

THE JOHNS HOPKINS UNIVERSITY APPLIED PHYSICS LABORATORY

GEOTAIL Spacecraft Mission Energetic Particles and Ion Composition Instrument (EPIC) Ground-Based Data Conversions and Corrections

Version 1.8a

June 28, 2013

Abstract

This document describes the steps for data conversions and corrections within the ground-based data processing for the EPIC instrument on the GEOTAIL spacecraft.

Change History

Date of Change	Description of Change
16 November 2010	<u>Figure 9</u> : Corrected ICS North and South Ion head angles (for angular distance from spacecraft spin plane to center line of sensor) from 23° to 22.5°; and updated ICS North and South Ion head Sun Shade angles (for angular distance from spacecraft spin plane to edge of sun shade) from unknown to 13.7° and 9.9°, respectfully.
17 October 2012	Section 4.3 Addition of text referencing the flux reduction due to background correction given in Tables A7 and A8.
	Tables A7 Table that lists the Energy channel differential flux reduction if background correction is applied.
	Tables A8 Table that lists the Electron Detector integral flux reduction if background correction is applied.

Table of Contents

TABL	LE OF CONTENTS	1
LIST	OF TABLES	2
т тет а	OF FICURES	2
L151 V	OF FIGURES	
1 II	NTRODUCTION	
2 E	EPIC INSTRUMENT	
2.1	ICS SUBSYSTEM	
2.2	STICS SUBSYSTEM	7
2.3	DPU SUBSYSTEM	
3 D	DERIVED PARAMETERS	
4 E	EPIC SCIENCE RATE DATA CONVERSION	
4.1	Conversion to Count Rate	
4.2	CONVERSION FOR SECTOR DEAD TIME (OPTIONAL)	
4.3	CORRECTION FOR BACKGROUND (OPTIONAL)	
4.4	CORRECTION FOR R VS. R "DEAD TIME" (OPTIONAL)	
4.5	CORRECTION FOR EFFICIENCY (OPTIONAL)	
4.6	CONVERSION TO INTEGRAL FLUX	
4.7	Conversion to Differential Flux	
5 A	APPENDIX	

List of Tables

Table 1 - Summary of main EPIC characteristics	5
Table 2 - Codes A and C Compression and Decompression Values	10
Table 3 - ICS and STICS PHA and Science Rates Channels	18
Table 4 - STICS DV Values	21
Table 5 - ICS and STICS Dead-time Values	25
Table 6 - STICS DV energy values for interpolated integral flux	34
Table 7 - Acronyms and Abbreviations	36
Table A 1 - ICS Calibration Vales, version 2.14.	38
Table A 2 - ICS Geometric Factor ratios, version 2.14	41
Table A 3 - Geotail Spacecraft Spin Period	41
Table A 4 - ICS Energy Aperture-Position Band Pass, version 2.14	43
Table A 5 - STICS Efficiency, version 2.14.	45
Table A 6 - STICS Geometric Factors, version 2.14	49
Table A 7 - ICS Energy Channel Flux Reduction Due to Background Correction	50
Table A. 9. ICS Electron Detector Elux Deduction Due to Deckeround Competion	

List of Figures

Figure 1 - EPIC Instrument, side view on Geotail spacecraft	
Figure 2 - Diagram of EPIC Instrument, top view within Geotail spacecraft	4
Figure 3 - ICS Sensor	6
Figure 4 - Schematic Diagram of an ICS TOF Telescope	6
Figure 5 - STICS Sensor	7
Figure 6 - Schematic Diagram of STICS Sensor	
Figure 7 - ICS Energy - Time-of-Flight Diagram	9
Figure 8 - STICS Mass - Mass/charge Diagram	
Figure 9 - EPIC Sensors Elevation Field-of-view Geometries	
Figure 10 - Geotail Spacecraft and EPIC Sensors Azimuth Geometries	
Figure 11 - ICS and STICS Subsystems Sector Timing and Dead Times	
Figure 12 - ICS Science Channels R vs. R	
Figure 13 - STICS Interpreted Integral Flux	
Figure A 1 - ICS Functional Block Diagram	
Figure A 2 - STICS Functional Block Diagram	

1 Introduction

This document presents an overview of the EPIC instrument of the GEOTAIL spacecraft mission and a description of the ground-based data conversions and corrections for this instrument. A more complete description of the instrument and spacecraft is provided in the following references:

Geotail Prelaunch Report, April 1992, ISAS SES Data Center, document SES-TD-92-007SY.

Williams, D. J., R. W. McEntire, C. Schlemm II, A. T. Y. Lui, G. Gloeckler, S. P. Christon, and F. Gliem, Geotail Energetic Particles and Ion Composition Instrument, *J. Geomag. Geoelect.*, *46*, 39-57, 1994.

A more complete description of the instrument operation and telemetry is provided in the following reference:

EPIC Instrument User's Manual, C. E. Schlemm II, JHU/APL, 12 August 1993.

2 EPIC Instrument

The Energetic Particles and Ion Composition (EPIC) particle experiment/instrument is composed of two separate science subsystems, known as the Ion Composition Subsystem (ICS) and the Supra-Thermal Ion Composition Spectrometer (STICS), plus a common data processing unit (DPU), which sends commands to and receives data from the two subsystems. A summary of the EPIC instrument is given in Table 1.

Figure 1 - EPIC Instrument, side view on Geotail spacecraft

Figure 2 - Diagram of EPIC Instrument, top view within Geotail spacecraft

	STICS	ICS
Sensors:	Electrostatic analyzer x time-of-flight x E	Time-of-flight x E
Energy Range:	Ions: 10 to 230 keV/e (M/Q) 30 to 230 keV/e (M and M/Q) $\Delta E/E = 5\%$	Ions: >10 keV (Integral) >20 keV (Velocity) >30 keV to 3 MeV (M) Electrons: >30 keV (Integral) >100 keV (Integral)
Ion Species:	H through Fe	H through Fe
Resolution: Mass:	Resolves all major ion species. Charge states of major ion species.	Resolves all major ion species.
Angular: Polar:	Ions: 6 equal 26.7° polar sectors (+80° to -80° [†])	Ions: 2 equal 30° polar sectors (-38° to -8°; +8° to +38° [†]) Electrons: 1 polar 60° sector (-30° to +30° [†])
Azimuth:	16 equal 22.5° azimuthal sectors	16 equal 22.5° azimuthal sectors
Time:	3 sec/energy step ^{††} 24 sec/8-point spectrum ^{††}	0.2 sec to 96 sec
Geometry Factor:	Ions: 0.05 cm ² sr	Ions: $< 0.006 \text{ to } 0.2 \text{ cm}^2 \text{ sr}$ Electrons: $\sim 0.1 \text{ cm}^2 \text{ sr}$
EPIC S/C Interfaces: Data Rate:	2560	bps

Table 1 - S	Summary	of main	EPIC	characteristics
-------------	---------	---------	-------------	-----------------

[†]with respect to the spin plane ^{††}assumes a nominal 3 seconds/spin

2.1 ICS Subsystem

The ICS subsystem consists of an ion sensor, an electron sensor and an analog electronics preprocessing unit. The ion sensor is comprised of an identical pair of Time-of-Flight (TOF) telescopes, each composed of a front foil followed by a solid-state detector and preceded by a front collimator with a sweeping magnet to reject electrons, which measure mass and energy properties of energetic ions with energies of less than 50 keV to 5 MeV. The electron sensor consists of a thin foil/solid state detector electron telescope, which measures electrons with energies greater than 30 keV. The channels of ICS are summarized in Table 3.

Figure 3 - ICS Sensor

lon Composition Sensor (ICS)

Figure 4 - Schematic Diagram of an ICS TOF Telescope

Incident ions pass through the collimator, aperture, and front foil, and stop in the rear SSD. Secondary electrons from the surface of the front foil (or SSD) are accelerated into the inside of the head (which floats at 1000 V), reflected at the screen assembly and mapped onto the start (or stop) MCP.

2.2 STICS Subsystem

The ICS subsystem consists of an ion sensor and an analog electronics pre-processing unit. The STICS ion sensor is composed of a quadrispherical deflection system (for the selection of particles of the desired energy per charge) followed by three sets of Time-of-Flight (TOF) telescopes with solid-state detectors. Particles are deflected by the E-field of the deflection system as they pass between the DPPS. The STICS sensor measures the 3-dimensional distribution functions of suprathermal ions in the energy range of ~ 10 to 230 keV/e; it determines the mass, charge state, and mass per charge of ions, their arrival directions both in and out of the ecliptic plane, and their energy spectra. The channels of STICS are summarized in Table 3.

Figure 5 - STICS Sensor

Figure 6 - Schematic Diagram of STICS Sensor

This view is cut through the sensor in the s/c spin plane. Ions enter through the aperture, pass through the electrostatic E/Q analyzer, penetrate the TOF telescope front foil and stop in the back SSD, where mapped to the start (or stop) MCP by electrostatic optics.

2.3 DPU Subsystem

The DPU provides the interface between the ICS and STICS subsystems and the Geotail spacecraft. It handles all command processing, telemetry formatting, analog interfaces, power switching, alarm monitoring, and mechanical device control for the instrument.

3 Derived Parameters

The EPIC instrument records two types of science information provided by the sensor subsystems and a third type derived from the sensor information by the DPU. Pulse Height Analysis

(PHA) Event data, the first science information type, consists of energy, time-of-flight (TOF), and telescope head information for a limited number of "valid" events. Engineering Rates data, the second science information type provided by the sensor subsystems, consists of the counts of various sub-events (stops, starts, energies, etc.) taken over a defined time period.

Science Rates data, the derived science information type, is obtained from the valid event data by classifying each event and binning it in accumulation counters which are periodically read and saved as count rates; this categorizing of rates counters is made according to particle species, energy range, time-of-flight and/or charge state. Figure 7 and Figure 8 show the count rates binning counters of ICS and STICS, respectively.

Figure 7 - ICS Energy - Time-of-Flight Diagram

Location of the 36 ICS species channels in the space of measured TOF vs. measured energy. In addition the location of the 16 single-parameter TOF (energy) channels is shown on the vertical (horizontal) axis.

STICS rate channel coverage in mass and mass/charge space. Shaded regions show the HR, SMR, BR and MR groups

To conserve on-board storage space and transmission bandwidth the Science Rates data is compressed to 8-bit quantities after read-out from the accumulation counters. Either of two selectable log compression methods is used, which are referred to as compression Code A or C; the compressed rate values are summarized in Table 2 as are the corresponding decompressed mid-point Science Rates count values that are used in ground-based processing.

On-board Science R	On-board Measured Science Rates Counts		Ground Decom Science Ra Va	d-based pressed ates Counts lues
A Code	C Code	relemetry	A Code	C Code
0	0	0	0	0
1	1	1	1	1
2	2	2	2	2
3	3	3	3	3
4	4	4	4	4

 Table 2 - Codes A and C Compression and Decompression Values

		C	Ground-based		
On-board	Measured	Compressed	Decompressed		
Science Ra	tes Counts	Rate Value	Science Ra	tes Counts	
	ites Counts	for	Values		
		Telemetry	val		
A Code	C Code	•	A Code	CCode	
6	6	6	6	6	
8	8	8	8	8	
9	9	9	9	9	
10	10	10	10	10	
11	11	11	11	11	
12	12	12	12	12	
13	13	13	13	13	
14	14	14	14	14	
15	15	15	15	15	
17	17	16	10	10	
18	18	18	18	1.8	
19	19	19	19	19	
20	20	20	20	20	
21	21	21	21	21	
22	22	22	22	22	
23	23	23	23	23	
24	24	24	24	24	
25	25	25	25	25	
26	26	26	26	26	
27	27	27	27	27	
28	28	28	28	28	
29	29	29	29	29	
30	30	30	30	30	
<u> </u>	<u> </u>	31	31	31	
32 - 33	34 - 35	32	35	35	
36 - 37	36 - 37	34	37	37	
38 - 39	38 - 39	35	39	39	
40 - 41	40 - 41	36	41	41	
42 - 43	42 - 43	37	43	43	
44 - 45	44 - 45	38	45	45	
46 - 47	46 - 47	39	47	47	
48 - 49	48 - 49	40	49	49	
50 - 51	50 - 51	41	51	51	
52 - 53	52 - 53	42	53	53	
54 - 55	54 - 55	43	55	55	
56 - 57	56 - 57	44	57	57	
50 - 59 60 - 61	50 - 59 60 - 61	45 46	59 61	59 61	
62 - 63	62 - 63	47	63	63	
64 - 67	64 - 67	48	66	66	
68 - 71	68 - 71	49	70	70	
72 - 75	72 - 75	50	74	74	
76 - 79	76 - 79	51	78	78	
80 - 83	80 - 83	52	82	82	
84 - 87	84 - 87	53	86	86	
88 - 91	88 - 91	54	90	90	
92 - 95	92 - 95	55	94	94	
90 - 99	90 - 99 100 102	50	98 100	۶۵ ۱۵۵	
100 - 103 104 - 107	100 - 103	۲ / ۲۵	106	106	
108 - 111	108 - 111	59	110	110	
112 - 115	112 - 115	60	114	114	
116 - 119	116 - 119	61	118	118	
120 - 123	120 - 123	62	122	122	
124 - 127	124 - 127	63	126	126	
128 - 135	128 - 135	64	132	132	
136 - 143	136 - 143	65	140	140	
144 - 151	144 - 151	66	148	148	

			Ground-based	
On-hoard	Measured	Compressed		
Sajanga Da	tos Counts	Rate Value	Science De	tos Counts
Science Ka	ites Counts	for	Values	
. ~ .	~ ~ -	Telemetry	va	ues
A Code	C Code		A Code	C Code
152 - 159	152 - 159	67	156	156
160 - 167	160 - 167	68	164	164
168 - 175	168 - 175	69	172	172
170 - 183	170 - 183 184 - 191	70	180	180
192 - 199	192 - 199	71	196	196
200 - 207	200 - 207	73	204	204
208 - 215	208 - 215	74	212	212
216 - 223	216 - 223	75	220	220
224 - 231	224 - 231	76	228	228
232 - 239	232 - 239	77	236	236
240 - 247	240 - 247	78	244	244
248 - 255	248 - 255	79	252	252
256 - 271	256 - 271	80	264	264
288 - 202	212 - 201	01 80	200	200
304 - 319	304 - 319	83	312	312
320 - 335	320 - 335	84	328	328
336 - 351	336 - 351	85	344	344
352 - 367	352 - 367	86	360	360
368 - 383	368 - 383	87	376	376
384 - 399	384 - 399	88	392	392
400 - 415	400 - 415	89	408	408
416 - 431	416 - 431	90	424	424
432 - 447	432 - 447	91	440	440
448 - 463	448 - 463	92	450	400
480 - 495	480 - 495	94	488	488
496 - 511	496 - 511	95	504	504
512 - 543	512 - 543	96	528	528
544 - 575	544 - 575	97	560	560
576 - 607	576 - 607	98	592	592
608 - 639	608 - 639	99	624	624
640 - 671	640 - 671	100	656	656
672 - 703	672 - 703	101	688	688
704 - 735	704 - 735	102	720	720
768 - 799	758 - 799	103	784	784
800 - 831	800 - 831	105	816	816
832 - 863	832 - 863	106	848	848
864 - 895	864 - 895	107	880	880
896 - 927	896 - 927	108	912	912
928 - 959	928 - 959	109	944	944
960 - 991	960 - 991	110	976	976
992 - 1023	992 - 1023	111	1008	1008
1024 - 1087	1024 - 1087	112	1100	1100
1152 - 1215	1088 - 1151 1152 - 1215	113	1120	1120
1216 - 1279	1216 - 1213	115	1248	1248
1280 - 1343	1280 - 1343	116	1312	1312
1344 - 1407	1344 - 1407	117	1376	1376
1408 - 1471	1408 - 1471	118	1440	1440
1472 - 1535	1472 - 1535	119	1504	1504
1536 - 1599	1536 - 1599	120	1568	1568
1600 - 1663	1600 - 1663	121	1632	1632
1664 - 1727	1664 - 1727	122	1696	1696
1728 - 1791	1728 - 1791	123	1/60	1760
1/92 - 1855	1/92 - 1855 1856 - 1010	124	1824	1824
1920 - 1983	1920 - 1983	125	1952	1952
1984 - 2047	1984 - 2047	127	2016	2016
-	-	1	-	-

			Ground-based		
On-board	Measured	Compressed	Decompressed		
Science Re	tes Counts	Rate Value			
Science Ka	ites Counts	for	Values		
	C Cada	Telemetry	V di	C Cada	
A Code		100	A Code	CCode	
2048 - 2175	2048 - 2175	128	2112	2112	
2170 - 2303	2170 - 2303 2304 - 2431	130	2368	2368	
2432 - 2559	2432 - 2559	130	2496	2496	
2560 - 2687	2560 - 2687	132	2624	2624	
2688 - 2815	2688 - 2815	133	2752	2752	
2816 - 2943	2816 - 2943	134	2880	2880	
2944 - 3071	2944 - 3071	135	3008	3008	
3072 - 3199	3072 - 3199	136	3136	3136	
3200 - 3327	3200 - 3327	137	3264	3264	
3328 - 3435	3456 - 3583	130	3520	3520	
3584 - 3711	3584 - 3711	140	3648	3648	
3712 - 3839	3712 - 3839	141	3776	3776	
3840 - 3967	3840 - 3967	142	3904	3904	
3968 - 4095	3968 - 4095	143	4032	4032	
4096 - 4351	4096 - 4351	144	4224	4224	
4352 - 4607	4352 - 4607	145	4480	4480	
4608 - 4863	4608 - 4863	146	4736	4736	
4004 - 5119 5120 - 5275	4004 - 5119 5120 - 5275	14/ 1/2	4992 5249	4992 5249	
5376 - 5631	5376 - 5631	149	5504	5504	
5632 - 5887	5632 - 5887	150	5760	5760	
5888 - 6143	5888 - 6143	151	6016	6016	
6144 - 6399	6144 - 6399	152	6272	6272	
6400 - 6655	6400 - 6655	153	6528	6528	
6656 - 6911	6656 - 6911	154	6784	6784	
6912 - 7167	6912 - 7167	155	7040	7040	
7168 - 7423	7168 - 7423	156	7296	7296	
7680 - 7935	7680 - 7935	157	7808	7808	
7936 - 8191	7936 - 8191	159	8064	8064	
8192 - 8703	8192 - 8703	160	8448	8448	
8704 - 9215	8704 - 9215	161	8960	8960	
9216 - 9727	9216 - 9727	162	9472	9472	
9728 - 10239	9728 - 10239	163	9984	9984	
10240 - 10751	10240 - 10751	164	10496	10496	
10752 - 11263	10752 - 11263	165	11008	11008	
11204 - 11775 11776 - 12287	11204 - 11775 11776 - 12287	167	12032	12032	
12288 - 12799	12288 - 12799	168	12544	12544	
12800 - 13311	12800 - 13311	169	13056	13056	
13312 - 13823	13312 - 13823	170	13568	13568	
13824 - 14335	13824 - 14335	171	14080	14080	
14336 - 14847	14336 - 14847	172	14592	14592	
14848 - 15359	14848 - 15359	173	15104	15104	
15360 - 15871	15360 - 15871	174	15616	15616	
15872 - 10383 16384 - 17407	15872 - 10383 16384 - 17407	175	16896	16896	
17408 - 18431	17408 - 18431	177	17920	17920	
18432 - 19455	18432 - 19455	178	18944	18944	
19456 - 20479	19456 - 20479	179	19968	19968	
20480 - 21503	20480 - 21503	180	20992	20992	
21504 - 22527	21504 - 22527	181	22016	22016	
22528 - 23551	22528 - 23551	182	23040	23040	
23552 - 24575 24576 - 25500	23552 - 24575 24576 - 25500	101	24064	24064	
25600 - 26623	24570 - 25599	185	26112	26112	
26624 - 27647	26624 - 27647	186	27136	27136	
27648 - 28671	27648 - 28671	187	28160	28160	
28672 - 29695	28672 - 29695	188	29184	29184	

On-board Measured			Ground-based		
		Compressed	Decompressed		
Science Re	tos Counts	Rate Value	Science Detes Counts		
Stichte Ka	ites Counts	for	Volues		
	a a 1	Telemetry	va		
A Code	C Code		A Code	C Code	
29696 - 30719	29696 - 30719	189	30208	30208	
30720 - 31743	30720 - 31743	190	31232	31232	
32768 - 34815	32768 - 36863	191	32250	34816	
34816 - 36863	36864 - 40959	193	35840	38912	
36864 - 38911	40960 - 45055	194	37888	43008	
38912 - 40959	45056 - 49151	195	39936	47104	
40960 - 43007	49152 - 53247	196	41984	51200	
43008 - 45055	53248 - 57343	197	44032	55296	
45056 - 4/103	5/344 - 61439	198	46080	59392	
49152 - 51199	65536 - 73727	200	50176	69632	
51200 - 53247	73728 - 81919	200	52224	77824	
53248 - 55295	81920 - 90111	202	54272	86016	
55296 - 57343	90112 - 98303	203	56320	94208	
57344 - 59391	98304 - 106495	204	58368	102400	
59392 - 61439	106496 - 114687	205	60416	110592	
61440 - 63487	114688 - 122879	206	62464	118784	
65536 - 60535	122880 - 131071 131072 - 147455	207	64512	120976	
69632 - 73727	131072 - 147455 147456 - 163839	208	71680	155648	
73728 - 77823	163840 - 180223	210	75776	172032	
77824 - 81919	180224 - 196607	211	79872	188416	
81920 - 86015	196608 - 212991	212	83968	204800	
86016 - 90111	212992 - 229375	213	88064	221184	
90112 - 94207	229376 - 245759	214	92160	237568	
94208 - 98303	245760 - 262143	215	96256	253952	
98304 - 102399	262144 - 294911	216	100352	278528	
102400 - 106495	294912 - 327679	217	104448	311296	
100490 - 110591 110592 - 114687	327080 = 300447 360448 = 393215	210	112640	376832	
114688 - 118783	393216 - 425983	220	116736	409600	
118784 - 122879	425984 - 458751	221	120832	442368	
122880 - 126975	458752 - 491519	222	124928	475136	
126976 - 131071	491520 - 524287	223	129024	507904	
131072 - 139263	524288 - 589823	224	135168	557056	
139264 - 147455	589824 - 655359	225	143360	622592	
147456 - 155647	655360 - 720895	226	151552	688128	
155648 - 163839 162840 - 172021	720896 - 786431	227	159744	/53664	
172032 - 180223	851968 - 917503	220	176128	884736	
180224 - 188415	917504 - 983039	230	184320	950272	
188416 - 196607	983040 - 104856	231	192512	1015808	
196608 - 204799	104857 - 117963	232	200704	1114112	
204800 - 212991	117964 - 131071	233	208896	1245184	
212992 - 221183	131072 - 144178	234	217088	1376256	
221184 - 229375	144179 - 157285	235	225280	1507328	
229376 - 237567	15/286 - 1/0392	230	233472	1038400	
237508 - 245759 245760 - 253951	170393 - 183499 183500 - 196607	237	241004	1900544	
253952 - 262143	196608 - 209714	239	258048	2031616	
262144 - 278527	209715 - 235928	240	270336	2228224	
278528 - 294911	235929 - 262143	241	286720	2490368	
294912 - 311295	262144 - 288357	242	303104	2752512	
311296 - 327679	288358 - 314571	243	319488	3014656	
327680 - 344063	314572 - 340786	244	335872	3276800	
344064 - 360447	340/87 - 36/000	245	352256	3538944	
376832 - 393215	307001 - 393215 303216 - 410420	240 247	385024	4063232	
393216 - 409599	419430 - 471858	248	401408	4456448	
409600 - 425983	471859 - 524287	249	417792	4980736	

On-board Science Ra	Measured ates Counts	Compressed Rate Value for	Ground-based Decompressed Science Rates Counts Values	
A Code	C Code	Telemetry	A Code	C Code
425984 - 442367	524288 - 576715	250	434176	5505024
442368 - 458751	576716 - 629144	251	450560	6029312
458752 - 475135	629145 - 681573	252	466944	6553600
475136 - 491519	681574 - 734002	253	483328	7077888
491520 - 507903	734003 - 786431	254	499712	7602176
≥ 507904	≥ 786432	255	516096	8126464

The EPIC instrument science information is provided to the spacecraft which multiplexes it with other instruments' information as telemetry for transmission to ground stations. The NASA-provided ground system receives this telemetry data, separates out the EPIC data and provides it, along with spacecraft attitude and ephemeris data, to the EPIC instrument team. EPIC ground-based processing then demultiplexes and organizes the instrument telemetry data and stores it as original measurements (compressed by the on-board DPU) into Level 1 files as 2 PHA channels (one each for STICS and ICS) and 139 Engineering and Science Rates channels (51 STICS and 88 ICS). These channels are shown in the Table 3 along with descriptive information.

The data within the Level 1 files has not been converted or corrected from its original state on the spacecraft. The next section details the processing steps of conversion and corrections that may be applied to the Level 1 data to yield measures of the original ambient conditions encountered by the instrument.

EPIC Sensor Elevation Angles

Figure 9 - EPIC Sensors Elevation Field-of-view Geometries

Figure 10 - Geotail Spacecraft and EPIC Sensors Azimuth Geometries

Table 3 - ICS and STICS PHA and Science Rates Channels

Channel	Charrent	Sensor				Energy Pass Band				
Channel Name	Channel Number	Туре	Data Type					[keV or	keV/e [†]]	
ivanic	Tumber	(code)		Heads	Heads Summed	Sectors Summed	Spins Summed	Low ^{††}	High ^{††}	
I_PHA	1	ICS (-1)	PHA	3 **	2	1	16	n/	a	
S_PHA	2	STICS (-2)	PHA	4 **	2	1	16	n/	/a	
I_DCR ions	3	ICS (1)	Engineering Rates	2	1	1	16	n/	a	
I_FSR ions	4	ICS (1)	Engineering Rates	2	1	1	2	n/	a	
I_RSR ions	5	ICS (1)	Engineering Rates	2	1	1	16	n/	a	
I_SSD ions	6	ICS (1)	Engineering Rates	2	1	1	16	n/	a	
I_TCR ions	7	ICS (1)	Engineering Rates	2	1	1	16	n/	a	
I_MDCR ion	8	ICS (1)	Engineering Rates	1	1	1	32	n/	a	
I_MFSR ion	9	ICS (1)	Engineering Rates	1	1	1	16	n/	a	
I_UFSR ion	10	ICS (1)	Engineering Rates	1	1	1	16	n/	a	
I_URSR ion	11	ICS (1)	Engineering Rates	1	1	1	16	n/	a	
ED1 e-	12	ICS (1)	Engineering Rates	1	1	2	1	38.0*	x	
ED2 e-	13	ICS (1)	Engineering Rates	1	1	1	16	110.0	∞	
E0 energ	14	ICS (1)	Science Rates	2	1	4	32	n/	a	
El energ	15	ICS (1)	Science Rates	2	1	1	2	45.9	52.7	
E2 energ	16	ICS (1)	Science Rates	2	1	1	16	52.7	61.5	
E3 energ	17	ICS (1)	Science Rates	2	1	1	2	61.5	73.7	
E4 energ	18	ICS (1)	Science Rates	2	1	1	2	73.7	89.3	
E5 energ	19	ICS (1)	Science Rates	2	1	1	16	89.3	110.2	
E6 energ	20	ICS (1)	Science Rates	2	1	1	16	110.2	137.4	
E7 energ	21	ICS (1)	Science Rates	2	1	1	16	137.4	173.1	
E8 energ	22	ICS (1)	Science Rates	2	1	1	16	173.1	220.0	
E9 energ	23	ICS (1)	Science Rates	2	1	1	16	220.0	281.5	
E10 energ	24	ICS (1)	Science Rates	2	1	1	16	281.5	362.9	
Ell energ	25	ICS (1)	Science Rates	2	1	1	16	362.9	471.4	
E12 energ	26	ICS (1)	Science Rates	2	1	1	16	471.4	615.9	
E13 energ	27	ICS (1)	Science Rates	2	1	1	16	615.9	913.2	
E14 energ	28	ICS (1)	Science Rates	2	1	1	32	913.2	1352.3	
E15 energ	29	ICS (1)	Science Rates	2	1	1	32	1352.3	2013.9	
E16 energ	30	ICS (1)	Science Rates	2	1	1	32	2013.9	3005.4	
E17 energ	31	ICS (1)	Science Rates	2	1	4	32	n/	a	
E_B2 energ	32	ICS (1)	Science Rates	2	2	1	1	52.7	61.5	
E_B5 energ	33	ICS (1)	Science Rates	2	2	1	1	89.3	110.2	
TO TOF	34	ICS (1)	Science Rates	2	1	4	32	n/	a	
TI TOF	35	ICS (1)	Science Rates	2	1	1	32	2.0	3.5	
T2 TOF	36	ICS (1)	Science Rates	2	1	1	32	3.5	6.0	
T3 TOF	37	ICS(1)	Science Rates	2	1	1	32	6.0	1.2	
T4 TOF	38	ICS(1)	Science Rates	2	1	1	32	1.2	8.8	
TS TOP	39		Science Rates	2	1	1	32	8.8	10.7	
16 10F	40	ICS(1)	Science Rates	2	1	1	16	10.7	12.9	
17 10F	41	ICS(1)	Science Rates	2	1	1	32	12.9	15./	
18 10F	42	ICS(1)	Science Rates	2	1	1	10	15./	19.0	
	43	$\frac{ICS(I)}{ICS(I)}$	Science Kates	2	1	1	10	19.0	23.0	
TIU IUF	44	$\frac{ICS(I)}{ICS(I)}$	Science Kates	2	1	1	10	25.0	21.8	
	45	$\frac{ICS(I)}{ICS(I)}$	Science Kates	2	1	1	2	21.8	35./	
	40	$\frac{ICS(1)}{ICS(1)}$	Science Kates	2	1	1	10	33.7	40.9	
TIA TOF	4/	$\frac{ICS(1)}{ICS(1)}$	Science Kates	2	1	1	10	40.9	49.3	
	48	$\frac{ICS(1)}{ICS(1)}$	Science Kates	2	1	1	32	49.3	00.0	
	49 50	$\frac{ICS(1)}{ICS(1)}$	Science Kates	2	1	1	20	00.0	100.0	
	51	$\frac{ICS(1)}{ICS(1)}$	Science Kates	2	1	1	32	//.0	100.0	
T B14 TOF	52	$\frac{ICS(1)}{ICS(1)}$	Science Rates	2	2	1	32	1/3 /0.5	a 60.0	
T_DIA IOL	52	ICS(1)	Science Kales	7		1	1	49.3	0.00	

Channel	Channel	Sensor				Energy Pass Band †				
Name	Number	Туре	Data Type					[keV or	keV/e [']]	
Tunic	Tumber	(code)		Heads	Heads Summed	Sectors Summed	Spins Summed	Low ^{††}	High ^{††}	
H1 Z>20	53	ICS (1)	Science Rates	2	1	1	32	395.0	619.0	
H2 Z>20	54	ICS (1)	Science Rates	2	1	1	32	619.0	838.0	
H3 Z>20	55	ICS (1)	Science Rates	2	1	1	32	838.0	1202.0	
H4 Z>20	56	ICS (1)	Science Rates	2	1	1	32	1202.0	1772.0	
H5 Z>20	57	ICS (1)	Science Rates	2	1	1	32	1772.0	2728.0	
H6 Z>20	58	ICS (1)	Science Rates	2	1	1	32	2728.0	4405.0	
HE1 He	59	ICS (1)	Science Rates	2	1	1	16	53.4	70.0	
HE2 He	60	ICS (1)	Science Rates	2	1	1	2	70.0	95.8	
HE3 He	61	ICS (1)	Science Rates	2	1	1	16	95.8	135.0	
HE4 He	62	ICS (1)	Science Rates	2	1	1	16	135.0	194.0	
HE5 He	63	ICS (1)	Science Rates	2	1	1	16	194.0	280.8	
HE6 He	64	ICS (1)	Science Rates	2	1	1	16	280.8	407.4	
HE7 He	65	ICS (1)	Science Rates	2	1	1	16	407.4	595.5	
HE8 He	66	ICS (1)	Science Rates	2	1	1	16	595.5	888.7	
HE9 He	6/	ICS(1)	Science Rates	2	1	1	32	888./	1631.4	
HEIU HE	68	ICS(I)	Science Rates	2	1	1	32	1051.4	196.5	
M1 CNO	70	$\frac{ICS(1)}{ICS(1)}$	Science Rates	2	1	1	10	105.4	180.5	
M3 CNO	70	ICS(1)	Science Rates	2	1	1	10	221.4	221.4	
M4 CNO	71	ICS(1)	Science Rates	2	1	1	16	221.4	360.2	
M5 CNO	72	ICS(1)	Science Rates	2	1	1	16	360.2	493.5	
M6 CNO	73	ICS(1)	Science Rates	2	1	1	16	493.5	697.2	
M7 CNO	75	ICS(1)	Science Rates	2	1	1	32	697.2	1016.2	
M8 CNO	76	ICS(1)	Science Rates	2	1	1	32	1016.2	1522.0	
M9 CNO	77	ICS (1)	Science Rates	2	1	1	32	1522.0	2315.7	
M10 CNO	78	ICS (1)	Science Rates	2	1	1	32	2315.7	3565.3	
P1 p+	79	ICS (1)	Science Rates	2	1	1	16	45.9	58.1	
P2 p+	80	ICS (1)	Science Rates	2	1	1	2	58.1	77.3	
P3 p+	81	ICS (1)	Science Rates	2	1	1	16	77.3	107.4	
P4 p+	82	ICS (1)	Science Rates	2	1	1	16	107.4	154.3	
P5 p+	83	ICS (1)	Science Rates	2	1	1	16	154.3	227.5	
Рб р+	84	ICS (1)	Science Rates	2	1	1	16	227.5	341.6	
P7 p+	85	ICS (1)	Science Rates	2	1	1	16	341.6	522.5	
P8 p+	86	ICS (1)	Science Rates	2	1	1	16	522.5	813.5	
P9 p+	87	ICS (1)	Science Rates	2	1	1	32	813.5	1560.8	
P10 p+	88	ICS (1)	Science Rates	2	1	1	32	1560.8	3005.4	
SM ions	89	ICS (1)	Science Rates	2	1	4	32	n/	a	
ZM ions	90	ICS (1)	Science Rates	2	1	4	32	n/	a	
S_DCR ions	91	STICS (2)	Engineering Rates	3	1	16	1	n/	a	
S_FSR ions	92	STICS (2)	Engineering Rates	3	1	16	1	n/	a	
S_RSR ions	93	STICS (2)	Engineering Rates	3	1	16	1	n/	a	
S_SSD ions	94	STICS (2)	Engineering Rates	3	1	16	1	n/	a	
S_TCR lons	95	STICS(2)	Engineering Rates	3	1	10	1	n/	a	
S_MDCR ION	96	STICS(2)	Engineering Rates	1	1	10	1	n/	a	
S_MFSR ION	97	$\frac{STICS(2)}{STICS(2)}$	Engineering Rates	1	1	10	1	n/	a	
S_UFSR ION	98	$\frac{STICS(2)}{STICS(2)}$	Engineering Rates	1	1	10	1	n/	a	
MDE	99 100	$\frac{STICS(2)}{STICS(2)}$	Engineering Rates	1	1	10	1	n/	a	
MPR	100	$\frac{STICS(2)}{STICS(2)}$	Engineering Rates	1	1	16	1	n/	а 'я	
Diagnostic	102	$\frac{STICS(2)}{STICS(2)}$	-	1	1	16	1	n/	a	
HR0 H+	102	$\frac{STICS(2)}{STICS(2)}$	Science Rates	6	1	1	1	9 38	212.14	
HR10 0+1	103	$\frac{STICS(2)}{STICS(2)}$	Science Rates	6	1	1	1	9 38	212.14	
HR11 FSRs	105	STICS(2)	Science Rates	6	1	1	1	9.38	212.14	
SMR0 He+1	106	STICS (2)	Science Rates	3	1	2	1	9.38	212.14	

Channel Name	annel Channel Sensor ame Number (code) Data Type				The Nu		Energy Pass Band [keV or keV/e [†]]				
		(code)		Heads	Heads Summed	Sectors Summed	Spins Summed	Low ^{††}	High ^{††}		
SMR1 He+2	107	STICS (2)	Science Rates	3	1	2	1	9.38	212.14		
SMR2 O+2	108	STICS (2)	Science Rates	3	1	2	1	9.38	212.14		
BRO CNOFe	109	STICS (2)	Science Rates	3	1	2	1	9.38	212.14		
BR1 O&NO	110	STICS (2)	Science Rates	3	1	2	1	9.38	212.14		
BR2 H&He	111	STICS (2)	Science Rates	3	1	2	1	9.38	212.14		
MR0 C+3	112	STICS (2)	Science Rates	1	1	16	1	9.38	212.14		
MR1 C+4	113	STICS (2)	Science Rates	1	1	16	1	9.38	212.14		
MR2 C+5	114	STICS (2)	Science Rates	1	1	16	1	9.38	212.14		
MR3 C+6	115	STICS (2)	Science Rates	1	1	16	1	9.38	212.14		
MR4 N+1	116	STICS (2)	Science Rates	1	1	16	1	9.38	212.14		
MR5 N+4	117	STICS (2)	Science Rates	1	1	16	1	9.38	212.14		
MR6 N+2	118	STICS (2)	Science Rates	1	1	16	1	9.38	212.14		
MR7 N+2ZM	119	STICS (2)	Science Rates	1	1	16	1	9.38	212.14		
MR8 BHE2	120	STICS (2)	Science Rates	1	1	16	1	9.38	212.14		
MR9 BHE1	121	STICS (2)	Science Rates	1	1	16	1	9.38	212.14		
MR10 BH+ZM	122	STICS (2)	Science Rates	1	1	16	1	9.38	212.14		
MR11 O+2ZM	123	STICS (2)	Science Rates	1	1	16	1	9.38	212.14		
MR12 O+3	124	STICS (2)	Science Rates	1	1	16	1	9.38	212.14		
MR13 O+4	125	STICS (2)	Science Rates	1	1	16	1	9.38	212.14		
MR14 O+5	126	STICS (2)	Science Rates	1	1	16	1	9.38	212.14		
MR15 O+6	127	STICS (2)	Science Rates	1	1	16	1	9.38	212.14		
MR16 O+7	128	STICS (2)	Science Rates	1	1	16	1	9.38	212.14		
MR17 O+8	129	STICS (2)	Science Rates	1	1	16	1	9.38	212.14		
MR18 Ne+8	130	STICS (2)	Science Rates	1	1	16	1	9.38	212.14		
MR19 MgSiL	131	STICS (2)	Science Rates	1	1	16	1	9.38	212.14		
MR20 MgSiH	116	STICS (2)	Science Rates	1	1	16	1	9.38	212.14		
MR21 Fe+6	133	STICS (2)	Science Rates	1	1	16	1	9.38	212.14		
MR22 Fe+8	134	STICS (2)	Science Rates	1	1	16	1	9.38	212.14		
MR23 Fe+10	135	STICS (2)	Science Rates	1	1	16	1	9.38	212.14		
MR24 Fe+12	136	STICS (2)	Science Rates	1	1	16	1	9.38	212.14		
MR25 Fe+14	137	STICS (2)	Science Rates	1	1	16	1	9.38	212.14		
MR26 Fe+16	138	STICS (2)	Science Rates	1	1	16	1	9.38	212.14		
MR27 NO&02	139	STICS (2)	Science Rates	1	1	16	1	9.38	212.14		
MR28 BH+tr	140	STICS (2)	Science Rates	1	1	16	1	9.38	212.14		
MR29 C+2	141	STICS (2)	Science Rates	1	1	16	1	9.38	212.14		

Table 3 - ICS and STICS PHA and Science Rates Channels, version 2.14

[†] Energy pass band values are in units of keV for ICS Sensor channels and in units of keV/e for STICS channels.

- ** a) STICS Sensor energy values change, or step, with each successive spin in a cyclic manner; see Table 4 - STICS DV Values for exact values of this cycle; values given are the arithmetic mid point of the DV step low and high energy limits for the lowest and highest DV steps.
 - b) ICS Sensor energy low and high values change with aperture position; values given are for the open aperture position. See Table A 4 for energy band pass values for foil aperture position.

* On 8 Mar 1993 the threshold for electron detector channel ED1 was raised from 34 keV to 38 keV

		Energy Bands	
	T (0	[keV/e]	T /0
Step†	E/Q	E/Q	E/Q U:-h
	LOW	IVIIQ	High
0	7.42	7.51	7.60
1	8.29	8.39	8.49
2 ††	9.27	9.38	9.49
3	10.36	10.48	10.60
4	11.58	11.72	11.86
5	12.95	13.10	13.25
6 ††	14.47	14.64	14.81
7	16.18	16.37	16.56
8	18.08	18.30	18.52
9	20.21	20.45	20.69
10 ††	22.59	22.86	23.13
11	25.26	25.56	25.86
12	28.23	28.57	28.91
13	31.56	31.94	32.32
14 ††	35.28	35.70	36.12
15	39.44	39.91	40.38
16	44.09	44.61	45.13
17	49.27	49.86	50.45
18 ††	55.09	55.74	56.39
19	61.58	62.31	63.04
20	68.83	69.65	70.47
21	76.94	77.85	78.76
22 ††	86.00	87.02	88.04
23	96.14	97.28	98.42
24	107.46	108.74	110.02
25	120.12	121.55	122.98
26 ††	134.27	135.87	137.47
27	150.10	151.88	153.66
28	167.79	169.78	171.70
29	187.55	189.78	192.00
30 ††	209.65	212.14	214.60
31	234.35	237.14	239.90

Table 4 - STICS DV Values

†

Points among which the STICS sensor can be configured to cycle, or step.

^{††} The STICS sensor has cycled from launch to the present primarily among these 8 steps in order of highest to lowest DV Step. The exception is that, from 2005-325 02:12:00 to 2007-057 17:13:18, STICS stepped among all 32 steps in order of highest to lowest DV Step.

4 EPIC Science Rate Data Conversion

Calibrated scientific data is derived from the EPIC telemetry Science Rates data by applying the following sequential ground-based processing steps:

<u>Step</u>	Operation	Units of or resulting from the operation
1.	Conversion to count rate	[compressed counts] to [counts per second (cps)]
2.	Correction for sector dead-time (optional)	unit independent
3.	Correction for background (optional)	in [cps]
4.	Correction for R vs. R (optional)	unit independent
5.	Correction for efficiency (optional)	unit independent
6.	Conversion to integral flux	[cps] to $[(cm^2 \sec sr)^{-1}]$
7.	Conversion to differential flux	$[(cm^2 \sec sr)^{-1}]$ to $[(cm^2 \sec sr keV)^{-1}]$

These processing steps are basically performed as a sequence in the above order. Conversion from counts to count rate is required to be first and the sector dead-time correction second. The correction for background, an offset operation (i.e. a subtraction), is required to be performed next. The remaining corrections and conversions are scaling operations (i.e. multiplications or divisions) and hence can be performed in any order.

Depending upon the desired calibrated results, the sequence of apply the processing steps may be stopped at any point. Specifically, by stopping at any point along processing steps 1 through 5, count rate data is produced; by stopping at processing step 6, integral flux data is produced; and by completing processing step 7, differential flux data is produced.

The correction processing steps, 2 through 5, may be optionally skipped in the calibration sequence. While contributing useful and important adjustments, they may not be desired in the final results.

Certain correction processing steps are not applicable in certain situations. For example, corrections for background and for R vs. R are only applicable for ICS channels and not for STICS channels. In such cases, attempts by a user to apply these corrections in data processing are ignored within the calibration processing steps.

For shorthand notation, these conversion and correction steps are selected for use in the processing sequence through the use of a 12-character field referred to as CALSTEPS (short-hand notation for calibration steps). Currently only the first left-most six and ninth character positions are employed; the seventh, eighth and two right-most characters are reserved for future use. Each of the above discussed seven conversion and correction steps is assigned a position within CALSTEPS, as outlined in the next sections, by which to control its use. A value of "0" (or space) in a particular position indicates that the corresponding conversion or correction operation should not be performed while a value of "1" generally indicates that it should be performed; in some cases values of "1" or "2" are used to chose between several options for corrections. As an example, a CALSTEPS value of "111111001" indicates that all seven conversion and correction steps should be performed while a value of "1000000000" indicates that only the count rate conversion should be performed.

4.1 Conversion to Count Rate

Summary

Conversion

Count Rate = Counts / (Sector Period_{S/C} * Sectors Summed_{Number} * Spins Summed_{Number}) (1)

where

Sector $Period_{S/C}$ is

- the general EPIC sector period for the Geotail spacecraft, which is nominally 3/16 seconds Sectors Summed_{Number} is
 - the number of adjacent sectors during which the DPU accumulates counts for the particular channel of interest

Spins Summed_{Number} is

- the number of successive spins during which the DPU accumulates counts for the particular channel of interest

Options:

CALSTEPS field position 1: N x x x x x x x,

where N = 0 causes no count rate conversions to be applied to the data

 $\neq 0$ causes count rate conversions to be applied to the data

Details

The binned counts of the Science Rates data are generally accumulated by the DPU over 16 equally divided periods, called sectors, of a spin of the Geotail spacecraft. The nominal spin period of the Geotail spacecraft has been approximately 3 seconds since launch. The exact spin period has varied over the mission and is recorded in the attitude data files distributed by the NASA Geotail project. For use by EPIC ground data processing, daily spin period values are stored in the file SPIN_PERIOD.DAT; the content of this file is given in Table A 3, which is a compressed file that shows spin period transitions.

A count rate is derived from the binned counts by dividing the counts value by the nominal sampling interval during which the counts observations were accumulated. This sampling interval is the product of the general EPIC sector period, the number of adjacent sectors that are summed by the EPIC DPU for the channel and the number of successive spins that are summed by the DPU for the channel. Note that the adjustment of this general sector period to the actual sector period is described in the next section, Correction for Sector Dead Time.

The number of sectors summed for ICS and STICS channels varies from 1 to 16, and the number of spins summed varies from 1 to 32. See Table 3 for values.

4.2 Conversion for Sector Dead Time (optional)

Summary

Correction

Count Rate_{DeadT Cor} = Count Rate * Sector Dead-time Factor

(2)

where

Sector Dead-time Factor depends upon

- Sensor type: ICS versus STICS
- Channel type: Engineering versus Science
- Sector number: Zeroth versus non-zeroth (i.e., 1-15)

Options:

CALSTEPS field position 4: x x x N x x x x,

where N = 0 causes no sector dead-time corrections to be applied to the data

= 1 causes sector dead-time corrections to be applied to the data

= 2 causes sector dead-time corrections to be applied to the data and applies a weighting factor to be applied to the 0th, or first, sector

Details

The sector dead-time correction compensates for periods within a sector during which counts do not contribute to the DPU accumulations. This loss occurs when the DPU makes no accumulations in rate counters because it is busy performing initialization tasks at the beginning of each sector (the primary reason) or when accumulations in rate counters are subsequently lost due to a reset of the accumulators. This time loss for observations, or dead time, for a sector proportionally lowers the final count total for that sector. A correction for this loss is achieved by multiplying the observed counts by a factor that is proportional to the ratio of the time length of a sector, T_{Sector} , divided by the difference of the T_{Sector} and the dead time, $T_{Dead-time}$, for the sector:

Sector Dead-time Correction
$$\propto$$
 $(T_{Sector} - T_{Dead time})$ (3)

where

 T_{Sector} is the time of the sector $T_{Dead \ time}$ is the dead time of the sector

The exact value of the sector dead time depends upon whether the data channel belongs to the ICS or STICS sensor, whether the data channel is an Engineering or Science channel, and whether the sector is the 0th, or first, sector of the spin. Values for dead times are given in Table 5. See Appendix B for an e-mail message from TUB detailing dead time information for STICS.

		Dead tin	0 th Sector	
Sensor type	Channel type	Sector 0	Sectors 1-15	Factor
ICS	Engineering	0.4	0.4	1.0
ICS	Science	34.6	18.2	1.0
STICS	Engineering	0.4	0.4	1.0
STICS	Science	130.0	18.2	1.08

Table 5 - ICS and STICS Dead-time Values

The exact application of the sector dead time correction depends upon how many adjacent sectors are summed by the DPU.

If the sector does not include the 0th sector, then for single-, double- or four-summed sectors,

		1 Sector	
Sector Dead-time Correction	=		(4a)
		(T _{Sector} - T _{Dead time})	

For the 0th single-summed sector,

Sector Dead-time Correction =
$$\begin{array}{c} T_{Sector} \\ (T_{Sector} - T_{Dead time}) \\ \\ Wt Factor_{0-sector} \end{array}$$
(4b)

where

Wt Factor_{0-sector} is the weighting factor for the 0th sector

The 0th sector weighting factor, 0-sector, is stored in and read from the EPIC CALIBRATION data file. To date since launch this weighting factor has been 1.08 for STICS and 1.0 for ICS for Science Rates and 1.0 for both sensor for Engineering Rates (see Table 5).

For double-summed or four-summed sectors that include the 0th sector and for 16-summed sectors, which always includes the 0th sector,

Sector Dead-time Correction =
$$\frac{(T_{Sector} - T_{0-Dead time})}{(T_{Sector} - T_{0-Dead time})} + (N_{SS} - 1)(T_{Sector} - T_{Dead time})$$

$$Wt Factor_{0-Sector}$$
(4c)

where

 N_{SS} is the number of sectors that are summed by the DPU

 $T_{0-Dead time}$ is the sector dead time for 0^{th} sector $T_{Dead time}$ is the sector dead time for non- 0^{th} sectors

For double-summed or four-summed sectors that do not include the 0^{th} sector, the Sector Dead-time Correction reverts to that of Equation 4a.

During execution of the EPIC_TABULAR computer program, the application of the sector deadtime correction to data conversion calculations is controlled by setting to a non-zero value the 4th digit, from the left, within the Calsteps field. A digit value of one results in a normal correction while a digit value of two results in a correction weighted by a factor of 1.08.

Figure 11 - ICS and STICS Subsystems Sector Timing and Dead Times

4.3 Correction for Background (optional)

Summary

Correction

Count Rate_{BGnd Cor} = Count Rate - Background Rate_{ICS}

(5)

where

Background RateICS depends upon

- Sensor type: ICS only
- Head: ICS north (#0) or south (#1)
- Channel; i.e., species & energy band (ICS Energy and ED channels only)

Options:

CALSTEPS field position 2: x N x x x x x x,

- where N = 0 causes no background subtraction corrections to be applied to the data
 - = 1 causes background subtraction corrections to be applied to the data in which resultant negative count rates may occur.
 - = 2 causes background subtraction corrections to be applied to the data in which resultant negative count rates are set to zero.

Details

A correction to remove ambient background count rates can be applied to the ICS sensor ED and Energy channels; no corrections are applied to other ICS Rates channels or any STICS Rates channels. Values for these background count rate levels are empirically derived from observations taken during quiet periods and are stored for retrieval from the Calibration Data File. See Table A1 for the values of the background count rate levels in units of counts/sec; see Tables A7 and A8 for the corresponding values of the background count rate in units of flux the Energy channels and Electron Detector, respectively.

Within the EPIC software code, the background correction is alternately referred to as background subtraction.

4.4 Correction for R vs. R "Dead Time" (optional)

Summary

Correction

Count Rate_{RysR Cor} = Count Rate / UFSR-Based Correction Factor

(6)

where

UFSR-Based Correction Factor depends upon

- Sensor type: ICS only
- ICS UFSR channel count rate

Options:

CALSTEPS field position 3: x x N x x x x x, where N = 0 causes no R-vs-r correction to be applied to the data = 1 causes R-vs-r correction to be applied to the data

Details

At high ion count rates the ICS AE experiences a decreased responsiveness relative to the incident ion population. This response has been empirically quantified, as a function of the ICS UFSR count rate, as follows:

Events Rates_{Observed} = $-8.172e^{-20} * X_{UFSR}^{3} + 3.556e^{-13} * X_{UFSR}^{2} - 7.016e^{-7} * X_{UFSR} + 1.004e^{-13}$ (7) Events Rates_{Real}

where

 X_{UFSR} is the observed count rate in the ICS UFSR channel

This equation, shown as the solid line, is plotted in Figure 12.

To reconstruct real count rates from observed count rates in ground-based processing, an observed count rate for a channel can be divided by the ratio of observe to real count rates, which is given by the right-hand side of Equation 7 as a function of the UFSR count rate. In applying this correction, a threshold in the UFSR count rate is automatically employed such that the correction is not used unless the UFSR count rate is greater than 1.0E+05.

The ratio of observed to real event count rates for ICS channel is shown as a function of ICS UFSR channel count rates. In application, a UFSR threshold is employed below which no corrections are made to data during processing.

4.5 Correction for Efficiency (optional)

Summary

Correction

Count Rate = Count Rate / Efficiency

(8)

where

Efficiency depends upon

- Channel; i.e., species & energy band
- DV step (STICS only)
- Head (ion species only)
- Sector number: pre-sun sector, sun sector, post-sun sector, the set of remaining sectors (ICS only)
- Aperture position (ICS only)

Options:

CALSTEPS field position 6: x x x x x N x x x,

where N = 0 causes no efficiency corrections to be applied to the data

= 1 causes efficiency corrections to be applied to the data

Details

The correction of count rates for sensor efficiency is achieved by dividing the observed count rate by the applicable efficiency value.

For the ICS sensor, efficiency values differ by channel (i.e., species and energy band), detector head, and aperture position. Efficiency is taken as 1.0 for all Engineering Rates channels and for the Energy, TOF and Electron Detector Science Rates channels. Efficiency also depends upon the sector of observation as distinguished by the sector before the sun sector (pre-sun sector), the sun sector, the sector after the sun sector (post-sun sector) and the set of the remaining sectors. The sun sector is defined within the telemetry data stream; for July 24, 1992 (launch date) through February 30, 2003, the sun sector was sector 0 and has been sector 14 since then to the present. So for most of the mission, efficiency values have depended upon whether the observations were in sectors 13, 14, 15 or 1-12. See Table A 1 for ICS efficiency values.

For the STICS sensor, efficiency values differ by channel (i.e., species and energy) and DV step, and detector head. Efficiency is taken as 0.5 for all Engineering Rates channels. See Table A 5 for STICS efficiency values.

4.6 Conversion to Integral Flux

Summary

Conversion

Integral Flux = Count Rate / (Geometric Factor / N_{Heads})

(9)

where

Geometric factor depends upon

- Channel; i.e., species & energy band (ICS ion only)
- Head (ion species only_
- Aperture position (ICS only)

N_{Heads} is

- the number of polar heads:

STICS: 1, 3 or 6

ICS: Not applicable

Options:

CALSTEPS field position 5: x x x x N x x x x,

- where N = 0 causes no integral flux conversions to be applied to the data
 - = 1 causes integral flux conversions to be applied to the data
 - = 2 causes interpreted integral flux conversions to be applied to the data between the discontinuous DV steps (STICS only)

Details

The conversion of count rate to integral flux is achieved by dividing the observed count rate by the applicable geometric factor.

For the ICS sensor, the value of the geometric factor can differ among channels and between its two ion heads. The geometric factor also differs with the position of the three aperture positions - open, foil, and foil plus 10% grid. Values for the geometric factor are given in Table A 1 for the open aperture position. For the other two aperture positions, the geometric factor is a fixed percentage of that for the open position, independent of ICS channel. Specifically, the ratio of geometric factors of open and foil aperture positions has been 1.57 since launch; for foil to foil + 10% has been 7.0. See Table A 2 for these ratio values.

For the STICS sensor, the value of the geometric factor is the same for all channels. The value used to date for the mission has been the same value of 0.05 cm^2 sr for the combined aperture of the three polar heads the combined view of 160° . This corresponds to the telescope for the MR channels. For those channels that divide this polar coverage into three or six separate heads, the geometric factor is weighted by dividing it by the number of heads used, the N_{Heads} of Equation 7. For the HR channels, this value for the number of heads is six, while for the SMR and BR channels, this value is three.

The preceding STICS integral flux is the flux within the narrow energy bands of the DV steps (see Table 4 - STICS DV Values) for the STICS channels. These bands range in width from

approximately 0.2 to 5.0 keV/e for DV steps 2 through 30, respectively. These discontinuous integral flux measurements fall with the broader energy range of approximately 9.2 to 215 keV/e as illustrated in Figure 13, below. A processing option is provided by which the integral flux is interpolated across this broader range.

Figure 13 - STICS Interpreted Integral Flux

Roughly this interpolated integral flux is computed by multiplying the integral flux of each DV step by the ratio of the energy width separating each DV step to the energy width of the DV step.

		D(E/Q)		
Integral Flux _{Interpolated}	= Integral Flux	*	((10)
*		d(E/Q)		

where

d(E/Q) is the difference of the high and low limits of a DV step

D(E/Q) is the difference of (a) the geometric mean of the energy mid points for a DV step and the next higher DV step, and (b) the geometric mean of the energy mid points for a DV step and the next lower DV step

Table 6 shows for each DV steps the values of D(E/Q), d(E/Q) and intermediate computational values for these pairs.

The ratio of D(E/Q) to d(E/Q) is, on average, 19.15; so the value of interpolated integral flux is approximately 19.15 times that of the sum of the integral flux for the 8 DV steps and covers the energy band of 7.49 to 265.07 keV/e. Option 2 for CALSTEPS position 5.

Table 6 - STICS DV energy values for interpolated integral flux

d(E/Q) is used for the calculation of differential flux and D(E/Q) is used for the calculation of integral flux. Differential channel FWHMX=0.0235; Integral channel D(E/Q)=0.4494.

DV Step, i	E _{Lo} [keV/e]	E _{Mid} [keV/e]	E _{Hi} [keV/e]	d(E/Q), E _{Lo} - E _{Hi}	Geometric Mean of Ei _{Mid} & Ei-1 _{Mid}	D(E/Q), ∆ Geometric Mean	D(E/Q) E _{Mid}	<u>D(E/Q)</u> d(E/Q)
					7.49			
2	9.27	9.38	9.49	0.220		4.21	0.4488	19.14
					11.70			
б	14.47	14.64	14.81	0.344		6.58	0.4507	19.13
					18.28			
10	22.59	22.86	23.13	0.537		10.31	0.4502	19.20
					28.59			
14	35.28	35.70	36.12	0.839		16.00	0.4482	19.07
					44.59			
18	55.09	55.74	56.39	1.310		25.02	0.4492	19.10
					69.61			
22	86.00	87.02	88.04	2.045		39.16	0.4501	19.15
					108.77			
26	134.27	135.87	137.47	3.193		61.03	0.4488	19.11
					169.80			
30	209.65	212.14	214.63	4.985		95.27	0.4494	19.11
					265.07			

4.7 Conversion to Differential Flux

Summary

Conversion

Differential Flux = Integral Flux / (Energy Band Width)

(11)

where

Energy Band Width depends upon

- Channel; i.e., species & energy band (ICS only)
- Head (ICS ion only)
- Aperture position (ICS only)
- DV step (STICS only)

Options:

CALSTEPS field position 9: x x x x x x x N,

where N = 0 causes no differential flux conversions to be applied to the data

= 1 causes differential flux conversions to be applied to the data

Details

The conversion of integral flux to differential flux for a channel is accomplished by dividing integral flux (in units of $[cm^2 \sec sr]^{-1}$) by the energy interval (in units of keV for ICS and keV/e for STICS) over which the channel's count rate observations were made. This observation interval is referred to as the energy band width and is defined as the difference of the high and low boundary limits of the energy observations. See Table 3 for these limits.

For the ICS sensor, the energy band and width differ by channel and by head, although to date the band width has been identical for the north and south ion detector heads. More significantly, the energy boundaries shift upward, and the corresponding energy bands change, when the aperture position changes from the open to the foil or foil + 10% positions. This shift occurs because ions lose energy to the metal aperture foil as they penetrate it; consequently, while the sensor still detects ions of the same energy interval past the foil, the original ion energies correspond to a population of that was at a higher level.

For the STICS sensor, the energy band is the same for all channels but cycles among a set of values, which has been fixed since launch. A deflection voltage (DV) changes with each spin to produce the changes in energy band. See Table 4 for the DV steps.

Table 7 - Acronyms and Abbreviations

<u>Acronym</u>	Expansion	Description
AE	analog electronics	the electronics component of an EPIC
		sensor subsystem
cps	counts per second	
EPIC	Energetic Particles and Ion Composition	Instrument
В	Background	ICS channel subgroup
BR	basic rates	STICS channel category
CALSTEP	Calibration steps	a 12-character string for selecting
		conversion and correction steps
CDHF	Central Data Handling Facility	GSFC processing facility for telemetry
DPU	data processing unit	the electronics component of EPIC
DV	deflection voltage	
e-	Electron	Atomic particle type
E	Energy	ICS channel group
ED	Electron Detector	ICS channel group
GSFC	Goddard Space Flight Center	NASA managing facility of the Geotail mission
Н	heavies	ICS species group with $Z > 20$
HE	helium	ICS helium species group
HR	high resolution	STICS channel category
ICS	Ion Composition Subsystem	EPIC subsystem
ISTP	International Solar Terrestrial Program	NASA multi-mission program
He	helium	ICS helium species group
М	mediums	ICS CNO species group
MR	matrix rates	STICS channel category
Р	Proton	Atomic particle type
PHA	pulse height analysis	Type of sensor measurement
SMR	singles matrix rates	STICS channel category
STICS	Supra-Thermal Ion Composition Spectrometer	EPIC subsystem
TOF	time of flight	,
Ζ	atomic number	number of protons found in the nucleus of an atom
FSR	Front Singles Rates	A type of engineering rates measurement
RSR	Rear Singles Rates	A type of engineering rates measurement
DCR	Double Coincidence Rates	A type of engineering rates measurement
TCR	Triple Coincidence Rates	A type of engineering rates measurement
SSD	Solid State Detector	A type of engineering rates measurement
UFSR	Universal Front Singles Rates	A type of engineering rates measurement
URSR	Universal Rear Singles Rates	A type of engineering rates measurement
MFSR	Front Singles Rates	A type of engineering rates measurement
MDCR	Double Coincidence Rates	A type of engineering rates measurement
MPF		STICS
MPR		STICS
SM		ICS
ZM		ICS

Appendix

	E					Efficiency													Geon	netric		
	Ene	ergy Width	Backg	ground								EIIIC	lency								Fac	r^{2}
Charriel		eV]	[se	c ⁻¹]									1)en
Channel	[14]	c •]					(Open A	pertur	e						Foil Ap	oerture	9			Anerture	
Ivallie						No	rth			So	uth			No	rth			So	uth			ture
	T	Tich †	North	South	Due Cum	6	Post -	Other	Due Cum	Sun	Post -	Other	Due Cum	Sum	Post -	Other	Pre-	Sun	Post -	Other	North	South
	LOW	nigii	1 tor th	South	Sector	Sector	Sun Sector	Sectors	Sector	Sector	Sun Sector	Sectors	Sector	Sector	Sun Sector	Sectors	Sun Sector	Sector	Sun Sector	Sectors		South
I_DCR ions	n	/a	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1.0000	1.0000
I_FSR ions	n	/a	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0.9180	1.0170
I_RSR ions	n	/a	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1.0000	1.0000
I_SSD ions	n	/a	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1.0000	1.0000
I_TCR ions	n	/a	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1.0000	1.0000
I_MDCR ion	n	/a	0)	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1.0000	1.0000
I_MFSR ion	n	/a	0)	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1.0000	1.0000
I_UFSR ion	n	/a	C)	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1.0000	1.0000
I_URSR ion	n	/a	C)	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1.0000	1.0000
ED1 e- for launch to 1993 067 00:00	34.0	∞	4	4																		
for 1993 067 00:00 onward	38.0	8	6	5	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0.1280	0.1280
ED2 e-	110.0	∞	5	5	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0.1280	0.1280
E0 energ	n	/a	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1.0000	1.0000
El energ	45.9	52.7	0.1039	6.7664	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0.0735	0.0766
E2 energ	52.7	61.5	0.8788	7.4986	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0.0773	0.0806
E3 energ	61.5	73.7	8.5000	5.0000	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0.0808	0.0844
E4 energ	73.7	89.3	0.6689	0.3029	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0.0837	0.0877
E5 energ	89.3	110.2	0.1822	0.2489	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0.0860	0.0904
E6 energ	110.2	137.4	0.6737	0.6009	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0.0877	0.0925
E7 energ	137.4	173.1	1.1303	1.0288	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0.0887	0.0939
E8 energ	173.1	220.0	1.1300	0.9844	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0.0893	0.0948
E9 energ	220.0	281.5	0.9672	0.9414	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0.0896	0.0952
El0 energ	281.5	362.9	0.7856	0.7290	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0.0897	0.0952
Ell energ	362.9	471.4	0.6037	0.5844	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0.0898	0.0951
E12 energ	471.4	615.9	0.4676	0.4500	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0.0898	0.0948
E13 energ	615.9	913.2	0.4553	0.4654	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0.0899	0.0946
E14 energ	913.2	1352.3	0.2681	0.2880	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0.0900	0.0945
E15 energ	1352.3	2013.9	0.1414	0.1659	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0.0900	0.0946
E16 energ	2013.9	3005.4	0.0915	0.0863	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0.0899	0.0948
≝⊥/ energ	n	/a	U	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1.0000	1.0000

Table A 1 - ICS Calibration Vales, version 2.14

		En Band	ergy Width	Backg	kground													Geor Fa	netric ctor cm ²]				
Cł	annel	[k	eV]	[se	ec ⁻¹]			(Open A	pertur	·e						Foil A _l	perture)			Open Aperture	
1	vanie						No	rth			So	uth			No	rth			So	uth			
		Low [†]	High [†]	North	South	Pre-Sun Sector	Sun Sector	Post - Sun Sector	Other Sectors	Pre-Sun Sector	Sun Sector	Post - Sun Sector	Other Sectors	Pre-Sun Sector	Sun Sector	Post - Sun Sector	Other Sectors	Pre- Sun Sector	Sun Sector	Post - Sun Sector	Other Sectors	North	South
E_B2	energ	52.7	61.5	8.3	774	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0.0790	0.0790
E_B5	energ	89.3	110.2	0.4	.712	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0.0882	0.0882
10 TT	TOF	n 2 0	/a 35	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1.0000	0.0950
T2	TOF	3.5	6.0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0.0900	0.0950
T3	TOF	6.0	7.2	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0.0900	0.0950
т4	TOF	7.2	8.8	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0.0900	0.0950
т5	TOF	8.8	10.7	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0.0900	0.0950
Т6	TOF	10.7	12.9	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0.0900	0.0950
т7	TOF	12.9	15.7	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0.0900	0.0950
Т8	TOF	15.7	19.0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0.0900	0.0950
Т9	TOF	19.0	23.0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0.0900	0.0950
т10	TOF	23.0	27.8	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0.0900	0.0950
T11	TOF	27.8	33.7	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0.0900	0.0950
Т12	TOF	33.7	40.9	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0.0900	0.0950
T13	TOF	40.9	49.5	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0.0900	0.0950
T14	TOF	49.5	60.0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0.0900	0.0950
T15	TOF	60.0	77.0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0.0900	0.0950
T16	TOF	77.0	100.0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0.0900	0.0950
	10F	10 E	/a 60.0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1.0000	1.0000
В1 1	4 IOF 7520	395 0	619 0	0	0	1 0 4600	1 4600	⊥ 0_4600	0 4600	0 4600	0 4600	1 4600	⊥ 0_4600	0 4600	1 4600	1 4600	0 4600	1 0 4600	1 0 4600	1 0 4600	1 4600	0.0930	0.0930
H2	Z>20	619.0	838.0	0	0	0.6500	0.6500	0.6500	0.6500	0.6500	0.6500	0.6500	0.6500	0.6500	0.6500	0.6500	0.6500	0.6500	0.6500	0.6500	0.6500	0.0668	0.0726
Н3	Z>20	838.0	1202.0	0	0	0.7600	0.7600	0.7600	0.7600	0.7600	0.7600	0.7600	0.7600	0.7600	0.7600	0.7600	0.7600	0.7600	0.7600	0.7600	0.7600	0.0753	0.0820
H4	Z>20	1202.0	1772.0	0	0	0.8600	0.8600	0.8600	0.8600	0.8600	0.8600	0.8600	0.8600	0.8600	0.8600	0.8600	0.8600	0.8600	0.8600	0.8600	0.8600	0.0821	0.0896
Н5	Z>20	1772.0	2728.0	0	0	0.9400	0.9400	0.9400	0.9400	0.9400	0.9400	0.9400	0.9400	0.9400	0.9400	0.9400	0.9400	0.9400	0.9400	0.9400	0.9400	0.0868	0.0944
НG	Z>20	2728.0	4405.0	0	0	0.9800	0.9800	0.9800	0.9800	0.9800	0.9800	0.9800	0.9800	0.9800	0.9800	0.9800	0.9800	0.9800	0.9800	0.9800	0.9800	0.0892	0.0954
HE1	Не	53.4	70.0	0	0	0.0720	0.0540	0.0675	0.0900	0.0800	0.0600	0.0750	0.1000	0.0900	0.0900	0.0900	0.0900	0.1000	0.1000	0.1000	0.1000	0.0603	0.0649
HE2	He	70.0	95.8	0	0	0.1040	0.0780	0.0975	0.1300	0.1280	0.0960	0.1200	0.1600	0.1300	0.1300	0.1300	0.1300	0.1600	0.1600	0.1600	0.1600	0.0704	0.0760
HE 3	Не	95.8	135.0	0	0	0.1440	0.1080	0.1350	0.1800	0.1680	0.1260	0.1575	0.2100	0.1800	0.1800	0.1800	0.1800	0.2100	0.2100	0.2100	0.2100	0.0792	0.0848
HE4	Не	135.0	194.0	0	0	0.1920	0.1440	0.1800	0.2400	0.2240	0.1680	0.2100	0.2800	0.2400	0.2400	0.2400	0.2400	0.2800	0.2800	0.2800	0.2800	0.0848	0.0906
HE5	He	194.0	280.8	0	0	0.2400	0.1800	0.2250	0.3000	0.2800	0.2100	0.2625	0.3500	0.3000	0.3000	0.3000	0.3000	0.3500	0.3500	0.3500	0.3500	0.0874	0.0936
HE6	Не	280.8	407.4	0	0	0.2800	0.2100	0.2625	0.3500	0.3360	0.2520	0.3150	0.4200	0.3500	0.3500	0.3500	0.3500	0.4200	0.4200	0.4200	0.4200	0.0885	0.0946
HE7	He	407.4	595.5	0	0	0.3120	0.2340	0.2925	0.3900	0.3680	0.2760	0.3450	0.4600	0.3900	0.3900	0.3900	0.3900	0.4600	0.4600	0.4600	0.4600	0.0890	0.0948

Table A 1 - ICS Calibration Vales, version 2.14

		Enc Band	ergy Width	Backg	ground								Effic	iency								Geon Fac [sr c	netric ctor cm ²]
C	hannel Name	[k	eV]	[50				(Open A	pertur	e						Foil Ap	oerture				Ор Ареі	oen rture
-	unite						No	rth			So	uth			No	rth			So	uth			
		Low [†]	High [†]	North	South	Pre-Sun Sector	Sun Sector	Post - Sun Sector	Other Sectors	Pre-Sun Sector	Sun Sector	Post - Sun Sector	Other Sectors	Pre-Sun Sector	Sun Sector	Post - Sun Sector	Other Sectors	Pre- Sun Sector	Sun Sector	Post - Sun Sector	Other Sectors	North	South
HE8	He	595.5	888.7	0	0	0.3200	0.2400	0.3000	0.4000	0.3760	0.2820	0.3525	0.4700	0.4000	0.4000	0.4000	0.4000	0.4700	0.4700	0.4700	0.4700	0.0893	0.0947
HE9	He	888.7	1631.4	0	0	0.2880	0.2160	0.2700	0.3600	0.3440	0.2580	0.3225	0.4300	0.3600	0.3600	0.3600	0.3600	0.4300	0.4300	0.4300	0.4300	0.0897	0.0947
HE10) He	1631.4	3052.9	0	0	0.1840	0.1380	0.1725	0.2300	0.2160	0.1620	0.2025	0.2700	0.2300	0.2300	0.2300	0.2300	0.2700	0.2700	0.2700	0.2700	0.0899	0.0948
M1	CNO	165.4	186.5	0	0	0.3500	0.3500	0.3500	0.3500	0.4000	0.4000	0.4000	0.4000	0.3500	0.3500	0.3500	0.3500	0.4000	0.4000	0.4000	0.4000	0.0398	0.0521
M2	CNO	186.5	221.4	0	0	0.4000	0.4000	0.4000	0.4000	0.4500	0.4500	0.4500	0.4500	0.4000	0.4000	0.4000	0.4000	0.4500	0.4500	0.4500	0.4500	0.0575	0.0600
MA	CNO	221.4	275.2	0	0	0.4500	0.4500	0.4500	0.4500	0.5100	0.5100	0.5100	0.5100	0.4500	0.4500	0.4500	0.4500	0.5100	0.5100	0.5100	0.5100	0.0717	0.0689
ME	CNO	275.2	360.2	0	0	0.5200	0.5200	0.5200	0.5200	0.5800	0.5800	0.5800	0.5800	0.5200	0.5200	0.5200	0.5200	0.5800	0.5800	0.5800	0.5800	0.0802	0.0775
MG	CNO	493 5	697 2	0	0	0.6800	0.6800	0.6800	0.6800	0.0700	0.07500	0.07500	0.07500	0.6800	0.6800	0.6800	0.6800	0.0700	0.07500	0.07500	0.7500	0.0855	0.0049
M7	CNO	697.2	1016 2	0	0	0.7600	0.7600	0.7600	0.7600	0.8300	0.8300	0.8300	0.8300	0.7600	0.7600	0.7600	0.7600	0.8300	0.8300	0.8300	0.8300	0.0870	0.0933
M8	CNO	1016.2	1522.0	0	0	0.8300	0.8300	0.8300	0.8300	0.8900	0.8900	0.8900	0.8900	0.8300	0.8300	0.8300	0.8300	0.8900	0.8900	0.8900	0.8900	0.0887	0.0946
M9	CNO	1522.0	2315.7	0	0	0.8900	0.8900	0.8900	0.8900	0.9400	0.9400	0.9400	0.9400	0.8900	0.8900	0.8900	0.8900	0.9400	0.9400	0.9400	0.9400	0.0898	0.0948
M10	CNO	2315.7	3565.3	0	0	0.9500	0.9500	0.9500	0.9500	0.9600	0.9600	0.9600	0.9600	0.9500	0.9500	0.9500	0.9500	0.9600	0.9600	0.9600	0.9600	0.0900	0.0947
P1	p+	45.9	58.1	0	0	0.0122	0.0068	0.0106	0.0152	0.0018	0.0010	0.0015	0.0022	0.0152	0.0152	0.0152	0.0152	0.0022	0.0022	0.0022	0.0022	0.0750	0.0780
P2	 p+	58.1	77.3	0	0	0.0890	0.0500	0.0778	0.1112	0.0799	0.0450	0.0699	0.0999	0.1112	0.1112	0.1112	0.1112	0.0999	0.0999	0.0999	0.0999	0.0810	0.0840
Р3	p+	77.3	107.4	0	0	0.0826	0.0465	0.0723	0.1033	0.1141	0.0642	0.0998	0.1426	0.1033	0.1033	0.1033	0.1033	0.1426	0.1426	0.1426	0.1426	0.0850	0.0900
P4	p+	107.4	154.3	0	0	0.0836	0.0470	0.0732	0.1045	0.1002	0.0564	0.0877	0.1253	0.1045	0.1045	0.1045	0.1045	0.1253	0.1253	0.1253	0.1253	0.0880	0.0930
P5	p+	154.3	227.5	0	0	0.0822	0.0463	0.0720	0.1028	0.1010	0.0568	0.0883	0.1262	0.1028	0.1028	0.1028	0.1028	0.1262	0.1262	0.1262	0.1262	0.0890	0.0950
Рб	p+	227.5	341.6	0	0	0.0568	0.0320	0.0497	0.0710	0.0722	0.0406	0.0632	0.0903	0.0710	0.0710	0.0710	0.0710	0.0903	0.0903	0.0903	0.0903	0.0900	0.0950
P7	p+	341.6	522.5	0	0	0.0363	0.0204	0.0318	0.0454	0.0488	0.0274	0.0427	0.0610	0.0454	0.0454	0.0454	0.0454	0.0610	0.0610	0.0610	0.0610	0.0900	0.0950
P8	p+	522.5	813.5	0	0	0.0246	0.0138	0.0215	0.0307	0.0316	0.0178	0.0277	0.0395	0.0307	0.0307	0.0307	0.0307	0.0395	0.0395	0.0395	0.0395	0.0900	0.0950
P9	p+	813.5	1560.8	0	0	0.0155	0.0087	0.0136	0.0194	0.0251	0.0141	0.0220	0.0314	0.0194	0.0194	0.0194	0.0194	0.0314	0.0314	0.0314	0.0314	0.0900	0.0950
P10	p+	1560.8	3005.4	0	0	0.0068	0.0038	0.0060	0.0085	0.0138	0.0077	0.0120	0.0172	0.0085	0.0085	0.0085	0.0085	0.0172	0.0172	0.0172	0.0172	0.0900	0.0950
SM	ions	n	/a	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1.0000	1.0000
ZM	ions	n	/a	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1.0000	1.0000

Table A 1 - ICS Calibration Vales, version 2.14

[†] ICS Sensor energy low and high values change with aperture position; values given are for the open aperture position. See Table A3 for energy band pass values for foil aperture position.

	Geometric H	Factor Ratio
Aperture position comparison	North	South
Open to Foil	1.57	1.57
Foil to (Foil + 10%)	7.0	7.0

 Table A 2 - ICS Geometric Factor ratios, version 2.14

 Table A 3 - Geotail Spacecraft Spin Period

	Date			Snin
Year	Day of Year	Seconds of Day	Spin Period (sec)	Period Delta (sec)
1992	214	0	3.151	n/a
1992	252	298.85	3.310	-0.159
1992	258	51961.84	5.333	-2.023
1992	259	52536.55	8.573	-3.240
1992	260	66553.30	3.623	4.950
1992	261	40187.68	3.019	0.604
1992	286	49171.72	3.020	-0.001
1992	312	63918.81	3.021	-0.001
1992	345	51850.03	3.022	-0.001
1993	8	77473.68	3.024	-0.002
1993	29	43166.22	3.025	-0.001
1993	29	47263.46	3.026	-0.001
1993	40	40857.98	3.027	-0.001
1993	66	49462.13	3.016	0.011
1993	112	47689.51	3.017	-0.001
1993	130	45956.16	3.018	-0.001
1993	208	50407.03	3.019	-0.001
1993	244	49734.34	3.016	0.003
1993	244	70752.93	3.019	-0.003
1993	258	52940.29	2.996	0.023
1993	259	66605.08	2.997	-0.001
1993	271	29221.95	2.998	-0.001
1993	319	47934.37	2.996	0.002
1994	14	46386.75	2.997	-0.001
1994	115	59259.67	3.008	-0.011
1994	204	57629.71	3.000	0.008
1994	262	47849.38	2.986	0.014
1994	290	48957.56	2.988	-0.002
1994	308	72603.88	2.951	0.037
1994	316	22264.43	2.963	-0.012
1994	316	51096.56	2.998	-0.035
1994	336	70131.68	2.999	-0.001
1995	50	86377.47	3.038	-0.039
1995	51	355.37	3.037	0.001

	Date		. .	Spin
Year	Day of Year	Seconds of Day	Spin Period (sec)	Period Delta (sec)
1995	57	86375.29	3.089	-0.052
1995	58	22949.20	3.117	-0.028
1995	62	54852.49	3.116	0.001
1995	354	53912.29	3.061	0.055
1996	60	72398.33	3.060	0.001
1996	341	61027.32	3.027	0.033
1997	126	326.21	3.023	0.004
1997	128	10121.28	3.027	-0.004
1997	140	24197.01	3.031	-0.004
1997	172	27005.36	3.047	-0.016
1998	56	71878.32	3.042	0.005
1998	57	77123.95	3.047	-0.005
1998	88	47133.13	3.043	0.004
1998	90	292.90	3.047	-0.004
1998	132	27890.30	3.046	0.001
1998	292	453.52	3.047	-0.001
1999	48	73777.11	3.044	0.003
1999	51	38701.61	3.047	-0.003
1999	59	53647.59	3.043	0.004
1999	59	72078.89	3.046	-0.003
2000	53	77376.15	3.047	-0.001
2000	204	40450.16	3.046	0.001
2000	205	47367.13	3.047	-0.001
2000	207	9.61	3.046	0.001
2002	4	71092	3.045	0.001
2003	44	77413.91	3.044	0.001
2004	48	222.98	2.993	0.051
2006	93	20.82	2.992	0.001

			Enoury	Daga Dand	
			Energy F	eV]	
				F.	oil
Cł	annel	On	en		nd
N	lame	Ομ	i chi	Eoil + 1	10 0% Grid
		Anerture	Position	Aperture	Positions
		North and S	outh Heads	North and	South Heads
		Low	Uigh	Low	High
ПO		LUW	Ingn	LOW	Ingn
EU E1	energ	n/a	a 52.7		a 92.4
E2	energ	43.9	61.5	83.4	93.3
E3	energ	61.5	73.7	93.3	106.8
E4	energ	73.7	89.3	106.8	123.5
E5	energ	89.3	110.2	123.5	145.2
Еб	energ	110.2	137.4	145.2	172.5
E7	energ	137.4	173.1	172.5	207.3
E8	energ	173.1	220.0	207.3	251.6
E9	energ	220.0	281.5	251.6	309
E10	energ	281.5	362.9	309	385.8
E11	energ	362.9	471.4	385.8	490.9
E12	energ	471.4	615.9	490.9	634.4
E13	energ	615.9	913.2	634.4	929.6
E14	energ	913.2	1352.3	929.6	1361
E15	energ	1352.3	2013.9	1361	2024.3
E16	energ	2013.9	3005.4	2024.3	3003.8
E17	energ	n/a	a	n/	a
E_B2	energ	52.7	61.5	83.4	93.3
E_B5	energ	89.3	110.2	123.5	145.2
.T.O	TOF	n/a	a 25	n/	a 25
11 T2	TOF	2.0	3.3	25	3.5
т2 т2	TOF	5.5	0.0	5.5	7.2
т <u>4</u>	TOF	7.2	8.8	7.2	8.8
т <u>5</u>	TOF	8.8	10.7	8.8	10.7
т6	TOF	10.7	12.9	10.7	12.9
т7	TOF	12.9	15.7	12.9	15.7
Т8	TOF	15.7	19.0	15.7	19
т9	TOF	19.0	23.0	19	23
T10	TOF	23.0	27.8	23	27.8
T11	TOF	27.8	33.7	27.8	33.7
T12	TOF	33.7	40.9	33.7	40.9
T13	TOF	40.9	49.5	40.9	49.5
T14	TOF	49.5	60.0	49.5	60
T15	TOF	60.0	77.0	60	77
T16	TOF	77.0	100.0	77	100
T17	TOF	n/a	a	n/	a
'I'_B1	4 'I'OF	49.5	60.0	49.5	60
HI	Z>20	395.0	619.0	1061.7	1226.3
HZ U2	Z>ZU Z>20	619.0	838.0	1226.3	140/./
H3 11/	Z>ZU Z>20	838.0	1202.0	1407.7	1/5/.3
п4 цб	<u>2220</u> 7500	1202.0	1//2.0	1/3/.3	2398.3
НК	7>20	2728.0	4405.0	2390.3	5781 6
HE1	He	53.4	70.0	122.6	142.5
HE2	He	70.0	95.8	142.5	172.9
_		, 0.0	20.0		

Table A 4 - ICS Energy Aperture-Position Band Pass, version 2.14

		Energy I [ko	Pass Band eV]	
Channe Name	el Oj Aperturo North and	pen e Position, South Heads	F ar Foil + 10 Aperture North and 9	oil nd 0% Grid Positions, South Heads
	Low	High	Low	High
нез на	05.8	135.0	172.9	218 5
HE4 He	135.0	194.0	218.5	210.5
HE5 He	194.0	280.8	210.5	380.1
HE6 He	280.8	407.4	380.1	513.3
HE7 He	407.4	595.5	513.3	704.7
HE8 He	595.5	888.7	704.7	993.9
HE9 He	888.7	1631.4	993.9	1715.4
HE10 He	1631.4	3052.9	1715.4	3127.4
M1 CNO	165.4	186.5	377.7	405.9
M2 CNO	186.5	221.4	405.9	451.9
M3 CNO	221.4	275.2	451.9	521.1
M4 CNO	275.2	360.2	521.1	627.1
M5 CNO	360.2	493.5	627.1	788.3
M6 CNO	493.5	697.2	788.3	1029.3
M7 CNO	697.2	1016.2	1029.3	1399.4
M8 CNO	1016.2	1522.0	1399.4	1960.6
M9 CNO	1522.0	2315.7	1960.6	2820.8
M10 CNO	2315.7	3565.3	2820.8	4119.8
P1 p+	45.9	58.1	75.6	89.5
P2 p+	58.1	77.3	89.5	110.7
P3 p+	77.3	107.4	110.7	142.4
P4 p+	107.4	154.3	142.4	189.2
P5 p+	154.3	227.5	189.2	258.6
P6 p+	227.5	341.6	258.6	365.5
P7 p+	341.6	522.5	365.5	541.3
P8 p+	522.5	813.5	541.3	831.4
P9 p+	813.5	1560.8	831.4	1570.6
P10 p+	1560.8	3005.4	1570.6	3003.8

Table A 5 - STICS Efficiency, version 2.14

		1																																		
Channel	Polar																			DV	Ste	D														
Species	Head		-	1	-	-	2		-		- 1	-	0	0	10	11	10	10	14			r 17	10	10	20	01	22	22	24	25	26	07	20	20	20	01
-	0	0	_	1	2	_	3	4	5	6)	1	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
	0	0.008	943 0.0	13686	0.0208	67 0.	.024526	0.02899	7 0.0341	46 0.040)244 (0.046341	0.053388	0.061518	0.07086	0.0753	39 0.0802	7 0.08536	5 0.090921	0.09783	2 0.10542	0.11355	0.1222	22 0.115854	40.109892	0.104201	0.098780	0.093767	0.088889	0.086043	0.083333	0.080759	0.078184	0.075745	0.073442	0.071138
IDO	1	0.009	491 0.0	14524	0.0221	46 0.	.026028	0.03077	4 0.0362	38 0.042	2709 (0.049180	0.056658	0.065286	0.07520	9 0.0799	54 0.08513	1 0.09059	5 0.096491	0.10382	5 0.11187	8 0.12050	6 0.1297	10 0.12295	0.116624	0.110584	0.104832	0.099511	0.094334	0.091314	0.088438	0.085706	0.082974	0.080385	0.077941	0.075496
HR0	2	0.006	506 0.0	10109	0.0154	14 0.	.018116	0.02141	9 0.0252	23 0.029	9727 (0.034231	0.039435	0.045441	0.05234	7 0.0556	50 0.0592	3 0.06305	7 0.067160	0.07226	5 0.07787	0 0.08387	5 0.0902	81 0.08557	0.081173	0.076969	0.072966	0.069262	0.065659	0.063557	0.061555	0.059654	0.057752	0.055950	0.054249	0.052547
н	3	0.006	593 0.0	10090	0.0153	85 0.	.018082	0.02137	9 0.0251	75 0.029	9670 (0.034166	0.039361	0.045355	0.05224	8 0.0555	44 0.05914	1 0.06293	7 0.067033	0.07212	8 0.07772	2 0.08371	6 0.0901	10 0.08541	5 0.081019	0.076823	0.072827	0.069131	0.065534	0.063437	0.061439	0.059540	0.057642	0.055844	0.054146	0.052448
	4	0.005)50 0.0	07728	0.0117	83 0.	.013849	0.01637	3 0.0192	81 0.022	2724 (0.026167	0.030145	0.034736	0.04001	5 0.0425	40 0.04529	0.04820	2 0.051339	0.05524	1 0.05952	6 0.06411	6 0.0690	13 0.065417	0.062050	0.058837	0.055777	0.052946	0.050191	0.048585	0.047054	0.045601	0.044147	0.042770	0.041469	0.040168
	5	0.004	992 0.0	07640	0.0116	49 0.	.013691	0.01618	8 0.0190	52 0.022	2466 (0.025870	0.029803	0.034342	0.03956	1 0.0420	57 0.04478	31 0.04765	5 0.050756	0.05461	4 0.05885	0 0.06338	9 0.0682	30 0.06467	5 0.061346	0.058169	0.055144	0.052345	0.049622	0.048033	0.046520	0.045083	0.043646	0.042284	0.040998	0.039713
HR10	0	0.000	120 0.0	00351	0.0010	43 0.	.001547	0.00229	2 0.0033	99 0.005	5036 (0.006798	0.009158	0.012308	0.01659	9 0.0206	64 0.0256	2 0.03184	3 0.039521	0.04878	0.06018	5 0.07418	7 0.0914	53 0.101852	2 0.114047	0.126468	0.141147	0.156956	0.175023	0.184056	0.193089	0.203252	0.214544	0.224706	0.237127	0.249548
O^+	1	0.000	127 0.0	00373	0.0011	07 0.	.001642	0.00243	3 0.0036	0.005	5345 (0.007214	0.009719	0.013062	0.01761	6 0.0219	30 0.02720	03 0.03379	4 0.041942	0.05176	9 0.06387	2 0.07873	2 0.0970	56 0.10809	0.121033	0.134215	0.149794	0.166571	0.185744	0.195331	0.204918	0.215703	0.227687	0.238472	0.251654	0.264836
launch	2	0.000	0.0 88	00259	0.0007	71 0.	.001143	0.00169	3 0.0025	11 0.003	3720 (0.005021	0.006764	0.009092	0.01226	1 0.0152	64 0.01893	4 0.02352	0.029193	0.03603	2 0.04445	7 0.05479	9 0.0675	51 0.075234	40.084242	0.093417	0.104260	0.115938	0.129283	0.135956	0.142628	0.150135	0.158476	0.165983	0.175158	0.184333
to 1993 251	3	0.000	0.0 88	00259	0.0007	69 0.	.001141	0.00169	0.0025	06 0.003	3713 (0.005012	0.006752	0.009074	0.01223	8 0.0152	35 0.01889	8 0.02347	7 0.029138	0.03596	4 0.04437	2 0.05469	5 0.0674	33 0.075092	2 0.084083	0.093240	0.104063	0.115718	0.129038	0.135698	0.142358	0.149850	0.158175	0.165668	0.174825	0.183983
00:00	4	0.000	0.0	00198	0.0005	89 0.	.000874	0.00129	4 0.0019	19 0.002	2844 (0.003838	0.005171	0.006950	0.00937	3 0.0116	68 0.0144	3 0.01798	0.022316	0.02754	4 0.03398	4 0.04189	0.0516	45 0.05751	0.064397	0.071410	0.079699	0.088625	0.098827	0.103928	0.109028	0.114767	0.121143	0.126881	0.133894	0.140908
	5	0.000	067 0.0	00196	0.0005	82 0.	.000864	0.00128	0.0018	97 0.002	2811	0.003795	0.005112	0.006871	0.00926	6 0.0115	36 0.0143	9 0.01777	6 0.022063	0.02723	1 0.03359	8 0.04141	5 0.0510	59 0.056858	8 0.063666	60.070600	0.078795	0.087620	0.097705	0.102748	0.107791	0.113464	0.119768	0.125441	0.132375	0.139309
	0	0.000	131 0.0	00383	0.0011	38 0.	.001688	0.00250	1 0.0037	0.005	5494 (0.007416	0.009990	0.013427	0.01810	8 0.0225	42 0.0279	63 0.03473	8 0.043114	0.05321	5 0.06565	7 0.08093	1 0.0997	78 0.11111	0.124415	0.137965	0.153979	0.171224	0.190934	0.200788	0.210643	0.221730	0.234048	0.245134	0.258684	0.272235
for	1	0.000	139 0.0	00407	0.0012	08 0.	.001791	0.00265	4 0.0039	35 0.005	5831 (0.007870	0.010602	0.014249	0.01921	7 0.0239	23 0.0296	6 0.03686	6 0.045755	0.05647	5 0.06967	9 0.08588	9 0.1058	91 0.117918	30.132037	0.146417	0.163412	0.181714	0.202630	0.213089	0.223547	0.235313	0.248385	0.260151	0.274531	0.288912
1993 251	2	0.000)96 0.0	00283	0.0008	41 0.	.001247	0.00184	7 0.0027.	39 0.004	1058 (0.005478	0.007379	0.009918	0.01337	6 0.0166	51 0.0206	5 0.02565	0.031847	0.03930	8 0.04849	8 0.05978	1 0.0737	03 0.082074	40.091901	0.101910	0.113739	0.126477	0.141036	0.148315	0.155595	0.163784	0.172883	0.181072	0.191081	0.201090
onward	3	0.000)96 0.0	00282	0.0008	39 0.	.001244	0.00184	4 0.0027.	34 0.004	1050 (0.005467	0.007365	0.009899	0.01335	0 0.0166	20 0.0206	6 0.02561	0.031786	0.03923	3 0.04840	6 0.05966	8 0.0735	53 0.081918	30.091726	50.101716	0.113523	0.126237	0.140768	0.148034	0.155299	0.163473	0.172555	0.180728	0.190718	0.200708
	4	0.000	074 0.0	00216	0.0006	43 0.	.000953	0.00141	2 0.0020	94 0.003	3102 (0.004187	0.005641	0.007582	0.01022	5 0.0127	29 0.0157	9 0.01961	5 0.024344	0.03004	8 0.03707	3 0.04569	8 0.0563	40 0.062739	0.070251	0.077902	0.086944	0.096682	0.107811	0.113376	0.118940	0.125200	0.132156	0.138416	0.146067	0.153718
	5	0.000	073 0.0	00214	0.0006	35 0.	.000942	0.00139	6 0.0020	70 0.003	3067 (0.004140	0.005577	0.007496	0.01010	9 0.0125	84 0.0156	0 0.01939	2 0.024068	0.02970	7 0.03665	2 0.04517	9 0.0557	01 0.062027	0.069454	0.077018	0.085958	0.095585	0.106588	0.112089	0.117590	0.123779	0.130656	0.136845	0.144409	0.151974
	0	0.008	943 0.0	13686	0.0208	67 0.	.024526	0.02899	7 0.0341	46 0.040)244 (0.046341	0.053388	0.061518	0.07086	7 0.0753	39 0.0802	7 0.08536	5 0.090921	0.09783	2 0.10542	0 0.11355	0.1222	22 0.115854	40.109892	0.104201	0.098780	0.093767	0.088889	0.086043	0.083333	0.080759	0.078184	0.075745	0.073442	0.071138
	1	0.009	491 0.0	14524	0.0221	46 0.	.026028	0.03077	4 0.0362	38 0.042	2709 (0.049180	0.056658	0.065286	0.07520	9 0.0799	54 0.08513	1 0.09059	5 0.096491	0.10382	5 0.11187	8 0.12050	6 0.1297	10 0.12295	0.116624	0.110584	0.104832	0.099511	0.094334	0.091314	0.088438	0.085706	0.082974	0.080385	0.077941	0.075496
HR11	2	0.006	506 0.0	10109	0.0154	14 0.	.018116	0.02141	9 0.0252	23 0.029	9727 (0.034231	0.039435	0.045441	0.05234	7 0.0556	50 0.0592	3 0.06305	7 0.067160	0.07226	5 0.07787	0 0.08387	5 0.0902	81 0.08557	0.081173	0.076969	0.072966	0.069262	0.065659	0.063557	0.061555	0.059654	0.057752	0.055950	0.054249	0.052547
FSRs	3	0.006	593 0.0	10090	0.0153	85 0.	.018082	0.02137	9 0.0251	75 0.029	9670 (0.034166	0.039361	0.045355	0.05224	8 0.0555	44 0.05914	1 0.06293	7 0.067033	0.07212	8 0.07772	2 0.08371	6 0.0901	10 0.08541	5 0.081019	0.076823	0.072827	0.069131	0.065534	0.063437	0.061439	0.059540	0.057642	0.055844	0.054146	0.052448
	4	0.005)50 0.0	07728	0.0117	83 0.	.013849	0.01637	3 0.0192	81 0.022	2724	0.026167	0.030145	0.034736	0.04001	5 0.0425	40 0.04529	5 0.04820	2 0.051339	0.05524	1 0.05952	6 0.06411	6 0.0690	13 0.065417	7 0.062050	0.058837	0.055777	0.052946	0.050191	0.048585	0.047054	0.045601	0.044147	0.042770	0.041469	0.040168
	5	0.004	992 0.0	07640	0.0116	49 0.	.013691	0.01618	8 0.0190	52 0.022	2466 (0.025870	0.029803	0.034342	0.03956	1 0.0420	57 0.04478	1 0.04765	5 0.050756	0.05461	4 0.05885	0 0.06338	9 0.0682	30 0.06467	5 0.061346	0.058169	0.055144	0.052345	0.049622	0.048033	0.046520	0.045083	0.043646	0.042284	0.040998	0.039713
SMDO	0 / 1	0.005	247 0.0	08322	0.0132	56 0.	.016054	0.01951	6 0.0235	56 0.028	3537 (0.034061	0.040689	0.048421	0.05762	7 0.0660	96 0.0754	6 0.08653	2 0.099052	0.11488	5 0.13329	7 0.15465	3 0.1795	08 0.183007	0.185952	0.189635	0.193317	0.196999	0.200681	0.202522	0.202522	0.202522	0.204363	0.204363	0.204363	0.206205
SMR0	2/3	0.003	300 0.0	06027	0.0096	00 0.	.011627	0.01413	3 0.0170	57 0.020)667 (0.024667	0.029467	0.035067	0.04173	3 0.0478	67 0.0546	57 0.06266	7 0.071733	0.08320	0.09653	3 0.11200	0.1300	00 0.132533	3 0.134667	0.137333	0.140000	0.142667	0.145333	0.146667	0.146667	0.146667	0.148000	0.148000	0.148000	0.149333
11c	4 / 5	0.002	901 0.0	04601	0.0073	28 0.	.008875	0.01078	9 0.0130	28 0.015	5776 (0.018830	0.022494	0.026768	0.03185	8 0.0365	39 0.0417.	0 0.04783	7 0.054758	0.06351	1 0.07369	0 0.08549	6 0.0992	37 0.101170	0.102799	0.104835	0.106870	0.108906	0.110941	0.111959	0.111959	0.111959	0.112977	0.112977	0.112977	0.113995
CMD 1	0 / 1	0.029	542 0.0	35349	0.0421	61 0.	.050262	0.05946	8 0.0679	37 0.077	7879 (0.089110	0.102366	0.118752	0.13771	5 0.1599	93 0.1802	5 0.18374	3 0.187793	0.19147	6 0.19515	8 0.19884	0.2006	81 0.202522	2 0.202522	0.202522	0.204363	0.204363	0.204363	0.206205	0.206205	0.206205	0.206205	0.206205	0.206205	0.206205
SMK1	2/3	0.021	467 0.0	25600	0.0305	33 0.	.036400	0.04306	7 0.0492	0.056	5400 ().064533	0.074133	0.086000	0.09973	3 0.1158	67 0.1305	3 0.13306	7 0.136000	0.13866	7 0.14133	3 0.14400	0 0.1453	33 0.14666	7 0.146667	0.146667	0.148000	0.148000	0.148000	0.149333	0.149333	0.149333	0.149333	0.149333	0.149333	0.149333
не	4 / 5	0.016	387 0.0	19542	0.0233	08 0.	.027786	0.03287	5 0.0375	57 0.043	3053 (0.049262	0.056590	0.065649	0.07613	2 0.0884	48 0.0996	4 0.10157	8 0.103817	0.10585	2 0.10788	8 0.10992	4 0.1109	41 0.111959	0.111959	0.111959	0.112977	0.112977	0.112977	0.113995	0.113995	0.113995	0.113995	0.113995	0.113995	0.113995
	0/1	0.006	500 0.0	08879	0.0119	72 0.	.016156	0.02140	3 0.0265	12 0.032	2864	0.040873	0.050677	0.062414	0.07705	1 0.0951	39 0.1146	9 0.12758	0.142226	0.15879	6 0.17674	7 0.19607	8 0.2154	10 0.227838	30.238884	0.251312	0.265120	0.278928	0.292737	0.305164	0.305164	0.305164	0.305164	0.305164	0.305164	0.306545
SMR2	2/3	0.004	780 0.0	06430	0.0086	70 0.	.011700	0.01550	0.0192	0 0.023	3800 (0.029600	0.036700	0.045200	0.05580	0 0.0689	00 0.0830	0 0.09240	0.103000	0.11500	0.12800	0 0.14200	0 0.1560	00 0.165000	0.173000	0.182000	0.192000	0.202000	0.212000	0.221000	0.221000	0.221000	0.221000	0.221000	0.221000	0.222000
0	4/5	0.003	549 0.0	04908	0.0066	18 0.	008931	0.01183	20.0146	56 0.018	3168 (0.022595	0.028015	0.034504	0.04259	5 0.0525	950.0633	90.07053	4 0.078626	0.08778	60.09771	0.0.10839	7 0.1190	84 0.125954	10.132061	0.138931	0.146565	0.154198	0.161832	0.168702	0.168702	0.168702	0.168702	0.168702	0.168702	0.169466
	0/1	0.074	079.0.0	07378	0 1129	52 0	125656	0 13946	10 1560	34 0 173	8985 (193317	0 214029	0 225076	0 23750	3 0 2/99	31.0.2623	80 27616	7 0 291356	0 30516	10 30516	40 30516	10 3051	54 0 30516	10 305164	0 306545	0 306545	0 307926	0 307926	0 307926	0 307926	0 307926	0 307926	0 307926	0 307926	0 307926
BR0	2/3	0.074	2000.0	66000	0.0818	00 0	001000	0.10100	+0.1300	0.17	5000	140000	0.155000	0.163000	0.17200	0 0 1810	000 1000	0 0 20000	0.211000	0.30310	+0.50510	0.022100	0.3031	0.0000	0.303104	0.300343	0.222000	0.307920	0.307920	0.307920	0.223000	0.307920	0.307920	0.307920	0.307720	0.307920
CNOFe	4/5	0.034	150 0.0	51060	0.0624	43 0	069464	0.07700	0.1130	50 0.120	5183	106970	0.119201	0.124427	0 13120	8 0 1291	680 1450	80 15267	0.161060	0.16970	20.1697	20 16970	2 0 1687	2 0 16970	0 169703	0.169466	0.160/66	0.170220	0.170220	0.170220	0.170220	0.170220	0.170220	0.225000	0 170220	0.225000
	0/1	0.041	14600	00400	0.0012	76 .	001002	0.07709	20.0002	a 0.090	150	008212	0.01110321	0.01505	0.02020	8 0.0252	600.0212	5 0.1320/	0.101009	0.10870	20.108/0	20.108/0	10 1110	18 0 10455	0.100702	0.109400	0.172604	0.1010229	0.110229	0.170229	0.236122	0.170229	0.170229	0.170229	0.170229	0.170229
BR1	2/3	0.000	146 0.0	00429	0.0012	24 0.	001270	0.00280	0.0041		1460	006020	0.011199	0.015051	0.02029	0.0252	090.0313	0.03894	0.046529	0.05965	20.07359	0.09072	0.0010	+0 0.12455	0.139464	0.154653	0.125000	0.191936	0.214029	0.225076	0.171000	0.248550	0.262358	0.2/4/86	0.269975	0.305164
0 & NO	4/5	0.000	106 0.0	00311	0.0009	24 0.	.001370	0.00203	0.0030	0.002	1400 (006020	0.008110	0.010900	0.01470	0.0183	000.02270	0.02820	0.035000	0.04320	0.05330	00.06570	0.0810	2010.090200	0.101000	0.112000	0.125000	0.139000	0.155000	0.163000	0.171000	0.180000	0.190000	0.199000	0.210000	0.221000
	т/Ј	0.000	181 0.0	00237	0.0007	US [0.	.001046	0.00155	0.0022	98 U.UU:	0403 (1.004595	0.006191	0.008321	0.01122	.1 0.0139	0.0173	80.02152	/0.026/18	0.03297	/ 0.04068	0.05015	30.0018	5∠ 0.068855	0.077099	0.085496	0.095420	0.106107	0.118521	0.124427	0.130534	0.13/405	0.145038	0.151908	0.100305	0.168/02

Table A 5 - STICS Efficiency, version 2.14

	1	1																															
Channel	Polar]	DVS	Step)														
Species	Head	0 1		2	2	4	5	6	7	0	0	10	11	12	12	14	15	16	17	10	10	20	21	22	22	24	25	26	27	20	20	20	21
	0 / 1	0 1	-	2	3	4	5	0	/	8	9	10	11	12	15	14	15	10	17	18	19	20	21	22	23	24	25	20	21	28	29	30	51
BR2	$\frac{0}{1}$	0.009114 0.013	946 0.02 100 0 01	21265 c).024993).018100	0.029550	0.034797	0.041011	0.047225	0.054405	0.062690	0.072218	0.076774	0.081745	0.086993	0.092654	0.099696	0.107429	0.115714	0.124551	0.118061	0.111986	0.106186	0.100663	0.095554	0.090583	0.087683	0.084921	0.082298	0.079674	0.077189	0.074841	0.072494
H & He	4/5	0.005038 0.007	710 0.01	1756 0	0.013817	0.016336	0.019237	0.029700	0.026107	0.030076	0.034656	0.032300	0.042443	0.045191	0.048092	0.051221	0.055115	0.059389	0.063969	0.050200	0.065267	0.061908	0.058702	0.055649	0.052824	0.050076	0.048473	0.001500	0.045496	0.044046	0.042672	0.034200	0.040076
MR0	475							0.022072				0.057721				0.001221				0.000000				0.000017				0.010917					
C^{+3}	1 - 5	0 022200 0 027	700 0 03	24300	042400	0.052500	0.062600	0.074200	0.088000	0 104000	0 112000	0 120000	0 127000	0 126000	0 144000	0 153000	0.162000	0 170000	0 170000	0 188000	0 108000	0 208000	0.210000	0.221000	0 221000	0 221000	0 221000	0 221000	0 222000	0 222000	0 222000	0.223000	0 222000
MR1	10	0.022200 0.027	700 0.0.		0.042400	0.052500	0.002000	0.074200	0.088000	0.104000	0.115000	0.120000	0.127000	0.130000	0.144000	0.155000	0.102000	0.170000	0.179000	0.188000	0.198000	0.208000	0.219000	0.221000	0.221000	0.221000	0.221000	0.221000	0.222000	0.222000	0.223000	0.225000	0.223000
C^{+4}	1 - 5	0.038800 0.048	000 0.05	58300 c).069100	0.082000	0.097200	0.110000	0.117000	0.124000	0.132000	0.141000	0.150000	0.158000	0.167000	0.175000	0.184000	0.194000	0.204000	0.215000	0.221000	0.221000	0.221000	0.221000	0.221000	0.221000	0.222000	0.223000	0.223000	0.223000	0.223000	0.223000	0.223000
MR2																																	
C ⁺⁵	1 - 5	0.058400 0.069	100 0.08	32000 0).097200	0.110000	0.117000	0.124000	0.132000	0.141000	0.150000	0.158000	0.167000	0.175000	0.184000	0.194000	0.204000	0.215000	0.221000	0.221000	0.221000	0.221000	0.221000	0.221000	0.222000	0.223000	0.223000	0.223000	0.223000	0.223000	0.223000	0.223000	0.223000
MR3																																	
C ⁺⁶	1 - 5	0.077100 0.091	400 0.10	07000 0).114000	0.121000	0.129000	0.137000	0.146000	0.155000	0.163000	0.172000	0.181000	0.190000	0.200000	0.211000	0.221000	0.221000	0.221000	0.221000	0.221000	0.221000	0.222000	0.222000	0.223000	0.223000	0.223000	0.223000	0.223000	0.223000	0.223000	0.223000	0.223000
MR4																																	
N ⁺	1 - 5	0.000174 0.000	465 0.00	01250 0	0.001860	0.002770	0.004110	0.006110	0.008270	0.011200	0.015100	0.020500	0.024900	0.030200	0.036700	0.044500	0.053000	0.063000	0.074800	0.089000	0.097600	0.107000	0.117000	0.129000	0.141000	0.155000	0.163000	0.171000	0.180000	0.190000	0.199000	0.210000	0.221000
MR5	1 5																																
N MD6	1 - 5	0.033000 0.040	000 0.04	18100 c).057200	0.068000	0.080900	0.092700	0.102000	0.112000	0.122000	0.134000	0.147000	0.158000	0.167000	0.175000	0.184000	0.194000	0.204000	0.215000	0.221000	0.221000	0.221000	0.221000	0.221000	0.221000	0.222000	0.223000	0.223000	0.223000	0.223000	0.223000	0.223000
NK0 N ⁺²	1 - 5	0.00/550.0.000		2000			0.00.000	0.021500	0.000000	0.04/2000	0.055000	0.065400	0.077000	0.000000	0.000.000	0.100000			0.1.4.000	0 150000	0.1.65000	0.153000	0.100000	0.102000	0.000000		0.001000	0.001000	0.001000			0.221000	
MR7	1-5	0.006550 0.008	850 0.01	2000 0	0.016200	0.021400	0.026000	0.031500	0.038300	0.046300	0.055000	0.065400	0.077800	0.090800	0.099600	0.109000	0.120000	0.131000	0.144000	0.156000	0.165000	0.173000	0.182000	0.192000	0.202000	0.212000	0.221000	0.221000	0.221000	0.221000	0.221000	0.221000	0.222000
$N^{+2}ZM$	1 - 5	0.006550.0.008	850 0 01	2000	016200	0.021400	0.026000	0.031500	0.038300	0.046300	0.055000	0 065400	0.077800	0 090800	0 000600	0 109000	0.120000	0 131000	0 144000	0 156000	0 165000	0 173000	0.182000	0 192000	0.202000	0.212000	0.221000	0 221000	0 221000	0 221000	0 221000	0.221000	0 222000
MR8		0.000550 0.000	0.01	2000 0	.010200	0.021400	0.020000	0.051500	0.050500	0.040500	0.055000	0.005400	0.077800	0.070000	0.077000	0.109000	0.120000	0.151000	0.144000	0.150000	0.105000	0.175000	0.102000	0.192000	0.202000	0.212000	0.221000	0.221000	0.221000	0.221000	0.221000	0.221000	0.222000
BHE2	1 - 5	0.016100 0.019	200 0.02	22900 0).027300	0.032300	0.036900	0.042300	0.048400	0.055600	0.064500	0.074800	0.086900	0.097900	0.099800	0.102000	0.104000	0.106000	0.108000	0.109000	0.110000	0.110000	0.110000	0.111000	0.111000	0.111000	0.112000	0.112000	0.112000	0.112000	0.112000	0.112000	0.112000
MR9																																	
BHE1	1 - 5	0.002850 0.004	520 0.00	07200 0).008720	0.010600	0.012800	0.015500	0.018500	0.022100	0.026300	0.031300	0.035900	0.041000	0.047000	0.053800	0.062400	0.072400	0.084000	0.097500	0.099400	0.101000	0.103000	0.105000	0.107000	0.109000	0.110000	0.110000	0.110000	0.111000	0.111000	0.111000	0.112000
MR10																																	
BH+ZM	1 - 5	0.006600 0.010	100 0.01	5400 0	0.018100	0.021400	0.025200	0.029700	0.034200	0.039400	0.045400	0.052300	0.055600	0.059200	0.063000	0.067100	0.072200	0.077800	0.083800	0.090200	0.085500	0.081100	0.076900	0.072900	0.069200	0.065600	0.063500	0.061500	0.059600	0.057700	0.055900	0.054200	0.052500
MR11																																	
O ⁺² ZM	1 - 5	0.004780 0.006	430 0.00	08670 (0.011700	0.015500	0.019200	0.023800	0.029600	0.036700	0.045200	0.055800	0.068900	0.083000	0.092400	0.103000	0.115000	0.128000	0.142000	0.156000	0.165000	0.173000	0.182000	0.192000	0.202000	0.212000	0.221000	0.221000	0.221000	0.221000	0.221000	0.221000	0.222000
MR12	1 5																																
0 ⁻³	1 - 5	0.014200 0.017	800 0.02	22100 0	0.027400	0.034000	0.042000	0.051700	0.063800	0.078700	0.088900	0.099000	0.110000	0.123000	0.137000	0.152000	0.162000	0.170000	0.179000	0.188000	0.198000	0.208000	0.219000	0.221000	0.221000	0.221000	0.221000	0.221000	0.222000	0.222000	0.223000	0.223000	0.223000
MR15 0 ⁺⁴	1 5																																
MR14	1-5	0.025000 0.031	100 0.02	38500 c).047400	0.058500	0.072100	0.085000	0.094700	0.105000	0.117000	0.131000	0.146000	0.158000	0.167000	0.175000	0.184000	0.194000	0.204000	0.215000	0.221000	0.221000	0.221000	0.221000	0.221000	0.221000	0.222000	0.223000	0.223000	0.223000	0.223000	0.223000	0.223000
0^{+5}	1 - 5	0.028500.0.047	500 0 05	8500	072100	0.095000	0.004700	0 105000	0 112000	0.121000	0 146000	0 158000	0.167000	0 175000	0 194000	0 104000	0 20 4000	0.215000	0.221000	0 221000	0.221000	0.221000	0.221000	0.221000	0.222000	0 222000	0 222000	0 222000	0 222000	0 222000	0 222000	0 222000	0 222000
MR15	1 5	0.038300 0.047	300 0.0.	00000	0.072100	0.085000	0.094700	0.105000	0.118000	0.131000	0.140000	0.158000	0.107000	0.175000	0.184000	0.194000	0.204000	0.213000	0.221000	0.221000	0.221000	0.221000	0.221000	0.221000	0.222000	0.223000	0.225000	0.223000	0.225000	0.225000	0.225000	0.223000	0.225000
O ⁺⁶	1 - 5	0.054300 0.066	900 0.08	31800 c	0.091000	0.101000	0.113000	0.126000	0.140000	0.155000	0.163000	0.172000	0.181000	0.190000	0.200000	0.211000	0.221000	0.221000	0.221000	0.221000	0.221000	0.221000	0.222000	0.222000	0.223000	0.223000	0.223000	0.223000	0.223000	0.223000	0.223000	0.223000	0.223000
MR16																																	
O^{+7}	1 - 5	0.072500 0.085	200 0.09	94900 0).106000	0.118000	0.131000	0.146000	0.158000	0.167000	0.175000	0.185000	0.194000	0.204000	0.215000	0.221000	0.221000	0.221000	0.221000	0.221000	0.221000	0.222000	0.223000	0.223000	0.223000	0.223000	0.223000	0.223000	0.223000	0.223000	0.223000	0.223000	0.223000
MR17																																	
O^{+8}	1 - 5	0.087100 0.097	000 0.10	08000 0	0.120000	0.134000	0.149000	0.160000	0.168000	0.177000	0.186000	0.196000	0.206000	0.217000	0.221000	0.221000	0.221000	0.221000	0.221000	0.221000	0.222000	0.223000	0.223000	0.223000	0.223000	0.223000	0.223000	0.223000	0.223000	0.223000	0.223000	0.223000	0.223000

Table A 5 - STICS Efficiency, version 2.14

Channel	Polar																DV	Step															
Species	Head	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
MR18																																	
Ne ^{+*}	1 - 5	0.081000	0.088200	0.096000	0.105000	0.114000	0.124000	0.133000	0.141000	0.149000	0.158000	0.168000	0.179000	0.189000	0.193000	0.193000	0.193000	0.193000	0.193000	0.194000	0.194000	0.195000	0.195000	0.195000	0.195000	0.195000	0.195000	0.195000	0.195000	0.195000	0.195000	0.195000	0.195000
MR19																																	
MgSiL	1 - 5	0.089800	0.101000	0.112000	0.120000	0.130000	0.140000	0.151000	0.162000	0.175000	0.184000	0.184000	0.184000	0.184000	0.184000	0.184000	0.185000	0.185000	0.186000	0.186000	0.186000	0.186000	0.186000	0.186000	0.186000	0.186000	0.186000	0.186000	0.186000	0.186000	0.186000	0.186000	0.186000
MR20	1 5																																
Mg51H	1-5	0.049000	0.057300	0.064400	0.072400	0.081300	0.091400	0.103000	0.113000	0.122000	0.131000	0.141000	0.152000	0.164000	0.177000	0.184000	0.184000	0.184000	0.184000	0.184000	0.184000	0.185000	0.186000	0.186000	0.186000	0.186000	0.186000	0.186000	0.186000	0.186000	0.186000	0.186000	0.186000
MR21 Fe ⁺⁶	1 - 5			0.054200				0.002200				0 120000				0.166000				0.166000				0.167000				0.167000				0.167000	
MR22	1-5	0.038900	0.047400	0.054300	0.062100	0.071100	0.081400	0.093200	0.104000	0.111000	0.120000	0.128000	0.138000	0.148000	0.159000	0.166000	0.166000	0.166000	0.166000	0.166000	0.166000	0.166000	0.167000	0.16/000	0.167000	0.167000	0.167000	0.16/000	0.167000	0.167000	0.167000	0.167000	0.167000
Fe ⁺⁸	1 - 5	0.056200	0.064300	0.073700	0.084200	0.006500	0 105000	0 113000	0 122000	0 131000	0.141000	0 151000	0.162000	0 166000	0 166000	0 166000	0 166000	0 166000	0 166000	0 167000	0 167000	0.167000	0 167000	0 167000	0 167000	0 167000	0 167000	0 167000	0 167000	0 167000	0 167000	0 167000	0.167000
MR23	10	0.036200	0.004300	0.075700	0.084300	0.090500	0.105000	0.115000	0.122000	0.131000	0.141000	0.151000	0.162000	0.100000	0.100000	0.100000	0.100000	0.100000	0.100000	0.107000	0.107000	0.107000	0.167000	0.107000	0.107000	0.107000	0.107000	0.107000	0.187000	0.107000	0.187000	0.107000	0.167000
Fe ⁺¹⁰	1 - 5	0.071700	0.082100	0.094000	0.104000	0.112000	0.120000	0.129000	0.139000	0.149000	0.160000	0.166000	0.166000	0.166000	0.166000	0.166000	0.166000	0.167000	0.167000	0.167000	0.167000	0.167000	0.167000	0.167000	0.167000	0.167000	0.167000	0.167000	0.167000	0.167000	0.167000	0.167000	0.167000
MR24																																	
Fe ⁺¹²	1 - 5	0.087900	0.100000	0.108000	0.116000	0.124000	0.134000	0.144000	0.154000	0.166000	0.166000	0.166000	0.166000	0.166000	0.166000	0.166000	0.167000	0.167000	0.167000	0.167000	0.167000	0.167000	0.167000	0.167000	0.167000	0.167000	0.167000	0.167000	0.167000	0.167000	0.167000	0.167000	0.167000
MR25																																	
Fe ⁺¹⁴	1 - 5	0.102000	0.110000	0.118000	0.127000	0.137000	0.147000	0.158000	0.166000	0.166000	0.166000	0.166000	0.166000	0.166000	0.166000	0.167000	0.167000	0.167000	0.167000	0.167000	0.167000	0.167000	0.167000	0.167000	0.167000	0.167000	0.167000	0.167000	0.167000	0.167000	0.167000	0.167000	0.167000
MR26																																	
Fe+16	1 - 5	0.111000	0.119000	0.128000	0.138000	0.148000	0.159000	0.166000	0.166000	0.166000	0.166000	0.166000	0.166000	0.166000	0.167000	0.167000	0.167000	0.167000	0.167000	0.167000	0.167000	0.167000	0.167000	0.167000	0.167000	0.167000	0.167000	0.167000	0.167000	0.167000	0.167000	0.167000	0.167000
MR27	1 5																																
NO&O2	1 - 5	0.000001	0.00008	0.000053	0.000128	0.000311	0.000756	0.001830	0.002730	0.004060	0.006030	0.008960	0.011600	0.014900	0.019200	0.024800	0.030200	0.036700	0.044600	0.054300	0.061000	0.068500	0.077000	0.086500	0.097200	0.109000	0.118000	0.127000	0.137000	0.147000	0.159000	0.171000	0.184000
MK28 BH⊥tr	1 - 5			0.015400				0.000700				0.052200				0.067100				0.000200				0.072000				0.061500				0.054200	
MR29	1-5	0.006600	0.010100	0.015400	0.018100	0.021400	0.025200	0.029700	0.034200	0.039400	0.045400	0.052300	0.055600	0.059200	0.063000	0.06/100	0.072200	0.077800	0.083800	0.090200	0.085500	0.081100	0.076900	0.072900	0.069200	0.065600	0.063500	0.061500	0.059600	0.057700	0.055900	0.054200	0.052500
C+2	1 - 5	0.009020	0.010600	0.014000	0.018500	0.024200	0.020000	0.037000	0.045900	0.056100	0.066500	0 078000	0.002600	0 102000	0 115000	0 123000	0.120000	0.120000	0 147000	0 156000	0 165000	0.172000	0 182000	0 192000	0 202000	0.212000	0 221000	0 221000	0 221000	0.221000	0 221000	0.221000	0.222000
	0/1	0.008020	0.5	0.5	0.5	0.024200	0.029900	0.5	0.5	0.050100	0.5	0.5	0.5	0.103000	0.5	0.125000	0.130000	0.139000	0.5	0.5	0.105000	0.175000	0.182000	0.192000	0.202000	0.5	0.221000	0.5	0.221000	0.221000	0.5	0.5	0.222000
DCR	2/3	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
ions	4 / 5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
EGD	0 / 1	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
FSK	2/3	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
10115	4 / 5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
DCD	0 / 1	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
ions	2/3	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
10113	4 / 5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
SSD	0 / 1	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
ions	2/3	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
10115	4 / 5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
TCR	0 / 1	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
ions	2/3	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
10110	4 / 5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5

										Ta	able	e A 5	- S	TIC	CS I	Effic	ien	cy, v	vers	sion	2.14	1											
Channel	Polar																DV	Step)														
Species	Head	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
MDC																																	
ions	0 - 5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
MFSR																																	
ions	0 - 5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
UFSR																																	
ions	0 - 5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
URSR																																	
ions	0 - 5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
MPF	0 - 5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
MPR	0 - 5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Diagnostic	0 - 5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5

	Table A 6 - S	STICS Geom	etric Factors,	version 2.14	
		Polar	Head		
0	1	2	3	4	5
0.05	0.05	0.05	0.05	0.05	0.05

Table A 7 - Reduct	ICS Energy Channe ion Due to Backgrou	l Differential nd Correction	Flux n
ICS Channel	Energy Band [keV]	Flux reduct Subtracted E [1/(cm**2-	ion due to Background s-sr-kev)]
		North Head	South Head
E2	61.50 to 73.70	8.623	4.856
E3	93.30 to 106.80	12.234	6.889
Ε4	73.70 to 89.30	0.221	0.221
E4	106.80 to 123.50	0.751	0.325
F.5	89.30 to 110.20	0.101	0.132
ES	123.50 to 145.20	0.153	0.199
EC	110.20 to 137.40	0.282	0.239
Eo	145.20 to 172.50	0.441	0.374
F 7	137.40 to 173.10	0.356	0.307
E/	172.50 to 207.30	0.575	0.494
EQ	173.10 to 220.00	0.269	0.221
Εð	207.30 to 251.60	0.448	0.368
EO	220.00 to 281.50	0.175	0.160
E9	251.60 to 309.00	0.295	0.270
E10	281.50 to 362.90	0.107	0.094
E10	309.00 to 385.80	0.179	0.156
E 11	362.90 to 471.40	0.062	0.056
EII	385.80 to 490.90	0.100	0.092
E12	471.40 to 615.90	0.036	0.033
E12	490.90 to 634.40	0.057	0.052
E12	615.90 to 913.20	0.017	0.016
E15	634.40 to 929.60	0.027	0.026
E14	913.20 to 1352.30	0.006	0.006
E14	929.60 to 1361.00	0.010	0.011
E15	1352.30 to 2013.90	0.002	0.002
EIJ	1361.00 to 2024.30	0.004	0.004
E16	2013.90 to 3005.40	0.001	0.001
E10	2024.30 to 3003.80	0.001	0.001

Table A 8 - ICS Electron Detector Integral FluxReduction Due to Background Correction		
ICS Channel	Energy Band [keV]	Flux reduction due to Subtracted Background [1/(cm**2-s-sr)]
ED1	34 to infinity [†]	343.7
	38 to infinity [†]	46.8
ED2	110 to infinity	39.0

[†] ICS ED1 Threshold was raised at 00:00 UT on DoY 067 1993 from 34 to 38 keV

Figure A 2 - STICS Functional Block Diagram