SOLAR MESOPHERE EXPLORE VISIBLE SPECTROMETER RADIANCE DATA 1982-1986

The visible spectrometer samples data at two wavelengths at a given time. The limb altitude radiance profiles from the visible spectrometer with identifying data are on the tapes. See Mount et. al., 1984 for additional information about the data.

The visible spectrometer was designed to observe limb radiances at two wavelengths simultaneously. There is a short channel radiance and a long channel radiance given for each merged spinset. Data exists for altitudes from 20 to 76 km. Several grating positions have been used, none is continuous throughout the mission. The wavelengths corresponding to the two channels are dependent on which grating position was used. Possible grating positions and the corresponding wavelengths are:

Grating position	long channel	short channel
333	431.84 nm	428.75 nm
344	435.59 nm	432.50 nm
364	442.38 nm	439.31 nm
363	442.04 nm	438.92 nm

Individual spin radiances were calibrated and had a background subtracted before merging. We actually merge the long channel and the ratio of the two channels, the short channel included on the tapes was reconstructed from those two profiles. Radiances are also adjusted for instrument polarization.

After calibrating, the spins (which are data collection rotations of the SME satellite) are merged into groups of up to six spins. Wildpoint and wild spin checking occurs before merging. In order to average together six spin radiance profiles, each profile was interpolated onto a standard altitude grid. This data was then averaged together. The latitude resolution of the merged profiles is about five degrees. These merged profiles are later used as input for the nitrogen dioxide inversion routine.

The radiance data from the visible spectrometer is written in standard ASCII labeled format with one orbit per file. Each orbit consists of 20 to 60 (approximate range) merged spin sets. Filenames are of the format VSxxxxx.NSS, where xxxxx is the orbit number. The data set consists of 23 tapes containing radiance data from Day 1, 1982 through Day 354, 1986. The following is a listing of tapes and orbit intervals contained on the tapes:

Tape Label	Orbit Interval	Number of Orbits on Tape
VIS001	1316-1999	253
VIS002	2000-2999	358
VIS003	3003-3996	426
VIS004	4000-4898	408
VIS005	4901-5997	381
VIS006	6001-6997	281
VIS007	7002-7996	331
VIS008	8001-8991	323
VIS009	9001-9996	323
VIS010	10001-10991	324
VIS011	11000-11992	326
VIS012	12002-12993	319
VIS013	13001-13994	324
VIS014	14002-15298	424
VIS015	15306-16890	420
VIS016	16903-18997	480
VIS017	19000-20758	399
VIS018	20800-22594	461
VIS019	22606-23996	454
VIS020	24000-25493	447
VIS021	25501-26899	467
VIS022	26900-27699	591
VIS023	27700-28786	311

The ASCII format of the merged spin set data files follows:

FIRST RECORD IN EACH FILE:

$\underline{\mathbf{Format}}$	Description
1X,I5	Orbit number
1X,I4	Year
1X,I3	Julian Day
1X,F8.2	Seconds into day (GMT) at start of orbit
1X,F7.2	Longitude of equatorial crossing
23(1X,F5.2)	Altitude profile (note: The grid interval is
	not constant, it is 1.75 km in the lower part
	of the profile, and 3.5 km in the upper part.)
1X,I2	Number of profiles in this orbit

MERGED SPIN RECORDS:

<u>Format</u>	<u>Description</u>
1X,I4	Year
I3	Julian Day
F8.2	Seconds into day (GMT)
F6.2	Latitude of merged spin set
F7.2	Longitude of merged spin set
F5.2	Solar zenith angle
I2	Number of spins in merged set (1-6)
13	Grating position of merged set
23F8.2	Long channel radiances
23F8.2	Short channel radiances

NOTES ABOUT THE DATA

1. An altitude shift has been applied to the data to put it on the best altitude grid

that we can determine. A good assumption is that the altitudes are correct within \pm 1 km.

2. Missing radiance data is set to 0. Negative data is a consequence of the data reduction in that a background had to be calculated and then subracted off. Negative values should only occur at high altitudes. If it does occur at lower altitudes, it would be best to ignore the profile.

3. The altitude scale is actually made up of 2 scales, a lower one with a spacing of 1.75 km and an upper one with a spacing of 3.5 km. This was done to make the NO2 inversions easier.

4. A value of -1 for equatorial longitude indicates missing data.

NOTES ABOUT THE TAPE

The physical characteristics of the tapes are:

Density

1600 bytes per inch

Tracks

9

Blocksize

408 bytes

Label

VISxxx, where xxx is the tape # in the series

SME VISIBLE SPECTROMETER REFERENCES

- Barth, C.A., R.W. Sanders, G.E. Thomas, G.J. Rottman, D.W. Rusch, R.J. Thomas, G.H. Mount, G.M. Lawrence, J.M. Zawodny, R.A. West and J. London, Solar Mesosphere Explorer measurements of the El Chicon volcanic cloud, Bull. Amer. Meteor. Soc., 63, 1314, 1982.
- Barth, C.A., D.W. Rusch, R.J. Thomas, G.H. Mount, G.J. Rottman, G.E. Thomas, R.W. Sanders, G.M. Lawrence, Solar Mesosphere Explorer: Scientific objectives and results, Geophys. Res. Lett. 10, 237-240, 1983.
- Mount, G.H., D.W. Rusch, J.M. Zawodny, J.F. Noxon, C.A. Barth, G.J. Rottman, R.J. Thomas, G.E. Thomas, R.W. Sanders, G.M. Lawrence, Measurements of NO₂ in the Earth's stratosphere using a limb scanning visible light spectrometer, Geophys. Res. Lett. 10, 265-268, 1983.
- Mount, G.H., D.W. Rusch, J.F. Noxon, J.M. Zawodny, and C.A. Barth, Measurements of stratospheric NO₂ from the Solar Mesosphere Explorer satellite. 1. An overview of the results, J. Geophys. Res. 89, 1327-1340, 1984.
- Naudet, J.P. and G.E. Thomas, Aerosol optical depth and planetary albedo in the visible from the Solar Mesosphere Explorer, J. Geophys. Res. 92, 8373-8381, 1987.
- Naudet, J.P., R.J. Thomas, D.W. Rusch and R.T. Clancy, Distribution of Stratospheric NO₂ at 10 mbar: SME global morphology and comparison to LIMS observations, J. Geophys. Res. 92 9863-9867, 1987.
- Naudet, J.P., D.W. Rusch, R.J. Thomas, R.T. Clancy, C.A. Barth, J. Wedding, J.M. Zawodny, P Fabian and M. Helten, Stratospheric NO₂ from the Solar Mesosphere Explorer during MAP/GLOBUS 1983, Planet. Space Sci. 35, 631-6635, 1987.

- Rusch, D.W., G.H. Mount, J.M. Zawodny, C.A. Barth, G.J. Rottman, R.J. Thomas, G.E. Thomas, R.W. Sanders, G.M. Lawrence, Temperature measurements in the Earth's stratosphere using a limb scanning visible light spectrometer, Geophys. Res. Lett. 10, 261-264, 1983.
- Solomon, S., G.H. Mount, and J.M. Zawodny, Measurements of stratospheric NO₂ from the Solar Mesosphere Explorer satellite. 2. General morphology of observed NO₂ and derived N₂O₅, J. Geophys. Res. 89, 7317-7321, 1984.
- Thomas, G.E., C.A. Barth, E.R. Hansen, C.W. Hord, G.M. Lawrence, G.H. Mount, G.J. Rottman, D.W. Rusch, A.I. Stewart, R.J. Thomas, J. London, P.L. Bailey, P.J. Crutzen, R.E. Dickenson, J.C. Gille, S.C. Liu, J.F. Noxon, and C.B. Farmer: Scientific objectives of the Solar Mesosphere Explorer mission, *Pageoph*, 118, 591-615, 1980.
- Zawodny, J.M., Short-term variability of nitrogen dioxide in the winter stratosphere, J. Geophys. Res. 91, 5439-5450, 1986.
- Zawodny, J.M., and D.W. Rusch, Seasonal behavior of NO₂ in the winter stratosphere: Inferred NO_x, J. Geophys. Res. 91, 5451-5454, 1986.