

Solar Imaging Radio Array (SIRA)

Data Systems
Frank Stocklin
Ron Vento

August 28, 2003

Competetion Sensitive)

Topics

- Overview
- Driving Requirements and Assumptions
- Selected Configuration and Rationale
- Frequency Plan
- Launch & Early Orbit Phase (LEOP)
- An Operational Approach
- Signal Margin Summary
- Cost Summaries
- X Band Rationale
- Commercial Ground Option
- Risk Assessment
- Backup

Overview

- Use X-Band for Command/Telemetry
 - 14m ground terminal in Greenbank W VA (NRAO)
 - Sequentially dump each of 16 Microsats for 25 minutes by either on-board stored commands or ground command @ 8 Mbps
- Use DSN for Launch Phase Support
- Use UHF for intersatellite ranging
- Use VHF for intersatellite timing

Driving Requirements & Assumptions

- Launch: October 1, 2009
- Mission Life: 2 year required, 4 year goal
- Orbit:
 - Distant Retrograde Orbit (DRO) at ~500,000 Km from Earth
 - Orbit inclination relative to the ecliptic should be approx 20 degrees
- Pointing Type: 3-axis stabilized
- Launch Vehicle: Delta II
- 16 Microsats in a spherical 25 Km constellation
- Intersatellite ranging & timing
 - Ranging at 3m accuracy
 - Timing accuracy at 5 microsec
- Maximize the amount of science data collected
- Housekeeping rate = 2 Kbps
- CCSDS @ 15%

Driving Requirements & Assumptions

- Data storage = 20 Gbits / spacecraft /(2 days)
- Latency: 24 hours from collection to completion of level zero processing
- BER = 10-5
- 16 identical spacecraft
 - Relative timing to 5 microsec between all s/c
 - Knowledge of Microsat positions to 3 m
- Power/Weight/Cost are critical
- Limited redundancy
- Dumps commanded from ground
- Infrequent commanding
- Assumed to be Space Science mission (vs Earth Science)

Selected Configuration & Rationale

Integrated Mission Design Center

Each of 16 Microsat within a sphere of 25 km will collect data for 24 hours

- Each Microsat will dump data to a ground terminal in Green Bank, West Virginia, sequentially at the same frequency for approx 25 minutes each
- Ranging for each Microsat with the ground will be done for 5 minutes every 10 days with the DSN at X Band

The total amount (all 16 Microsats) of science data collected will be 20 Gbytes/day

- Instrument Data Collection Rates: 1.92 Mbps average (over 24 hours less 25 minutes when dumping)
- Data Rate Per Microsat: ~120 kbps
- Merged with housekeeping at 2 kbps
- CCSDS overhead of 15%
- Reed-Solomon encoded

X-Band will be used for command & telemetry via a HGA for science dumps

- X-Band transponders at 8 watts RF
- 0.6 M fixed mounted HGA
- Spacecraft will always be pointed so that the HGA is pointed toward the ground terminal
- Telemetry rate at 8 Mbps
- 25 minutes/day needed to dump each Microsat
- Command rate at 2 Kbps with 0.01 watts of power

Selected Configuration & Rationale

- X-Band backup for emergencies thru Omni's
 - Telemetry at 4 Kbps/Command < 1 bps
 - Command at 2 Kbps from the DSN 34m
- Ranging between the 16 Microsats will be done via a UHF tone ranging system
 - Tone frequencies at approx 0.35,2.83,39.68 & 277.78 Khz
 - All Microsats will have the capability to transmit and receive a single carrier frequency
 - This system will use 0.1 watt of RF power with omni antennas
- 1 Mbps timing signal will be transmitted via VHF from a Master Microsat to the others for relative timing correlation between the Microsats
 - Three Microsats will be designated as Masters (for redundancy) with the ability to transmit and receive the same frequency to the other 15 Microsats

Selected Configuration & Rationale

Selected Configuration (3 Masters)

Selected Configuration (13 Slaves)

Frequency Plan

Masters (3)	<u>Slaves (13)</u>
T ₂ VHF Timing (137 Mhz)	R ₂ VHF Timing
R ₂ VHF Timing (137 Mhz)	
T ₁ UHF Ranging (900 Mhz) ————	R ₁ UHF Ranging
R₁ UHF Ranging ← — —	T₁ UHF Ranging
X Band (7800/8475 Mhz)	X Band (7800/8475 Mhz)

Launch & Early Orbit Phase

- Continuous DSN support for X Band TT &C for first 12 hrs
- Intermittent DSN support during trans -Lunar phase (approx 2 days)
- Continuous support during Lunar fly-by for 12 hrs
- Coast phase support for approx 2 days for 8 hrs/day
- Correction burn support for approx 8 hrs continuous support
- Final coast phase for 2 days with intermittent support
- Final insertion burn support for 1 day
- To accomplish this it is assumed that all Microsat receivers are on & a single transmitter will be selected with proper orientation to Earth

An Operational Approach

Integrated Mission Design Center

Science data dumps

- All 16 Microsats will dump stored data every day
 - · Each Microsat will be commanded on/off by either stored or ground commands
 - 25 minutes/Microsat sequentially via X Band to 14m Greenbank W VA ground terminal
 - Total estimated time is 7 hrs
 - Total visibility is approx 8-10 hrs (assumes no lunar eclipses)
 - Data will be stored on -site & sent at reduced rates over dedicated NISN circuits to GSFC

Timing

- VHF intersatellite link from Master to Slave Microsats
- Uses 1 Mbps signal

Intersatellite ranging

- UHF with range tones
- Each Microsat will perform ranging to other 15 Microsats simultaneosly
- Process repeated for all remaining Microsats

DSN ranging to constellation

- Uses X/X Band with 34m
- Each Microsat will be commanded into the transponder mode to perform coherent ranging
- Each Microsat will be done sequentially for approx 5 minutes & then commanded into transceiver mode

Signal Margins

Mode	Data Rate	Margin (dB)	Comments
Ground 14 M X-Band Downlink	8 MBPS	3.1	HGA
Ground 14 M X-Band Uplink (0.01 Watt)	2 Kbps	4.3	HGA
Ground 34 M DSN (5 KW)	2 Kbps ranging	12.5 positive	Emergencies Every 10 days
Ground 14 M X-Band Downlink	4 Kbps	2.8	Omni
VHF Crosslink	1 Mbps	4.0	Omni-Omni

Component Power/Mass/Cost Summary

Component	Power (peak/avg)	Mass	Cost
X -Band Transponder	40/9 watts	4 Kg	\$1000 K
X-Band Omni antenna (2)		2 Kg	\$100 K
X-band HGA		5 Kg	\$400 K
VHF (2) & UHF(2) Omnis		4 Kg	\$200 K
VHF Xmit/Rx (3 Microsats)	9/8	3 Kg	\$300 K
VHF receiver (13 Microsats)	8	1 Kg	\$150 K
UHF Transceiver	9/8	3 Kg	\$300 K
Hybrids(3), Diplexer Cabling and switches		4 Kg	\$300 K
Total	58/25 watts	25 Kg (3 s/c) 23 Kg (13 s/c)	\$2.1 M (3 Microsats) \$1.95 M (13 Microsats)
Total (16 Microsats)		374 Kg	\$31.65 M

Ground Station Costs

- Total costs: \$3.6/4.4M
- Engineering mods to existing 14m = \$2.8M
 - Uplink command capability = \$300K
 - Downlink telemetry capability = \$2.5M
 - Includes redundant receive H/W
 - Includes RAID storage
 - Includes workstation & associated S/W
 - General refurbishment
 - Assumes all existing infrastructure (power etc) is available
- M&O 2/4 years for 14m
 - 2 myrs @ 150K= \$600/1200K
- DSN costs = \$240/380K
 - Includes 5 min ranging contact/10 days/Microsat & pre/post setup
 - Assumes that all 16 Microsats will do ranging sequentially within 1.5 hrs
 - Includes launch and early orbit costs

Total Mission Costs 2/4 years

- Total mission costs for 2/4 years = \$35.2/\$36.0M
 - Refurbishing/augmenting existing 14m antenna
 - Only recurring M&O costs assumed for 1 shift operation
 - Costs based on 2003 dollars
 - Does not include Mission Operations/NISN costs
 - Includes 5 min ranging contact/10 days/Microsat & pre/post setup
 - Assumes that all 16 Microsats will do ranging sequentially within 1.5 hrs

Rationale for X-Band Design

Integrated Mission Design Center

S-Band design:

- Would require more Microsat EIRP increasing power requirements
- Would limit the downlink data rate to 5 Mbps due to S-Band channel allocations
- Would double the ground station costs due to increased support necessary

Ka-Band design:

- Would require X/Ka transponders at an additional mission cost of ~\$8 M
- Would incur DSN costs of \$2/\$4 M (Assuming a data rate of 100Mbps)
- Would require new Ka ground infrastructure (DSN considering adding Ka capability at a cost of \$20 M)
- Advantages of Ka if the infrastructure existed:
 - Increased data rate which would mean more science data.
 - Smaller power requirement on Microsat (~25 watts less)

Commercial Ground Station Option

Integrated Mission Design Center

- Total mission cost is \$5.5/\$8.7 M for 2/4 years
- Commercial ground station cost \$3.25/\$6.25 for 2/4 years**
 - Based on \$600/hour for 7 hours/day
 - Includes start-up cost of \$250 K
- Commercial ground stations do not have X-Band uplink
 - Estimated cost to upgrade two stations is \$2 M
- Commercial ground stations do not have X-Band ranging
 - DSN ranging is still required at a cost of \$240/480 K

** Cost savings may be realized by sharing the use of the 11 meter antenna at Berkeley

Risk Assessments (X Band System Failure)

- X Band system failure-low risk for single Microsat
 - If transponder fails on one Microsat that Microsat is no longer any good
- Impact to mission is very low
 - Mission can be successful with less than 16 Microsats
- No mitigation is required

Risk Assessments (failure of ground terminal)

- Failure of ground station is medium during the 4 year timeframe
- Mission impact is loss of mission
- Fall back plan is to use the DSN or a combination of the DSN and commercial sites
- Mitigation is to build/lease a second ground station or do planning before launch to ensure backup availability.

Risk Assessments (failure of Microsats)

- Failure of three master Microsats is low
- Mission impact is failure of mission
- No fallback plan
- Mitigation is to build more master Microsats

Risk Assessments (Loss of timing capability)

- Loss of timing is low risk for single Microsat
- Impact to mission is low due to 16 Microsats
- Mitigation has been designed in by designing 3 Master Microsats

Risk Assessments (Loss of Ranging capability)

- Loss of ranging is low risk for single Microsat
- Impact to mission is low due to 16 Microsats
- There is no fallback or mitigation plan

Options 1 & 2

Integrated Mission Design Center

No change to design if either Options 1 or 2 are selected.

Back-Up Charts

Integrated Mission Design Center

Signal Margin Calculations

X-Band 8Mbps Downlink HGA

X-Band 4 Kbps Downlink Omni

X-Band 100 bps Uplink HGA

X-Band 100bps Uplink Omni

UHF crosslink

SIRA X-Band 14 M Downlink HGA (8 Mbps)

BER: 1.00E-05

Integration** Design Center
GSFC C.L.A.S.S. ANALYSIS #1 DATE TIME: 8/26/3 15:40:19 PERFORMED BY: R. VENTO

Center

LINKID: SIRA

FREQUENCY: 8480.0 MHz RANGE: 500000.0 km POLARIZATION: RHCP

MODULATION: QPSK

I CHANNEL Q CHANNEL

DATA RATE: 4000.000 kbps DATA RATE: 4000.000 kbps CODING: RS ENCODED CODING: RS ENCODED

14 meter ground at 100 deg 0.6M S/C antenna

BER: 1.00E-05

PARAMETER	VALUE	REMARKS
01. USER SPACECRAFT TRANSMITTER POWER - dBW	9.03	NOTE A; 8.0 WATTS
02. USER SPACECRAFT PASSIVE LOSS - dB	2.00	NOTE A
03. USER SPACECRAFT ANTENNA GAIN - dBi	31.94	NOTE A
04. USER SPACECRAFT POINTING LOSS - dB	0.50	NOTE A
05. USER SPACECRAFT EIRP - dBWi	38.47	1 - 2 + 3 - 4
06. POLARIZATION LOSS - dB	0.30	NOTE A
07. FREE SPACE LOSS - dB	224.99	NOTE B
08. ATMOSPHERIC LOSS - dB	0.23	NOTE B; EL: 10.0 DEG
09. RAIN ATTENUATION - dB	0.54	NOTE B; ITU MODEL; EXC: 1.00%
		RRATE .01%: 49.07 mm/hr; RHGT: 4.2 km
10. MULTIPATH LOSS - dB	0.00	NOTE A
11. GROUND STATION ANTENNA GAIN - dBi	59.30	NOTE B; 14.0 M, EFF: 55.0%
12. GROUND STATION PASSIVE LOSS - dB	0.00	NOTE A
13. GROUND STATION POINTING LOSS - dB	0.00	NOTE A
14. SYSTEM NOISE TEMPERATURE - dB-DEGREES-K		NOTE A
15. GROUND STATION G/T - dB/DEGREES-K	39.30	11 - 12 - 13 - 14
16. BOLTZMANN'S CONSTANT - dBW/(Hz*K)	-228.60	CONSTANT
17. RECEIVED CARRIER TO NOISE DENSITY - dB/Hz	80.31	- 6 - 7 - 8 - 9 - 10 + 15 - 16
		Q CHANNEL
18. I-O CHANNEL POWER SPLIT LOSS - dB		3.01 NOTE B; 1.00 TO 1.00
19. MODULATION LOSS - dB	0.00	0.00 NOTE A
20. DATA RATE - dB-bps		66.02 NOTE A
21. DIFFERENTIAL ENCODING/DECODING LOSS - dB		
22. USER CONSTRAINT LOSS - dB		0.00 NOTE A
23. RECEIVED Eb/No - dB		11.28 17 - 18 - 19 - 20 - 21 - 22
24. IMPLEMENTATION LOSS - dB	2.00	2.00 NOTE A
25. REQUIRED Eb/No - dB	6.17	6.17 I: NOTE B; Q: NOTE B
26. REOUIRED PERFORMANCE MARGIN - dB		0.00 NOTE A
27. MARGIN - dB		3.11 23 - 24 - 25 - 26

NOTE A: PARAMETER VALUE FROM USER PROJECT - SUBJECT TO CHANGE

SIRA X-Band 14 M Downlink Omni (4 Kbps)

Integrated Mission Design Center

*** DOWNLINK MARGIN CALCULATION***

GSFC C.L.A.S.S. ANALYSIS #1 DATE & TIME: 8/27/ 3 10: 4:30 PERFORMED BY: R. VENTO LINKID: SIRA

FREQUENCY: 8480.0 MHz RANGE: 500000.0 km

MODULATION: BPSK

DATA RATE: 4.000 kbps

CODING: RATE 1/2 WITH RS ENCODING

BER: 1.00E-05

14 meter antenna at 100 deg

PARAMETER	VALUE	REMARKS
01. USER SPACECRAFT TRANSMITTER POWER - dBW	9.03	NOTE A; 8.0 WATTS
02. USER SPACECRAFT PASSIVE LOSS - dB	4.00	NOTE A
03. USER SPACECRAFT ANTENNA GAIN - dBi	-3.00	NOTE A
04. USER SPACECRAFT POINTING LOSS - dB	0.00	NOTE A
05. USER SPACECRAFT EIRP - dBWi	2.03	1 - 2 + 3 - 4
06. POLARIZATION LOSS - dB	0.50	NOTE A
07. FREE SPACE LOSS - dB	224.99	NOTE B
08. ATMOSPHERIC LOSS - dB	0.23	NOTE B; EL: 10.0 DEG
09. RAIN ATTENUATION - dB	0.54	NOTE A
10. MULTIPATH LOSS - dB	0.00	NOTE A
11. GROUND STATION ANTENNA GAIN - dBi	59.30	NOTE B; 14.0 M, EFF: 55.0%
12. GROUND STATION PASSIVE LOSS - dB	0.00	NOTE A
13. GROUND STATION POINTING LOSS - dB	0.00	NOTE A
14. SYSTEM NOISE TEMPERATURE - dB-DEGREES-K	20.00	NOTE A
15. GROUND STATION G/T - dB/DEGREES-K	39.30	11 - 12 - 13 - 14
16. BOLTZMANN'S CONSTANT - dBW/(Hz*K)	-228.60	CONSTANT
17. RECEIVED CARRIER TO NOISE DENSITY - dB/Hz	43.67	5-6-7-8-9-10+15-16
18. MODULATION LOSS - dB	0.00	NOTE A
19. DATA RATE - dB-bps	36.02	NOTE A
20. DIFFERENTIAL ENCODING/DECODING LOSS - dB	0.00	NOTE A
21. USER CONSTRAINT LOSS - dB	0.00	NOTE A
22. RECEIVED Eb/No - dB	7.65	17 - 18 - 19 - 20 - 21
23. IMPLEMENTATION LOSS - dB	2.00	NOTE A
24. REQUIRED Eb/No - dB	2.90	NOTE B
25. REQUIRED PERFORMANCE MARGIN - dB	0.00	NOTE A
26. MARGIN - dB	2.75	22 - 23 - 24 - 25

NOTE A: PARAMETER VALUE FROM USER PROJECT - SUBJECT TO CHANGE

SIRA X-Band 14 M Uplink HGA (2 Kbps)

Integrated Mission Design Center

*** UPLINK MARGIN CALCULATION***

GSFC C.L.A.S.S. ANALYSIS #1 DATE & TIME: 8/27/3 14: 1:15 PERFORMED BY: R.VENTO

FREQUENCY: 7804.0 MHz RANGE: 500000.0 km

MODULATION: BPSK
DATA RATE: 2.000 kbps

DATA RATE: 2.000 kbps CODING: RATE 1/2 CODED BER: 1.00E-05

ground is 14 M with 0.01 Watt

PARAMETER	VALUE	REMARKS
01. GROUND STATION TRANSMITTER POWER - dBW	-20.00	NOTE A; 0.0 WATTS
02. GROUND STATION PASSIVE LOSS - dB	1.00	NOTE A
03. GROUND STATION ANTENNA GAIN - dBi	58.58	NOTE A
04. GROUND STATION POINTING LOSS - dB	0.00	NOTE A
05. GROUND STATION EIRP - dBWi	37.58	1 - 2 + 3 - 4
06. POLARIZATION LOSS - dB	0.30	NOTE A
07. FREE SPACE LOSS - dB	224.27	NOTE B
08. ATMOSPHERIC LOSS - dB	0.23	NOTE A
09. RAIN ATTENUATION - dB	0.54	NOTE A
10. MULTIPATH LOSS - dB	0.00	NOTE A
11. USER SPACECRAFT ANTENNA GAIN - dBi	31.22	NOTE B; 0.6 M, EFF: 55.0%
12. USER SPACECRAFT PASSIVE LOSS - dB	0.00	NOTE A
13. USER SPACECRAFT POINTING LOSS - dB	0.50	NOTE A
14. SYSTEM NOISE TEMPERATURE - dB-DEGREES-K		NOTE A
15. USER SPACECRAFT G/T - dB/DEGREES-K	3.73	11 - 12 - 13 - 14
16. BOLTZMANN'S CONSTANT - dBW/(Hz*K)	-228.60	CONSTANT
17. RECEIVED CARRIER TO NOISE DENSITY - dB/Hz	44.57	5- 6 - 7 - 8 - 9 - 10 + 15 - 16
18. MODULATION LOSS - dB	0.00	NOTE A
19. DATA RATE - dB-bps	33.01	NOTE A
20. DIFFERENTIAL ENCODING/DECODING LOSS - dB	0.00	NOTE A
21. USER CONSTRAINT LOSS - dB	0.00	NOTE A
22. RECEIVED Eb/No - dB	11.56	17 - 18 - 19 - 20 - 21
23. IMPLEMENTATION LOSS - dB	3.00	NOTE A
24. REQUIRED Eb/No - dB	4.25	NOTE B
25. REQUIRED PERFORMANCE MARGIN - dB	0.00	NOTE A
26. MARGIN - dB	4.31	22 - 23 - 24 - 25

NOTE A: PARAMETER VALUE FROM USER PROJECT - SUBJECT TO CHANGE

SIRA VHF Crosslink Omni (1 Mps)

Integrated Mission Design Center

*** DOWNLINK MARGIN CALCULATION***

GSFC C.L.A.S.S. ANALYSIS #1 DATE & TIME: 8/27/ 3 13:21:51 PERFORMED BY: R. VENTO LINKID: SITA

FREQUENCY: 136.0 MHz RANGE: 25.0 km

MODULATION: BPSK

DATA RATE: 1000.000 kbps CODING: RATE 1/2 CODED BER: 1.00E-05

PARAMETER VALUE 01. USER SPACECRAFT TRANSMITTER POWER - dBW -10.00 NOTE A; 0.1 WATTS 02. USER SPACECRAFT PASSIVE LOSS - dB 4.00 NOTE A -6.00 03. USER SPACECRAFT ANTENNA GAIN - dBi NOTE A 0.00 NOTE A 04. USER SPACECRAFT POINTING LOSS - dB -20.00 05. USER SPACECRAFT EIRP - dBWi 1 - 2 + 3 - 4 0.50 06. POLARIZATION LOSS - dB 103.07 07. FREE SPACE LOSS - dB NOTE B 0.00 08. ATMOSPHERIC LOSS - dB NOTE A 09. RAIN ATTENUATION - dB NOTE A 0.00 10. MULTIPATH LOSS - dB NOTE A 11. GROUND STATION ANTENNA GAIN - dB NOTE A 12. GROUND STATION PASSIVE LOSS - dB 4.00 13. GROUND STATION POINTING LOSS - dB NOTE A NOTE A 14. SYSTEM NOISE TEMPERATORS

15. GROUND STATION G/T - dB/DEGREES-K -34.77

- ARW//Hz*K) -228.60 14. SYSTEM NOISE TEMPERATURE - dB-DEGREES-K 24.77 11 - 12 - 13 - 14 CONSTANT 17. RECEIVED CARRIER TO NOISE DENSITY - dB/Hz 70.26 5-6-7-8-9-10+15-16 18. MODULATION LOSS - dB 60.00 19. DATA RATE - dB-bps NOTE A 20. DIFFERENTIAL ENCODING/DECODING LOSS - dB 0.00 NOTE A 21. USER CONSTRAINT LOSS - dB 0.00 10.26 22. RECEIVED Eb/No - dB 17 - 18 - 19 - 20 - 21 23. IMPLEMENTATION LOSS - dB 2.00 NOTE A 4.25 24. REOUIRED Eb/No - dB 25. REQUIRED PERFORMANCE MARGIN - dB 0.00 NOTE A 26. MARGIN - dB 4.01 22 - 23 - 24 - 25

NOTE A: PARAMETER VALUE FROM USER PROJECT - SUBJECT TO CHANGE

