
Chapter 3

3. Employed Technologies And
Standards

This chapter should provide the reader with some fundamental knowledge of
technologies and standards which are used in xSonify. It starts with the motivation of
why I chose Java 1.5.0 and will be followed immediately by the introduction of the
Java Sound API. The whole xSonify application should be executable via the Internet.
The tool which supports us in this issue is the Web Start technology from Sun. The
application will retrieve the data via the Internet as well and needs therefor a reliable
way to achieve this. SOAP will cover this task and will be explained in detail in
chapter 3.4. MIDI is the standard which will be used for the sound generation and
handling. Since chapter 3.2 covers mainly the Java Sound API in chapter 3.5 MIDI
will be introduced more in detail. To finish this chapter we will have a deeper look in
the Common Data Format in which most of the space science data are handled.

3.1 Java 1.5.0
For xSonify the main reason for choosing Java Version 1.5.0 was mainly the enhanced
Java Sound API beside all the the other goodies which came with Java Tiger.

• Ports are now available on all platforms

• MIDI device i/o is now available on all platforms

• Optimized direct audio access is implemented on all platforms.

• The new real-time Sequencer works with all MIDI devices and allows unlimited
Transmitters

• The sound.properties configuration file allows choice of default devices

• MidiDevices can query connected Receivers and Transmitters

1

• The Sequencer interface is extended with loop methods for seamless looping of
specific portions of a MIDI sequence

• Java Sound no longer prevents the VM from exiting

3.2 Java Sound API

3.2.1 Java Sound History

A long time ago before MP3 & Co. was invented when Sun Java Version 1.02 was
state of the art, the Java technology only had the capability to play simple AU format
sounds with a sampling rate of 8 kHZ. In these days the Java applet demos still came
with such classic hits like spacemusic.au and yahoo.au.

In Sun Java 2 Version 1.2, Sun Microsystems improved the quality of Java audio by
implementing the Headspace Audio Engine by Beatnik Corporation1. Java
programmers could now use the same audio interfaces but with the additional
capability of playing more formats like AU, WAV, AIFF, MIDI, and RMF sounds.
Although the sound quality was improved to CD audio levels which has a sampling
rate of 44 kHz. But there still was no programmatic way to pause and resume a sound,
display a progress bar, or get a notification that your sound was completed.

Only with Sun Java 2 Version 1.3 the Java Sound API introduced many new
capabilities for the audio software developers including pause and resume, progress
bars, and sound completion events. Java Sound offered also the software mixer which
could mix up to 64 channels of sampled or synthesized audio. The MIDI synthesizer
supports since then wave table synthesis that programmers can access by loading the
programmable sound bank. The API has also an interface to record and save sampled
or MIDI files. With this step in the development of the Java Sound API it has become
more mature and therefore more attractive for sound applications developers.

Unfortunately, until today with Sun Java 2 Version 1.5 the Java Sound engine can not
take advantage of a very enhanced audio board since the audio hardware acceleration
is limited. The synthesis and mixing are software based, so playing MIDI audio with
Java technology will have more of an effect on your CPU usage than if you play the
MIDI file with a native audio program. This is similar to how Java 2D performs great
graphic manipulations but does not take advantage of a hardware accelerated video
board. By doing the work in software, Java technology gives you cross-platform
portability but at the expense of high performance and low CPU utilization.

1 http://www.beatnik.com/

2

3.2.2 Class Overview

The Java Sound API2 includes support for both digital audio and MIDI data. These
two major modules of functionality are provided in separate packages:

2 http://java.sun.com/j2se/1.5.0/docs/guide/sound

3

Figure 3.2: Java Sound API

Figure 3.1: Java 2 Components

In the left area of figure 3.2 you can see the two “sampled” packages which are
handling digital audio. Java Sound API refers to it as sampled audio. Samples are
successive snapshots of a analog signal. I will not explain the use of this package
further since it is not used in this software application. In the right area there are the
two “midi” packages for MIDI synthesis, sequencing and event transport.

The two lower packages “spi” in figure 3.2 permit service providers to create custom
software components that extend the capabilities of an implementation of the Java
Sound API. “spi” stands for service provider interface.

The Java Sound API does not assume a specific audio hardware configuration; it is
designed to allow different sorts of audio components to be installed on a system and
accessed by the API. The Java Sound API supports common functionality such as
input and output from a sound card (e.g. for recording and playback of sound files) as
well as mixing of multiple streams of audio.

3.3 Java WebStart

3.3.1 Introduction Of Java Web Start

Java's Web Start is actually the reference to the implementation of the specification of
JNLP3 which stands for Java Network Launching Protocol and API. The JNLP can be
defined as a protocol that enables Java clients to deploy themselves on the client and
run as if they were local applications. This reminds the Java developer at the
beginning probably first of what Java introduced earlier as applet.
Java applets have basically a big size and are slow in execution. Users generally are
not patient enough to wait for an applet to load from the network, check security
permissions and then see the information. If an applet comes up with swing
components the wait is doubled. JNLP has overcome many of the difficulties of
applets.
Java Web Start is a JNLP client that allows Java applications with a single click to be
downloaded onto the client machine and runs them in the “Java security Sandbox”.
Java Web Start is therefor a reference implementation provided by Sun to show the
features of JNLP which allows a developer to create Java applications that can be run
on a client without any installation procedures.

Java web start brings in all the security of the “Java sandbox” which means that you
can run an application with the confidence that it will not over step and meddle with
files on the client machine. It also brings the flexibility of using Java applications with
swing or AWT without the hassle of downloading huge swing jar files each time the
application is run. Java web start is designed to download all the files required the
first time it is invoked from a Web page. After the first download the user has even the
option to include a shortcut to the application directly on the windows start menu if he
uses Microsoft Windows. Subsequent runs of the application can be done using the
shortcut which would then run locally. The application can be designed to check for
updates on the server to refresh the existing local copy with the changes made since
the last access.

3 http://java.sun.com/developer/technicalArticles/Programming/jnlp/

4

The important features4 of JNLP are:
• It is a Web-based Application Architecture where applications can run locally using

resources spread over the web.
• It provides for an installation free client application that can keep itself in sync

with the updates on the server.
• It also provides for a facility to make incremental downloads and updates over a

period of time.
• It offers the flexibility to run Java applications on different versions of JRE. The

JRE can be can be downloaded if the version is not present on the machine.
• It offers a caching facility which can cache the application locally on the client

which saves time the next time the application is run on the client.
• Applications can be run offline on the client machine after they are initially

downloaded thereby decoupling them from the server.
• It offers a secure environment to execute applications like applets but it also

provides flexibility within the API to do potentially insecure actions with a warning
to the user.

The JNLP API and Java Web Start have been part of the J2SE since version 1.4.

3.3.2 JNLPTechnology5

JNLP is a XML based specification. The heart of JNLP technology is a JNLP file. It is
a XML file that describes the different attributes used to describe the application.
Shown below is a JNLP file with a few attributes:

<?xml version="1.0" encoding="utf-8"?>
<jnlp spec="1.0+"codebase="http://server.com">

<information>
<title>Title</title>
<vendor>MY company</vendor>
<description>Demo Application</description>
<icon href="icon.jpg"/>
<offline-allowed/>

</information>
<security>

<all-permissions/>
</security>
<resources>

<j2se version="1.3"/>
<jar href="lib/SwingSet2.jar"/>

</resources>
<application-desc></application-desc>

</jnlp>

The jnlp element is the root element that has a set of attributes that are used to specify
information that is specific to the JNLP file. The information element describes meta-
information about the application like title, description, vendor etc. The security
element is used to request a trusted application environment, why applications need to

4 http://javaboutique.internet.com/tutorials/WebStart/
5 http://javaboutique.internet.com/tutorials/WebStart/

5

be trusted will be discussed later in the security section.

The resources element specifies all of the resources that are part of the application,
such as Java class files, native libraries, and system properties. The last part of the
JNLP file defines the kind of application. It could be one of the following four
options: application-desc, applet-desc, component-desc, or installer-desc.

If an application-desc is defined in a JNLP file then it's an application descriptor. The
application-desc element describes the application and the attributes required to
invoke it.

<application-desc main-class ="SampleApplicationClass">

<agrument> arg1</agrument>

</application-desc>

The main-class is the Java class file which contains the main method that needs to be
run. Any arguments that might be required may be passed in the argument element.

When the applet-desc is defined in the JNLP file then it's an application descriptor for
an applet. The applet-desc tag takes the normal parameters an applet would take.

Similarly when a Component-desc is defined in the JNLP file it represents a
component extension. A Component extension is used to represent common
components that can be shared between applications.

The last type is a installation file. Its called a installer extension and it contains a
installer-desc tag. This is used when a application needs to be downloaded and
installed for the first time.

3.3.2.2 Step By Step

• Step 1: Build your application
Your application must be available as a jar file.

• Step 2: Sign the jar file
You must sign the jar file in order that people can verify its origin (and decide if
they trust the application or not). The JDK contains a tool which allows signing of
jar file with a certificate. If you don't have your own certificate, you can use the
tool also to build one.

Create new certificate:

keytool -genkey -keystore yourKeystore -alias YourName

You will be prompted several questions. At the end, your personal certificate will
be in your keystore "yourKeystore". You can check it by calling:

keytool -list -keystore yourKeystore

•

6

Now you can sign the jar file:

jarsigner -keystore yourKeystore test.jar YourName

The jar file includes know your signature and people can decide if they trust it.

• Step 3: Creating the JNLP file
The JNLP file describes mainly which file(s) are included in the application (only
one jar file in our case), which is the main class, which JRE version to use and the
network location. The JRE version is used for update checks.

Here is an example file called webstart.jnlp file:

<?xml version="1.0" encoding="utf-8"?>
<jnlp spec="1.0+"
codebase="http://www.autexier.de/jmau/dev/webstart"
href="webstart.jnlp">

<information>
<title>WebStart Demo</title>
<vendor>Jean-Marc Autexier</vendor>
<homepage href="http://www.autexier.de/jmau" />
<description>A Java Webstart test</description>
<offline-allowed />

</information>
<resources>

<j2se version="1.4+" />
<jar href="JnlpTest.jar" />

</resources>
<security>

<all-permissions />
</security>
<application-desc main-class="jnlptest.Main" />

</jnlp>

• Step 4: Web server installation
Both the jar and the JNLP file must be available on a HTTP server. The web server
must return a special MIME type for JNLP files:

application/x-java-jnlp-file

If you have an apache webserver, the easiest way is to place a .htaccess file in the
same directory than the application.

AddType application/x-java-jnlp-file .jnlp
AddType application/x-java-archive-diff .jardiff

• Step 5: Test
Now when you call the Url of the JNLP file and your browser is configured
correctly, Java Webstart client will open, download the application, ask for security
reasons if you trust the certificate owner and execute it.

7

3.3.2.3 Updates And Caching6

The JNLP application provides three different download protocols by which the
application on the client can be made current. The first is the Basic download Protocol
which downloads resources without any version information. The second is a Version
based Download protocol which identifies all resources by a URL and version Id. In
this case when the JNLP client starts up an application it sends the current version to
the server as part of the request. If the server has a newer version it would download
the newer version. The third protocol pertains to extensions where a URL or a URL
and version id can be specified to download the Extension Descriptor. If only a URL
is specified the extension is downloaded using the Basic download protocol. If a URL
and a version is specified the version based download protocol is used with a few
additional parameters. The extra parameters are used to identify the extension type
and the platform for which it is needed.

JNLP also provides a facility of providing incremental updates. When the server finds
that the client already has a version on the local machine and all it requires is a new
version it sends an incremental upgrade instead of the whole application thereby
reducing download time.

A JNLP client can cache the application to make it run faster in the subsequent runs. If
an application is downloaded using the basic download protocol it would download
the application without a version. When the application is downloaded a time stamp is
downloaded on the client to keep track of updates. In the version based download
protocol timestamps are not stored but the version would be part of the request.

When the request is made the JNLP client checks for the version already existing in
the cache and the version in the request. If they match no download needs to be done.

3.3.2.4 Security

The Java Web Start enforces the strict security rules of the Java language. Like Java
applets all Java Web Start applications execute within the Java Sandbox. By default
all applications are deemed to be malicious and access to local resources is restricted.
However applications can be signed using security certificates to allow limited access
to system resources and files. This may not be of great benefit to Intranet users who
want to capitalize on the power of Java Webstart in a secure intranet. The JNLP API
provides for some basic operations which can be done without securing or signing the
application. Some of them are discussed in the next section.

3.3.3 JNLPAPI

Sun has included the Java Web Start in the download for J2SE 1.4. It has introduced a
new extension package to include all the JNLP specific files called the javax.jnlp.*.

The JNLP API contains a few important services that would be helpful for
applications that would want to do some operations on the client that are not allowed
by the security manager. This does not mean that the security manager is bypassed by

6 http://javaboutique.internet.com/tutorials/WebStart/

8

the JNLP API. It provides for a platform independent mechanism to interact with the
client resources after obtaining the permission of the client. Java Web Start displays a
warning window when a operation outside the control of the sandbox is requested.

An object of the service required can be obtained using the static lookup method of
the ServiceManager Class. The lookup method takes a String parameter which is the
string representation of the service name and returns a handle to the service requested.

3.3.4 JNLP's Main Services

BasicService
This is a mandatory service and does operations similar to the AppletContext from the
Applet class. The getCodeBase method provides access to the codebase of the
application. The isOffline method which can be used to determine if the application is
running offline or online. Finally the isWebBrowserSupported method can help in
finding the browsers supported by the JNLP client. The class is
javax.jnlp.BasicService

DownloadService
This is a mandatory service that needs to be provided. It allows the application to
control the resources being downloaded and cached on the client. It can check for
already existing resources, load new resources, force caching of resources and remove
resources from the client machine. Only resources available for the application can be
downloaded. They need to be specified in the JNLP file. The class is
javax.jnlp.DownloadService.

FileOpenService
This service provides the flexibility to access the files on the client machine even if
they are in a untrusted environment. The openFileDialog or openMultiFileDialog can
be used to access the file required. The contents of the file are returned in a
FileContents object which provides access to the contents of the file. This service
cannot be used to find the directory structure of the client machine. The JNLP client
needs to show the security dialog box to warn the user of the operation. The class is
javax.jnlp.FileOpenService.

FileSaveService
This service provides a mechanism for storing files on the client machine, even if they
are in a untrusted environment. The file save dialog box is displayed by invoking the
saveFileDialog or saveAsFileDialog methods. This method returns a FileContents
object representing the file that was saved. The class is javax.jnlp.FileSaveService.

ClipboardService
This service provides an interface to access the contents of the Clipboard even when
running in a untrusted environment. It consists of two methods, setContents and
getContents, that help set or retrieve the contents of the clipboard. The service has to
warn the user of the potential dangers of letting a untrusted application access
clipboard data. The class is javax.jnlp.ClipboardService.

PrintService
This service provides access to printing from an untrusted application. The application

9

submits a request to the JNLP client for a print job which is in turn passed to the client
machine for permission. If accepted the print job is executed. The class is
javax.jnlp.PrintService.

PersistanceService
This service provides a mechanism to store data on the client side even in a untrusted
environment. The service is similar to the service provided by the cookies in HTML.
Unlike cookies there is no maximum limit on the data that can be stored on the client.
The maximum limit is decided by the JNLP client implementing this service. The
class is javax.jnlp.PersistanceService.

ExtensionInstallerService
This is a mandatory service that provides methods to provide an extension installer to
manipulate the progress bar shown during installation. It provides methods like
updateProgress and hideProgressBar to update the progress bar during installation. It
also provides information on native libraries. The class is
javax.jnlp.ExtensionInstallerService.

3.4 SOAP

3.4.1 Introduction

SOAP stands for Simple Object Access Protocol and is a communication protocol for
the communication between applications. It can be also considered as a format for
sending messages and is designed to communicate via the Internet. SOAP is a XML
based protocol and therefor platform and programing language independent for the
information exchange in a decentralized, distributed environment. SOAP consists of
three parts:

• an envelope that defines a framework for describing what is in a message and how
to process it

• a set of encoding rules for expressing instances of application-defined datatypes
• a convention for representing remote procedure calls and responses

The Internet has become one of the most important medium for the worldwide
information exchange and it is meanwhile for the development of applications very
important to allow Internet communication between programs. Today's application
communicate using Remote Procedure Calls between objects like DCOM and
CORBA. HTTP however was not designed to support these services. Remote
Procedure Call represents a compatibility and security problem. The proxy and
firewall servers will normally block this kind of traffic. Therefor it was necessary to
develop a way to communicate between applications via HTTP. A consortium of the
big companies like UserLand, Ariba, Commerce One, Compaq, Developmentor, HP,
IBM, IONA, Lotus, Microsoft, and SAP proposed to W3C, in May 2000, the SOAP
Internet protocol. December 2001 the first public working draft on SOAP was
published from the W3C. The latest version of SOAP which is SOAP V1.27 was

7 http://www.w3.org/TR/soap12-part1/

10

recommended at June 24 2003 by the W3C. At present, SOAP has been implemented
in over 60 languages on over 20 platforms.

3.4.2 SOAPMessage

A SOAP message is an ordinary XML document containing the following elements:

• A required Envelope element that identifies the XML document as a SOAP
message

• An optional Header element that contains header information

• A required Body element that contains call and response information

• An optional Fault element that provides information about errors that occurred
while processing the message

All the elements above are declared in http://www.w3.org/2001/12/soap-envelope

11

The SOAP message exchange process8:

1. The client application builds a SOAP message which is an XML document. It can
now perform the desired request/response operation.

2. The client sends the SOAP message to a JSP, PHP or ASP page on a Web server
listening for SOAP requests.

3. The SOAP server parses the SOAP package and invokes the appropriate method of
the object in its domain, passing in the parameters included in the SOAP document.
Optionally, intermediate processing nodes may have performed special functions as
indicated by SOAP headers prior to receipt of the message by the SOAP server.

4. The request object performs the indicated function and returns data to the SOAP
server, which packages the response in a SOAP envelope. The server wraps the
SOAP envelope in a response object, such as a servlet or a COM object, which is
sent back to the requesting machine.

5. The client receives the object, strips off the SOAP envelope and sends the response
document to the program originally requesting it, completing the request/response
cycle.

8 http://java.sun.com/developer/technicalArticles/xml/webservices/

12

Figure 3.3: SOAP Message Exchange Process

3.4.3 SOAPEnvelope9

<SOAP-ENV: Envelope
xmlns:

SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
SOAP-ENV:

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<SOAP-ENV:Header>

<t:Transaction xmlns:t="some-URI">
SOAP-ENV:mustUnderstand="1"

5
</t:Transaction>

</SOAP-ENV:Header>
<SOAP-ENV:Body>

<m:GetLastTradePrice xmlns:m="some-URI">
<symbol>DEF</Symbol>

</m: GetLastTradePrice>
</SOAP-ENV:Body>

</SOAP-Envelope>

In this example a GetLastTradePrice request is being sent to a stock-quote service
somewhere on the Web. The request takes a string parameter, a ticker symbol, and
returns a float in the SOAP response.

The SOAP envelope is the top element of the XML document that represents the
SOAP message. XML namespaces are used to disambiguate SOAP identifiers from
application specific identifiers. XML namespaces are used heavily in SOAP to qualify
or scope elements in the message to a specific domain. To understand SOAP
namespaces, it helps to be familiar with the namespace spec for XML. If you're not,
simply think of namespaces as neighborhood identifiers that help uniquely identify
SOAP elements by associating them with specific locations, real or imagined.

Namespaces

The first namespace in the example references the SOAP schema which defines the
elements and attributes in the SOAP message. The second namespace refers to SOAP
encodings, the "Section 5" data types discussed earlier. Since no additional per-
element encoding is specified, this encoding applies to the whole document.

Header

The first element identified in this sample SOAP envelope header is a transaction
element, accompanied by a namespace attribute and by the mustUnderstand
attribute with a value of 1. Since mustUnderstand is set to 1, the server accepting
this message must perform intermediate processing on this transaction node. You can
interpret this to mean that the server and client have previously agreed upon the
semantics that govern the processing of this header element, so that the server knows
exactly what to do with the contents of the element, in this case 5.

If the server receiving this message doesn't understand the semantics of the
transaction header, it is required to reject the request completely and throw a fault. A
fault element is a special part of the SOAP body and a well-defined mechanism to
ship error information back to the client.

Intermediate processing nodes like this are an example of SOAP's extensibility.
Clients include such nodes in a SOAP message to indicate that special processing

9 Example from: http://java.sun.com/developer/technicalArticles/xml/webservices/

13

needs to take place before the contents of the message body can be processed.
Ensuring backward compatibility with existing servers not capable of providing such
processing is simply a matter of setting the mustUnderstand attribute to 0 which
makes the action optional.

In addition to defining transaction nodes like the one described above, a SOAP
message may optionally contain header entries specifying nodes that perform
authorization processing, encryption, persistence of state, business logic processing
and so on. Headers help make SOAP a modular, extensible packaging model. Just
keep in mind that header processing is entirely independent of the SOAP message
body.

Body

The SOAP body in the example contains an XML payload, which we can surmise,
without really seeing it spelled out for us, does RPC. SOAP is not only a modular
packaging model, it's also a fairly cryptic packaging model.

Nothing here explicitly shows that RPC is begin done. All we see in the body are a
couple of XML elements, one qualified by a namespace. It's up to the SOAP server to
understand the document semantics and do the right thing. The server, in effect,
provides a framework for dealing with the XML payload in a meaningful way.
"Meaningful" here implies that the server invokes a remote procedure call on some
back-end database to receive the stock price for the stock-symbol element contained
in the message body. All the magic takes place behind the SOAP Remote Procedure
Call curtain.

3.4.4 SOAPRemote Procedure Call10

SOAP messages are fundamentally one-way transmissions from a sender to a receiver,
but SOAP messages are often combined to implement request/response mechanisms.
To do RPC using SOAP, a few conventions must be followed. First of all, request and
response messages must be encoded as structures. For each input parameter of an
operation, there must be an element (or member of the input structure) with the same
name as the parameter. And for every output parameter, there must be an element (or
member of the output structure) with a matching name.

Here's a foreshortened, Remote Procedure Call based view of the SOAP message
presented earlier. Only the body portions of the SOAP request and response envelopes
are shown.

Request
<SOAP-ENV:Body>

<m:GetLastTradePrice xmlns:m="some-URI">
<symbol>DEF</Symbol>

</m:GetLastTradePrice>
</SOAP-ENV:Body>

10 Example from: http://java.sun.com/developer/technicalArticles/xml/webservices/

14

Response
<SOAP-ENV:Body>

<m:GetLastTradePriceResponse xmlns:m="some-URI">
<price>22.50</price>

</m: GetLastTradePriceResponse>
</SOAP-ENV:Body>

The request invokes the GetLastTradePrice method. Notice the response defines a
GetLastTradePriceResponse operation. A convention common to SOAP calls for
appending Response to the end of a Request operation to create a Response
structure. This output structure contains an element called price which returns the
results of the method invocation presumably as a float.

It's important to note that nowhere in the SOAP envelope are data types explicitly
delineated, so we really don't know the type of the symbol or the type of the result
parameter price just by looking at the SOAP message. Client applications define data
types either generically through "Section 5" encodings, or privately via agreed-upon
contracts with servers. In either case, these definitions are not explicitly included in
the SOAP message.

Finally, in order to do Remote Procedure Call, a lower-level protocol like HTTP is
needed. Although the SOAP 1.0 specification mandated the use of HTTP as the
transport protocol, SOAP 1.1 1 (and its sister specification "SOAP Message with
Attachments") permit the use of FTP, SMTP or even (possibly) raw TCP/IP sockets.
All the serialization and encoding rules general to SOAP apply to RPC parameters as
well.

3.4.5 SOAPExample

In the example below a GetStockPrice request is sent to a server. The request has a
StockName parameter and a Price parameter will be returned in the response. The
namespace for the function is defined in "http://www.stock.org/stock" address.

The SOAP request:
POST /InStock HTTP/1.1

Host: www.stock.org
Content-Type: application/soap+xml; charset=utf-8
Content-Length: nnn

<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

<soap:Body xmlns:m="http://www.stock.org/stock">
<m:GetStockPrice>

<m:StockName>IBM</m:StockName>
</m:GetStockPrice>

</soap:Body>
</soap:Envelope>

15

A SOAP response:

HTTP/1.1 200 OK
Content-Type: application/soap; charset=utf-8
Content-Length: nnn
<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

<soap:Body xmlns:m="http://www.stock.org/stock">
<m:GetStockPriceResponse>

<m:Price>34.5</m:Price>
</m:GetStockPriceResponse>

</soap:Body>
</soap:Envelope>

3.5 MIDI

Unlike sampled audio MIDI is an indirect representation of a sound itself. MIDI data
can be imagined like a recipe for creating a sound especially a musical sound. It
describes events that affect the sound a synthesizer is making. MIDI data is analogous
to a graphical user interface's keyboard and mouse events.

In the case of MIDI the events can be thought of as actions upon a musical keyboard
along with actions on various pedals, sliders, switches, and knobs on that musical
instrument. These events need not actually originate with a hardware musical
instrument. They can be simulated in software and they can be stored in MIDI files.

16

Figure 3.5: MIDI Message

A program that can create, edit, and perform these files is called a sequencer.

17

Figure 3.6: MIDI Sequence

Figure 3.7: MIDI Sequencer

Many computer sound cards include MIDI-controllable music synthesizer chips to
which sequencers can send their MIDI events. Synthesizers can also be implemented
entirely in software. The synthesizers interpret the MIDI events that they receive and
produce audio output. Usually the sound synthesized from MIDI data is musical
sound (as opposed to speech, for example). MIDI synthesizers are also capable of
generating various kinds of sound effects.

Some sound cards include MIDI input and output ports to which external MIDI
hardware devices, such as keyboard synthesizers or other instruments, can be
connected. From a MIDI input port an application program can receive events
generated by an external MIDI-equipped musical instrument. The program might play
the musical performance using the computer's internal synthesizer, save it to disk as a
MIDI file, or render it into musical notation. A program might use a MIDI output port
to play an external instrument, or to control other external devices such as recording
equipment.

The following diagram shows the functional relationships between the major
components in a possible MIDI configuration based on the Java Sound API. The flow
of data between components is indicated by arrows. The data can be in a standard file
format, or (as indicated by the key in the lower right corner of the diagram), it can be
audio, raw MIDI bytes, or time-tagged MIDI messages.

The application program prepares in this example a musical performance by loading a
musical score that's stored as a standard MIDI file on a disk. A Standard MIDI file
contains tracks, each of which is a list of time-tagged MIDI events. Most of the events

18

Figure 3.8: MIDI Overview

represent musical notes which are pitches and rhythms. This MIDI file is read and
then "performed" by a software sequencer. The sequencer performs its music by
sending MIDI messages to some other device like an internal or external synthesizer.
The synthesizer itself may read a soundbank file containing instructions for emulating
the sounds of certain musical instruments. If not, the synthesizer will play the notes
stored in the MIDI file using whatever instrument sounds are already loaded into the
synthesizer.
As illustrated the MIDI events must be translated into raw, non-time-tagged MIDI
before being sent through a MIDI output port to an external synthesizer. Similarly,
raw MIDI data coming into the computer from an external MIDI source like a
keyboard instrument in the diagram. They are translated into time-tagged MIDI
messages that can control a synthesizer or that a sequencer can store them for later
use.

3.6 The Common Data Format11

Common Data Format (CDF) is a self-describing data format for the storage and
manipulation of scalar and multidimensional data. It is platform-independent and
provides programming interfaces for C, Java, Perl and Fortran applications to
guarantee a device-independent view of the CDF data model.

The current version is CDF V3.0 and was released on February 10, 2005.

The CDF software, documentation, and user support services are provided by NASA
and available to the public free of charge. There are no license agreements or costs
involved in obtaining or using CDF.

The CDF software package is used by hundreds of US government agencies,
universities, and private and commercial organizations as well as independent
researchers on both national and international levels. CDF was adopted by the
International Solar-Terrestrial Physics (ISTP) project as their format of choice for
storing and distributing key parameter data.

Here are some examples listed where CDF has been accepted in public software
projects:

• Interactive Data Language (IDL)

• MathWorks MATLAB Language (MATLAB)

• Application Visualization System (AVS)

• Weisang GmbH & Co. KG Data Analysis and Presentation (FlexPro)

• IBM Visualization Data Explorer (DX)

There is also software which can convert non-CDF data files into CDF files. For
example MakeCDF is a CDF application that reads flat data sets in both binary and

11http://cdf.gsfc.nasa.gov

19

text and generates a IST CDF data set from that data. The other way around there is
CDFexport which is a tool that can generate an ASCII text file of the selected
variables from a CDF file.

20

