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Retrieval of global magnetospheric ion distributions

from high energy neutral atom (ENA)measurements

made by the IMAGE/HENA instrument

R. DeMajistre, E.C. Roelof, P. C:son Brandt, D. G. Mitchell
The Johns Hopkins University Applied Physics Laboratory, Laurel MD

Abstract. In this work we present a method for retrieving global magnetospheric ion
distributions from Energetic Neutral Atom (ENA) measurements made by the IMAGE/HENA
instrument. The technique itself is based on the well established method of constrained
linear inversion. In addition to presenting the technique itself, we present a self consis-
tent method for its optimization. The combination of the technique itself and the tun-
ing process provide a direct measure of the fidelity of the resulting retrievals. We ap-
ply these techniques to a representative HENA image and show that the retrieval is in-
deed a useful tool in quantifying global magnetospheric ion distributions.

1. Introduction

Energetic Neutral Atom (ENA) imaging is currently es-
tablishing itself as a powerful method for global character-
ization of the Earth’s magnetosphere. The IMAGE space-
craft is now carrying a payload of dedicated ENA instru-
ments (LENA, MENA, and HENA) that have the capability
of measuring ENA imagery over a very broad range of ener-
gies. Each image contains information about the entire mag-
netosphere, in contrast to charged particle measurements
which are essentially in situ measurements. The power of
ENA imaging has been recognized for several years (for ex-
ample see Roelof [1987]), but with the launch of IMAGE,
its utility is now being more fully demonstrated.
Each ENA image contains a great deal of information

about the magnetosphere, specifically about the ion dis-
tributions that serve as a source of ENA flux via charge
exchange in the geocorona and near the Earth’s exobase.
The information in the images, however, can be difficult to
interpret directly without substantial experience. Clearly,
quantitative techniques for extracting and presenting this
information is required for ENA images to be truly useful.
Over the past few years, several authors have made sig-

nificant progress in extracting this information from ENA
images. Roelof and Skinner [2000] presented a non-linear
parametric retrieval algorithm for the extraction of ion dis-
tributions. This method makes use of global functions rep-
resenting the shape of the ion distribution in the magneto-
sphere. The free parameters of these functions are used in a
non-linear least squares fitting algorithm to provide an opti-
mal fit to the data. The basic weakness of this method is the
global nature of the basis functions. That is, with a reason-
able number of free parameters, the parametric model is not
able to reproduce all the shapes that the ion distributions
can take. In short, only solutions that can be represented
by the basis functions will result from the retrieval, but the
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basis functions cannot sufficiently represent the complexity
of the ion distributions being sought.
Another approach, which is similar in character to the one

use in this work, has been described in Perez et al. [2000]
and Perez et al. [2001]. This method uses cubic B-splines
as local basis functions in a constrained linear retrieval. Us-
ing local basis functions, i.e., functions that are nonzero in
a very restricted spatial area, allows a much broader range
of spatial structure than the global functions of Roelof and

Skinner [2000]. This technique has resulted in reasonable
retrievals of both simulations and measured imagery (Perez

et al. [2000] and Perez et al. [2001], respectively), though a
systematic analysis of the accuracy of the results have not
been published. Our work differs from that of Perez et al.

in three important ways. First, we incorporate the effects
(such as the angular response function) of the HENA in-
strument directly into the retrievals. This eliminates much
of the systematic error in the retrievals that arise from in-
strument effects. Further, any evaluation of the accuracy of
retrieval techniques must account for instrumental biases.
Second, our model of ENA emission includes a component
from charge exchange with atomic oxygen near the exobase.
Third, we have adopted a lower order (linear) set of basis
functions. In adopting a linear scheme, we have allowed for
a wider range of spatial structure and have simplified the
construction of different types of constraints (or so called
penalty functions).
In section (2) we give a brief description of the HENA

measurements. We develop the basic equations governing
these measurements in section (3). Images simulated using
the measurement equations are shown in (4). Our retrieval
method is developed and evaluated in (5).

2. HENA Measurements

The HENA instrument is aboard the IMAGE spacecraft,
which is in an eccentric near polar orbit (1000 km x 7 RE
altitude). IMAGE is a spin stabilized platform, whose spin
axis is normal to the plane of the orbit with a nominal spin
period of 2 minutes (see Gibson et al. [2000] for a more de-
tailed description of the IMAGE spacecraft). The HENA
instrument collects Energetic Neutral Atoms (ENAs) from
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roughly 20-200 Kev in a rectangular area of 120◦ by 90◦.
The instrument is mounted such that the center of the 120◦

dimension lies in the orbital plane (i.e., perpendicular to the
spin axis). Thus in the course of a single spin, the instru-
ment views a 120◦ by 360◦ segment of the sky (see Mitchell

et al. [2000] for a more detailed description of the HENA
instrument). ENAs measured during a spin period are sep-
arated into energy channels and placed in spatial bins that
are regular in the ε and β angles described in Figure 1.
For energies below 60 Kev, the images have a pixel size

of roughly 6◦x6◦. At higher energies the pixels are 3◦x3◦.
The HENA instrument counts individual ENAs, and under
most circumstances has a negligible background count rate.
For this reason, we assume that the measurements in each
pixel obey Poisson counting statistics.

3. Equations of Measurement

The counts in each pixel of an ENA image, Ci can be
represented by the measurement equation

Ci =

∞
∫

0

∞
∫

0

2π
∫

0

π
∫

0

sin εAi(ε, β, E, t)jenadεdβdEdt (1)

Where Ai is the response of the pixel i to and ENA inten-
sity jena at time t, energy E and angular position ε and
β. The ENA intensity from charge exchange can be written
(see Roelof [2002]) as

jena =

se
∫

0

nH(s)σ10
H (E)jion(s, E)ds+ j

e
ena(se) (2)

where s is the distance along the line of sight determined
by ε and β, nH is the number density of hydrogen, σH10 is
the charge exchange cross section for protons on hydrogen
and jion is the ion intensity. The limit of integration, se, is
either the point where the line of sight first intersects the
exobase, or +∞ for lines of sight with no such intersection.
In writing equation (2) we have separated the ENA intensity

a)

b)

orbit plane

���������
	���
����

�����
th

�����
th

x

y

z

���������
b

e

���������

Figure 1. Geometry of HENA observations from a) within
the plane of the orbit and b) above the plane of the orbit.
The x axis points along the vector from the IMAGE space-
craft to the center of the Earth and the z axis points in the
direction of the spacecraft spin axis. The angles ε and β are
the polar and azimuthal angles in this system.

into two distinct components, the optically thin geocorona
and the optically thick emission from the region near the
exobase, jeena(se), which is described in subsection (3.3). In
the geocorona we assume charge exchange with hydrogen
atoms only. The emission near the exobase is modelled as
a surface emission and only charge exchange with atomic
oxygen is considered (see Roelof [2002]). For convenience,
we can further separate the counts from the geocorona and
the exobase

Ci = Chigh
i + Clow

i (3)

where Chigh
i are the counts from geocoronal emissions

Chigh
i =

2π
∫

0

π
∫

0

se
∫

0

nHσ10
H sin ε < Ai(ε, β) > jiondsdεdβ (4)

and Clow
i are the counts from near the exobase

Clow
i =

2π
∫

0

π
∫

0

sin ε < Ai(ε, β) > jeenadεdβ (5)

Each of these contributions will be examined in the subsec-
tions 3.2 and 3.3.
In equations (4) and (5) we have made the substitution

< Ai(ε, β) >=

∞
∫

0

∞
∫

0

Ai(ε, β, E, t)dEdt (6)

In making this substitution we have assumed that a particu-
lar pixel, i, has been collected for a brief interval of time 4t
and a narrow energy range 4E, and that these intervals are
suitably narrow that jena can be considered constant over
them. The instrument function < Ai(ε, β) > appropriate
for HENA has been studied and presented in Roelof [2002].

3.1. Description of the Ion Intensity

In all that follows, we assume that over the collection time
4t, the ion intensity, jion, can be uniquely represented in a
dipole coordinate system, i.e.,

jion = jion(L, φ, µeq) (7)

This system is closely related to the Solar Magnetic coor-
dinate system (Russell [1971]) represented in the spherical
coordinates (r,θ,φ). In the dipole representation r = L sin2 θ
(measuring distance in earth radii Re) and µeq is the cosine
of the angle of the velocity vector to the field line (the so-
called pitch angle cosine) at the equator. In writing equation
(7) we have assumed that the ions obey the adiabatic invari-
ants, that is, the ions are constrained to follow field lines and
that the pitch angle cosine at any point in an ion’s trajectory
can be determined from its equatorial pitch cosine by

1− µ2 =
B(θ)

B(π/2)
(1− µ2

eq) (8)

or exploiting the dipole shape of the magnetic field

µ2 = 1− (1− µ2
eq)

√

4− 3 sin2 θ

sin6θ
(9)

where B(θ) is the magnitude of the magnetic field (at con-
stant L) for a given θ.
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A consequence of equation (7) is that the pitch angle dis-
tribution is symmetric about µeq = 0. That is, if αeq is the
equatorial pitch angle, then µeq = cos(αeq) = cos(−αeq).
Further, in equation (8) both µeq and µ enter as µ

2
eq and µ

2;
this implies the symmetry jion(L, φ, µeq) = jion(L, φ,−µeq).
In view of these symmetries, the pitch angle distribution of
jion is determined for all values of θ if jion(µeq) is known for
0 ≤ µ ≤ 1.
Another important feature of jionis the possible presence

of a depleted loss cone. Ions that mirror at or below the
exobase are quickly removed from the distribution by charge
exchange. The mirror altitude at a fixed L can be regarded
as a function of the equatorial pitch angle µeq. The point
at which the mirror radius is equal to the exobase radius,
Ratm, defines the equatorial loss cone pitch angle cosine

µ2
eqlc = 1−

R3
atm

L3

1
√

4− 3Ratm/L
(10)

If a loss cone is present, the ion intensity, jion(L, θ, µeq), will
be depleted where µeq ≥ µeqlc. The existence and depth of
the loss cone depends on the source of the ion intensity can
cannot be predicted a priori.
In view of the above discussion, we have found it conve-

nient to parameterize the pitch angle distribution as follows

jion(L, θ, µeq) = U(µeq, µeqlc(L),m)

λ
∑

p=0

j
(k)
ionP

∗
p (µeq) (11)

where the functions P ∗
p (µeq) are the Legendre polynomi-

als scaled to the interval (0, 1), the parameter m is set
to 1 if the loss cone is present or 0 if is not. The func-
tion U(µeq, µeqlc(L),m) is a binary function that is zero if
µeq > µeqlc(L) and m = 1. The U function therefore gov-
erns the behavior of the loss cone, which is considered either
completely filled (m = 0) or completely empty (m = 1).
Clearly, the number of pitch angle moments, n, determines
the amount of detail in the pitch angle structure that can
be represented by equation (11).
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Figure 2. Obscuration of volume elements. For an ob-
server at IMAGE viewing a volume element at P along
line of sight s. The line of sight to P is obscured if it lies
in the grey area. The dotted curve represents a contour of

constant L. The angle θ1 = arcsin
(

√

Ratm/L
)

is the po-

lar angle where the northward L contour intersects with the
exobase. The dashed rays originating from IMAGE repre-
sent the tangent cone. r is the line between P and the center
of the Earth and rc is the line along r from the center of the
Earth to the tangent cone.

In this subsection, we have constrained the behavior of
the ion intensity function jion by choosing an explicit rep-
resentation and dependencies for it. We have assumed that
over the period of observation, that the motion of the ions is
dominated by a dipole magnetic field. All other forces, e.g.,
electric fields, drifts, etc. are neglected. Further, we have
neglected all perturbations of the dipole field.

3.2. Geocoronal Emission

The geocoronal component of the measurement, equation
(4), can be viewed as a volume integral over all space above
the exobase that is not obscured by the Earth. This integral
can be expressed in terms of (L, θ, φ) through the introduc-
tion of the Jacobean

J0(L, θ, φ) = sin
3 θ

r(L, θ)2

s(L, θ, φ)2
(12)

Before rewriting equation (4) in terms of these new vari-
ables, the limits of the integration must be determined as
well. Equation (4) can be recast as a integral over all space
through the introduction of an obscuration function O which
has the value of 1 or 0 if the specified volume element is out-
side of or inside of the obscuration region, respectively.The
geometry of O is shown in figure 2. Volume elements that
lie below the exobase or are blocked from view by the Earth
must be excluded from the integral, i.e., O must be set to 0.
The function O can be written as (see Roelof [2002])

O(L, θ, φ) =















0 if
α+ ψ > π

2
and

sin2 θ sin(α+ ψ) < sin2 θ1
0 if sin θ < sin θ1
1 otherwise

(13)

The condition sin θ < sin θ1 can be incorporated directly
in the limits of integration over both L and θ, as contribu-
tions to the integral can only be made where L > Ratm and
θ1 < θ < π − θ1.
Using equations (11) and (12), equation (4) can be ex-

pressed in terms of the natural coordinates of jion as

Chigh
i =

∑

p

2π
∫

0

∞
∫

Ratm

fpi (L, φ, µeq)j
p
ion(L, φ)dLdφ (14)

where

fpi (L, φ, µeq) ≡ σ10
H

π−θ1
∫

θ1

nH < Ai > J0OP
∗
p (µeq)dθ (15)

The integral in equation (15) can be calculated numerically
via Romberg integration (Press et al. [1988]).
Using the techniques developed in appendix A, equation

(14) can be approximated by numerical quadrature as

Chigh
i =

∑

p

∑

k

∑

l

bpiklj
p
ion(Ll, φk) (16)

where the quadrature weights bpikl are determined by inte-
grals of the form

ζpnmikl =

Ll+1
∫

Ll

φk+1
∫

φk

gnmkl f
p
i dLdφ (17)
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with

gnmkl =
(−1)n+m(Ll+m − L)(φk+n − φ)

(Ll+1 − Ll)(φk+1 − φk)
(18)

The integrals in equation (17) are performed by means of
the four point integration scheme described by Abramowitz

and Stegun [1972]. Equation (16) is thus a well defined, lin-
earized forward model for HENA geocoronal measurements.
Equation (16)can be written in matrix form as

C
high =

∣

∣K0
high K1

high

∣

∣

∣

∣

∣

∣

J0
ion

J1
ion

∣

∣

∣

∣

(19)

where the superscripts on Kp
high and J

p
ion signify the de-

pendence on the pitch angle moments.
We can simplify the interpretation of the pitch angle mo-

ments, Jpion, if only the first two terms are taken (p = 0, 1).
Considering only the first two moments

2
∑

p=0

j
(k)
ionP

∗
p (0) = j

(0)
ion − j

(1)
ion

2
∑

p=0

j
(k)
ionP

∗
p (1) = j

(0)
ion + j

(1)
ion

(20)

we can immediately identify the quantities

j⊥ion ≡ j
(0)
ion − j

(1)
ion

j
‖
ion ≡ j

(0)
ion + j

(1)
ion

(21)

which are the equatorial ion intensities perpendicular and
parallel to the field lines, respectively. Equation (19) can
now be written in terms of these more intuitive quantities
as

C
high =

∣

∣

∣K
‖
high K⊥

high

∣

∣

∣

∣

∣

∣

∣

J
‖
ion

J⊥
ion

∣

∣

∣

∣

(22)

where we have defined

K
‖
high =

1
2

(

K0
high +K

1
high

)

K⊥
high =

1
2

(

K0
high −K1

high

)

(23)

Experience with the HENA measurements and retrievals
have shown that no more than two pitch angle moments
can be resolved. Thus the representation of equation (22)is
slightly preferable to that of equation (19). This represen-
tation is not only more intuitive, but provides a more direct
method of calculating the exospheric emission (as will be de-
tailed in section 3.3), and allows for the possibility of imple-
menting non-negativity constraints on the retrievals. This
last advantage is due to the fact that in order to be phys-
ically acceptable, J

‖
ion and J

‖
ion must be positive, though

physical acceptable values of J1
ion can have either sign.

3.3. Emission Near the Exobase

Emission from near the exobase results from charge ex-
change of nearly mirroring ions with atmospheric neutrals,
primarily atomic oxygen. This emission occurs in a thin
layer due to the small scale height (relative to that of the
geocorona) of atomic oxygen and other gasses in this region.
The emission is also optically thick, i.e., there is a finite
probability that an ENA created by charge exchange will un-
dergo stripping, i.e., re-ionization, before exiting this layer.
We will model this as a surface emission in view of the fact
that the layer is too thin (a few hundred kilometers or so) to
be resolved by the HENA instrument. Further,it should be

noted that the emission comes from a rather narrow range
of pitch angles that correspond to ions mirroring within this
narrow layer. Ions that mirror above this layer (those with
smaller pitch cosines) never encounter atmospheric densities
suitable for large ENA production. Those ions with larger
pitch cosines penetrate to altitudes below the emission layer
and the ENAs they produce do not escape. For this reason,
the contribution of low altitude emission to the HENA im-
ages is strongest (and is, in fact, only significant) where the
line of sight is nearly perpendicular to the field lines as the
enter the atmosphere. When this range of pitch angles is
mapped back to the equator, we find that in order for the
ions to mirror below the exobase, the equatorial pitch cosine
must be close, to one, i.e., µeq > .95. For this reason, we

consider only the J
‖
ion component of the ion distribution as

a source of emission near the exobase.
Roelof has shown that the ENA intensity due to emission

near the exobase can be written as (Roelof [2002])

jeena(L, φ, µ) =M(µ)j
‖
ion(L, φ) (24)

where M(µ) is defined by

M(µ) ≡ σ10
O

σcO

(

1− eσ
c
Oξ(µ)

)

e−κσOξ(µ) (25)

where σ10
O is the charge exchange cross section for protons on

atomic oxygen, σcO is the combined cross charge exchanged-
stripping cross section σ10

O +σ
01
O and σO is the total inelastic

interaction cross section for protons on oxygen

σO = σ10
O + σ

1
O
∼= σ01

O + σ
2
O (26)

where σ1
O and σ

2
O are the sums of the ionization and exci-

tation cross sections for ions and ENAs, respectively. The
constant κ represented the ratio of the average energy loss
per interaction, W (∼= .028 kev), to the size of the HENA
energy bin, E∗ (∼= 5 kev). The optical path function, ξ is
given by Roelof as

ξ = σOn
O(rm)

√

πHorm
3

erfc

[

−
√
Ratm − rm
Ho

]

(27)

where the nO is the atomic oxygen density, Ho is the oxygen
scale height near the exobase and rm is the mirror radius

rm =
(

1− µ2)1/3 (28)

Thus the ENA intensity, jena emitted from the surface near
the exobase is very closely related to the ion intensity with
small pitch angles, j

‖
ion.

We now combine equations (24) and (5) and write the
result as an integral over all space,

Clow
i =

2π
∫

0

π
∫

0

∞
∫

0

sin ε < Ai > Mδ(s− se)j‖iondsdεdφ (29)

where we have used the Dirac delta function, δ to re-
interpret the equation as a volume integral. We now in-
troduce the Jacobean connecting the system (s, ε, β) with
the (r, θ, φ) system

J1(r, θ, φ) =
r2 sin θ

s2 sin ε
(30)



DEMAJISTRE ET AL.: RETRIEVAL OF ION DENSITY FROM HENA IMAGES 5

and make use the identity

sin θdθ = − dL

2L2
√

1−Ratm/L
(31)

to write

Clow
i =

2π
∫

0

∞
∫

r

∞
∫

0

r2 < Ai > M

2s2L2
√

1− r/L
δ(s− se)j‖iondrdLdφ (32)

For a given field line, determined by L and φ, there are two
points at which the argument of the delta function in equa-
tion (32) attain a zero value. These points occur where the
field line intersects the exobase in the northern and south-
ern hemispheres. Clearly, at these two points the value of r
becomes Ratm; we subscript the the other quantities in the
integral with N or S to indicate which intersection point is
required. We now rewrite equation (32) as

Clow
i =

2π
∫

0

∞
∫

Ratm

ρi(L, φ)j
‖
ion(L, φ)dLdφ (33)

with

ρi(L, φ) =
∑

H

R2
atm < Ai(εH , βH) > M(µH)

2s2HL
2
√

1−Ratm/L
(34)

where the summation is carried out over the two hemi-
spheres.
Again, we use the method described in appendix A, to

approximate the integral in equation (33) as a numerical
quadrature, writing

Clow
i =

∑

k

∑

l

ciklj
‖
ion(Ll, φk) (35)

where the weights cikl are calculated via integral of the form

ϑnmikl =

Ll+1
∫

Ll

φk+1
∫

φk

gnmkl ρidLdφ (36)

with gnmkl given by equation (18).
Just as for the high altitude emission, we write write equa-

tion (35) in matrix form

C
low =K

‖
lowJ

‖
low (37)

Now combining equations (3), (22) and (37) we can now
write

C =K

∣

∣

∣

∣

J
‖
ion

J⊥
ion

∣

∣

∣

∣

=KJ ion (38)

where C is the vector representation of the measured counts
from both the geocoronal source and the source near the
exobase, and the so call kernel matrix K is defined as

K ≡
∣

∣

∣

(

K
‖
high +K

‖
low

)

K⊥
high

∣

∣

∣
(39)

Equation (38) is the linearized equation of measurement for
the HENA instrument. This equation can be used to simu-
late HENA observations given an ion density on a specified
grid. It also contains all the information (at least within the
approximations made) about the relationship between the
measured quantities, C and the object of the remote sens-

ing measurement J ion. This information will be exploited
in the following sections where we seek to determined the
inverse relationship, i.e., J ion as a function of C.

4. Simulated HENA images

Before proceeding to inversions, we will use the equations
developed in the previous section to simulate HENA mea-
surements. This will provide a groundwork for much of the
discussion in the sections relating to constraint tuning and
error analysis.
Simulations are based on equation (38), which in turn de-

pends on the construction of the kernel, K. In order to cal-
culate the kernel, several quantities must be specified. The
geocoronal hydrogen density is described in C:son Brandt

et al. [2002] and is based on the work by Rairden et al.

[1986]. The charge exchange cross section for hydrogen,
σ10
H , has been taken from Barnett [1990]. The cross sections
for atomic oxygen, σ10

O , σ
10
O , σ

1
O and σ

2
O have been taken

from Basu et al. [1987]. For the calculation of low altitude
emission, we assume an exobase height, Ratm, of 500km, an
atomic oxygen scale height, HO, of 50km and an atomic oxy-
gen density at the exobase, nO(Ratm), of 4.4× 106. We can
now calculate the kernel using these quantities, the HENA
instrument function and the ion distribution.
Figure 3 shows the results of a simulation of an actual

HENA observation that occurred on the fourth of October,
2000. The test ion distribution has a maximum at L = 4 in
the midnight-dawn sector. This is reflected in the simulated
image which also shows a midnight-dawn enhancement. The
viewing perspective, the geocoronal distribution and the in-
strument spread function make visual inference of the test
ion distribution from the simulated image somewhat diffi-
cult. The ENA intensity is a product of the ion distribution
and the neutral density, thus for a given field line the maxi-
mum ENA intensity will occur where the density is highest,
i.e., where the distance to the earth is smallest. Thus the
maximum intensity generally occurs where the ions mirror
(this is made even more significant by the long path lengths
the ions traverse near the mirror point). For this reason,
the peak of the ion density will appear to occur closer to
the Earth in the image. In addition, since the intensity is
brightest near the mirror point, even when the equatorial
ion distribution is isotropic, the ENA intensity will exhibit
significant anisotropy where the larger intensities are be-
ing generated. This is particularly true of the near exobase
emission, where nearly all the ENA emission is perpendic-
ular to the field lines. Finally, the HENA instrument has
a finite spread function; sharp bright areas of the inten-
sity are broadened by the instrument. This is evident in
the simulated image where there appears to be significant
emission on the sunward side of the Earth. This appar-
ent sunward side emission is, however, due to post-midnight
emission spread by the instrument.
From the figure it is clear that the ENA image contains

a good deal of information about the ion distribution. The
interpretation of this information directly from the image,
even qualitatively, can be difficult. It is for this reason that
we seek to develop a recovery technique that can re-produce,
as far as possible, the ion distribution from the image.

5. Constrained Linear Inversion
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Simulated Image�����
t ion distribution

Figure 3. Simulated HENA image (right) using the test equatorial ion distribution (left) based on the
actual viewing geometry that occurred on the fourth of October,2000. On the ion distribution panel,
the closed dashed curves represent the scale of L (2-12) in Earth radii and the local time scale is given
outside of the perimeter of the outermost L boundary. The simulated image is presented in a projection
described in detail by C:son Brandt et al. [2002]. The dashed black lines on the image represent the scale
in ε and β, the solid black curves show curves of constant L (L = 4, 8) at four local times (which are
labelled in red).

5.1. Inversion Equations

In a strict sense, equation (38) can only be solved uniquely
if the matrixK is both square and non-singular. In practice,
meeting these two criteria simultaneously is not possible. In-
stead of seeking a direct solution, we could pursue a least
squares solution, i.e., determine J ion through minimizing
the quantity

(C −KJ ion)
T
σ
−2
C (C −KJ ion) (40)

where σ−2
C is the inverse of the measurement covariance ma-

trix. For the HENA data, σ−2
C is a diagonal matrix whose

elements are 1/σ2
i with σi as the uncertainty corresponding

to each pixel. Minimizing (40) yields

J ion =
(

K
T
σ
−2
C K

)−1

K
T
σ
−2
C C (41)

Unfortunately, in the case of the HENA measurements, the
matrix KTσ−2

C K is very poorly conditioned. For this rea-
son, application of equation (41) results in a highly oscil-
latory solution that is dominated by numerical noise. In
spite of the fact that we have more measurements than un-
knowns, the measurements do not contain enough informa-
tion to uniquely determine J ion. We must, therefore, add
information about J ion in the form of a priori constraints.
Instead of minimizing the expression (40) we instead mini-
mize

(C −KJ ion)σ
−2
C (C −KJ ion) + γJ

T
ionHJ ion (42)

where γ is a constant and H is a constraint matrix. Both γ
and H will be described in detail below. The result of the
minimization is

J ion =
(

K
T
σ
−2
C K + γH

)−1

K
T
σ
−2
C C (43)

which for appropriate values of γ and H has a unique so-
lution. Solutions of this form have been treated extensively
by other authors (see for example Twomey [1977], Rodgers
[2000] and Menke [1989]); only a brief summary has been
described here.
In the expression (42) the constant γ serves a tuning pa-

rameter, determining the relative contribution of the a priori
constraints to the solution. As γ becomes larger, the solu-
tion is more tightly bound to the constraint. The constraint
matrix H can take several forms, and is usually written in
the form

H =DT
D (44)

where D is a linear operator that when applied to J ion is
expected to be small. For example, defining D as D0, the
identity operator, the constraint in equation (43) would fa-
vor solutions with smaller JTionJ ion, i.e., solutions where the
absolute values of the elements of J ion are small. If,in turn,
we define D as D1, the first derivative operator, solutions
that tend toward constant values of J ion would be favored
(small first derivative).
Note that we can also calculate the expected covariance

of the solution, σ2
J through the relationship (Menke [1989])

σ
2
J = Gσ

2
CG

T (45)

defining the generalized inverse G as

G ≡
(

K
T
σ
−2
C K + γH

)−1

K
T
σ
−2
C (46)

We must now determine the best γ and H to use with
the HENA data.

5.2. Constraint Matrices

As we have pointed out earlier the HENA measurements
do not contain enough information to unambiguously de-
termine the ion distribution, Jion. The added information
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takes the form of an a priori assumption that along with
minimizing the expression (40) the best solutions will also
minimize the quantity JTionHJ ion. In this section we will in-
troduce specific forms of the constraint matrix H that will
subsequently be evaluated for applicability to the HENA
data.
It should be pointed out that in the absence of con-

straints, the estimated J ion oscillates rapidly between un-
reasonable large positive values and large negative (and
therefore completely unphysical) values. In a certain sense,
the constraints serve to damp this oscillation. The sim-
plest constraint would favor smaller values of Jion and re-
ject larger ones. As we have pointed out before, the iden-
tity matrix H0 =D

T
0D0 = I serves this purpose well. The

drawback, of course, is that this constraint will tend to force
the solution to be smaller than it should be.
We could also damp the oscillations in J ion by requir-

ing the solution to be smooth rather than small. For this
purpose we choose a slightly modified version of the second
derivative operator, i.e., the Laplacian, in the construction
of J via equation 44. The (L, φ) is a polar coordinate system
so the modified second derivative operator is written

∇2 =
∂2

∂r2
+
1

r

∂

∂r
+ α

1

r2
∂2

∂φ2
(47)

where we have introduced the asymmetry parameter α,
which can be used to adjust the smoothness more strongly
in either the L or φ direction. This free parameter α is intro-
duced because we have no a priori reason to expect an equal
amount of smoothness in L and φ. We implement equation
(47) using a second order finite difference stencil. Two other
modifications are required before this constraint can be used.
First, the boundary in φ is cyclical, thus the finite difference
stencil must be modified to calculate the proper derivatives
across the boundary at each L. Second, we require that
the ion distribution be small at the boundaries in L. We
implement this ’clamping’ by replacing the smoothness con-
straint for the minimum and maximum L with the identity
constraint. We can thus express the smoothness constraint
as

H2(α, λ) =D
∗T
2 (α)D

∗
2(α) + λH

b
0 (48)

whereD∗
2(α) is the modified second derivative operator,H

b
0

is the H0 operator that acts only on the L boundaries, and
λ is used to adjust the relative strength of the clamping
constraint. The H2 constraint favors solutions with small
spatial second derivatives, that is, solutions that increase or
decrease linearly.
Finally, instead of the more mathematically constructed

constraints above, we could take a more physically based
approach, making the straightforward assumption that ele-
ments of J ion that lie close to one another are more closely
correlated to one another than elements that are widely spa-
tially separated. This type of constraint has been described
by Rodgers [2000] who relates its construction to a Markhov
type process. The two dimensional Markhov constraint ma-
trix has elements

H
ij
m = e−dij/dm (49)

where dij is the Euclidian distance between element (Li, φi)
and (Lj , φj) and dm is an adjustable parameter that de-
scribes the characteristic length of the covariance. In the
construction of dij we implement the cyclical boundary in
φ. We also add the clamping constraint at the boundaries,

so that the Markhov constraint is most properly expressed as
Hm(dm, λ). Note that in the limit of small dm, the Markhov
constraint becomes identical to the identity constraint. As
dm increases, the correlation between neighboring points in-
creases, and the constraint tends to favor solutions where the
covariance weighted mean around any given point is smaller.
Like the identity constraint, the Markhov constraint will
tend to force the solution to be smaller than it should be.
We now proceed to describe methods for selecting con-

straints and optimizing their free parameters.

5.3. Method for Tuning the Constraints

Clearly, the optimal choice of γ, H and the free param-
eters of H should yield a solution that is both consistent
with the measurement and reflective of the underlying ion
distribution. Consistency with the measurement can be eas-
ily quantified via the expression (40). For this purpose we
define the goodness of fit, gf as

gf (pH) =
1

nC
(C −KJ ion)σ

−2
C (C −KJ ion) (50)

where nC is the number of measurements (i.e., the number
of pixels in the HENA image) and pH is the appropriate
array of constraint parameters (γ for H0, (γ, α, λ) for H2

and (γ, dm, λ) for Hm) . We expect gf to be approximately
1 for a retrieved ion distribution that is consistent with the
data.
For real measurements, it is not possible to gauge how

well the solution reflects the underlying ion distribution.
If we had access to the underlying ion distribution, we
wouldn’t have bothered to make the ENA measurement.
We can, however, simulate images from a given ion distri-
bution, use equation (42) to estimate ion distribution from
this image and then compare the given ion distribution to

Jion

 0 Full image 

simulation C 
0

Retrieval

Jion Forward 

simulation KJion

constraints

gr gf

1)

2)

3)

4) 4)

5)

Figure 4. Method of constraint tuning. 1) an assumed
ion distribution J0

ion is used to create a simulated image,
C0 via the full integration method of Roelof and Skinner
[2000]. 2) An ion distribution, J ion is retrieved from the
simulated image using an initial guess for the constraints.
3) An image, KJ ion is reconstructed from the retrieved ion
density. 4) The goodness of fit and retrieval, gf and gr are
calculated from KJ ion and J ion. 5) The constraints are
modified based on gf and gr. The process resumes at step 2
using the new constraints and continues until the quantity
q is minimized.
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the estimated ion distribution. Following this process, we
can define the goodness of the retrieval, gr as

gr(pH) =
1

nJ

(

J
0
ion − J ion

)

σ
−2
J

(

J
0
ion − J ion

)

(51)

where nJ is the number of elements of J ion and J
0
ion is the

ion distribution used for the image simulation. We could,
in principle, use equation (38) to create the simulated im-
age. We have chosen, however, to simulate the images using
the the parameterization of Roelof and Skinner [2000]. In
doing so, the quantity gr reflects the systematic errors in-
curred in linearizing the problem (since Roelof and Skinner

[2000] use a non-linear, direct integration method). After
the simulated image is constructed, gaussian noise that is
consistent with the actually measured image is added. In
order to do so, the simulated image is scaled so that the
maximum simulated pixel is equal to the maximum mea-
sured pixel, and then uncertainties consistent with counting
statistics are assumed for the scaled simulated image.
We expect that for an acceptable solution, gr should be

approximately 1. If gr is significantly less greater that 1, the
retrieved ion density,J ion differs too greatly from the input
ion density J0

ion. If in turn, gr is significantly less than 1, the
covariance of the retrieved values, σ2

J is too large, i.e., the
uncertainty of J ion can be made smaller through tightening
the constraints.
If we regard both gr and gf as functions of the constraints,

we can determine a set of acceptable constraints for a par-
ticular observation geometry by minimizing the quantity

q(pH) ≡ (1− gr(pH))
2 + (1− gf (pH))

2 (52)

for a simulated image similar in character to the actual mea-
surements. When this quantity is made small, we are as-
sured that for the simulated image, the retrieval is both
reflective of the assumed underlying ion distribution and
consistent with the input image. The constraints so deter-
mined then can be used with the actual measurements and

���������
	���
�����	��
	����

.

Figure 5. HENA image from the fourth of October, 2000
displayed in the same format as Figure (3)

Full Simulation (with noise)

Figure 6. Full non-linear simulation using the ion distri-
bution in Figure (3) and the image geometry of Figure (5)
with noise added.

expected to similarly retrieve the actual underlying ion dis-
tribution.
Our method for minimizing q and therefore optimizing

the constraints are shown in Figure 4.The constraints are
adjusted to minimize the quantity q by means of a non-
linear simplex minimization given by Press et al. [1988].
Thus for a given form of H, we can systematically select

the constraint parameters, pH , that optimally retrieve a test
image. We then postulate that if we are given an image that
is similar in character to the test image, this set of constraint
parameters will be suitable. In this case, similar in charac-
ter implies a similar viewing geometry, similar signal to noise
ratio and a qualitatively similar ion distribution.

5.4. Example Tuning and Error Analysis

The HENA instrument acquires images with very dis-
parate viewing geometries and ENA intensities; for this rea-
son it is difficult to provide a comprehensive assessment of
the quality of our inversion algorithm. The tuning process
described above, however, provides information on how well
the inversion process should be expected to work for a par-
ticular measurement. In this section, we examine the appli-
cation of the tuning process and the quality of the retrieval
for a particular image that is reasonably representative of
much of the HENA data.
Our analysis focuses on the image shown in Figure (5),

on which the simulation shown in Figure (3) was based.
Note that the image in Figure (5) exhibits a slightly more
diffuse region of emission that appears to extend to higher
values of L on the night-side. Also the measured emission is
slightly less intense at the peak than in the simulation. Be-
cause the signal to noise ratio is higher for brighter emission,
the uncertainties in the simulated image must be scaled ac-
cordingly to be representative of the measured data. This
process of scaling is described above.
The full non-linear simulation (using the model from

Roelof and Skinner [2000] as described above) with the ap-
propriate noise added is shown in Figure (6). This image
employs the same ion distribution as the one used in Figure
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Retrieval from simulation (Hm )
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q
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�����
ing quantities - H 0

�����
ing quantities - H 2

q

g f

g r

γ

γ

�����
ing quantities - H m

q

g f

g r

α=.0227
λ=1.70

d m=.109
λ=1.67

Figure 7. Optimal retrievals and tuning quantities for various constraint types. Optimized retrievals
of the simulated image in Figure (6) for the three constraint types, H0, H2 and Hm are shown on the
left. The plots on the right show the various tuning measurements (gf , gr and q) as a function of the
constraint strength γ. The images on the left are rendered on the same scale as the ion distribution
in Figure (3) and can be compared to this figure directly. Contours of relative uncertainties are also
shown on the ion distribution images. The plots on the right were made for the optimal values of the
additional tuning parameters (α, λ and dm); The value of these parameters are also shown on the plot.
The minimum value of q at the optimal γ are circled in each plot.

(3). As is to be expected, the principle difference between
Figure (6) and Figure (3) is addition of noise.
The results of the tuning process and a summary of the

dependence of the tuning measurements, gf , gr and q, on

the constraint strength, γ, are shown in Figure (6). Be-
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fore examining the details of the retrievals themselves, we
will first discuss the general behavior of the tuning process
shown in the right column of the figure.
The qualitative behavior of the various tuning measure-

ments, gf , gr and q, as a function of the constraint strength,
γ, is similar for all of the constraint types. At small val-
ues of γ, the quality of the fit, gf , is close to one, as the
constraints merely push the retrieval away from the mathe-
matically optimal retrieval (which oscillates wildly) towards
a more physically realistic one. As γ increases, gf climbs
away from one, and the retrieval becomes more and more
biased towards the constraint. The quality of the retrieval,
gr, also monotonically increases as a function of γ, though
at small values of γ it is significantly less than one. This
is not because the retrieved ion distribution faithfully re-
produces the test ion distribution, rather, it is because the
retrieved covariance is very large when γ is small. As γ
grows, the covariance shrinks and gr increases. For this rea-
son it is important to regard gr as a measure of the fidelity
of the retrieval with respect to the estimated uncertainty of

the retrieval. Thus an optimized retrieval will always be
reasonably accurate in a formal sense (taking the retrieval
and the uncertainty both into account), however the uncer-
tainties may be so large that the retrieval has very limited
utility.
We observe that though each of the constraints tested ex-

hibited a deep minimum in q, the resulting ion distributions
vary significantly. We will consider each constraint type in
turn.
The identity constraint, H0 is by far the simplest con-

straint to implement and optimize. In this case q can be
regarded as a simple function of the constraint strength, γ,
and a one dimensional optimization can be carried out. In
practice, as can be seen in Figure (7), this constraint also
provides a reasonable retrieval. Clearly, the peak intensity
is underestimated, however the morphology of the ion dis-
tribution is accurately reproduced. The underestimation of
the peak is not unexpected, as the identity constraint tends
to force the retrieval to smaller values. It is important to
take into account the contours of constant relative uncer-
tainty in the figure. From these contours it is clear that
although the morphology of the ion distribution is produced
quite well away from the peak value, it is quantitatively un-
reliable. Further, even near the peak value there are only a
few pixels whose relative uncertainty is less than 50%.
The second derivative constraint, H2, yields what appears

at first glance to be a qualitatively different retrieval.The re-
trieval near the peak is still underestimated, but to a lesser
extent than the H0 constrained retrieval. The shape of the
peak is also better reproduced, in that it is appropriately
broader than the H0 retrieval. Further, the number of pix-
els with less than 40% relative error has increased. This
favorable behavior near the peak is offset by rather poor be-
havior away from the peak. A spurious second peak in the
dawn-noon sector has appeared. This is mitigated some-
what by the relative uncertainties, which are rather large in
this region. This secondary peak arises from a combination
of the nature of the constraint (i.e., it favors solutions that
have a constant slope) and the geometry of the observation.
From Figure (6) we see that the field lines in the area of
the spurious peak are blocked from view by the Earth. This
is an area in which the retrieval is essentially blind, i.e., it
is an area that cannot be well determined by the data and
is controlled by the constraint. Since the constraint favors
equally positive and negative slopes, it is not unusual that

the retrieval would grow spuriously in this region. If the un-
certainties are taken into account, the H2 constraint yields
a reasonable retrieval, particularly in the region of the peak
intensity, however the behavior in the less well determined
areas is undesirable.
The Markhov constraint, Hm, yields a retrieval that is

similar in character to the identity constraint, H0. This
is not surprising, as the optimal characteristic length, dm
is fairly small (.109), and thus has only small off-diagonal
elements and is therefore Hm is very similar to H0. The
retrieval with the Hm constraint is, however, slightly prefer-
able to the retrieval with the H0 constraint. The range
where the uncertainties are less than 40% is slightly larger,
and the morphology off-peak is slightly more representative.
The behavior of the retrieval near the outer L boundary has
somewhat less noise, no doubt because of the introduction of
the boundary clamping parameter λ. We therefore consider
Hm to be the preferable form for the constraint.
Clearly, the choosing the the constraints is a somewhat

subjective enterprize. Different constraints will enhance
some aspects of the retrieval at the expense of other as-
pects. This is clear from the discussion above in regard to
the differences between the H0 and Hm constraints. If we
wish to be as careful as possible in the region of the emis-
sion peak, we should choose to use the H2 constraint. If,
however, we wish to better reproduce global morphology,
the Hm constraint is preferable. In some cases the tradeoffs
can be quantified (indeed the method of tuning the con-
straint parameters represents a quantitative tradeoff). In
other cases selections must be made on more qualitative cri-
teria. In these situations, the retrieval metrics, gr, gf , and
q can be relied upon to signal the danger of misleading re-
sults. In general if the value of q is small, the results of
corresponding retrievals, taken together with their uncer-
tainties, will be reliable. Whether these results are useful or
not is another matter. In some cases a retrieval with a small
q may have error bars that are so large that the results are
basically useless.
Before concluding, we present the results of the retrieval

using the data (Figure (5)) on which the above optimization
was based. The results of the retrieval using the Hm con-
straint (using the optimal parameters) are shown in Figure

������� � ���
	���
�� ��������	��
��� ������	���	

Figure 8. Retrieval results for the image in Figure (5) us-
ing the optimal Hm constraints shown in Figure (7). The
color scale and legend are the same as in Figure (7).
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(8). The retrieval shows quantitatively some of the features
that we surmised when comparing the simulated and ac-
tual emissions (Figures (6) and (5), respectively). Namely
that the peak of the ion intensity is somewhat smaller than
in the test image and the peak intensity is much more dif-
fuse.This figure shows a ring current that extends over nearly
the entire night-side rather than the sharply peaked spatial
distribution shown in the test distribution.

6. Summary and Conclusions

In this work we have developed a technique for the re-
trieval of global magnetospheric ion densities from high en-
ergy neutral atom measurements from the HENA instru-
ment. The basic equations governing the HENA measure-
ments were summarized. These include both the geocoronal
source and the source near the exobase. The HENA response
function is also explicitly included in our treatment. These
equations are treated in more detail by Roelof [2002]. After
presenting the equations of measurement, simulations based
on these equations were shown and their important features
described. We then turned to developing the retrieval tech-
nique. It is noted that the retrieval of ion distributions is an
ill-posed problem, i.e., it has not unique solution. For this
reason, we described the introduction of constraints and a
quantitative method of determining what they should be.
Finally, we calculated optimal constraints for a represen-
tative HENA image and performed retrievals on simulated
data in order to explore the reliability of the retrievals.
In short, we have developed a retrieval technique and pro-

vided a means of quantifying its fidelity. We have also ap-
plied these to a representative image and shown that these
technique are indeed useful for determination of ion den-
sities. Without this or a similar method of retrieval, only
qualitative conclusions can be drawn from the ENA images
about the source ion distribution.
There are several ways in which these techniques can be

improved. First, much work has yet to be done on refining
the constraints. We have presented some very simple ex-
amples of how these retrievals can be constrained. A more
sophisticated treatment, e.g., one that has a strong physical
basis, may yield a significant increase in the quality of the
retrievals. Second, in the absence of extremely high count
rates (i.e., unless the signal to noise ratio is very high) we
can only poorly quantify the pitch angle distribution of the
ions. We intend to approach this problem by combining the
information in images taken at multiple viewpoints. Early
attempts at this have been encouraging, but no detailed
study has yet been conducted. Thirdly, the retrieval equa-
tions are based on a simple dipole magnetic field. This may
lead to errors particularly at higher values of L. We are
currently seeking a method of incorporating a more realistic
magnetic field without prohibitively increasing the compu-
tational cost. Finally, the retrievals are only as good as
our knowledge of the instrument. Information about the in-
strument must be included in the retrievals as it becomes
available.

Appendix A: Linear Quadratures

The approximation of double integrals by numerical
quadratures is an important element in the techniques de-
veloped above. In short, we wish to find an approximation

of the form

N
∑

k=1

M
∑

l=1

bklf(xk, yl) ∼=
bx
∫

ax

by
∫

ay

K(x, y)f(x, y)dxdy (A1)

where K(x, y) is some known function, f(x, y) is a continu-
ous function that can be sampled at N ×M points f(xk, yl)
and bkl are weights which will now be developed.
In order to formulate the approximation (A1), some as-

sumption about the behavior of f(x, y) between the quadra-
ture points, f(xk, yl), must be assumed. In the simplest case
we assume that f(x, y) remains constant around each grid
point and f(xk, yl) is given on a regular grid with separa-
tions 4x, 4y. In this case we obviously have bkl = 4x4y.
A more robust technique would assume some functional de-
pendence of f(x, y) between the quadrature points. The
success of the quadrature scheme depends on the accuracy
of such an assumption.
In this work, we adapt a one dimensional linear quadra-

ture technique presented by Twomey [1977] and briefly sum-
marized here. In the one dimensional version of the problem,
we seek an approximation to the integral of the form

N
∑

j=1

bjfj ∼=
b

∫

a

K1(x)f1(x)dx (A2)

The integral may be broken up into intervals

b
∫

a

K1(x)f1(x)dx =
N
∑

j=1

xj+1
∫

xj

K1(x)f1(x)dx (A3)

If we assume that the function f(x) is linear in each sub-
interval, we can write

b
∫

a

K1(x)f1(x)dx =

N−1
∑

j=1

xj+1
∫

xj

K1(x)(Aj +Bjx)dx (A4)

where Ai and Bi are constants determined by the 2×(N−1)
equations

f(xj) = Aj +Bjxj
f(xj+1) = Aj +Bjxj+1

(A5)

If equations are solved in terms of the f(xj), the result sub-
stituted into equation (A4) and placed in the form of equa-
tion (A2) the final expression for the quadrature weights, bj
becomes

bj =
ϕ1

j−1−xj−1ϕ
0
j−1

xj−xj−1
+

xj+1ϕ
0
j−ϕ

1
j

xj+1−xj
, 2 ≤ j ≤ N − 1

b1 =
x2ϕ

0
1−ϕ

1
1

x2−x1

bN =
ϕ1

N−1−xN−1ϕ
0
N−1

xN−xN−1

(A6)

where the moments ϕmj are

ϕmj =

xj+1
∫

xj

xmK1(x)dx (A7)

Thus the one dimensional quadrature weights in equation
(A2) can be expressed through the moments of the function
K1(x) over the subintervals (xj , xj+1).
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The two dimensional analog of the one dimensional
quadrature can be derived through repeated application of
equation (A6). This process results in the two dimensional
quadrature weights bkl from equation (A1)

bkl =
1
∑

m=0

1
∑

n=0

ζm,n(k+m−1)(l+n−1) (A8)

where

ζnmkl =
xl+1
∫

xl

yk+1
∫

yk

gnmkl fdxdy if
1 ≤ k ≤ N − 1
1 ≤ l ≤M − 1

ζnmkl = 0 otherwise

(A9)

and

gnmkl =
(−1)n+m(xl+m − x)(yk+n − y)

(xl+1 − xl)(yk+1 − yk)
(A10)

Thus we have derived a numerical approximation for equa-
tions of the form (A1). This approximation is accurate when
the function f(x, y) in equation (A1) can be approximated
by a bilinear function.
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