accuracy may be achievable when Earth and Sun vectors are at 90°, but error increases dramatically when Earth and Sun vectors are near coaligned
- Risky scheme due to random misc. radar sources on Earth
- Difficulty finding Earth initially

Star Sensor

- One single star tracker is sufficient even w/o any other fine sensor
- Only disadvantage is relatively high cost (~\$150K)

RF Comm Trade

Integrated Mission Design Center

Trade elements:

- X band vs. Ka band
- Dish antenna / phased arrays vs. switched omni-s

Conclusion

- Mission not worth doing with "omni" range data rates (kbps)
- Cut data rate a fraction of its intended original
- Reduced orbit radius to 500,000 km
- 8 Mbps downlink / 100 bps uplink (10 W on ground) chosen to 14 m antenna
- Adjust duty cycle to fill data rate
- Keep 2 bits sampling

Stack Propulsion Trade

Integrated Mission Design Center

Star Motor

- Star 24 is appropriate for high energy transfer orbit injection, but is not suitable for LV dispersion correction, so hydrazine system for ~10 m/s still needed
- Cost is on same order (~\$1M) as custom built bipropellant system
- Overall mass (Isp = 290) comparable to bipropellant (Isp = 320)

Name	motor	Lenght	Diam. m	Mass tons	Thrust s.l.	Isp s.l.	Thrust vac	Isp vac	Propellant	Bum time	Flow rate	Total Imp.	
		m				kN	N*s/kg	kN	N*s/kg	tons	s	t/s	kN*s
star-13A (Burner II)	TE-M-516		0,34	0,0381				5,87	2810	0,033	15,9	0,0021	93,6
Star-138	TE-M-763			0,0474				7,60	2802	0,041	15,2	0,0027	115,8
Star-17	TE-M-479		0,44	0,0790				10,94	2807	0,070	18,1	0,0039	197,9
Star-17A	TE-M-521-5			0,11261				16,01	2812	0,112	19,9	0,0057	319,4
Star-20 (Altair IIIA)	TE-M-640-1		0,50	0,3009				27,13	2810	0,273	28,4	0,0097	771,8
Star-20A	TE-M-640-3			0,3143					2863	0,286			822,5
Star-208	TE-M-640-4			0,3067			24,47	2835	0,274	31,7	0,0086	776,5	
Star-24	TE-M-604		0,62	0,2182				18,55	2774	0,200	30,2	0,0067	560,5
Star-24A	TE-M604-2			0,1980				2769	0,179			500,0	
Star-248	TE-M6043			0,2190				2774	0,200			561,5	
Star-24C	TE-M604-4			0,2394				21,46	2768	0,219	28,6	0,0078	613,9
Star-25	TE-M-184-3		0,64	0,2360					2354	0,217			599,3
Star-26	TE-M-442		0,66	0,2682	-			33,36	2658	0,231	18,5	0,0125	616,1
Star-26B (Burner IIA)	TE-M-442-1			0,2612				34,63	2664	0,238	18,3	0,0130	635,0
Star-26C	TE-M-442-2			0,2636				35,01	2668	0,232	17,8	0,0131	621,9
Star-27	TE-M-616		0,69	0,3612				26,73	2824	0,334			951,4
Star-27A	TE-M-616-1			0,3363					2821	0,309			879,8
Star-278	TE-M-616-4			0,3447					2826	0,317			905,4
Star-27C	TE-M-616-5			0,3327					2819	0,305			868,7
Star-27D	TE-M-616-8			0,3320					2819	0,306			869,8
Star-27E	TE-M-616-9			0,3308					2818	0,305			866,2

CONCLUSION

· Bipropellant Stack Propulsion Module baselined

System, p28

Final Version

Risk & Technology

		Thormal	Dropulaiae	Electr. Power	C&DH	Mississ Ass
	<u>Mechanical</u>	<u>Thermal</u>	<u>Propulsion</u>			Mission Ops
	Deployments			1. Lilon cell Failure	No Separate Safehold	1. Failure of only Ground
DIOK ITEM					Processor	Station
RISK ITEM						2. 24 Hour Data Latency
						Requirement Cannot Be
					_	Achieved
	green			#1 Green- Lilon cell open	Green	1. Red
				circuit will effect Com, Com		1. Red
LIKELIHOOD				could take longer certailing		
				science also multiple		
				spacecraft, so we have		
				spacecraft redundancy.		
	yellow			#1 Green we have solar array	Red	1. Yellow
IMPACT				only mode, and multiple		2. Yellow
				spacecrafts.		
	stack/stack-loss of			#1 Cost, Mass will go up and	Spaceraft could lose power	1. One or more days worth of
	microsats in stack,			schedual will go out.		science will be lost
CONSEQUENCES	microsat/microsat-loss of					2. 24 hour data latency
	microsat, solar array-loss or					requirement cannot be
	minimal use of microsat					achieved
	re-iniate separation sys			#1 solar array only mode	Try to recover spacecraft	1. DSN can be used
FALLBACK PLAN				reduce Com Power and		2. None
				multiple spacecraft.		
				#1 Less data or use redundant		1. Added cost and scheduling
IMPACT				spacecraft.		difficulty
						2. N/A
				#1 select a good Lilon cells.	Add safehold processor	1. Add a second Ground
MITIGATION						Station
MITIGATION						2. Add a second Ground
						Station
					Increased mass, power, and	1. Eliminates a Single Point o
					cost	Failure
IMPACT						2. Allows for the ability to hav
						a contact every 12 hours
IBL	6	8		7 to 8	6	5. 8-9

Smaller RSDO Busses

Integrated Mission Design Center

Surrey SNAP

Bus dry mass 6.5 kg, payload mass max 3.0 kg, payload power 2.5 W

Orbital Picostar

Bus dry mass 52.7 kg, payload mass max 20 kg, payload power 10 W

Surrey Microsat 70

Bus dry mass 44.7 kg, payload mass max 23.8 kg, payload power 18 W

Orbital Microstar

Bus dry mass 58.6 kg, payload mass max 68 kg, payload power 50 W

Orbital Ministar

Bus dry mass 100 kg, payload mass max 25 kg, payload power 25 W

TRW T100

Bus dry mass 184.1 kg, payload mass max 36 kg, payload power 25 W

Spectrum Astro SA 200B

Bus dry mass 90 kg, payload mass max 100 kg, payload power 86 W

Spectrum Astro SA 200S

Bus dry mass 129 kg, payload mass max 200 kg, payload power 66 W

Ball BCP 600

Bus dry mass 203 kg, payload mass max 90 kg, payload power 125 W

Surrey Minisat 400

Bus dry mass 206.7 kg, payload mass max 200 kg, payload power 100 W

Payload Power specified is at OAV EOL

BCP 600

Bigger RSDO Busses

Integrated Mission Design Center

TRW T200A

Bus dry mass 242.4 kg, payload mass max 75 kg, payload power 94 W

TRW T200B

Bus dry mass 278 kg, payload mass max 95 kg, payload power 175 W

Swales EO-SB

Bus dry mass 332 kg, payload mass max 236 kg, payload power 256 W

Orbital StarBus

Bus dry mass 566 kg, payload mass max 200 kg, payload power 550 W

Ball BCP 2000

Bus dry mass 608 kg, payload mass max 380 kg, payload power 730 W

Lockheed Martin LM 900

Bus dry mass 492 kg, payload mass max 470 kg, payload power 344 W

Spectrum Astro SA 200HP

Bus dry mass 354 kg, payload mass max 666 kg, payload power 650 W

Orbital Midstar

Bus dry mass 580 kg, payload mass max 780 kg, payload power 327 W

Astrium Flexbus

Bus dry mass TBD kg, payload mass max TBD kg, payload power TBD W

Orbital Leostar –2

Bus dry mass TBD kg, payload mass max TBD kg, payload power TBD W

TRW T310

Bus dry mass TBD kg, payload mass max TBD kg, payload power TBD W

Payload Power specified is at OAV EOL

Midstar

SA200HP -DS1

Supporting Data

Integrated Mission Design Center

Supporting spreadsheets / tools

- Mission summary and quick orbit analysis tool:
 - "System_Sheets.xls"
- Typical NASA mission's complete Work Breakdown Structure:
 - Generic_WBS_Template_by_GSFC_NOO.doc

Useful web sites

- Access to Space
 - http://accesstospace.gsfc.nasa.gov/ provides launch vehicle performance information and other useful design data.
- Rapid Spacecraft Development Office
 - http://rsdo.gsfc.nasa.gov/ provides spacecraft bus studies and procurement services.
- Space Environment Information System SPENVIS
 - http://www.spenvis.oma.be/spenvis/

System Summary

- Customer Contact: Robert MacDowall, Code 695
- GSFC Contact: Gabe Karpati, 6-4468, Gabriel.Karpati@nasa.gov
- Mission name and Acronym: Solar Imager Radio Array (SIRA)
- Authority to Proceed (ATP) Date: 10/2005
- Earliest Mission Launch Date: 10/2009
- Transit Cruise Time (months): n/a
- Mission Design Life (days): 2/4 years
- Length of Spacecraft Phase C/D (months): 48
- Bus Technology Readiness Level (overall): 5-6
- S/C Bus management build: RSDO or TBD
- Mission Liftoff Mass: ~300 kg
- Observatory Orbit Average Power: 300 W

