
Chapter 4

4. xSonify – The Application

This chapter describes the functionality of xSonify followed by the detailed structure
and technical inner life.

1

Figure 4.1: xSonify Main Window

1

3

2

6

7

4

5

8

4.1.1 Functional Survey – How xSonify Works
Before I explain the handling of xSonify I would like to give a general overview how
the application works. As mentioned in the beginning of this thesis the program
provides basically the opportunity to display numerical data as sound with the help of
three different kind of sound attributes. Attributes like the pitch, the volume and the
rhythm of sound.

In order to start the Sonification process the numerical values have to be converted
into values of the internal data structure. The data values of this structure are floating
point variables in the range from 0.0f to 1.0f.

0.0f represents therefore the smallest and 1.0f the largest value of the original data.

To realize the idea of Sonification, xSonify takes advantage of the MIDI support from
JAVA. To display the information of numerical data for instance by dint of the pitch of
a played music instrument the smallest value (0.0f) represents the lowest frequency
and the largest value (1.0f) the highest frequency according to the settings. Each tone
represents one value and the whole sequence of different tones accordingly the whole
dataset.

The user can also assign different Sonification modi or different instruments to each
dataset. This option is necessary if the user wants to distinguish the different datasets
while listening to them at the same time.

Sonification provides naturally also a chance for blind scientists to work with data and
needs speech support. xSonify provides the user optionally with its own speech
support software – independent from commercial screen reader software.

4.1.2 How ToWorkWith xSonify

Figure 4.1 shows the main window of xSonify. Basically the application is based on
different software modules and the GUI Module is one of them. It would be even
possible to operate xSonify from the console without the GUI support or to replace it
with another GUI by paying attention to the interfaces. The main window is separated
in different sections. Beginning with the menu bar (1), the “Sonification Object” (3)
section and the “Player Control” (5) section.

To work with the application the user has to import the data he wants to sonify. In
order to do that he has two options:

• He can use the function “File => Import Data” which is based on a resource toolkit
from the application ViSBARD. With this function he can access a remote database
or a local file in order to retrieve the data. Both ways handle files with the formats
like *.cdf and *.vba.

•
• The second option to retrieve data is with the function “File => Import Data
Textfile”. This option simply reads a text file with the data according to the file
structure explained in Chapter 4.2.3.5 Package: textfile.

2

After the data are successfully imported the Sonification procedure can begin. The
new imported data create for each Sonification object one panel (3). The “Quick
Object Selector” (2) provides an overview of the existing data objects and the user can
select the requested data object directly without scrolling to it.

Each Sonification object panel exists of a data plot (4) which plots the data as a
simple diagram. Later on during the play-back a cursor displays the current position in
the sequence. It is also possible to define bounds of the displayed object.

xSonify provides also a pool of functions (5) which can be applied to the
corresponding object.

On the right side of each Sonification object (3) a tabbed field (6) with the choice of
three Sonification modi including their appropriate settings (7) enables the user to add
the specific Sonification object to the sequence.
It is only possible to apply one modus for one Sonification object. If none of the three
modi is selected (7) the whole Sonification object will not be considered for the
Sonification procedure.

The sequence will be created and played after a click on the “Play” button in the
“Sonification Control” panel (8). The play-back can be interrupted or changed into an
endless loop. It is also possible to change the playback-speed and to move the current
position directly by moving the sliders.

The GUI components and their actions can be optionally read by xSonify.
Independent from screen reader software this feature opens up visually impaired
people the usage of this application.

The following Chapter 4.2 Technical Architecture will deal with the detailed technical
background of xSonify.

3

4.2 Technical Architecture
During the design phase of the application I focused on modularization which has the
following advantages:

– easy to understand
– easy and quick replacement of existing modules
– structured and clearly arranged

Additionally to this chapter I would like to refer to the Java documentation of xSonify
which is available as HTML files and the Appendix A and B which comprises the
UML diagrams.

4.2.1 Module Overview

For the abstraction of the modules I chose a very simple meta view to display the
different modules and classes while displaying the direct relationships between the
individual modules as the overlapping areas.

Every single module can be considered as its own package in the program hierarchy
and contains at least one class or interface. The single modules will be introduced in
the following chapters and the detailed class information can be found in the HTML-
Documentation.

4

Figure 4.2: Module Overview

4.2.2 Sonification Core Module

As the name already describes, this module is the core piece of xSonify which
includes also the main function in the Sonification_Core class. Beside this main class
the module contains also other classes which are representing the internal data
structure of xSonify. This data structure keeps internally the data after the data import.

4.2.2.1 Class: Sonification_Core

The Sonification_Core class is the entry point into xSonify. Beside the main function
it also has several functions to control the data import, create the GUI(Graphical User
Interface) and an instance of the Sonification/Sound Module. It also provides an user
interface consisting of a specific list of functions which can be invoked by typing in
letters into the I/O-console in case the GUI module is not included.

The start procedure with all the creation and initializations activities are described in
detail in the appropriate UML diagrams.

The to most important variables in this class are the:

– llSonification_Object_original

– hSonification_Object_original.

They contain the original data objects thru the whole program duration in the structure
which will be described in the next chapters. There are two structures where the
references to the data objects are kept. The first is a LinkedList which is preferably for
appliances concerning the whole data. The second is a HashMap which is for the
appliance of functions on selective data objects.

5

Figure 4.3: Sonification Core Module

4.2.2.2 Class: Sonification_ObjectBuilder

Sonification_Object_Builder is the foundation or base class for xSonify's internal data
structure. It organizes and keeps the original data right after the import for the whole
time the application is running. It builds initially the internal data structure of xSonify.
It creates instances of the class Sonification_Object. Every instance of the
Sonification_Object represents a combination of an original variable from the source
datasets and the corresponding time. The detailed body of the Sonification_Object
class however will be explained more in detail in the following two subchapters.

The instances of the Sonification_Object classes are stored in two different kind of
data structures. The first is a LinkedList and the second is a HashMap. The reason for
this is easy. For functions (e.g. BuildStandardTransformedList() in class
Sonification_Object_Transform) that want to access all the Sonification_Objects
sequentially, the fastest way to do this is to run thru all the elements of a Linked List.
But if a function needs to access a certain Sonification_Object directly by delivering
the name of the object a data collection like a HashMap could be very useful (e.g.
doStandardTransformation(String sobjectname) in class Sonification_Object_Trans
form).

Before the user quits the application the two data objects llSonification_ObjectList
and hSonification_ObjectList are stored automatically in a persistent external file
called “lastsession.obj”. During the program start it checks if such a file exists and if
so it will be used and the data from the last session will be recovered as default
values. If not, the data object panel is empty and can be filled by importing data.

6

Figure 4.4: Class - Sonification_ObjectBuilder

4.2.2.3 Class: Sonification_Object

As mentioned before this class is an important part of the internal data structure of
xSonify. Every Sonification_Object represents a certain variable, attribute or
measurement parameter of an space science file. Each single Sonification_Object is
added into the LinkedList and HashMap data structures as a reference.

All the single Sonification_Object_Value instances are stored in an array list which is
represented as the green symbols.

Every Sonification_Object has beside the object name also very important parameters
like the minimum and maximum of all the x and y variables and additionally
information about bounds which are initially set to the minimum and maximum
respectively. The Sonification takes place only within the valid bounds.

7

Figure 4.5: Class - Sonification_Object

4.2.2.4 Class: Sonification_Object_Value

The object which contains the actual data values of a certain Sonification object is an
instance of the class Sonification_Object_Value (Figure 4.5: Class -
Sonification_Object). It holds two value of the data type Double. The first value
represents the corresponding time (Double: dX_Value) of a measurement and the
second contains the acquired value itself (Double: dY_Value).

8

4.2.3 Data Import Module

As mentioned before xSonify should be used as a standalone program as well as a
additional software module for already existing space science applications. In the
second case it is necessary to have an interface to retrieve the data from the
applications internal data structure.

4.2.3.1 Interface: DataImport

As a result of the variety of data import opportunities(e.g. import from a textfile) it is
necessary to build a kind of standard of allowed functions which can be called by the
class Sonification_ObjectBuilder access the data from the appropriate data import
class like DataImportVisbard and DataImportTextfile. Classes like the mentioned have
to implement this interface DataImport which defines the necessary functions. This
interface makes sure that the necessary function will be implemented.

4.2.3.2 Class: DataImportVisbard

The purpose of this class and all of the DataImport-classes is to request data from
outside the application xSonify and prepare them for an easy and standardized access
from inside the application by objects of the classes like Sonification_ObjectBuilder.
The class creates an object of the class visbards_resourcetoolkit_main and has thus
access to the internal data structure of the visbards_resourcetoolkit.

9

Figure 4.6: Data Import Module

4.2.3.3 Class: DataImportTextfile

This class looks from inside the application xSonify the same like the class DataIm-
portVisbard does. It offers the same selection of functions as the interface Data-
Import which both classes are implementing. Inside the functions of course the
implementation looks different since they have to communicate with an instance of
the class TextfileParser created in the constructor of DataImportTextfile.

4.2.3.4 Package: visbards_resourcetoolkit

This package is a very complex data retrieval module from another application
(friendly supported by the ViSBARD team) which allows the application to retrieve
space science data stored for example in CDF files locally or from remote databases
via the Internet.

4.2.3.5 Package: textfile

The class TextfileParser from this package provides an opportunity to access text files
for the data retrieval. It includes the selection of the file by a FileChooser and is
basically a text parser which takes advantage of Java's StreamTokenizer class. The
data are stored in a data structure similar to the xSonify's internal data structure
consisting of an ArrayList which has as elements LinkedList's for the amount of single
values. Each LinkedList represents one column of values of the text file. The first
element (index 0) is the name of the column if available or an automatically created
name like “Time, Value_1, Value_2”.

The text file is basically organized in columns. Each column represents one data
object whereas the first column needs to represent the time axis. Optionally the first
line of every column can also be a text describing/naming the object whose values
follow the lines underneath.

In order to read the data from a file it needs to be structured like the following Backus
Naur Form:

<file> ::= [<header_line>] {<data_line>} <EOF>

<header_line> ::= {<header_text><TABULATOR>} <EOL>
<header_text> ::= {<letter> | <digit> | <special>}

<data_line> ::= {<data_value><TABULATOR>} <EOL>
<data_value> ::= {<digit> | <special>}

<letter> ::= a | b | . . . | z | A | B | . . . | Z
<digit> ::= 0 | 1 | 2 | . . . | 9
<special> ::= .

10

4.2.4 GUI (Graphical User Interface) Module

To ease the user interaction with xSonify the application provides of course a
graphical user interface. The main class of this module is the class
Sonification_MainWindow and comprised of the following classes.

4.2.4.1 Class: Sonification_MainWindow

An instance of the class Sonification_MainWindow is created by the main class or
rather core class Sonification_Core. It receives a reference to an object of the
Sonification_Object_Transform class and another reference to an object of the
SonificationSound class. The Sonification_MainWindow builds the GUI together with
the following classes in this chapter. The GUI can be split up in several sections.
Sections like the menu, Sonification object area which contains a list of all loaded
data objects and the third section which represents the Sonification player control. The
Sonification object area itself contains again some subareas. Each area is realized by
a subclass of JPanel.

11

Figure 4.7: GUI Module

4.2.4.2 Class: Sonification_DataObjectPlotPanel

This panel unites the two panels of the following two classes in this chapter. It was
created to separate the objects of the two classes since the class Sonification_Data
ObjectPlotGraphPanel contains the graphical plot based on Java 2D technology. A
repaint or rather a refresh of this panel can be made independently to the other panel.
Another reason is also to keep it more structured and easier to understand.

4.2.4.3 Class: Sonification_DataObjectPlotGraphPanel

Objects from this class display the data graphically in a 2D plot. As mentioned before
the applied technology is Java 2D. To accomplish the graphical display it was
necessary to prepare the data by mapping all the values in a range from 0 to 1 in a
parallel data structure which is explained in detail in Chapter 4.2.6 Data
Transformation Module.

Beside the graphical display of data the graph gives also information about the current
position in the played Sonification sequence in form of a vertical, red line and bounds
of the area which is supposed to be sonified. The bounds appear as green lines and can
be set in the panel which is described in the following chapter.

12

Figure 4.8: Class - DataObjectPlotGraphPanel

4.2.4.4 Class: Sonification_DataObjectPlotOptionsPanel

To modify the data in the plot and also later on for the Sonification this panel provides
some functions to limit the area which has to be sonified. Limits like an upper and
lower bound of the x- and y-values. It also offers to apply an inversion and square of
the y-values and of course the standard function which brings the values back into the
original state.

Another function is to build the average over y-values. The criteria how to build the
average can be defined in the by choosing between the three radio buttons. The result
can be seen in the plot immediately after the selection.

13

Figure 4.9: Class - Sonification_DataObjectPlotOptionsPanel

4.2.4.5 Class: Sonification_DataObjectOptionsPanel

To select and to configure a data object for the Sonification procedure this class offers
functions for the choice of the Sonification modus, instrument and strength of the
played instrument. The different Sonification modi are represented in the
JTabbedPanel and can be selected and configured.

4.2.4.6 Class: Sonification_PlayerControlPanel

The main goal of this software solution is to explore the data as mentioned in the
summary. The scientist should be able to “play” with the data by using the user
interface. Therefore it is necessary to provide the user with extended control functions
additionally to a simple “Play” and “Stop” button.

Functions like setting the current sequence position or the speed of the sonified data
sequence.

14

Figure 4.10: Class - Sonification_DataObjectOptionsPanel

Figure 4.11: Class - Sonification_PlayerControlPanel

4.2.5 Sonification/Sound Module

This module of the application represents the technical conversion of the data into
sound. For the general technical background of the Java Sound API I would like to
refer to Chapter 3.5 MIDI. For the better understanding of the activity there is also an
UML diagram in Appendix B.

4.2.5.1 Class: SonificationSound

The class SonificationSound identifies the selected Sonification objects, chosen
Sonification modi and instruments. It creates with classes of the Java Sound API,
which is described in Chapter 3.5 MIDI a MIDI sequence which can be played and
navigated by the functions of the PlayerControlPanel class in the GUI.

The core of this class builds the function createSequence() which puts the single MIDI
events according their mapped values of the data structure together to tracks and
finally to a sequence.

The different variations of Sonifications like

– pitch

– volume/loudness

– rhythm

are generated in the SonificationSound class as well.

15

Figure 4.12: Sonification/Sound Module

4.2.5.2 Class: SonificationSound

Design Pattern in Sonification/Sound Module: Observer Pattern

Unfortunately the development of the Java Sound API from Sun seems in comparison
to other Java technology packages a little bit neglected. Especially the limited range
of functions of the sequencer class implied to create solutions like the graphical
update of the current position of the sequence which was solved by a popular design
pattern: The Observer Pattern.

This observer pattern shows that there are two observer objects which are waiting for
the invocation of their update(sequencePosition) function as the current sequence
position as parameter. As soon as the sequence is started in the sequencer, a thread in
the class SequenceProgressReporter will be set into the state “running”. The thread
checks every 400 milliseconds the current position of the played sequence and calls
the notifyObservers(sequencePosition) function in the class SequenceProgress
Reporter which is a subclass of the class Observable. This invocation forces the
observable object to call the function update(sequencePosition) to set the current
sequence position in the two Observer objects.

16

Figure 4.13: Class - SonificationSound

4.2.6 Data Transformation Module

The raw data as they are stored in xSonify's internal data structure (Objects:
llSonification_Object_original, hSonification_Object_original) can be considered as
the initial point of the data operatorability. This data structure is used to build a
transformed data structure similar to the original data structure but with transformed
values. Transformed means the values are mapped into a value range between 0 and 1.
The advantage of this procedure is to make the data available in an independent form
regarding their ranges and scales.

In order to support the researchers in gaining better results from the scientific aspect
the application needs to have the ability to transform or rather to change the data for
their purposes. For the execution of transformations xSonify provides the user with a
selection of different functions introduced in the following sub chapters.

Every result of the appliance of such a function can be seen immediately in the 2D
plot and later on heard during the play of a sequence. Technically there is only the
public function objectTransformation() which invokes the appropriate private
functions need for the requested transformation.

This function can be considered as a relay function which receives certain parameters
and decides which functions inside the class Sonification_Transform need to be
called.

4.2.6.1 Functionality “Standard”

The function “Standard” is the initial function which is invoked right after the start of
the application the first time. After every appliance of a function the initial state can

17

Figure 4.14: Data Transformation Module

be reached by calling this function again.

4.2.6.2 Functionality “Inverse”

Sometimes it is just useful to see thing inverse. The function “Inverse” displays every
y-value upside down. It just inverts every standard value which is basically in the
range of 0 < y < 1.

4.2.6.3 Functionality “Square”

The function “Square” builds the square of every single y-value in the transformed
data structure. To square every value is for certain variables important to compute
power from energy.

4.2.6.4 Functionality “Logarithm”

The function “Logarithm” builds the logarithm of every single y-value in the
transformed data structure. This function makes sense if some of the values are tight
together. After the function the values are stretched which improves the identification.

4.2.6.5 Functionality “Average”

The function “Average” combines the single values to groups and builds the average
of all y-values inside a group. The size of the groups depends on the values in the
appropriate JSpinner box of the Sonification_DataObjectPlotOptionsPanel. The
visual result of this function can be seen in the plot as a kind of histogram and be
heard as sound with a longer duration.

18

4.2.7 Speech Module

To enhance the user interface especially for visual impaired people the Speech
Module will give xSonify the ability to talk. The class Sonification_Speech is based
on the Java Speech API.

The creation of an object of this class takes place in the Sonification_Core class and
the reference to this instance will be passed to instances of the GUI module. Wherever
an event occurs (e.g. FocusEvent for a SWING component) which requires an verbal
output the function speak(Text) can be called with the spoken text as the function
parameter.

19

Figure 4.15: Speech Module

4.2.8 Data Export Module

After the Sonification sequence was generated successfully and the result seems
promising to the scientist it is very useful to archive this sequence as a sound file. It
could be also very useful to exchange this result with other colleagues or as material
for a presentation for example. Hence it is necessary to provide this sequence in a
common sound format.

The class Sonification_Export should provide methods to deploy the Sonification
results as common sound formats. Beginning with the *.mid format in future the class
should be extensible for more sound file formats like *.wav and *.mp3.

20

Figure 4.16: Data Export Module

4.3 Implementation of xSonify as a module into existing applications

As mentioned in Chapter 2 – Existing Space Science Applications, xSonify can also
be added into applications as a module.

4.3.1 Implementation in TIPSOD and CDAWeb+

The appearance of xSonify in the applications TIPSOD and CDAWeb+ will be limited
to a simple button or menu item. As soon as this component is activated a new
instance of the application xSonify will be created and a new independent window
containing the application pops up at the screen. Unfortunately the two applications
TIPSOD and CDAWeb+ don't have an internal data structure of the focused data so
that the data retrieval and access needs to be managed autonomously by xSonify.

4.3.2 Implementation in ViSBARD

In comparison to the first two applications, xSonify can be fully implemented in
ViSBARD. One way of xSonify's data import is based on ViSBARD's “Resource
Toolkit” and xSonify accesses consequently the internal data structure of ViSBARD.

The following sequence diagram should illustrate how the invocation of the
Sonification module takes place.

The class DataImportVisbard in the Data Import Module needs to be adapted. In order
to do this it is necessary to add further constructors into the classes Sonification_Core
and DataImportVisbard with VisbardMain as parameter. The first instruction within
the new constructor of the class Sonification_Core should be the initialization of the

21

Figure 4.17: Implementation Of xSonify

reference dDataImport like:

try{

dDataImport = new DataImportVisbard(visbardmainobject);

}

catch(Exception e){}

It is also necessary to remove the original DataImport functionality from xSonify.

22

