Requirements Summary

- Interested in all environments
- Monitoring requirements depend on investigation and orbit
- Environmental factors:
 - Spectral radiation data:
 - Solar wind
 - Plasma
 - Low energy electrons and protons
 - High energy electrons and protons
 - Ultraviolet (UV)
 - Vacuum UV (VUV)
 - Soft X-rays
 - Atomic oxygen
- All missions benefit from better materials information
 - NASA, commercial, military, other government

Materials Technology Breakout: Prioritized List

- 1. Ground-to-Space Correlation for Materials Degradation
- 2. Slow Crack Growth in Polymeric Films
- 3. Embrittlement of Polymers (Surface/Bulk)
- 4. Molecular Contamination
- 5. Variable Optical Property Materials
- 6. Performance Characterization of Coatings and Films in Space
- 7. Atomic Oxygen/UV Radiation Synergistic Effects
- 8. Role of Oxygen Ions in On-Orbit Erosion (Atomic oxygen versus O+)
- 9. Long-Term Charging Effects on Materials
- 10. Composite Materials

Technology #1: Ground-to-Space Correlation for Materials Degradation

- Justification for Requirement:
 - Ground tests often do not simulate the degradation that occurs in materials in the space environment
 - Need flight data to correlate to ground test data
- Correlative environment measurement requirements:
 - Spectral radiation data:
 - Low energy electrons and protons
 - High energy electrons and protons
 - Solar wind
 - Plasma
 - Ultraviolet, vacuum ultraviolet, soft X-rays
 - Atomic oxygen
- Environments of Interest: All environments

Technology #2: Slow Crack Growth in Polymeric Films

- Issues: The effects of the following on slow crack growth in polymeric films need to be quantified:
 - Threshold dose or load
 - Dose rate effects
 - Temperature effects (dwell and soak)
 - Load effects
- Possible experiment techniques:
 - Micro-Electro-Mechanical Systems (MEMS) for monitoring of materials' properties
 - Photodetectors
- Correlative environment measurement requirements:
 - Monitoring is experiment/environment dependent
 - Spectral radiation data: low energy electron and proton, high energy electron and proton, solar wind, plasma, UV, VUV, soft Xrays
 - Atomic oxygen
- Environments of interest: All environments

Technology #3: Embrittlement of Polymers (Surface/Bulk)

- Contributions of the following effects to the embrittlement of polymers needs to be quantified:
 - Ultraviolet (UV), vacuum UV (VUV), electrons and protons, other radiation?
 - Synergistic effect with atomic oxygen (AO): flux rate effects
 - Radiation dose rate effects
 - Temperature effects
 - Load effects
- Correlative environment measurement requirements:
 - Depends upon experiment/environment
 - Spectral radiation data: low energy electron and proton, high energy electron and proton, solar wind, plasma, UV, VUV, soft Xrays
 - AO
- Environments of Interest: All environments

Technology #4: Molecular Contamination

- Issues/possible experiment investigation requirements:
 - Electrostatic Return
 - Photopolymerization/ fixing
 - AO scrubbing (removal) versus fixing
 - Temperature effects
 - Contamination source identification techniques
 - Effects of voltage bias on contamination rates and species
- Correlative environment measurement requirements:
 - Ultraviolet (UV), vacuum UV (VUV), atomic oxygen, pressure
- Environments of interest: All environments
 - Dose in <10 eV range

Technology #5: Variable Optical Property Materials

- Issue: Interactions with space environment (verify performance in space environment) for:
 - Thermochromics
 - Electrochromics
 - Photochromics
 - Micro-Electro-Mechanical louvers
- Correlative environment measurement requirements:
 - Obscuration due to contamination
 - Atomic oxygen
 - Ultraviolet/vacuum ultraviolet
 - Total dose
- Environments of interest: All environments

Technology #6: Performance Characterization of Coatings and Films in Space

- Issue: Need for flight qualification of coatings and films such as:
 - Atomic oxygen (AO)-durable materials (i.e., POSS)
 - Flexible AO protective coatings
 - Paintable/spray-on AO durable coatings
 - Conductive AO durable coating (ITO replacement)
 - Metal durability (vapor deposited coatings)
 - Conductive coatings
- Correlative environment measurement requirements:
 - Depends upon the investigation
- Environments of interest: LEO/GEO environments

Technology #7: Atomic Oxygen (AO)/Ultraviolet (UV) Radiation Synergistic Effects

- Issue: What are the variations in the synergistic effects of AO and UV on materials due to:
 - Solar cycle variations
 - Dose rate effects
 - AO "scrubbing" off (removal of) UV embrittlement
 - Temperature effects
- Correlative environment measurement requirements:
 - AO
 - Spectral UV and vacuum UV
 - Total dose
- Environments of interest: LEO environment

Technology #8: Role of Oxygen Ions in On-Orbit Erosion: Atomic Oxygen (AO) Versus Positively Charged Oxygen (O+)

- Issue: Characterize the role of oxygen ions in on-orbit materials' erosion including:
 - Low erosion yield materials
 - Potential solar cycle variations
 - Flux rate effects
 - Temperature effects
- Correlative environment measurement requirements:
 - AO and O+
 - Spectral ultraviolet (UV) and vacuum UV
 - Total dose
- Environments of interest: LEO environment

Technology #9: Long-Term Charging Effects on Materials

- Issue: What are the long-term charging effects on materials including:
 - Thin Film Materials Effects: mechanical and optical properties
 - Flux Rate Effects on Property Changes
- Correlative environment measurement requirements are experiment/environment dependent:
 - Spectral radiation data (low energy electron and proton, high energy electron and proton, solar wind, plasma, UV, VUV, soft Xrays) AO
- Environments of interest: All environments

Technology #10: Composite Materials

- Issue: Performance characterization of composite materials:
 - Strength/Stiffness on-orbit
 - Synergistic effects with radiation/thermal cycling or thermal dwell
 - Radiation Shielding Integrated Composites
 - Importance increases with miniaturization and need for ultra lightweight
- Correlative environment measurement requirements:
 - Atomic oxygen
 - Total dose
- Environments of interest: All environments