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1 INVERSION STATUS

We use a constrained linear inversion (Twomey , 1977; C:son Brandt et al., 2002a;
Demajistre et al., 2003) to retrieve the ion distributions from HENA images. It
still assumes dipole field. We have focused on obtaining quantitative pressures
and refined the way we select the constraint strength. The constraint strength
is set by the parameter γ and Figure 1 shows a result with a “bad” and a “good”
γ.

2 PRESSURES

Figure 2 shows the proton pressure obtained at 18:00 UT during the 4 October
2000 storm. Here we’ve used the 10-198 keV range. An eastward rotation of
the pressure peak can be seen, but some storms show a peak around midnight
and also pre midnight for weaker storms. See C:son Brandt et al. (2002b). We
are investigating the dependence of the location on IMF and energy. Fok et al.

(2001) and R. A. Wolf has been able to reproduce this rotation in their models
that self-consistently calculates the electric field produced by the closure of the
(partial) ring current through the ionosphere.

Figure 3 shows the results of the statistical study by Ebihara et al. (2002).
They manually selected a couple of hundred main phases of storms (defined
as when the Dst decreases) where POLAR was close to the equatorial plane
and binned the proton spectra in 6 local time bins. This result is different
from previous statistical studies such as De Michelis et al. (1999). The earlier
studies have not been careful enough in the selection criteria of main phases
and therefore also included early recovery phases in their definition of “active”
times. The HENA observations are consistent with the results of Ebihara et al.

(2002).
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Figure 1: 60-81 keV 10 min integration. (a) Inversion with γ = 3× 10−32. (b)
Inversion γ = 1.8× 10−10.

3 CURRENTS AND B-FIELD

Having pressure allows us to compute the 3D current distribution that the
pressure drives by using the force balance equation.

J×B = ∇ ·P (1)

With an isotropic (scalar) pressure P the current can be written

J = ∇Q×∇P, (2)

where the Euler potential Q can be written for a dipole field

Q(L, µ) =
RE

B0
L4µp(µ) (3)

where µ = cos θ is the cosine of the co-latitude θ; B0 = µ0M/(4πR3
E), and p(µ)

is a sixth degree polynomial in µ. The components of the current then become

Jr = −
L2

REB0
(
8µ2p(µ)

sin6 θ
+ sin2 θ)

∂P

∂φ
(4)

Jθ = −
4L2

REB0

µp(µ)

sin5 θ

∂P

∂φ
(5)

Jφ =
L3 sin3 θ

REB0

∂P

∂L
(6)
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Figure 2: The 10-198 keV proton pressure on 18:00 UT 4 October 2000.

The field-aligned current (FAC) depends only on the azimuthal pressure gradi-
ents, while azimuthal current component depends only on the radial pressure
gradients. Figure 4 shows the current flow lines computed from the pressure
distribution in figure 2.

Once the currents are derived one may compute the magnetic distortion on
the geomagnetic field lines by using Bios-Savart’s law. A convenient approach
can be taken by using Euler potentials and, again, assuming isotropic pressure
(which is an oversimplification that we’re working on).

∆B(r) = −µ0P (r)∇Q(r)−

∫ ∞

0

dR

R

∫

4π

d2ΩP (L′, φ′)(3
RR

R2
− I) · ∇′Q(L′, µ′)

(7)
Figure 5 shows the diamagnetic distortion of a 50 nPa ring current pressure.
The dashed lines are the dipole field lines. This is only the distortion caused
by the pressure driven system. Thus, one must take into account the region 1
current system that we don’t see, to get a better picture of the stretching. At
low altitudes the FACs produced by the ring current pressure are very large.
However, the region 1 FACs are oppositely directed and equally large, so that
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Figure 3: From Ebihara et al. (2002). Shows the 1-200 keV proton energy
densities (multiply with 2/3 to get pressure in Pa).

the diamgnetic effects from the FACs at low altitudes are smaller than the one
we show.

See Roelof (2002).

4 IMPROVEMENTS

4.1 Multiple vantage points

The inversion algorithm is generel enough to accept multiple vantage points. It
gives the first and second moment of the PADs, j0 and j1. We can simplify the
interpretation of the pitch angle moments, J

p

ion, if only the first two terms are
taken (p = 0, 1). Considering only the first two moments

2
∑

p=0
j
(k)
ionP

∗
p (0) = j

(0)
ion − j

(1)
ion

2
∑

p=0
j
(k)
ionP

∗
p (1) = j

(0)
ion + j

(1)
ion

(8)

we can immediately identify the quantities

j⊥ion ≡ j
(0)
ion − j

(1)
ion

j
‖
ion ≡ j

(0)
ion + j

(1)
ion

(9)

which are the equatorial ion intensities perpendicular and parallel to the field
lines, respectively.

We have preformed tests with vantage points over the pole and at low lati-
tude. We can then obtain a rough estimate on the perpendicular and parallell
fluxes. Figure 6 shows an example from the bastille Day storm recovery. During
recovery phases the ring current is expected to be stable enough so that we can
use two images taken from two different vantage points. We see the isotropic
component, the perpendicular and parallell component. The input image con-
sisted of an almost symmetric ring current. The blank areas outside the contours
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Figure 4: The electric current flow lines in the main phase of the 4 October
2000 storm.

(relative error contours) come from the fact that the Earth is obscuring parts
of the ring current at the low-latitude vantage points.

4.2 Pre-specified PADs

In conjcuntion with multiple vantage point inversions, we are working towards
integrating in-situ data with the inversion. One can use PADs compiled from
statistical datasets from e.g. POLAR/MICS and AMPTE/CCE. As a first
example we have taken the PADs compiled by De Michelis et al. (1999) and
constructed a simple functional representation shown in Figure 7. We see that
the PADs are more isotropic on the nightside and more pancake on the dayside,
which comes from the fact that smaller pitch angles are “etched” away by the
atmospheric interaction as they drift westward around the Earth. The function
can then easily be incorporated into the inversion.

From one vantage point there is not enough information in the second PAD
component, and we know that the PADs are not isotropic and not the same
throughout the equtatorial plane. So there’s a need to have the PADs vary in
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Figure 5: The diamagnetic effect caused by a 50 nPa ring current pressure.

space. The inversion problem is already heavily over determined as it is, so
the best way to go is to assimilate in-situ data. Can we “force “ the inver-
sion to use an a-priori PAD. Statistical studies have shown that during “ac-
tive times” the PADs are isotropic around midnight and becomes more peaked
around 90◦ towards noon. See e.g. De Michelis et al. (1999).

The problem is if where we should put Expression (17). Currently, the ENA
counts are expressed as

Chigh
i =

∑

p

2π
∫

0

∞
∫

Ratm

fpi (L, φ, µeq)j
p
ion(L, φ)dLdφ (10)

where

fpi (L, φ, µeq) ≡ σ10
H

π−θ1
∫

θ1

nH < Ai > J0OP
∗
p (µeq)dθ (11)

jion(L, θ, µeq) = U(µeq, µeqlc(L),m)
λ

∑

p=0

j
(k)
ionP

∗
p (µeq) (12)

where the functions P ∗
p (µeq) are the Legendre polynomials scaled to the interval

(0, 1), the parameter m is set to 1 if the loss cone is present or 0 if is not. The
function U(µeq, µeqlc(L),m) is a binary function that is zero if µeq > µeqlc(L)
and m = 1. The U function therefore governs the behavior of the loss cone,
which is considered either completely filled (m = 0) or completely empty (m =
1).
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Figure 6: (a) Isotropic component, (b) perpendicular, and (c) parallell.

In order to incorporate the in-situ PAD information we need to reformulate
the governing equations in the inversion algorithm. Here we only briefly outline
how this can be done. In general the detected ENA counts Ci in pixel i can be
written as a volume integral

Ci =

∫ ∫ ∫

dLdθdφσ10nH〈Ai〉 jION (L, φ, µeq) (13)

where σ10 is the charge exchange cross section, nH is the geocoronal number
density, and 〈Ai〉 is the response function of the instrument. The differential
ion intensity, jION (L, φ, µeq), is the general, pitch-angle dependent flux in the
equatorial plane. The intensity can always be written

jION (L, φ, µeq) = j⊥,ION (L, φ)P (L, φ, µeq, {pn}) (14)

where j⊥,ION (L, φ) is the ion intensity at 90◦ pitch angle and P (L, φ, µeq, {pn})
is a function that describes the shape of the PAD and its spatial variation in
the equatorial plane by definition P=1 for µeq=0. Note that this is not the
normalized Legendre expansion used by Demajistre et al. (2003). The set of pn
is a (small) set of additional parameters needed. This is the function that then
needs to be fitted to the in-situ data. A suitable function for this task can be
derived from the one used by Roelof and Skinner (2000). We start by writing
the PAD in one point as

P (L, φ, µeq, {pn}) = exp(−kµ2
eq) (15)

The function k determines the sharpness of the PAD, so that when k → 0 the
PAD becomes isotropic. The PAD becomes more pancake like for larger k. In
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Figure 7: A simple functional representation of the anisotropy compiled by De

Michelis et al. (1999).

order to model the spatial variation of the PAD, k can be constructed as a
function of L and φ described by as few as two parameters (p1, p2), so that we
can write the the equatorial ion distribution in the inversion as

jeqION (L, φ; pn) = j0ION exp[−k(L, φ; {pn})µ
2
eq] (16)

The function k can be determined by e.g. mimicking the behavior of the results
from the AMPTE/CCE CHEM and MEPA dataset (see also De Michelis et al.

(1999) (their Plate 2)). Strictly speaking, one could obtain an optimum set
of parameters pn by computing a goodness of fit for multiple inversions using
different parameters. Although this approach has not yet been tested it is
straightforward to implement.

One candidate function for (16) can derived from the following expression,
that closely mimics the behavior of the storm-time PADs (De Michelis et al.,
1999).

A =
P⊥
P‖

= 1− cos(
φ

2
) exp[−(

L− L0

∆L
)n] (17)
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4.3 Non-dipolar B-field

We will be working towards including a tsyganenko type field model, but to the
expense of computational power. It is also possible, in principle, to attempt a
self-consistent approach. In that case we can compute the field line distortion
in the first step as mentioned above, and then use the resulting field in the next
iteration. We feel the representing PAD correctly have higher priority than this.
Furthermore, we have not completed the characterization of how the constrained
linear inversion dependends on the different parameters and constraint types.
The magnetic field enters in how the local pitch cosine is written as a function
of equatorial pitch cosine and colatitude.

1− µ2 =
B(θ)

B(π/2)
(1− µ2

eq) (18)

or exploiting the dipole shape of the magnetic field

µ2 = 1− (1− µ2
eq)

√

4− 3 sin2 θ

sin6θ
(19)

where B(θ) is the magnitude of the magnetic field (at constant L) for a given θ.
We have done tests together with M. -C. Fok to see what the effects of using a

dipole field is. Fok provided me with an ion distribution from a run of her model
in a T96 field; and she also simulated the ENA image in the same T96 field.
Then I inverted her ENA image (using a dipole field). We could then compare
our inverted ion distribution with her original one. The result is displayed in
figure 8.

In a dipole field we have made use of the fact that we can easily relate the
L-shell to the spherical coordinates, L = r/(RE sin θ). In a non-dipolar field
our problem consists in computing the L-shell for each r, θ, φ. Then, for each
equatorial L-shell (non-dipolar) compute the volume integral (“the obscuration
integral”(?)) that Ed cooked up, if at all possible.

Tsyganenko has developed a fast mapping algorithm based on Euler poten-
tials. Given a point r, θ it computes the req, θeq at the magnetic equator (defined
as the point of minimum B on the same field line). One could therefore use T’s
mapping and map all points in r, θ, φ space to the equatorial plane and keep that
us a look-up table. This only needs to be done once (for each B-field model).
Alternatively compute the L-shells. Might be enough just to do the mapping.

5 HOMEPAGE

Check sd-www.jhuapl.edu/IMAGE for publications and meeting notes and in-
teractive data analysis tool.
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Figure 8: (a) Fok’s input ion distribution from a run in a T96 magnetic field.
(b) Simulated ENA image using a T96 field. (c) Inversion result using a dipole
field. Note the underestimation of radial distance and perhaps of gradients too.
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