

Prepared by Charles E. Schlemm II

12 August 1993

Contributors : S. Christon, UMD/SPG A. Galvin, UMD/SPG B. Gerlach, TUB/IDA A. Hestermeyer, TUB/IDA S. Jaskulek, JHU/APL B. Lundgren, UMD/SPG R. McEntire, JHU/APL C. Schlemm, JHU/APL W. Wiewesiek, TUB/IDA D. Williams, JHU/APL

Contents

Fo: 1.	reward1 INSTRUMENT DESCRIPTION2
	1.1 Configuration
	1.2 Spacecraft Interfaces4
	1.2.1 Mass and Size
	1.2.2 Power
	1.2.5 Power Line Interface Diagram
	1 3 Operational Modes
	1.3.1 Mode Description
	1.4 Sensor Signals and Data Processing12
	1.4.1 The Ion Composition Subsystem (ICS)12
	1.4.2 The SupraThermal Ion Composition Spectrometer
	1.4.3 Data Processing Unit
	1.5 Contamination
2.	PARTICLE CLASSIFICATION
	2.1 STICS Instrument
	2.1.1 Mass classification
	2 1 3 Species classification
	2 1 4 PHA data collection 31
	2.1.5 Classification implementation in the DPU
	2.2 ICS Instrument
	2.2.1 Mass classification
	2.2.2 TOF classification
	2.2.3 Energy classification
	2.2.4 PHA data collection
	2.2.5 Classification implementation in the DPU
3.	TELEMETRY
	3.1 The GEOTALL telemetry system
	3.2 EPIC data contained in telemetry stream
	3.4 EDB 46
	3 4 1 DPU common areas for all modes 47
	3.4.2 Dual sensor mode
	3.4.3 STICS single sensor mode
	3.4.4 ICS single sensor mode
	3.5 Subcommutated housekeeping
4.	COMMANDS
	4.1 CRC code generation for Block Command (BC) codes
	4.2 Command index
	4.3 Command Details
	4.3.1 DPU Commands
	4.5.2 SIICS Commands
5	248 PPII TIMING
•••	5.1 Sectorization timing
6.	DPU special function registers
	6.1 LU-Test Register (LUTEST)
	6.2 DPU Command Register (COMREG)252
	6.3 Message Register 1 (MREG1)252
	6.3 SCI-Control Register (SCICMD)253
	6.5 Power Control Register (PREG1)253
	6.6 Message Register 2 (MREG2)
	6.6 Classification Status Register (C STAT)
7	6.7 Classification Command Register (C_COM)
, . 8	Startup sequence
J •	8.1 Setting the DPU operational state
	8.2 Setting the ICS sensor operational state
	8.3 Setting the STICS sensor operational state
9.	Change for Sensor Commanding265
	9.1 Command classes

Table of contents

	9.2 Command transmission module	.265
10.	Real time aspects	.266
11.	Memory assignment	.270
	11.1 STICS rates data buffers	.270
	11.2 ICS rates data buffers	.272
	11.3 STICS PHA acquisition	.273
	11.4 ICS PHA acquisition	.273
	11.5 DPU Buffers	.274
	11.6 Total memory consumption	.274
	11.7 Permanent Powered RAM	.275
12.	Housekeeping	.276
13.	ICS Rate Address Generation Definition	.277
14.	Known Problems	.278
15.	Revision notes	.279
Inde	ех	.280
Note	es	.282

List of figures

Fig. 1 · EPIC Configuration Diagram	З
Fig. 2 · EPIC Power Switching Diagram	
Fig. 2 · ICS Dower Switching Diagram	
Fig. 5. 105 FOWER Switching Diagram	
Fig. 4. SILES FOWER SWITCHING Diagram.	
Fig. 5 : EPIC High Level Power and Grounding Diagram	·····
FIG. 6 : EPIC ICS Sensor BLOCK Diagram	
FIG. / : EPIC STICS Sensor BLOCK Diagram	
FIG. 8 : EPIC DPU BLOCK Diagram	
Fig. 9 : STICS event word	
Fig. 10 : STICS mass bins	
Fig. 11 : STICS PHA event word format	
Fig. 12 : Table structure for STICS event classification	
Fig. 13 : ICS event word	
Fig. 14 : ICS PHA event word format	
Fig. 15 : Table structure for ICS event classification	
Fig. 16 : General EDB layout	
Fig. 17 : DPU common area 1	
Fig. 18 : DPU common area 2	
Fig. 19 : STICS data area (lines 24 -44) in dual sensor mode	61
Fig. 20 : STICS data area (lines 45 - 59) in dual sensor mode	
Fig. 21 : ICS data area (odd EDB) in dual sensor mode	63
Fig. 22 : ICS data area (even EDB) in dual sensor mode	64
Fig. 23 : STICS single sensor mode EDB (lines 0 - 18)	
Fig. 24 : STICS single sensor mode EDB (lines 19 - 35)	
Fig. 25 : STICS single sensor mode EDB (lines 36 - 59)	
Fig. 26 : ICS single sensor mode EDB (lines 0 - 22)	
Fig. 27 : ICS single sensor mode EDB (lines 23 - 41)	
Fig. 28 : ICS single sensor mode EDB (lines 42 - 59)	

List of tables

T-blo	1 .	. T	EDIC Summary Mahla	2
Table	2 .	. 1	Bit Summary rablessions for EDIC Subautoms	2
Table	2.	. 1 . т	Mass and Size Allocations for Effe Subsystems	••••
Table	л. Л.		EFIC FOWEL CONSUMPTION	
Table	4.			
Table	5		STICS mass class alterable parameters	
Table	0		STICS mass/charge classification alterable parameters	
	/ :		STICS Science rate bins in M vs. M/g space	
	8 :		STICS PHA & Dasic rate ranges in M vs. M/Q space	31
Table	9 :		ICS mass ranges	
Table	10	:	ICS Proton bins	
Table	11	:	ICS Helium bins	35
Table	12	:	ICS Medium bins	
Table	13	:	ICS Heavies bins	36
Table	14	:	ICS over/underflow bins	37
Table	15	:	ICS mass classification parameters	37
Table	16	:	ICS time of flight bins	38
Table	17	:	ICS energy bins	39
Table	18	:	Telemetry format modes	42
Table	19	:	EPIC format dependent telemetry allocation	43
Table	20	:	EPIC format independent telemetry allocation	44
Table	21	:	EPIC status area contents	46
Table	22	:	ICS formatting schemes	65
Table	23	:	ICS rates dual sensor mode (sorted by formatting scheme)	67
Table	24	:	ICS rates dual sensor mode (sorted by rate type)	69
Table	25	:	ICS rates single sensor mode (sorted by format scheme)	77
Table	26	:	ICS rates single sensor mode (sorted by rate type)	78
Table	27	:	ICS Sensor Control Command List, part 1	.219
Table	28	:	ICS Sensor Control Command List, part 2	.220
Table	29	:	STICS Sensor Control Command List, part 1	.221
Table	30	:	STICS Sensor Control Command List, part 2	.222
Table	31	:	STICS time of flight calibration levels	.230
Table	32	:	ICS time of flight calibration levels	.240
Table	33	:	ICS PHA Energy level bins	.243
Table	34	:	ICS PHA Species level bins	.243
Table	35		EPIC timing compared to S/C timing	248
Table	36	:	Sector dead-times	248
Table	37	:	DPULI/O ports	251
Table	38	:	STICS buffer assignment in NORMAL MODE	270
Table	39	:	STICS buffer assignment in STICS SINGLE SENSOR MODE	272
Table	40	:	ICS buffer assignment in NORMAL MODE	272
Table	41	:	ICS buffer assignment in ICS single sensor mode (TRD)	273
Table	Δ2	:	DPIL RAM huffers	271
Table	77 77	:	Total memory consumption in EDIC DDII	271
Table	ч Э Л Л	÷	STICS related contents of the new velatile DAM	· ∠ / 4 275
Table	44 / 5	÷	TCS related contents of the non-volatile RAM.	· ∠ / J
Table	ч J Л G	÷	DDI related contents of the nen velatile DAM	276
Tante	40	•	DIO TETACEO CONCENCS OI CHE NON VOIACITE NAM	• 2 / 0

Foreward

This document is intended to be the working-document for the EPIC instrument. It is intended to be used to understand EPIC and to allow proper telemetry interpretation, and instrument control and commanding.

It contains elements of the Subsystem Control Document (SCD), the Data Definition Document (DDD), and the EPIC article in the Geotail "Yellow Book", which were written by the contributors credited above. But it gets the Data Processing Unit (DPU) details directly from the DPU User's Guide that was written by Andreas Hestermeyer.

The material has been checked, but typographical errors may still be present. Some sections still contain incomplete information, due to the limited amount of time the author has to examine the DPU source code. This will be made complete in future revisions of this document, as well as the inclusion of additional sections to document parameter changes as they occur and special operations, such as the making of DPU code patches.

<u>1. INSTRUMENT DESCRIPTION</u>

The EPIC instrument is actually composed of two separate sensor and processing assemblies. The STICS assembly (Supra-Thermal Ion Composition Spectrometer) uses a quadrispherical electrostatic analyzer followed by a foil/solid state detector time-of-flight (TOF) telescope to measure charge state, mass and energy of ions with energies of 30 - 230 keV/charge. It uses an electrostatic analyzer with a geometry factor of 0.05 cm² sr, time of flight, and energy analysis.

The ICS assembly (Ion Composition Subsystem) measures mass and energy properties of energetic ions with energies of less than 50 keV to 3 MeV. It uses a pair of collimators with sweeping magnets to reject electrons, followed by TOF and energy analysis, with a geometry factor of 0.2 cm² sr. A thin foil/solid state detector electron telescope measures electrons higher than 30 keV.

Table 1 summarizes main EPIC characteristics.

	STICS	ICS
Sensors:	Electrostatic analyzer	Time-of-flight x E
Energy Range:	10-230 keV/e (M/Q) 30-230 keV/e (M and M/Q) $\Delta E/E = 5\%$	<pre>>10 keV (Integral) Ions >20 keV (Velocity) Ions >30 keV-3 MeV (M) Ions >30 keV and >100 keV (Integral) Electrons</pre>
Ion Species: Resolution:	H through Fe	H through Fe
Mass:	Resolves all major ion species Charge states of major ion species	Resolves all major ion species
Angular:	6 equal 26.7° polar sectors (+80° to -80°*)	2 equal 30° polar sectors (-38° to -8°; +8° to +38°*) (Ions) 1 polar 60° sector (-30° to +30°*) (Electrons)
	16 equal 22.5° azimuthal sectors	16 equal 22.5° azimuthal sectors
Time:	3 sec**/energy step 24 sec**/8-point spectrum	0.2 sec to 96 sec** (species dependent)
Geometry Factor:	0.05 cm ² sr	<0.006 to 0.2 cm ² sr (Ions) 0.1 cm ² sr (Electrons)
EPIC S/C Interfac	ces:	
Mass:	Total mass 20.986 kg (inclu	ding shielding, excluding cables)
Power: Data Rate:	14.6 W electronics, <10 W t 2560 bps	hermal

* with respect to the spin plane

** assumes the nominal 3 seconds/spin

Table 1 : EPIC Summary Table

1.1 Configuration

The EPIC instrument is comprised of 5 subassemblies: the STICS sensor, STICS analog electronics, ICS sensor, ICS analog electronics, and the Data Processing Unit (DPU). A schematic diagram of these assemblies and their mounting on the GEOTAIL spacecraft is shown in Figure 1.

The two sensors do the actual detection and measurements of the incoming particle flux; both contain microchannel plates, high voltage supplies, solid-state detectors, and preamplifier electronics. These are the only parts of the EPIC instrument that require visibility to the space environment.

Signals from the two sensors are sent to their respective analog electronics subassemblies, where the signals are further amplified, processed for timing and position information, and digitized. An inflight calibrator, voltage converter (+6V, -6V, +5.2V, -5.2V, +12V, -12V and SSD bias), interface controller, and valid-event logic are also present.

Digitized data from both of the analog sensor electronics then goes to the DPU, where the data are analyzed and accumulated over several spacecraft spins. In addition to this analysis, the DPU also handles all command decoding and processing, telemetry interface and formatting, power switching, and instrument control.

Fig 1 : EPIC Configuration Diagram

1.2 Spacecraft Interfaces

1.2.1 Mass and Size

The EPIC instrument mass allocation is 16.9 Kg, and the EPIC radiation shield mass allocation is 5.0 Kg. This 21.9 Kg allocation is exclusive of the inter-box cable mass. The mass and size allocation between subsystems is given in Table 2.

1.2.2 Power

The EPIC instrument uses spacecraft secondary power from the +15V, +29V, and +5.2V power busses. Of these three, the +15V and +5.2V power is used in the EPIC DPU box (for relay power and logic power, respectively), and the +29V is used in the sensors and the analog electronics (to power voltage converters, actuators, and heaters). The DPU filters, switches, and circuit-breaks the +29V supply but does not use it for circuit power. Figures 2, 3 and 4 show the DPU, ICS Sensor, and STICS Sensor power switching, respectively.

Fig 2 : EPIC Power Switching Diagram

Fig 3 : ICS Switching Diagram

Fig 4 : STICS Power Switching Diagram

The spacecraft 5.2 volt power is not used in the analog electronics and sensors. EPIC powers the logic circuitry in those subsystems from the low voltage power converter secondaries (located in the two analog electronic boxes). This step was taken to avoid ground loops, and to allow referencing the high voltages to spacecraft chassis.

Unit Na	me Mas	s (Kg) S	l Size (mm	w x mm	x	h mm)
DPU	3.6	28 1	60.2 x	149.0	x	190
ICS Analog Ele	c 2.2	51 2	29 x	140.5	Х	131
STICS Analog E	lec 2.2	78 2	29 x	140.5	Х	131
ICS Sensor Hea	d 5.5	40 1	98 x	225	X	278
STICS Sensor H	ead 7.2	89 3	94 x	295	x	292
TOTAL EPIC INS	TR. 20.	986				

Table 2 : Mass and Size Allocations for EPIC Subsystems

1.2.3 Power Consumption per Operational Mode

The EPIC power allocation is 3.8 watts in electronics standby, 14.6 watts for full-up electronics operations, and 10 watts thermal. Power consumption in various instrument modes is shown in Table 4.

1.2.3.1 Time Varying Aspects of the Power Profile

The STICS sensor contains two high voltage power supplies that are used to generate the deflection voltage on the sensor's electrostatic analyzer. Their output voltages are each stepped together from 300V to ~ 10 kV in a regular cyclical pattern. The output voltage is changed each spin (3 seconds nominal) and cycles every 32 spins (science record), and the pattern itself is chosen by uplink command to the instrument (e.g., 10 kV to 300 V gradually and then back directly to 10 kV; 300 V to 10 kV to 300 V where 16 spins are spent going from 300 volts to 10 kV, and 16 spins are spent returning to 300 V; or where all 32 spins are spent at a single voltage level, etc.). The power for these supplies is taken from the +29 V bus; the current on this bus will vary between ~ 18 mA and ~ 30 mA, depending on the selected voltage.

The great majority of the EPIC analog circuitry requires ± 6 volts to operate. Since this voltage is not provided by the spacecraft, it is necessary to produce it in the instrument via a voltage converter.

Each sensor analog electronics subassembly incorporates an inflight calibrator circuit. These circuits will be used approximately once per week in normal operation; only one subsystem calibrator will be used at a time. The calibrator will use \sim 30 mA from the +6V and \sim 8 mA from the -6V EPIC secondary supplies (0 mA when not in use), translating to less than 8 mA on the 29V bus.

1.2.4.2 Temperature Varying Aspects of the Power Profile

The STICS and ICS sensor assemblies incorporate active thermal control circuits to maintain the solid state detectors within an allowable temperature range. The associated heaters, called the supplemental heaters, are located within both sensor assemblies, and are nominally sized at 3.0 and 7.0 watts for ICS and STICS, respectively. The heater controller's set-point (minimum temperature that the circuit tries to maintain) will be approximately -20°C to -40°C. The present thermal analysis indicates that the heaters will not be needed to maintain a safe temperature during the normal full operation mode of operation.

The bakeout and supplemental heaters are of the thermostatically controlled type. This means that a heater will either have full load on the supply lines, or no load. However, the supplemental heaters are arranged in two stages, the first engaging at $<-30^{\circ}$ C as replacement heat for the sensors, and the next stage at $<-35^{\circ}$ C as true supplemental heat. The heaters turn off 10°C above the turn-on temperature.

OPERA	ATTONAL MODE+		+5.2 1	V	+15 V	+2.9	V	<u>Instrument Description</u> 29 V Thermal					
			(mA)	-	(mA) (mA)			(mA)					
••••	••••••		• • • • • • •	•••		• • • • •	• • • •	••••••					
(1)	OFF	PEAK AVG	20 ± 4 20 ± 4	4 4	‡ ‡	2 ± 2 ±	1 1	$\begin{array}{cccc} 0 & \pm & 0 \\ 0 & \pm & 0 \end{array}$					
(2)	BAKEOUT	PEAK AVG	20 ± 4 20 ± 4	4 4	‡ ‡	2 ± 2 ±	1 1	290 ± 20 290 ± 20					
(3)	STANDBY (SHADOW)	PEAK AVG	240 228 ± 2	15	‡ ‡	2 ± 2 ±	1 1	160 ± 15 160 ***					
(4)	ICS TEST	PEAK AVG	410 228 ± 2	15	‡ ‡	145 ± 125 ±	: 10 : 10	** 160 ± 15 0 ***					
(5)	STICS TEST	PEAK AVG	400 228 ± 2	15	‡ ‡	150 ± 130 ±	: 10 : 10	** 160 ± 15 0 ***					
(6)	DUAL TEST	PEAK AVG	470 228 ± 2	15	‡ ‡	285 ± 270 ±	: 20 : 20	** 160 ± 15 0 ***					
(7)	ICS OPER.	PEAK AVG	410 228 ± 2	15	‡ ‡	170 ± 150 ±	: 20 : 20	** 160 ± 15 0 ***					
(8)	STICS OPER	PEAK AVG	400 228 ± 3	15	‡ ‡	235 ± 215 ±	20 20	** 160 ± 15 * 0 ***					
(9)	FULL OPER (REAL)	PEAK AVG	470 228 ± 2	15	‡ ‡	395 ± 375 ±	: 30 : 30	** 160 ± 15 * 0 ***					
Notes	<u></u> .	• • • • • • •	•••••	•••	•••••	• • • • •	•••• 11	1 August 1993					
+	Current for this s	supply	is 30 r	nA	for 8	milli	seco	onds per relay					
*	being switched, 0 See time varying a power supply	mA oth aspects	erwise s of pow	wer	profi	le -	defl	lection plate					
* * * * *	See time varying a See temperature va	aspects arying	s of pow aspects	wer s o	profi f powe	le – er pro	cali file	ibrator circuits e – supplemental					
+	The sequence of op EPIC initialization operation.	peration on sequ	onal mod lence.	des Mo	(1) t de (9)	hroug: repr	h (8 eser	3) represent the nts routine					

Table 3 : EPIC Power Consumption

1.2.5 Power Line Interface Diagram

The power line interface between the spacecraft and the EPIC instrument is shown in Fig. 5.

1.3 Operational Modes

The EPIC instrument can be operated in a variety of modes, stemming from the fact that there are two sensor assemblies. These modes are summarized below. (Mode numbers are for reference only.)

MODE	DPU PWR (MAIN)	HEATER Bake S	POWER uppl†	ANALC	G POWER STICS	HIGH ICS S	VLT POWER STICS
1	OFF	OFF	ON	OFF	OFF	OFF	OFF
2	OFF	ON	OFF	OFF	OFF	OFF	OFF
3	ON	OFF	ON	OFF	OFF	OFF	OFF
4	ON	OFF	ON*	ON	OFF	OFF	OFF
5	ON	OFF	ON*	OFF	ON	OFF	OFF
6	ON	OFF	ON*	ON	ON	OFF	OFF
7	ON	OFF	ON*	ON	OFF	ON	OFF
8	ON	OFF	ON*	OFF	ON	OFF	ON
9	ON	OFF	ON*	ON	ON	ON	ON

* Thermal analysis and operation to date indicate that no heater power is used in these modes during normal operation, since the temperature will be above the thermostat set-point. However, EPIC may use up to the 10 watts thermal power when the temperature drops below the set-points.

t The supplemental heater is off during the first minutes of the mission, and on to maintain a safe sensor temperature during all other mission phases except bakeout.

1.3.1 Mode Description

- MODE 1: Used immediately during and following launch or during low power modes of spacecraft operation. Solid-state detectors may become too cool if left in this mode too long.
- MODE 2: Started ASAP after launch with a 2 week duration minimum prior to high voltage operation to help prevent outgassing material on sensor assembly surfaces. Sensor temperatures must be monitored in this mode. The STICS aperture will be opened in this mode. The DPU must be on approximately 10 minutes to open the aperture.
- MODE 3: Used to safely store instrument in inactive state during mission. Instrument DPU will be active, but interface circuitry for the sensors may be unpowered.
- MODE 4: Used to test only the ICS sensor electronics no TOF measurements are made, but energy spectra may be available. STICS sensor is inactive.
- MODE 5: Used to test only the STICS sensor electronics no TOF or energy measurements will be available. ICS sensor is inactive.
- MODE 6: Used to test both the ICS and STICS sensor electronics no TOF measurements are made, but energy spectra may be available from ICS.
- MODE 7: Used to operate the ICS sensor in its data measurement mode full energy and TOF information available. STICS sensor is inactive.
- MODE 8: Used to operate the STICS sensor in its data measurement mode full energy and TOF information available. ICS sensor is inactive.
- MODE 9: Used to operate both the ICS and STICS sensors in their data measurement mode full energy and TOF information is available. This is the "full-up" operational mode, and will be the normal configuration of the instrument during the mission.

NOTE: Both the ICS and STICS sensors incorporate an in-flight calibrator. This calibrator can be used to augment ground testing or can be used in flight. Calibration tests may be run in any of modes 4-9.

Fig 5 : EPIC High Level Power and Grounding Diagram

1.4 Sensor Signals and Data Processing

EPIC contains two sensor subsystems (STICS and ICS) that measure incident ions using TOF and total energy to determine ion species distribution functions and spectra over the total energy range of 10 keV to 5 MeV (including charge state from 30-230 keV/e) with large geometry factors and good angular time resolution. Each subsystem contains its own analog electronics package and feeds the common Data Processing Unit (DPU). Figures 6, 7 and 8 show the block diagrams of these subsystems.

The two sensor subsystems contain microchannel plates, high voltage supplies, solid-state detectors, and preamplifier electronics. The two analog electronics subassemblies contain analog and digital processing where the signals from the sensors are amplified, processed for timing and position information, and digitized. An in-flight calibrator, analog voltage converter, and valid-event logic also are included in the analog electronics packages. In the DPU, the data are analyzed and accumulated over several spins. In addition to analysis, the DPU handles all command decoding and processing, telemetry formatting and interface, power switching, and instrument control.

1.4.1 The Ion Composition Subsystem (ICS)

The ICS is designed to measure ion fluxes and ion composition above ~50 keV with the geometry factor and angular, temporal and species resolution appropriate to the scientific requirements of the Geotail mission. The block diagram for ICS is shown in Figure 6. The ICS contains two identical sensors, oriented above and below the ecliptic plane for complete angular coverage. Each sensor head contains a thin-foil, solid-state detector TOF telescope. A front collimator with an electron sweeping magnet precedes a thin, grid-mounted foil which is the front element of the telescope. A silicon surface barrier solid-state detector is located approximately 6 cm behind the foil. Energetic ions passing through the front foil and striking the back solid detector emit low energy secondary electrons from both foil and silicon detector surfaces, and these electrons are mapped onto separate microchannel plates by electrostatic optics within the telescope. The signals produced by the microchannel plates define the ion TOF (and thus velocity) between the front foil and the rear solid state detector. Ion energy is measured in the rear detector. Since measurement of ion velocity and energy determines the ion mass, ICS is capable of measuring the spectra and dynamics of all ion species over the Geotail orbit.

Energy coverage is a function of species with a lower threshold of ~ 10 keV/nucleon. The ICS produces composite ion energy spectra, composite velocity spectra, and species-resolve spectra.

Instrument Description

Fig 6 : EPIC ICS Sensor Block Diagram

The Geotail orbit covers a range of particle environments, from the very low-flux regions of the lobes to the substantial fluxes in the near-earth plasma sheet in active times. The geometry factor of each ICS head is therefore adaptive, from 0.1 cm^2 sr to $<0.01 \text{ cm}^2$ sr including both an electronic variation of the effective area of each microchannel plate, and an ability to mechanically vary, by command, the telescope's physical aperture. Temporal resolution ranges from 0.2 sec to 96 sec depending on the individual channel sampling frequency, and data is sectored into 16 azimuthal angular lines. The ICS Head assembly feeds signals into the ICS Analog Electronics box which processes signals into the center EPIC DPU subsystem.

1.4.2 The SupraThermal Ion Composition Spectrometer (STICS)

The STICS is designed to measure 3-dimensional distribution functions of major ion species with sufficient time resolution to determine source regions (solar wind vs. ionosphere) and acceleration processes of suprathermal ions in the near and distant geomagnetic tail. The block diagram for STICS is shown in Figure 7.

STICS separately determines the mass, energy and charge state of low energy charged particles in the range 30 to 230 keV/charge with mass per charge and velocity determinations continuing to 10 keV/charge. It comprises a quadrispherical deflection system for the selection of particles of the desired energy per charge followed by a TOF telescope for the measurement of particle velocity and energy. A position measuring system on the START TOF electrode provides information on the entrance angle of the particle into the telescope.

The sensor contains the deflection system TOF telescope, HV power supplies and detector preamplifiers. The remainder of the analog electronics, including shaping amplifiers, discriminators, TOF circuits and analog-to-digital converters (ADCs) are located in the separate Analog Electronics box. This is done to free the mechanical design of these circuits from the constraints imposed by the odd shape of the sensor package and to make possible the sharing of common layouts with ICS sensor processing. Outputs from the Analog Electronics box pass into the shared EPIC Data Processing Unit where they are processed for transmission to the spacecraft.

A schematic description of the operation of the deflection system and telescope is as follows:

- 1. Particles enter the Entrance Aperture through a simple collimator.
- 2. Particles are deflected by the E-field in the deflection system. This field is created by the voltage from a pair of high voltage power supplies (the DPPS) applied to the deflection plates. The DPPS is programmed to step the voltage on the plates once per spin. The steps are logarithmically spaced and a sequence of 32 steps takes the system from near 0 volts deflection to the maximum deflection voltage.
- 3. Particles of correct E/Q make it through the deflection system and strike the thin carbon foil at the entrance of the TOF telescope.
- 4. Secondary electrons are knocked off the inner surface of the foil.
- 5. The incoming particles pass undisturbed into and through the TOF telescope chamber.

- 6. The secondary electrons are deflected by E-fields inside the telescope and strike one of the three START MCPs. The deflection preserves the position of origin of these electrons in the position they strike the MCPs.
- 7. Six discrete anodes (two per MCP) lie behind the MCPs, providing position information on the incoming particles.
- 8. At the far end of the TOF telescope the incoming particles strike one of the three solid state detectors.
- 9. Secondary electrons from the front surface of the SSDs are deflected onto three STOP MCPs.
- 10. Energy information comes from the SSDs. Energy/charge information comes from knowledge of the voltage on the deflection system, elevation angle of the incoming particle comes from the START MCP anodes, clock angle of the incoming particle comes from the START MCP anodes, clock angle of the incoming particle comes from the S/C spin/sector clock and TOF information comes from the signals from the START and STOP MCP anodes.
- 11. From simultaneous measurements of the TOF (t), the residual energy (E_{meas}) , and a knowledge of the energy per charge (E/Q) from the deflection system, EPIC determines the mass (M), ionic charge (Q), and the incident energy (E) of each ion.

Instrument Description

Fig 7 : EPIC STICS Sensor Block Diagram

1.4.3 Data Processing Unit (DPU)

The DPU is responsible for all interfaces between the spacecraft and STICS and ICS subsystems. The block diagram for the DPU is shown in Figure 8. It handles all command processing, telemetry formatting, analog interfaces, power switching, alarm monitoring, and mechanical device control for the instrument. Through the use of the spacecraft-provided timing and spin signals, the DPU periodically collects science TOF and energy pulse height data from the subsystems via serial command and data lines. This data is processed on board the instrument, sorted by category and type of event, and compressed into the available telemetry stream.

The other principal functions of the DPU are to:

- Execute the fast classification of ions analyzed in STICS according to the ion mass and mass per charge;
- Collect and store count rate and pulse-height data, determine event priority and execute appropriate event sequencing;
- Compress the contents of each counting rate register into an 8-bit floating point representation and format all data and transfer this information to the spacecraft;
- Perform all necessary control functions for the experiment, accept and execute commands, monitor the experiment status, and execute the internal calibration sequence upon command.

The DPU can be subdivided into four functional parts:

- 1. Sensor Interface
- 2. Fast data processing by means of task-dedicated hardware
- 3. Medium speed data processing and instrument control by means of a 80C86 microprocessor system
- 4. Spacecraft interface

Data flow is primarily from part (1) to part (4), while commands flow is the other way. The data rate is reduced from 6 Mbits/sec at the entrance of part (1), i.e., the sensor outputs, to the instrument telemetry rate of approximately 2.5 kbits/sec at the output of part (4). Much of this data compression and processing is performed by the dedicated hardware in part (2).

The high-speed classification is implemented through the use of direct RAM-based table looked-up techniques. This approach, made possible by new high-density RAMs, means the classification algorithms may be changed in flight if necessary. The contents of the tables will be calculated on board the instrument, based upon a limited number of uploaded parameters.

Fig 8 : EPIC DPU Block Diagram

In addition to the science data processing, the DPU also handles a number of other tasks. Command decoding is performed by two different circuits. A special command decoder, running off the unswitched 5.2 volt supply, can decode basic commands such as heater on/off and instrument on/off. This circuit allows the processing of these basic commands even when most of the instrument is off or malfunctioning. All other commands are decoded by the microprocessor hardware and software, allowing for more sophisticated command verification and sequencing.

All instrument power switching is handled in the DPU via low voltage relays. This supports power cycling of instrument subsystems (preamps, event processors, etc.), as well as basic instrument control.

The spacecraft interface is supported on both the real time and recorded mode interfaces. Other spacecraft features, such as RAM loads and verification (for program updates or parameter loads), undervoltage load management, and real time status are also supported.

Because of the limited access to real-time ground-based control, the instrument also incorporates a sophisticated housekeeping monitor. The instrument operating system continuously cycles through a number of instrument analog parameters, such as temperatures, voltages, currents, and status. If these parameters are found to be outside predetermined limits, the DPU initiates an appropriate alarm routine, and sets an alarm bit in the real-time spacecraft status.

In summary, the DPU subsystem is responsible for interfacing the science subsystems to the spacecraft. It handles the proper decoding and processing of almost all digital information in the EPIC instrument, whether the information comes in as science data from the sensor electronics or commands from the spacecraft.

1.5 Contamination, Purge, and Venting

Both the STICS and ICS sensor heads are very sensitive to vapor contaminants, humidity and temperature. The microchannel plate gains may be affected by as little as 20% humidity or more; therefore dry nitrogen purge gas must be maintained at all times. The purge supply should be designed to prevent surges in pressure (such as turn-on) to avoid damage to the thin front detector foils. The detectors and microchannel plates may be physically damaged by humidity over ~55%.

<u>Extreme</u> care must be taken to avoid particulate matter and vapors from fuels, plastics, paint, cleaning compounds, RTV, adhesive, instant films, smoke, or volatile materials near the sensors, as such contamination will damage microchannel plates and solid state detectors, and the damage may not be detectable prior to launch.

<u>Extreme</u> care must also be taken to assure that the ICS and STICS sensors are not subjected to thermal environments which exceed 30° C as temperatures above this can destroy the solid state detectors. During spacecraft ground test operations, cooled conditioned air, in addition to the purge gas, may be required to prevent sensor temperatures from exceeding 30° C.

Full operation of the sensors is possible only in high vacuum (pressure below $2 \ge 10^{-6}$ torr for at least five hours). All vacuum testing performed at the spacecraft level should be performed in a clean vacuum facility (i.e., cryogenic pump or oil pump with cryogenic trap). Red tag HV safing plugs will be installed to prevent accidental high voltage supply actuation under ambient conditions. They will be temporarily removed for the thermal vacuum test and permanently replaced by a cover or blank just before shroud closure. The safing connectors will be located on the sensors at a point accessible from the outside of the spacecraft.

The sensor head assemblies vent directly to space through vent ports. Other sections vent locally, i.e. into the spacecraft interior. Venting to space for a minimum of 2 weeks after launch was required prior to EPIC high voltage turn-on.

<u>2. PARTICLE CLASSIFICATION</u>

Once initialized by the DPU, the STICS and ICS instrument's electronics send <u>event words</u> to the DPU which include information about the energy, the time-of-flight and the (polar) flight direction of measured ions.

The way the DPU processes the data of both instruments is basically the same : the event words are classified by time, energy and (polar & equatorial) direction The equatorial direction is derived from the S/C revolution, which each revolution (<u>spin</u>) is subdivided into 16 <u>sectors</u>. Each class (often referred to as <u>a bin</u>) is assigned a counter (the <u>bin counter</u>) which increments each time an event of that class is received. The bin counters are read and reset by the DPU on a cyclic basis, different bins can have different cycles. The counter values (<u>rates</u>) are logarithmically compressed and the resulting values are placed in the telemetry data stream.

Additionally, some event words are selected and placed into the telemetry data stream as they are. This is the <u>direct event data</u>, the singe events are referred to as <u>PHA words</u> (PHA means pulse height analysis).

The classification process for STICS and ICS mainly differ in the fact that STICS has a deflection plate system and therefore is able to measure the charge state of each particle, which ICS is not able to do.

STICS classifies the particle mass into <u>mass classes</u> as a function of energy and time-of-flight. It also classifies the particle mass-per-charge into <u>mass-per-charge classes</u> as a function of time-of-flight and present deflection voltage. The mass classes and the mass-per-charge classes define a two-dimensional space in which the STICS bins are defined. Two types of bins are used : the <u>science bins</u> and the <u>basic</u> <u>bins</u> (the values of the assigned counters are the <u>science rates</u> and the <u>basic rates</u>). The science bins are defined such that every bin represents a particle species with a defined charge state.

The basic bins represent the areas in the mass vs. mass-per-charge class space from which the PHA words are selected. Due to the limited telemetry data rate, not every event word which falls into one of these areas can be transmitted as a PHA word. To get information about the absolute number of events in the basic bins, the DPU also counts basic rates.

Most rates for STICS are summed over all directions and get reported once per spin. Some rates are transmitted with the highest directional resolution possible (16 sectors * 6 polar directions) and some other with half the possible directional resolution.

ICS classifies each particle by mass, energy and time-of-flight. The mass bins (areas in the energy vs. time-of-flight plane) are also used for PHA word selection. A prioritization scheme is used where the

DPU always tries to select PHA words from high priority bins. The priority is rotated between the bins every 2nd spin by means of energy level and mass.

The ICS rates are summed in a number of formats. Some rates are transmitted with a high directional resolution and a low time resolution by summing rates from the same sectors and polar directions over a couple of spins. The maximum number of spins over which the rates are summed is 32. Therefore, 32 spins were defined to be the EPIC science record.

2.1 STICS Instrument

The event data transmitted by the STICS instrument to the DPU has the following format. One event word is transmitted for each particle to be classified. The maximum data rate is 100,000 events/second.

9	8	7	6	5	4	3	2	1	0	9	8	7	6	5	4	3	2	1	0	1	0	3	2	1	0	1	0
TOF(T _d)										E	nerg	gy(E	(b				SS	SD		STA	ART	ı	ST	OP			

With its knowledge about the current deflection voltage level step S, the DPU classifies each received particle into a mass class (N) and a mass per charge class (NQ) using the transmitted T_d and E_d . The mass and mass-per-charge class is then used to classify the event into its science and basic bin.

The SSD-, START- and STOP-identifiers are used to differentiate between 6 polar directions (PD₀ - PD₅). The START-Id has priority over the STOP id and the STOP id has priority over the SSD id. Thus, if no START id is given, the STOP id is used to determine the direction and if also no STOP id is given, the SSD id is used to determine from which direction the particle came into the telescope. Since the STOP- and SSD-Id's only have a resolution of 3 Directions, the events are assigned to directions PD₀, PD₂ and PD₄. If an invalid id information is provided, the event is classified in direction PD₆, which is an artificial "direction" defined for debugging purposes.

The next sections will give an overview about the math equations used to classify events, one other subsection will deal about how the DPU implements this.

2.1.1 Mass classification

The mass classification uses the equation

$\ln(m) = A_1 + A_2 \bullet x + A_3 \bullet y + A_4 \bullet x \bullet y + A_5 \bullet x^2 + A_6 \bullet y^3$	(1)
$\mathbf{x} = \ln(\mathbf{E}_{\mathrm{m}})$	(2)
$y = ln(T_m)$	(3)
$E_m = (E_d - EOC) / EADC$	(4)
$T_m = (T_d - TOC) / TADC$	(5)

where :

m	is the mass in [amu]								
Em	is the measured energy in [keV]								
T _m	is the measured time-of-flight in [ns]								
Ed	is the digital energy contained in the event word in [channel] (01023)								
T _d	is the digital time-of-flight contained in the event word in [channel] (01023)								
EOC	is the conversion offset of the energy analog-to-digital (ADC) converter of the								
	instrument analog electronics (AE) in [channel]								
EADC	is the energy A/D conversion factor of the AE ADC in [channel / keV]								
TOC	is the conversion offset of the time-of-flight ADC of the instrument analog electronics								
	in [channel]								
TADC	is the time-of-flight A/D conversion factor of the AE ADC in [channel / ns]								
	are the polynomial coefficients with the default values follow:								
	A ₁ 2.69575								
	A ₂ -0.843766								
	A ₃ -2.38009								
	A ₄ 0.385641								
	A ₅ 0.0513127								
	A ₆ 0.0690096								

The mass m is mapped onto a logarithmically space mass-class axis by the relation

$\mathbf{m} = \mathbf{m}_{\min} \bullet \mathbf{k}_4(\mathbf{NM-1})$	(6)
$k_4 = (m_{max}/m_{min})1/NMAX$	(7)

where

m	is the mass in [amu]	
NM	is the mass class [1NMAX]	
NMAX	is the highest mass class	
m _{min}	lower bound of mass in [amu]	(0.5 amu)
m _{max}	upper bound of mass in [amu]	(95.0 amu)

Equations (1) and (6) can be combined to

$$NM = B_1 + B_2 \bullet x + B_3 \bullet y + B_4 \bullet x \bullet y + B_5 \bullet x^2 + B_6 \bullet y^3$$

(8)

where

 $\begin{array}{l} B_{1} = 1 + (A_{1} - \ln(m_{min})) / \ln(k_{4}) \\ B_{2} = A_{2} / \ln(k_{4}) \\ B_{3} = A_{3} / \ln(k_{4}) \\ B_{4} = A_{4} / \ln(k_{4}) \\ B_{5} = A_{5} / \ln(k_{4}) \\ B_{6} = A_{6} / \ln(k_{4}) \\ NM \text{ is the mass class between and including 1 and NMAX} \end{array}$

All events are checked for mass-, time-of-flight- and energy over/underflow. For these, special 'mass classes' are reserved :

Mass class	Event
59	mass overflow : $m \ge m_{max}$
60	mass underflow : $m \le m_{min}$
61	energy overflow : $E_m \ge E_{max}$
0	energy underflow (i.e. MASS ZERO) : $E_m \le E_{min}$
62	time-of-flight underflow : $T_m \le T_{min}$
63	time-of-flight overflow : $T_m \ge T_{max}$

Tabl4 4 : STICS over/underflow mass classes

So, whenever an event falls into the window given by E_{max} , E_{min} , T_{max} and T_{min} it will be classified as given by equation 8. If this results in a mass class above 58 or below 1, the event will be classified as mass overflow (mass class 59) or mass underflow (mass class 60)

The following table gives the relations between the coefficients of the mass equations and the variables and their format in which the values are actually stored in the DPU. Also given is the parameter number for the **D_PARLDA** command to load the variables.

Coefficient	Variable	Format	Parameter #	Default
B_1	rB1	signed 16.16 fix point	11	38.462073
B ₂	rB2	signed 16.16 fix point	11	-9.327289
B ₃	rB3	signed 16.16 fix point	11	-26.31096
B_4	rB4	signed 16.16 fix point	11	4.263013
B ₅	rB5	signed 16.16 fix point	11	0.567229
B ₆	rB6	signed 16.16 fix point	11	0.762857
EADC	rSEADK	signed 16.16 fix point	12	???
ln(EADC)	rLnEADK	signed 16.16 fix point	12	???
TADC	rSTADK	signed 16.16 fix point	12	???
ln(TADC)	rLnTADK	signed 16.16 fix point	12	???
EOC	iSNMEOC	signed 16 bit integer	13	???
TOC	iSNMTOC	signed 16 bit integer	13	???
NMAX	iSNMMaxClas	signed 16 bit integer	14	58
E _{min}	rSEMin	signed 16.16 fix point	21	0.0 keV
E _{max}	rSEMax	signed 16.16 fix point	21	3030 keV
T _{min}	rSTMin	signed 16.16 fix point	21	0 nSec
T _{max}	rSTMax	signed 16.16 fix point	21	409.2 nSec

Table 5 : STICS mass class alterable parameters

2.1.2 Mass per Charge classification

The mass per charge classification uses the equation

 $\ln(mq) = \ln(C_1) + \ln(D_1 \bullet D_2 s - C_2) + 2 \bullet \ln(T_m)$ (9)

where

mq	is the mass/charge in [amu/e]
$ln(C_1)$	constant, see Table 6 for default
C_2	if $mq < C2$ _bound, $C2 = C2_1$, otherwise $C2_2$, see Table 6 for defaults
T _m	as defined for equation 5
S	the deflection voltage step number $(0 \dots 31)$
D_1	constant, see Table 6 for default
D_2	constant, see Table 6 for default

The mass per charge (m/q) is mapped onto a logarithmically spaced mass-per-charge-class axis by the equation (10)

$mq = mq_{min} \bullet k_2^{(NQ-1)}$	(10)
$k_2 = (mq_{max}/mq_{min})^{1/NQMAX}$	(11)

mq	is the mass per charge in [amu/e]
NQ	is the mass per charge class (1 NQMAX)
NQMAX	is the highest mass-per-charge class (= 126)
mq _{min}	lower bound of mass-per-charge in [amu/e] (= 0.5 amu/e)
mq _{max}	upper bound of mass-per-charge in [amu/e] (= 60 amu/e)

Equations (9) and (10) can be combined to	
$NQ = E_1 + E_2 \bullet \ln(D_1 \bullet D_2 s - C_2) + E_3 \bullet \ln(T_m)$	(12)
where	
$E_1 = 1 + (\ln(C_1) - \ln(mq_{\min})) / \ln(k_2)$	

 $E_2 = 1 / \ln(k_2)$ $E_3 = 2 / \ln(k_2)$ The following table gives the relations between the coefficients of the mass equations and the variables and the format in which the values are actually stored in the DPU. Also given is the parameter number for the **D_PARLDA** command to load the variables.

Coefficient	Variable	Format	Parameter #	Default
$ln(C_1)$				-10.86274
E_1	dwE1	signed 16.16 fix point	16	-266.649566
E_2	dwE1	signed 16.16 fix point	16	26.318612
E_3	dwE1	signed 16.16 fix point	16	52.637224
D_1	dwD1	signed 16.16 fix point	16	7.97
D_2	dwD2	signed 16.16 fix point	16	1.116
$C_{2}1$	dwC2_1	signed 16.16 fix point	15	1.5
C ₂ _2	dwC2_2	signed 16.16 fix point	15	4.0
C2_bound	wSNQ_C2Bound	unsigned 16 bit integer	15	11

Table 6 : STICS mass/charge classification alterable parameters

Note that for the mass-per-charge classification there is no special over/underflow check.

2.1.3 Species classification

Table 7 gives the default definition list of the (rectangular) areas defined in the mass vs. mass-per-charge class plane for the science bins. Because the areas are rectangular, they are often also referred as boxes. The definition table can be changed by setting up an appropriate box definition with the **D_PARLDA 30** command and copying that definition to the list using the **D_DIGCMD 42**. Finally the new definition list can be used to overwrite the old classification scheme by the **D_DIGCMD 17** command.

Bin No.	Species	Logic	mass range	mass class		m/q range	m/q class	
			range	range		8-		
112	D1			3	60		0	127
113	D2			0	2		0	127
114	D3			1	18		11	26
115	D4			18	30		31	61
116	D5			32	57		32	66
117	D6			31	57		67	80
118	D7			24	58		84	99
119	D8			28	56		105	119

					Processing
22	MOVER	59	59	0	127
23	MUNDER	60	60	0	127
24	EUNDER	61	61	0	127
25	TUNDER	62	62	0	127
26	TOVER	63	63	0	127

										Processing
16	HR0	H+	0.60	2.20	3	16	0.80	1.25	13	24
17	HR1	O+	5.00	80.00	26	56	14.95	20.30	90	97
18	SMR0	He+	2.70	6.50	20	28	3.55	4.65	53	59
19	SMR1	He+2	2.70	6.50	20	28	1.70	2.30	33	40
20	SMR2	O+2	9.00	30.00	33	45	7.70	9.20	73	77
32	MR0	C+3	9.70	13.60	34	37	3.80	4.40	54	57
33	MR1	C+4	9.50	13.60	34	37	2.85	3.20	47	49
34	MR2	C+5	9.50	13.60	34	37	2.25	2.55	41	43
35	MR3	C+6	9.50	13.60	34	37	1.85	2.15	35	38
36	MR4	N+	5.00	50.00	26	51	12.50	14.95	86	89
37	MR5	N+	0.00	0.00	MAS	SS ZERO	11.50	14.95	84	89
38	MR6	N+2	9.00	23.00	33	42	6.60	7.70	69	72
39	MR7	N+2	0.00	0.00	MAS	SS ZERO	6.60	7.70	69	72
40	MR8	H+	0.00	0.00	MAS	SS ZERO	0.80	1.25	13	24
41	MR9	O+	0.00	0.00	MAS	SS ZERO	14.95	20.30	90	97
42	MR10	He+	0.00	0.00	MAS	SS ZERO	3.55	4.65	53	59
43	MR11	O+2	0.00	0.00	MAS	SS ZERO	7.70	9.70	73	78
44	MR12	O+3	12.70	20.00	37	41	4.95	5.95	61	65
45	MR13	O+4	13.60	20.00	38	41	3.70	4.40	54	57
46	MR14	O+5	13.60	20.00	38	41	3.00	3.40	48	50
47	MR15	O+6	11.00	20.00	35	41	2.55	2.85	44	46
48	MR16	O+7	13.90	20.00	38	41	2.15	2.45	39	42
49	MR17	O+8	13.90	20.00	38	41	1.80	2.10	35	38
50	MR18	Ne+8	17.80	22.10	40	42	2.30	2.55	41	43
51	MR19	MgSil	22.10	39.00	43	48	2.15	3.29	39	50
52	MR20	MgSil	22.10	39.00	43	48	3.29	5.95	51	65
53	MR21	Fe6,7	39.00	75.00	49	55	7.40	9.80	72	78
54	MR22	Fe8,9	39.00	75.00	49	55	5.83	7.40	66	71
55	MR23	Fe10,11	39.00	75.00	49	55	4.82	5.83	61	65
56	MR24	Fe12,13	39.00	75.00	49	55	4.10	4.82	56	60
57	MR25	Fe14,15	39.00	75.00	49	55	3.57	4.10	53	55
58	MR26	Fe16,17	39.00	75.00	49	55	3.06	3.57	49	52
59	MR27	NO+O2+	7.00	72.00	30	55	28.00	42.00	107	117
60	MR28	MO+O2+	0.00	0.00	MAS	SS ZERO	28.00	60.00	107	126
61	MR29	He+2	0.00	0.00	MAS	SS ZERO	1.60	2.30	32	40

Table 7 : STICS science rate bins in M vs. M/Q space

The D_1 to D_8 "species" surround the physical species and were implemented for debugging purposes. This is the same for the MOVER, MUNDER, EOVER, TUNDER and TOVER bins which represent counting rates for mass over/underflow, energy overflow and time-of-flight over/underflow. These "diagnostic rates" are accumulated over one science record in the DPU and spilled out once per science record.

Figure 10 shows the species boxes defined in this table in the N vs NQ space.

Fig 10 : STICS mass bins
2.1.4 PHA data collection

The DPU transmits 47 event word samples in each EDB. These event words are selected from three of four possible basic bins defined in the mass vs. mass-per-charge class plane. Each of these four bins (called "PHA ranges") is a union of one or more rectangular areas. They are defined in a list similar to the box definition list for the science rate bins.

Since the DPU can't transmit **every** event which falls into one of the defined PHA ranges, the total number of events which fall into each range are accumulated in the basic bins. The following is the content of the default basic bin box definition table.

Range	Species	mass		mass		m/q		m/q	
		range	;	class		range		class	
		amu		range	range		[amu/e]		e
0	P001	8.16	95.00	32	58	1.47	10.85	29	81
	P002	0.00	0.00	0	0	5.48	10.85	64	81
1	P101	1.78	8.16	15	31	1.45	10.85	29	81
	P102	0.00	0.00	0	0	1.45	5.48	29	63
2	P201	0.00	95.00	0	58	10.85	60.00	82	126
3	P301	0.00	95.00	0	58	0.50	1.45	1	28
	P302	0.50	1.78	1	14	1.45	10.85	29	81

Table 8 : STICS PHA & basic rate ranges in M vs. M/Q space

Due to limited data rate, only three of the four defined bins can be active at a given time. By default, the PHA ranges 0 - 2 are active and associated with the basic bins 0 - 2, respectively. This assignation can be changed with the **S_RANGE** command.

The DPU will try to transmit one PHA event word from every sector and every active PHA range in a spin, leaving out the last range in sector 15, which sums up to 47 PHA event words per spin as mentioned above. If not enough PHA event words for some sector/range combination were received from the sensor, the rest is filled with event words from other sectors or ranges. Each PHA event word is 32 bits long and is coded as follows :

Μ	SE]																												L	SB
1	0	4	3	2	1	0	8	7	6	5	4	3	2	1	0	3	2	1	0	1	0	9	8	7	6	5	4	3	2	1	0
S	TΡ			ID				E	Ene	erg	у (Ed	lc)			S	ec	tor		S	SD				Т	O	= (Td)			

Fig 11 : STICS PHA event word format

Here,

ID = START * 3 + RANGE

where START is the START ID (0..9) and RANGE (0..2) is the basic rate bin number of the area in M vs. M/Q the event fell into.

 E_{dc} is obtained by compressing the 10-bit value E_d to 9 bits according to the following algorithm :

if
$$E_d < 256$$

 $E_{dc} = E_d$

else

 $E_{dc} = E_d / (int(l_d(E_d))-6)$

2.1.5 Classification implementation in the DPU

The EPIC DPU does not calculate the given formulas above each time it receives a valid event word. Instead it uses a look-up technique based on linear tables to classify the incoming events. Figure 12 shows the basic table structure implemented in the DPU.

Fig 12 : Table structure for STICS event classification

The digital energy and time-of-flight values address a two-dimensional mass classification table, which delivers a mass class N at its output. This table is built during DPU initialization and by command (see **D_DIGCMD**) using equations (2 - 6).

Processing

The time-of-flight value also addresses a one-dimensional mass-per-charge table, which delivers a massper-charge class NQ at its output. This table is built during DPU initialization using equations (12,5) and is updated once per spin depending on the current deflection voltage step S.

The mass class and the mass-per-charge class values address two two-dimensional tables (i.e. the mass vs. mass-per-charge space), the science bin and the basic rate bin classification table to look-up the bin numbers. A table with contents similar to the basic bin table is used to decide whether the event falls into one of the basic bins and is worth being classified as a PHA word.

These three tables are painted with rectangular areas of bin numbers which address the respective bin counters in the counting memory. Whereas the science bin table has its own defined boxes, the boxes drawn in the basic bin table are the same as in the PHA bin table.

The boxes are painted according to two box definitions lists starting with the first and ending with the last entry. Therefore, choosing a special ordering scheme in the definition lists, boxes can overlap each other. Table 7 showed the default definition list for the science bin table, Table 8 showed the definition list for the PHA ranges and basic bins.

The detector ID (containing START-, STOP- and SSD-ID, see Figure 12, addresses a one dimensional table which encodes the given information into six possible directions and one "invalid ID direction".

Using two consecutive classification cycles, the bin numbers gained from the science bin classification table and from the basic bin classification table are used, together with the direction code, to address and increment the appropriate bin counters in the counting memory. The rates from the counting memory are read, reset and processed by the DPU processor on a cyclic basis.

It must be noted that figure 4 does not present every detail of the classification process. Especially, the <u>energy compression table</u> is not displayed. This one-dimensional table is used to compress the received 10 bit value for E_d to an 8 bit value. This lowers the needed size for the mass classification table to 256 kB instead of 1 MB of memory.

The logarithmic compression scheme is defined below.

if $E_d < 96$ $E_c = E_d$ else $E_c = int(E_d/2^L) + 48 \cdot L$ where $L = int(I_d(E_d/48))$

(13)

2.2 ICS Instrument

The event data transmitted by the ICS instrument to the DPU has the following format :

9	8	7	6	5	4	3	2	1	0	9	8	7	6	5	4	3	2	1	0	0	6	5	4	3	2	1	0
TOF(T _d)								Eı	nerg	gy(E	d)				Η												

rig 15. ICS event word	Fig	13 :	: ICS	event	word
------------------------	-----	------	-------	-------	------

The DPU classifies the time-of-flight, the energy and the mass of the received events into different bins. The H identifier is used to differentiate between the north (H = 0) and the south (H = 1) telescope ("head") of the ICS instrument. H is also often referred to as the ICS "head id".

2.2.1 Mass classification

The mass classification uses the equation

$\ln(\mathbf{m}) = \mathbf{A}_1 + \mathbf{A}_2 \bullet \mathbf{x} + \mathbf{A}_3 \bullet \mathbf{y} + \mathbf{A}_4 \bullet \mathbf{x} \bullet \mathbf{y} + \mathbf{A}_5 \bullet \mathbf{x}^2 + \mathbf{A}_6 \bullet \mathbf{y}^3$	(14)
$\mathbf{x} = \ln(\mathbf{E}_{\mathrm{m}})$	(15)
$y = ln(T_m)$	(16)
$E_m = (E_d - EOC) / EADC$	(17)
$T_m = (T_d - TOC) / TADC$	(18)

where :

	is the many in Fernand
m	is the mass in [amu]
E _m	is the measured Energy in [keV]
T _m	is the measured time-of-flight in [ns]
E _d	is the digital energy contained in the event word in [channel] (01023)
T _d	is the digital time-of-flight contained in the event word in [channel] (01023)
EOC	is the conversion offset of the energy analog-to-digital (ADC) converter of the
	instrument analog electronics (AE) in [channel]
EADC	is the energy A/D conversion factor of the AE ADC in [channel / keV]
TOC	is the conversion offset of the time-of-flight ADC of the instrument analog electronics
	in [channel]
TADC	is the time-of-flight A/D conversion factor of the AE ADC in [channel / ns]
$A_1-A_6\\$	are the polynomial coefficients with default values shown in Table 15.

The mass is classified into 4 ranges and the mass under/overflow ranges. Each of the 4 mass ranges itself is divided into several subranges (the ICS mass bins) with respect to the energy. The mass ranges are defined as follows

Processing

mass [a	mu]	range
>	<	name
0	0.5	mass underflow
0.5	2.5	Protons
2.5	8	Helium
8	21	Medium
21	100	Heavies (Na - Fe)
100	∞	mass overflow

Table 9 : ICS mass ranges

The Protons (Pi), Heliums (HEi), Mediums (Mi) and Heavies (Hi) are subdivided into mass bins according to the following tables.

Energy [ke	EV]	range	bin	Energy [ke	eV]	range	bin
>	<	name	no	>	<	name	no
20.00	31.70	P1	0	20.00	31.70	HE1	10
31.70	50.30	P2	1	31.70	50.30	HE2	11
50.30	79.80	P3	2	50.30	79.80	HE3	12
79.80	126.50	P4	3	79.80	126.50	HE4	13
126.50	200.60	P5	4	126.50	200.60	HE5	14
200.60	318.10	P6	5	200.60	318.10	HE6	15
318.10	504.50	P7	6	318.10	504.50	HE7	16
504.50	800.00	P8	7	504.50	800.00	HE8	17
800.00	1550.00	P9	8	800.00	1550.00	HE9	18
1550.00	3000.00	P10	9	1550.00	3000.00	HE10	19

Table 10 : ICS Proton bins

Table 11 : ICS Helium bins

Energy [ke	eV]	range	bin	
>	<	name	no	
20.00	33.00	M1	20	
33.00	55.00	M2	21	
55.00	90.00	M3	22	
90.00	148.00	M4	23	
148.00	245.00	M5	24	
245.00	404.00	M6	25	
404.00	667.00	M7	26	
667.00	1100.00	M8	27	
1100.00	1820.00	M9	28	
1820.00	3000.00	M10	29	

Table 12 : ICS Medium bins

Energy [ke	eV]	range	bin	
>	<	name	no	
20.00	120.00	H1	30	_
120.00	228.00	H2	31	
228.00	435.00	H3	32	
435.00	830.00	H4	33	
830.00	1575.00	H5	34	
1575.00	3000.00	H6	35	

Table 13 : ICS Heavies bins

All events are checked for mass-, time-of-flight- and energy over/underflow. For this, special "mass" bins are reserved :

bin	condition
<u>no</u>	
36	mass underflow
37	mass overflow
42	Energy underflow ($E_m < E_{min}$)
43	Energy overflow $(E_m \ge E_{max})$
44	Time-of-flight underflow $(T_m < T_{min})$
45	Time-of-flight overflow $(T_m \ge T_{max})$

Table 14 : ICS over/underflow bins

The following table gives the relations between the coefficients of the mass equations and the variables and their format in which the values are stored. Also given is the parameter number for the **D PARLDA** command to load the variables.

Coefficient	Variable	Format	Parameter #	Default
$\overline{A_1}$	rA1	signed 16.16 fix point	0	-5.70969
A_2	rA2	signed 16.16 fix point	0	0.188562
A ₃	rA3	signed 16.16 fix point	0	0.634870
A_4	rA4	signed 16.16 fix point	0	0.134778
A_5	rA5	signed 16.16 fix point	0	0.0394281
A_6	rA6	signed 16.16 fix point	0	0.0381063
EADC	rEADC	signed 16.16 fix point	1	???
ln(EADC)	rEADCLN	signed 16.16 fix point	1	???
TADC	rTADC	signed 16.16 fix point	2	???
ln(TADC)	rTADCLN	signed 16.16 fix point	2	???
EOC	iEOC	signed 16 bit integer	3	0.0
TOC	iTOC	signed 16 bit integer	3	???

Table 15 : ICS mass classification parameters

2.2.2 TOF classification

The time-of-flight is classified into 16 bins plus two over/underflow bins according to the following table.

Time-of-flight	range	bin	Memory		Memory Contents					
2	<	name	no	Address	0 (LSB)	1	2	3 (MSB)	4 (BIN)	5
0	T _{min}	T0	39	19AAh	00h	00h	00h	00h	27h	00h
$T_{min}(=2.0)$	3.5	T1	62	19B0h	00h	00h	02h	00h	3Eh	00h
3.5	6.0	T2	63	19B6h	00h	80h	03h	00h	3Fh	00h
6.0	7.2	Т3	64	19BCh	00h	00h	06h	00h	40h	00h
7.2	8.8	T4	65	19C2h	33h	33h	07h	00h	41h	00h
8.8	10.7	T5	66	19C8h	CDh	CCh	08h	00h	42h	00h
10.7	12.9	T6	67	19CEh	33h	B3h	0Ah	00h	43h	00h
12.9	15.7	Τ7	68	19D4h	66h	E6h	0Ch	00h	44h	00h
15.7	19.0	T8	69	19DAh	33h	B3h	OFh	00h	45h	00h
19.0	23.0	Т9	70	19E0h	00h	00h	13h	00h	46h	00h
23.0	27.8	T10	71	19E6h	00h	00h	17h	00h	47h	00h
27.8	33.7	T11	72	19ECh	CDh	CCh	1Bh	00h	48h	00h
33.7	40.9	T12	73	19F2h	33h	B3h	21h	00h	49h	00h
40.9	49.5	T13	74	19F8h	66h	E6h	28h	00h	4Ah	00h
49.5	60.0	T14	75	19FEh	00h	80h	31h	00h	4Bh	00h
60.0	77.0	T15	76	1A04h	00h	00h	3Ch	00h	4Ch	00h
77.0	T _{max}	T16	77	1A0Ah	00h	00h	4Dh	00h	4Dh	00h
$T_{max}(=100.0)$	∞	T17	41	1A10h	00h	00h	64h	00h	29h	00h

Note: Memory Contents 0 to 3 contain the TOF boundary in keV, expressed in 16.16 format

Table 16 : ICS time of flight bins

 T_{min} and T_{max} can be calculated from T_{dmin} and T_{dmax} using equation 18.

2.2.3 Energy classification

The energy is classified into 16 bins plus two over/underflow bins according to the following table.

									P	rocessing
Energy [keV	7]	range	bin	Memory		Memo	ory Cor	itents		
<u>></u>	<	name	no	Address	0 (LSB)	1	2	3 (MSB)	4 (BIN)	5
0	E _{min}	E0	38	193Eh	00h	00h	00h	00h	26h	00h
$E_{min}(=20.0)$	26.5	E1	46	1944h	00h	00h	14h	00h	2Eh	00h
26.5	35.0	E2	47	194Ah	00h	80h	1Ah	00h	2Fh	00h
35.0	46.8	E3	48	1950h	00h	00h	23h	00h	30h	00h
46.8	62.0	E4	49	1956h	CDh	CCh	2Eh	00h	31h	00h
62.0	82.5	E5	50	195Ch	00h	00h	3Eh	00h	32h	00h
82.5	109.5	E6	51	1962h	00h	80h	52h	00h	33h	00h
109.5	145.4	E7	52	1968h	00h	80h	6Dh	00h	34h	00h
145.4	193.0	E8	53	196Eh	66h	66h	91h	00h	35h	00h
193.0	256.0	E9	54	1974h	00h	00h	Clh	00h	36h	00h
256.0	340.0	E10	55	197Ah	00h	00h	00h	01h	37h	00h
340.0	452.0	E11	56	1980h	00h	00h	54h	01h	38h	00h
452.0	600.0	E12	57	1986h	00h	00h	C4h	01h	39h	00h
600.0	900.0	E13	58	198Ch	00h	00h	58h	02h	3Ah	00h
900.0	1340.0	E14	59	1992h	00h	00h	84h	03h	3Bh	00h
1340.0	2006.0	E15	60	1998h	00h	00h	3Ch	05h	3Ch	00h
2006.0	E _{max}	E16	61	199Eh	04h	00h	D6h	07h	3Dh	00h
$E_{max}(=3000.$	∞ (0	E17	40	19A4h	00h	00h	B8h	0Bh	28h	00h

Note: Memory Contents 0 to 3 contain the Energy boundary in keV, expressed in 16.16 format

Table 17 : ICS energy bins

2.2.4 PHA data collection

The EPIC DPU can collect ICS PHA data in two different modes : a (rotating) priority mode and a fifo mode. Each of these modes will be explained in detail now. The DPU can be switched between these two modes using the **I_DIGCMD 10** command.

MSE		LSB				
03210	876543210	9876543210				
H sector	Energy (Edc)	TOF (Td)				

Fig 14 : ICS PHA event word format

2.2.4.1 Priority mode

In priority mode, the mass bins of received particles are subdivided into 4 different energy levels and four different mass levels (the P, HE, M and H ranges). There are 16 possible combinations of energy and mass levels, which are the <u>ICS PHA ranges</u>.

For each 2 spin period, the DPU tries to collect up to 3 event words from each PHA range and each sector, so a maximum of 3*16*16 = 768 PHA words are collected. To get an equal distribution over heads, the DPU will not accept more than 2 event words from either head for each sector and PHA range. The collected PHA words are stored in internal buffers.

Since only 48 PHA words can be transmitted every 2nd spin, the 4 different energy levels and the 4 mass levels are assigned different priorities in every 2nd spin and the DPU will always try to transmit high priority PHA words before others. The mass level priority rotates every 2nd spin and wraps around after 2 spins * 4 priorities = 8 spins. Therefore, the energy level rotates every 8th spin such that all possible combinations are looped through within 8 spins * 4 priorities = 32 spins, which is called a <u>science</u> record.

In every 2nd spin, the DPU tries to transmit 48 PHA words, 3 of each sector, from the presently highest priority PHA range. If there were not enough events collected in that range, events are taken from the range with the next-to-the-highest priority and so on.

Using the **I_PR_OVR** command, it is possible to stop priority rotation for mass and/or energy levels, so that high visibility can be given to any of the defined mass and/or energy levels.

The documentation for the **I_PR_OVR** command will give some additional information on this topic and shows which mass bins are assigned to the different PHA ranges.

2.2.4.2 Fifo mode

During fifo mode, there is no differentiation between PHA ranges. The DPU will store the first 48 event words it receives each sector, so a maximum of 48*16 = 768 PHA words are received during 2 spins.

Every 2nd EDB, the DPU chooses the events to place in the telemetry stream by looping through the 16 sector buffers as often as it needs to fill the available telemetry space of 48 PHA words. The first loop would choose the first event received in every sector (if one was received), the second loop the second event and so on. So, if during every sector at least 3 events were received, the events would be equally distributed over sectors.

2.2.5 Classification implementation in the DPU

To classify an event by species, the EPIC DPU does not calculate equations (14-18) each time it receives a valid event word. Instead, a table-based look-up technique is used to classify the incoming events. Figure 15 shows the basic table structure implemented in the DPU.

The digital energy and time-of-flight values address a two dimensional mass classification table, which delivers a species bin number at its output. This table is built during initialization using equations (14-18) and the definitions given by tables 9 through 14.

Fig 15 : Table structure for ICS event classification

Energy and time-of-flight each address a separate table to classify the energy and time-of-flight into 16 bins each. The contents of these classification tables are defined by tables 16 and 17.

Using three consecutive classification cycles, the bin numbers gained from the three classification tables, together with the head ID H, address and increment the counting memory bins. These are read, reset and processed by the DPU processor on a cyclic basis.

An additional table is used to decide whether a received event is worth being classified as PHA word which would be a candidate for the set of 48 PHA words placed in every 2nd EDB (experiment data block, see next chapter). Basically, every event which falls into one of the defined mass classes is a valuable candidate.

3. TELEMETRY

3.1 The GEOTAIL telemetry system

The GEOTAIL S/C provides two telemetry channels. They are called <u>Editor A</u> and <u>Editor B</u>. Editor A is the real time telemetry data link and transmits data with 64 kBit/sec. Editor B is the recorded telemetry and transmits data with 16 kBit/sec. The telemetry data is subdivided into *frames* of 128 data words (bytes) which are numbered from 0 to 255 and wrap around to 0 after 255. GEOTAIL assigns different format modes to each editor depending on the <u>S/C Operational Mode</u>. GEOTAIL knows 13 possible <u>format modes</u> for each telemetry.

The following table shows the different editor format mode used during the various S/C operational mode.

Operational Mode	Editor A	Editor B
Nominal mode	Format 2, 65 kbps	Format 1, 16 kbps
AOCS mode	Format 2, 65 kbps	Format 0, 16/65 kbps
RAM CHK mode	Format 413	Format 1, 16 kbps or
Contingency mode Emergency mode	Format 2/3 65 kbps off	off Format 0, 256 bps

Table 18 : Telemetry format modes

The allocated amount of data words for each experiment in every frame depends on the S/C operational mode, to speak exactly : it depends on the format mode of each telemetry. However, there are some additional data bytes which are allocated to each experiment independent of telemetry format mode. These data words reflect the coarse status of the experiments.

3.2 EPIC data contained in telemetry stream

The following tables shows how much space for scientific data was allocated for EPIC. Then the next table shows which format mode independent data words EPIC has allocated.

<u>Format Mode</u>	<u>Editor A</u>	<u>Editor B</u>
0	-	-
1	-	20 bytes/frame
2	-	-
3	5 bytes/frame	-
4 - 11	-	-
12	3 bytes/frame address data + 64 bytes/frame RAM CHECK data	-
13	-	-

Table 19 : EPIC format dependent telemetry allocation

The science data transmitted in format 1 and 3 must be concatenated by the ground software to blocks of 960 bytes. Such a block is called an experiment data block (EDB). The start of an EDB can be identified by two header bytes which contain the values 14H and 6FH.

The next table shows which format-mode-independent data bytes EPIC has allocated.

Frame # 32*n+27	Word # 8,9,10	description experiment status area 1 (S/W generated), details see next subsection
32*n+28	8,9,10	experiment status area 2 (S/W generated), details see next subsection
32*n+12	10	BC answer (H/W generated), this bytes reflects the last block command code sent to the DPU.
167	8,9	program address (S/W generated), this 16 bit word reflects the lower 16 bits of the current program address (set by the D_PRDADR command). The high byte is sent in word # 8, the low byte is sent in word # 9

128*n+59	11	EPIC-D Temp (H/W generated), DPU temperature sensor, digitized by S/C, range [0255]. Conversion factor:
128*n+60	11	Degrees C = $1.3028 * \text{value} - 143.5$ EPIC-S Temp (H/W generated), STICS temperature sensor, digitized by S/C, range [0255].
		Conversion factor: Degrees C = 1.3028 * value - 150.5
128*n+61	11	EPIC-I Temp (H/W generated), ICS temperature sensor, digitized by S/C, range [0255]. Conversion factor:
		Degrees $C = 1.3028 * value - 152.0$
24	11	+5V Current (H/W generated), +5V DPU logic supply current, digitized by S/C, range [0255]. Conversion factor:
		I[mA] = 4.08 * value
152	11	+29V Current (H/W generated), DPU-gated +29V instrument supply current, digitized by S/C, range [0255].
		Conversion factor:
		I[mA] = 4.08 * value

Table 20 : EPIC format independent telemetry allocation

3.3 Experiment status areas

The experiment status areas (together 6 bytes every 32 frames) are used to transmit the power status data, the subcommutated housekeeping data and the DC (discrete command) answer. How EPIC uses these 6 bytes can be seen from the table 21.

	Bit	ITEM	Source
BYTE1	7	EPIC DPU POWER	MREG2(7)
	6	EPIC BAKE HEATERS	MREG2(6)
	5	STICS SUPL HEATERS	MREG2(5)
	4	ICS SUPL HEATERS	MREG2(4)
	3	ICS MCP POWER	MREG2(3)
	2	STICS MCP POWER	MREG2(2)
	1	STICS DPPS POWER	MREG2(1)
	0	INSTRUMENT POWER	MREG2(0)

	Bit	ITEM	Source							
BYTE2	7	STICS HVPS 6	adwSTICSAnsw[0](5)							
	6	STICS HVPS 5	adwSTICSAnsw[0](4)							
	5	STICS HVPS 4	adwSTICSAnsw[0](3)							
	4	STICS HVPS 3	adwSTICSAnsw[0](2)							
	3	STICS HVPS 2	adwSTICSAnsw[0](1)							
	2	STICS HVPS 1	adwSTICSAnsw0							
	1	ICS ANALOG POWER	MREG2(9)							
	0	STICS ANALOG POWER	MREG2(8)							
	Bit	ITEM	Source							
BYTE3	7	STICS HVPS 7	adwSTICSAnsw[0](6)							
	6	STICS + DPPS	adwSTICSAnsw[2](1)							
	5	STICS - DPPS	adwSTICSAnsw[2](0)							
	4	ICS HVPS 5	adwICSAnsw[0](4)							
	3	ICS HVPS 4	adwICSAnsw[0](3)							
	2	ICS HVPS 3	adwICSAnsw[0](2)							
	1	ICS HVPS 2	adwICSAnsw[0](1)							
	0	ICS HVPS 1	adwICSAnsw0							
	Bit	ITEM	Source							
BYTE4	7 - 0	Subcom Index	bySubcomIdxA,bySubcomIdxB							
	Bit	ITEM	Source							
BYTE5	7 - 0	subcommutated housekeeping data	abyHKA[],abyHKB[]							
	Bit	ITEM	Source							
BYTE6	7 - 0	(BYTE4 & 07h) =	DC command buffer							
	0 : DC (code, HVIS Answer, contains ABh if no	DC is available							
	1 : not used									
	2 : not used									
	3 : not used									
	4 : not used									
	5 : not used									
	6 : not used									
	7 : not used									

Table 21 : EPIC status area contents

3.4 EDB

The science data are grouped into *experiment data blocks* (EDB) of 960 bytes each. This block length was choosen such that one EDB gets transmitted within 3 seconds, which is the nominal spin duration. An EPIC *science record* (SR) is defined as 32 EDBs (or spins). Within one science record all data and most of the housekeeping data gets transmitted once, therefore after 32 spins the data is consistent (except for some parameter downloads, which are sub-subcommutated)

The EDB is divided up into 60 lines of 16 bytes each. The contents vary with the <u>instrument mode</u>. Three different modes are implemented :

- dual sensor mode (default)
- ICS single sensor mode
- STICS single sensor mode

However, the basic structure of each EDB is the same for all modes as depicted in Figure 16. This figure shows the EDB structure for the dual sensor mode. If EPIC operates in one of the single sensor modes, the science data area of the idle instrument is assigned to the active instrument. The DPU Common Areas, however, don't change their position in the different modes.

Fig 16 : General EDB layout

The following sections will document the contents of the mode independent and the mode dependent sections of the EDB in detail.

3.4.1 DPU common areas for all modes

EDB Line	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	14H	6FH														

Fig 17 : DPU common area 1

The DPU common area 1 contains the EDB identifier words, spin & EDB counters, subcommutated housekeeping data and the main power status. Some other useful items are also contained in here.

EDB Line	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
23																

Fig 18 : DPU common area 2

The DPU common area 2 is positioned between the data area for ICS & STICS in the dual sensor mode.

The next pages will give detailed information about the content of the DPU common areas

DPU comm	non area 1	Bytes 0 and 1
Byte #	Bit #	Comment
0	0	0
	1	0
	2	1
	3	0 14 Hex Identifier
	4	1
	5	0
	6	0
	7	0 Source: ROM constant
1	0	1
	1	1
	2	1
	3	1 6F Hex Identifier
	4	0
	5	1
	6	1
	7	0 Source: ROM constant

DPU common area 1		Bytes 2 and 3
Byte #	Bit #	Comment
0	0	LSB EDB Counter This byte increments for every EDB which was
	1	formatted in the DPU. It wraps around to 00H after FFH
	2	
	3	
	4	
	5	
	6	
	7	Source: byEDBCount
1	0	LSB Spin Counter This byte increments for every spin. It wraps around to 00H after FEH
	1	
	2	
	3	
	4	
	5	
	6	
	7	MSB Source: wSpinNo.

DPU common area 1		Bytes 4 and 5
Byte #	Bit #	Comment
4	0	LSB Measured Spin Counter
	1	This 5 bit item counts the measured spins of a science record.
	2	If it wraps around to 00H, a a new science record starts.
	3	
	4	MSB Source: byMeasureSpinNo.
	5	EPIC INSTUMENT POWER "1" = ON "0" = OFF Source: MREG2 bit 0
	6	STICS LVPS "1" = ON "0" = OFF Source: MREG2 bit 8
	7	ICS LVPS "1" = ON "0" = OFF Source: MREG2 bit 9
5	0	STICS STEP "1": STICS MCPPS stepping active Source: or'ed abySHVStepFlag [06],bit 5
	1	ICS STEP "1": ICS MCPPS stepping active Source: or'ed abyIHVStepFlag [04],bit 5
	2	HV ENABLE "1": HV is enabled "0": HV disabled Source: MREG2, bit 11
	3	CMD VAL "1" successful command execution Source: change of byValCmdCnt
	4	CMD ERR "1" error during command execution Source: change of byInvCmdCnt
	5	INVALID CMD "1" COI detected a command as invalid Source: change of byCOIInvCmdCnt
	6	Bit Value Bits 7,6,5 0 are transmitted in this order
	7	BYTE START Marks bit 7 of a long sequence data byte Source: ROM

DPU common area 1		Bytes 6 and 7									
Byte #	Bit #	Comment									
6	0	LSB subcom index for subcommutated HK data in EDB. This byte contains the index of the HK data byte in byte 7 of the DPU common area 1									
	1	data byte in byte 7 of the DPU common area 1.									
	2										
	3										
	4										
	5										
	6										
	7	MSB Source: byEDBHKIdx									
7	0	LSB HK data byte 0									
	1										
	2										
	3										
	4										
	5										
	6										
	7	MSB Source: abyHKTelemBuf[byEDBHKIdx+0]									

DPU common area 1		Bytes 8 and 9
Byte #	Bit #	Comment
8	0	LSB HK data byte 1
	1	
	2	
	3	
	4	
	5	
	6	
	7	MSB Source: abyHKTelemBuf[byEDBHKIdx+1]
9	0	LSB HK data byte 2
	1	
	2	
	3	
	4	
	5	
	6	
	7	MSB Source: abyHKTelemBuf[byEDBHKIdx+2]

DPU common area 1		Bytes 10 and 11
Byte #	Bit #	Comment
10	0	LSB HK data byte 3
	1	
	2	
	3	
	4	
	5	
	6	
	7	MSB Source: abyHKTelemBuf[byEDBHKIdx+3]
11	0	LSB HK data byte 4
	1	
	2	
	3	
	4	
	5	
	6	
	7	MSB Source: abyHKTelemBuf[byEDBHKIdx+4]

DPU common area 1		Bytes 12 and 13						
Byte #	Bit #		Comment					
12	0	LSB HK data byte 5						
	1							
	2							
	3							
	4							
	5							
	6							
	7	MSB	Source: abyHKTelemBuf[byEDBHKIdx+5]					
13	0	STICS CMD STAT	"0": no errors "1": command rejected in last spin Source: change of bySTICSCmdErr					
	1	ICS CMD STAT	"0": no errors "1": command rejected in last spin Source: change of byICSCmdErr					
	2	STICS Actuator power	0 : off 1 : on					
	3	Memory image	0 : disabled 1 : enabled					
	4	bySensorMode LSB 0 dual sensor mod	le					
	5	1 STICS single se MSB 2 ICS single sense	nsor mode or mode					
	6	ICS Aperture motor	0 : still standing 1 : moving					
	7	HK sync	1 : synchronized 0 : unsynchronized					

DPU common area 1		Bytes 14 and 15
Byte #	Bit #	Comment
14	0	STICS north start MCP enable HVPS1 Source: adwSTICSAnsw[1] bit 8
	1	STICS equatorial start MCP enable HVPS2 Source: adwSTICSAnsw[1] bit 9
	2	STICS south start MCP enable HVPS3 Source: adwSTICSAnsw[1] bit 10
	3	STICS north stop MCP enable HVPS4 Source: adwSTICSAnsw[1] bit 11
	4	STICS equatorial stop MCP enable HVPS5 Source: adwSTICSAnsw[1] bit 12
	5	STICS south stop MCP enable HVPS6 Source: adwSTICSAnsw[1] bit 13
	6	STICS time of flight PS disable HVPS7 Source: adwSTICSAnsw[1] bit 14
	7	STICS negative DPPS enable Source: adwSTICSAnsw[2] bit 0
15	0	STICS positive DPPS enable Source: adwSTICSAnsw[2] bit 1
	1	STICS classification H/W Status 0> disabled Source: C_STAT Bit 0 1> running
	2	ICS classification H/W Status 0> disabled Source: C_STAT Bit 1 1> running
	3	ICS north stop MCP enable HVPS1 Source: adwICSAnsw[1] bit 0
	4	ICS north start MCP enable HVPS2 Source: adwICSAnsw[1] bit 1
	5	ICS south stop MCP enable HVPS3 Source: adwICSAnsw[1] bit 2
	6	ICS south start MCP enable HVPS4 Source: adwICSAnsw[1] bit 3
	7	ICS time of flight enable HVPS5 Source: adwICSAnsw[1] bit 4

DPU common area 2		Bytes 0 and 1	
Byte #	Bit #		Comment
0	0	LSB Time Tag Source : byFrameCntB	
	1	Time in # of frames (telemetry B) since last frame 0 on telemetry B when this	
	2	EDB was started to be formatted.	
	3		
	4		
	5		
	6		
	7		
1	0	STICS table calculation active	0 : not active 1 : active
	1	ICS table calculation active	0 : not active 1 : active
	2	LSB DPPS Step # of present spin (remember that the instrument data contained in this EDB is	
	3	from the previous spin)	
	4		
	5		
	6	MSB	
	7	0 Source: ROM constant	

DPU common area 2		Bytes 2 and 3
Byte #	Bit #	Comment
2	0	ICS A/E over current 1 : over current during last spin
	1	0 : no over current STICS A/E over current
	2	
	3	
	4	
	5	
	6	
	7	
3	0	
	1	
	2	
	3	
	4	
	5	
	6	
	7	

DPU common area 2		Bytes 4 and 5
Byte #	Bit #	Comment
4	0	
	1	
	2	
	3	
	4	
	5	
	6	
	7	
5	0	
	1	
	2	
	3	
	4	
	5	
	6	
	7	

DPU common area 2		Bytes 6 and 7
Byte #	Bit #	Comment
6	0	
	1	
	2	
	3	
	4	
	5	
	6	
	7	
7	0	
	1	
	2	
	3	
	4	
	5	
	6	
	7	

3.4.2 Dual sensor mode

In the dual sensor mode, the DPU common area 1 is followed by the ICS data area. The DPU common area 2 precedes the STICS data area.

3.4.2.1 STICS data area

EDB Lin	e 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
24	HR0															HR0
25	HR0															HR0
	1/0															1/1
26	HR0 2/0															HR0 2/1
27	HR0															HR0
0.0	3/0															3/1
28	нко 4/0															Н R O 4 / 1
29	HR0															HR0
3.0	5/0 up1															5/1 up1
50	0/0															0/1
31	HR1															HR1
2.0	1/0															1/1
32	нкі 2/0															нкі 2/1
33	HR1															HR1
	3/0															3/1
34	HR1 4/0															HR1 4/1
35	HR1															HR1
36	S M R)						SMR	ЗМВ)						SMR
00	0 / 0							0 / 7	1/0							1/7
37	SMR)						SMR)SMR	-						SMR
3.8	Z/U SMR							Z//	U/U ISMR							U//
50	1/0	-						1/7	2/0	-						2/7
39	SMR	2						SMR	2SMR 1/0	2						SMR 1/7
40	SMR	2						SMR	2 B R O							BRO
	2/0							2/7	0/0							0/7
41	BR0							BR0	BRO							BR0
4 2	1/0 BR1						\vdash	⊥// BR1	∠/U BR1							∠// BR1
	0/0							0/7	1/0							1/7
43	BR1							BR1	BR2							BR2
ΛΛ	2/0							2/7			\square					0/7
44	вк2 1/0							вк2 1/7	вк2 2/0							вк2 2/7

Fig 19 : STICS data area (lines 24 - 44) in dual sensor mode

Processing

In the Figure above the HR, SMR and BR are tagged with the respective polar direction id (0..5) and the sector number (0..15). Keep in mind that the SMR and BR only differentiate between 3 polar directions and 8 sectors.

EDB Lin	e 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
45	MR0	MR1	MR2	MR3	MR4	MR5	MR6	MR7	MR8	MR9	MR1	MR1	MR1	MR1	MR1	IMR1
46	MR1	MR1	MR1	MR1	MAR 2	MR2	MR2	MR2	MR2	MR2	MR2	MR2	Mr 2	MR2	ÆSR)FSR
47	FSR	2UFS	UR S	R S R)R S R	RSR	DCR)DCR	DCR	ΣT C R	ЛСR	LT C R	SSD)SSD	LS S D	2MFS
48	MDC	RM P F	MPR	DIA	7 7	ΡH	A 0 0		PHA01			P H A O 2				
49	19 РНАОЗ					ΡH	A04			ΡH	A05		РНАО 6			
50	0 PHA07					ΡH	A08			ΡH	A09		P H A 1 0			
51		ΡH	A11		PHA12				ΡH	A13		PHA14				
52	2 РНА15				PHA16					ΡH	A17		PHA18			
53	PHA19				P H A 2 0					ΡH	A21		РНА22			
54		ΡH	A23		PHA24					ΡH	A25		PHA26			
55	PHA27				РНА28				ΡH	A29		РНАЗО				
56		ΡH	A31		РНАЗ2					ΡH	A33		РНАЗ4			
57		ΡH	A35		РНАЗ6			РНАЗ7				РНАЗ8				
58		ΡH	A39		РНА40				ΡH	A41		PHA42				
59		ΡH	A43			ΡH	A44			ΡH	A45			ΡH	IA46	

Fig 20 : STICS data area (lines 45 - 59) in dual sensor mode

E D B Lin	e 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	A0- 0/0)														A0- 0/1
2	A0- 0/0	L														A0- 0/1
3	A1- 0/0	þ														A1- 0/1
4	A1- 0/0	L														A1- 0/1
5	B0- 0/0)														B0- 0/7
6	B1-)			<u>_</u>											B1-
7	C 0															C 0
8	C 0															C 0
9	C 1															C1
10	C 1															C1
11	C 2															1/1 C2
12	070 C2															0/1 C2
13	1/1 C3															1/1 C3
14	0/0 C3															0/1 C3
15	1/1 C4															1/1 C4
16	0/0 C4															0/1 C4
17	1/1 C5															1/1 C5
18	0/0 C5															0/1 C5
19	1/1 C6															1/1 C6
20	0/0 C6															0/1 C6
21	1/1 C7															1/1 C7
2.2	0/0															0/1
	1/1															1/1
23	" F ″	-Rat with	tes, the	"F <i>7</i> e Me	A″−R asui	ates red	s, s Spir	ubco n Nu	mmu mbe:	tate r	€d					

<u>3.4.2.1 ICS data area</u>

Fig 21 : ICS data area (odd EDB) in dual sensor mode

		1	1	10					0							
EDB Lin	e 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1		ΡΗΑ	0		РНА	1		ΡΗΑ	2		ΡΗΑ	3		ΡΗΑ	4	РНА 5
2	ΡH	A 5		ΡΗΑ	6		РНА	7		РНА	8		РНА	9	ΡΗ	A 10
3	РНА 10		ΡΗΑ	11]	PHA	12]	PHA	13]	РНА	14	E	PHA	15
4	E	PHA	16		РНА	17	I	ΡΗΑ	18	I	PHA	19	I	PHA	20	РНА 21
5	PHI	A 21	1	РНА	22		РНА	23]	РНА	24	I	PHA	25	ΡΗ	A 26
6	РНА 26		ΡΗΑ	27]	PHA	28]	PHA	29]	РНА	30	E	PHA	31
7	E	PHA	32		РНА	33	I	ΡΗΑ	34	I	PHA	35	I	PHA	36	РНА 37
8	PHI	A 37		РНА	38		РНА	39]	РНА	4 0	I	PHA	41	ΡΗ	A 42
9	РНА 42		РНА	43]	PHA	44]	PHA	45]	PHA	46	E	PHA	47
10	"D″ sub	-Rat comn	ces, nuta	son ted	ne " wit	F "- F h th	Rate ne M	s, s easu	ome red	Ϋ́FA Spi	. " – R . n N	ates umbe	, r	<u> </u>		
11																
12																
13																
14																
15																
16																
17																
18																
19																
20																
21																
22	"F"	– Rat	ces,	"FA	∀ ″ − R	ates	8, S	ubcc	mmu	tate	ed w	ith	the	Mea	sur	ed S
23																

Fig 22 : ICS data area (even EDB) in dual sensor mode

<u>3.4.2.2 ICS formatting schemes</u>

The counting rates from the ICS bins are accumulated in different ways. Six different **formatting schemes** (Scheme A,B,C,D,F and FA) are used in the dual sensor mode. For different schemes (schemes C,D,G,H) are used in the ICS single sensor mode. The schemes differ in time & directional resolution. Each scheme accumulates the data over one or more spins (time resolution), over one or more sectors (equatorial directional resolution) and over one or two heads (polar directional resolution). The following table describes how the different schemes work :

Scheme	# of cycles	time	equator. dir.	polar dir.
	collected	resolution	resolution	resolution
		(spins)	(sectors)	(heads)
А	2	1	1	2
В	2	1	2	2
С	1	2	1	1
	2	1	1	2
	2	1	2	1
D	1	16	1	1
	2	8	2	1
	2	8	1	2
	4	4	2	2
F	1	32	1	1
	2	16	2	1
	2	16	1	2
	4	8	2	2
FA	1	32	4	1
G	1	1	1	1
Н	8	1	1	1

Table 22 : ICS formatting schemes

For formatting schemes C,D and F, the time resolution can be increased to the disadvantage of directional resolution (see **I_DIGCMD**).

Example : The "C" rates would normally be accumulated over two spins, and have full sector and head resolution. They would only be formatted into every 2nd EDB, so one EDB would contain data of 1 accumulation cycles.
If "head summation" would be turned on, the data of the two heads would be accumulated into the same bins. The time resolution would increase, i.e. the data would no longer be accumulated over two spins and the measurement cycle period would be one spin instead of two before. Still, "C" data is only transmitted in every 2nd EDB, so each 2nd EDB will contain data of 2 measurement cycles.

The following table shows how the bins are assigned to the formatting schemes in the dual sensor mode and at which positions the data of the respective bins can be found in the EDB.

Scheme	Rate	EDB	Line	Pos	D11	T8	2,18	20,21	015
	Bin				D12	Т9	4,20	10,11	015
A0	E2	odd	1,2	015	D13	T10	4,20	12,13	015
A1	E5	odd	3,4	015	D14	T12	4,20	14,15	015
B0	T14	odd	5	015	D15	T13	4,20	16,17	015
B1	ED1	odd	6	015	D16	T15	4,20	18,19	015
C0	E1	odd	7,8	015	D17	P1	4,20	20,21	015
C1	E3	odd	9,10	015	D18	P3	6,22	10,11	015
C2	E4	odd	11,12	015	D19	P4	6,22	12,13	015
C3	T11	odd	13,14	015	D20	P5	6,22	14,15	015
C4	P2	odd	15,16	015	D21	P6	6,22	16,17	015
C5	HE2	odd	17,18	015	D22	P7	6,22	18,19	015
C6	M2	odd	19,20	015	D23	P8	6,22	20,21	015
C7	FSR0,1	odd	21,22	015	D24	HE1	8,24	10,11	015
					D25	HE3	8,24	12,13	015
D0	E2	0,16	10,11	015	D26	HE4	8,24	14,15	015
D1	E5	0,16	12,13	015	D27	HE5	8,24	16,17	015
D2	E6	0,16	14,15	015	D28	HE6	8,24	18,19	015
D3	E7	0,16	16,17	015	D29	HE7	8,24	20,21	015
D4	E8	0,16	18,19	015					
D5	E9	0,16	20,21	015	D30	HE8	10,26	10,11	015
D6	E10	2,18	10,11	015	D31	M1	10,26	12,13	015
D7	E11	2,18	12,13	015	D32	M3	10,26	14,15	015
D8	E12	2,18	14,15	015	D33	M4	10,26	16,17	015
D9	E13	2,18	16,17	015	D34	M5	10,26	18,19	015
D10	T6	2,18	18,19	015	D35	M6	10,26	20,21	015
								I	<u>Processing</u>
-----	-----------	-------	-------	-----	-----	-----------	----	-------	-------------------
D36	RSR0,1	12,28	10,11	015	F13	HE9	14	22	015
D37	DCR0,1	12,28	12,13	015			14	23	07
D38	TCR0,1	12,28	14,15	015			15	23	07
D39	SSD0,1	12,28	16,17	015	F14	HE10	16	22	015
D40	UFSR	12,28	18	015			16	23	07
D41	URSR	12,28	19	015			17	23	07
D42	MFSR	12,28	20	015	F15	M7	18	22	015
D43	ED2	12,28	21	015			18	23	07
							19	23	07
F0	E14	0	22	015	F16	M8	20	22	015
		0	23	07			20	23	07
		1	23	07			21	23	07
F1	E15	2	22	015	F17	M9	22	22	015
		2	23	07			22	23	07
		3	23	07			23	23	07
F2	E16	4	22	015	F18	M10	24	22	015
		4	23	07			24	23	07
		5	23	07			25	23	07
F3	T1	6	22	015	F19	H1	26	22	015
		6	23	07			26	23	07
		7	23	07			27	23	07
F4	T2	8	22	015	F20	H2	28	22	015
		8	23	07			28	23	07
		9	23	07			29	23	07
F5	Т3	10	22	015	F21	H3	30	10,11	015
		10	23	07	F22	H4	30	12,13	015
		11	23	07	F23	Н5	30	14,15	015
F6	T4	12	22	015	F24	H6	30	16,17	015
		12	23	07	F25	MDCR	30	18	015
		13	23	07					
F7	Т5	14	10,11	015	FA0	ZM	30	19	07
F8	T7	14	12,13	015	FA1	SM	30	19	815
F9	T14	14	14,15	015	FA2	EO	30	20	07
F10	T16	14	16,17	015	FA3	E17	30	20	815
F11	P9	14	18,19	015	FA4	TO	30	21	07
F12	P10	14	20,21	015	FA5	T17	30	21	815
			-						

Table 23 : ICS rates dual sencor mode (sorted by formatting scheme)

]	Processing
Scheme	Rate	EDB	Line	Pos			5	23	07
	BIN DCD0 1	12.20	12.12	0.15	FA3	E17	30	22	015
D37	DCRU,I	12,28	12,15	015			• •	•••	~ -
C/	FSKU,I	000	21,22	015	FA4	ТО	30	23	07
D36	KSKU,I	12,28	10,11	015			31	23	07
D39	SSD0,1	12,28	16,17	015	F3	T1	6	22	015
D38	TCR0,1	12,28	14,15	015			6	23	07
F25	MDCR	30	18	015			7	23	07
D42	MFSR	12,28	20	015	F4	T2	8	22	015
D40	UFSR	12,28	18	015			8	23	07
B1	ED1	odd	6	015			9	23	07
D43	ED2	12,28	21	015	F5	Т3	10	22	015
D41	URSR	12,28	19	015			10	23	07
							11	23	07
FA2	EO	30	21	015	F6	T4	12	22	015
C0	E1	odd	7,8	015			12	23	07
A0	E2	odd	1,2	015			13	23	07
D0	E2	0,16	10,11	015	F7	Т5	14	10,11	015
C1	E3	odd	9,10	015	D10	T6	2,18	18,19	015
C2	E4	odd	11,12	015	F8	T7	14	12,13	015
A1	E5	odd	3,4	015	D11	T8	2,18	20,21	015
D1	E5	0,16	12,13	015	D12	Т9	4,20	10,11	015
D2	E6	0,16	14,15	015	D13	T10	4,20	12,13	015
D3	E7	0,16	16,17	015	C3	T11	odd	13,14	015
D4	E8	0,16	18,19	015	D14	T12	4,20	14,15	015
D5	E9	0,16	20,21	015	D15	T13	4,20	16,17	015
D6	E10	2,18	10,11	015	B0	T14	odd	5	015
D7	E11	2,18	12,13	015	F9	T14	14	14,15	015
D8	E12	2,18	14,15	015	D16	T15	4,20	18,19	015
D9	E13	2,18	16,17	015	F10	T16	14	16,17	015
F0	E14	0	22	015	FA5	T17	12	21	715
		0	23	07			28	21	715
		1	23	07					
F1	E15	2	22	015	F19	H1	26	22	015
		2	23	07			26	23	07
		3	23	07			27	23	07
F2	E16	4	22	015	F20	H2	28	22	015
		4	23	07			28	23	07

]	Processing
		29	23	07	F15	M7	18	22	015
F21	H3	30	10,11	015			18	23	07
F22	H4	30	12,13	015			19	23	07
F23	H5	30	14,15	015	F16	M8	20	22	015
F24	H6	30	16,17	015			20	23	07
							21	23	07
D24	HE1	8,24	10,11	015	F17	M9	22	22	015
C5	HE2	odd	17,18	015			22	23	07
D25	HE3	8,24	12,13	015			23	23	07
D26	HE4	8,24	14,15	015	F18	M10	24	22	015
D27	HE5	8,24	16,17	015			24	23	07
D28	HE6	8,24	18,19	015			25	23	07
D29	HE7	8,24	20,21	015					
D30	HE8	10,26	10,11	015	D17	P1	4,20	20,21	015
F13	HE9	14	22	015	C4	P2	odd	15,16	015
		14	23	07	D18	P3	6,22	10,11	015
		15	23	07	D19	P4	6,22	12,13	015
F14	HE10	16	22	015	D20	P5	6,22	14,15	015
		16	23	07	D21	P6	6,22	16,17	015
		17	23	07	D22	P7	6,22	18,19	015
					D23	P8	6,22	20,21	015
D31	M1	10,26	12,13	015	F11	P9	14	18,19	015
C6	M2	odd	19,20	015	F12	P10	14	20,21	015
D32	M3	10,26	14,15	015					
D33	M4	10,26	16,17	015	FA1	SM	30	20	015
D34	M5	10,26	18,19	015	FA0	ZM	30	19	015
D35	M6	10,26	20,21	015					

Table 24 : ics rates dual sensor mode (sorted by rate type)

.4.3 ST	ICS si	ingle (senso	r moc	le											
EDB Lin	e 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0		DPU	/ C	CMM	ON A	REA	1									
1	H R 0 0 / 0															HR0 0/1
2	HR0 1/0															HR01/1
3	HR0 2/0															HR0 2/1
4	HR0 3/0															HR0 3/1
5	HR0 4/0															HR04/1
6	HR0 5/0															HR0 5/1
7	HR1 0/0															HR1 0/1
8	HR1 1/0															HR1 1/1
9	HR1 2/0															HR1 2/1
10	HR1 3/0															HR1 3/1
11	HR1 4/0															HR1 4/1
12	HR1 5/0															HR1 5/1
13	H R 2 0 / 0															HR2 0/1
14	HR2 1/0															HR2 1/1
15	HR2 2/0															HR2 2/1
16	HR2 3/0															HR2 3/1
17	HR2 4/0															HR2 4/1
18	HR2 5/0			ľ												HR2 5/1

3.4.3 STICS single sensor mode

Fig 23 : STICS single sensor mode EDB (lines 0 -18)

Lin 0 1 2 3 4 5 6 7 8 9 10 11 12 13 19 BR0 0/0 0	
19 BR0 BR1 BR1 BR1 BR1 Image: Second seco	14 15
0/0 0/7 1/0 0 0 20 BR0 BR0 BR1 BR1 0 0 21 BR1 0 0 0 0 0 0 0 22 BR2 0 0 0 0 0 0 0 0 0	BR0
2 0 BR 0 BR 1 D	1/7
21 BR1 BR1 BR1 BR1 BR1 1/0 BR2 BR2 BR2 BR2 BR2	BR1
21 BR1 BR1 BR1 BR1 1/0 1/7 2/0 I 22 BR2 BR2 BR2 0/0 0 0/7 1/0	
2 2 BR2 0 / 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BRI 2/7
	BR2
	1/7
23 BR2 BR2 DPU / COMMON AREA	2
2/0 2/7	
24 HR3	HR3
	0/1
25 HR3	HR3
20 1 K 3 2 / 0	лкз 2/1
	HR3
3/0	3/1
28 HR3	HR3
	4/1
29 HR3	HR3
	5/0
30 HR4	HR4
	1/1
	HR4
	2/1
33 HR4	HR4
3/0	3/1
34 HR4	HR4
	4/1
35 HR4	HR4
	5/1 MD1
	М К І 1 / 1

Fig 24 : STICS single sensor mode EDB (lines 19 - 35)

D	•
Proof	agan or
1 1000	Source

-														1	TUCESS
E D B Lin	e 0 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
37	MR15						MR2	Mr2	1						M R 3 1
38	MR3MR3	3 BF S R)FSR	FSR	ÙFS	URS	RR S R	JR S R	RSR	2D C R)D C R	DCR	2T C R)T C R	.TCR
39	SSDDSSI	DLSSD	MFS	MDC	RM P F	MPR	DIA	Ĺ.	ΡH	A 0 0			ΡH	IA01	ı
4 0	P	H A O 2			ΡH	A03			ΡH	A04			ΡH	IA05	
41	P	H A O 6			ΡH	A07			ΡH	A 0 8			ΡH	IA09	
4 2	P	HA10			РH	A11			ΡH	A12			ΡH	IA13	
13	D	<u>на1</u> /			рц	A 1 5			рц	A 1 6			סנו	1217	
4.5	r					AIJ				AIO			E 11		
44	Р	HA18			ΡH	A19			ΡH	A 2 0			ΡH	IA21	
4 5	P	H A 2 2			ΡH	A23			ΡH	A24			ΡH	IA25	
46	P	HA26			ΡH	A27			ΡH	A28			ΡH	IA29	
47	P	H A 3 0			ΡH	A31			ΡH	A32			ΡH	I A 3 3	
48	P	H A 3 4			ΡH	A35			ΡH	A36			ΡH	IA37	
49	P	H A 3 8			ΡH	A39			ΡH	A40			ΡH	IA41	
50	P	H A 4 2			ΡH	A43			ΡH	A44			ΡH	IA45	
51	P	HA46			ΡH	A47			ΡH	A48			ΡH	IA49	
5 2	Р	H A 5 0			ΡH	A51			ΡH	A 5 2			ΡH	IA53	
53	Р	HA54			ΡH	A 5 5			ΡH	A56			ΡH	IA57	
54	P	H A 5 8			ΡH	A59			ΡH	A 6 0			ΡH	A 6 1	
5 5	P	H A 6 2			ΡH	A63			ΡH	A64			ΡH	IA65	
56	P	H A 6 6			ΡH	A67			ΡH	A 6 8			ΡH	IA 6 9	
57	P	H A 7 0			ΡH	A71			ΡH	A72			ΡH	IA73	
58	Р	HA74			ΡH	A75			ΡH	A76			ΡH	IA77	
59	Р	HA78			ΡH	A79			ΡH	A 8 0			ΡH	IA 8 1	

Fig 25: STICS single sensor mode EDB (lines 36 - 59)

3.4.4 ICS single sensor mode

EDB Lin	e 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0		DPU	/ C	ОММ	ON A	REA	1									
1		ΡΗΑ	0		ΡΗΑ	1		ΡΗΑ	2		ΡΗΑ	3		РНА	4	РНА 5
2	ΡH	A 5		ΡΗΑ	6		ΡΗΑ	7		ΡΗΑ	8		РНА	9	ΡH	A 10
3	РНА 10	I	PHA	11	I	PHA	12	I	PHA	13	I	PHA	14	I	PHA	15
4	F	PHA	16	I	PHA	17	I	PHA	18	I	PHA	19	I	PHA	20	РНА 21
5	PHZ	A 21	I	PHA	22	I	PHA	23	I	PHA	24	F	PHA	25	ΡH	A 26
6	РНА 26	I	PHA	27	H	PHA	28	H	PHA	29	H	PHA	30	H	PHA	31
7	E	PHA	32]	PHA	33	I	PHA	34	I	PHA	35	I	PHA	36	РНА 37
8	PHZ	A 37	I	PHA	38	I	PHA	39	I	PHA	40	I	PHA	41	ΡH	A 42
9	РНА 42	I	PHA	43	I	PHA	44	I	PHA	45	I	PHA	46	I	PHA	47
10	E	PHA	48	I	PHA	49	I	PHA	50	I	PHA	51	I	PHA	52	РНА 53
11	PHZ	A 53	I	PHA	54	I	PHA	55	I	PHA	56	I	PHA	57	ΡH	A 58
12	РНА 58	I	PHA	59	H	PHA	60	H	PHA	61	I	PHA	62	H	PHA	63
13																
14																
15																
16																
17																
18																
19																
21																
22																

Fig 26: ICS single sensor mode EDB (lines 0 -22)

ЕDВ																
Lin	e 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
23		unu	sea							DPU	/ (OMM	ON A	REA	Ζ	
24																
25																
2.6																
2 0																
27																
28																
29																
3 0																
50																
31																
32																
33																
2.4																
54																
35																
36																
37																
38																
39																
40																<u> </u>
																<u> </u>

1 ig 27. ieb single sensor mode LDD (intes 25 +1)	Fig 27:	ICS single s	sensor mode EDB	(lines 23 - 41)
---	---------	--------------	-----------------	-----------------

Processing

															1	10003
EDB Lin	e 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
42																
43																
44																
45																
46																
47																
48																
49																
50																
51																
5 2																
53																
54																
55																
56																
57																
58																
59																
5.5																

Fig 28: ICS single sensor mode EDB (lines 42 - 59)

										Processing
Scheme	Rate	EDB	Line	Pos		D29	MFSR	14,30	58	015
	<u>Bin</u>		10.12	0.15	=	D30	MDCR	14,30	59	015
C0	EI	even	42,43	015						
C1	E3	even	44,45	015		G0	E2	every	13,14	015
C2	E4	even	46,47	015		Gl	E5	every	15,16	015
C3	Т8	odd	42,43	015		G2	E8	every	17,18	015
C4	P1	odd	44,45	015		G3	E11	every	19,20	015
C5	P3	odd	46,47	015		G4	T6	every	21,22	015
						G5	T11	every	24,25	015
D0	E15	0,16	56,57	015		G6	T14	every	26,27	015
D1	E16	0,16	58,59	015		G7	P2	every	28,29	015
D2	T1	1,17	56,57	015		G8	P4	every	30,31	015
D3	T2	1,17	58,59	015		G9	He2	every	32,33	015
D4	Т3	2,18	56,57	015		G10	He4	every	34,35	015
D5	T15	2,18	58,59	015		G11	FSR	every	36,37	015
D6	T16	3,19	56,57	015		G12	SSD	every	38,39	015
D7	P9	3,19	58,59	015		G13	ED1	every	40	015
D8	P10	4,20	56,57	015		G14	ED2	every	41	015
D9	He7	4,20	58,59	015						
D10	He8	5,21	56,57	015		H0	E6	0,8,16,24	48,49	015
D11	He9	5,21	58,59	015		H1	E7	0,8,16,24	50,51	015
D12	He10	6,22	56,57	015		H2	E9	0,8,16,24	52,53	015
D13	M1	6,22	58,59	015		H3	E10	0,8,16,24	54,55	015
D14	M8	7,23	56,57	015		H4	E12	1,9,17,25	48,49	015
D15	M9	7,23	58,59	015		Н5	E13	1,9,17,25	50,51	015
D16	M10	8,24	56,57	015		H6	E14	1,9,17,25	52,53	015
D17	H1	8,24	58,59	015		H7	T4	1,9,17,25	54,55	015
D18	H2	9,25	56,57	015		H8	T5	2,10,18,26	48,49	015
D19	H3	9,25	58,59	015		H9	T7	2,10,18,26	50,51	015
D20	H4	10,26	56,57	015		H10	Т9	2,10,18,26	52,53	015
D21	H5	10,26	58,59	015		H11	T10	2,10,18,26	54,55	015
D22	H6	11,27	56,57	015		H12	T12	3,11,19,27	48,49	015
D23	EO	11,27	58,59	015		H13	T13	3,11,19,27	50,51	015
D24	E17	12,28	56,57	015		H14	P5	3,11,19,27	52,53	015
D25	T0	12,28	58,59	015		H15	P6	3,11,19,27	54,55	015
D26	T17	13,29	56,57	015		H16	P7	4,12,20,28	48,49	015
D27	MS	13,29	58,59	015		H17	P8	4,12,20,28	50,51	015
D28	MZ	14,30	56,57	015		H18	He1	4,12,20,28	52,53	015

]	Processing
H19	He3	4,12,20,28	54,55 0)15	H26	M6	6,14,22,30	52,53	015
H20	He5	5,13,21,29	48,49 0)15	H27	M7	6,14,22,30	54,55	015
H21	He6	5,13,21,29	50,51 0	015	H28	RSR	7,15,23,31	48,49	015
H22	M2	5,13,21,29	52,53 0)15	H29	DCR	7,15,23,31	50,51	015
H23	M3	5,13,21,29	54,55 0)15	H30	TCR	7,15,23,31	52,53	015
H24	M4	6,14,22,30	48,49 0)15	H31	UFSR	7,15,23,31	54	015
H25	M5	6,14,22,30	50,51 0	015	H32	URSR	7,15,23,31	55	015

Table 25 : ICS rates single sensor mode (sorted by format scheme)

Rate	Scheme	EDB	Line	Pos	He5	H20	5,13,21,29	48,49	015
BIN	1100	<u> </u>	50 51	0.15	He6	H21	5,13,21,29	50,51	015
DCR	H29	7,15,23,31	50,51	015	He7	D9	4,20	58,59	015
FSR	G11	every	36,37	015	He8	D10	5,21	56,57	015
RSR	H28	7,15,23,31	48,49	015	He9	D11	5,21	58,59	015
SSD	G12	every	38,39	015	He10	D12	6,22	56,57	015
TCR	H30	7,15,23,31	52,53	015					
MDCF	R D30	14,30	59	015	M1	D13	6,22	58,59	015
MFSR	D29	14,30	58	015	M2	H22	5,13,21,29	52,53	015
UFSR	H31	7,15,23,31	54	015	M3	H23	5,13,21,29	54,55	015
URSR	H32	7,15,23,31	55	015	M4	H24	6,14,22,30	48,49	015
ED1	G13	every	40	015	M5	H25	6,14,22,30	50,51	015
ED2	G14	every	41	015	M6	H26	6,14,22,30	52,53	015
					M7	H27	6,14,22,30	54,55	015
P1	C4	odd	44,45	015	M8	D14	7,23	56,57	015
P2	G7	every	28,29	015	M9	D15	7,23	58,59	015
P3	C5	odd	46,47	015	M10	D16	8,24	56,57	015
P4	G8	every	30,31	015					
P5	H14	3,11,19,27	52,53	015	H1	D17	8,24	58,59	015
P6	H15	3,11,19,27	54,55	015	H2	D18	9,25	56,57	015
P7	H16	4,12,20,28	48,49	015	H3	D19	9,25	58,59	015
P8	H17	4,12,20,28	50,51	015	H4	D20	10,26	56,57	015
P9	D7	3,19	58,59	015	Н5	D21	10,26	58,59	015
P10	D8	4,20	56,57	015	H6	D22	11,27	56,57	015
					T0	D25	12,28	58,59	015
He1	H18	4,12,20,28	52,53	015	T1	D2	1,17	56,57	015
He2	G9	every	32,33	015	T2	D3	1,17	58,59	015
He3	H19	4,12,20,28	54,55	015	T3	D4	2,18	56,57	015
He4	G10	every	34,35	015	T4	H7	1,9,17,25	54,55	015

								P	rocessing
T5	H8	2,10,18,26	48,49	015	E4	C2	even	46,47	015
T6	G4	every	21,22	015	E5	G1	every	15,16	015
T7	H9	2,10,18,26	50,51	015	E6	H0	0,8,16,24	48,49	015
T8	C3	odd	42,43	015	E7	H1	0,8,16,24	50,51	015
Т9	H10	2,10,18,26	52,53	015	E8	G2	every	17,18	015
T10	H11	2,10,18,26	54,55	015	E9	H2	0,8,16,24	52,53	015
T11	G5	every	24,25	015	E10	Н3	0,8,16,24	54,55	015
T12	H12	3,11,19,27	48,49	015	E11	G3	every	19,20	015
T13	H13	3,11,19,27	50,51	015	E12	H4	1,9,17,25	48,49	015
T14	G6	every	26,27	015	E13	Н5	1,9,17,25	50,51	015
T15	D5	2,18	58,59	015	E14	H6	1,9,17,25	52,53	015
T16	D6	3,19	56,57	015	E15	D0	0,16	56,57	015
T17	D26	13,29	56,57	015	E16	D1	0,16	58,59	015
					E17	D24	12,28	56,57	015
EO	D23	11,27	58,59	015					
E1	C0	even	42,43	015	MS	D27	13,29	58,59	015
E2	G0	every	13,14	015	MZ	D28	14,30	56,57	015
E3	C1	even	44,45	015					

Table 26 : ICS rates single sensor mode (sorted by rate type)

3.5 Subcommutated housekeeping

There are 192 subcommutated housekeeping channels defined, each of which gets transmitted once during one science record in editor A status and during four science records in editor B status. However, the subcommutated HK data is also redundantly transmitted in the EDBs (each EDB contains 6 HK data bytes, 6*32 = 192). Note that fixed cycle housekeeping (see **D_PARLDA** and **D_DIGCMD 13**) only effects the housekeeping readout in the editor A and editor B status; the housekeeping in the EDBs retains the normal full cycle.

The contents of the 192 subcommutated housekeeping bytes follow, preceded by the index:

	High Bit	Page
Housekeeping Item Name	Byte Bit Quan.	No.
STICS HVPS1 (North Start) Limit		84
STICS HVPS2 (Equatorial Start) Limit		84
STICS HVPS3 (South Start) Limit		
STICS HVPS4 (North Stop) Limit		
STICS HVPS5 (NEquatorial Stop) Limit		
STICS HVPS6 (South Stop) Limit		
STICS HVPS7 (TOF) Limit	678	
STICS HVPS1 (North Start) Level		
STICS HVPS2 (Equatorial Start) Level	8	88
STICS HVPS3 (South Start) Level		88
STICS HVPS4 (North Stop) Level		
STICS HVPS5 (Equatorial Stop) Level		
STICS HVPS6 (South Stop) Level		
STICS HVPS7 (TOF) Level		90
STICS positive DPPS target status		91
STICS HVPS7 (TOF PS) target status		91
STICS HVPS6 (S St MCP) target status		91
STICS HVPS5 (E St MCP) target status		91
STICS HVPS4 (N St MCP) target status		91
STICS HVPS3 (S Sp MCP) target status		91
STICS HVPS2 (E Sp MCP) target status		91
STICS HVPS1 (N Sp MCP) target status		91
STICS BR2 selected range		91
STICS BR1 selected range		91
STICS BR0 selected range		91
STICS negative DPPS target status		91
STICS LVPS over-current		92
STICS I/F error check		92
STICS test logic enable		92
STICS south SSD preamp power		92
STICS equatorial SSD preamp power		92
STICS north SSD preamp power		92
STICS valid event mode		92
STICS south time disable		92
STICS equatorial stop time disable		92
STICS equatorial start B disable		92
STICS equatorial start A disable		92
STICS north time disable		92
STICS time calibrate enable		93
STICS slow PHA analysis mode		93
STICS multiple stop enable		93
STICS multiple start enable		93
STICS main bias power		93
STICS Group 2 compression	1961	93
STICS Group 1 compression		93

			HK Index
		High Bit	Page
Housekeeping Item Name	Bvte	Bit Ouan.	No.
STICS south bias disable	19.		
STICS equatorial bias disable	19.		
STICS north bias disable	19.		
STICS active stepping sequence	19.	12	93
STICS aperture status	20.		94
STICS HVPS1 voltage monitor	21.	7 8	
STICS HVPS2 voltage monitor	22.		
STICS HVPS3 voltage monitor	23.		
STICS HVPS4 Voltage monitor			
STICS HVPSS VOILage monitor	25.	7 8	97
STICS HVPS7 voltage monitor	27	7 8	97
STICS MCPPS & TOFPS current		7 8	
STICS GROUND		7 8	
STICS DPPS current	30.	7 8	
STICS Analog Electronice Thermistor	31.		99
STICS unused Thermistor	32.	7 8	100
STICS Sensor Backpanel Thermistor	33.		100
STICS Sensor Detector Thermistor	34.		101
STICS LVPS +6 Voltage	35.		101
STICS LVPS -6 Voltage	36.		102
STICS LVPS +5.2 Voltage			102
STICS LVPS -5.2 Voltage			103
STICS LVPS TIZ VOILage		· · / · · · · 0 · · · · · · · · · · · ·	104
STICS LVPS SSD BIAS VOILage (unused)	4 0. 41	7 8	104
STICS LVPS -12 Voltage	42.	7 8	
STICS accum. latch count		7 8	
STICS north energy threshold	44.	7 5	
STICS equatorial energy threshold	44.	15	106
STICS south energy threshold	45.	3 5	106
STICS TOF calibration level	46.		107
STICS energy calibration level	47.		107
STICS +DPPS level	48.		108
STICS -DPPS level	50.		109
STICS +DPPS discharge count	52.	/8	
DIL MPEC2 H/W register	53. 54	···/····8······ 7 16	
DDU C COM H/W register	56	7 16	112
ICS HVPS1 (North Stop) Limit		7 8	116
ICS HVPS2 (North Start) Limit	65.	7 8	
ICS HVPS3 (South Stop) Limit	66.	7 8	
ICS HVPS4 (North Start) Limit	67.	7 8	
ICS HVPS5 (TOF) Limit	68.	7 8	118
ICS HVPS1 (North Stop) Level	69.		118
ICS HVPS2 (North Start) Level	70.		119
ICS HVPS3 (South Stop) Level	71.		
ICS HVPS4 (South Start) Level	72.		
ICS HVPS5 (TOF) Level	/3.	/8	1.21
ICS energy calibration level	/4.	· · / · · · · 8 · · · · · · · · · · · ·	101
ICS 1/F error Check		/⊥ Δ 1	121
ICS frozen mass PHA range	,5.	3 2	121
ICS frozen energy PHA range		1 2	
ICS LVPS over current			
ICS energy calibrate power	76.	61	
ICS test logic enable	76.	51	122
ICS south SSD preamp power	76.		122
ICS ED preamp power	76.		122
ICS north SSD preamp power	76.	21	122

				HK Index
			High Bit	Page
Hou	sekeeping Item Name	Bvte	Bit Quan.	No.
ICS	PHA mass freeze enable	76.	1 1	
ICS	PHA energy freeze enable	76.		122
ICS	valid event mode	77.	7	122
ICS	south stop time disable	77.	4	122
ICS	south start disable	77.		122
ICS	north start disable	77.	1 1	122
ICS	north stop time disable	77.		122
ICS	PHA FIFO mode	78.	· · · / · · · · · L · · · · · · · · · ·	123
TCS	time galibration power	/8.		122
TCS	cline Calibration power	/o. 78		123
TCS	multiple stop enable	78	3 1	123
ICS	multiple start enable		2 1	
ICS	SSD bias high enable		1 1	
ICS	auto-aperture enable	78.		123
ICS	F-format sector summation enable	79.		123
ICS	F-format head summation enable	79.		123
ICS	D-format sector summation enable	79.	51	123
ICS	D-format head summation enable	79.	41	123
ICS	C-format sector summation enable	79.		
ICS	C-format head summation enable			123
TCS	south motor power	80.	$\cdots / \cdots + \bot \cdots + \cdots$	124
TCS	south position sensor status	00.	0	124
TCS	north position sensor status	80	···J····⊥·····························	124
TCS	HVPS1 (N Sp) voltage monitor	81	7 8	124
ICS	HVPS2 (N St) voltage monitor	82.	7 8	
ICS	HVPS3 (S Sp) voltage monitor	83.	7 8	125
ICS	HVPS4 (S St) voltage monitor	84.	7 8	126
ICS	HVPS5 (TOF) voltage monitor	85.	7 8	126
ICS	MCPPS & TOFPS current	86.	7 8	127
ICS	TOF calibration level	87.	7 4	127
ICS	GROUND	87.	3 4	127
ICS	motor current			128
TCS	Analog Electronice Thermistor	89.	/ 8	120
TCS	Sensor Backpanel Inermistor	90.	···/····ð·········	120
TCS	Sensor FD Thermistor	92 92	7 8	130
TCS	LVPS +6 Voltage		7 8	
ICS	LVPS -6 Voltage		7 8	
ICS	LVPS +5.2 Voltage	95.	7 8	131
ICS	LVPS -5.2 Voltage	96.	7 8	132
ICS	LVPS +12 Voltage	97.	7 8	132
ICS	LVPS SSD Bias Voltage	98.	7 8	133
ICS	LVPS Current	99.	7 8	133
ICS	LVPS -12 Voltage	.100.	7 8	134
ICS	north energy threshold	.101.		124
TCS	EDI Unresnola	.101.	···⊥····5········	125
TCS	ED2 threshold	.10Z.		125
TCS	Group 2 compression	104	···ɔ····ɔ·····························	136
TCS	Group 1 compression	104.	6 1	136
TCS	HVPS5 target status	.104.	5 1	
ICS	HVPS4 target status	.104.		
ICS	HVPS3 target status	.104.		136
ICS	HVPS2 target status	.104.		136
ICS	HVPS1 target status	.104.	11	136
ICS	reduced motor movement enable	.104.	01	136
ICS	accum. latch count	.106.		137
STIC	CS science boundary table #1	.107.		137

			HK Index
		High Bit	Page
Housekeeping Item Name	Byte	Rit Quan	No
STICS science boundary table #2	<u>. 108.</u>	<u>.</u>	138
STICS science boundary table #3	.109		138
STICS science boundary table #4	.110	7 8	139
STICS science boundary table #5	.111	7 8	139
STICS science boundary table #6	.112		140
STICS science boundary table #7	.113	7 8	140
STICS science boundary table #8	.114	7 8	141
STICS science boundary table #9	.115	7 8	141
STICS science boundary table #10	.116		142
STICS science rate corner table #1	.⊥⊥/ 110		142
STICS science rate corner table #2	.⊥⊥0 110	7 8	143
STICS science rate corner table #4	120	7 8	144
STICS science rate corner table #5	.120	7	144
DPU valid commands executed count	.122		
DPU valid BC identifier #2	.123.	7 8	145
DPU valid BC identifier #1	.124	7 8	146
DPU valid BC identifier #1	.124		146
DPU invalid command count	.126	7 8	147
DPU last invalid BC identifier	.127	7 8	147
DPU last invalid command error code	.128	7 8	148
DPU watchdog enable	.129	7 1	148
DPU last reset cause	.129		140
DPU NVRAM EIIOI	.129 120	2 1	1/0
DPU D PLDBAD address	.129 130	7 16	140
DPU snapshot config load error	133.	5 1	150
DPU current config. load error	.133		150
ICS snapshot config. load error	.133		150
ICS current config. load error	.133		150
STICS snapshot config. load error	.133	11	150
STICS current config. load error	.133	01	150
DPU reset counter	.134		151
DPU test tables status	.134		151
DPU latch-up monitor configuration	.135		151
DPU D_PRGADR program load address	.136 120	/	152
DPU alarm monitor status	.130 120	· · ∠ · · · · · · · · · · · · · · · · ·	152
DPU internal clock active	138	0 1	153
DPU STICS class. parity errors	.139		
DPU ICS class. parity errors	.140	7	
DPU STICS irreparable class. errors	.141	7 8	154
DPU ICS irreparable class. errors	.142	7 8	155
DPU alarm channel 0 (STICS AE temp)	.143	7 2	155
DPU alarm channel 1 (STICS unused temp)	.143		155
DPU alarm channel 2 (STICS BP temp)	.143	3 2	155
DPU alarm channel 3 (STICS sensor temp)	.143	1 2	155
DPU alarm channel 4 (ICS AE temp)	.144		156
DPU alarm channel 5 (ICS BP temp)	.⊥44 144		156
DPU alarm channel 6 (ICS SH temp)	.144 144	1 2	156
DDII alarm channel & (STICS +6 wolt)	.144 145	··⊥···∠·······························	156
DPU alarm channel 9 (STICS N St MCP volt)	.145	5 2	
DPU alarm channel 10 (STICS N Sp MCP volt)	.145	3	156
DPU alarm channel 11 (STICS E St MCP volt)	.145.	1	156
DPU alarm channel 12 (STICS E Sp MCP volt)	.146	7	157
DPU alarm channel 13 (STICS S St MCP volt)	.146		157
DPU alarm channel 14 (STICS S Sp MCP volt)	.146	3 2	157
DPU alarm channel 15 (STICS TOF volt)	.146		157
DPU alarm channel 16 (ICS +6 volt)	.147	7 2	157

			HK Index
		High Bit	Page
Housekeeping Item Name	Byte	Bit Quan	No
DPU alarm channel 17 (ICS N Sp MCP volt)	.147.		
DPU alarm channel 18 (ICS N St MCP volt)	.147.		
DPU alarm channel 19 (ICS S Sp MCP volt)	.147.	12	
DPU alarm channel 20 (ICS N Sp MCP volt)	.148.	7 2	
DPU alarm channel 21 (ICS TOF volt)	.148.		
DPU alarm channel 22 (STICS LVPC current)	.148.	3 2	
DPU alarm channel 23 (STICS MCPPS current)	.148.	12	
DPU alarm channel 24 (STICS DPPS current)	.149.	7 2	
DPU alarm channel 25 (ICS LVPS current)	.149.	5 2	
DPU alarm channel 26 (ICS MCPPS current)	.149.	3 2	
DPU alarm channel 27 (ICS motor current)	.149.	12	
DPU alarm channel 28 (STICS LVPS over-curr)	.150.	7 2	159
DPU alarm channel 29 (ICS LVPS over-curr)	.150.	52	
DPU alarm channel 30 (unused)	.150.	3 2	159
DPU alarm channel 31 (unused)	.150.	12	
DPU sun sector	.151.	7 4	159
DPU parameter index	.151.		159
DPU parameter byte 1	.153.	7 8	
DPU parameter byte 2	.154.	7 8	
DPU parameter byte 3	.154.	7 8	
DPU parameter byte 4	.156.	7 8	
DPU parameter byte 5	.157.	7 8	162
DPU parameter byte 6	.158.	7 8	163
DPU parameter byte 7	.159.	7 8	163
DPU parameter byte 8	.160.	7 8	164
DPU parameter byte 9	.161.	7 8	
DPU parameter byte 10	.162.	7 8	165
DPU parameter byte 11	.163.	7 8	165
DPU parameter byte 12	.164.	7 8	166
DPU parameter byte 13	.165.	7 8	166
DPU parameter byte 14	.166.	7 8	
DPU parameter byte 15	.167.	7 8	167
DPU parameter byte 16	.168.	7 8	168
DPU parameter byte 16??	.169.		168
DPU Science Record counter	.170.		169
DPU Sunpulse subsector offset	.173.		170
DPU D_SENCMD answer	.174.		171
STICS class. double errors	.178.		173
ICS class. double errors	.178.		173
DPU P-RAM single errors	.180.		174
DPU P-ROM single errors	.181.		174
DPU auto-reconfigs remaining	.182.	716	175
DPU alarm lower limit 1	.184.		176
DPU alarm upper limit 1	.185.		176
DPU alarm lower limit 2	.186.		177
DPU alarm upper limit 2	.187.	7 8	177
DPU alarm lower limit 3	.188.	7 8	178
DPU alarm upper limit 3	.189.		178
DPU alarm lower limit 4	.190.	7 8	179
DPU alarm upper limit 4	.191.	7 8	179

EPIC Sub	ocommuta	ated HK Bytes 0,1
Byte #	Bit #	Comments
0 00h	7	MSB STICS commanded HV Limit #1 (north start MCP)
	б	
	5	
	4	
	3	
	2	
	1	
	0	LSB Source: abySHVLim[0]
1 01h	7	MSB STICS commanded HV Limit #2 (equatorial start MCP)
	б	
	5	
	4	
	3	
	2	
	1	
	0	LSB Source: abySHVLim[1]

EPIC Sub	ocommuta	ated HK Bytes 2,3
Byte #	Bit #	Comments
2 02h	7	MSB STICS commanded HV Limit #3 (south start MCP)
	6	
	5	
	4	
	3	
	2	
	1	
	0	LSB Source: abySHVLim[2]
3 03h	7	MSB STICS commanded HV Limit #4 (north stop MCP)
	6	
	5	
	4	
	3	
	2	
	1	
	0	LSB Source: abySHVLim[3]

EPIC Sub	commuta	ated HK Bytes 4,5
Byte #	Bit #	Comments
4 04h	7	MSB SIICS commanded HV Limit #5 (equatorial stop MCP)
	6	
	5	
	4	
	3	
	2	
	1	
	0	LSB Source: abySHVLim[4]
5 05h	7	MSB STICS commanded HV Limit #6 (south stop MCP)
	6	
	5	
	4	
	3	
	2	
	1	
	0	LSB Source: abySHVLim[5]

EPIC Sub	ocommuta	ated HK Bytes 6,7
Byte #	Bit #	Comments
6 06h	7	MSB STICS commanded HV Limit #7 (time of flight PS)
	б	
	5	
	4	
	3	
	2	
	1	
	0	LSB Source: abySHVLim[6]
7 07h	7	MSB STICS commanded HV target level #1 (north start MCP)
	б	
	5	
	4	
	3	
	2	
	1	
	0	LSB Source: abySHVDestLev[0]

EPIC Sub	ocommuta	ated HK Bytes 8,9
Byte #	Bit #	Comments
8 08h	7	MSB STICS commanded HV target level #2 (equatorial start MCP)
	б	
	5	
	4	
	3	
	2	
	1	
	0	LSB Source: abySHVDestLev[1]
9 09h	7	MSB STICS commanded HV target level #3 (south start MCP)
	6	
	5	
	4	
	3	
	2	
	0	LSB Source: abySHVDestLev[2]

0Ah,0Bh			
EPIC Sut	EPIC Subcommutated HK Bytes 10,11		
Byle #	BIC #		
10 0Ah	7	MSB STICS commanded HV target level #4 (north stop MCP)	
	6		
	5		
	4		
	3		
	2		
	1		
	0	LSB Source: abySHVDestLev[3]	
11 0Bh	7	MSB STICS commanded HV target level #5 (equatorial stop MCP)	
	б		
	5		
	4		
	3		
	2		
	1		
	0	LSB Source: abySHVDestLev[4]	

0C,0D				
EPIC Sub	EPIC Subcommutated HK Bytes 12,13			
Byte #	Bit #	Conments		
12 0Ch	7	MSB STICS commanded HV target level #6 (north stop MCP)		
	б			
	5			
	4			
	3			
	2			
	1			
	0	LSB Source: abySHVDestLev[5]		
13 0Dh	7	MSB STICS commanded HV target level #7 (time of flight PS)		
	6			
	5			
	4			
	3			
	2			
	1			
	0	LSB Source: abySHVDestLev[6]		

	0E,0F		
EPIC Sut	commuta	Ated HK Bytes 14,15	
Byle #	BIC #		
14 0Eh	7	STICS positive DPPS target status Source: awSenCurCmd[S DPPS EN] bit 0	
	6	STICS HVPS7 (time of flight PS) target status Source: awSenCurCmd[S MINI HVPS] bit 6	
	5	STICS HVPS6 (south stop MCP) target status Source: awSenCurCmd[S MINI HVPS] bit 5	
	4	STICS HVPS5 (equatorial stop MCP) target status Source: awSenCurCmd[S MINI HVPS] bit 4	
	3	STICS HVPS4 (north stop MCP) target status Source: awSenCurCmd[S MINI HVPS] bit 3	
	2	STICS HVPS3 (south start MCP) target status Source: awSenCurCmd[S MINI HVPS] bit 2	
	1	STICS HVPS2 (equatorial start MCP) target status Source: awSenCurCmd[S MINI HVPS] bit 1	
	0	STICS HVPS1 (north start MCP) target status Source: awSenCurCmd[S MINI HVPS] bit 0	
15 OFh	7	MSB STICS selected range for BR2	
	6	LSB Source: awSCRPriorTab[2] bit 0,1	
	5	MSB STICS selected range for BR1	
	4	LSB Source: awSCRPriorTab[1] bit 0,1	
	3	MSB STICS selected range for BRO	
	2	LSB Source: awSCRPriorTab[0] bit 0,1	
	1		
	0	STICS negative DPPS target status Source: awSenCurCmd[S MINI HVPS] bit 1	

	10h,11h EDIC Subcommutated HV Parton 16.17		
Byte #	Bit #	Comments	
16 10h	7	STICS LVPS over-current flag Source: adwSTICSAnsw[2] bit 15	
	6	STICS AE I/F echo 0 : disabled (error) check status 1 : enabled	
	5	STICS Test Logic Enable Source: adwSTICSAnsw[2] bit 13	
	4	STICS South SSD Preamp Power Source: adwSTICSAnsw[2] bit 12	
	3	STICS Equatorial SSD Preamp Power Source: adwSTICSAnsw[2] bit 11	
	2	STICS North SSD Preamp Power Source: adwSTICSAnsw[2] bit 10	
	1	?	
	0		
17 11h	7	MSB STICS commanded valid event mode	
	6		
	5	LSB Source: bySValEvent bit 02	
	4	STICS South time disable ("1" = disable) Source: adwSTICSAnsw[3] bit 12	
	3	STICS Equatorial Stop time disable ("1" = disable) Source: adwSTICSAnsw[3] bit 11	
	2	STICS Equatorial Start B disable ("1" = disable) Source: adwSTICSAnsw[3] bit 10	
	1	STICS Equatorial Start A disable ("1" = disable) Source: adwSTICSAnsw[3] bit 9	
	0	STICS North time disable ("1" = disable) Source: adwSTICSAnsw[3] bit 8	

EDIC Sul	12h,13h EPIC Subcommutated HK Patter 18:10		
Brto #		Comments	
18 12h	7		
	6		
	5	STICS time calibrate enable Source: adwSTICSAnsw[4] bit 13	
	4	STICS slow rate enable Source: adwSTICSAnsw[4] bit 12	
	3	STICS multiple stop enable Source: adwSTICSAnsw[4] bit 11	
	2	STICS multiple start enable Source: adwSTICSAnsw[4] bit 10	
	1		
	0	STICS detector main bias power enable Source: adwSTICSAnsw[4] bit 8	
19 13h	7		
	6	STICS Group 2 Compression codes used for rate groups.	
	5	STICS Group 1 "0" = code A "1" = code C	
	4	STICS south bias disable Source: adwSTICSANSW[5] bit 12	
	3	STICS equatorial bias disable Source: adwSTICSAnsw[5] bit 11	
	2	STICS north bias disable Source: adwSTICSAnsw[5] bit 10	
	1	MSB SIICS # of activated stepping sequence	
	0	LSB Source: by StepSeq, bit 0,1	

14h,15h			
EPIC Subcommuta		ated HK Bytes 20,21	
Byte #	Bit #	Conments	
20 14h	7		
	6		
	5		
	4		
	3		
	2		
	1		
	0	STICS aperture status Source: adwSTICSAnsw[6] bit 8	
21 15h	7	MSB STICS HVPS1 voltage monitor (north start MCP)	
	б		
	5		
	4		
	3		
	2		
	1		
	0	LSB Source: adwSTICS[Answ[7]	

16h,17hEPIC Subcommutated HKBytes 22.23			
Byte #	Bit #	Comments	
22 16h	7	MSB STICS HVPS2 voltage monitor (equ. start MCP)	
	6		
	5		
	4		
	3		
	2		
	1		
	0	LSB Source: adwSTICSAnsw[8]	
23 17h	7	MSB STICS HVPS3 voltage monitor (south start MCP)	
	6		
	5		
	4		
	3		
	2		
	1		
	0	LSB Source: adwSTICSAnsw[9]	

18h,19h EDIC Subcommutated UK Puter 24.25			
Byte #	Byte # Bit # Comments		
24 18h	7	MSB STICS HVPS4 voltage monitor (north stop MCP)	
	б		
	5		
	4		
	3		
	2		
	1		
	0	LSB Source: adwSTICSAnsw[10]	
25 19h	7	MSB STICS HVPS5 voltage monitor (equatorial stop MCP)	
	6		
	5		
	4		
	3		
	2		
	1		
	0	LSB Source: adwSTICSAnsw[11]	

1Ah,1Bh EPIC Subcommutated HK Bytes 26.27			
Byte #	Bit #	Comments	
26 1Ah	7	MSB STICS HVPS6 voltage monitor (south stop MCP)	
	6		
	5		
	4		
	3		
	2		
	1		
	0	LSB Source: adwSTICSAnsw[12]	
27 1Bh	7	MSB STICS HVPS7 voltage monitor (time-of-flight PS)	
	6		
	5		
	4		
	3		
	2		
	1		
	0	LSB Source: adwSTICSAnsw[13]	

1Ch,1Dh				
EPIC Sub	EPIC Subcommutated HK Bytes 28,29			
Byte #	Bit #	Comments		
28 1Ch	7	MSB STICS MCPPS & TOFPS Input Current		
	б			
	5			
	4			
	3			
	2			
	1			
	0	LSB Source: adwSTICSAnsw[14]		
29 1Dh	7	MSB STICS GROUND		
	6			
	5			
	4			
	3			
	2			
	1			
	0	LSB Source: adwSTICSAnsw[17]		

1Eh,1Fh			
EPIC Sut	Bit #	Comments	
Byce #	DIC #	COMPETES	
30 1Eh	7	MSB STICS DPPS Current	
	6		
	5		
	4		
	3		
	2		
	1		
	0	LSB Source: adwSTICSAnsw[19]	
31 1Fh	7	MSB STICS Analog Electronics Thermistor	
	6		
	5		
	4		
	3		
	2		
	1		
	0	LSB Source: adwSTICSAnsw[23]	

20h,21h						
EPIC Subcommutated HK Bytes 32,33						
Byte #	Bit #	Comments				
32 20h	7	MSB STICS Sensor Thermistor #2 (unused)				
	б					
	5					
	4					
	3					
	2					
	1					
	0	LSB Source: adwSTICSAnsw[24]				
33 21h	7	MSB STICS Sensor Thermistor #3 (Backpanel)				
	6					
	5					
	4					
	3					
	2					
	1					
	0	LSB Source: adwSTICSAnsw[25]				

22h,23h						
EPIC Sub		Atted HK Bytes 34,35				
Byte #	BIC #					
34 22h	7	MSB STICS Sensor Thermistor #4 (Detector)				
	6					
	5					
	4					
	3					
	2					
	1					
	0	LSB Source: adwSTICSAnsw[26]				
35 23h	7	MSB STICS LVPS +6 Voltage				
	6					
	5					
	4					
	3					
	2					
	1					
	0	LSB Source: adwSTICSAnsw[31]				

24h,25h						
EPIC Subcommutated HK Bytes 36,37						
Byte #	Bit #	Comments				
36 24h	7	MSB STICS -6 Voltage				
	б					
	5					
	4					
	3					
	2					
	1					
	0	LSB Source: adwSTICSAnsw[32]				
37 25h	7	MSB STICS +5.2 Voltage				
	б					
	5					
	4					
	3					
	2					
	1					
	0	LSB Source: adwSTICSAnsw[33]				
28h,29h						
-----------	-----------------------------------	---------------------------------	--	--		
EPIC Sub	EPIC Subcommutated HK Bytes 40,41					
Byte #	Bit #	Comments				
28 40h	7	MSB STICS LVPS -5.2 Voltage				
	6					
	5					
	4					
	3					
	2					
	1					
	0	LSB Source: adwSTICSAnsw[34]				
39 27h	7	MSB STICS LVPS +12 Voltage				
	6					
	5					
	4					
	3					
	2					
	1					
	0	LSB Source: adwSTICSAnsw[35]				

28h,29h				
EPIC Sub	EPIC Subcommutated HK Bytes 40,41			
Byte #	Bit #	Comments		
40 28h	7	MSB STICS LVPS SSD Bias Voltage (unused)		
	6			
	5			
	4			
	3			
	2			
	1			
	0	LSB Source: adwSTICSAnsw[36]		
41 29h	7	MSB STICS LVPS Input Current		
	б			
	5			
	4			
	3			
	2			
	1			
	0	LSB Source: adwSTICSAnsw[37]		

2Ah,2Bh				
EPIC Sub	EPIC Subcommutated HK Bytes 42,43			
Byte #	Bit #	Conments		
42 2Ah	7	MSB STICS LVPS -12 Voltage		
	6			
	5			
	4			
	3			
	2			
	1			
	0	LSB Source: adwSTICSAnsw[38]		
43 2Bh	7	MSB		
	б			
	5			
	4			
	3			
	2			
	1			
	0	LSB Source : bySTICSLatchUp		

EPIC Sul	2Ch,2Dh FPIC Subcommutated HK Bytes 44.45			
Byte #	Bit #	Comments		
44 2Ch	7	MSB bit 5 STICS north energy threshold		
	6			
	5			
	4			
	3			
	2	LSB bit 0 Source : awSenCurCmd[S N DET THS]		
	1	MSB bit 5 STICS equ. energy threshold		
	0			
45 2Dh	7			
	б			
	5			
	4	LSB bit 0 Source: awSenCurCmd[S E DET THS]		
	3	MSB bit 5 STICS south energy threshold		
	2			
	1			
	0			

2Eh,2Fh			
EPIC Subcommutated HK Bytes 46,47			
Byte #	Bit #	Comments	
46 2Eh	7		
	б	LSB bit 0 Source : awSenCurCmd[S E DET THS]	
	5	MSB STICS commanded time time of flight calibration level	
	4		
	3		
	2	LSB Source: bySTOFCalLev bit 03	
	1		
	0		
47 2Fh	7	MSB STICS commanded energy calibration level	
	б		
	5		
	4		
	3		
	2		
	1		
	0	LSB Source: awSenCurCttd[S IFC E REF]	

30h,31h					
EPIC Sub	EPIC Subcommutated HK Bytes 48,49				
Byte #	Bit #	Comments			
48 30h	7				
	б				
	5				
	4				
	3	MSB STICS + DPPS level bit 110 The spin is determined by the			
	2	scrence record counter libduro 32.			
	1				
	0				
49 31h	7				
	б				
	5				
	4				
	3				
	2				
	1				
	0	LSB Source: awPosDPPSLev[dwSRNo&1Fh]			

32h,33h FPIC Subcommutated HK Bytes 50 51			
Byte #	Bit #	Comments	
50 32h	7		
	6		
	5		
	4		
	3	MSB STICS - DPPS level bit 110	
	2		
	1		
	0		
51 33h	7		
	6		
	5		
	4		
	3		
	2		
	1		
	0	LSB Source:awNegDPPSLev[wSRNo&1Fh]	

34h,35h				
EPIC Sub	EPIC Subcommutated HK Bytes 52,53			
Byte #	Bit #	Conments		
52 34h	7	MSB STICS +DPPS discharge count		
	б			
	5			
	4			
	3			
	2			
	1			
	0	LSB Source : byPosBreakDown		
53 35h	7	MSB STICS -DPPS discharge count		
	6			
	5			
	4			
	3			
	2			
	1			
	0	LSB Source : byNegBreakDown		

36h,37h			
EPIC Sut	ocommuta	ted HK Bytes 54,55	
Byte #	Bit #	Connents	
54 36h	7	MSB bit 15 Copy of H/W register MREG2	
	6		
	5		
	4		
	3		
	2		
	1		
	0		
55 37h	7		
	б		
	5		
	4		
	3		
	2		
	1		
	0	LSB bit 0	

38h,39h EPIC Subcommutated HK Bytes 56 57			
Byte #	Byte # Bit # Comments		
56 38h	7	MSB bit 15 Copy of H/W register C_COM	
	6		
	5		
	4		
	3		
	2		
	1		
	0		
57 39h	7		
	б		
	5		
	4		
	3		
	2		
	1		
	0	LSB bit 0	

3Ah,3Bh			
EPIC Sub	commuta	ated HK Bytes 58,59	
Byte #	Bit #	Comments	
58 3Ah	7		
	б		
	5		
	4		
	3		
	2		
	1		
	0		
59 3Bh	7		
	б		
	5		
	4		
	3		
	2		
	1		
	0		

3Ch,3Dh			
EPIC Sub	ocommuta	ated HK Bytes 60,61	
Byte #	Bit #	Comments	
60 3Ch	7		
	б		
	5		
	4		
	3		
	2		
	1		
	0		
61 3Dh	7		
	6		
	5		
	4		
	3		
	2		
	1		
	0		

3Eh,3Fh			
EPIC Sub	ocommuta	ated HK Bytes 62,63	
Byte #	Bit #	Comments	
62 3Eh	7		
	6		
	5		
	4		
	3		
	2		
	1		
	0		
63 3Fh	7		
	6		
	5		
	4		
	3		
	2		
	1		
	0		

40h,41h EDIC Subcommutated III/			
EPIC Su	Byte # Bit # Comments		
Byce #	DIC #		
64 40h	7	MSB ICS commanded HV Limit #1 (north stop MCP)	
	6		
	5		
	4		
	3		
	2		
	1		
	0	LSB Source: abyIHVLim[0]	
65 41h	7	MSB ICS commanded HV Limit #2 (north start MCP)	
	6		
	5		
	4		
	3		
	2		
	1		
	0	LSB Source: abyIHVLim[1]	

	42h,43h			
EPIC Subcommutated HK Bytes 66, 67				
Byte #	Bit #	Comments		
66 42h	7	MSB ICS commanded HV Limit #3 (south stop MCP)		
	б			
	5			
	4			
	3			
	2			
	1			
	0	LSB Source: abyIHVLim[2]		
67 43h	7	MSB ICS commanded HV Limit #4 (south start MCP)		
	6			
	5			
	4			
	3			
	2			
	1			
	0	LSB Source: abyIHVLim[3]		

44h,45h			
EPIC Sub	EPIC Subcommutated HK Bytes 68, 69		
Byte #	Bit #	Comments	
68 44h	7	MSB ICS commanded HV Limit #5 (time of flight PS)	
	б		
	5		
	4		
	3		
	2		
	1		
	0	LSB Source: abyIHVLim[4]	
69 45h	7	MSB ICS commanded HV target level #1 (north stop MCP)	
	6		
	5		
	4		
	3		
	2		
	1		
	0	LSB Source: abyIHVDestLev[0]	

46h,47h			
Byte # Bit # Comments		Comments	
Byce #	DIC #		
70 46h	7	MSB ICS commanded HV target level #2 (north start MCP)	
	6		
	5		
	4		
	3		
	2		
	1		
	0	LSB Source: abyIHVDestLev[1]	
71 47h	7	MSB ICS commanded HV target level #3 (south stop MCP)	
	6		
	5		
	4		
	3		
	2		
	1		
	0	LSB Source: abyIHVDestLev[2]	

48h,49h			
EPIC Sub	EPIC Subcommutated HK Bytes 72, 73		
Byte #	Bit #	Comments	
72 48h	7	MSB ICS commanded HV target level #4 (south start MCP)	
	б		
	5		
	4		
	3		
	2		
	1		
	0	LSB Source: abyIHVDestLev[3]	
73 49h	7	MSB ICS commanded HV target level #5 (time-of-flight PS)	
	6		
	5		
	4		
	3		
	2		
	1		
	0	LSB Source: abyIHVDestLev[4]	

4Ah,4Bh			
EPIC Sub	EPIC Subcommutated HK Bytes 74, 75		
Byte #	Bit #	Comments	
74 4Ah	7	MSB ICS Energy Calibration Level	
	6		
	5		
	4		
	3		
	2		
	1		
	0	LSB Source: byIECalLev	
75 4Bh	7	ICS I/F error check 0 : disabled mode 1 : enabled	
	6		
	5		
	4	ICS calibration 0 : disabled read out mode 1 : enabled	
	3	MSB ICS frozen mass PHA range	
	2	LSB Source: byFixMassSpin	
	1	MSB ICS frozen energy PHA range	
	0	LSB Source: byFixEnergySpin	

4Ch,4Dh			
EPIC Sub	commuta	Ated HK Bytes 76, 77	
Byte #	Bit #	Comments	
76 4Ch	7	ICS LVPS over current ("1" if over current) Source: adwICS1Answ[2] bit 15	
	б	ICS energy calibrate power enable Source: adwICSAnsw[2] bit 14	
	5	ICS test logic enable Source: adwICSAnsw[2] bit 13	
	4	ICS south SSD preamp power enable Source: adwICSAnsw[2] bit 12	
	3	ICS electron detector preamp power enable Source adwICSAnsw[2] bit 11	
	2	ICS north SSD preamp power enable Source: adwICSAnsw[2] bit 10	
	1	ICS mass PHA range freeze enable Source: inverted byMassRotate, bit 1	
	0	ICS energy PHA range freeze enable Source: inverted byEnergyRotate, bit 0	
77 4Dh	7	MSB ICS commanded valid event mode	
	6		
	5	LSB Source: byIValEvent	
	4	ICS south stop disable Source: adwICSAnsw[3] bit 12	
	3		
	2	ICS south start disable Source: adwICSAnsw[3] bit 10	
	1	ICS north start disable Source: adwICSAnsw[3] bit 9	
	0	ICS north stop disable Source: adwICSAnsw[3] bit 8	

EPIC Sul	4Eh,4Fh EPIC Subcommutated HK Bytes 78, 79			
Bvte #	Bit #	Comments		
78 4Eh	7	ICS PHA FIFO mode Source : byICHSPHAMode		
	6	ICS position sensor (power) enable Source: adwICSAnsw[4] bit 14		
	5	ICS time calibration power enable Source: adwICSAnsw[4] bit 13		
	4	ICS slow rate analysis enable Source: adwICSAnsw[4] bit 12		
	3	ICS multiple stop enable Source adwICSAnsw[4] bit 11		
	2	ICS multiple start enable Source: adwICSAnsw[4] bit 10		
	1	ICS detector bias high enable Source: adwICSAnsw[4] bit 9		
	0	ICS automatic aperture control enable		
79 4Fh	7	ICS Sector summation enable format scheme F Source: bySecSumF bit 7		
	6	ICS head summation enable format scheme F Source: byHeadSumF bit 6		
	5	ICS sector summation enable format scheme D Source: bySecSum D bit 5		
	4	ICS head summation enable format scheme D Source: byHeadSumD bit 4		
	3	ICS sector summation enable format scheme C Source: bySecSumC bit 3		
	2	ICS head summation enable format scheme C Source: byHeadSumC bit 2		
	1			
	0			

50h,51h			
EPIC Sut	$rac{}{}$	ated HK Bytes 80, 81	
byte #	DIL #	Connerts	
80 50h	7	ICS south Motor Power Source: adwICSAnsw[6] bit 15	
	6	2 ICS south position sensor status index bit	
	5	1 11 closed/calibrate 01 open	
	4	10 foil 0 00 10% + foil Source: adwICSAnsw[6] bit 46	
	3	ICS north motor power Source: adwICSAnsw[6] bit 3	
	2	2 ICS north position sensor status index bit	
	1	1 11 closed/calibrate 01 open	
	0	10 foil 0 00 10% + foil Source: adwICSAnsw[6] bit 02	
81 51h	7	MSB ICS HVPS1 voltage monitor (north stop MCP)	
	б		
	5		
	4		
	3		
	2		
	1		
	0	LSB Source: adwICSAnsw[7]	

52h,53h EPIC Subcommutated HK Bytes 82, 83			
Byte #	Bit #	Comments	
82 52h	7	MSB ICS HVPS2 voltage monitor (north start MCP)	
	6		
	5		
	4		
	3		
	2		
	1		
	0	LSB Source: adwICSAnsw[8]	
83 53h	7	MSB ICS HVPS3 voltage monitor (south stop MCP)	
	6		
	5		
	4		
	3		
	2		
	1		
	0	LSB Source: adwICSAnsw[9]	

EPIC Sut	54h,55h EPIC Subcommutated HK Bytes 84, 85			
Byte #	Bit #	Comments		
84 54h	7	MSB ICS HVPS4 voltage monitor (south start MCP)		
	6			
	5			
	4			
	3			
	2			
	1			
	0	LSB Source: adwICSAnsw[10]		
85 55h	7	MSB ICS HVPS5 voltage monitor (time of flight PS)		
	6			
	5			
	4			
	3			
	2			
	1			
	0	LSB Source: adwICSAnsw[11]		

56h,57h				
EPIC Sub	ocommuta	tted HK Bytes 86, 87		
Byte #	Bit #	Comments		
86 56h	7	MSB ICS MCPPS & TOFPS Input Current		
	б			
	5			
	4			
	3			
	2			
	1			
	0	LSB Source: adwICSAnsw[14]		
87 57h	7	MSB ICS commanded time of flight calibration level		
	6			
	5			
	4	LSB Source: byITOFCallev bit 03		
	3	MSB ICS GROUND		
	2			
	1			
	0	LSB Source: adwICSAnsw[17] bit 03		

58h,59h			
EPIC Sub	ocommuta	ated HK Bytes 88, 89	
Byte #	Bit #	Comments	
88 58h	7	MSB ICS motor current	
	6		
	5		
	4		
	3		
	2		
	1		
	0	LSB Source: adwICSAnsw[19]	
89 59h	7	MSB ICS Analog Electronics Thermistor #1	
	6		
	5		
	4		
	3		
	2		
	1		
	0	LSB Source: adwICSAnsw[23]	

5Ah,5Bh				
EPIC Sub	EPIC Subcommutated HK Bytes 90, 91			
Byte #	Bit #	<u>Comments</u>		
90 5Ah	7	MSB ICS sensor thermistor #2 (Backpanel)		
	б			
	5			
	4			
	3			
	2			
	1			
	0	LSB Source: adwICSAnsw[24]		
91 5Bh	7	MSB ICS sensor thermistor #3 (South Head)		
	6			
	5			
	4			
	3			
	2			
	1			
	0	LSB Source: adwICSAnsw[25]		

5Ch,5Dh			
EPIC Sut	Bit #	Comments	
Byce #	DIC #		
92 5Ch	7	MSB ICS sensor thermistor #4	
	б		
	5		
	4		
	3		
	2		
	1		
	0	LSB Source: adwICSAnsw[26]	
93 5Dh	7	MSB ICS LVPS +6 Voltage	
	6		
	5		
	4		
	3		
	2		
	1		
	0	LSB Source: adwICSAnsw[31]	

5Eh,5Fh			
EPIC Sub	EPIC Subcommutated HK Bytes 94, 95		
Byte #	Bit #	Comments	
94 5Eh	7	MSB ICS LVPS -6V Voltage	
	6		
	5		
	4		
	3		
	2		
	1		
	0	LSB Source: adwICSAnsw[32]	
95 5Fh	7	MSB ICS LVPS +5.2 Voltage	
	6		
	5		
	4		
	3		
	2		
	1		
	0	LSB Source: adwICSAnsw[33]	

60h,61h			
EPIC Su	AFIC Subcommutated HK Bytes 90, 97		
вусе #	DIL #		
96 60h	7	MSB ICS -5.2 Voltage	
	б		
	5		
	4		
	3		
	2		
	1		
	0	LSB Source: adwICSAnsw[34]	
97 61h	7	MSB ICS +12 Voltage	
	б		
	5		
	4		
	3		
	2		
	1		
	0	LSB Source: adwICSAnsw[35]	

62h,63h			
EPIC Sut	Byte # Bit # Comments		
вусе #	DIC #		
98 62h	7	MSB ICS LVPS SSD Bias Voltage	
	6		
	5		
	4		
	3		
	2		
	1		
	0	LSB Source: adwICSAnsw[36]	
99 63h	7	MSB ICS LVPS Input Current	
	6		
	5		
	4		
	3		
	2		
	1		
	0	LSB Source: adwICSAnsw[37]	

64h,65h FPIC Subcommutated HK Bytes 100 101			
Byte #	Bit #	Comments	
100 64h	7	MSB ICS -12 Voltage	
	6		
	5		
	4		
	3		
	2		
	1		
	0	LSB Source: adwICSAnsw[38]	
101 65h	7	MSB bit 5 ICS north energy threshold	
	б		
	5		
	4		
	3		
	2	LSB bit 0 Source: awSenCurCmd[INDTTHS]	
	1	MSB bit 5 ICS electr. det. #1 energy threshold	
	0		

	66h,67h			
EPIC Sub	ocommuta	ated HK Bytes 102,103		
Byte #	Bit #	Comments		
102 66h	7			
	6			
	5			
	4	LSB Source: awSenCurCtrd[I E1 DT THS]		
	3	MSB bit 5 ICS sourth energy threshold		
	2			
	1			
	0			
103 67h	7			
	б	LSB Source: awSenCurCtrd[I S DET THS]		
	5	MSB bit 5 ICS electr. det. #2 energy threshold		
	4			
	3			
	2			
	1			
	0	LSB Source: awSenCurCmd[I E2 DT THS]		

	68h,69h			
EPIC Sur	Bit #		Bytes 104,105	
104 68h	7	ICS Group 2	Compression codes used for rate groups.	
	б	ICS Group 1	"0" = code A "1" = code C	
	5	ICS HVPS5 (time of flight) target status Source: byIHVPSStat bit 4	
	4	ICS HVPS4 (south start) target status Source: byIHVPSStat bit 3	
	3	ICS HVPS3 (south stop) target status Source: byIHVPSStat bit 2	
	2	ICS HVPS2 (north start) target status Source: byIHVPSStat bit 1	
	1	ICS HVPS1 (north stop) target status Source: byIHVPSStat bit 0	
	0	ICS reduced	l motor movement enable	
105 69h	7			
	6			
	5			
	4			
	3			
	2			
	1			
	0			

6Ah,6Bh			
EPIC Sub	commuta	ated HK Bytes 106,107	
Byte #	Bit #	Conments	
106 6Ah	7	MSB	
	б		
	5		
	4		
	3		
	2		
	1		
	0	LSB Source : byICSLatchUp	
107 6Bh	7	MSB awSCBCornerTab[(SRNO & 1F) *10 + 0]	
	6		
	5		
	4		
	3		
	2		
	1		
	0	LSB	

6Ch,6Dh EDIC Subcommutated HK Butes 108 100			
Byte #	Bit #	Comments	
108 6Ch	7	MSB awSCBCornerTab[(SRNO & 1F)*10 + 1]	
	б		
	5		
	4		
	3		
	2		
	1		
	0	LSB	
109 6Dh	7	MSB awSCBCornerTab[(SRNO & 1F) *10 + 2]	
	6		
	5		
	4		
	3		
	2		
	1		
	0	LSB	
6Eh,6Fh			
------------	-------------------------------------	---	--
EPIC Sub	EPIC Subcommutated HK Bytes 110,111		
Byte #	Bit #	Comments	
110 6Eh	7	MSB awSCBCornerTab[(SRNO & 1F) *10 + 3]	
	6		
	5		
	4		
	3		
	2		
	1		
	0	LSB	
111 6Fh	7	MSB awSCBCornerTab[(SRNO & 1F) *10 + 4]	
	б		
	5		
	4		
	3		
	2		
	1		
	0	LSB	

70h,71h				
EPIC Sub	EPIC Subcommutated HK Bytes 112,113			
Byte #	Bit #	Comments		
112 70h	7	MSB awSCBCornerTab[(SRNO & 1F) *10 + 5]		
	6			
	5			
	4			
	3			
	2			
	1			
	0	LSB		
113 71h	7	MSB awSCBCornerTab[(SRNO & 1F) *10 + 6]		
	б			
	5			
	4			
	3			
	2			
	1			
	0	LSB		

72h,73h FPIC Subcommutated HK Bytes 114 115			
Byte #	Bit #	Comments	
114 72h	7	MSB awSCBCornerTab[(SRNO & 1F) *10 + 7]	
	б		
	5		
	4		
	3		
	2		
	1		
	0	LSB	
115 73h	7	MSB awSCBCornerTab[(SRNO & 1F) *10 + 8]	
	6		
	5		
	4		
	3		
	2		
	1		
	0	LSB	

74h,75h		
EPIC Sut		ated HK Bytes 116,117
Byte #	BIC #	
116 74h	7	MSB awSCBCornerTab[(SRNO & 1F) *10 + 9]
	б	
	5	
	4	
	3	
	2	
	1	
	0	LSB
117 75h	7	MSB awSRCCornerTab[(SRNO & F) * 5 + 0]
	б	
	5	
	4	
	3	
	2	
	1	
	0	LSB

76h,77h			
EPIC Sut	EPIC Subcommutated HK Bytes 118,119		
Byle #	BIC #		
118 76h	7	MSB awSRCCornerTab[(SRNO & F) * 5 + 1]	
	б		
	5		
	4		
	3		
	2		
	1		
	0	LSB	
119 77h	7	MSB awSRCCornerTab[(SRNO & F) * 5 + 2]	
	б		
	5		
	4		
	3		
	2		
	1		
	0	LSB	

78h,79h			
EPIC Sub	EPIC Subcommutated HK Bytes 120,121		
Byte #	Bit #	Comments	
120 78h	7	MSB awSRCCornerTab[(SRNO & F) * 5 + 3]	
	6		
	5		
	4		
	3		
	2		
	1		
	0	LSB	
121 79h	7	MSB awSRCCornerTab[(SRNO & F) * 5 + 4]	
	б		
	5		
	4		
	3		
	2		
	1		
	0	LSB	

EPIC Sul	7Ah,7Bh EDIC Subcommutated HK Bytes 122 123		
Byte #	Byte # Bit # Comments		
122 7Ah	7	MSB DPU count of executed valid commands	
	б		
	5		
	4		
	3		
	2		
	1		
	0	LSB	
123 7Bh	7	MSB DPU 2nd to the last valid BC command identifier.	
	6		
	5		
	4		
	3		
	2		
	1		
	0	LSB	

7Ch,7Dh EPIC Subcommutated HK Bytes 124 125			
Bvte #	Byte # Bit # Comments		
124 7Ch	7	MSB DPU next to the last valid BC command identifier	
	6		
	5		
	4		
	3		
	2		
	1		
	0	LSB	
125 7Dh	7	MSB DPU last valid BC command identifier	
	б		
	5		
	4		
	3		
	2		
	1		
	0	LSB	

7Eh,7Fh EPIC Subcommutated HK Bytes 126,127			
Byte #	Bit #	Comments	
126 7Eh	7	MSB DPU number of invalid commands (invalidation during execution)	
	6		
	5		
	4		
	3		
	2		
	1		
	0	LSB	
127 7Fh	7	MSB DPU BC command identifier of last invalid command	
	б		
	5		
	4		
	3		
	2		
	1		
	0	LSB	

80h,81h			
EPIC Sub	EPIC Subcommutated HK Bytes 128,129		
Byte #	Bit #	Conments	
128 80h	7	MSB DPU error code for last invalid command	
	6		
	5		
	4		
	3		
	2		
	1		
	0	LSB	
129 81h	7	0 : watch dog disabled Watch dog enable 1 : watch dog enabled	
	б	MSB Reset Cause 0 : normal DPU on 1 : Latch Up	
	5	LSB 3: Watchdog	
	4	0> no error DPU NVRAM content error 1> error	
	3	MSB DPU D_PLDBAD address (bit 1916) (segment address)	
	2		
	1		
	0	LSB	

82h,83h		
EPIC Sub	bcommuta	Atted HK Bytes 130,131
Byte #	Bit #	Conments
130 82h	7	DPU D_PLDBAD address (bit 150)
	б	
	5	
	4	
	3	
	2	
	1	
	0	
131 83h	7	
	б	
	5	
	4	
	3	
	2	
	1	
	0	LSB

84h,85h			
EPIC Sub	<u>)commuta</u>	ated HK Bytes 132,133	
Byte #	Bit #	Conments	
132 84h	7		
	6		
	5		
	4		
	3		
	2		
	1		
	0		
133 85h	7		
	6		
	5	Snapshot CFG load success 0 : ok, 1 : CRC error	
	4	Current CFG load success 0 : ok, 1 : CRC error	
	3	Snapshot CFG ICS reconfig 0 : ok, 1 : error	
	2	Current CFG ICS reconfig 0 : ok, 1 : error	
	1	Snapshot CFG STICS reconfig 0 : ok, 1 : error	
	0	Current CFG STICS reconfig 0 : ok, 1 : error	

86h,87h			
EPIC Sub	EPIC Subcommutated HK Bytes 134,135		
Byte #	Bit #	(Comments
134 86h	7	MSB DPU Reset-Counter	
	6		
	5		
	4		
	3		
	2	LSB	Source: byResetCounter
	1		
	0	Test tables (status 2) : disabled 1 : loaded
135 87h	7	Low Level LU-Test status bit 74 :	(15-value) is the time after
	6		which the current strobing will be activated.
	5		
	4		
	3	bit 3:) : test STICS classification (for this test, the time definition is not used)
	2	bit 2 :) : test ICS classification (for this test, the time definition is not used)
	1	bit 1 : () : test P memory
	0	bit 0 : () : test P circuitry Source : byLLMask

88h,89h			
EPIC Sub	EPIC Subcommutated HK Bytes 136,137		
Byte #	Bit #	Comments	
136 88h	7	MSB D_PRGADR program load address (bit 194)	
	б		
	5		
	4		
	3		
	2		
	1		
	0		
137 89h	7		
	б		
	5		
	4		
	3		
	2		
	1		
	0	LSB	

8Ah,8Bh EDIC Subcommutated HK Bytes 129 120				
Det a H Dit H Commonta		Commont a		
Byle #	BIC #	Comercs		
138 8Ah	7	D_PRGADR program load address (bit 30)		
	6			
	5			
	4	wAdrOffset Source : wAdrSegment		
	3			
		0 : disabled		
	2	Alarm Monitor Status		
		L : enabled		
	1	Sector Clock Source		
		1 : fixed to internal		
		0 : inactive		
	0	Internal Sector Clock		
139 8Bh	7	MSB STICS classification memory parity errors		
	6			
	5			
	4			
	3			
	2			
	1			
	0	LSB Source : wSParityErrCnt		

EPIC Sub	8Ch,8Dh EPIC Subcommutated HK Bytes 140,141		
Byte #	# Bit # Comments		
140 8Ch	7	MSB ICS classification memory parity error	
	6		
	5		
	4		
	3		
	2		
	1		
	0	LSB Source : wIParityErrCnt	
141 8Dh	7	MSB STICS irrepairable classification memory parity errors	
	б		
	5		
	4		
	3		
	2		
	1		
	0	LSB Source : wSFatalParErrCnt	

EPIC Sul	 commuta	8Eh,8Fh Bytes 142.143
Byte #	Bit #	Comments
142 8Eh	7	MSB ICS irrepairable classification memory parity errors
	6	
	5	
	4	
	3	
	2	
	1	
	0	LSB Source : wIFatalParErrCnt
143 8Fh	7	Enable Alarm channel 0 status 0 : off \
	6	1 : on / Alarm STICS analog electronics thermistor
	5	Enable Alarm channel 1 status 0 : off \
	4	> for enable and alarm 1 : on / Alarm STICS thermistor 2
	3	Enable Alarm channel 2 status 0 : off \
	2	> for enable and alarm 1 : on / Alarm STICS thermistor 3
	1	Enable Alarm channel 3 status 0 : off \ > for enable and alarm
	0	1 : on / Alarm STICS thermistor 4

EPIC Subcommutated HK Bytes 144,145			
Byte #	Bit #	Conments	
144 90h	7	Enable Alarm channel 4 status 0 : off \ > for enable and alarm	
	б	1 : on / Alarm ICS analog electronics thermistor	
	5	Enable Alarm channel 5 status $0: off \setminus$	
	4	1 : on / Alarm ICS thermistor 2	
	3	Enable Alarm channel 6 status $0 : off \setminus$	
	2	1 : on / Alarm ICS thermistor 3	
	1	Enable Alarm channel 7 status 0 : off \	
	0	1 : on / Alarm ICS thermistor 4	
145 91h	7	Enable Alarm channel 8 status $0: off \setminus$	
	6	> for enable and alarm 1 : on / Alarm STICS +6 Voltage	
	5	Enable Alarm channel 9 status $0 : off \setminus$	
	4	> for enable and alarm 1 : on / Alarm STICS north start MCP voltage	
	3	Enable Alarm channel 10 status 0 : off \	
	2	> for enable and alarm 1 : on / Alarm STICS north stop MCP voltage	
	1	Enable Alarm channel 11 status 0 : off \	
	0	1 : on / Alarm STICS equatorial start MCP voltage	

92h,93h			
EPIC Subcommutated HK Bytes 146,147			
Byte #	Bit #	Conments	
146 92h	7	Enable Alarm channel 12 status 0 : off \ > for enable and alarm	
	6	1 : on / Alarm STICS equatorial stop MCP voltage	
	5	Enable Alarm channel 13 status $0: off \setminus$	
	4	> for enable and alarm 1 : on / Alarm STICS south start MCP voltage	
	3	Enable Alarm channel 14 status $0: off \setminus$	
	2	> for enable and alarm 1 : on / Alarm STICS south stop MCP voltage	
	1	Enable Alarm channel 15 status $0: off \setminus$	
	0	> for enable and alarm 1 : on / Alarm STICS TOF PS voltage	
147 93h	7	Enable Alarm channel 16 status $0: off \setminus$	
	6	1 : on / Alarm ICS +6V current	
	5	Enable Alarm channel 17 status $0: off \setminus$	
	4	> for enable and alarm 1 : on / Alarm ICS north stop MCP voltage	
	3	Enable Alarm channel 18 status $0: off \setminus$	
	2	> for enable and alarm 1 : on / Alarm ICS north start MCP voltage	
	1	Enable Alarm channel 19 status $0: off \setminus$	
	0	I : on / Alarm ICS south stop MCP voltage	

94h,95h			
EPIC Sur	Stric Subcommutated HK Bytes 148,149		
Byce #	DIC #		
148 94h	7	Enable Alarm channel 20 status 0 : off \ > for enable and alarm	
	6	1 : on / Alarm ICS south start MCP voltage	
	5	Enable Alarm channel 21 status 0 : off \	
	4	1 : on / Alarm ICS TOF PS voltage	
	3	Enable Alarm channel 22 status $0: off \setminus$	
	2	> for enable and alarm 1 : on / Alarm STICS LVPS current	
	1	Enable Alarm channel 23 status $0: off \setminus$	
	0	> for enable and alarm 1 : on / Alarm STICS MCPPS current	
149 95h	7	Enable Alarm channel 24 status 0 : off \	
	6	> for enable and alarm 1 : on / Alarm STICS DPPS current	
	5	Enable Alarm channel 25 status 0 : off \	
	4	> for enable and alarm 1 : on / Alarm ICS LVPS current	
	3	Enable Alarm channel 26 status 0 : off \	
	2	> for enable and alarm 1 : on / Alarm ICS MCPPS current	
	1	Enable Alarm channel 27 status 0 : off \	
	0	1 : on / Alarm ICS motor current	

96h,97h EPIC Subcommutated HK Bytes 150 151			
Byte #	Bit #	Comments	
150 96h	7	Enable Alarm channel 28 status 0 : off \ > for enable and alarm	
	6	1 : on / Alarm	
	5	Enable Alarm channel 29 status $0: off \setminus$	
	4	1 : on / Alarm	
	3	Enable Alarm channel 30 status $0: off \setminus$	
	2	1 : on / Alarm	
	1	Enable Alarm channel 31 status 0 : off \	
	0	1 : on / Alarm	
151 97h	7	MSB Sun Sector	
	6		
	5		
	4	LSB	
	3	MSB Parameter Index (bit 118)	
	2		
	1		
	0		

98h,99h			
EPIC Sub	EPIC Subcommutated HK Bytes 152,153		
Byte #	Bit #	Conments	
152 98h	7	Parameter Index (bit 70)	
	6		
	5		
	4		
	3		
	2		
	1		
	0	LSB	
153 99h	7	MSB Parameter Byte O	
	6		
	5		
	4		
	3		
	2		
	1		
	0	LSB	

9Ah,9Bh		
EPIC Subcommutated HK		ated HK Bytes 154,155
Byte #	Bit #	Comments
154 9Ah	7	MSB Parameter Byte 1
	б	
	5	
	4	
	3	
	2	
	1	
	0	LSB
155 9Bh	7	MSB Parameter Byte 2
	6	
	5	
	4	
	3	
	2	
	1	
	0	LSB

9Ch,9Dh		
EPIC Subcommutated HK Bytes 156,157		ated HK Bytes 156,157
Byte #	Bit #	Comments
156 9Ch	7	MSB Parameter Byte 3
	б	
	5	
	4	
	3	
	2	
	1	
	0	LSB
157 9Dh	7	MSB Parameter Byte 4
	б	
	5	
	4	
	3	
	2	
	1	
	0	LSB

9Eh,9Fh			
EPIC Sub	ated HK Bytes 158,159		
Byte #	Bit #	Comments	
158 9Eh	7	MSB Parameter Byte 5	
	б		
	5		
	4		
	3		
	2		
	1		
	0	LSB	
159 9Fh	7	MSB Parameter Byte 6	
	6		
	5		
	4		
	3		
	2		
	1		
	0	LSB	

A0h,A1h			
EPIC Sub	EPIC Subcommutated HK Bytes 160,161		
Byte #	Bit #	Comments	
160 A0h	7	MSB Parameter Byte 7	
	б		
	5		
	4		
	3		
	2		
	1		
	0		
161 Alh	7	MSB Parameter Byte 8	
	6		
	5		
	4		
	3		
	2		
	1		
	0	LSB	

A2h,A3h			
EPIC Subcommutated HK Bytes 162,163			
Byte #	Bit #	Comments	
162 A2h	7	MSB Parameter Byte 9	
	6		
	5		
	4		
	3		
	2		
	1		
	0	LSB	
163 A3h	7	MSB Parameter Byte 10	
	6		
	5		
	4		
	3		
	2		
	1		
	0	LSB	

A4h,A5h			
EPIC Sub	EPIC Subcommutated HK Bytes 164,165		
Byte #	Bit #	Comments	
164 A4h	7	MSB Parameter Byte 11	
	б		
	5		
	4		
	3		
	2		
	1		
	0	LSB	
165 A5h	7	MSB Parameter Byte 12	
	б		
	5		
	4		
	3		
	2		
	1		
	0	LSB	

A6h,A7h			
EPIC Sub	EPIC Subcommutated HK Bytes 166,167		
Byte #	Bit #	Comments	
166 A6h	7	MSB Parameter Byte 13	
	б		
	5		
	4		
	3		
	2		
	1		
	0	LSB	
167 A7h	7	MSB Parameter Byte 14	
	б		
	5		
	4		
	3		
	2		
	1		
	0	LSB	

A8h,A9h			
EPIC Sub		ated HK Bytes 168,169	
Byte #	Bit #	Comments	
168 A8h	7	MSB Parameter Byte 15	
	6		
	5		
	4		
	3		
	2		
	1		
	0	LSB	
169 A9h	7	MSB Parameter Byte 15	
	б		
	5		
	4		
	3		
	2		
	1		
	0	LSB	

AAh,ABh EDIC Subcommutated HK Bytes 170 171		
Byte #	Bit #	Comments
170 AAh	7	Science Record Counter (bit 2316)
	б	
	5	
	4	
	3	
	2	
	1	
	0	
171 ABh	7	Science Record Counter (bit 158)
	6	
	5	
	4	
	3	
	2	
	1	
	0	

ACh,ADh			
EPIC Sub	EPIC Subcommutated HK Bytes 172,173		
Byte #	Bit #	Conments	
172 ACh	7	Science Record Counter (bit 70)	
	б		
	5		
	4		
	3		
	2		
	1		
	0	LSB	
173 ADh	7	MSB Subsector Offset for Sunpulse	
	6		
	5		
	4		
	3		
	2		
	1		
	0	LSB	

AEh,AFh EPIC Subcommutated HK Bytes 174 175		
Byte #	Bit #	Comments
174 AEh	7	MSB D_SENOMD Answer (bit 3124)
	б	
	5	
	4	
	3	
	2	
	1	
	0	
175 AFh	7	D_SENCMD Answer (bit 2316)
	б	
	5	
	4	
	3	
	2	
	1	
	0	

B0h,B1h			
EPIC Sub	EPIC Subcommutated HK Bytes 176,177		
Byte #	Bit #	Conments	
176 B0h	7	D_SENCMD Answer (bit 158)	
	6		
	5		
	4		
	3		
	2		
	1		
	0		
177 B1h	7	D_SENCMD Answer (bit 70)	
	6		
	5		
	4		
	3		
	2		
	1		
	0	LSB	

B2h,B3h EPIC Subcommutated HK Bytes 178,179			
Byte #	Bit #	Comments	
178 B2h	7	MSB STICS classification control memory double errors	
	6		
	5		
	4		
	3		
	2		
	1		
	0	LSB	
179 B3h	7	MSB ICS classification control memory double errors	
	6		
	5		
	4		
	3		
	2		
	1		
	0	LSB	

B4h,B5h			
EPIC Sut	Byte # Bit # Comments		
Dycc #	DIC T		
180 B4h	7	MSB P-RAM single errors, compressed with scheme 'A'	
	6		
	5		
	4		
	3		
	2		
	1		
	0	LSB	
181 B5h	7	MSB P-ROM single errors, compressed with scheme 'A'	
	б		
	5		
	4		
	3		
	2		
	1		
	0	LSB	
EPIC Sut	ocommuta	B6h,B7h ated HK Bytes 182,183	
------------	----------	--	
Byte #	Bit #	Comments	
182 B6h	7	MSB bit 15 Number of automatic recofigurations remaining	
	6		
	5		
	4		
	3		
	2		
	1		
	0		
183 B7h	7		
	6		
	5		
	4		
	3		
	2		
	1		
	0	LSB (bit 0)	

EPIC Sul	commut	B8h,B9h ated HK Bytes 184 185
Byte #	Bit #	Comments
184 B8h	7	MSB Alarm channel[(SRNO & 7)*4 +0] lower limit
	6	
	5	
	4	
	3	
	2	
	1	
	0	LSB
185 B9h	7	MSB Alarm channel[(SRNO & 7)*4 +0] upper limit
	6	
	5	
	4	
	3	
	2	
	1	
	0	LSB

		BAh,BBh
EPIC Sut	Dit #	ated HK Bytes 186,187
Byce #	DIC #	
186 BAh	7	MSB Alarm channel[(SRNO & 7)*4 +1] lower limit
	6	
	5	
	4	
	3	
	2	
	1	
	0	LSB
187 BBh	7	MSB Alarm channel[(SRNO & 7)*4 +1] upper limit
	б	
	5	
	4	
	3	
	2	
	1	
	0	LSB

	BCh,BDh							
EPIC Sub	IC Subcommutated HK Bytes 188,189							
Byte #	Bit #	Conments						
188 BCh	7	MSB Alarm channel[(SRNO & 7)*4 +2] lower limit						
	6							
	5							
	4							
	3							
	2							
	1							
	0	LSB						
189 BDh	7	MSB Alarm channel[(SRNO & 7)*4 +2] upper limit						
	6							
	5							
	4							
	3							
	2							
	1							
	0	LSB						

	BEh,BFh							
EPIC Sub	PIC Subcommutated HK Bytes 190,191							
Byte #	Bit #	Comments						
190 BEh	7	MSB Alarm channel[(SRNO & 7)*4 +3] lower limit						
	6							
	5							
	4							
	3							
	2							
	1							
	0	LSB						
191 BFh	7	MSB Alarm channel[(SRNO & 7)*4 +3] upper limit						
	6							
	5							
	4							
	3							
	2							
	1							
	0	LSB						

5. DPU TIMING

This chapter provides some information about the DPU internal timing. Especially it provides useful information about dead times of the measurement periods which have to be taken into account if the actual event rates are to be calculated.

The timing information provided here was taken from traces with the HP processor emulation system on which the S/W was developed. The used S/W was the version of the 13th, March 1991. This differs from the version of the 14th, March in that program patch jumps were not yet implemented.

5.1 Sectorization timing

The following table provides basic information about the timing which depends on the S/C spin clock.

EPIC unit	Spacecraft unit	Nominal time
1 Science Record	16 S/C spins	96 sec
1 Spin	1 S/C spin	3 sec
1 Sector	1/16 S/C spin	187.5 ms

Table 35 : EPIC timing compared to S/C timing

A sector can roughly be subdivided into a time of measurement and a time of data readout where the measurement is disabled. The data readout is executed by the sector interrupt routine. This interrupt routine also handles the synchronization of measurement modes (e.g. ICS head summation) to science records. It therefore has more work to do as after 'normal' sectors if it reaches a spin boundary and even more if it reaches a science record boundary. The following table describes the timing for these cases.

	ST	ICS	ICS			
Telemetry mode	Sector 0	sector 1 - 15	Sector 0	sector 1 - 15		
Dual sensor	130.0 ± 0.2 mSec	18.2 ± 0.2 mSec	34.6 ± 0.2 mSec	18.2 ± 0.2 mSec		
STICS only	130.0 ± 0.2 mSec	18.1 ± 0.2 mSec				
ICS only			34.6 ± 0.2 mSec	18.1 ± 0.2 mSec		

Table 36 : Sector dead times

- x. ms start of sector interrupt routine
- x. ms disable STICS PHA & event classification hardware
- x. ms disable ICS PHA & event classification hardware
- x. ms increment sector counter
- x. ms end of sector interrupt routine

- x. ms enable STICS PHA & event classification hardware
- x. ms enable ICS PHA & event classification hardware
- x. ms start of next sector interrupt routine
- x. ms start of sector interrupt routine
- x. ms disable STICS PHA & event classification hardware
- x. ms disable ICS PHA & event classification hardware
- x. ms start to transmit DPPS step command
- x. ms increment sector counter
- x. ms increment spin counter

One S/C spin is subdivided into 16 sectors.

<u>6. DPU special function registers</u> This chapter describes special DPU I/O ports which are no 8086 system standard. The following table gives a brief overview of all system I/O ports.

Address	Port Name	Access	Description
0000h,0002h	PIC	R/W	Base address of interrupt controller 82C59.
4000h,4001h,,400Fh	DMA	R/W	82C37 DMA controller
1000h,1002h,,1006h	TIM	R/W	82C54 16 bit timer
1E00h	SEGREG	WR	DMA page register
1600H	COA	WR	command interrupt acknowledge
1C00H	SIA	WR	sector interrupt acknowledge
3800h	FBAA	WR	telemetry A frame begin interrupt acknowledge
3A00h	VOA	WR	under voltage control interrupt acknowledge
3C00	FBAB	WR	telemetry B frame begin interrupt acknowledge
3000h	MREG1	RD	S/C signals, RAM single error counter
3200h	MREG2	RD	power status
		WR	reset RAM single error counters
3000h	SCICMD	WR	S/C interface control
3400h	COMREG	RD	S/C command interface
3600h	SUNREG	WR	Subsector offset of sunpulse
D000h	PREG1	WR	power switch register
2800H	WATCHDOG	WR	watchdog reset register
6000h	ICS_COM	WR	ICS command register
	ICS_DATA_L	RD	ICS command answer low word
6002h	ICS_RESET	WR	ICS command I/F reset
	ICS_DATA_H	RD	ICS command answer high word
6004h	ICS_STATUS	RD	ICS command I/F status
6800h	STICS_COM	WR	STICS command register
	STICS_DATA_L	RD	STICS command answer low word
6802h	STICS_RESET	WR	STICS command I/F reset
	STICS_DATA_H	RD	STICS command answer high word
6804h	STICS_STATUS	RD	STICS command I/F status
1200h	C_COM	R/W	classification control register
1280h	C_STAT	RD	classification status register
	S_CL_PAR	WR	reset STICS parity error
12C0h	S_CL_DEF	WR	reset STICS double error
12D0h	S_CL_INIT	WR	reset STICS classification (event generation)

			<u></u>
1400h	S_PE_TOF	RD	STICS PHA event, TOF word
	S_PS_0	WR	STICS prior switches 0 - 15
1480h	S_PE_E	RD	STICS PHA event, energy word
	S_PS_1	WR	STICS prior switches 16 - 31
12A0h	I_CL_PAR	WR	reset ICS parity error
12E0h	I_CL_DEF	WR	reset TICS double error
12F0h	I_CL_INIT	WR	reset ICS classification (event generation)
1500h	I_PE_TOF	RD	ICS PHA event, TOF word
	I_PS_0	WR	ICS prior switches 0 - 15
1580h	I_PE_E	RD	ICS PHA event, energy word
	I_PS_1	WR	ICS prior switches 16 - 31
1800h	S_CL_PE	WR	clear STICS PHA interrupt
1A00h	I_CL_PE	WR	clear ICS PHA interrupt

Table 37 : DPU I/O ports

6.1 LU-Test Register (LUTEST)

Address	: 0F000H
Access :	8 Bit, W/O
Purpose	: To activate the low level Latch Up current sensors
T .	

Layout :

7	6	5	4	3	2	1	0	
	TI	ME		SP	IP	UP	UP	
								•
UPC				μ	P - T	est, ac	tive "	0"
UPM	1			μ	P - M	lemor	y Test	t, active "0"
IPM				I	CS M	emor	y Test	, active "0"

SPM STICS Memory Test, active "0"

TIME Test time (= TIME * $2 \mu s$)

A low level latch up test is performed after a write operation to this register. However, if the 4 least significant bits were all set to 1, no latchup test is performed.

6.2 DPU Command Register (COMREG)

Addr	ess	:	: 3400H												
Acce	ess :	1	6 Bit,	, R/O											
Purp	ose	: supplies S/C commands to the DPU													
Layout :															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
х	х	х	х	ER	DC	BC	EC	MSB			COMN	IAND			LSB
COMMAND command byte from S/C ECS Status of Error Checker															
	0 : Error Checker is enabled														

	0. Enor checker is chabled
	1 : Error Checker is disabled
BC	"1" if the received command was a BC
DC	"1" if the received command was a DC
ERR	"0" if an command transmission error occurred, i.e. the command was not
	transmitted with 8 bits but with less or more

6.3 Message Register 1 (MREG1)

Address	:	3000H
Access :	16 Bit,	R/O
Purpose	:	Reports the telemetry status

Layout :

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R	OM s	ingl	e	R	AM s	ingl	е	TB	TA	SU	FΤ	FB	FW	FB	FW

ROM single error	Number of single errors in ROM
RAM single error	Number of single errors in RAM
FWA	F0W0 - Pulse of telemetry A, active high
FBA	Frame Begin Pulse of telemetry A, active high. This signal also causes a
	frame begin interrupt to the processor.
FWB	F0W0 - Pulse of telemetry B, active high
FBB	Frame Begin Pulse of telemetry B, active high. This signal also causes a
	frame begin interrupt to the processor.
FTC	"Format C" signal for telemetry A, active high
SUN	Sun Pulse Signal, active high. If this bit is set, the sun pulse occurred during
	the last sector. (The sunpulse is latched with every sector interrupt signal).
TAS	Telemetry A status, "1" means telemetry A is enabled.
TBS	Telemetry B status, "1" means telemetry B is enabled.

6.3 SCI-Control Register (SCICMD)

Address	:	03000H
---------	---	--------

Access: 8 Bit, W/O

Purpose : To control the S/C interface

Layout :

7	6	5	4	3	2	1	0
х	х	х	х	х	TB	TA	EC

ECO	enables ("1") or disables ("0") the error checker for the DPU command
	channel
TAO	enables ("1") or disables ("0") telemetry A

TBO enables ("1") or disables ("0") telemetry B

6.5 Power Control Register (PREG1)

Address	:	0D000H

Access:	8 Bit, W/O
---------	------------

Purpose : to switch the various software controlled power switches inside the DPU

Layout :

7	6	5	4 3 2		1	0	
SWADR			0	х	х	х	SW

SWB

SWADR

Switch Bit, switches the selected power supply on ("1") or off ("0") Switch Address, selects the power supply to be switched :

- 0 : unused
- 1 : ICS LVPS
- 2 : ICS MCPPS
- 3 : STICS ACTUATOR PS
- 4 : STICS LVPS
- 5 : STICS DPPS
- 6 : STICS MCPPS
- 7 : Instrument PS (main switch for all above)

0 EI

6.6 Message Register 2 (MREG2)

Addı	ress	:		3200	Η									
Acce	ess :	1	6 bit,	R/O										
Purp	ose	:		mirre	ors the	e statu	is of t	he po	wer sv	vitche	s to tl	he DP	U	
Layo	ut :													
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
LU	PR	SW	HW	HV	SA	IL	SL	ED	BH	SH	IH	IM	SM	SD

EIP	Epic Instrument Power							
SDP	STICS Deflection Plate Power							
SMP	STICS Microchannel Plate Power							
IMP	ICS Microchannel Plate Power							
IHP	ICS Supplement Heater Power							
SHP	STICS Supplement Heater Power							
BHP	Bakeout Heater Power							
EDP	EPIC DPU Power							
SLP	STICS Low Voltage Power							
ILP	ICS Low Voltage Power							
SAP	STICS Actuator Power							
HVE	HV - Enable							
	"1": HV is enabled							
	"0" : HV is disabled							
HWS	"1" : DC timing circuit is active,							
	hardware controlled relay may be currently switching							
	"0" : DC timing circuit is inactive.							
SWS	"1" : software timing circuit is active,							
	software controlled relay is currently switching							
	"0" : all software controlled relays are inactive							
PRS	"0" : PROM1a is selected							
	"1" : PROM1b is selected							
LUR	0 : Last power on was by command							
	1 : Last power on was after a latch up detection							

Note : The "Power" - Bits in this register have the following meanings :

"0": respective power is switched off

"1": respective power is switched on

6.6 Classification Status Register (C_STAT)

Address : 1280H

Access: 16 Bit, R/O

Purpose : mirrors the status of the classifications units to the DPU

Layout :

			i							i	i				
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
х	х	х	х	х	х	х	VI	DE	DE	PE	PE	PI	PS	IC	SC

SCR	STICS classification is running
ICR	ICS classification is running
PS	STICS PHA word received
PI	ICS PHA word received
PES	Parity error in STICS table memory
PEI	Parity error in ICS table memory
DES	Double error in STICS control memory
DEI	Double error in ICS control memory
VIP	Under voltage condition

Note : all Bits are active high

6.7 Classification Command Register (C_COM)

Address : 1200H

Access: 16 bit, W/O

Purpose : to control the classification units

Layout :

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
PAGE				VI	ED	ED	ΕP	ΕP	HC	HC	PE	CE	PE	CE	

CES	"0" : Disable STICS classification
	"1" : Enable STICS classification
PES	"0" : Disable STICS PHA events
	"1" : Enable STICS PHA events
CEI	"0" : Disable ICS classification
	"1" : Enable ICS classification
PEI	"0" : Disable ICS PHA events
	"1" : Enable ICS PHA events
HCS	"0" : Allow STICS classification operation
	"1" : Halt STICS classification immediately
	This bit has priority over the CES bit !
HCI	"0" : Allow ICS classification operation
	"1" : Halt ICS classification immediately
	This bit has priority over the CEI bit !
EPS	"0" : Disable STICS parity error interrupts
	"1" : Enable STICS parity errors interrupts
EPI	"0" : Disable ICS parity errors interrupts
	"1" : Enable ICS parity errors interrupts
EDS	"0" : Disable STICS double errors interrupts
	"1" : Enable STICS double errors interrupts
EDI	"0" : Disable ICS Double errors interrupts
	"1" : Enable ICS double errors
VIE	"0" : Disable UVC interrupt
	"1" : Enable UVC interrupt
PAGE	selects page 031 of the classification control memories

7. STICS Counting Rate Memory channels

Rate	Channels (Direction 0 - 6)									
	0	1	2	3	4	5	6			
HR0	16	272	528	784	1040	1296	1552			
HR1	17	273	529	785	1041	1297	1553			
HR2	18	274	530	786	1042	1298	1554			
Rate	Chan	nels (Di	rection	0 - 6)						
	0	1	2	3	4	5	6			
SMR0	19	275	531	787	1043	1299	1555			
SMR1	20	276	532	788	1044	1300	1556			
SMR2	21	277	533	789	1045	1301	1557			
Rate	Chan	nels (Di	rection	0 - 6)						
	0	1	2	3	4	5	6			
MR0	32	288	544	800	1056	1312	1568			
MR1	33	289	545	801	1057	1313	1569			
MR2	34	290	546	802	1058	1314	1570			
MR3	35	291	547	803	1059	1315	1571			
MR4	36	292	548	804	1060	1316	1572			
MR5	37	293	549	805	1061	1317	1573			
MR6	38	294	550	806	1062	1318	1574			
MR7	39	295	551	807	1063	1319	1575			
MR8	40	296	552	808	1064	1320	1576			
MR9	41	297	553	809	1065	1321	1577			
MR10	42	298	554	810	1066	1322	1578			
MR11	43	299	555	811	1067	1323	1579			
MR12	44	300	556	812	1068	1324	1580			
MR13	45	301	557	813	1069	1325	1581			
MR14	46	302	558	814	1070	1326	1582			
MR15	47	303	559	815	1071	1327	1583			
MR16	48	304	560	816	1072	1328	1584			
MR17	49	305	561	817	1073	1329	1585			
MR18	50	306	562	818	1074	1330	1586			
MR19	51	307	563	819	1075	1331	1587			
MR20	52	308	564	820	1076	1332	1588			
MR21	53q	309	565	821	1077	1333	1589			

MR22	54	310	566	822	1078	1334	1590
MR23	55	311	567	823	1079	1335	1591
MR24	56	312	568	824	1080	1336	1592
MR25	57	313	569	825	1081	1337	1593
MR26	58	314	570	826	1082	1338	1594
MR27	59	315	571	827	1083	1339	1595
MR28	60	316	572	828	1084	1340	1596
MR29	61	317	573	829	1085	1341	1597

Channels (Direction 0 - 6)

Rate

	0	1	2	3	4	5	6
SI_DIAG0	112	368	624	880	1136	1392	1648
SI_DIAG1	113	369	625	881	1137	1393	1649
SI_DIAG3	114	370	626	882	1138	1394	1650
SI_DIAG4	115	371	627	883	1139	1395	1651
SI_DIAG5	116	372	628	884	1140	1396	1652
SI_DIAG6	117	373	629	885	1141	1397	1653
SI_DIAG7	118	374	630	886	1142	1398	1654

Rate	Channels (Direction 0 - 6)									
	0	1	2	3	4	5	6	_		
BR0	0	256	512	768	1024	1280	1536			
BR1	1	257	513	769	1025	1281	1537			
BR2	2	258	514	770	1026	1282	1538			
BR_DIAG	3	259	515	771	1027	1283	1539			

8. Startup sequence

After the DPU got a RESET, it does the basic initialization first. The following steps are executed in the given order :

- 1. Interrupts are disabled.
- 2. Data segment and stack segment are setup.
- 3. DPU scratch pad memory (128kB) is initialized to 0.
- 4. All interrupt sources are reset to inactive state.
- 5. The 80C86 supporting hardware (82C54, 82C59, 82C37) is initialized.
- 6. The job manager and his priority levels are initialized.
- 7. All interrupt service routines and their interrupt vectors are initialized.
- 8. The classification hardware is initialized and disabled.
- 9. The configuration variables are set to the default ROM configuration
- 10. The default sensor command telegrams (HK & Accumulator readout for ICS & STICS, DPPS setting for STICS) are installed.
- 11. Interrupts are enabled.
- 12. The telemetry interface is activated.
- 13. The sector, spin and science record serving jobs are initialized.
- 14. The classification memory is initialized to default values ("test tables").
- 15. The appropriate configuration image is loaded from the battery backup ram.
- 16. The DPU operational status is set according to the loaded configuration image.
- 17. The STICS sensor operational status is set according to the loaded configuration image.
- 18. The ICS sensor operational status is set according to the loaded configuration image.
- 19. Instrument operation starts

Some of the most important steps are steps 11,12,13 and steps 15-18. After the interrupts are enabled (step 11), the DPU will start to service the sector interrupt. This means that

- 20. the ICS accumulator readout is started
- 21. the STICS accumulator readout is started
- 22. the STICS DPPS voltage step is set once every spin.

After the telemetry interface is enabled (step 12) the DPU starts serving the status channel bytes and sends zeroes on the data channel.

After the default sector, spin and science record jobs are installed (step 13), the DPU

- 23. starts reading HK from ICS in every sector 1
- 24. starts reading HK from STICS in every sector 1

25. starts formatting EDBs (experiment data blocks) and delivers the formatted EDBs to the telemetry interface serving process

In step 15 the appropriate configuration image is loaded from the non volatile (battery backed up) RAM. This stores two configurations : one configuration the DPU was in before the last switch off or RESET occurred ("current configuration") and one which was saved by command ("snapshot configuration"). The third possible configuration is the one which is stored in ROM ("ROM configuration") and to which all status variables are already set to when the initialization process reaches step 15.

The configuration is choosen with respect to the reason which caused the RESET :

- 26. The ROM configuration is choosen if
 - o the CRC of at least one if the configurations stored in the nonvolatile RAM is incorrect.
- 27. The current configuration is choosen if
 - o the RESET was caused by a previous latch up switch off.
 - o the RESET was caused by a previous UVC switch off
 - o the RESET was caused by a watchdog interrupt
- 28. The snapshot configuration is choosen if
 - o the RESET was caused by a commanded DPU switch off/on sequence.

The snapshot configuration can also be installed by command while the DPU is running.

8.1 Setting the DPU operational state

The configuration image for the DPU operational state will store the following :

- o classification table parameters for ICS
- o classification table parameters for STICS
- o the current mode of the data formatting process
- o the currently used compression schemes
- o the current PHA mode for ICS
- o the current PHA mode (range definitions) for STICS
- o the current mode of housekeeping formatting (fixed HK index)
- o the latch up sensing operational mode (enabled / disabled)
- o the telemetry activation status
- o the sun sector position and the subsector offset
- o the power status

o the alarm monitor status

o the state of the memory fault interrupts (enable/disable)

This will be more detailed in future versions of this manual.

8.2 Setting the ICS sensor operational state

The ICS sensor status is commanded in the following order :

- C00/C07 North, Equatorial and South preamplifier power set simultaneously with the C07/C00 command to the state stored in the configuration image. ROM configuration default value : all disabled.
- C0F/C08 The time preamplifiers #0-#2 are set simultaneously to the state stored in the loaded configuration image. ROM configuration default value : all disabled.
- C12/C10 The time preamplifier #4 is set to the state stored in the loaded configuration image. ROM default value : disabled
- 4. C20 Both motor powers (North / South) are set to OFF state (independent of the configuration image)
- C2B/C28 The multiple event enable start and stop switches are set simultaneously to the state stored in the loaded configuration image.
 ROM default value : start disabled, stop disabled
- C33/C30 The test logic and the calibrate energy switches are simultaneously set to the state stored in the configuration image.
 ROM default value : test logic disabled, calibrate energy disabled.
- 7. C38 The motor phases are both set to 0 (independent of the configuration image),
- C49/C48 The SSD Bias is set to the state stored in the configuration image. ROM default value : SSD Bias Low (C48 cmd).
- 9. C51/C50 The slow rate mode is set to the state stored in the configuration image. ROM default value : slow rate mode disabled.

10.	C59/C58	The calibrate oscillator is set to the state stored in the configuration image. ROM default value : disabled.
11.	C68	The position led power is disabled (independent of the configuration image).
12.	A87/A80	The valid event logic is set to the state stored in the configuration image. ROM default value : valid event mode 0.
13.	A0x	The time-of-flight calibration level is set to the state stored in the configuration image. ROM default value : 0
14.	7xx	The energy calibration level is set to the state stored in the configuration image. ROM default value : 0
15.	83F/800	The north detector analog threshold is set to the state stored in the configuration image. ROM default value : 0.
16.	87F/840	The electron detector threshold #1 is set to the state stored in the configuration image. ROM default value : 0
17.	8BF/880	The south detector analog threshold is set to the state stored in the configuration image. ROM default value : 0
18.	8FF/8C0	The electron detector threshold #2 is set to the state stored in the configuration image. ROM default value : 0
19.	B1F/B00	The MCPPS & TOFPS enables are set one after the other (MCPPS0 - 3, TOFPS) to the values stored in the loaded configuration image. The interval between two switches will be 400 μ s. If HV is not enabled, the INSTRUMENT POWER is switched off or the MCP power is switched off, the ICS initialization will abort after this step. ROM default value : all PS off
20.	4xx/0xx	The MCPPS references (north start, south start, north stop, south stop) and the TOFPS reference are concurrently stepped to the level stored in the configuration image. ROM default value : level 0 for all references Problem : What is the "current level" of the references the DPU should assume after a RESET. Currently we will assume level 0, but this might be dangerous. To be discussed with APL.

21. 500/600 Both motor power levels are set to level 0 (independent of the configuration image).

8.3 Setting the STICS sensor operational state

The STICS sensor status is commanded in the following order :

- C00/C07 North, Equatorial and South preamplifier power set simultaneously with the C07/C00 command to the state stored in the configuration image. ROM configuration default value : all disabled.
- COF/CO8 The time preamplifiers #0-#2 are set simultaneously to the state stored in the loaded configuration image.
 ROM configuration default value : all disabled.
- C13/C10 The time preamplifiers #3-#4 are simultaneously set to the state stored in the loaded configuration image.
 ROM default value : disabled
- C2B/C28 The multiple event enable start and stop switches are set simultaneously to the state stored in the loaded configuration image.
 ROM default value : start disabled, stop disabled
- 5. C31/C30 The test logic switch is set to the state stored in the configuration image. ROM default value : test logic disabled, calibrate energy disabled.
- C3F/C38 The detector bias power disables (north, equatorial, south) are simultaneously set to the state stored in the loaded configuration image.
 ROM default value : detector bias power disabled.
- C41/C40 The SSD Bias switch is set to the state stored in the loaded configuration image. ROM default value : off
- 8. C49/C48 The SSD Bias is set to the state stored in the configuration image. ROM default value : SSD Bias Low (C48 cmd).
- 9. C51/C50 The slow rate mode is set to the state stored in the configuration image. ROM default value : slow rate mode disabled.

10.	C59/C58	The calibrate oscillator is set to the state stored in the configuration image. ROM default value : disabled.
11.	A87/A80	The valid event logic is set to the state stored in the configuration image. ROM default value : valid event mode 0.
12.	A0x	The time-of-flight calibration level is set to the state stored in the configuration image. ROM default value : 0
13.	7xx	The energy calibration level is set to the state stored in the configuration image. ROM default value : 0
14.	83F/800	The north detector analog threshold is set to the state stored in the configuration image. ROM default value : 0.
15.	87F/840	The equatorial detector threshold is set to the state stored in the configuration image. ROM default value : 0
16.	8BF/880	The south detector analog threshold is set to the state stored in the configuration image. ROM default value : 0
17.	B7F/B00	The Mini HVPS enables are set one after the other to the states stored in the loaded configuration image. The interval between two switches will be 400 μ s. If HV is not enabled, the INSTRUMENT POWER is switched off or the STICS MCP power is switched off, the STICS initialization will abort after this step. ROM default value : all PS off
18.	B83/B80	The DPPS enables are set one after the other to the states stored in the loaded configuration image. The interval between two switches will be 400 μ s. If HV is not enabled, the INSTRUMENT POWER is switched off or the STICS DPPS power is switched off, the STICS initialization will abort after this step. ROM default value : all PS off
19.	7xx/0xx	The MCPPS references (north start, equ. start, south start, north stop, equ. stop, south stop) and the TOFPS reference are concurrently stepped to the level stored in the configuration image. ROM default value : level 0 for all references

Problem : What is the "current level" of the references the DPU should assume after a RESET. Currently we will assume level 0, but this might be dangerous. To be discussed with UMD.

9. Change for Sensor Commanding

The process structure for sensor commanding changes with the 6.11.90. Up to that time, command emitting procedures where not allowed to send commands any time (e.g. motor control) and procedures which emitted synchronized commands were not able to check whether their commands really had been transmitted.

This is changed with the new scheme which will be described now.

9.1 Command classes

Commands to switch the sensor operational mode are initiated during DPU initialization and from within DPU command procedures. The success of every such single command should be checked by the emitting processes. These commands are often synchronized with the measurement and have to be sent out during a measurement deadtime. Therefore they have to be collected in a buffer until the next deadtime is reached. Then they should be sent out as fast as possible, i.e. with a high priority (foreground commands).

Some other commands are also "single commands" and don't have to be synchronized with the measurement. They are executed with relatively low priority (background commands).

Another class of commands are those which, on a procedure's demand, should be sent out as soon as possible (real-time commands). The best example for this are the motor control commands, where it is important to keep the motor phases lengths as equal as possible. This kind of commands should have the highest priority.

The majority of commands to be sent out to the sensors are housekeeping and accumulator readout commands. There is no need to control the success of every single command but only the success of groups of commands (command telegrams), e.g. the sectored accumulator read out commands. It is sufficient to know about the success of the whole telegram. Since it is important to the measurement at what time these telegrams were transmitted to the sensor, command telegrams should have a priority between the real-time commands and the synchronized single commands.

9.2 Command transmission module

The command transmission module will consist of procedures to send out command telegrams and single commands and to check the successful transmission. These procedures are :

fSendTelegram a procedure which accepts a command telegram as parameter and puts the telegram into a queue of telegrams. This function returns a telegram ID which can be used to request the transmission status of that telegram.

fTelegramStatus	a procedure which reports the transmission status of a given telegram.
	The telegram ID is passed as a parameter to fTelegramStatus
fSendCommand	a procedure which accepts a single command as parameter and puts the
	command into a queue of commands. This functions returns a
	command ID which can be used to test the transmission status of the
	command.
fCommandStatus	a procedure which reports the transmission status of a command. The
	command ID is passed as a parameter. This procedure also returns the
	command answer if the command was successful.
fSendCommandAndWait	this function simply calls fSendCommand and fCommandStatus. If
	the command can't be transmitted successfully (time-out)
	fSendCommandAndWait reports an error.

The requirements for the EPIC DPU software are defined in the "ENERGETIC PARTICLES AND ION COMPOSITION EXPERIMENT (EPIC) SOFTWARE REQUIREMENTS and DATA DEFINITION DOCUMENT". The following is based on the preliminary revision of this manual, parts are already adopted to Revision A.

10. Real time aspects

One of the main aspects to take care about in the DPU software is real-time. The two main time basses are the telemetry interface and the S/C spin clock. Both are synchronous repetitively (the spin may vary $\pm -5\%$) but asynchronous to each other.

On the other hand, there are several fully asynchronous events (sorted by frequency) :

- PHA Event
- Incoming DPU commands
- H/W Errors (Latch Up, SEU)
- Emergency Switch Off (UVC)

Since it is not possible to predict all possible combinations of synchronous and asynchronous events, the DPU software will watch itself if it carries out all necessary tasks in time. These checks will be done on spin-related boundaries (sectors, spins and science records). The test phase of the DPU software will end, if under no test conditions real-time violations can be detected.

Discussions brought up a priority scheme of tasks to be executed. The following list describes the priority of the different tasks in the system software. Priority 0 is the highest, priority 15 the lowest priority. Every priority level is able to interrupt an other level if a task of the assigned priority has to be carried out. For the non-hardware controlled levels, this is organized by a central module, called "job manager". It receives information about the ongoing events (command reception, new sector, new spin,

new science record) and activates the different levels. From the status of the job manager it may be decided whether DPU keeps "real time" or not.

Because commands may cause actions of long duration, they may be divided into a "pre-execution phase" where parameters are interpreted and calculations are done and an "execution phase" where the result of the forgoing phase becomes valid. An example for this is the calculation of the STICS S-Table for every voltage step. The table calculation is done during the spin and the table is copied into the classification memory at the start of the next sector 0.

Priority H/W-Int Task

0	NMI	Watchdog-Function. This task may be deactivated by hardware Execution time : $< 200 \ \mu s$
1	INT0	UVC / Classification Error Interrupt. Depending on the type of interrupt occurred, the UVC event or a classification error interrupt is served Execution time : < 200 ms for UVC, < 100 μ s for error servicing, the error will be serviced by the background program. The classification which caused the error will be deactivated during repair and will be reactivated with the first science record start after repair.
2	INT1	Timer 0. This Timer is responsible to generate the sector dead time and, in emergency situations, the artificial sector interrupt. Execution time : $< 150 \ \mu s$
3	INT2	Frame Begin Interrupt. Depending on the current frame number and on which telemetry has to be served, this procedure prepares the DMA to send out the next data bytes. This procedure increments the HK subcom index and frees an EDB buffer, if it has been fully transmitted. Additionally, in every 4th interrupt of telemetry A, the low level LU detection for the μ P RAM/ROM and for the μ P circuitries will be done. Execution time : < 300 µs for status channel servicing, < 500 µs for science channel servicing.
4	INT3	Command Interrupt. This procedure fetches the DPU command bytes from telemetry

4 INT3 Command Interrupt. This procedure fetches the DPU command bytes from telemetry, validates and interprets them. The command and command parameter bytes are filled into command buffers depending on the execution/preparation priority of the received command.

Execution time : $< 300 \,\mu s$

- 5 INT4 Timer 1. This Timer is responsible to generate the 400 μs time out for sensor servicing. It is only active while any sensor is being serviced.
 Execution time : < 200 μs
- 6 INT5 Sector Interrupt. This procedure handles the central "science timing". It generates sectors, spins, measurement spins and science records. In addition it performs sun pulse synchronization. During the sector interrupt routine everything is done which is needed to end the last sector and to prepare the measurement for the following sector. Equivalences exist for measurement spins and science records. After the counting memory has been read out, the low level LU detection for the classification memory will be executed. This will be done during sensor servicing and will therefor not lengthen the sector dead time.

Execution time : < 94 ms for sector 0, < 20 ms for all other sectors.

- 7 INT6 PHA Interrupt. This interrupt procedure handles the PHA events of sensors and places the unformatted PHA data into a sector- and range- oriented buffer.
 Execution time : < 200 μs
- 8 INT7 Timer 2. This timer is used for varying tasks, e.g. the time-outs for relay switching etc.

Execution time : $< 150 \,\mu s$

- 9 Execution of commands which are to be carried out immediately. Execution time : < 1ms
- Sector Tasks. In this level, all tasks which are to be executed (repetitively or not) on a sector boundary. However, these are tasks which are carried out during measuring. All other sector oriented tasks are done during the sector interrupt (see level 6). The currently known tasks are :
 - accumulation of sectored science rates and engineering rates.
 - sensor HK readout
 - Execution time : any, have to be ready until next sector boundary, DPU self controlled
- 11 Spin Tasks. Same as for Sector Tasks, but for spins. The currently known tasks are :
 - accumulation of unsectored science rates and engineering rates.
 - precalculation of the S-Table for the next STICS voltage step

EDB - formatting
Execution time : any, have to be ready until next spin boundary, DPU self controlled
Science Record Tasks. Same as for sector tasks, but for science records. The currently known tasks are :
HK Buffer switching
Execution time : any, have to be ready until next science record boundary, DPU self controlled
Preexecution of commands with a small amount of parameters and with a low preexecution time. Execution will be in level 9, 10 or 11. Execution time : < 100 ms
Preexecution of commands with a large amount of parameters and with a long preexecution time. Execution will be in level 9,10 or 11. Execution time : any
 Background program. It is responsible for carrying out the tasks with very low priority. The currently known are : memory scrubbing handling of double memory error in classification control unit handling of parity error in classification. Execution time : any

The measurement cycles are based on the S/C spin timing. All DPU tasks are organized in respect to that timing while the instruments are active. If any condition occurs which will lead to an unsynchronized status, measurement spins will be dropped.

Level 6 (sector interrupt) is the point, where it is decided whether to measure in the next spin or to drop a spin. This depends on the central "Instrument Ready" condition, which is composed of several flags. If one of them is set when the next sector 0 comes up, the next spin will be dropped. The currently known flags are :

- Re-found sun at wrong position : After the sun pulse was lost, we re-found it in a wrong sector. The next spin will be in "SUN SEARCH" mode.
- Motor has to be moved : During the next spin, one of the ICS motors has to be moved. The next spin will be in "INSTRUMENT IDLE" mode

- Telemetry is not ready : The telemetry is not in data mode or the S/C's spin rate is to high. The next spin will be in "INSTRUMENT IDLE" mode.
- Classification Tables have to be / are being recalculated and/or to be repaired : Due to double error and/or parity error in the classification memory, the next spin (or the next few spins) have to be dropped. They will be in "INSTRUMENT IDLE" mode.
- Both instruments are or are to be switched off : If both instruments are switched off, the next spins will be in "INSTRUMENT IDLE" mode until one of the instruments is reactivated.
- DPU has to be switched off : This is a synchronized DPU switch-off procedure. After repowering, the first spin will be in "SEARCH SUN" mode. "INSTRUMENT IDLE" mode will follow, until the instrument is fully initialized. Then the spin mode switches to "INSTRUMENT ACTIVE"

These conditions may be flagged from any module, independent of its execution priority.

<u>11. Memory assignment</u>

Science data buffering has the most impact on the needed size of data buffers. These sizes may be calculated from the defined readout schemes. To keep the sector dead time small, all counting memory channels are first copied as raw data to a sector buffer, from which they then are processed further. For simplicity, all uncompressed rates are store in double words, each occupying 4 bytes.

11.1 STICS rates data buffers

For STICS, 36 science rates are defined. Most of these (30 MR) are read out on a spin by spin basis, others are read out with equatorial and polar direction information (HR, SMR, BR). Because the latter ones vary on command (which is not yet defined (?)), all 36 rates will be read out redundantly when the spin boundary is reached.

Rate	No. of	Polar	Equ.	Sector	Accumul
	Rates	Dir.	Dir.	Buffer	Buffer
HR	3	6	16	72	768 x 2
SMR	3	3	8	36	288 x 2
MR	36	1	1	144	144 x 2
BR	3	3	8	36	288 x 2
ER	21	-	1	84	84 x 2
Total memory needed (Bytes)	372	3144			

This scheme leads to the following memory consumption:

Table 38 : STICS buffer assignment in NORMAL MODE

Remark :

1. "x 2" is needed for applying exchange buffer techniques.
153. The two channels multiplexed on HR1 are read out every sector, but will need only one accumulation buffer

Rate	No. of	Polar	Equ.	Sector	Accumul
	Rates	Dir.	Dir.	Buffer	Buffer
HR	5	6	16	120	1920 x 2
MR	36	1	1	144	144 x 2
BR	3	3	8	36	288 x 2
ER	21	-	1	84	84 x 2
Total memory needed (Bytes)	300	4704			

Table 39 : STICS buffer assignment in STICS SINGLE SENSOR MODE

11.2 ICS rates data buffers

The ICS readout scheme is not as simple as the STICS ones is and is divided into several different readout schemes which need different buffers sizes. Since it is not possible to buffer all data of one science record, EDB data for ICS will be divided into three areas :

- o area 1, which data was collected over 2 spins
- o area 2, which data was collected over 16 spins
- o area 4, which data was collected over 32 spins

Readout	No. of	Sectors	Spins	Head	# of	Sector	Accu.
Scheme	Rates	Summed	Summed	Summed	Aquis.	Buffer	Buffer
А	2	1	1	2	2	16	256x2
В	1	2	1	2	2	8	64x2
В	1	2	1	-	2	4	64x2
С	8	1(2,1)	2(1,1)	1(1,2)	1(2,2)	64	1024x2
D	40	1(2,1,2)	16(8,8,4)	1(1,2,2)	1(2,2,4)	320	5120x2
D	4	1(2)	16(8)	-	1(2)	16	256x2
Е	25	1(2,1,2)	32(16,16,	1(1,2,2)	1(2,2,4)	200	3200x2
			8)				
Е	1	1(2)	32(16)	-	1(2)	4	64x2
Total memory (Bytes)	632	20096					

Table 40 : ICS buffer assignment in NORMAL MODE

Readout	No. of	Sectors	Spins	Head	# of	Sector	Accu.
Scheme	Rates	Summed	Summed	Summed	Aquis.	Buffer	Buffer
А							
В							
В							
С							
D							
D							
Е							
Е							
Total memory (Bytes)	<1024	<32768					

Table 41 : ICS buffer assignment in ICS SINGLE SENSOR MODE (TBD)

11.3 STICS PHA acquisition

Referring to "STICS PHA Service" prepared by IDA / 26.3.90, STICS needs the following amount of Memory for PHA servicing :

4096 byte + 64 byte = 4160 Byte

11.4 ICS PHA acquisition

Referring to "ICS PHA Service" prepared by IDA / 26.3.90, ICS needs the following amount of Memory for PHA servicing :

4096 byte + 256 byte = 4352 Byte

11.5 DPU Buffers

Some buffers are needed for DPU internal organization. These are :

Purpose	Bytes needed
Interrupt vectors	1024
Processor Stack	< 2048
Variables	< 8192
Command parameter buffer	1024
Job manager lists	1400
EDB Buffers	960 x 4 =3840
Classification scratch tables	TBD TUB < 32768
Housekeeping buffer telemetry A	256 x 2 =512
Housekeeping buffer telemetry B	64 x 2 =128
Sensor command tables	2 x 128 x 3 =768
Sensor command answers (HK)	2 x 64 x 2 =256
Sensor command answers (ER)	2 x 32 x 4 =256
Total DPU (Byte)	< 52216

Table 42 : DPU RAM buffer

11.6 Total memory consumption

STICS rates	5004
ICS rates	< 33792
STICS PHA	4160
ICS PHA	4352
DPU	< 52216
Total (Byte)	< 99524

Table 43 : Total memory consumption in EPIC DPU

Since 128 kByte (131072 Byte) are available in the EPIC DPU, we have a minimum of 131072 - 99524 = 31548 Byte spare memory.

Item	Variable	Values	Default
HVPS upper limit	abyStHVLim[7]	0 <= x <= 255	0
HVPS voltage set	abyStHVSet[7]	0 <= x <= 255	0
Energy threshold	abyStEThr[3]	0 <= x <= 63	8
Valid Event Logging	byStValEvLog	0 <= x <= 7	1
E-Calibration Level	byStECalLvl	0 <= x <= 255	TBD UMD
TOF Clbr. Level	byStTOFCalLvl	0 <= x <= 15	TBD UMD
Features	wStFeatFlags	Flag Register	0
Dig. control	wStPwrCtrl	Flag Register	0
HV pwr cntrl	wStHVPwrCtrl	Flag Register	0
PHA range assignm.	TBD		
Priority definition	TBD		
DPPS commandable seq.	abyDPPSSeq[32]	0 <= x <= 31	0
DPPS seq. select	byDPPSSeqSel	0 <= x <= 3	0

11.7 Permanent Powered RAM

Table 44 : STICS related contents of the non-volatile RAM

Item	Variable	Values	Default
HVPS upper limit	abyIHVLim[5]	0 <= x <= 255	0
HVPS voltage set	abyIHVSet[5]	0 <= x <= 255	0
Energy threshold	abyIEThr[4]	0 <= x <= 63	5
Valid Event Logging	byIValEvLog	0 <= x <= 7	7
E-Calibration Level	byIECalLvl	0 <= x <= 255	TBD APL
TOF Clbr. Level	byITOFCalLvl	10 <= x <= 14	TBD APL
Dig. Control	wIFeatFlags	Flag Register	0
Power cntrl	wIPwrCtrl	Flag Register	0
HV pwr cntrl	wStHVPwrCtrl	Flag Register	0
PHA priority freeze	bIPHAPriorFreeze	On/Off Flag	0
PHA control	wIPHAControl	Flag Register	s.b.

Table 45 : ICS related contents of the non-volatile RAM

Item	Variable	Values	Default
Dig. Control	wDFeat		
Power Control	wDPwrCtrl		
Code connection jumps			
			1

Table 46 : DPU related contents of the non-volatile RAM

12. Housekeeping

The status channels for Telemetry A and Telemetry B transmit 3 byte status which are repeated every 32 S/C frame and which represent the power switching status of the DPU and of the analog electronics of both sensors. Another byte contains a subcom index and two bytes contain science-record-subcommutated data, each byte represents one subcom channel. During one science record, 192 bytes may be transmitted through each subcom channel on telemetry A and 48 channels can be transmitted through each subcom channel on telemetry B. The first channel (BYTE 4) is a copy of the HK data contained in the EDBs. The other channel is not implemented yet. During normal operation, the HK status data contained in the EDBs and the status data transmitted over the first subcom channel in the status bytes, are synchronous. This may change, if the S/C spin is not exactly 20 rpm.

<u>13. ICS</u> Rate Address Generation Definition

Prc	Nam	#r	#h	#sec	#spins	#b	addressing							-		
0	A	2	1	16	2	2	r	sp1	sp0	sc3	sc2	sc1	sc0	b1	b0	
							rate	buf	spi		S	ec		a	ccu	
															-	
1	В	1	1	8	2	2	r	sp1	sp0	sc3	sc2	sc1	b1	b0	4	
							rate	buf	spi		sec		ac	cu		
2	C1	14	2	16	1	2	r	sp1	h0	sc3	sc2	sc1	sc0	<u>b1</u>	b0	
							rate	buf	hd		S	ec		a	ccu	
-				_	_	_								1	1	
3	C2	14	2	8	2	2	r	sp1	sp0	<u>h0</u>	sc3	sc2	sc1	b1	b0	
							rate	but	spi	hd		sec		a	ccu	
	00			4.0	~	~								1		
4	03	14	1	16	2	2	r	<u>sp1</u>	<u>spu</u>	SC3	SC2	SC1	SCU	D1	001	
							rate	but	<u>s</u> pi		S	ec		a	ccu	
F		00	0	10	4	0	_	an 1	160	002	000	0.01	000	64		
5	DT	80	Z	16	1	2	1 roto	SD4	INU Ibd	SC3			SCU			
							late	Dui	Ina		5	ec		a	ccu	
e	50	00	C	0	2	2			002	hO	002	002	001	h1	ho	
0	DZ	00	2	0	2	Z	rato	<u>504</u> buf	<u>isps</u>	hd		1902	SCI			
							Tale	Dui	1901	mu		Set		accu		
7	БЗ	80	1	16	2	2	r	en/	en 3	603	<u>cc</u> 2	sc1	sc()	h1	h0	
'	00	00	1	10	2	2	rate	buf	Isni	300	<u>1302</u>		300	a l		
							lato	001			0	00		<u> </u>	000	
8	D4	80	1	8	4	2	r	sp4	sp3	sp2	sc3	sc2	sc1	b1	b0	
Ū			•	Ū.	•	_	rate	buf	s	<u> </u>		sec		a	ccu	
											•					
9	F1	50	2	16	1	2	r	sp5	h0	sc3	sc2	sc1	sc0	b1	b0	
							rate	buf	hd		S	ec		a	ccu	
										_	-					
10	F2	50	2	8	2	2	r	sp5	sp4	h0	sc3	sc2	sc1	b1	b0	
							rate	buf	spi	hd		sec		a	ccu	
													-	_		
11	F3	50	1	16	2	2	r	sp5	sp4	sc3	sc2	sc1	sc0	b1	b0	
							rate	buf	spi		S	ec		a	ccu	
														-		
12	F4	50	1	8	4	2	r	sp5	sp4	sp3	sc3	sc2	sc1	b1	b0	
							rate	buf	S	Di		sec		a	ccu	
														1.	-	
13	FA1	12	2	8	1	2	r	sp5	h0	sc3	sc2	sc1	b1	b0	4	
							rate	buf	hd		sec		accu			

14. Known Problems

13.Mar.91 The ICS motor movement will be interrupted during the first sectors of a spin, where the EDB is formatted.

6.June.91 Due to a bug in the job manager, it might happen that if a job deletes itself or other jobs which precede this job in the job table, the job next to the current job is not executed in that cycle where the deletion occurs.
This can happen for example while stepping a couple of HV in parallel. If one HV reached its maximum and deletes the stepping job, another HV might not be stepped up in that spin.

Since the ROM in segment E0000h was not built into the DPU, the DPU will report up to 5 ROM errors in each spin, since the software accesses this ROM up to 5 times per spin (guess why...)
15. Revision notes

4.2.91	First document release
28.2.91	Command execution synchronization notes added Changed HV PS names for ICS due to miswiring in ICS A/E flight model (I_HVCMD , I_HV_LIM , I_HV_LEV) Two tables updated due to new formatting scheme of ED2 (D instead of DA) and new
	addressing scheme of FA rates (sum over 4 sectors instead of 2)
13.3.91	Commands D_RANGE, D_HSKPG, D_PLDBAD, S_DF_SEQ, S_RANGE, I_PHACMD marked with warnings since they were replaced by parameter load commands.
5.4.91	Some editorial changes.
	Classification equations for STICS updated.
	Limits for mass & mass-per-charge classes updated
	Energy slope default value updated.
	Energy compression formula updated.
	Correlation between STICS bins and HR/MR/SMR described.
	STICS Deflection Voltage stepping sequence 2 updated.
	Switches in D_wATCHDOG command corrected.
	D_DIGCMD option 42 (load STICS box definition) documented.
	S HVCMD DPPS switches corrected (options 7.8)
	S PWRCMD options 8 and 11 undated (Main bias power is not inverted)
	Byte numbers for parameter undated
	Structure of parameter 30 (STICS box definition) updated.
6.6.91	Editorial changes
	Classification explained in more detail
	ICS PHA processing documented
12 August 93	Focus changed from "DPU User's Guide" to "EPIC Instrument User's Manual".
	Instrument Description added.
	All sections updated.
	Housekeeping and Command indexes added.
	Editorial changes.
	Index added.

Index basic bins 21 basic rates 21 block diagram 12 C1STICS 25 C2STICS 25, 26 C2 bound STICS 25, 26 Compression A scheme 208 C scheme 208 Energy PHA 32STICS 33 **Contamination** 19 D1 - D2 STICS 25, 26 Data processing 12 Data Processing Unit 17 Data Rate 2 Dead-times 248 Default ICS Mass classification parameters 37 STICS Mass/charge classification parameters 26 DPU Commands 180 D_ALARM_MON 197 D ALRLIM 199 D BAKE HTR 184 D_CMPRSS 207 D_DIGCMD 26, 32, 79, 194, 197, 209, 215 D_JOB 217 D_LUDET 190 D_MACRO 202 D_PARLDA 24, 26, 37, 79, 209, 211, 231 D_PARLDB 215, 216 **D_PATCH 194** D PLDBAD 216 D POWER 183 D_PRGADR 195, 196 D PRGLD 196, 212 D_PROM_MODE 188 D_PROM_SEL 189 D_PWRCMD 198, 223, 225, 233, 235 D_RESCONF 191, 192 D_SAVCONF 191, 192 D_SENCMD 218 D_SUNSET 201 D_WATCHDOG 193 HV 187, 198, 223, 225, 233, 235 I_BIGCAL 214, 247 I_CAL 214, 246 I_DIGCMD 39, 65, 241, 244, 245 I_DIRMOT 245 I_ECAL 239 I_EN_THS 237 I_HVCMD 233, 235, 279 I_HV_LEV 234, 235, 279 I_HV_LIM 234, 235, 279 I_MTRCMD 244 I_PR_OVR 40, 242

I_PWRCMD 236 I_SUP_HTR 186 I_TCAL 240 I_VALID 238 S CAL 214, 232 S_DIGCMD 214, 231 **S_ECAL 229** S_EN_THS 227 S_HVCMD 223, 225 S_HV_LEV 224, 225 S_HV_LIM 224, 225 S_PWRCMD 226 S_RANGE 31 S_SUP_HTR 185 S TCAL 230 S VALID 228 E1 - E3 STICS 25, 26 EADC ICS 34, 37 STICS 23, 24 EDB 46 DPU common areas 47 ICS area 63, 73 STICS area 61, 70 Emax ICS 37 STICS 24, 25 Emin ICS 37 STICS 24, 25 Energy Range 2 EOC ICS 34, 37 STICS 23, 24 Event word Sensor ICS 34 STICS 22 Telem ICS 39 STICS 31 event words 21 experiment data blocks (see EDB) format modes 42 geometry factor 2 high voltage supplies 12 HK Spacecraft 43 Index 280 instrument mode 46 Ion Composition Subsystem 12 Ion Species 2 ln(C1)STICS 26 Mass 2, 4, 7 mass classes 21 Mass classification parameters **ICS 37** Mass coefficients, A1 - A6 ICS 34.37 STICS 22. 23 Mass coefficients, B1 - B6

STICS 23, 24 mass-per-charge classes 21 Mass/charge classification parameters STICS 26 microchannel plates 12 mmax STICS 23, 24 mmin STICS 23, 24 mq STICS 25 mqmax STICS 25 mgmin STICS 25 NMAX STICS 23, 24 Notes 282 NQMAX STICS 25**Operational modes 9** PHA 21 ICS 39STICS 31 Ports COMREG 252 $C_COM 256$ $C_STAT 255$ LUTEST 251 MREG1 252 **MREG2 254** $PREG1\ 253$ SCICMD 253 Power 2, 4, 7, 9 Purge 19 rates 21 **Resolution 2** S.deflection STICS 25 schematic diagram 3 science bins 21 science rates 21 science record 22science record (see SR) Sector dead-times 248 sectors 21 Size 7solid-state detectors 12 Species channels ICS 34 STICS 26 spin 21SR 46 Status bytes 44STICS 2 SupraThermal Ion Composition Spectrometer 14 TADC ICS 34, 37 STICS 23, 24 Τm STICS 25 Tmax ICS 37

STICS 24, 25 Tmin ICS 37 STICS 24, 25 TOC ICS 34, 37 STICS 23, 24 TOF 2 Venting 19

<u>Notes</u>